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Abstract
Climbing beans play a central role in food security of rural households in the densely populated highlands
of East and Central Africa. Soil fertility degradation and the lack of nutrient inputs are major limitations to
yield of beans and other crops. We conducted field trials in Northern Rwanda in Kinoni and Muko villages
to evaluate the effect of mineral N, P, and K fertilizers (both alone and in combination) and farmyard
manure on nitrogen fixation and grain yields of climbing bean in smallholder farmers’ fields. The trials
were laid down in a randomized complete block design with seven replicate blocks in each village. Manure
and fertilizer application led to greater yields in all fields, and the largest yields were achieved when manure
was combined with NPK. Large variability in yield between fields was observed. Application of fertilizer
together with manure increased the grain yield from 1.5 to 3.9 t ha−1 in Kinoni and from 2.6 to 5.4 t ha−1 in
Muko. Fertilizer and/or manure increased stover yield from 0.8 to 2.3 t ha−1 in Kinoni and from 1.5 to
3.4 t ha−1 in Muko. Application of 30 kg P ha−1 and 5 t manure ha−1 led to increased N and P uptake (from
49 to 106 kg N ha−1 and from 6.1 to 12.4 kg P ha−1 in Kinoni and from 46 to 128 kg N ha−1 and from 5.3 to
17.9 kg P ha−1 in Muko). There was no clear relationship between soil fertility characteristics and the
response of climbing bean to applied inputs at Muko site. However, at Kinoni site, limited response to
manure and NPK application was observed in plots where soil available P and soil exchangeable K were
relatively low. Our results show the benefits of using manure along with mineral fertilizers for
increased climbing bean yields and nutrient uptake in smallholder farming systems.

Keywords: Phaseolus vulgaris; Nitrogen fixation; 15N natural abundance; Nutrients uptake

Introduction
In densely populated areas of sub-Saharan Africa, nutrient availability is a major limitation to crop
growth, since soil fertility regeneration through fallowing land is no longer possible. There is an
urgent need to improve agricultural productivity as landholdings have reduced in area due to pop-
ulation growth. To feed the rapidly growing population, sustainable intensification of agricultural
production is needed (Vanlauwe et al., 2014), and integrating legumes is key to achieve this goal.
Legumes are important crops both for supply of food and fodder and for soil improvement.
Legumes fix atmospheric N2 through symbiosis with rhizobia and contribute N to the soil for
use by other crops (Franke et al., 2018). The use of legumes in rotation may lead to a reduction
in fertilizer-N use, reduced pest and weed occurrence, and improved soil quality (Giller, 2001).

Despite the low yields achieved by farmers, common bean (Phaseolus vulgaris L.) remains a
major crop in Eastern and Southern Africa (Wortmann et al., 2001). Bush bean varieties have
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been under cultivation since the introduction of common bean in the 16th century, while climbing
bean varieties were only found in a few locations and on small plots. The introduction of improved
climbing bean varieties in Rwanda resulted in their rapid spread, also into neighboring countries
(Sperling and Muyaneza, 1995). Climbing beans are reported to be less constrained by diseases
and much more productive than bush bean (Wortmann et al., 2001), as well as being less prone to
root rots (Sperling and Muyaneza, 1995). Climbing beans can produce grain yields nearly three-
fold the yield of bush beans and grow vertically, making climbing bean a crop with great potential
in densely populated areas (Musoni et al., 2014).

The indeterminate growth of climbing beans allows them to provide a continuous supply of
green leaves and pods as well as dry grain throughout the growing season (Sperling andMuyaneza,
1995; Wortmann et al., 2001). Strong residual effects have been reported when maize is grown
after climbing bean, which are attributed to the large amounts of above- and belowground crop
residues (Niyuhire et al., 2017), changes in microbial activities (Turco et al., 1990), and access to
more P (Bainville et al., 2005). Climbing beans also provide valuable residues for livestock feed.
Improved soil cover from climbing beans helps in suppressing weed growth as well as reduces
water and soil loss from the steep slopes observed in the Eastern African highlands (Wortmann
et al., 2001). However, availability of staking material, the increased labor requirements for stak-
ing, and the longer growing period are identified by farmers as disadvantages of climbing bean.

The Northern Province of Rwanda has a very high population density estimated at
528 persons km−2 (NIS, 2012). This has resulted in small landholdings which are continuously
cropped resulting in small yields. In this region, up to 95% of the households grow climbing
beans (Franke and deWolf, 2011). Smallholder farmers largely grow legumes with little or no fertil-
izer, as most mineral or organic fertilizer is targeted to cash crops (e.g. tomato, vegetables, and Irish
potato) that have a ready market. Only 12–21% of the farmers in Northern Province of Rwanda use
mineral fertilizer in climbing bean fields (Franke and deWolf, 2011).

