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A B S T R A C T   

The global population is growing rapidly and food production needs to be stepped up substantially to supply the 
additional demand expected by projected increased population. Further, climate change is expected to exert 
considerable pressure on global agriculture and food production. Crop wild relatives (CWR), which possess large 
untapped genetic diversity, can provide vital genetic material for future crop improvement. At present, this 
important category of plants is at risk due to anthropogenic climate change and other human-mediated changes i. 
e., habitat destruction. Therefore, it is important to study and understand the vulnerability of CWR to climate 
change, their potential distribution, and range dynamics for their conservation. Here we use Maxent algorithm to 
simulate the potential distribution across nine CWR species belonging to four crop genera, Cinnamomum, Piper, 
Vigna and Oryza in Sri Lanka and investigate how the predicted potential suitable areas change under climate 
change. Our findings indicate that species response to climate change varies among species studied, even within 
the same genus. Many species are predicted to decrease their suitable habitat by 2050, suggesting that these 
species are highly vulnerable to climate change impacts. The study identifies potential CWR rich areas in the 
country for future in situ conservation. Our findings facilitate decision-makers to make evidence-based decision- 
making for better management of CWR in Sri Lanka.   

1. Introduction 

Negative consequences of recent global climate changes are exerting 
extensive impacts on species and ecosystems of the world (IPCC, 2014; 
Walther et al., 2002); climate-induced impacts on earth biota are well 
recognized by the scientific community. Earth’s temperature has 
increased substantially (approx. by 0.6 ◦C) over the last 10 decades with 
considerable variability (Millennium Ecosystem Assessment, 2005). 
Importantly, the rate of global warming has increased slightly from 1976 
(i.e., 0.17 ◦C/decade), compared with the previous years, particularly 
over land areas (Folland et al., 2001). Climate change has the potential 
to lead to a considerable impact on global agriculture that continues to 
influence food production and food systems worldwide (Al et al., 2008). 
Knowledge, understanding and proper evaluations of climate change- 
related impacts can be limited, particularly in developing countries 

(Kariyawasam et al., 2019b). Besides, the global population is increasing 
rapidly; it will remain growing and is anticipated to reach nearly 10 
billion by 2050 (Searchinger et al., 2019). To supply the expected 
increased demand, global food production needs to be increased by 50% 
compared to the present (Chakraborty and Newton, 2011). Attaining 
sustainable development goal 2: achieve zero hunger by 2030, could be 
a challenging goal. Therefore, scientists have attempted to achieve food 
security targets using wild relatives of important crops. 

Crop wild relatives (CWR) are an important category of wild plants 
closely related to cultivated crops that have the potentiality to provide 
genetic material to develop new improved crop varieties with higher 
yield and climate change tolerance (Maxted et al., 2006; Vincent et al., 
2019; Zair et al., 2018). Banana is a commercially improved crop using 
two wild relatives of banana, Musa acuminata and Musa balbisiana 
(Bakry et al., 2009; Kallow et al., 2020). Crop wild relatives possess 
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multiple utility values i.e., significant potential nutritional value; yet, 
the real potential of many species have not been explored and remain 
understudied (Singh et al., 2020). Also, the relative utility of this 
important resource is hampered as they are rare in ex situ collections 
(Castañeda-Álvarez et al., 2016). Even in situ, these species are not 
widely available; they are under-exploited and rarely protected (Vincent 
et al., 2019). Climate change has already exerted considerable pressure 
on global crop production and output will continue to decline, partic-
ularly in developing countries (Parry et al., 2004; Ray et al., 2015). Crop 
wild relatives are a vital resource that has the potential to address this 
challenge as they possess beneficial traits and superior trait diversity 
that can be utilized for crop improvements (i.e., higher nutritional value, 
pest and disease tolerance). Further, they are adapted to survive in a 
wide range of habitats under varying environmental conditions (Maxted 
and Kell, 2009; Padulosi et al., 2011; Phillips et al., 2017; Yadav et al., 
2015). The value of CWR is marked by their wide use in crop im-
provements in adapting to various challenges such as climate change, 
diseases, over the recent few decades (i.e., 185 CWR taxa into 29 crops), 
predominantly for crops such as wheat, rice, barley, cassava, potato and 
tomato (Dempewolf et al., 2017; Hunter and Heywood, 2011; Maxted 
and Kell, 2009). Agriculture and food security are likely to be threatened 
in the future by the spread of crop pests and pathogens in the future as 
these biotic agents are predicted to change their potential ranges due to 
climate change impacts (Bebber et al., 2013; Garrett et al., 2006). In this 
context, the potential utilization of CWR genetic traits against biotic 
stresses is highly important and can be utilized for crop improvements to 
minimize impacts (Dempewolf et al., 2014). 

