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Abstract 18	

Suboptimal ambient temperature exposure significantly affects public health. Previous studies have 19	

primarily focused on risk assessment, with few examining the health outcomes from an economic 20	

perspective. To inform environmental health policies, we estimated the economic costs of health 21	

outcomes associated with suboptimal temperature in the Minneapolis/St. Paul Twin Cities 22	

Metropolitan Area.  23	

We used a distributed lag nonlinear model to estimate attributable fractions/ cases for mortality, 24	

emergency department visits, and emergency hospitalizations at various suboptimal temperature 25	

levels. The analyses were stratified by age group (i.e., youth (0-19 years), adult (20-64 years), and 26	
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senior (65+ years)). We considered both direct medical costs and loss of productivity during 27	

economic cost assessment.  28	

Results show that youth have a large number of temperature-related emergency department visits, 29	

while seniors have large numbers of temperature-related mortality and emergency hospitalizations. 30	

Exposures to extremely low and high temperatures lead to $2.70 billion [95% empirical confidence 31	

interval (eCI): $1.91 billion, $3.48 billion] (costs are all based on 2016 USD value, $2016) economic 32	

costs annually. Moderately and extremely low and high temperature leads to $9.40 billion [$6.05 33	

billion, $12.57 billion] economic costs. The majority of the economic costs are consistently 34	

attributed to cold (>75%), rather than heat exposures and to mortality (>95%), rather than 35	

morbidity. Our findings support prioritizing temperature-related health interventions designed to 36	

minimize the economic costs by targeting seniors and to reduce attributable cases by targeting youth. 37	

 38	

Keywords : climate health, climate change, extreme temperature, extreme heat, ambient exposure, 39	

urban health   40	
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Introduction 41	

Ambient temperature exposures are associated with substantial adverse health impacts involving a 42	

wide range of health conditions (Analitis et al., 2008; Basu, 2009; Chen et al., 2016; Ye et al., 2011). 43	

As temperature is predicted to be more variable and extreme in the future (EPA, 2016), such health 44	

risks are particularly concerning (Crimmins et al., 2016). Estimates from 2006-2010 show that 1,300 45	

and 670 premature deaths are related to extreme cold and heat exposure, respectively, in the United 46	

States each year (Berko, Ingram, Saha, & Parker, 2014). However, these estimates are based only on 47	

clinical diagnoses of temperature-related illnesses such as hypothermia and hyperthermia and known 48	

to underestimate the true burden by omitting cases where ambient temperature was a contributing 49	

exposure (Crimmins et al., 2016). Decision makers tasked with protecting communities from 50	

environmental hazards like extreme temperatures not only need better assessments of the number of 51	

individuals impacted, but the associated economic burden as well. The latter is critical as decision 52	

makers attempt to allocate resources and justify budgets for environmental health planning across a 53	

range of environmental hazards (e.g., air pollution) that impact communities besides extreme 54	

temperature (Hutton & Menne, 2014).  55	

 Although the relationship between ambient temperature and population health is well 56	

studied, few investigators have linked health risks to economic costs. Knowlton et al. (2011), Lin et 57	

al. (2012), and Schmeltz et al. (2016) are among the few that have provided such economic 58	

estimates. However, the information provided in these studies is limited, as they consider only a few 59	

health outcomes for limited periods in the year. For instance, Knowlton et al. (2011) analyzed a 60	

specific two-week long heat wave in California during summer 2006, despite evidence that 61	

temperature-related adverse health impacts occur year-round and with considerable seasonal 62	

variability (Gasparrini et al., 2015, 2016).  Lin et al. (2012) and Schmeltz et al. (2016) only considered 63	
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hospitalizations, despite evidence that temperature impacts a wider range of health outcomes (e.g., 64	

mortality (Gasparrini et al., 2015) and emergency department visits (Saha, Brock, Vaidyanathan, 65	

Easterling, & Luber, 2015; Zhang et al., 2014)). Failing to account for multiple outcomes leads to 66	

underestimation of the corresponding economic burdens. These studies also provide insufficient 67	

information on how the health and economic burden change over a larger range of temperature, 68	

limiting the integration of temperature and health response functions into health intervention 69	

planning.  70	

Targeting these research gaps, we introduce a comprehensive approach to assess the health 71	

economic burden associated with exposure to a range of cold and hot temperatures in the 72	

Minneapolis-St. Paul Twin Cities Metropolitan Area (TCMA). We include mortality, emergency 73	

department visits, and emergency hospitalizations in this analysis. The economic costs estimated 74	

account for direct medical costs and productivity loss.  75	

Data & Methods 76	

Public Health Data 77	

The Twin Cities Metropolitan Area includes seven counties (Anoka, Carver, Dakota, Hennepin, 78	