Many studies have shown the need for balanced fertilization in soils that have been cropped
continuously (Zingore et al., 2008a, 2008b). Integrated soil fertility management has been adopted
as a framework for boosting crop productivity (Vanlauwe et al., 2010). One of the best options of
addressing soil fertility declines and increasing fertilizer use efficiency is the combined application
of organic and mineral fertilizers. A previous study in Northern Province of Rwanda showed that
the inherent soil fertility characteristics affected the impact of applied nutrient inputs on the pro-
ductivity of climbing bean (Franke et al., 2019). There is limited information on the integrated use
of farmyard manure and mineral fertilizers on the performance of climbing bean in Rwanda.

The specific objectives of this study were to: (i) evaluate the effect of mineral N, P, and K fer-
tilizers (both alone and in combination) and manure on yields of climbing bean in two sites (seven
fields in each) in Northern Rwanda; (ii) assess the effect of mineral P fertilizer and manure on
nitrogen fixation, N and P uptake; and (iii) explore the influence of soil fertility characteristics
on the response of climbing bean to applied nutrients.

Materials and Methods
Study sites, soil sampling, and field selection

The experiments were conducted in farmers’ fields in Kinoni and Muko villages in the Northern
Province of Rwanda. Locations (villages) with low and high potential for cultivation of climbing
beans were selected based on soil fertility status and elevation. The color of the soil, soil drainage,
soil depth, and crop performance over previous years were the selection criteria used by the farm-
ers from each village. In addition to the soil fertility information, the size of the fields was also
among the criteria as many farmers could not get the desired field size. In each village, fields with
comparable fertility status, size, and not located in areas potential for water-logging were selected.
In each village, seven fields (blocks) were selected. The soils in Muko and Kinoni are classified as
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Andosols in the World Reference Base for Soil Resources (FAO, International Soil Reference and
Information Centre and International Society of Soil Science).

The information received from farmers of both villages on climbing bean performance over
years coupled with their differences in elevation allowed to classify fields in Muko as high potential
and those in Kinoni as low potential. The fields in Muko were located in the volcanic plains of
Musanze district, with soils having dark color, deep and better water drainage, good history for
crop performance (according to farmers), and less prone to erosion. The fields in Kinoni were
located on steep slopes on the side of the hills which expose them to erosion that may affect soil
fertility over time and plant performance (Rugazura et al., 2015). Kinoni village is located in
Burera district at 1°28 026.3 00 S and 29°50 04.8 00 E at an elevation of 2182 m above sea level (masl),
with a mean annual rainfall of 1500 mm and a mean annual temperature of 21 °C. Muko village is
located in Musanze district at 1°30 027.5 00 S and 29°36 023.8 00 E at an elevation of 1850 masl, with a
mean annual rainfall of 1400 mm and a mean annual temperature of 17.8 °C. In addition to the
farmers’ classification, soils were sampled from each field (block) at a depth of 0–20 cm from nine
points following a W pattern. The nine samples were thoroughly mixed and a composite sample
was taken, air-dried, and passed through a 2 mm sieve, and then it was taken to the laboratory at
Crop Nutrition Laboratory Services in Nairobi, Kenya and analyzed for pH (H2O), total N, avail-
able P (Olsen), organic C, effective cation exchange capacity, exchangeable cations (K, Ca, Mg, and
Na), and texture using standard methods (Okalebo et al., 2002). Rainfall distribution and sowing
dates are shown in Figure 1.

Trial establishment

The trials were established in the long rainy season of 2014. Climbing bean variety RWV 1129 was
planted at 50 cm inter-row and 20 cm intra-row spacing, with three seeds per planting hole and
thinned to two at first weeding. It was a factorial experiment with sites at two levels, manure at
three rates, and inorganic fertilizer at five rates (2× 3× 5), laid down in a randomized complete
block design with seven replicates (blocks) in each village. The farmyard manure was obtained
from the participating farmers and applied to her/his own field at 0 (control), 2, and 5 t ha−1

of dry weight, mineral fertilizer treatments: none (no fertilizer), �N, �P, �K, and �NPK. P
was applied in the form of TSP at a rate of 30 kg P ha−1; K was applied as KCl at 30 kg K ha−1;
and N was applied as urea, split 50–50 at sowing and at first weeding (3 weeks after planting),
and applied at a rate of 60 kgN ha−1 and NPK as a combination of N (60 kgN ha−1 as urea applied
as in the sole N treatment), P (30 kg P ha−1 as TSP), and K (30 kg K ha−1 as KCl). With the rates of
2 and 5 t ha−1 of manure, each plot received 3.6 and 9.0 kg of manure, respectively, and was applied

