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Abstract  

It has been estimated that rice production accounts for up to 55% of the total greenhouse 

gas (GHG) emissions budget from agricultural soils. Finding efficient ways to mitigate these 

emissions without adversely impacting yield is crucial as rice is a major cereal crop for half of 

the world’s population and with production being estimated to increase by up to 40% by 

2040 to meet demands. Emissions are challenging to measure and thus finding field-specific 

mitigation options is difficult; many therefore rely on GHG tools to explore suitable 

mitigation strategies. We have collected field data from across the world from peer-

reviewed publications pre-2021, by evaluating the influence of different factors on methane 

(CH4) fluxes, and using a step-down approach, a new CH4 model was created using the linear 

mixed model in Rstudio. The new model has five additional factors and uses a different 

climate classification compared to existing models. Baseline emission factors (EFs) were 

estimated using the predicted data. Result shows that the difference between tropical and 

temperate regions needs to be considered when calculating an EF. By having different pre-

season water management as a baseline, more accurate EFs can be estimated, particularly 

for temperate and American rice regions as the existing EF uses a baseline of short drainage, 

which is not common in these regions that typically have a long drainage duration and only 

one rice crop cycle per year. Evaluation of the new model against existing models shows the 

new model performs better, with R values of 0.602 while other models produce R2 in the 

range of 0.11-0.37. The new model could be more sensitive to capture management practice 

differences between tropical and temperate rice and their impact on CH4 emission. 

Keywords 

Agriculture; climate change; food systems; food security; rice; methane; greenhouse gas 

emissions.  
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Acronyms 

AIC   Akaike information criterion 

AWD  Alternate wetting and drying 

C  Carbon 

CF  Continual flooding 

CFT  Cool Farm Tool  

CH4  Methane 

CO2  Carbon dioxide 

DDS/DWS Direct dry/wet seeded 

EF  Emission Factor 

GHG  Greenhouse gas 

IPCC  Intergovernmental Panel on Climate Change 

N  Nitrogen 

N2O  Nitrous oxide 

RMSE  Root mean square error   

SD  Single drainage 

SF  Scaling factor 

SOC  Soil organic carbon 
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TP  Transplant 

WF  Winter flooding 
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Introduction 

Rice cultivation  

Rice is produced in all continents of the world except Antarctica and is a major cereal crop for almost 

half of the world’s population, accounting for up to two thirds of the daily calories for nearly 3 billion 

people. Asia is the main rice producer and consumer (Khush., 2005; Mosleh et al., 2015; Wang et al., 

2017); with populations rapidly increasing in countries which have rice as their staple food, it has 

been predicted that the production must increase with 8-10 million tons per year (Seck et al., 2012) 

and with as much as 40% by 2040 to meet demands (Wang et al., 2017). With this comes challenges 

not only in sourcing land to grow rice on and water availability, but also when it comes to making 

rice production more efficient in terms of increasing yields, minimizing water usage and greenhouse 

gases (GHGs) emissions. Rice production is considered a potent source of anthrophonic GHGs, with 

the IPCC estimating that it accounts for up to 55% of the total GHG emission budget from 

agricultural soils (IPCC, 2013); thus there are concerns related to increased production which will 

lead to higher emissions, particularly from the potent GHGs of methane (CH4), nitrous oxide (N2O) 

and carbon dioxide (CO2) with rice accounting for 10-12% of the global CH4 emissions from 

anthropogenic sources (Ciais et al., 2013).  

Cultivation practices varies from country to country. Similarities can however be found for those 

countries that have similar climate. European rice paddies are often direct seeded, fallow or winter 

flooded and have a temperate climate with exception of some regions with arid climate. Rotation 

with upland crop such as wheat or legumes can occur (Lagomarsino et al., 2018). Rice producing 

regions of the USA, and South American countries such as Brazil and Uruguay have very similar 

management as European rice fields which are mostly irrigated; however, crop rotation with 

soybean is more common than with wheat, and South American fields are mostly rainfed instead of 

irrigated. Though less-developed South American countries such as Bolivia, Colombia and Mexico 

will not be irrigated or have upland crop rotations, fields are left waterlogged to allow for cattle 

grazing after harvest and have a more tropical climate than Brazil and Uruguay (Chauhan et al., 

2017). In Asia, eastern Asia has the most similar management and climate conditions to 

Mediterranean and American countries; however, transplanting is the main planting method in all 

the Asian countries. Crop rotation varies depending on climate. Japan and South Korea have the 

coldest climate and either operate with rice-fallow or rice-upland crops such as wheat. China is a 

large country and main rice producer and represents all types of crop rotations and planting 

methods, though it has an arid or temperate climate. Southeast and South Asia has the warmest 

climate. These tropical countries often have double or triple cropping either as rice-rice, rice-upland 
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or rice-rice-upland with rice-rice being the most common. In south Asia, India has varied climate 

regions e.g., tropical, arid and temperate climates where rice is grown and thus the rotation and 

crop duration vary. European and North American rice paddies have the longest crop duration which 

is reflected by rice-fallow being most common due to the cooler climate, while Southeast Asian 

countries has the shortest crop duration as seen in Table 1 (Adviento-Borbe and Linquist, 2016; 

Lagomarsino et al., 2016; Chauhan et al., 2017; Martinez-Eixarch et al., 2018).  

Mitigation of Greenhouse Gas emissions  

It is important to find technical measures that will reduce emissions and minimize environmental 

impact without yield reduction and financial loss to rice growers. Mitigating GHG emissions from rice 

is difficult due to the trade-off between different gases in which N2O increases when CH4 decreases 

and vice versa while the soil can be used to store CO2 by implementing organic materials such as 

manure and straw, which in turn will lead to increased emissions of CH4. Finding suitable mitigation 

options is a complex process where many factors will have to be considered, because of this inverse 

relationship in which mitigating one gas may lead to the increase in emissions of another (Ghosh et 

al., 2003; Linquist et al., 2012). The most common form of mitigation is through changes in water 

management practices, fertilizer type and amount, incorporation of organic material or changes in 

tillage practices. Other mitigation options include nitrification inhibitors, dual cropping, change of 

cultivar and more advanced water management/saving practices such as alternate wetting and 

drying (AWD), where the quantity of water and drainage period follows the plant’s growth stages. 

Recent studies have shown that AWD reduces CH4 emissions while having a lower yield penalty than 

the more traditional water mitigation options, such as midseason drainage or multiple drainage. It 

also reduces the arsenic levels in the soil and may reduce irrigation costs for the producer by 

reducing the amount of total water use by as much as 42% compared to continuously flooded fields 

(Linquist et al., 2015; LaHue et al., 2016; Chidthaisong et al., 2017). However, the traditional water 

management strategies are still useful mitigation strategies in areas where AWD might not be 

suitable. For instance, Wang et al., (2018)’s statistical analysis of data collected from peer reviews 

pre-2017 showed a decrease in CH4 emissions of 29% when using single drainage and 41% with use 

of multiple drainage compared to fields which were continuously flooded. Implementing water 

management changes through more frequent drainage will, however, lead to increased N2O 

emissions. Nayak et al., (2015) found that single drainage would increase N2O emissions by 48% 

while decreasing CH4 by 30%, while Meijide et al., (2011) showed an increase of 30% in N2O 

emissions and up to a 45% decrease in CH4 fluxes under single drainage. The total greenhouse gas 

balance for multiple drainage or alternate wetting and drying (AWD) will often still be lower even if 

N2O fluxes increases (Meijide et al., 2016). This is supported by Linquist et al., (2012) which recorded 
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a greenhouse gas balance and yield-scaled greenhouse gas balance reduction of up to 35% through 

drainage of rice paddies without significantly influencing yields. Nitrification inhibitors can thus be 

used to further reduce the total net greenhouse gas balance by reducing N2O emissions through 

slowing down the conversion of NO3 to N and thus limit available N for denitrification (Zou et al., 

2005; Hillier et al., 2012; Akiyama et al., 2010). The application of N inhibitors can reduce both CH4 

and soil N2O emissions by 21% and 24%, respectively (Nayak et al., 2015). According to FAOSTAT 

(2010), the use of synthetic fertilizers accounted for 60% of all N2O emissions from Chinese 

agriculture; minimizing use of fertilizers, implementing N inhibitors or changing the type of fertilizer 

used may thus prove suitable mitigation options for reducing N2O emissions.  

Table 1. Summary of management practices for different rice producing regions, the data used for 

this table is derived from summary of all peer-reviews used in creating the database for this model 

development and thus may vary slightly from real rice farms as many of these are located at rice 

research fields and with set experiments. 

Country Region Climate Crop rotation Crop 
duration 

Planting method 

Italy Europe Temperate Rice-Fallow 
Rice-Upland 

123 DDS or DWS 

Portugal Europe Temperate Rice-Fallow 152 DDS 
Spain Europe Arid/ 

temperate 
Rice-Fallow 156 DDS or DWS 

USA North America Temperate Rice-Fallow 
Rice-Upland 

133 DDS or DWS 

Brazil South America Temperate/ 
Tropical 

Rice-Upland 129 DDS,  
Transplant (TP) 
tropical  

Uruguay South America Temperate Rice-Fallow 113 DDS 
China Eastern Asia Temperate/ 

Cold  
Rice-Upland 
Rice-Rice 
Rice-Fallow 
Rice-Rice-Upland  
(In descending order) 

111 TP mostly 
occasional DDS and 
DWS 

Japan Eastern Asia Temperate/ 
Cold 

Rice-Fallow 113 TP 

South Korea Eastern Asia Cold Rice-Fallow 
Rice-Upland 

126 TP 

Indonesia Southeast Asia Tropical/ 
Temperate 

Rice-Rice mostly 
Rice-Rice-Upland 
Rice-Upland 

99 TP mostly 
occasional DDS and 
DWS 

Myanmar Southeast Asia Tropical Rice-Rice 
Rice-Upland 

101 TP 

Philippines Southeast Asia Tropical Rice-Rice mostly 
Occasional Rice-
Upland 

101 TP most common, 
some DDS 

Thailand Southeast Asia Tropical Rice-Rice mostly 
some Rice-Upland 

127 TP, DDS, DWS 

Vietnam Southeast Asia Tropical/ 
Temperate 

Rice-Rice 
Rice-Rice-Upland 

90 TP, DDS 

Bangladesh South Asia Tropical Rice-Rice 114 TP 
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India South Asia Tropical/Arid
/Temperate 

Rice-Rice, Rice-
Upland, some Rice-
Fallow 

111 TP, some DDS and 
DWS 

Incorporation of organic material may not be the most suitable practice when it comes to reduction 

in emissions from rice with Nayak et al., (2015) showing an increase of up to 108% in CH4 emissions 

when straw is applied. On a global scale however, improving soil carbon sequestration is one of the 

best countermeasures for mitigating agricultural GHGs with soils storing 2 to 3 times more carbon 

(C) than the atmosphere (Minasny et al., 2017; Begum et al., 2018b). Rice cultivation is thought to be 

able to sequester more C than upland crops due to the long-term reduction of microbial 

decomposition (Begum et al., 2018a). By applying straw, Nayak et al., (2015) found that it could 

increase SOC content by 0.99% annually and reduce N2O emissions by 21%. Synthetic fertilizer 

application can also influence and improve soil C sequestration while tillage practices such as 

ploughing tend to lead to an increase in CO2 emissions from the soil. An alternative for improving soil 

sequestration while minimizing emissions, is to time the incorporation of organic material correctly, 

with Wang et al., (2018) suggesting that CH4 emissions from straw incorporation immediately after 

harvest in the previous season was half of the emissions than when straw was applied right before 

transplanting. Thus, incorporating straw directly after harvest in the previous season, or compositing 

while having fields drained in the fallow season, could effectively reduce CH4 emissions. Mitigation 

of GHGs from rice should therefore be carefully considered, with a focus on the reduction of a fields 

total net greenhouse gas balance without yield penalty, since a reduction in yield may result in a 

more GHG intense production elsewhere to meet demand (Smith, 2012). Each mitigation option 

needs to be evaluated for the individual region or site to account for environmental and financial 

differences (Smith, 2012) as some regions will not have irrigation systems but rely on rainwater, and 

some may not be able to remove straw due to transport issues and thus will need to incorporate it 

into the soil.  