Ramsey, Scott, and Washington) and has total residents of over 3 million (Minnesota Department of 79	

Health, 2015). We obtained all-cause mortality (MORT) data (1998-2014) for these seven counties 80	

from the Office of Vital Records, Minnesota Department of Health. All-cause morbidity data (2005-81	

2014) were collected from all emergency departments within the Minnesota Hospital Association 82	

(MHA) network, available from the Minnesota Hospital Discharge Dataset (MNHDD). The 83	

MNHDD contains patient claims data voluntarily submitted by members of the MHA, a trade 84	

association representing Minnesota Hospitals. The Minnesota Department of Health (MDH) 85	

purchases these data from MHA under a Memorandum of Understanding between MHA and 86	



	 5	

MDH. The morbidity dataset further breaks down to emergency department visits followed by 87	

discharge (EDV) and emergency department visits followed by hospitalization (EDHSP). For this 88	

analysis, we assume that patients do not stay for treatment in an emergency department for longer 89	

than three days without being hospitalized, as emergency departments normally cannot 90	

accommodate extended stays. Consequently, we removed 11,138 EDV records (approximately 0.2% 91	

of total morbidity records) with emergency department stays longer than three days. We stratified 92	

the data further by age: youth (0-19 years), adult (20-64 years), and senior (65+ years). 93	

Environmental Data 94	

We extracted historical hourly meteorological data for the TCMA for seven National 95	

Weather Service weather stations within the TCMA on both raw data (i.e. air temperature) and 96	

compound temperature indicators (i.e. heat index, wind chill index, and wet bulb global 97	

temperature). We use daily maximum heat index (HImax) as the ambient temperature metric, which is 98	

calculated using air temperature (°F) and relative humidity (%) according to the method of Rothfusz 99	

(1990) for consistency with National Weather Service standards. This choice is based on 100	

composition, current policy in use, time-at-exposure (e.g. few individuals are exposed when 101	

minimum temperature is observed), and extensive model comparison (using different temperature 102	

variables mentioned above and different statistics including daily minimum, mean, and maximum). 103	

Outside of summer months, the values of HImax are comparable to daily maximum air temperature 104	

in the TCMA. We assumed that all individuals within the TCMA had the same exposure level at any 105	

given time during the study. 106	

Although not selected for the final model, we considered air pollutants during the model 107	

development phase. We obtained data on ozone (O3) and particulates with diameters equal to or 108	

smaller than 2.5 micrometers (PM2.5) from the Minnesota Pollution Control Agency for the years 109	
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2000 to 2010. More details on the exploratory analysis using air pollution as a potential confounder 110	

are in Supplemental Information Section 1.  111	

Estimating the Exposure-Response Functions 112	

We used a DLNM to characterize the exposure-response function between temperature and 113	

population health (Gasparrini et al. 2010). This method is appropriate because there are distinct 114	

temporal delays (lag l) between the exposures and responses considered in this study (Anderson & 115	

Bell, 2009). Furthermore, this study used a quasi-Poisson generalized linear model: 116	

 ln 𝐸 𝑌𝑡 =  𝛽! + 𝑐𝑏+ 𝑛𝑠 𝐷𝑎𝑡𝑒, 𝑑𝑓 + 𝛽! ∙ 𝑑𝑜𝑤+ 𝛽! ∙ ℎ𝑜𝑙𝑖𝑑𝑎𝑦𝑠
!"#$%&%'( !"#$%& !"#$

 (1) 117	

 118	

where Yt  is the daily counts of public health outcomes; cb is a cross-basis function that captures both 119	

the exposure-response relationship (i.e., how different exposure levels affect human health at a given 120	

time) and the lag-response relationship (i.e., how a given exposure level affects human health at 121	

different time lags). We further adjusted for day of week (dow), a long term trend (date), holiday 122	

effects (holidays, only for morbidity model based on the results of likelihood ratio tests). More 123	

specifically, this model assumes that exposure response relationship to be a natural cubic spline with 124	

three internal knots at 10th, 75th, 90th percentiles of the HImax distribution. The lag-response 125	

relationship is also assumed to be a natural cubic spline function. Three internal knots are equally 126	

spaced through the logarithmic lag range. The maximum lag considered is 28 days in order to 127	

capture the delayed effects of cold exposure (Anderson & Bell, 2009). The long-term trend is 128	

assumed to be a natural cubic spline function with 8 and 7 degrees of freedom given to each year for 129	

the mortality and morbidity models, respectively. Holiday effect is only significant for morbidity 130	

outcomes and is adjusted for by including a binary variable that equals 1 on federal holidays and 3 131	
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following days and 0 on other days. These model specifications are based on extensive mode 132	

comparisons using quasi-Akaike Information Criterion and Mean Absolute Errors. More details on 133	

model selection can be found in the Supplemental Information Section 2. 134	

We calculate all risk estimates relative to reference baselines that correspond to minimum relative 135	

risk (RR) (Tobías, Armstrong, & Gasparrini, 2017). This baseline is referred to as the minimum 136	

effect temperature (MET) in this study for both mortality and morbidity outcomes. For RR 137	

estimates, statistical significance is defined as the probability of type I error is smaller than 0.05.  138	