Figure 1. Cumulative rainfall during the
experimental period at the Kinoni and
Muko sites.
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in the planting rows at sowing. Plot size was 4.5m× 4m with final harvest area of 8.75m2 and a
net area for biomass sampling of 1.75 m2. Each field was treated as a single complete
replicate (block) and included all the treatments. Adjacent to each replicate (block), a plot
(4.5 m× 4 m) was sown with maize to serve as reference plant for measurement of N2-fixation.
The reference plant was planted at the same time as climbing bean. Weeds were regularly
controlled using a hand hoe by the farmers when needed. Figure 2 shows the relationship between
N applied through manure and its C:N ratio, indicating the variation in manure quality used in the
trials.

Yield assessment

Above ground biomass was determined at late pod-filling stage. A subplot of 1.75 m2 (leaving
0.5 m away from the plot border) was sampled, all plants were cut at ground level, and fresh
weight was determined in the field. A subsample was taken and weighed, sun-dried, and then
oven dried at 65 °C to constant weight to determine the dry matter contents. Final grain and
stover yields were determined at crop maturity. All pods were harvested in the net plots ex-
cluding the outer rows of both sides of the plot, and the total fresh weight was determined. A
subsample was taken, weighed, and sun-dried for several days and then threshed by hand.
Grains were cleaned by winnowing and subsequently weighed, and the moisture content
was determined using an electronic moisture meter. The grain yield was calculated at
12.5% moisture. The haulms were harvested by cutting at ground level and weighed.
Representative subsamples of haulms from each plot were taken sun-dried, then oven dried
at 65 °C to constant weight, and the dry weight was recorded. Stover yield and biomass yield at
late pod-filling were calculated at 0% moisture.

Assessment of N and P uptake and N2-fixation

Dry climbing bean biomass was ground and digested in hot H2SO4 and H2O2 (Parkinson
and Allen, 1975). N and P concentrations in the digests were determined by colorimetric methods
(Okalebo et al., 1993). The proportion plant N from N2-fixation was measured using the
15N natural abundance method (Unkovich et al., 2008). After drying and grinding the sam-
ples, 15N content was determined using a stable isotope mass spectrometer (Thermo Scientific,
Delta V Advantage Isotope Ratio MS Coupled through Conflo IV to Thermo Scientific Flash
HT/EA, KU Leuven). The δ15N value and the proportion of N derived from atmosphere
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Figure 2. Relationship between C:N ratio and N applied through
manure (kg ha−1) at Kinoni and Muko sites. 2M-K, 2M-M, 5M-K, and
5M-M represent 2 and 5 t of manure ha−1 at Kinoni (K) and Muko
(M) sites.
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(%Ndfa) were calculated. The %Ndfa (Equation 1) and amount of N2-fixed (Equation 2) were
calculated as follows (Unkovich et al., 2008):

%Ndfa � �δ15Nref � δ15Nleg�=�δ15Nref � B� × 100 (1)

where δ15N ref and δ15N leg are the 15N natural abundance (‰) in the non-fixing reference
crops (maize) and the fixing species (climbing bean), respectively. The smallest value of δ15N
for climbing bean was used as the B-value (Peoples et al., 2002) and in this case was −1.7‰.

Amount of N fixed �kg ha�1� � �%Ndfa × Total N legume �kg ha�1��=100 (2)

where %Ndfa is the percentage of N from N2-fixation; total N legume is the product of the %N
in the legume plant and the dry biomass yield of the legume plant divided by 100. The total
amount of N fixed was calculated to include the N content in the below ground parts, esti-
mated at 30% of the amount of N2-fixed in the shoots (Unkovich et al., 2008). Shoot N and P
uptake were determined at late pod-filling.

Data analysis

Statistical analysis was performed using GenStat (version 16, VSN International Ltd). A mixed
effects linear model was used for data analysis with sites× fertilizer×manure as fixed factors.
Fields (blocks) were nested under sites and included in the model as random factors to account
for their effects on grain, biomass, and stover yields. Furthermore, N and P uptake and N2-fixation
were analyzed at fertilizer×manure level since there were no significant differences when site was
included as fixed factor. Treatment means were compared using the standard error of differences
between means at p≤ 0.05 significance level.