Greenhouse Gas Tools & models 

Measuring GHG emissions is difficult, costly and time consuming and thus many farmers and supply 

chain managers rely on GHG calculators to estimate emissions and select suitable mitigation options. 

Such software tools can be used to inform growers on how best they can contribute to minimizing 

the environmental footprint of their products without having a negative impact on their finances 

(Hillier et al., 2011; Clift et al., 2014). For the tools to be effective it is crucial that they can provide 

accurate estimates and mitigation options at a regional scale, considering the wide variation in 

management practices which vary greatly across the globe. There are, at present, many different 

models for predicting CH4 emissions, both empirical and process based. However, many are too 
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regionally specific to work across different continents or lack the ability to provide adequate 

mitigation options by only considering a handful of parameters that influence these emissions. The 

Cool Farm Tool (CFT) rice CH4 model is a model which is widely used both by growers and supply 

chain managers across the world. The tool aims to produce a representative GHG footprint and net 

GHG emission estimates and uses a mix of IPCC Tiers ranging from Tier 1 to Tier 3 (Hillier et al., 

2011). The IPCC Tier 1 2006 model used for rice in the CFT was originally derived from the Yan et al., 

(2005) empirical model on CH4 emissions from Asian rice paddies but is currently being updated with 

the IPCC 2019 model which is based on the Wang et al., 2018 model, which includes data collected 

from temperate regions, though data from temperate regions are still greatly under-represented. 

These models, however, still have difficulties in accurately predicting emissions as they lack 

sensitivity to key variables such as soil texture, cultivar and certain management practices, raising 

concerns about the relevance of the existing models for estimating EFs globally. Impact of planting 

method, pre-season water status e.g., winter flooding, differ widely in temperate regions and 

inclusion of these parameters might improve model performance. As many countries rely on the 

IPCC Tier 1 or Tier 2 methods for estimating emissions for their national greenhouse gas emission 

reports, the accuracy of these models is crucial for estimating GHG emissions and setting reduction 

targets for each country. Our aim is therefore to produce a global model for quantifying rice based 

CH4 emissions which considers factors such as soil texture, planting method and the wide range of 

management practices that differ between countries and climate regions. Based on this, new EFs will 

be created for CH4 emission estimates from rice at country scale.  
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Materials & methods 

Evaluation of existing empirical models and IPCC methods 

We evaluated 4 existing CH4 models with use of independent data (data from peer reviewed papers 

that were not used in the development of these models) resulting in 631 measurements from 70 

publications, the location of the data used can be seen in Figure 1. Four different approaches; Yan et 

al., (2005); IPCC (2006); Wang et al., (2018) and IPCC (2019) were considered for comparison. 

Evaluation was done for all global regions in which Asia was divded into South, South-East and East 

(Table ). With use of an excel-based model performance statistical package (MODEVAL; Smith and 

Smith, 2007) data was used to check for significant association between the observed and simulated 

fluxes for each of the models and if they were over or underestimating the observed data. The 

sample correlation coefficient was used to compare the relationship between the observed and 

modelled values and a linear regression analysis was used to determine the relationship between 

the two. Further statistical analysis was done in which the significance of r correlation coefficient 

and mean difference (M) was tested by using the F-test (p=0.05) and the Student’s two-tailed t-test 

(critical at 2.5%). The R value represents the relationship between measured and observed value 

between -1 and 1 in which the closer it is to 1, the better the model. Student’s t test shows the 

variation between the dataset in which the bias of the variation is shown as the mean difference, M, 

(Smith and Smith, 2007; Addiscott and Whitmore (1987). The modelled and measured datasets were 

then compared against each other to determine the total error of the model compared to 

observations by calculating the root mean square error (RMSE). 

 
Figure 1. Location of data used for model evaluation 

Table 2. Grouping of countires into regions 

Regions Country in regions 
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Europe Italy, Portugal, Spain 
East Asia China, South Korea 
South-East Asia Indonesia, Myanmar, Vietnam, Philippines, Thailand 
South Asia Bangladesh, India 
South America Brazil 
North America United States (USA) 

The two IPCC models which have been derived from the Yan 2005 and Wang 2018 models use 

scaling factors (SFs) and emission factors (EFs) in their models. The IPCC 2019 model also has an 

additional pre-season water regime class; non-flooded pre-season >365 d. Apart from this the 

classes for all parameters are the same though SFs differ slightly. The SFs and EFs for the IPCC 

methods vary according to different regions and/or management practices (IPCC, 2019; IPCC, 2006), 

and EFs are calculated considering water regime during the plant growing season and organic 

amendments applied for the different regions (Equation 1). The Yan et al., (2005) (Equation 2) and 

Wang et al., (2018) (Equation 3) models consider all the parameters included in the IPCC models as 

well as soil organic carbon (SOC), pH and climate. These EF and SF values along with the statistical 

models below have been used for our evaluation, and as input parameters for our analysis. 

IPCC 2006 & IPCC 2019:  

𝐸𝐹𝑖 = 𝑆𝐹 𝐸𝐹𝑐  × 𝑆𝐹𝑝 × 𝑆𝐹𝑤 × 𝑆𝐹𝑜  Equation 1 

Where: 

EFi = Daily emission factor (kg CH4 day-1 ha-1). 

EFc = Region specific for baseline emission factor (continuous flooding without organic 

amendment). 

SFp = Scaling factor accounting for the difference in water regime before the rice growing 

season. 

SFw = Scaling factor accounting for the difference in water regime during the rice growing 

season. 

SFo = Scaling factor accounting for the difference in organic amendment application. 

𝐿𝑛(𝑓𝑙𝑢𝑥)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑎 × 𝑙𝑛(𝑆𝑂𝐶) + 𝑝𝐻𝑚 + 𝑃𝑊𝑖 + 𝑊𝑇𝑗 + 𝐶𝐿𝑘 

+ 𝑂𝑀𝑙 × 𝑙𝑛 (1 + 𝐴𝑂𝑀𝑙) 

Equation 2 
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𝐿𝑛(𝑓𝑙𝑢𝑥)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑎 × 𝑙𝑛(𝑆𝑂𝐶) + 𝑝𝐻ℎ + 𝑃𝑊𝑖 + 𝑊𝑅𝑗 + 𝐴𝐸𝑍𝑘 

+ 𝑂𝑀𝑙 × 𝑙𝑛 (1 + 𝐴𝑂𝑀𝑙) 

Equation 3 

 

Where: 

Ln(flux) = natural log of average CH4 flux (mg m2 h-1) during growing season 
Constant = Intercept 

SOC = Soil organic carbon (a is the effect of SOC) 

pHm / pHh = The effect of pH in which m/h is for each individual class. 

PWi =Effect of pre-season water regime (i is for each individual class) 

WTj/WRj =Effect of water regime during growing period (j is for each individual class) 

CLk/AEZk = The effect of climate/agroecological zones (AEZ) 

OMl x ln (1 + AOMl) = OA is effect of added organic material while AOM is the effect of the 

amount applied (l is for each individual class/amount t/ha-1. 

Database collation  

Data on CH4 emissions from rice and influencing factors were collected using peer-reviewed papers 

published before 2021 through a comprehensive literature search. Google Scholar, Scopus and ISI-

Web of Science were searched for the following keywords in various combinations; “Rice”, “Paddy”, 

“Methane”, “CH4”, “emission”, “greenhouse gas”, “GHG” and each rice producing country based on 

FAOSTAT (FAO, 2018). Only original data which directly measured CH4 emissions from fields were 

included; studies which involved use of greenhouses, laboratories, pots or computer modelling in 

the data collection process were not included. For a paper to be deemed suitable to be included in 

the database it needed to contain data and information for certain key parameters. These 

parameters were soil pH, soil organic carbon (SOC), water management practice during growing 

season and previous season, organic amendment where applicable and cumulative CH4 emission. In 

total, 220 publications comprising 2098 measurements fit the quality criteria. Of these, 183 with 

1758 measurements were used for model creation, while 124 datapoints from 19 publications were 

collected later and used for evaluation of the model.  

The new database has recorded CH4 emissions from all rice growing continents in the world with 

exception of Africa and Oceania with country search being done based on FAOSTAT’s list of rice 
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producing countries (FAO, 2018). For each individual study a range of data were collected such as 

CH4 emissions and water regime during and pre-rice-crop, planting method, organic amendment 

types and amount, fertilizers and use of nitrification inhibitors as well as climatic conditions and soil 

properties. The data collection methodology is similar to Wang et al., (2018) and full list of data 

collated are provided in Table . Where data was missing unknown or -9999 was used for most 

parameters, while missing geographic coordinates, climate and soil data were obtained for the 

location using online resources. Missing climate data was obtained from https://en.climate-

data.org/ The coordinates were put into ArcGIS along with GIS files from Beck et al., (2018) to 

determine the climate groups for each location using the Köppen-Geiger climate classification maps. 

We chose to use the 2nd level climate class group which resulted in 13 climate groups. Location and 

climate group for the collated data is provided in Error! Reference source not found. while the 

description of each group is provided in Error! Reference source not found. with full list in Beck et 

al., 2018 (Table 2). 