Attributable Fraction and Attributable Cases 139	

We calculate attributable fractions (AF) and attributable cases (AC) to show the percentage and 140	

number of cases of the health outcomes associated with hazardous ambient temperature exposures. 141	

To calculate AFs and ACs, we used a method in Gasparrini and Leone (2014). The underlying 142	

assumption is a backward perspective – the health response at a given time t is a result of many 143	

exposure events that led up to it. More specifically, AF and AC are defined as: 144	

𝐴𝐹𝑥,𝑡 = 1− 𝑒𝑥𝑝 (− 𝛽𝑥𝑡!𝑙,𝑙
𝐿
𝑙!! ) (2) 145	

𝐴𝐶𝑥,𝑡 = 𝐴𝐹𝑥,𝑡  ∙  𝑌𝑡   (3) 146	

where x is the ambient temperature exposure level at time t; βxt-l,l is the natural logarithm of RR 147	

given exposure at time t-l (i.e., xt-l) after l days have elapsed; Nt is daily counts of population health 148	

outcomes at time t. In this study, we examined attributable risks for two temperature ranges: 149	

moderate to extreme exposures, defined by the bottom and top 30% of the historical temperature 150	

record (40 and 76°F, respectively); and extreme exposures, defined by the bottom and top 5% of the 151	

historical temperature records (18 and 89°F, respectively). Exposure ranges are defined by percentiles 152	

as opposed to absolute temperature values to sure our results are interpretable in different urban 153	
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climate settings. The over-arching goal is to compare the health outcomes and relevant economic 154	

burdens attributable to different levels of cold and heat exposures. We examined both AF and AC 155	

to identify the most vulnerable and the most affected age groups.   156	

When it comes to uncertainty assessment for AF and AC, it is challenging to obtain an analytical 157	

solution using the approach in Gasparrini and Leone (2014) (Graubard and Fears 2005). Therefore, 158	

Monte Carlo simulations (n = 5,000) were used to express uncertainty as 95% empirical confidence 159	

intervals (eCI). 160	

Year-to-Year Variations for Cost Estimation 161	

Various parameters for estimating costs, such as Cost-to-Charge Ratios (CCR), differ drastically 162	

from year to year. Consequently, there is a need to explore the year-to-year variability in terms of 163	

AC. This study proposes an incremental approach: 164	

𝐴𝐶(𝑦)𝑝 =
𝐴𝐶𝑥,𝑡𝑖

𝑚𝑦
𝑖!! , 𝑦 = 1

𝐴𝐶𝑥,𝑡𝑖
𝑚𝑦
𝑖!! − 𝐴𝐶𝑥,𝑡𝑖

𝑚𝑦!!
𝑖!! , 𝑦 > 1 

      (4) 165	

where AC(y)p denotes the point estimation of AC during year y; my is the number of observations in 166	

the first y years of the time series. The uncertainty around AC(y)p is assumed to depend on that of 167	

AC(y)p.tot In other words, for each simulation result of total attributable cases (ACtot.sim) there is an 168	

annual attributable cases (ACsim) defined as: 169	

𝐴𝐶(𝑦)𝑠𝑖𝑚 =
𝐴𝐶(𝑦)𝑝
𝐴𝐶𝑡𝑜𝑡.𝑝

𝐴𝐶𝑡𝑜𝑡.𝑠𝑖𝑚    (5) 170	

The results of this intermediate step are shown in Supplemental Information Section 3. 171	

 172	

Cost estimation 173	

We use the Value of a Statistical Life (VSL) to estimate the total health-related costs of 174	

mortality. VSL is the “societal willingness to pay for mortality risk reductions” (Kenkel, 2003) and is 175	
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independent of any health, demographic, or socioeconomic characteristics. The economic loss due 176	

to mortality is the product of total lives lost and VSL. We convert the mean VSL estimate of $4.8 177	

million ($1990) (U.S. EPA, 1997), which is based on a 1997 meta-analysis, to 2016 dollars (details in 178	

Supplemental Information sections 4.1.1-4.1.3). We also considered several updated VSL estimates 179	

(Thomson & Monje, 2015), ranging from $5.56 to $13.90 million ($2016) (Supplemental 180	