Results
Soil and manure characteristics

Soil and manure characteristics differed within each site and between the sites, though overall
differences between the two sites were not significant (Tables 1 and 2). Soil pH was slightly acid
to near neutral. Mean soil available P was above the critical value of 10 mg P kg−1, but P availability
varied within and across sites. In Kinoni, four out of seven fields had available P concentrations far
below the critical value. In Muko, soils had larger concentrations of available P with only two out
of seven fields with available P below the critical value. The soil organic carbon in the two sites was
above the reported critical value of 1.5% in all fields. Exchangeable cations were above the critical
values of 0.2 for Mg in all fields and K was sufficient (>0.2 cmolc kg−1) in 9 out of 14 fields, and
exchangeable Ca was sufficient (>0.5 cmolc kg−1) in all fields. The manure varied in nutrient con-
tent (Table 2). On average, 5 t ha−1 of manure contained 60 kg N ha−1, 15 kg P ha−1, and
55 kg K ha−1 in Kinoni and 65 kg N ha−1, 15 kg P ha−1, and 70 kg K ha−1 in Muko.

Yields and responses to inputs

Application of fertilizer and/or manure significantly (p< 0.001) increased the grain yield
(Figure 3a and b) and stover yields (Figure 3c and d) at both sites. However, there was large vari-
ability in yield among fields, with grain yield ranging from 0.5 to 6.0 t ha−1. Yields in control plots
ranged from 0.5 to 3.2 t ha−1, while yields with NPK and/or manure ranged from 1.3 to 6.0 t ha−1

(Figure 4). On average grain yield was 2.8 and 4.1 t ha−1 for Kinoni and Muko, respectively.
Average stover yield was 1.6 and 2.4 t ha−1 for Kinoni and Muko, respectively. Application of ma-
nure alone increased the grain yield from 1.5 to 2.8 t ha−1 in Kinoni (Figure 3a) and from 2.6 to
4.4 t ha−1 in Muko (Figure 3b). In all fields, yields increased with NPK and/or manure addi-
tion. Fields in Kinoni village gave significantly (p< 0.001) smaller grain yield than in Muko.
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Application of fertilizer alone increased the grain yield from 1.5 to 2.4 t ha−1 in Kinoni and from
2.6 to 3.7 t ha−1 in Muko. Application of fertilizer together with manure increased the grain yield
from 1.5 to 3.9 t ha−1 in Kinoni and from 2.6 to 5.4 t ha−1 in Muko. There was large variability in
stover yield among fields, ranging from 0.4 to 4.0 t ha−1. Stover yield in control plots ranged from
0.4 to 2.0 t ha−1, while stover yield with NPK and/or manure ranged from 1.2 to 4.0 t ha−1. Stover
yield varied greatly and the increase due to inputs application did not follow the same pattern as
grain and biomass yields. On average, fertilizer and/or manure increased stover yield from 0.8 to
2.3 t ha−1 in Kinoni and from 1.5 to 3.4 t ha−1 in Muko. Biomass yield significantly (p< 0.001)
increased with addition of fertilizer and/or manure at both sites (Figure 3e and f). Large variability
in biomass yield and response to applied inputs was also observed which followed the same pat-
tern as grain yield at both sites.

In general, manure application led to a substantial increase in the grain yield with response of
fertilizer to manure application ranging from 1.0 to 1.7 t ha−1 (Figure 5). Responses to inputs were
smaller in Kinoni than in Muko. On average, greater response of fertilizer to manure addition was
achieved when manure was used together with N or NPK fertilizers and was least with P alone,
though there were no significant differences among treatments at the Kinoni site. Responses to
NPK were improved by manure addition at both sites (Figure 5). There was also a weak relation-
ship between N applied through manure and climbing bean grain yield response to manure ap-
plication (data not shown).

Table 1. Characteristics of the soil from the Kinoni (n= 7) and Muko (n= 7) sites

Kinoni
(low potential)

Muko
(high potential)

Soil parameters Mean Range Mean Range p-value

pH (H2O) 6.5 6.3–6.7 6.5 6.4–6.8 ns
Total N (g kg−1) 2.4 1.8–3.5 3.1 2.2–4.0 ns
Organic C (g kg−1) 26.0 16.0–38.0 34.0 19.0–48.0 ns
Available P (Olsen) (mg P kg−1) 14.0 2.3–45.9 32.0 3.0–74.1 ns
Exchangeable K (cmolc kg−1) 0.2 0.1–0.6 0.4 0.1–0.7 ns
Exchangeable Ca (cmolc kg−1) 6.4 5.2–7.1 6.7 6.0–7.3 ns
Exchangeable Mg (cmolc kg−1) 2.1 1.3–2.9 1.6 0.8–2.7 ns
ECEC (cmolc kg−1) 15.4 10.1–20.8 14.0 9.0–18.3 ns
Sand (g kg−1) 376 140–688 605 269–887 0.075
Silt (g kg−1) 278 96–433 203 56–353 ns
Clay (g kg−1) 346 144–764 192 57–358 ns

ECEC, effective cation exchange capacity.