Soil texture where clay, sand and silt percentage had been recorded was found with use of the 

United States department of agriculture (USDA) soil classification triangle and further grouped into 

broad classes based on USDA soil texture classes (FAO, 

http://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e06.ht

m). Soil texture was included, as studies have indicated that the soil texture influences CH4 emissions 

e.g., Baldock and Skjemstad (2000) showed soils with high clay content have lower CH4 emission 

than those rich in sand or silt. Soil organic carbon was recoded in %. If papers provided soil organic 

matter (SOM), it was converted to SOC % using Bemmelen index value of 0.58 times the SOM value, 

and if given in g kg-1 total organic carbon it was divided by 10; similar approach was used for soil 

nitrogen (N) to convert it from g kg-1 to percentage. Carbon:Nitrogen and bulk density was recorded 

when available, however not all papers record a comprehensive list of soil properties and thus pH 

and organic carbon was considered as the baseline of what a paper needed to have on soil 

properties.  

https://en.climate-data.org/
https://en.climate-data.org/
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Figure 2. World map showing location of each experiment and climate distribution across 
continents. 

Table 3. Definition and criterion for climate groups. Full list including those climates in 2nd group 

class not in our database and additional subgroups can be found in Beck et al., 2018 table 2.  

Climate group (2nd) Definition Criterion 
Tropical Not (B) & Tcold≥18 
Af Rainforest pdry≥60 
Am Monsoon Not (Af) & Pdry≥100-Map/25 
Aw Savannah Not (Af) & Pdry<100-Map/25 
Arid Map<10xPthreshold 
Bs Steppe Map≥5xPthreshold 
Temperate Not (B) & Thot>10 & 0<Tcold<18 
Cs Dry summer Psdry<40 & Psdry<Pwwet/3 
Cw Dry winter Pwdry<Pswet/10 
Cf Without dry season Not (Cs) or (Cw) 
Cold Not (B) & Thot>10 & Tcold≤0 
Dw Dry summer Psdry<40 & Psdry < Pwwet/3 
Df Without dry season Not (Ds) or (Dw) 

The organic amendments were classed into the groups of manure, biochar, straw (grass, wheat and 

rice straw, on-season or off-season based on application time), green manure, farmyard manure and 

compost. Straw application was classed as either on or off season since timing of straw incorporation 

affects CH4 emissions, in which on-season was defined as straw incorporation right before planting 

or transplanting of rice while off-season if incorporated directly after harvest or in previous season 

with a different crop. If straw was left on field after harvest, but not incorporated before the start of 

the next planting, then it was classed as on-season. Amount of organic amendment was extracted, 

and where not already in the correct weight format, was converted into dry weight for straw and 

fresh weight for compost and manures. In cases where moisture content of wet rice straw was not 

recorded, we used IRRI’s moisture estimate for straw in which the moisture content at harvest 



 11 

ranged between 15-18% (IRRI, 2014). Method of organic amendment application were also recorded 

and grouped into following classes: incorporated, surface-applied, burnt, none or unknown. If paper 

said left on field or applied, it was classed as surface applied.  

Table 4. List of all parameters collected and consider 

Parameters Acronym Model terms 
Experiment identification Exp.ID Covariate 
Location Country Factor 

Region Factor 
Latitude Factor 
Longitude Factor 
Elevation Factor 

Mean annual temperature Mean_an_temp Covariate 
Mean annual precipitation Mean_an_prec Covariate 
Sample year Sample year Covariate 
Reference Reference Covariate 
Soil texture Unknown, Fine, Moderately_Fine (medium fine), 

Medium, Moderately_Coarse, Coarse 
Factor 

Soil texture % Sand, Silt and Clay % Covariate 
Soil organic carbon SOC% Factor 
pH pH Covariate 
pH group Acidic, Neutral, Alkaline Factor 
Sulphate in soil Sulphate Covariate 
Soil Nitrogen % Soil N% Covariate 
Carbon:Nitrogen ratio C:N ratio Covariate 
Bulk density Bulk density Covariate 
Experiment/treatment Treatment Covariate 
Growing type Single, Late, Early, Unknown Factor 
Rotation type Rice_Fallow, Rice_Rice, Rice_Rice_Upland, 

Rice_Upland, Unknown 
Factor 

Cultivar Crop type Factor 
Planting method  DDS (Direct dry seeded), DWS (Direct wet seeded), TP 

(Transplant) 
Factor 

Sowing date Sowing date Covariate 
Transplanting date Transplanting date Covariate 
Harvest date Harvest date Covariate 
Crop period Crop length (duration from sowing/transplanting to 

harvest) 
Factor 

Crop length Short, Medium, Long Factor 
Yield Yield (t/ha-1) Dependent 
Pre-season water  FD (flooded), LD (long drainage), SD (single drainage), 

WF (winter flooded), Unknown 
Factor 

Water depth (cm) Water_depth_cm Covariate 
Current water regime 
 

CF (continuous flooding), SD (single drainage), MD 
(multiple drainage), RFW (rainfed wet season), RFD 
(rainfed dry season), AWD (alternate wetting and 
drying), Saturated (SA), deep water (DW) 

Factor 

Organic amendment (OA) Yes, No, Unknown Factor 
Residue type Manure (green manure, Farmyard manure, compost), 

straw (on or off season), Biochar, Combined (when 
mix of previous), NONE 

Factor 

OA method Incorporated, burned, broadcasted, NONE, Unknown Factor 
Amount of OA t/ha (dry weight for straw, fresh for manure and 

compost) 
Covariate 
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OA carbon content OA_C_Amount Covariate 
OA nitrogen content OA_N_Amount Covariate 
Fertilizer information 
 

Fertilizer type (a) Factor 
N rate, P rate, K rate, Other Covariate 
No. splits Covariate 

Sulphur in fertilizer With or without sulphur Factor 
CH4 flux Per hour (mg/m2/h), day (mg/m2/d), season (g/m2) Dependent 

For water regime, we used the IPCC classification groups which were continuously flooded (CF), 

single/mid-season drainage (SD), multiple drainage, dry and wet season rainfed, deep water or 

unknown. In addition to this, we added two new water regime groups; alternate wetting and drying 

(AWD), as research suggest if implemented accurately AWD can reduce CH4 emissions, while not 

impacting yield significantly (Linquist et al., 2015. When field was moist but not flooded, the water 

regime was classified as saturated. In cases where field had a single drainage event, mid-season and 

then a drainage event at the end of season it was classed as single drainage, as fields most 

commonly are drained before harvest including those classed as CF. Flooding depth (cm) was also 

recorded as studies have shown that there is a potential threshold line for ideal water depth when it 

comes to CH4 emissions, particularly with the use of AWD (Linquist et al., 2015) The pre-season 

water regimes were grouped into flooded, short drainage, long drainage or unknown as per IPCC 

(IPCC, 2006, 2019). We also added winter flooded (WF) as a parameter as some rice paddies in 

Europe and North America leave fields flooded during the fallow season. In locations with double 

cropping where preseason water was not described, sowing/transplanting and harvest dates were 

used for calculating the number of days between cropping. We then used the IPCCs (2006) 

‟timeframe” in their pre-season water regime classification to determine the class; flooded if less 

than 30 days prior to planting, long drainage if left bare for more than 180 days or short drainage if 

less than 180 days. In cases where sowing/transplanting and harvesting dates were not provided, we 

assumed that if double cropping late rice often would often be planted directly after early rice in 

which the preseason water regime for the late crop would be classed as flooded. If they had a single 

crop planting, and no indication of flooding in the winter, it was classed as long drainage. In some 

instances, there were too little information provided to class growing season and preseason water 

regime, in these circumstances, we left it as unknown.  

Many of the collected variables were divided into broader groups to reduce classes, such as soil 

texture and organic amendment types and cultivar type to make analysis easier. CH4 emissions were 

extracted directly from text or tables within the publications and converted to seasonal, daily and 

hourly emission values based on crop duration or recorded measurement period. In cases where 

crop duration or measurement period were not accurately recorded with dates of 

sowing/transplanting and harvest or with days after sowing/transplanting an estimation was made 
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based on the same cultivar from the same country, or if months of sowing/transplanting and harvest 

where given the number of months would be counted and multiplied by 30, if it was late-April to 

mid-September it was calculated to be number of months multiplied by 30 plus half a month (15 

days). If both measurement and crop duration were recorded, then measurement period was used 

for converting and calculation the emissions. In publications where date of sowing, transplanting and 

harvest or emission or yield values were missing, but presented in graphs or figures, an online tool 

was used for extracting the data (Rohatgi, 2021). 

Additional parameters such as cultivar type, planting method and yield were also recorded. For 

cultivar we divided them into short, medium and long duration as there were too many different 

cultivar types to divide by name. Rice cultivar varieties have differential effect on CH4 emission which 

is mostly due to different morphological and physiological characters. For instance, Linquist et al., 

(2018) stated that hybrid rice cultivars had lower emission than semi-dwarf cultivars in the US, while 

other studies have suggested that high yielding cultivars have lower CH4 emissions. We attempted to 

divide the cultivars into type such as Jasmine, Japonica, Indica, Hybrid etc. but not enough 

information was available to do so. However, we used crop duration as a proxy to include impact of 

rice cultivar varieties. Planting method is considered important as it is related to water management 

practises, and thus influence CH4 and N2O emissions, due to removal or adding of water during 

germination or transplantation of rice creating either anaerobic or aerobic conditions which forms 

ideal conditions for the formation of CH4 through methanogenesis or N2O through denitrification 

and nitrification processes. Studies by Linquist et al., (2015) and LaHue et al., (2016) show that dry-

seeded systems decreased CH4 emissions by up to 60% compared to direct seeding carried out in 

water (wet seeding). There are generally three types of planting method used; these are 

transplanting (seeds are germinated off site, once they reach preferred height they are planted in 

the field), direct wet seeding (seeds are broadcast into flooded fields, then the fields are drained to 

allow germination and then reflooded) and direct dry seeding (seeds are drill seeded or broadcast to 

dry fields). In cases where papers mentioned direct seeding and did not mention whether or not the 

field was flooded it was classed as unknown. Yield data was collated to study influence of 

management practices on rice yield as mitigation technologies that reduces yield will have financial 

impact of the grower and with projected increased demand for rice meaning that a reduction in yield 

will have a significant impact on supply and thus food security.  

Statistics & final parameter selection for new model 

Data were collected based on their availability and not through a single study, thus being 

unbalanced. Histogram plots showed the emissions to be right skewed and thus needed 
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transforming to achieve a normal distribution. Different transformations from natural log to root 

square, fifth root and cube root were performed on the CH4 emissions data to find the best 

normality fit. The fifth root appeared to normalize the distribution best, particularly for the kg per ha 

per day which were used for the model creation. Since CH4 emission depends on multiple factors, 

some fixed while others random, a linear mixed model (LMER) was thought to be the best approach 

when categorial, continuous, fixed and random factors need to be considered to best assess the 

variables impact on the emissions. Rstudio (2020) was used for the creation of the model, first data 

was transformed, and factors labelled. Correlation and boxplot were created to study the impact of 

individual parameters on emissions (S.1). A stepdown approach for selection of variables was used 

by first adding all influencing parameters and then removing one by one of those who showed no 

significance (NCSS, n.d.). We then assessed which parameters would be random within which 

Country, and Climate was determined to be our random factor. Several steps were required to 

determine the preferred model based on The Akaike information criterion (AIC) values, r2 and the 

normality of the residuals. From all the variables listed in table 2, only 9 were included in the final 

selection, all of which had a significant effect on CH4 emissions. Country and climate were included 

as random factors. The response variable was fifth root of CH4 kg ha-1 d-1 and explanatory variables 

were pre-season water, water regime, crop duration, organic amendment type, method and total 

amount, pH, nitrogen fertilizer amount, soil texture with country and climate as random factors. 