Information Section 4.1.4).  All cost parameters and estimates in this study are in $2016, unless 181	

otherwise specified. 182	

Medical cost of temperature-related morbidity depend on the number of EDVs and 183	

EDHSPs that are associated with temperature exposure and the loss in productivity for extended 184	

stay at the healthcare facility. To estimate the population level medical cost, we used three factors: 185	

total billed charges reflected on individual emergency department records or discharge forms, cost-186	

to-charge ratio (CCR), and the professional fee ratio (PFR). CCR converts the total amount billed to 187	

an amount that approximates what the medical facility receives (Levit, Friedman, & Wong, 2013). In 188	

this study, total billed charges and CCR were calculated from emergency department records in the 189	

TCMA and differs from year to year. PFR accounts for costs that are not facility-based, such as 190	

salaries for physicians and other healthcare professionals. This study used the PFR value for EDV 191	

among commercially insured individuals, 1.286, estimated by Peterson et al. (2015).  Notably, PFR 192	

estimates for EDHSP or for Medicaid visits do not vary substantially for other insurance types, 193	

based on the same study.  194	

We used the Daily Production Value (DPV) to calculate the productivity loss for the days 195	

when individuals were at the healthcare facility as a result of EDV or EDHSP. Grosse et al. (2009) 196	

provided the DPV estimates for 5-year age groups starting from 15-19 years using a combination of 197	

factors such as average daily working hours, usual hourly compensation, daily market compensation 198	
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and more. The implication for this study is that the youth (0-19 years) and senior (65+ years) age 199	

groups generally do not work more than 14 hours/week on average for formal market 200	

compensation. The adult (20-64 years) age group tends to work 21-35 hours/week. Consequently, 201	

the average DPV, weighted by age distribution, in Minneapolis (2010 U.S. Census) is $8.74/day 202	

($2007) for the youth, $175.78/day ($2007) for the adult, and $57.12/day ($2007) for the senior 203	

populations. More details on calculation of these values are in the Supplemental Information Section 204	

4.2.  205	

Thus, the total cost of temperature-related morbidity can be expressed at the following: 206	

Morbidity Cost = Medical Cost + Productivity Loss
 = Attributable EDV or EDHSP×
  (Total Billed Charges×CCR×PFR + Length of Stay×DPV)

 

Research involving the collection or study of existing data and if the information is recorded by the 207	

investigator in such a manner that subjects cannot be identified, directly or through identifiers link to 208	

the subjects, is exempt from the International Review Board approval at the Minnesota Department 209	

of Health. 210	

Results  211	

Descriptive statistics of the study population are in Table 1. Between 1998 and 2014, there were 212	

301,198 deaths in the TCMA, with a majority being seniors (65+ years). The morbidity dataset 213	

contains 8,117,358 records with a majority being adults (20-64 years). Among them, 17.9% 214	

(1,447,793) were EDHSPs with an average hospital stay of 4.42 days.  215	

 In Figure 1, we show the exposure-response functions for total and age group-specific daily 216	

mortality and morbidity. These functions characterize the relative risk associated with each 217	

temperature exposure level compared to the reference level (i.e., MET). In the total population 218	
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(Figure 1(a)), MET is 84°F for mortality and 71°F for EDV and EDHSP. (MET estimates in Figure 219	

1(b-d) are shown in Supplemental Information Section 5). As expected, the U- or J- shapes of the 220	

exposure-response functions show low health risk at moderate exposure levels. High temperatures 221	

are associated with increased risk for mortality and EDV but not for EDHSP. Low temperatures are 222	

associated with increased risk across all population health outcomes. Age-specific analyses reveal 223	

three additional pieces of information that are important for understanding the relationship between 224	

temperature and population health. First, ambient temperature exposure is associated with mortality 225	

in the oldest age group (65+ years) only.  Based on our results, ambient temperature exposure is not 226	

associated with mortality in the two younger age groups. Thus, we do not provide the relevant 227	

mortality burdens for them. Second, based on measures of morbidity, extreme heat exposures only 228	

affect youth (Figure 1(b-d)). Third, moderate and extreme cold affects morbidity in all age groups. 229	

Uncertainty around RR estimated here are further captured by ACs, discussed below and in 230	

Supplemental Information Section 6, computed via the Monte Carlo simulation process mentioned 231	

above (Gasparrini and Leone 2014). 232	

 Figures 2 and 3 show AFs and ACs across exposure types (cold and heat) and magnitudes 233	

(moderate to extreme exposures and extreme exposures only) by age group. Mortality results, 234	

marked in red, are only shown for seniors (65+ years). From 1998 to 2014, inclusive, 13,991 (6.2%) 235	

deaths among seniors are attributed to moderate to extreme cold exposures and 3,444 (1.5%) to 236	

extreme cold exposures. During the same period and in the same age group, 2,016 (0.9%) deaths are 237	

attributed to moderate to extreme heat exposures and 1,144 (0.5%) to extreme heat exposures. 238	

