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ABSTRACT
Objective: Determine current and potential distribution of S. tacaco in Costa Rica with seven Species 
Distribution Models (SDM), in order to optimize the management of S. tacaco genetic resources, aimed at 
identifying patterns of geographic distribution and possible climatic adaptations allowing to have perspectives 
on their conservation and genetic breeding. 
Design/Methodology/Approach: 21 points of occurrence together with 19 bioclimatic variables and altitude 
were used to evaluate seven machine learning models and an assembly of these. Open-source libraries running 
in Rstudio were used. 
Results: Distribution models were inferred by the variables bio1, bio2, bio3, bio4, bio12, bio13, bio14, bio18 y 
bio19. The generalized additive model obtained the highest values ​​of area under the curve (0.96) and True skill 
statistic (0.90), however, the seven models tested and the assembly showed adequate performance (AUC0.5 
and TSS0.4). Bioclimatic variables related to temperature were the ones with the greatest contribution to the 
models and the main limitations in the distribution of S. tacaco.
Study limitations/implications: Possibly a greater number of occurrence points are required to evaluate 
distribution models. 
Findings/Conclusions: Areas with high potential distribution suitability for S. tacaco are found in central 
valleys of Costa Rica, covering regions of the provinces of Alajuela, Cartago, San José and Puntarenas. These 
areas can be sources of germplasm for future conservation and breeding studies.
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INTRODUCTION 
	 Sechium tacaco (Pittier) C. Jeffrey is an endemic species to the 
mountainous regions of Costa Rica, where it is 
locally known as “tacaco” (Wunderlin, 1976). 
Its possible wild ancestor is also distributed 
in this country, Sechium talamancensis 
(Wunderlin) C. Jeffrey. Fruits of the tacaco 
are representative of Costa Rican culture 
and gastronomy. Through selection, 
phenotypic variation of the fruits have been 
achieved based on their weight, equatorial 
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width, thickness, number of spines and longitudinal sutures. (Monge and Loría, 2017). 
Generally, tacaco plantations are found in altitudinal ranges of 500-1700 masl. (Wunderlin, 
1976; Monge and Loría, 2017) and can reach up to 2000 masl (Lira, 1995). S. tacaco is a 
species underrepresented in germplasm banks and with problems of genetic erosion, due 
to ignorance of the crop, disturbance of its habitat and introduction of crops (Lira, 1995).
	 Species distribution models (SDM) are tools that rely on Geographic Information 
Systems (GIS) and data of real presences to predict areas of suitability for species, 
this based on their environmental characteristics (Mateo et al., 2011). In general, the 
methodology used by the SDMs consists of compiling geographic locations of the species 
of interest; later, spatial data of edaphoclimatic variables are obtained according to the 
points of occurrence of the species. Spatial data obtained are processed using statistical 
techniques that can predict suitable areas for the distribution of species. (Hijmans and 
Elith, 2013). SDMs can be classified into descriptive methods, such as Bioclim, Domain, 
Mahalanobis distance and Anuclim, which only need presence data to be modeled 
(Mateo et al., 2011). There are also discriminant techniques such as generalized linear 
models with their respective variants, for example, generalized additive model and 
generalized enhanced model; within this group are also automated learning methods 
such as random trees, maximum entropy and support vector machines, which are used 
to compute numerical regressions for prediction tasks.  
	 Discriminant techniques based on machine learning are very f lexible in terms of 
computational calculations, they can process a large amount of information and their 
results are usually more consistent compared to descriptive techniques (Mateo et al., 2011; 
Hijmans and Elith, 2013; Schmitt et al., 2017). Maximum entropy model (Maxent) is the 
most applied in species distribution models due to a simple interface in its programming 
and because it provides adequate results (Phillips et al., 2006). However, it is advisable 
to optimize the Maxent settings to obtain the best model (Muscarella et al., 2014), and 
above all to compare it with other algorithms to have multiple perspectives on the species 
in question. 
	 SDMs can have various applications in agriculture. For example, they are useful for 
determining the effects of climate change on the distribution of species (Beck, 2012); monitor 
the presence of pests, invasive species (Lantschner et al., 2018) and pollinating agents (Polce 
et al., 2013), as well as to detect plant endemisms, threatened habitats, patterns of diversity 
and conservation studies, among other uses (Mateo et al., 2011). All these applications are 
vital for the formulation of strategies that seek to maximize plant genetic resources, either 
to mitigate the damage caused by other species and to prioritize vulnerable areas rich in 
germplasm (Flores-Tolentino et al., 2019). Regarding genus Sechium P. Br., there are few 
studies on species distribution models, and only S. edule y S. tacaco are cultivated. 
	 Authors such as González-Santos et al. (2017) predicted with Maxent that by year 2050 
some varietal complexes of S. edule could lose more than half of their current distribution, 
which is an alarming panorama. In addition, in high-risk areas there are some wild 
populations that are important to understand the phylogenetic processes of Mexican 
species of the genus. On the other hand, studies of S. tacaco are limited to its morphology 
(Monge and Loría, 2017) and its phylogeny (Sebastian et al., 2012). 
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	 The objective of this study was to determine the current and potential distribution 
of S. tacaco in Costa Rica with seven SDM, in order to guide the management aimed at 
optimizing geographic distribution patterns and possible climatic adaptations that allow 
have perspectives on their conservation and genetic breeding. 