Climate change impacts on the potential distribution of CWR, both 
spatially and temporally, and such impacts may vary among taxa at the 
species level (Vincent et al., 2019). Niche-based species distribution 
models (SDMs) can estimate the distribution pattern range dynamics of 
species across the geographic space using species’ occurrence data and a 
suite of environmental predictors (Elith and Leathwick, 2007). Such 
information is vital for assessing potential risks and prioritizing them for 
conservation actions (van Treuren et al., 2020). SDMs can also be used to 
identify potentially suitable habitats for the targeted species in areas 
which are inaccessible, unexplored or not occupied by them (Franklin, 
2009; González-Orozco et al., 2020; Kariyawasam et al., 2019a). How-
ever, the species’ realized niche or the area occupied by the species can 
be smaller than the fundamental niche that represents species’ full po-
tential area of occupancy, due to natural barriers, human and other bi-
otic influences (Phillips et al., 2006). Therefore, what the niche models 
estimate as the potentially suitable area can be slightly larger than the 
actual area occupied by the species. Thus, the possible implications 
should be considered while incorporating outcomes of SDMs into real- 
world applications. 

In Sri Lanka, there are around 645 CWR species (Liyanage, 2010). 
Several agriculturally important CWR species in the country are freely 
grown in the wild without any management intervention. These species 
possess huge potential to contribute to the country’s food security, 
human nutrition and poverty alleviation. However, their survival under 
the challenges of climate change is not extensively studied and under-
stood. Genetic erosion of CWR species in Sri Lanka is a serious issue in 
the last few decades and their conservation is mostly restricted to ex situ 
conservation; though, the persistence of some species under ex situ 
conditions is not certain (Liyanage, 2010). Therefore, risk assessment of 
CWR is important to identify those species at greater risk and prioritize 
those for conservation planning. In this study, we model nine priority 
CWR species in Sri Lanka, belonging to four crop genera, Cinnamomum, 
Piper, Vigna and Oryza. Under climate change, we aim to (i) examine the 
spatial and temporal distribution of CWR species (ii) assess the poten-
tially suitable areas acquired by them and (iii) identify high conserva-
tion value areas for in situ conservation around Sri Lanka. This 
information will provide baseline data to help understand CWR species 
vulnerability under climatic changes and provide information to 
formulate strategies for their conservation. 

2. Materials and methods 

2.1. Species occurrence data 

Based on data collected through continuous field surveys and in-
ventories, the Plant Genetic Resources Centre (PGRC) in Sri Lanka, 
prioritized 31 wild relatives of food crops for active conservation 
(Liyanage, 2010). The present study considered 26 species after elimi-
nating species with small numbers of occurrences (Table S1). This 
database contained 869 occurrence records (representing 1998–2007 
period) belonging to five crop genera (crop groups), namely Cinnamo-
mum, Musa, Oryza, Piper and Vigna. 