 We analyzed EDV and EDHSP results in the same way. Youth (0-19 years) is the only age 239	

group with substantial health burden associated with heat exposures. There are 23,478 [95% eCI: 240	

8,751, 37,860] (1.2% [95% eCI: 0.4%, 1.9%]) cases of EDVs and 1,089 [95% eCI: 194, 1,929] (0.78% 241	
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[95% eCI: 0.1%, 1.4%]) EDHSPs associated with moderate to extreme heat exposures. Among 242	

them, 12,079 [95% eCI: 7,512, 16,420] (0.6% [95% eCI: 0.4%, 0.8%]) EDVs and 657 [95% eCI: 102, 243	

1,189] (0.5% [95% eCI: 0.1%, 0.9%]) EDHSPs are associated with extreme heat exposures. Heat 244	

exposures are not associated with health burden among adults (20-64 years) or seniors (65+ years) in 245	

the TCMA. Regarding cold, there are positive AFs and ACs for all health outcomes and for all age 246	

groups considering moderate to extreme exposures. Given EDV, youth has the highest AF as well 247	

as AC (7.03% [95% eCI: 5.9%, 8.1%], 137,622 [95% eCI: 115,749, 157,331], respectively). However, 248	

the EDHSP-specific analysis shows that although the youth has the highest AF (6.6% [95% eCI: 249	

2.5%, 10.3%]), seniors have the highest AC (24,252 [95% eCI: 15,750, 32,327]). The underlying 250	

reason is that there are many more senior EDHSPs than youth EDHSPs. When we considered only 251	

extreme cold, all estimates become smaller, as expected, and the AF and AC among senior EDV 252	

cases were no longer positive; otherwise, all patterns were similar to those described above. The 253	

attributable EDHSPs for youth, adult, and senior are 2,488 [95% eCI: 1,225, 3,680], 4,372 [95% eCI: 254	

1,992, 6,732], and 4,445 [95% eCI: 2,319, 6,509] – their differences become smaller than that 255	

considering moderate to extreme cold exposures. Overall, youth is the most vulnerable but not 256	

always the most affected (measured by burden) age group. Based on EDHSP AC, seniors and adults 257	

are both have higher health burden compared to the youth. Numbers used to generate Figures 2 and 258	

3 are in Supplemental Information Section 6. 259	

After taking into consideration inflation and income growth, based on total AC in the 65+ 260	

years age group and the VSL estimated by U.S. EPA (1997), the mortality costs related to moderate 261	

to extreme cold and heat exposures are $8,119.33 million [95% eCI: $4,158.15 million, 262	

$11,862.49million] and $1,167.50 million [95% eCI: $478.11 million, $1,839.77 million] per year, 263	

respectively. The mortality costs related to extreme cold and heat only are $2,00.67 million [95% 264	

eCI: $1,152.52 million, $2,809.77 million] and $665.06 million [95% eCI: $276.35, $1,041.53 million] 265	
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dollars per year, respectively. Using updated VSL values of Thomson and Monje (2015) did not lead 266	

to substantial changes in these estimates (Supplemental Information Section 4.1.5).  267	

After taking into consideration inflation, the overall results show that the medical costs for 268	

EDHSP are higher than those of EDV due to the durations of stay. In addition, the medical costs 269	

due to cold exposures are higher than those of heat due to higher health burden (i.e. AC and AF). 270	

Among EDVs, the largest contributor to annual medical costs is the 0-19 years age group under cold 271	

exposure. This age group accounts for $8.18 million [95% eCI: $7.82 million, $8.54 million] in 272	

medical expenses associated with moderate to extreme cold exposures and $2.21 million [95% eCI: 273	

$2.11 million, $2.32 million] associated with only extreme cold exposures (Table 2 and 3). Among 274	

EDHSPs, the largest contributor to annual medical costs is the 65+ year age group under cold 275	

exposure, which accounted for $37.20 million [95% eCI: $33.48 million, $40.85 million] in medical 276	

expenses associated with moderate to extreme cold exposures and $6.85 million [95% eCI: $5.81 277	

million, $7.90 million] associated with only extreme cold exposures. 278	

 Among adults (20-64 years), productivity loss was associated with relevant EDVs and 279	

EDHSPs under cold exposures. Considering moderate to extreme cold exposures among adults, the 280	

annual productivity loss is $1.63 million [95% eCI: $1.41 million, $1.84 million] due to EDVs and 281	

$1.93 million [95% eCI: $1.64 million, $2.22 million] due to EDHSPs. Considering extreme cold 282	

exposures only, the annual productivity loss is $0.29 million [95% eCI: $0.23 million, $0.35 million] 283	

due to EDVs and $0.46 million [95% eCI: $0.38 million, $0.55 million] due to EDHSPs. 284	