𝐶𝐻4 
0.2

=  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑃𝑠𝑤𝑎 + 𝑃𝑚𝑏 + 𝑊𝑟𝑐 + 𝐶𝑑 + 𝐺𝑠𝑑 + 𝑝𝐻

+ 𝑁𝑎 + 𝑂𝐴𝑡𝑒: 𝑡𝑂𝐴 + 𝑆𝑡𝑓 + (1|𝐶𝑜𝑔 ) + (1|𝐶𝑙ℎ )  

Equation 4 

 

Where: 

P sw = pre-season water, a = class (short drainage, long drainage, flooded, winter flooded) 

Pm = planting method, b = class (transplanted, direct dry seeded, direct wet seeded) 

Wr = water regime during crop season, c = class (continuously flooded, single drainage, 

multiple drainage, alternate wetting and drying, rainfed wet or dry season, deep water, 

saturated 

Cd = Crop duration 

Gs = growing season, d = class (single, late, early, wet, dry) 

pH = value 

Na = Nitrogen fertilizer amount  



 15 

OAt = Organic amendment type, e = class (straw on or off season, compost, farmyard 

manure, green manure, biochar or none) 

tOA = total organic amendment amount 

St = soil texture, f = class (fine, medium fine, medium, medium coarse, coarse, unknown) 

1|Co = 1| = random factor, Co = Country, g = specific country 

Development of regional and country specific EFs using predicted data 

Descriptive analysis of predicted data was performed using both Rstudio (2020) and IBM Corp. 

(2020) statistical packages, and baseline emission factors were calculated from the predicted data. 

We used two baselines, in which only pre-season water status differed. For all Asian countries, with 

the exception of Japan and South-Korea, the baselines were short drainage in pre-season, 

continuously flooded during growing period and no organic amendment. However, for countries that 

operated with single crop cycles, mostly in temperate regions, we used a pre-season water 

management of long drainage, the rest remained the same. These countries were the European 

countries, countries in the Americas as well as Japan and South Korea. Based on this, default EFs (kg 

CH4 ha-1 day-1) were estimated at both regional and country scale.  
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Result & Discussion 

Evaluation of existing models 

Results show that the existing models lack some sensitivity to predict emissions accurately and that 

the recently updated models, particularly for IPCC (2019) only had minor improvements compared 

to the original models. On regional scale, the modelled emissions were much lower than the 

measured emissions for most regions. However, for southeast Asia (Philippines/Thailand and 

Indonesia/Myanmar/Vietnam) Yan et al., (2005) and Wang et al., (2018) seems to overestimate the 

smaller observed values, but underestimates the higher values, while the IPCC models 

underestimate the higher observed values, with a few overestimates of the lower values (Fig. 3). For 

the Chinese data, the models also underestimate emissions for all measured emissions over 2 kg 

CH4-C ha-1 d-1. Like Southeast Asia, Japanese and South Korean emissions were underestimated for 

the larger observed values and lower emissions were overestimated by both the Yan and Wang 

models, while the IPCC models estimate the same value for all of the range, with everything being 

estimated between 0.5 and 1.5 while observed data ranged from around 0.2 to circa 2.8 (Fig. 4). The 

models still underestimate data from American rice paddies for both Brazil (Fig. 8) and USA, in which 

the IPCC models do not capture the trend of the American rice paddies, estimating most values to be 

right below 1 (Fig. 5), while their performance is more spread for the European data (Fig. 6). For 

India, the models performed quite well but the emission range is small, with all observed data lower 

than 1 CH4-C kg ha-1 d-1, which makes the model appear better. However, there was still some over- 

and under-estimation by the model compared to the observed data. For Bangladesh, the existing 

models significantly underestimated the emissions (Fig. 7). This could be due to low sample number 

in Wang et al., (2018) database for this country. However, if India and Bangladesh were combined to 

form South Asia, this would cause a substantial over- or under-estimation of emissions for each 

country when EFs are produced with our database having India as the country with the lowest mean 

CH4 emission (mean 1.24 kg ha-1 d-1) while Bangladesh has the third highest emissions of all countries 

(mean 4.10 kg ha-1 d-1), as shown in figure 7 below. Based on these findings, questions arose on how 

best to group the different countries as Wang et al., (2018) had grouped Asian data into climatic 

zones, while it had not been done for European, North American and South American data and 

grouping them into the above regions would also influence the accuracy of using the model EFs at 

country scale. Mean CH4 emissions (kg ha-1 d-1) at country scale and regional scale for India is 1.24 kg 

CH4 ha-1 d-1, for Eastern Asia it is 2.20 kg CH4 ha-1 d-1, for Bangladesh the value is double, 4.10 kg CH4 

ha-1 d-1 (Fig. 7). However, baseline EFs are similar, and thus the type of studies included, and for 

example the use of organic amendments, may influence the mean emission value. A descriptive 

analysis using Modeval, and standard deviation is provided in the supplemental material (S3). 
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Figure 3. Model performance for Southeast Asia. The region is divided based on mean emission 
value with the three highest in one graph and the two countries with the lowest mean emission in 
the other to better assess model performance. However, the figure shows that all models 
underestimate emissions for larger observed values while particularly Yan et al., 2005 model 
overestimates smaller values for Indonesia, Myanmar and Vietnam data.   

 
Figure 4. In East Asia, models perform quite well for the Chinese data, with the exception of some 
higher values. 
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Figure 5. Figure shows that the models underestimate emissions for USA. Here the updated IPCC 
model (2019) performs slightly better than the original (2006) model, while for the other two the 
new model (Wang et al., 2018) performs worse than the original (Yan et al., 2005) model. 

 
Figure 6. The original Yan et al., 2005 model overestimates emissions for the European data while 
the updated Wang et al., 2018 model is more accurate. The model performance is, however, better 
for the European data than for most of the other regions. For the two IPCC models, neither capture 
the trend well.  

 

 
Figure 7. The models performed for these two countries, underestimating emissions for Bangladesh, 
but performing well for India.  
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Figure 8. The newer Wang et al., 2018 model performs worse than the original Yan et al., 2005 and 
thus the new model does not improve emission estimation. All models underestimate emissions 
overall, particularly the IPCC models.  

Considered variables and their impact on the model 

Linear mixed models can handle both random and fixed factors and have the advantage of being 

capable of analyzing unsystematic data (Wang et al., 2018; Jørgensen and Fath, 2011; Yan et al., 

2005). Only a handful of countries used empirical or process-based models (IPCC tier 2 or 3) for 

estimating their emissions from rice for national reports submitted to the UNFCCC Conference of the 

Parties, while the majority rely on default EFs through an IPCC tier 1 approach (Wang et al., 2018; 

UNFCCC, 2017). In addition to the existing explanatory variables included in previous CH4 models 

used by IPCC, additional variables considered in this model (Equation 4) where soil texture, planting 

method, growing season, N fertilizer, crop duration as a proxy to include impact of rice cultivars and 

organic amendment method, as well as a different classification of climate group, the Köppen-Geiger 

climate classification (Beck et al., 2018).  

The most common soil parameters recorded in published literature are SOC and pH as they are 

considered as most significant parameters affecting CH4 emissions. However, evaluations have 

showed that there is a significant relationship between soil texture and CH4. We tried developing the 

models using clay/silty/sand content as covariates and soil texture class as factors. Using soil texture 

class instead of silt, sand or clay content improved the AIC value of the model and allowed for more 

data points to be included as some papers had expressed soil texture by name and not by % of silt, 

sand or clay. pH was another soil characteristic factor used in the model as it has a significant impact 

on emissions. The production of CH4 is sensitive to pH changes with methanogens being most active 

in slightly acidic soil (Garcia et al., 2000; Aulakh et al., 2001; Wang et al., 2018) which supports our 

data with highest emissions being recorded under slightly acidic pH between 5.5 and 6 which also 

corresponds to previous models and their results (Yan et al., 2005; Wang et al., 2018). SOC had no 

significant impact on emissions in our database and was therefore not included in the final model. 

Even though it is considered a key parameter, and with previous studies suggesting that it can 
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influence emissions as well as improving the model output, we did not include it in the model as it 

has no significant impact. 

Using Anova and chi-square tests on the fixed factors in Rstudio we determined the different 

variables association with CH4 emissions (table 5). This showed that water regime during crop 

growing season had the highest impact (166.3 chi-square) on emissions followed by soil texture 

(145.7) and growing season (118.4). Organic amendment amount is thought to have a significant 

impact on emissions, with previous CH4 models results showing it being closely related to CH4 fluxes 

(Wang et al., 2018). In our model. we have linked it together with type of organic amendment and 

thus this could have impacted the chi-square value (112.8) which shows it not being the most 

influencing factor, though the overall results shows that it does have a significant impact on 

emissions. Results show that use of nitrogen fertilizer had the smallest impact on emissions (10.7) 

while application method of organic amendment and pH has similar effects (29.8 and 36.6, 

respectively). This corresponds well with previous models which had water regime during the rice 

crop season as one of the main factors controlling CH4 fluxes with CF field having the highest average 

emissions (Wang et al., 2018). All factors used in the model had a significant impact on emissions 

(table 5). Diagnostic plots of the final model (Fig. 9) show the overall performance of the model is 

good, with an AIC value of -923.9 (S2). 

Table 5. Descriptive statistics showing the different parameters impact on CH4 emissions in which 

water regime is the most controlling factor. 

Anova of fixed factors 
Factors Chisq Df Pr(>Chisq) 
Pre-season water 69.887 4 <0.001          *** 
Crop duration 66.738 1 <0.001          *** 
Planting method 48.912 2 <0.001          *** 
Water regime 166.282 7 <0.001          *** 
Growing season 118.372 4 <0.001          *** 
pH 29.756 1 <0.001          *** 
Oa method 36.574 4 <0.001          *** 
N amount 10.705 1 <0.01            ** 
Soil texture 145.668 5 <0.001          *** 
Oa type: tot oa 112.835 6 <0.001          *** 
Significance Codes: 0’***’, 0.001 ‘**’, 0.01 ‘*’, 0,05 ‘.’ 0.1’’ 1 
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Figure 9. Diagnostic plots of the LMER model reported in Equation 4. The residual versus fitted 
values (a) suggest an almost constant variance with increasing means. The normal Q-Q graph (b) is 
close to following a straight line, indicating that the data distribution of cube root was reasonable. 
The histogram of residuals is close to normality (c) while the correlation between observed and 
predicted emissions shows a decent model performance with R2 value of 0.97 in cube root format 
(d) and R2 values of 0.73 when back transformed to mean CH4 kg ha-1 d-1 (e) where the solid line is 
the reference line. 