Duplicate occurrences were removed using ENM tools version 1.3 
(http://enmtools.blogspot.com/2011/03/enmtools-13-is-out.html). 
Sampling bias is a common problem in presence-only data as data col-
lections are biased towards easily accessible areas (Phillips et al., 2006). 
Thus, spatial thinning (spatial filtering) was carried out using the R 
package, “spThin” to reduce the effects of sampling bias that removes a 
minimum number of records while retaining the maximum possible 
number for model building (Aiello-Lammens et al., 2015). We decided 
the thinning geographic distance of 1 km as the study area is slightly 
heterogeneous (Boria et al., 2014). Addressing sampling bias through 
spatial thinning reduces model overfitting and improves model perfor-
mance better than background manipulation (i.e., use of bias files) 
(Boria et al., 2014; Kramer-Schadt et al., 2013). In addition, Wisz et al. 
(2008) have highlighted that the performance of modeling techniques is 
low and not robust to small sample sizes (n < 30). Spatial thinning 
resulted in nine species belonging to four crop groups with more than 30 
minimum occurrences which are located 1 km apart from each other (i. 
e., distribution is not restricted) for further analysis (Fig. 1; Table S2). 
Thus, the number of CWR species in each crop genus was comprised of 
Cinnamomum (n = 1), Piper (n = 3), Vigna (n = 1) and Oryza (n = 4). The 
small numbers of occurrences represented by some of the species are not 
due to low sampling effort but due to highly localized geographic dis-
tribution and as such, the presence points represent the species range. 

2.2. Environmental variables 

Nineteen bioclimatic variables at a high spatial resolution (30 arc sec 
or ~ 1 km2) for current (1960–1990) and future climate were taken from 
the WorldClim dataset (https://www.worldclim.org/) to identify the 
most responsive variables for CWR distribution (Hijmans et al., 2005). In 
addition, land cover and topographical covariates: elevation (dem), soil 
and aspect were considered. We did not consider anthropogenic impacts 
as CWR species occur naturally and thus the level of human influences 
on their distribution is relatively low. Global land cover data were 
downloaded at a 300 m resolution from the European Space Agency 
GlobCover Portal (http://due.esrin.esa.int/page_globcover.php) and 
resampled to the 30 arc sec resolution. We obtained dem, aspect and soil 
data of a similar resolution used in a study by Kadupitiya et al. (2018). 
Removing highly correlated variables was undertaken using the 
‘removeCollinearity’ function of the freely available package ‘virtual-
species’ (version 1.4–4) in the R platform (Leroy et al., 2016) (Fig. S1). 
Variables with reduced collinearity at the threshold value of 0.7 (Pear-
son Correlation Coefficient < 0.7) were selected (Dormann et al., 2013). 
The selected 11 variables of reduced collinearity are shown in Table 1. 
For future projections, we used the MIROC5, the fifth version of the 
Model for Interdisciplinary Research on Climate (Watanabe et al., 
2010). MIROC5 has been well tested for South Asia and confirmed that it 
better simulates climate variability in the region and makes a reliable 
prediction (Mishra et al., 2014; Sharmila et al., 2015; Sperber et al., 
2013). Representative Concentration Pathways (RCPs) signify the pro-
jected levels of greenhouse gas (GHG) emissions which are largely 
driven by socio-economic factors and climate policy (IPCC, 2014). We 
selected RCP 4.5 (intermediate GHG emissions) and 8.5 (high GHG 
emissions) scenarios for two time periods, 2050 and 2070. 
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2.3. Maxent modeling 

For model building, we selected the machine learning program, 
Maximum Entropy Species Distribution Modeling (Maxent; version 3.4.1) 
(https://biodiversityinformatics.amnh.org/open_source/maxent/) which 
is based on the maximum entropy principle to understand the potential 
distribution of selected CWR species in Sri Lanka (Phillips et al., 2006). 
The selection of Maxent in the current study was due to several reasons: (i) 
Maxent is a robust modeling technique that mostly outperforms many 
other super modeling methods (Elith et al., 2011; Merow et al., 2013; 
Phillips and Dudík, 2008); (ii) Maxent uses presence-only species occur-
rences and also both continuous and categorical environmental predictors 
as input data; (iii) Maxent performs well across all sample sizes including 