 Each year, the health burden associated with ambient temperature exposure leads to 285	

economic costs of approximately $9.40 billion [95% eCI: $6.05 billion, $12.57 billion] considering 286	

both moderate and extreme exposures and $2.70 billion [95% eCI: $1.91 billion, $3.48 billion] 287	
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considering only extreme exposures in the TCMA. Morbidity loss makes up roughly 0.1-2.5% of the 288	

total costs depending exposure magnitude and age group.	289	

Discussion 290	
 291	

This study presents estimates of the health-related economic costs associated with ambient 292	

temperature exposures for the TCMA – approximately $9.40 billion annually when both extreme 293	

and moderate exposures are considered. This comprehensive estimate relies on multiple criteria, 294	

capturing different population health outcomes. The World Health Organization recommends the 295	

use of such multi-criteria approach for estimating health-related costs associated with climate change 296	

as a means of internalizing an array of external costs, enabling comparison across different 297	

outcomes, and providing explicit rules for balancing a range of information (Hutton, Sanchez, & 298	

Menne, 2013). Based on such multi-criteria approach, our results show that cold exposures are 299	

responsible for the economic costs for the TCMA considering mortality and emergency department 300	

visits. This holds true regardless of health outcome or age group. Harsh winters and freezing 301	

temperatures pose serious health risks even for a well-acclimatized population. The methods 302	

developed in this study demonstrate strengths that recommend its application for other jurisdictions 303	

and types of environmental exposures. 304	

Our findings highlight that temperature-related costs vary by age. Seniors are the only age 305	

group for which extreme temperature conditions are associated with increased mortality. These 306	

results are broadly consistent with Hajat et al. (2014), Dang et al. (2016), and Yang, Ou, Ding, Zhou, 307	

& Chen, (2012), which demonstrate that mortality associated with ambient temperature exposure is 308	

greater for persons 65 years or older compared to younger age groups. Consequently, the overall 309	

mortality costs are essentially mortality costs for seniors. Factors that make seniors more vulnerable 310	

to ambient temperature exposures include social isolation (Naughton et al., 2002), poverty (Basu & 311	
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Ostro, 2008), a high prevalence of chronic health conditions (Hajat et al., 2014), and reduced ability 312	

to take preventive actions to mitigate exposures (Ebi, Mills, Smith, & Grambsch, 2006). Regarding 313	

morbidity outcomes, the relative risks for youth increase more rapidly than other age groups as 314	

temperature move to the extremes of both cold and heat. Cold exposures affect all three age groups, 315	

consistent with the results of Cui et al. (2016) and Zhang et al. (2014). The youth age group has the 316	

highest AF associated with cold exposures. Heat exposures, on the other hand, affect only the 317	

youth. Regarding this particular observation, current literature provides inconsistent evidence 318	

(Nitschke et al. 2007, 2011; Kingsley et al. 2015; Zhang et al. 2014). It is important to keep in mind 319	

that there are many more senior EDHSP cases than youth cases. Seniors hospitalized after 320	

emergency department visits likely require more intensive and extensive medical services due to co-321	

morbidities and reduced physiological capacity (Ebi et al., 2006; Hajat et al., 2014). Therefore, it is 322	

plausible that seniors contribute more to medical costs even though youth are associated with higher 323	

health risks of EDHSP given hazardous temperature exposure.  324	

 This study suggests that studies that limit to seniors a priori, under the assumption that other 325	

age groups are not as severely impacted by ambient temperatures, may be substantially 326	

underestimating the total health burden. There are a large number of individuals 0-19 years whose 327	

emergency department visits are also associated with ambient temperature although few of them 328	

result in death. Therefore, this study confirms that the youngest and the oldest age groups both need 329	

to be considered at risk (Sarofim et al., 2016; Xu et al., 2013). With regard to public health services, 330	

focusing on both the youngest and the oldest individuals appears necessary. This analysis provides 331	

information for supporting strategic prioritization of different age groups in intervention programs 332	

(e.g., risk communication and education).  Specific application will depend on the objective of the 333	

decision maker. For instance, targeting youth is justifiable when the goal is to protect the most 334	
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vulnerable individuals. Targeting seniors, especially when exposed to cold, may be more efficient in 335	

reducing the overall economic costs. 336	

The multi-criteria developed in this study is an extension of the theoretical framework in 337	