Table 2. Characteristics of the applied manure at the Kinoni (n= 7) and Muko (n= 7) sites

Kinoni Muko

Parameters Mean Range Mean Range

pH (H2O) 8.5 7.7–9.0 8.7 8.2–9.6
C (%) 15.5 12.0–19.3 18.4 12.3–29.1
N (%) 1.2 0.7–1.6 1.3 0.6–1.9
C:N 14.0 7.5–27.6 14.9 9.7–23.4
P (%) 0.3 0.1–0.5 0.3 0.1–0.5
K (%) 1.1 0.5–2.0 1.4 0.7–4.0
Ca (%) 1.1 0.6–1.6 1.1 0.7–1.4
Mg (%) 0.6 0.4–0.7 0.6 0.4–1.0
S (%) 0.1 0.1–0.2 0.1 0.1–0.3
B (ppm) 37.2 22.7–46.0 31.6 25.2–44.7
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There were interactions site×manure× fertilizer for grain yield (p= 0.019), biomass
(p= 0.02), and stover (p= 0.003) but not for N and P uptake, %Ndfa, and amount of N2-fixed.
The variability in yields and response to inputs observed between sites may be linked to the
inherent soil fertility and differences in past management practices, though it was not assessed
in this study.
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Figure 3. Climbing bean grain (a, b), stover yields (c, d), and biomass at late pod-filling (e, f) as affected by inputs at Kinoni
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means.
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N and P uptake and nitrogen fixation

Shoot N and P uptake was improved by inputs application and was on average smaller in Kinoni
than in Muko. In both sites, greater uptake was achieved in plots that received both fertilizer and
manure, followed by plots with manure, and then plots with P fertilizer alone and was least in plots
that had not received any amendment. Variability in shoot N and P uptake was observed, with
shoot N uptake ranging from 15.1 to 176.4 kg N ha−1 in Kinoni and from 15.8 to 181.1 kg N ha−1

in Muko. Shoot P uptake also varied and ranged from 1.9 to 25.8 kg P ha−1 in Kinoni and from 1.9
to 25.4 kg P ha−1 in Muko. Application of inputs increased shoot N and P uptake in all fields in
both sites. On average, 30 kg P ha−1 and 5 t manure ha−1 applied together increased N uptake from
48.5 to 106.3 kg N ha−1 in Kinoni and from 45.9 to 128.3 kg N ha−1 in Muko. Application of
30 kg P ha−1 and 5 t manure ha−1 also increased P uptake from 6.1 to 12.4 kg P ha−1 in Kinoni
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Figure 4. Climbing bean grain yield in control against (a) yield with manure (kg ha−1), (b) yield with NPK (kg ha−1), (c) yield
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manure (kg ha−1). 2M-K, 2M-M, 5M-K, and 5M-M represent 2 and 5 t of manure ha−1 at Kinoni (K) and Muko (M) sites. The
dashed lines represent linear regression lines for (a, c, d) the manure rates and/or NPK and (b) NPK fertilizer at Kinoni and
Muko sites. Encircled data points have been excluded from the regression analysis.
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and from 5.3 to 17.9 kg P ha−1 in Muko (Figure 6). Increased shoot N and P uptake in treated plots
than in control plots may be a result of many nutrients supply including N and P, greater root
system development leading to exploitation of a big volume of soil. Although N and P uptake
increased with inputs application, there was no relationship between N applied through manure
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Figure 5. Relationship between (a) response to NPK (-control) against response to NPK and manure (-manure),
(b) response to manure (-control) against response to NPK and manure (-manure), (c) response to NPK (-control) against
response to manure (-control), (d) N applied through manure against response to manure (-control), and (e) response to
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and shoot N uptake and weak relationship between P applied through manure and shoot P uptake
(data not shown).

Greater grain yields were observed in Muko at small amount of biomass (data not presented)
and may indicate more plant growth after biomass harvest (which was done before leaves started
to senesce) in Muko than in Kinoni. This high grain yield in Muko at small biomass yield may also
indicate a continuous biomass production and N and P accumulation after biomass harvest at this
site. This may also have led to underestimation of amount of N2-fixed in Muko as more biomass
could have been produced after biomass sampling.