samples of small numbers of occurrences; however, it needs to be inter-
preted with caution (Baldwin, 2009; Hernandez et al., 2006; Wisz et al., 
2008) and (iv) Maxent results can be easily visualized into a binary pre-
diction (i.e. suitable and unsuitable) using a selected threshold. A com-
bination of feature types influences the predictive performance of the 
Maxent algorithm (Phillips and Dudík, 2008). The five feature types 
existing are linear (L), quadratic (Q), product (P), threshold (T), and hinge 
(H). The selection of feature classes depends on the number of presence 
records available (Merow et al., 2013). The Maxent algorithm determines 
the combination of feature classes to use if default “auto features”’ is 
selected. We used all feature types for the species that exceeded 80 pres-
ence records; L, Q and H with 15–79 records (Merow et al., 2013; Phillips 
and Dudík, 2008). Five replicates were selected with bootstrapping 

Fig. 1. Distribution of occurrence records of the nine crop wild relative species used in this study.  
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(sampling with replacement) as species occurrence numbers are generally 
sparse (Phillips et al., 2006). Models were run with 1000 maximum iter-
ations, allocating sufficient time for convergence to make a smooth pre-
diction. Random test percentage was set to 20%, allowing 80% of the 
occurrence data for model training. We modeled multiple species with 
varying numbers of occurrences. Therefore, species-specific tuning is not 
practical and thus we let the other parameters remain at default values. 
Default settings have been proven as good across a range of species and 
occurrence numbers (Phillips and Dudík, 2008). Maxent algorithms built 
on current climate data were projected to the future scenarios and the 
resulting average output ASCII rasters were visualized in ArcMap (version 
10.4.1) for analysis. 

2.4. Model performance 

Model performance was assessed through widely used accuracy 
measures: threshold-independent Area Under the Curve (AUC) of the 
Receiver Operating Characteristic (ROC) curve and thresh-
old–dependent True Skill Statistic (TSS) (Allouche et al., 2006; Fielding 
and Bell, 1997; Phillips et al., 2006). In addition, confusion matrix 
derived measures, sensitivity (correctly classified presences as a per-
centage) and specificity (correctly classified absences as a percentage) 
were examined (Fielding and Bell, 1997). The AUC values not less than 
0.7 implies moderate model performance while the AUC values 
exceeding 0.9 implies good performance (Peterson et al., 2011; Swets, 
1988). TSS values greater than 0.4 indicate moderate performance while 
the values greater than 0.8 indicate good performance (Pramanik et al., 
2018). 

2.5. Potential area of prediction 

Maximizing the sum of the sensitivity and specificity threshold was 
used to develop binary maps of presence and absence (suitable and not 
suitable) under the current climate and climate change scenarios for 
2050 and 2070. This is a recognized threshold selection approach for 
presence-only data with pseudo-absences as this approach has been 
proven to produce consistent results across a range of datasets (Liu et al., 
2016). Presence-absence (suitable-not suitable) maps were developed 
using this threshold approach and suitable area of each species was 
calculated using the Field Calculator tool in ArcMap. The percentage 
change of suitable area was estimated for 2050 and 2070 under RCP4.5 
and 8.5 scenarios in relation to the current climate. The classified species 
layers were combined in ArcMap to develop a cumulative species rich-
ness map (‘heat map’), representing the distribution of all evaluated 
CWR species, by overlaying potential suitability areas of all species. The 
combined raster map was classified into six species richness classes 

depending on the number of species that overlapped: none (0 species), 
very low (1 species), low (2 species), moderate (3 species), high (4 
species) and very high (≥5 species). 

3. Results 

Models of nine CWR species showed acceptable predictive accuracy 
for further study (Table S3). The significance of the highly contributing 
variables for the potential distribution of CWR varied among the species; 
however, a few variables were more common predictors than others 
among the species evaluated (Fig. S2). This variable importance is 
mostly consistent with the results of the Jackknife test as well. In many 
models, soil, precipitation of driest month (bio_14), annual precipitation 
(bio_12) and dem performed relatively better than the other variables. 
The overall contribution of precipitation variables was significant in all 
models. Also, the contribution of soil variable determining the potential 
species distribution was found to be high across all models. 