Knowlton et al. (2011), with the goal of improving economic costs assessment of health risks 338	

associated with ambient temperature exposure. This design accounts for various different aspects of 339	

economic costs, such as medical expenses and productivity loss, simultaneous while considering a 340	

single mortality or morbidity case. The overall economic costs can be considered a composite 341	

indicator of impact measurement. This indicator allows for potential comparison between the public 342	

health consequences of different environmental exposures, such as air pollution and extreme 343	

temperature exposure, which involve multiple health outcomes and aspects of economic costs. The 344	

capacity for comparison is crucial to public health decision makers with needs to prioritize at-risk 345	

population and allocate scarce resources to manage different environmental exposures. 346	

Although different public health outcomes are eventually summed to obtain the total 347	

economic costs, it is easy to backtrack to the itemized cost criterion that contributes the most (or the 348	

least) to the overall economic burden. For instance, in our study, we attribute 98% of the total 349	

economic burden to mortality although the remaining 2% affects a much larger number of 350	

individuals (see Supplemental Information Section 7). The theoretical framework of this study is 351	

flexible. When new parameter estimates become available, cost estimates can be easily updated. 352	

This study has a few limitations. With an ecological study design, the conclusions that we can 353	

draw on the underlying causal mechanism are limited. The exposure measurement relies on 354	

meteorological records. Future study may be able to utilize more advanced exposure measurement 355	

technology to gain better insights into personal-level exposure intensity and duration. On mortality, 356	

we assume VSL to be insensitive to age. This assumption is consistent with the current government 357	
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practices (Thomson & Monje, 2015; U.S. EPA NCEE, 2010). However, its validity and how VSL 358	

vary with age are still up for debate among health economists (U.S. EPA NCEE, 2010) (Aldy & 359	

Viscusi, 2007). As for morbidity, we did not include some outcomes such as non-emergent clinical 360	

visits due to data access. Such outcomes could be potentially relevant to sub-optimal cold exposure, 361	

given the delayed effects. Future studies should consider further expanding morbidity measures. 362	

This study considers only direct productivity losses. Indirect losses such as time off work that was 363	

taken by parents who need to take care of their sick children are not included in the cost function, 364	

which may result in underestimation. Regarding the overall cost function, it is important to point out 365	

that by adding mortality costs and morbidity costs, theoretical costs (i.e., willingness-to-pay) are 366	

added to transactions that have actually occurred (i.e., medical bills). To compensate for this 367	

limitation, the itemized as well as the overall costs of public health burden associated with hazardous 368	

ambient temperature exposures are both provided. 369	

Conclusion 370	
	371	

This study estimates economic costs incurred by the health burden of ambient temperature 372	

exposures, a particularly relevant public health threat given the shifting temperature patterns due to 373	

climate change. The results can help develop effective public health interventions that target specific 374	

at-risk populations and inform resources allocation.  Using multiple criteria to aggregate economic 375	

estimates across different age groups leads to a useful, transparent, and flexible composite indicator 376	

of costs. This approach can be adopted for assessing the overall impact of other environmental 377	

exposures, such as air pollution, that involve multiple health outcomes and aspects of costs. 378	
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Abbreviations 387	

Abbreviation Long Form 

CCR Cost-to-charge ratio 

DPV Daily production value 

DLNM Distributed lag nonlinear model 

eCI Empirical confidence interval 

EDHSP Emergency department visits followed by hospitalization 

EDV Emergency department visits followed by discharge 

EPA Environmental Protection Agency 

HI Heat index 

MDH Minnesota Department of Health 

MET Minimum effect temperature 

MM Millions 

MORT Mortality 

NWS National Weather Service 

PFR Professional-fee ratio 

RR Relative risk 

TCMA Minneapolis – St. Paul Twin Cities Metropolitan Area 

USD U.S. dollar 

VSL Value of a statistical life 
  388	
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 513	

 514	

 515	

Table 1. Mortality and morbidity in the Minneapolis-St. Paul Twin Cities Metropolitan Area.  516	

Three population health outcomes are Mortality; EDV - Emergency Department Visits; EDHSP - 517	

Emergency Department Visits followed by hospital admission. tot sums the total number of cases 518	

for each population health outcomes over the course of 17 years for mortality and 10 years for 519	

morbidity. µ - daily mean case counts; δ - daily variability measured by standard deviation.  520	

Age Group 
(yo) 

 Mortality 
(1998-2014) 

Morbidity 
(2005-2014) 

 MORT EDV EDHSP 
 tot µ δ tot µ δ tot µ δ 

0-19  7,034 1 1 1,957,692 536 84 139,318 38 9 
20-64  68,550 11 3 3,980,639 1,090 127 721,132 197 22 
65+  225,614 36 7 720,096 197 40 587,343 161 18 
All  301,198 48 8 6,658,427 1,823 210 1,447,793 396 36 
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Health Outcome Cost Criteria Age 
Group 

Moderate-Extreme Cold 
Exposure 

HI_max < 30th percentile 
 

Expected Value 
[95% eCI] 