The %Ndfa was on average lower in Muko (high potential) compared to Kinoni (low po-
tential), but there was no significant difference between treatments (Table 3). No relationship
was observed between biomass at late pod-filling and the %Ndfa but was positively observed
with the amount of N2-fixed. Positive relationships were also observed between the %Ndfa
and the amount of N2-fixed and between the amount of N2-fixed and biomass N (data not
presented). The amount of N2-fixed was increased by application of fertilizer and manure
and was positively influenced by the biomass N (data not presented). Similar positive relation-
ships were also observed for grain yield and N and P uptake (Figure 7a and b). The %Ndfa
slightly correlated with shoot N uptake, but no relationships were observed with N, P, and K
applied through manure (data not shown).
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Figure 6. Shoot N and P uptake at late pod-filling as affected by treatments at Kinoni and Muko. Error bars represent the
standard error of differences between treatment means.
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Soil fertility characteristics and response to applied inputs

Responses to inputs were observed in both sites (p< 0.001), yet there were no clear relationships
with soil parameters. In Kinoni, weak responses to manure and NPK application were observed in
plots where soil available P and exchangeable K were <10 mg kg−1 and <0.2 cmolc kg−1, respec-
tively (data not presented). However, this was not the case in Muko, suggesting that P and K were
not limiting at this site. In neither of the sites, there was a clear relationship observed between soil
N and response to inputs, suggesting that N was not limiting either. There were also no clear

Table 3. Climbing bean shoot δ15N, δ15N reference crop, %Ndfa, total N in shoot, and amount of N2-fixed as affected by
treatments

Sites/fertilizer
(kg ha−1)

Manure
(t ha−1)

shoot δ15N
leg (‰)

Range
shoot

δ15N (‰) %Ndfa

Total N in
shoot

(kg ha−1)

Total
amount
N2-fixed
(kg ha−1)

Kinoni
0P 0 2.0 −1.7 to 4.4 49 48.5 32.7
0P 5 2.3 0.7–3.8 42 89.8 52.1
30P 0 2.2 1.3–3.0 42 63.5 37.0
30P 5 2.6 1.0–5.9 37 106.3 59.1

Mean/site 2.3 43 77 45.2
SED (fertilizer) Ns Ns 3.7 P = 0.05 Ns
SED (manure) Ns Ns 4.4 P< 0.001 5.2 P< 0.001
Muko
0P 0 3.3 0.9–6.3 32 45.9 18.6
0P 5 3.4 1.8–5.2 30 96.1 42.2
30P 0 3.1 0.9–4.2 33 68.7 32.9
30P 5 2.2 0.4–4.1 46 128.3 79.0

Mean/site 3 35 84.7 43.2
SED (fertilizer) Ns Ns 3.7 P< 0.001 Ns
SED (manure) Ns Ns 7.8 P< 0.001 8.5 P< 0.001

Reference plant (maize) values: Kinoni: 5.2 (3.0–7.1) and Muko: 5.6 (4.2–7.6).
Ndfa, percentage of N2 derived from atmosphere; leg, legume crop; ref, reference maize crop.
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Figure 7. Climbing bean grain yield (kg ha−1) as affected by (a) shoot N uptake and (b) shoot P uptake at late pod-filling.
The dashed lines represent linear relationships for Kinoni and Muko sites. The encircled data values have been excluded
from the regression analysis.
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relationships between response to P and soil available P, response to N and soil N, and response to
K and exchangeable K (data not shown) at both sites. In general, larger responses were observed in
Muko, though there was no clear relationship with soil parameters.

Discussion
Yields response to inputs and fertilizer response to manure application

Grain, biomass, and stover yields increased with manure and fertilizer inputs at both sites. Applied
individually, manure led to a greater yield increase than mineral fertilizer at both Kinoni and
Muko villages. Strong increase of crop yields following manure application has been reported else-
where. Zingore et al. (2008b) observed a substantial soybean yield increase as a result of manure
application compared with yields achieved with application of single super phosphate. The strong
effects of manure in increasing crop yields are attributed to its multiple functions such as supply of
many nutrients including micronutrients, increasing soil organic matter contents as well as im-
proving soil conditions needed for crop performance (De Ridder and Van Keulen, 1990; Zingore
et al., 2008a, 2008b). Management options including use of manure, staking density, and height
have been identified as key factors influencing climbing bean productivity (Franke et al., 2019;
Musoni et al., 2014; Reckling, 2011) in Rwanda, and yield variability was strongly related to re-
source endowment (Franke et al., 2019). In our experiments, farmers used similar stake quality
and management was the same during the study period. The differences in yields observed could
be linked to differences in past management practices among the participating farmers. Increased
yield of climbing bean when organic and inorganic fertilizers are combined has been reported
elsewhere (Niyuhire et al., 2017). Manure is reported to increase the crop yield and responses
to applied fertilizers (Rurangwa et al., 2018), and past manure application was identified as
the most factor affecting yields and yields response to applied fertilizers (Njoroge et al., 2019).
Surprisingly, we found no clear relationships between measured soil characteristics and climbing
bean yields.