The potential habitat preferences of individual CWR species under 
current climate and future scenarios are presented in Fig. 2. In many 
species, the calculated projected suitable areas decrease from the cur-
rent climate to 2070 under two emissions scenarios (Fig. 3; Table 2). 
Many models predict a decrease in the likely suitable area by 2050 and 
increase again by 2070 under RCP4.5 (low emissions scenario). How-
ever, under RCP8.5 (high emissions scenario), these species are in rapid 
continuous decline and six species will lose more than 80% of their 
suitability areas by 2070. On the contrary, P. sylvestre is projected to 
increase in the potentially suitable area from the current climate to the 
future, until 2070 under all scenarios and predicted to gain considerable 
area (126–167% gain). The map showing cumulative species richness 
across nine CWR species under current climate and future scenarios, 
produced by overlapping potential habitat suitability of each species, is 
presented in Fig. 4. The projected map under current climatic conditions 
implies a region of potential CWR species richness in the south-west wet 
zone of Sri Lanka, around Ratnapura, Kandy and Nuwara Eliya districts; 
however, this greater richness diminishes in the future under climate 
change scenarios. 

4. Discussion 

In species distribution modeling, the use of ecologically meaningful 
variables is important to obtain realistic, reliable and precise prediction 
(Mod et al., 2016). This study found that precipitation variables, 
particularly precipitation of the driest month (bio_14) and annual pre-
cipitation (bio_12) are vital in determining the distribution of CWR 
species in Sri Lanka. The performance of soil variable is exceptionally 
high across all models; however, it is not a predictor that is influenced by 
climate change and thus, the relative influence of soil variable deter-
mining the potential distribution of these species is low (Ratnayake 
et al., 2020). We consider that the models were significantly improved 
by incorporating this variable. Overall, the model performance was good 
across the selected species. Generally, species that had small sample 
sizes with limited distribution gave relatively high AUC values (Evan-
gelista et al., 2008; Van Proosdij et al., 2016; Yang et al., 2013); thus, the 
high AUC values we received in our models could be due to the highly 
specialized ecological niches of these species. 

Phillips et al. (2017) have stated that CWR species are generally 
found in diverse habitats with a broader range of environmental settings 
as they can withstand climatic extremes. However, our results do not 
support these findings. We found a greater number of evaluated species 
(eight species out of nine) are predicted to decline in their potentially 
suitable habitats by 2050, suggesting these species are quite vulnerable 
to the impacts of climate change. The results also imply that RCP8.5 has 
a greater impact on the potential distribution of these species and their 
richness under changing climatic conditions. Thus, CWR may be less 
adapted as they are not cultivated in many environmental conditions. 
Further, based on the experience of ecogeographic surveys, Liyanage 

Table 1 
Selected variables for maxent modeling.  

No Variable Unit Symbol 

1 Mean Diurnal Range (Mean of monthly (max 
temp - min temp)) 

Celsius (◦C) bio_2 

2 Maximum temperature of the warmest 
month 

Celsius (◦C) bio_5 

3 Minimum temperature of the coldest month Celsius (◦C) bio_6 
4 Annual precipitation Millimeters 

(mm) 
bio_12 

5 Precipitation of driest month Millimeters 
(mm) 

bio_14 

6 Precipitation seasonality Millimeters 
(mm) 

bio_15 

7 Precipitation of coldest quarter Millimeters 
(mm) 

bio_19 

8 Global Land Cover N/A landcover 
9 Elevation Meters dem 
10 Soil N/A soil 
11 Aspect Degrees aspect  
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Fig. 2. Maps showing the potential suitable habitats of nine crop wild relative species in Sri Lanka under current climate and RCP4.5 and 8.5 scenarios for 2050 
and 2070. 
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(2010) reports that the majority of CWR species in Sri Lanka have 
restricted geographic distributions. For instance, Cinnamomum species 
are confined to the wet zone of the country and Piper species are mostly 
distributed in the wet and intermediate zones (Table S1). Based on an 