Moderate-Extreme Heat 
Exposure 

HI_max > 70th percentile 
 

Expected Value 
[95% eCI] 

Mortality 
(MORT) - 

0-19 --- --- 

20-64 --- --- 

65+ 8,119.33 
[4,158.15, 11,862.49] 

1,167.50 
[478.11, 1,839.77] 

Emergency 
Department 

Visit 
(EDV) 

Medical Costs 

0-19 8.18 
[7.82, 8.54] 

1.40 
[1.15, 1.65] 

20-64 7.17 
[6.25, 8.11] 

--- 

65+ 2.54 
[2.01, 3.06] 

--- 

Productivity 
Loss 

0-19 0.16 
[0.15, 0.16] 

0.03 
[0.02, 0.03] 

20-64 1.64 
[1.43, 1.85] 

--- 

65+ 0.12 
[0.10, 0.15] 

--- 

Emergency 
Hospitalization 

(EDHSP) 

Medical Costs 

0-19 12.81 
[10.63, 14.98] 

1.51 
[1.11, 1.94] 

20-64 27.69 
[23.53, 31.81] 

--- 

65+ 37.20 
[33.48, 40.85] 

--- 

Productivity 
Loss 

0-19 0.04 
[0.03, 0.05] 

0.005 
[0.004, 0.006] 

20-64 1.93 
[1.63, 2.21] 

--- 

65+ 0.78 
[0.71, 0.86] 

--- 

Total - - 8215.18 
[4,908.92, 11,357.45] 

1,171.47 
[614.26, 1749.07] 

 521	

Table 2. Cost estimates for each health outcomes by age groups (in million USD, $2016) 522	

attributable to moderate to extreme ambient temperature exposure.  523	
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Health Outcome Cost Group Age 
Group 

Extreme Cold Exposure 
HI_max < 5th percentile 

(unit=$MM) 
 

Expected Value 
[95% eCI] 

Extreme Heat Exposure 
HI_max > 95th 

percentile 
(unit=$MM) 

 
Expected Value 

[95% eCI] 

Mortality 
(MORT) - 

0-19 --- --- 

20-64 --- --- 

65+ 2,005.67 
[1,152.52, 2,809.77] 

665.06 
[276.35, 1,041.53] 

Emergency 
Department Visit 

(EDV) 

Medical Costs 

0-19 2.21 
[2.11, 2.32] 

0.73 
[0.65, 0.81] 

20-64 1.27 
[1.00, 1.54] 

--- 

65+ --- --- 

Productivity 
Loss 

0-19 0.04 
[0.04, 0.04] 

0.01 
[0.01, 0.02] 

20-64 0.29 
[0.23, 0.35] 

--- 

65+ --- --- 

Emergency 
Hospitalization 

(EDHSP) 

Medical Costs 

0-19 3.49 
[2.87, 4.13] 

0.91 
[0.63, 1.22] 

20-64 6.57 
[5.39, 7.77] 

--- 

65+ 6.85 
[5.81, 7.90] 

--- 

Productivity 
Loss 

0-19 0.01 
[0.01, 0.01] 

0.003 
[0.002, 0.004] 

20-64 0.46 
[0.38, 0.55] 

--- 

65+ 0.15 
[0.12, 0.16] 

--- 

Total - - 2,033.24 
[1,318.64, 2725.38] 

667.61 
[343.46, 993.11] 

 524	

Table 3. Cost estimates for each health outcomes by age groups (in million USD, $2016) 525	

attributable to extreme ambient temperature exposure.  526	

  527	
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 528	

Figure 1. Exposure-response functions for each health outcome by age groups.  529	

Solid lines indicate relative risks (compared to minimum effect temperature) significantly greater 530	

than 1 (p-value <0.05) and dotted lines indicate non-statistically significant results (p-value >=0.05). 531	

 532	

 533	

 534	

 535	

 536	
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 537	

Figure 2.  Attributable fraction of three health outcomes by age groups associated with temperature 538	

exposure. 539	

The uncertainty range is defined by 95% empirical confidence intervals obtained by Monte Carlo 540	

simulations (n=5000). This figure does not include mortality results regarding 0-19 year olds or 20-541	

64 year olds because there is no increased relative risk of mortality at any exposure level for these 542	

age groups. 543	

 544	

 545	
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 546	

Figure 3. Attributable cases of three health outcomes by age groups associated with temperature 547	

exposure. 548	

The uncertainty range is defined by 95% empirical confidence intervals obtained by Monte Carlo 549	

simulations (n=5000). This figure does not include mortality results regarding 0-19 year olds or 20-550	

64 year olds because there is no increased relative risk of mortality at any exposure level for these 551	

age groups. 552	

 553	