Descriptive statistics of modelled CH4 emission  

Mean CH4 emissions for predicted data were 1.75 CH4 ha-1 d-1, with highest mean value being 

recorded for Vietnamese rice paddies and lowest for rice fields in Portugal (5.05 vs 0.58 kg ha-1 d-1). 

Crop length varied from 64 days to 205 days, with Vietnam having the shortest average crop 

duration of 90 days, while Spain had the longest of 156 days followed by Portugal (152 days); mean 

crop duration across all data was 114 days. For organic amendment types, compost and green 

manure had the highest emissions. Application of straw off season and biochar may reduce CH4 

emission significantly.  Impact of organic amendment is a function of type, amount and methodology 

of organic manure application. Comparing straw on and off season, there is a significant difference, 

(a) (b) (c) 

(d) (e) 
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with straw on season emitting 33% more than if straw was applied off season. This supports Wang et 

al., (2018)’s findings, which showed that applying straw off season compared to on-season is a good 

way to reduce emissions (S2).  

For pre-season water regime, flooded rice paddies had the highest mean emissions (2.77 kg ha-1 d-1) 

while WF had the lowest (1.18 kg ha-1 d-1). Often, information on pre-season water regime which can 

be inferred from crop rotation information for the whole season, is not reported in the publication; 

however, in many instances this could be drawn from regional crop patterns. Rice grown in 

temperate regions such as Europe, North America, Japan and South Korea have long drainage 

between crop, as rice is sown only during the summer months with the occasional rotation of upland 

crops that do not require flooding such as wheat or soybean or with winter flooded fields, which is 

common in some European countries and North American regions. Many of the rice production sites 

in the Mediterranean regions of Europe have soil rich in clay and poor drainage and thus it is 

common that the fields remain water logged through most of the year through rainwater or 

irrigation systems (Meijide et al., 2011) while some, particularly in Spain are kept flooded in the 

fallow season to maintain soil salinity and biodiversity (Martínez-Eixarch et al., 2018). Prolonged 

anaerobic conditions in the winter, just after incorporating the straw, might result in greater 

emissions in both fallow season and the following rice season (Wang et al., 2018). However, 

emissions from rice paddies during growing season in these countries is low compared to other rice 

producing countries. Table 6 shows the overall results from the predicted data in which WF fields 

showed a 33%, and long drainage fields a 17%, reduction in CH4 emissions compared to short 

drainage fields. However, rice fields with flooded pre-season water status have a significantly higher 

average emissions compared to those from short, drained fields (being 36% higher; S2). 

Table 6. Relative CH4 fluxes (kg ha d-1) for pre-season and crop-season water management regimes. 

Values based on continuously flooding and short drainage being set to 1 and calculated for full 

database.  

Variables Mean flux (CH4 kg-1 d-1) Relative flux 
95% confidence interval 
Lower Upper 

Water regime during crop growth 
Continuously flooded 2.02 1 1 1 
Single drainage 2.69 1.33 1.17 1.47 
Multiple drainage 1.37 0.68 0.20 0.40 
Deep water 1.33 0.66 0.33 0.95 
Rainfed wet season 1.24 0.61 0.44 0.76 
Alternate wetting and drying 1.00 0.49 0.41 0.57 
Rainfed dry season 0.62 0.31 0.20 0.40 
Saturated 0.45 0.22 0.15 0.29 
Pre-season water 
Flooded 2.77 1 1 1 
Short drainage 1.76 0.64 0.63 0.64 
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Long drainage 1.46 0.53 0.54 0.52 
Winter flooded 1.18 0.43 0.39 0.45 

Several studies have shown that CF during the growing season emit the most CH4 compared to other 

water management practices. Our data, however, shows that single drainage (SD) has a higher mean 

CH4 kg ha-1 d-1 value than CF fields. The high mean emissions from SD are mainly due to Trinh et al, 

(2017), which was carried out in Vietnam with a predicted emission range between 6.74 and 12.71 

kg ha-1 d-1; the original emission range was 6.6 and 15.09 kg ha-1 d-1. If Trinh et al., (2017) was 

excluded, average CH4 flux from SD fields was 1.69 kg CH4 ha-1 d-1 which is significantly lower than 

the 2.69 kg CH4 ha-1 d-1 if Trinh et al., 2017 is included, and lower than the CF mean of 2.02 kg CH4 ha-

1 d-1, but higher than rainfed wet season and multiple drainage of 1.24 and 1.37 kg CH4 ha-1 d-1. This 

is more consistent with research focused on emissions from different water regimes and previous 

CH4 models from Wang et al., (2018), which has the highest relative flux from CF fields followed by 

SD then RFW. If we did not consider the outliers caused by individual studies but looked across all 

data collected, then emissions decrease by as much as 51% for AWD fields and 78% for Saturated 

fields compared to continuously flooded fields (Table 6). 

The five new explanatory variables included in this model were planting method, growing season, 

soil texture, N fertilizer and organic amendment method. For planting method direct wet seeded 

(DWS) plots had the highest average emission while direct dry seeded (DDS) had the lowest (2.35 vs. 

1.44 kg CH4 ha-1 d-1). Transplanted (TP) rice paddies had an average emission of 1.76 kg CH4 ha-1 d-1, 

though the majority of data collected used this planting method (1284 compared to 330 for DDS and 

139 samples for DWS). Using DDS as planting method can reduce emissions by 18% compared to TP, 

however using DWS increases emissions by 25% compared to TP. For growing season, Dry season 

had the lowest emissions while late season rice was highest. CH4 emission during dry season were 

37% lower than r wet season and emissions during early rice was 28% less than late rice season. 

Fields growing only one rice crop classified as single season had the third lowest emissions, with 

mean CH4 flux of 1.66 kg CH4 ha-1 d-1
, which was 22% higher than dry season rice. For soil texture, 

moderately fine soil had the highest emissions (4%, 21% and 21% higher than moderately coarse, 

coarse and medium soil textures respectively), emitting twice as much methane as those soils that 

had fine texture (50% lower). For organic amendment method, the variance between the methods 

was quite small, with incorporated organic amendment having the highest emissions (2.40 kg CH4 ha-

1 d-1), with burned being 12% lower at 2.10 and surface applied emitting 11% less than incorporated, 

with mean emissions being 2.15 kg CH4 ha-1 d-1 (S2). 
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Regional and country scale emission factors from descriptive analysis of 
data 

Baseline emission factors for CH4 emissions estimated for rice paddy has commonly been calculated 

using pre-season status of short drainage, continuously flooding as growing season water regime 

and no organic amendment (Wang et al., 2018). After careful analysis of the data, and traditional 

management practises, climate and other crop related patterns as seen in table 1, we have used 

country specific pre-season water management. For all European and American rice paddies as well 

as the Japanese and South Korean data we used long drainage for pre-season water management, as 

in these countries only one rice crop is grown annually and the fields are not waterlogged in non-rice 

growing season (table 1); the data collated for the remaining Asian countries had mostly short or 

flooded pre-season based on different crop rotation and thus the baseline used for EF estimates for 

these countries remains similar to the IPCC 2019 EF calculation baseline. For estimating EF at 

regional scale East-Asia was divided into two regions in which China was separated from Japan and 

South Korea due to the differences in crop management and pre-season water method.  

Globally, for continuously flooded fields with no organic amendment, the EF was estimated to 1.42 

kg CH4 ha-1 d-1 with an error range of 1.31-1.53 kg ha-1 d-1, which is higher than the EF presented by 

IPCC (2019) derived from Wang et al., (2018) of 1.19 kg CH4 ha-1 d-1 and for IPCC 2006 of 1.30 kg CH4 

ha-1 d-1, we did not consider pre-season water status for the global EF estimate (Table 7 and 8). Not 

only does our database have an increased number of field measurements compared to previous 

models, but it also considers variation in management practices between the different rice growing 

regions worldwide. Previous studies have mainly focused on Asian rice paddies. Even though the 

updated models considered temperate regions outside Asia, they still derive EFs according to the 

most common management in Asia, which likely leads to some bias. This we can see particularly well 

for European and American rice paddies, in which our updated EFs are significantly higher, more 

than double for North America than the IPCC 2019 EFs. The new EF corresponds better to national 

inventory reports, with EFs being 2.0 and 2.7 kg CH4 ha-1 d-1 for single and multiple drainage for the 

Italian Greenhouse Gas Inventory (2018) which is close to our EF estimate of 1.91 kg CH4 ha-1 d-1 

which is based on continuously flooded fields (table 7). Both the Spanish and Portuguese national 

communications used the IPCC (2006) default EF of 1.30 kg CH4 ha-1 d-1 (National Inventory Report of 

Portugal, 2021, National Inventory Report of Spain, 2020). For Spain EF was created using winter 

flooding (WF) for pre-season drainage as this is most commonly used, while for Portugal all fields 

had multiple drainage as water management and thus an EF was not created at present. The new EF 

of kg 1.14 kg CH4 ha-1 d-1 for Spain is similar to those used by IPCC 2019 of 1.13 kg CH4 ha-1 d-1.  For 

American rice paddies, our EFs were 1.01 kg CH4 ha-1 d-1 for USA and 1.45 kg CH4 ha-1 d-1 Uruguay, as 
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we did not have any data from Brazil with the correct management for EF creation (table 7). 

Compared to previous EFs, the new EFs (give value) are higher than the existing EFs of 0.65 and 1.27 

kg CH4 ha-1 d-1 for North and South America. 

Table 7. Statistical summary of CH4 emissions (kg ha-1 d-1) and CH4-EF (%) at country and regional 

scale. C.I is the 95% confidence interval range. 

 Daily CH4 emission (kg CH4 ha-1 d-1)  Annual CH4-EF (kg CH4 ha-1 d-1) 
  C.I.   C.I. 