experimental study, Jablonski et al. (2002) has stated that the repro-
ductive responses of CWR (i.e., fruits and seeds production) are much 
less than crops, at higher levels of CO2. Thus, climate change and 
associated atmospheric CO2 increase may influence the success of CWR 
in the future. Also, the species response to climate change can vary and it 
can be highly taxon-specific (Fei et al., 2017). For instance, our results 
suggest that the pattern of shift of Piper sylvestre under climate change is 
different from other species. Also many species potentially decline their 
habitat distribution until 2050 and increase again until 2070, particu-
larly under RCP4.5 scenario. Thus, species may not show the same 
pattern of suitable habitats change under climate change. Literature 
shows that some species have shown differences in their pattern of range 
shifts when drastic climatic changes occurred in the past (Root et al., 
2003). A study by Jarvis et al. (2008) has shown that climate change 
strongly reduces the potential habitat suitability of wild relatives of 
peanut (Arachis), potato (Solanum) and cowpea (Vigna), leading to 
fragmentation of suitable areas. Phillips et al. (2017) have reported a 
range shift of CWR species in Norway with likely increased richness in 
the future under climate change. Also in complex ecological systems, 
climate change can cause multifaceted, non-sequential and perhaps 
unpredictable changes (Walther, 2010). Climate change can result in a 
decline in the availability of crop pollinators that provide valuable 
ecosystem services for crop production (Giannini et al., 2017). 

Our findings suggest that the southwest wet zone is rich in CWR 
species compared with the other parts of the country under the present 
climate (Fig. 4). Occurrences of a majority of the CWR species (26 
species listed in Table S1) considered in this study are located in this 

Fig. 3. Graphical illustration to show how potentially suitable area (km2) of nine crop wild relative species change under current climate and RCP4.5 and 8.5 
scenarios for 2050 and 2070. 

Table 2 
Potentially suitable area (km2) of nine crop wild relative species under current 
climate and RCP4.5 and 8.5 scenarios for 2050 and 2070 (percentage changes 
are given within brackets relevant to current climate).  

No Species Current RCP4.5 
for 2050 

RCP4.5 
for 2070 

RCP8.5 
for 2050 

RCP8.5 
for 2070 

1 Cinnamomum 
dubium 

6581 1296 
(− 80) 

5512 
(− 16) 

366 
(− 94) 

121 
(− 98) 

2 Piper longum 5571 1477 
(− 73) 

1885 
(− 66) 

2107 
(− 62) 

311 
(− 94) 

3 Piper sylvestre 12,214 21,806 
(79) 

27,620 
(126) 

22,333 
(83) 

32,660 
(167) 

4 Piper 
zeylanicum 

8736 6737 
(− 23) 

8173 
(− 6) 

6041 
(− 31) 

6068 
(− 31) 

5 Vigna trilobata 3014 1567 
(− 48) 

1948 
(− 35) 

2114 
(− 30) 

1370 
(− 55) 

6 Oryza 
eichingeri 

9155 1978 
(− 78) 

1147 
(− 87) 

1273 
(− 86) 

207 
(− 98) 

7 Oryza nivara 9118 1195 
(− 87) 

4569 
(− 50) 

1694 
(− 81) 

638 
(− 93) 

8 Oryza 
rhizomatis 

5804 3489 
(− 40) 

2432 
(− 58) 

3001 
(− 48) 

1058 
(− 82) 

9 Oryza 
rufipogon 

5526 2183 
(− 60) 

4342 
(− 21) 

2821 
(− 49) 

1084 
(− 80)  
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region. The southwest wet zone of Sri Lanka is considered as a global 
biodiversity hotspot with a greater level of endemism (Myers et al., 
2000). Range-restricted endemic species are extremely vulnerable to 
climate changes as they are not adapted to tolerate a variety of climatic 
conditions (Bai et al., 2018). The species’ existence in southwest Sri 
Lanka is increasingly threatened by human interventions due to growing 
population pressure in this area (Gunawardene et al., 2007; Myers et al., 
2000). Further, this region is a hotspot of invasive plants richness 
(Kariyawasam et al., 2019a) and thus, this may cause additional 
competition to the survival of native CWR species in this region in the 
future. Invasive species can cause potentially severe impacts under 

climate change with negative implications for the survival of native flora 
(Kariyawasam et al., 2021). In this context, the sustainability of CWR in 
the future and utility of them in agriculture development activities in Sri 
Lanka in the future is uncertain. This situation calls for the requirement 
of a well-organized program for CWR conservation and management, 
including supportive policies (Castañeda-Álvarez et al., 2016; Hunter 
and Heywood, 2011; Maxted et al., 2020). 