N and P uptake and N2-fixation

The total N and P contents in the shoots were small in non-amended plots, and significantly
increased with application of fertilizer and manure. On average, shoot N uptake increased from
48.5 to 128 kg N ha−1 which is in the range of shoot N uptake reported by Ojiem et al. (2006) on
various legume crops ranging from 10 to 486 kg N ha−1. Increased N and P uptake may be a result
of increased plant growth, hence increased plant demand. Shoot N uptake increased with increas-
ing N2-fixed (Figure 7d) which was positively correlated with the biomass productivity (Figure 7b).
Plant biomass has been reported to be the best predictor of nitrogen fixation (Peoples et al., 2009;
Salvagiotti et al., 2008), mainly because most of the factors affecting nitrogen fixation also affect leaf
photosynthesis and biomass production (Peoples et al., 2009).

The %Ndfa varied greatly between fields ranging from 1.12 to 99.7% with a mean of 39%.
Observed variability in %Ndfa is not uncommon in smallholder faming systems and has been
reported extensively. Giller (2001) reviewing different papers reported high variation in %Ndfa
(0–73%) and amount of N2-fixed (2–125 kg N ha−1). Ojiem et al. (2006) working in Western
Kenya also observed variability in %Ndfa ranging between 7 and 90%. Peoples et al. (2009)
reported %Ndfa ranging between 10 and 51%, and Reckling (2011) observed a variation between
13 and 66%. Using maize as a reference crop has been reported to underestimate the %Ndfa
(Ojiem et al., 2006). This may in part explain the small %Ndfa observed in this study compared
with the findings by Reckling (2011) in the same region. Although we could not explain the reason
for the large variability in the %Ndfa observed, environmental and management effects are
reported among others to affect the %Ndfa (Bliss, 1993). The greater grain yield achieved in
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Muko despite the relatively small amount of biomass may indicate more plant growth after bio-
mass harvest in Muko than in Kinoni. Increased plant growth after biomass harvest may have led
to an underestimation of amount of N2-fixed at this site as more biomass could have been pro-
duced after biomass sampling. Earlier studies showed that more of the plant N is acquired from
atmosphere in the post-flowering stage compared with the earlier stages of growth (Wortmann,
2001). However, in this study, biomass was sampled at late pod-filling stage, and this shows diffi-
culties in knowing the best time for biomass sampling in climbing bean with indeterminate
growth. For this reason, there is a need for biomass sampling at different growth stages for more
accurate determination of N2-fixation.

Soil fertility characteristics and response to applied inputs

Strong responses to applied inputs were observed which varied within and between the two study
sites. The soils of both study sites had a wide range of nutrient contents ranging from very small to
very high. However, there was no clear relationship between soil parameters and responses to
applied inputs. Similarly, Franke et al. (2019) working in Northern Rwanda observed a poor cor-
relation between soil characteristics and response to inputs. Large variability in responses was
observed within and across sites, with poor yields even in some fields with good soil character-
istics. This explains the lack of correlation between soil parameters and yields of climbing bean. In
line with the results of this study, Franke et al. (2019) observed that organic manure application
rate was positively associated with climbing bean yield. They found that greater yields were
achieved in plots that received more organic manure. In this study, we also observed greater yields
and yields responses in plots that received manure in combination with NPK fertilizer. Increased
yields and responses when inputs are used together have been reported extensively (Ronner et al.,
2016; Rurangwa et al., 2018). In Kinoni, some weak responses to manure and NPK application were
observed in plots where soil available P (<10mg kg−1) and exchangeable K (< 0.2 cmolc kg−1) were
limiting. However, this was not consistent as it was not seen in Muko, and it remains difficult to
explain. Comparable results were reported by Franke et al. (2019) who found responses to DAP
fertilizer in soil where available P was more limiting and with no relationship between soil N and
response to DAP.

Although not assessed in this study, the large variability in yields observed may be linked to
past management and inherent soil fertility. Variability in yields and responses to applied inputs in
smallholder farmers are not uncommon. Ronner et al. (2016) working on soybean in Northern
Nigeria found large variability in soybean yields and response to P�/ or inoculation. In our study,
the largest response to applied inputs was observed at Muko where the control yields were great-
est, matching observations of Ronner et al. (2016) in Northern Nigeria. Similarly, Njoroge et al.
(2019) working in Western Kenya observed variability in maize yield and yield responses to
applied fertilizers and reported past manure application as the main factor affecting responses
to applied inputs. We did not investigate the history of our field trials, but the variability in yield
observed may be linked to the differences in past management practices among the participating
farmers. In the study sites, many farmers rotate climbing beans with other crops such as potatoes,
tomatoes, and vegetables and fertilize them with manure and/or fertilizer (Franke et al., 2019). The
same source states that the amount of manure that farmers apply depends on their wealth category
and the number of livestock they own.