Mean Median Lower Upper Mean Median Lower Upper 
World  1.844 1.187 1.726 1.964 1.418 1.116 1.308 1.527 

Region 

South Asiaa 0.805 0.609 0.695 0.914 1.081 0.919 0.902 1.261 
Southeast 
Asiaa 

2.309 1.366 2.074 2.545 1.745 1.169 1.394 2.095 

China  1.604 1.257 1.506 1.701 1.825 1.697 1.181 2.470 
Eastern Asiab 2.547 2.003 2.239 2.856 2.359 2.432 2.121 2.598 
Europe 2.430 1.705 1.800 3.060 1.914 1.796 1.770 2.058 
North 
Americab 

1.083 1.027 0.996 1.171 1.011 1.002 0.897 1.125 

South 
Americab 

2.831 3.268 2.542 3.120 1.447 1.476 0.995 1.899 

Country 

Bangladesha 1.535 1.083 1.129 1.941 1.425 1.409 1.317 1.534 
Chinaa 1.604 1.257 1.506 1.701 1.825 1.697 1.181 2.470 
Indiaa 0.622 0.444 0.548 0.696 0.967 0.864 0.769 1.165 
Indonesiaa 2.761 1.982 2.386 3.136 2.595 2.085 2.041 3.148 
Philippinesa 0.988 0.742 0.843 1.134 0.839 0.786 0.691 0.987 
Thailanda 1.542 1.366 1.249 1.836 0.901 0.557 0.299 1.504 
Italyb 3.379 2.484 2.462 4.297 1.914 1.796 1.770 2.058 
Japanb 1.256 1.264 1.078 1.433 0.772 0.522 -0.410 1.953 
South Koreab 3.420 3.022 3.026 3.814 2.496 2.485 2.301 2.690 
Uruguayb* 1.040 0.986 0.553 1.527 1.447 1.476 0.995 1.899 
USAb* 1.083 1.027 0.996 1.171 1.011 1.002 0.897 1.125 
Brazilb 3.100 3.338 2.875 3.325 Other water management 
Portugalb 0.583 0.583 0.515 0.650 Other water management 
Myanmara 1.432 1.615 0.945 1.920 No data fitting baseline 
Spainb 1.146 1.330 0.748 1.545 All winter flooded 1.14 using WF as pre-ses 
Vietnama 5.047 4.000 4.199 5.894 No data fitting baseline 

aShort drainage, continuously flooded, no organic amendment 
bLong drainage, continuously flooded, no organic amendment. Note Japan and South Korea put under here, the plots have similar climate 
as the European and American plots and long drainage has been recorded for these fields.  

Table 8. Showing new regional and country specific baseline EF factors compared to the existing 

EF’s as precented in IPCC 2019. 

Region New EF IPCC/Wang EF Error range 
World 1.42 1.19 0.80-1.76 
East Asia* 2.36 1.32 0.89-1.96 
China* 1.83 1.32 0.89-1.96 
Southeast Asia 1.75 1.22 0.83-1.81 
South Asia 1.08 0.85 0.58-1.26 
Europe 1.91 1.56 1.06-2.31 
North America 1.01 0.65 0.44-0.96 
South America 1.45 1.27 0.86-1.88 
Country New EF IPCC/Wang EF Error range 
Bangladesha 1.43 0.97 0.65-1.53 
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Chinaa 1.83 1.30 0.88-1.93 
Indiaa 0.97 0.85 0.57-1.25 
Indonesiaa 2.60 1.18 0.80-1.74 
Philippinesa 0.84 0.60 0.41-0.89 
Thailanda 0.90 NA NA 
Italyb 1.91 1.66 1.12-2.46 
Japanb 0.77 1.06 0.72-1.56 
South Koreab 2.50 1.83 1.24-2.71 
Uruguayb* 1.45 0.80 0.54-1.18 
USAb* 1.01 0.65 0.44-0.96 
Brazilb NA 1.62 1.10-2.40 
Portugalb NA NA NA 
Myanmara NA NA NA 
Spainb NA 1.13 0.77-1.68 
Vietnama NA 1.13 0.76-1.67 

aShort drainage, continuously flooded, no organic amendment  
bLong drainage, continuously flooded, no organic amendment.  

For Asia, estimated EFs are higher for all regions compared to IPCC EFs (table 8). The calculated EFs 

are higher for all countries, except for Japan, where the new EF is 0.77 kg CH4 ha-1 d-1 compared to 

1.06 kg CH4 ha-1 d-1 in IPCC 2019. As previously discussed, the existing models significantly 

underestimated emissions, particularly for Bangladesh, with IPCC EFs for Bangladesh being based on 

a single study (Wang et al., 2018). Comparing Bangladesh and India EFs, the original IPCC EFs were 

very similar for the two, while new estimated EFs are much higher for Bangladesh than for India 

(1.43 compared to 0.97 kg CH4 ha-1 d-1). According to India’s third biennial update report (BUR), 

33.2% of all rice is produced under drought prone conditions, while 15.9% is produced under 

continuously flooded fields, and 16.4% under single drainage with rice cultivation being responsible 

for 17.49% of the country’s total GHG emissions. India used the IPCC tier 2 and country specific EF 

approach (MOEFCC, 2021). For Bangladesh, the Second National Communication report from 2012 

used baseline EF based on data from Indian rice paddies of 10g/m2 which is approximately 0.877 kg 

CH4 ha-1 d-1 if assuming average crop duration of 114 days (MOEFCC, 2018). The EF recorded in 

Bangladesh’s NCR for 2012 is 0.55 kg CH4 ha-1 d-1 lower than our estimates of 1.43 kg CH4 ha-1 d-1 and 

closer to the IPCC 2019 estimate of 0.97 kg CH4 ha-1 d-1 which is 0.093 kg CH4 ha-1 d-1 higher than 

their recorded EF (MOEFCC, 2018). 

EFs for Southeast Asian countries varied between 0.84 and 2.60 kg CH4 ha-1 d-1 for Philippines and 

Indonesia, respectively. Thailand has previously not been included in previous models. The new 

estimated EF of 0.90 kg CH4 ha-1 d-1 is derived from 4 datapoints from one single paper; however, 

mean daily estimated emission was 1.54 kg CH4 ha-1 d-1 and thus may underestimate the country’s 

EF. For Indonesia, their first BUR had an emission range from 0.67 to 79.86 g CH4 m-2 season-1 and an 

average default value of 160.9 kg CH4 ha-1 season-1 (MoEFCC, 2015), while our seasonal average for 

Indonesia was estimated at 256.2 kg CH4 ha-1 which is much higher. Both Vietnam and the 
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Philippines used IPCC default values for their NIC reports to UNFCCC (MNRE, 2020). Our EF estimate 

for the Philippines is higher than the IPCC 2019, but lower than those estimated by Yan et al., (2003) 

which had an EF of 3.46 kg CH4 ha-1 d-1. It is, at present, not possible to calculate EFs for Myanmar 

and Vietnam, as they did not have any data fitting the baseline with the two papers collected from 

Myanmar those that had no OA and CF had LD for pre-season. Out of the 69 datapoints collected 

from Vietnam only two had no OA both with unknown pre-season, one with AWD and the other with 

CF.  

The new EFs for the three countries in East Asia where 1.83, 2.50 and 0.77 kg CH4 ha-1 d-1 for China, 

South Korea and Japan, respectively. While the new EF is lower for Japan, it is higher for both China 

and South Korea as compared to IPCC 2019 (Table 8). For national EF estimates, Japan used the IPCC 

Tier 3 approach to derive county-specific EFs using DeNitrification-DeComposition-Rice model 

(DNDC-Rice model) in which EFs were simulated for different regions, and under different organic 

amendment and water management methods (National Inventory Report of Japan, 2021). China 

typically also used the Tier 3 approach but using a process-based model called CH4MOD. 

Approximately 1/3 of all data were collected from China, but only 17 out of the 663 datapoints 

collected from China fit the baseline for EF estimates, which is only 2.56% of total data. Mean daily 

emissions for China, across all managements, was calculated to be 1.83 kg CH4 ha-1 d-1 Which is 

higher compared to the IPCC 2019 EF of 1.30 kg CH4 ha-1 d-1.   

Evaluation of the New CH4 Model 

Data from 19 publications those were not used for model development were used to evaluate the 

new CH4 model. Modelled CH4 emission was estimated in transformed scale (fifth root) and was back 

transformed to original scale (kg CH4 m-2 d-1) for comparison with the measured data.  RMSE of the 

back transformed simulated data used for evaluation of the new model was 76.04 with a correlation 

coefficient of 0.60. RMSE for transformed fifth root data was 17.55% with correlation coefficient of 

0.61 (Table 9). Compared to the existing models, and IPCC models, the new model performs better 

with R values of 0.605 for transformed scale (fifth root) and 0.602 for mean CH4 kg CH4 ha-1 d-1, 

compared to the other models for which R value varied between 0.111 and 0.371, with the data 

being expressed in kg CH4-C ha-1 d-1 (Fig. 10).  

The model accuracy of simulated emissions is determined based on plots fitted on the 1:1 line and 

will show any outliers, systematic shift of measured against simulated values, as well as variability in 

the trend between the two variables (Smith and Smith, 2007). When evaluating the model for all 

data in the independent dataset, we can clearly see some outliers, particularly when the data is back 
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transformed (11a-11b), but also for data in 5th cube root value (11c-11d); Figure 11b and 11d shows 

the individual datapoints that are not captured well by the model. When looking at individual 

publications, we can get a better overview of model performance, such as for Cowan et al., (2021) in 

Figure 12a-b showing only small outliers with RMSE of 8.77% and 39.90% for fifth root and back 

transformed data repetitively and correlation coefficient of 0.84 and 0.87 (Table 10). Here, for the 

evaluation more detailed information on standard error and number of replications was included, 

and thus provides a more detailed evaluation. This indicates that the model is capable of performing 

well for some of the data, but still lacks some sensitivity to particularly large emission values. For 

both figures, the effect of transforming the data on RMSE can be seen, indicating that bias 

correction is needed to back transform the data accurately.  

 
Figure 10. (a) Predicted vs. observed data for new model for transformed data (CH4 fifth root), (b) 
Predicted (a) vs. observed data for new model for back-transformed data (CH4 kg ha-1 d-1), (c), 
Yan et al., (2005) and Wang et al., (2018), (d) and IPCC (2006) and IPCC (2019) (d). 

(a) (b) 

(c) (d) 
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Table 9. Modeval output for fifth root (left) and back transformed (kg ha-1 d-1) data (right). 

 

 
Figure 11. Modeval plots used to check model accuracy on simulated emission values for all 
collected data in independent dataset.  

          CH4 (Fifth root) CH4 (back transformed) 

r = Correlation Coeff.       0.605 0.602 
Assuming no model parameters adjusted, (i.e.k=1), ...     
F = ((n-2) r^2) / (1-r^2)       70.31 69.42 
F-value at (P=0.05)       3.92 3.92 
Significant association?       Yes - Good Yes - Good 
RMSE = Root mean square error of model   17.55% 76.04% 
M = Mean Difference       0.07 0.62 
t = Student's t of M       4.94 5.78 
t-value (Critical at 2.5% - Two-tailed)     1.98 1.98 
Significant bias?       Yes - Bad Yes - Bad 
LOFIT = Lack of Fit        12.6176299 673.5988167 
F = MSLOFIT/MSE       0.0296550 0.3381643 
F (Critical at 5%)       1.24 1.24 
Significant error between simulated and measured 
values? No - Good No - Good 
ME = Maximum Error. Best = ABS(M)     0.48 3.70 
RMSE * Obar/100       0.18 1.35 

Number of Values       124 124 
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Figure 12. Modeval plots used to check model accuracy on simulated emission values for 
independent dataset from Cowan et al., 2021 with inclusion of variance of CH4 emission 

Table. 10. Modeval output for Cowan et al., 2021 with use of standard error and replicate number 

for fifth root (left) and back transformed (kg ha-1 d-1) data (right). 