Systematic conservation planning is mandatory for the persistence of 
biodiversity as species’ existence on earth is potentially challenged by 
climatic changes, extensive habitat destructions and many other 
human–mediated disturbances (Margules and Pressey, 2000; Root et al., 

Fig. 4. Potential species richness of evaluated nine crop wild relative species under current climate and RCP4.5 and 8.5 scenarios for 2050 and 2070.  
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2003). The safeguarding of existing populations of CWR in Sri Lanka is 
critically important as many species have highly localized geographic 
distribution and they are susceptible to climate changes and decline in 
their habitat suitability in the future. These CWR species consist of 
valuable untapped genetic potential that can be utilized in future crop 
improvement programs in the country, as well as possessing genetic 
traits that might be beneficial globally. Thus, the potential distribution 
maps developed by this study are valuable tools for guiding the imple-
mentation of appropriate conservation strategies. Further, they can be 
used for prioritizing the priority areas for in situ conservation, i.e., 
establishment of CWR reserves. Species whose conservation status has 
been assessed as ‘Least Concern’ by the red listing process should not be 
overlooked while developing conservation measures (van Treuren et al., 
2020). For instance, P. zeylanicum is a ‘Least Concern’ species, but our 
findings imply that this species is predicted to decline in its potential 
habitat suitability in the future. We also found that the majority of our 
CWR occurrences are located outside the protected area system. These 
populations do not have any form of legal protection and they are 
potentially at increased risk from anthropogenic impacts, i.e., habitat 
destruction. Thus, the value of biodiversity outside protected areas 
system needs to be taken into account in future national conservation 
planning, particularly for CWR conservation (Kariyawasam et al., 2020). 
Even in protected areas, the consideration given for CWR conservation is 
much less compared with fauna and timber crops (Liyanage, 2010). In 
addition, the distribution maps are vital for designing future CWR 
exploration activities as they indicate the areas with a greater possibility 
of species occurrence. Conservation and management strategies should 
address the recovery requirements of individual species as species show 
differences to the impacts of climate change. CWR species that are at 
immediate risk of extinction should be given high-priority for conser-
vation. Wild rice is a potentially important genetic resource for 
improving disease resistance in crops. For instance, 18 accessions of 
O. nivara found in Sri Lanka between 2006 and 2008 showed resistance 
to Brown Plant Hopper, which is one of the main rice pests in the 
country. Further, wild rice species, O. nivara and Oryza rufipogon are 
extremely important in crop improvement programs as they easily hy-
bridize with cultivated rice species (Hunter and Heywood, 2011). 

If urgent conservation actions are not taken to safeguard these spe-
cies, some of them might be lost forever. Authorities have not yet 
recognized and utilized the potential benefits of these species for agri-
cultural development, particularly in developing countries, which hin-
ders their conservation. Protection of existing CWR localities will 
preserve the genetic diversity that can be used for future agricultural 
development activities in the country. This would make a substantial 
contribution towards food security, poverty alleviation and elimination 
of malnutrition in Sri Lanka in the future. 

5. Conclusion 

The study findings reveal that climate change can lead to a reduction 
in the potentially suitable areas of the majority of the evaluated CWR 
species in Sri Lanka. A majority of the evaluated species show high levels 
of vulnerability to climate changes, except P. sylvestre that is predicted to 
increase its range. This may have negative consequences for agriculture 
and food systems in Sri Lanka, leading to food insecurity. The study 
findings highlight the importance of the conservation of existing habi-
tats of priority CWR species and provides implications for their ex situ 
conservation. The study also provides important baseline data to help 
conservation planners in preparing species recovery plans for high-risk 
species to ensure their better management. 
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