Reflections on the measurements of nitrogen fixation using maize as a reference crop

The use of maize as a reference crop may lead to underestimation or overestimation of the %Ndfa
and its corresponding amount of N2-fixed. Many researchers have reported large variability of the
δ15N when maize was used as a reference crop (Chikowo et al., 2004; Ojiem et al., 2006). In our
study, the δ15N of the maize reference crop varied from 3.0 to 7.6 (‰) and led to large variability
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of the %Ndfa which ranged from 1.12 to 99.7% with a mean of 39%. The total N harvested
(total N in the shoot � total N in grain) varied widely, ranging from 52 to 382 kg N ha−1 with
an average of 204 kg N ha−1. The total amount of N derived from nitrogen fixation (calculated
based on the %Ndfa and total N harvested) varied from 4 to 253 kg N ha−1 with an average of
79 kg N ha−1. These results lead to very low to very high N derived from the soil (Ndfs) ranging
from 0.4 to 378 kg N ha−1 with an average of 125 kg N ha−1.

Considering the total soil N in the top soil layer (20 cm) plus N from manure applied in one ha,
using a soil bulk density of 1.3 g cm−3, and by computing (10,000× 0.2× 1.3× g N kg−1 soil)/
1000, where 1.3 is the soil bulk density in g cm−3, and g N kg−1 is the measured N content in
1 kg of soil, and then all converted into kg N ha−1, the total N in the top soil layer ranges from
4680 to 10,400 kg N ha−1. Assuming that 2% of the total soil N is mineralized in one season, an
approximation which appears to have some general validity (Janssen et al., 1990), N supply from
the soil obtained would vary from 94 to 1052 kg N ha−1 and is higher than 20% of N up taken from
the soil. With these assumptions, though there was large variability in observed %Ndfa, the results
obtained with the δ15N estimates that suggest the climbing beans are getting 0.4–378 kg N ha−1

from the soil appear to be feasible.
Similar variability in %Ndfa, Ndfs, and total N harvested was observed when using broad-

leaved weeds as reference plants in the same region for climbing beans. In his research,
Reckling (2011) used δ15N of nine non N2-fixing weeds and observed % Ndfa ranging from
11.37 to 77.97% with an average of 49%, Ndfs ranging from 31 to 410 kg N ha−1, and a total
N harvested ranging from 95 to 557 kg N ha−1 with an average of 182 kg N ha−1.

Ojiem et al. (2007) observed variations in δ15N among sites in Western Kenya for both maize
and broad-leaved weeds, and maize had lower δ15N values compared to broad-leaved weeds. On
average, maize δ15N was 3.20 and 5.89‰ for broad-leaved weeds which was closer to the 8‰ δ15N
of total soil N. These authors concluded that when maize is used as reference crop, the %Ndfa and
the corresponding N2-fixation are underestimated. The δ15N of maize used as the reference crop
in our study was on average 5.4‰ which is not far from that reported above for broad-leaved
weeds in Kenya. The greater variation and small %Ndfa observed in our study may partly be
a result of the observed δ15N of the legume (climbing bean) which was low to very high as well
(−1.68 to 6.31‰) compared with −0.44 to 4.10‰ (Reckling, 2011) and −0.70 to 3.74 (Ojiem et al.,
2006). With these findings, it remains uncertain which specific factors govern the %Ndfa in the
smallholder farming systems characterized by heterogeneous fields.

Conclusion
Application of fertilizer inputs led to greater yields in all fields of the study sites. The use of ma-
nure alongside with mineral fertilizers proved to be beneficial in increasing climbing bean yields.
Greater yields were achieved when manure was used together with NPK fertilizer. Applied indi-
vidually, manure seemed to be more beneficial than mineral fertilizer in increasing climbing bean
yield. The use of manure and fertilizer strongly increased the uptake of N and P at both sites.
Targeting the best time for biomass sampling in climbing bean for N2-fixation estimation seems
to be difficult, and multiple biomass sampling at different growth stages is advised for accurate N2-
fixation determination. Variability in yields and response to inputs coupled with the lack of cor-
relation between soil characteristics and response to inputs call for a deeper understanding of the
field’s history/past management before fertilizer application. Looking at the large variability in %
Ndfa observed in this study, it remains unclear which specific factors govern the %Ndfa in the
smallholder farming systems. The use of a range of non-N2-fixing leguminous crops and different
methods is recommended. All of the experiments reported here were conducted with the close
participation of the farmers who provided their fields. These experiments, together with many
demonstration plots and farmers’ own tryouts, were established in major climbing bean growing
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areas over the past years (Giller and Ronner, 2019), and we have observed increasing interest in
soil fertility management among the farmers as a result. The capacity to invest in fertilizer depends
strongly on the ability of the farmers to invest in their production, and the Government of Rwanda
has active initiatives to ensure the profitability of crop production.
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