 

(a) (b) 

(c) (d) 



 31 

Table 11. Modeval output for Yan et al., 2005, IPCC 2006, Wang et al., 2018 and IPCC 2019 models. 

Study Limitations  

The literature search only considered studies written in English, and therefore may have missed 

papers written in other languages. Evaluation of the existing models shows that a good R2 value may 

not always be representative of good model performance; even though it captures the trend of 

emissions, it may under- or over-estimate emissions. Back transformation of data to original scale 

has led to some bias and mostly the predicted values are lower than measured values, and thus 

requires bias correction which is not yet implemented. The large number of fields with zero organic 

amendment in the dataset may influence the model prediction for fields which has used organic 

amendment, resulted in the simulated emissions being underestimated compared to the observed 

data. We will investigate this in the future and look into ways on how this can be improved. Inclusion 

of new factors which are strikingly different among rice growing regions have improved the 

sensitivity of new model and enables it to capture emission more accurately. Country specific 

baseline EF can be calculated using management practices used in the specific country e.g., using 

long drainage instead of short drainage for temperate rice will result in more accurate EFs. However, 

Statistics Yan et al., 
2005 

IPCC 2006 Wang et al., 
2018 

IPCC 2019 

r = Correlation Coeff. 
  

 0.180 0.189 0.371 0.111 

Assuming no model parameters adjusted, (i.e., 
=1) 

 

   

F = ((n-2) r^2) / (1-r^2) 4.08 4.50 19.53 1.52 

F-value at (P=0.05)    3.92 3.92 3.92 3.02 

Significant association? Yes - Good Yes - Good Yes - Good No - Bad 

RMSE = Root mean square error of model 100.31% 95.12% 110.54% 92.97% 

RMSE (95% Confidence Limit) 

 

 0.00% 0.00% 0.00% 0.00% 

Significant total error?    Yes - Bad Yes - Bad Yes - Bad Yes - Bad 

M = Mean Difference    0.66 0.61 1.01 0.42 

t = Student's t of M    6.46 6.13 10.61 4.01 

t-value (Critical at 2.5% - Two-tailed) 1.98 1.98 1.98 1.98 

Significant bias?    Yes - Bad Yes - Bad Yes - Bad Yes - Bad 

E = Relative Error    49.99 45.46 76.20 30.90 

E (95% Confidence Limit).  0.00 0.00 0.00 0.00 

Significant bias?    Yes - Bad Yes - Bad Yes - Bad Yes - Bad 

LOFIT = Lack of Fit     659.4592741 592.9556527 800.7932533 556.4414595 

F = MSLOFIT/MSE    0.5885522 0.5291993 0.7146895 0.5055360 

F (Critical at 5%)    1.24 1.24 1.24 1.24 

Significant error between simulated and 
measured values? 

No - Good No - Good No - Good No - Good 

ME = Maximum Error. Best = ABS(M) 3.12 2.97 3.31 2.77 

RMSE * Obar/100    1.33 1.26 1.47 1.23 

Number of Values    124 124 124 124 
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winter flooding is also common in some European countries and in the USA. Our EFs are extracted 

using a baseline from back transformed predicted data. The way we have calculated our EFs could 

also be the reason why the Chinese EFs are so much higher than those used in current IPCC models, 

as China is the largest country with a wide variety of climate zone, crop rotation management types, 

as well as representing 1/3 of all the data collected. We will in the future look into this, and how we 

best can back transform data to represent the model better. A detailed evaluation using Modeval 

with standard error and replication number when available will also be beneficial for further 

assessment of the model in the future. 
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Supplementary Information 

S1. Descriptive statistics of collated data 
Country Daily mean 

emission 
Seasonal mean 
emission 

Min/Max 
emission 

Sample n (after -
9999 removed) 

Bangladesh 2.386 260.03 3.15/1648.5 45 
Brazil 3.388 380.75 46/671.5 40 
China 2.084 213.92 3.15/219.7 663 (650) 
India 0.679 70.36 0.50/353.3 180 
Indonesia 2.990 266.44 26/722 136 (128) 
Italy 2.939 387.09 8.43/816 42 (36) 
Japan 1.535 150.76 6/544 50 
Myanmar 1.946 188.30 15/419 8 
Philippines 1.438 141.52 0.9/952 139 
Portugal 0.836 126.33 79/156 6 
South Korea 3.885 485.11 89.16/1560 74 
Spain 1.886 236.88 0.73/972 18 
Thailand 2.146 244.27 1.70/939 73 
Uruguay 1.140 166.95 93.3/249.4 6 
USA 1.396 158.58 2.27/1360 204 (168) 
Vietnam 5.536 455 31/1192 69 
Climate 
Af 5.162 428.35 216/722 58 (50) 
Am 1.798 180.99 0.90/1649 212 
Aw 2.705 257.35 1.7/1192 224 (220) 
Bs 0.638 69.54 0.5/972 104 
Cf 2.192 230.2 2.27/1435 766 (711) 
Cs 1.295 168.9 0.73/1360 82 
Cw 1.203 126.2 3.33/780 176 
Df 3.169 273.8 53.87/544 5 
Dw 2.862 351.5 3.15/1560 126 
Soil texture 
Unknown 3.055 299.6 0.5/1435 322 (312) 
Coarse 2.235 263.1 11.9/540 20 (18) 
Moderately coarse 2.306 254.7 5.91/1649 218 
Medium 1.766 201 0.73/1560 449 (422) 
Moderately fine 2.406 227 3.33/1260 404 (385) 
Fine 1.265 138 0.90/952 340 (335) 
Planting method 
TP (transplanted) 2.181 219 0.9/1649 1284 (1263) 
DDS (direct dry seeded) 1.682 186.4 0.5/804 330 (290) 
DWS (direct wet seeded) 2.671 312.5 8.39/1360 139 (137) 
Growing season     
Single 1.941 229.2 0.73/1560 662 (615) 
Early 2.005 188.5 4.12/1431 209 (205) 
Late 2.764 277.8 3.33/1525 215 (211) 
Wet 2.374 224.3 0.5/1649 431 (428) 
Dry 1.717 163.7 0.9/939 236 (231) 
Pre-season water 
SD (short drainage) 2.306 215.5 0.9/1649 414 (402) 
UN (unknown) 2.488 227.8 0.5/1192 194 (194) 
FL (flooded) 3.271 305.4 17.7/1435 193 (189) 
LD (long drainage) 1.757 204.3 2.27/155.8 887 (840) 
WF (winter flooded) 1.534 193.2 0.73/972 65 
Water regime 
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CF (continuously flooded) 2.356 246.6 1.7/1560 871 (823) 
AWD (alternate wetting and 
drying) 

1.488 143.2 2.2/652 82 

DW (deep water) 1.474 198.2 18/868 20 
MD (multiple drainage) 1.730 181 0.5/1260 501 (486) 
SA (saturated) 1.071 119.5 0.73/804 54 
SD (single drainage) 2.990 284.2 2.67/1192 157 
RFW (rainfed wet) 2.202 239.7 2.93/1649 52 
RFD (rainfed dry) 0.931 88.5 5/634 16 
Organic amendment type 
None 1.501 154.2 0.5/1415 912 (880) 
Biochar 1.778 156.6 17.7/995 54 
GM (green manure) 3.491 375.4 2.27/1560 136 
FYM (farmyard manure) 2.646 275.1 4.15/1266 150 
Compost 3.497 334.3 15/1649 65 (62) 
Straw off season 1.965 212.9 6/1435 211 (191) 
Straw on season 3.325 347.9 6.28/1260 225 (217) 
Organic amendment method 
None 1.501 154.2 0.5/1415 912 (880) 
Unknown 2.852 267.9 6/972 96 (94) 
Incorporated 2.855 297 2.27/1649 629 (600) 
Burned 2.821 274.6 16.4/1220 30 
Surface applied 2.367 287.6 6.28/741 86 

 

Country Average crop duration Min/Max 
Bangladesh 114.09 91/134 
Brazil 129.23 105/150 
China 110.80 68/162 
India 111.01 77/158 
Indonesia 98.53 74/137 
Italy 123.40 103/153 
Japan 113.36 64/147 
Myanmar 101.25 95/104 
Philippines 100.96 84/129 
Portugal 151.50 144/159 
South Korea 126.42 111/140 
Spain 156.11 141/163 
Thailand 127.05 88/205 
Uruguay 113.33 110/119 
USA 133.03 69/171 
Vietnam 90.12 78/113 



 39 

 



 40 



 41 



 42 

 



 43 

  

S2. Summary information for the new CH4 model provided in Equation 4 

Formula: 

ch4_dfithr ~ Pre_season_water + Planting_method + Wat_reg + Growing_season + pH + 

Oa_type:Tot_oa + Oa_method + N_amount + Soil_tex + (1 | Country) + (1 | Climate) Data:dat 

 
AIC BIC Loglik Deviance Df. resid 

-923.9 -712.1 501.0 -1001.9 1651 

Descriptive statistics model results for fixed and random effects through fitting the model to fifth 

cube transformed CH4 fluxes (kg ha-1 d-1). 

 Estimate Std. Error T value 
Fixed effects    
Intercept 1.651e+00 9.372e-02 17.620 
pH -4.362e-02 7.996e-03 -5.455 
N amount -2.287e-04 6.989e-05 -3.272 
Crop duration -2.426e-03 2.970e-04 -8.169 
Pre-season water 
SD (single drainage) 0c   
UN (unknown) -3.199e-02 2.061e-02 -1.552 
FL (flooded) 1.295e-01 2.038e-02 6.354 
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LD (long drainage) -1.264e-02 1.772e-02 -0.713 
WF (winter flooding) 1.408e-01 4.400e-02 3.199 
Planting method 
TP (transplanted) 0c   
DDS (direct dry seeded) -6.235e-02 2.011e-02 -3.100 
DWS (direct wet seeded) 1.157e-01 2.682e-02 4.132 
Water regime 
CF (Continuous flooded) 0c   
AWD (Alternate wetting and drying) -1.642e-01 2.266e-02 -7.245 
DW (deep water) -3.987e-02 5.458e-02 -0.731 
MD (multiple drainage) -7.395e-02 1.365e-02 -5.416 
SA (saturated) -1.987e-01 2.786e-02 -7.133 
SD (single drainage) 2.560e-02 1.830e-02 1.399 
RFW (rainfed wet) -2.062e-02 2.935e-02 -7.025 
RFD (rainfed dry) -1.435e-01 4.799e-02 -2.991 
Growing season 
Single 0c   
Early -8.262e-02 1.984e-02 -4.164 
Late -5.451e-02 2.027e-02 -2.689 
Wet 1.156e-01 3.204e-02 3.606 
Dry -4.892e-02 3.417e-02 -1.432 
OA method 
None 0c   
UN (unknown) -3.007e-02 2.387e-02 -1.260 
Incorporated 6.723e-02 1.444e-02 4.656 
Burned 2.059e-02 3.874e-02 0.531 
Surface applied 7.882e-02 6.989e-02 -3.272 
Soil texture 
UN 0c   
Coarse 1.477e-01 4.769e-02 3.097 
M_coarse (Moderately coarse) 1.300e-01 1.952e-02 6.658 
Medium 1.115e-02 1.725e-02 0.646 
M_Fine (Moderately fine) -3.099e-02 1.604e-02 -1.932 
Fine -1.211e-01 2.241e-02 -5.404 
Oa_type:Oa_method 
Biochar:tot_oa (total organic 
amendment) 

-7.066 1.690e-03 -4.182 

GM:tot_oa (green manure) 7.212e-03 1.158e-03 6.229 
FYM:tot_oa (Farmyard manure) 3.052e-03 1.100e-03 2.775 
Compost:tot_oa 5.782e-03 1.598e-03 3.618 
Straw off season:tot_oa 8.878e-03 3.077e-03 2.885 
Straw on season:tot_oa 1.953e-02 2.758e-03 7.081 
 
Random Effect (Best Linear Unbiased Predictions) 
Country Intercept Climate Intercept 
Bangladesh -0.0366 Af 0.3124 
Brazil 0.1611 Am 0.0370 
China 0.0326 Aw 0.1179 
India -0.2202 Bs -0.1526 
Indonesia -0.2089 Cf -0.0261 
Italia -0.1471 Cs -0.2692 
Japan -0.0231 Cw -0.0999 
Myanmar -0.2122 Df 0.1436 
Philippines -0.1026 Dw -0.0631 
Portugal 0.4304 
South Korea 0.2373 
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Spain 0.0831 
Thailand -0.1954 
Uruguay 0.1055 
USA 0.0357 
Vietnam 0.0604 

Descriptive statistics of predicted value using Equation 4 

Variables Mean flux 
(CH4 kg-1 d-1) 

Relative flux 95% confidence interval 
Lower Upper 

Water regime during crop growth 
Continuously flooded 2.024 1 1 1 
Alternate wetting and drying 1.001 0.49 0.41 0.57 
Deep water 1.331 0.66 0.33 0.95 
Single drainage 2.687 1.33 1.17 1.47 
Saturated 0.452 0.22 0.15 0.29 
Multiple drainage 1.370 0.68 0.20 0.40 
Rainfed wet season 1.235 0.61 0.44 0.76 
Rainfed dry season 0.620 0.31 0.20 0.40 
Pre-season water 
Flooded 2.771 1 1 1 
Long drainage 1.463 0.53 0.54 0.52 
Short Drainage 1.763 0.64 0.63 0.64 
Winter flooded 1.178 0.43 0.39 0.45 
Soil texture 
Moderately fine 1.949 1 1 1 
Coarse 1.547 0.79 0.67 0.90 
Moderately coarse 1.879 0.96 0.91 1.01 
Medium 1.542 0.79 0.78 0.80 
Fine 0.969 0.50 0.49 0.51 
Planting method 
Direct wet seeded 2.345 1 1 1 
Transplanted 1.760 0.75 0.83 0.69 
Direct dry seeded 1.435 0.61 0.64 0.59 
Organic amendment type 
Compost 3.099 1 1 1 
Green manure 2.925 0.94 1.23 0.80 
Biochar 2.114 0.68 0.67 0.69 
Farmyard manure 1.757 0.57 0.73 0.48 
Straw on season 2.798 0.90 1.19 0.75 
Straw off season 1.886 0.61 0.80 0.51 
Organic amendment method 
Incorporated 2.400 1 1 1 
Burned 2.104 0.88 0.63 1.10 
Surface applied 2.146 0.89 0.86 0.93 
Growing season 
Late season 2.149 1 1 1 
Early season 1.546 0.72 0.71 0.73 
Wet season 2.040 0.95 0.93 0.96 
Dry season 1.288 0.60 0.59 0.61 
Single season 1.658 0.77 0.80 0.75 
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S3. Modeval evaluation of existing model 

Model evaluation using Modeval. N/B = no/bad, Y/G = yes/good, Y/B= yes/bad, N/G = no/good.  Correlation coefficient, significant association, 

significant total error, mean difference, student’s t of m, t-value (critical at 2.5% - two-tailed), significant bias 

Model evaluation Europe (n:16)  
 R = corr 

coeff. 
F = (n-2) r^2 
/ (1-r^2) 

F-value at 
(p=0.05) 

Sig. 
assoc 

RMSE
% 

RMSE 
(95%conf) 

Sig. tot 
error? 

Mean 
dif 

Stud t 
of M 

T-val Sig. 
bias 

E = Rel 
error 

E 
(95%) 

Sig. 
bias 

LOFIT F=MDLO
FIT/MSE 

Yan et al., 2005 0.34 1.80 4.60 N/B 312.5 0 Y/B -1.40 3.60 2.14 Y/B -215.08 40.44 Y/B 184.4 4.983 
Wang et al., 2018 0.24 0.83 4.60 N/B 140.7 0 Y/B -0.46 2.20 2.14 Y/B -70.75 40.44 Y/B 34.58 0.935 
IPCC 2006 0.03 0.01 4.60 N/B 172.7 0 Y/B -0.64 2.61 2.14 Y/B -97.98 40.44 Y/B 50.23 1.358 
IPCC 2019 0.03 0.01 4.60 N/B 224.6 0 Y/B -1.00 3.53 2.14 Y/B -153.4 40.44 Y/B 85.82 2.320 
Model evaluation North America (n:81)  
 R = corr 

coeff. 
F = (n-2) r^2 
/ (1-r^2) 

F-value at 
(p=0.05) 

Sig. 
assoc 

RMSE
% 

RMSE 
(95%conf) 

Sig. tot 
error? 

Mean 
dif 

Stud t 
of M 

T-val Sig. 
bias 

E = Rel 
error 

E 
(95%) 

Sig. 
bias 

LOFIT F=MDLO
FIT/MSE 

Yan et al., 2005 0.13 1.40 3.96 N/B 86.76 0 Y/B 0.25 2.09 1.99 Y/B 19.75 58.67 N/G 298.3 0.482 
Wang et al., 2018 0.14 1.50 3.96 N/B 92.09 0 Y/B 0.67 6.29 1.99 Y/B 52.81 58.67 N/G 336.1 0.542 
IPCC 2006 0.22 3.91 3.96 N/B 82.65 0 Y/B 0.48 4.53 1.99 Y/B 37.28 58.67 N/G 270.8 0.437 
IPCC 2019 0.11 1.00 3.96 N/B 79.06 0 Y/B 0.28 2.55 1.99 Y/B 21.63 58.67 N/G 247.8 0.382 
Model evaluation East Asia (n:254)  
 R = corr 

coeff. 
F = (n-2) r^2 
/ (1-r^2) 

F-value at 
(p=0.05) 

Sig. 
assoc 

RMSE
% 

RMSE 
(95%conf) 

Sig. tot 
error? 

Mean 
dif 

Stud t 
of M 

T-val Sig. 
bias 

E = Rel 
error 

E 
(95%) 

Sig. 
bias 

LOFIT F=MDLO
FIT/MSE 

Yan et al., 2005 0.27 19.80 3.88 Y/G 115.3 0 Y/B 0.52 6.92 1.97 Y/B 45.97 105.5 N/G 1274 0.620 
Wang et al., 2018 0.32 28.12 3.88 Y/G 122.3 0 Y/B 0.77 10.73 1.97 Y/B 68.35 105.5 N/G 1434 0.698 
IPCC 2006 0.29 23.33 3.88 Y/G 109.9 0 Y/B 0.42 5.79 1.97 Y/B 37.59 105.5 N/G 1159 0.564 
IPCC 2019 0.27 20.01 3.88 Y/G 108.7 0 Y/B 0.22 2.93 1.97 Y/B 19.72 105.5 N/G 1134 0.552 
Model evaluation South Asia (n:77)   
 R = corr 

coeff. 
F = (n-2) r^2 
/ (1-r^2) 

F-value at 
(p=0.05) 

Sig. 
assoc 

RMSE
% 

RMSE 
(95%conf) 

Sig. tot 
error? 

Mean 
dif 

Stud t 
of M 

T-val Sig. 
bias 

E = Rel 
error 

E 
(95%) 

Sig. 
bias 

LOFIT F=MDLO
FIT/MSE 

Yan et al., 2005 0.06 0.24 3.97 N/B 169.4 0 Y/B 0.76 3.02 1.99 Y/B 55.43 18.68 Y/B 1241 0.812 
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Wang et al., 2018 0.12 1.01 3.97 N/B 175.9 0 Y/B 1.05 4.24 1.99 Y/B 76.83 18.68 Y/B 1338 0.875 
IPCC 2006 -0.03 0.08 3.97 N/B 170.9 0 Y/B 0.46 1.76 1.99 N/G 33.83 18.68 Y/B 1263 0.779 
IPCC 2019 0.34 9.91 3.97 Y/G 150.7 0 Y/B 0.22 0.95 1.99 N/G 16.32 18.68 N/G 982.2 0.642 
Model evaluation South-East Asia (n:159)  
 R = corr 

coeff. 
F = (n-2) r^2 
/ (1-r^2) 

F-value at 
(p=0.05) 

Sig. 
assoc 

RMSE
% 

RMSE 
(95%conf) 

Sig. tot 
error? 

Mean 
dif 

Stud t 
of M 

T-val Sig. 
bias 

E = Rel 
error 

E 
(95%) 

Sig. 
bias 

LOFIT F=MDLO
FIT/MSE 

Yan et al., 2005 0.06 0.48 3.90 N/B 132.7 0 Y/B 0.44 1.84 1.98 N/G 19.16 15.54 Y/B 4447 0.793 
Wang et al., 2018 0.10 1.73 3.90 N/B 130.9 0 Y/B 1.62 8.04 1.98 Y/B 71.44 15.75 Y/B 4330 0.773 
IPCC 2006 0.10 1.60 3.90 N/B 123.1 0 Y/B 1.25 6.30 1.98 Y/B 54.11 15.54 Y/B 3906 0.674 
IPCC 2019 0.25 10.84 3.90 Y/G 118.0 0 Y/B 1.08 5.39 1.98 Y/B 46.95 15.95 Y/B 3408 0.624 
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