MATERIALS AND METHODS
Occurrence data and environmental information
	 For this article, 21 points of occurrence (latitude and longitude) of S. tacaco (Figure 1) 
were obtained from the Global Biodiversity Information Facility database (GBIF, https://
www.gbif.org/) and Monge and Loría (2017). It was verified that occurrence points were not 
atypical and repeated. The 19 bioclimatic variables of WorldClim version 2.1 from period 
1970-2000 with spatial resolution  1 km2 were used (Table 1) (Fick and Hijmans, 2017). 
Likewise, the altitude raster model with spatial resolution  1 km2 was used to obtain the 
elevation data in meters (Fick and Hijmans, 2017); Köppen-Geiger climate classification 
(Beck et al., 2018) and soil types from Harmonized World Soil Database version 1.2 (Fischer 
et al., 2008) were also used. The raster values ​​of the 22 environmental layers were obtained 
with the Point Sampling Tool of QGIS version 3.16.2 (QGIS Development Team, 2020). 
 

Figure 1. Fruits of Sechium tacaco, accession 1038-18 of the Germplasm Bank of S. edule 
(BANGESe). Collector: Arévalo-Galarza, M.L. image by Jorge Cadena Iñiguez.

Species Distribution Models (SDMs)
	 All variables and statistical programs were executed in Rstudio (R Core Team, 
2020). For raster data of the 20 environmental variables (19 WorldClim variables and 
altitude), Pearson correlation was calculated and those variables with correlations 0.8 
were eliminated, to prevent collinearity and avoid affecting the models (Feng et al., 
2019). Climate and soil types variables were used as descriptive information and were 
omitted in the predictions of the distribution models; in the case of climate type, it 
is related to some variables such as annual precipitation (bio12) and average annual 
temperature (bio1); regarding soil types, there is a lack of information regarding its 
quality; however, by excluding these variables, optimal results can be achieved in SDM 
(Evans et al., 2010). 

https://www.gbif.org/
https://www.gbif.org/


 Agro productividad 2021. https://doi.org/10.32854/agrop.v14i7.2006

Table 1. Bioclimatic variables used for SDMs of S. tacaco in Costa Rica.

Variable Description  Unit 
Bio1* Average annual temperature ºC

Bio2* Median diurnal Temperature range ºC

Bio3* Isothermality  -

Bio4* Temperature seasonality -

Bio5 Maximum temperature of warmest month ºC

Bio6 Minimum temperature of coldest month ºC

Bio7 Temperature annual range ºC

Bio8 Mean temperature of wettest quarter ºC

Bio9 Mean temperature of driest quarter ºC

Bio10 Mean temperature of warmest quarter ºC

Bio11 Mean temperature of coldest quarter ºC

Bio12* Annual precipitation mm

Bio13* Precipitation of wettest month mm

Bio14* Precipitation of driest month mm

Bio15 Precipitation seasonality -

Bio16 Precipitation of wettest quarter mm

Bio17 Precipitation of driest quarter mm

Bio18* Precipitation of warmest quarter mm

Bio19* Precipitation of coldest quarter mm

Altitude Digital elevation model m

* Variables selected in SDM of S. tacaco in Costa Rica.

	 Machine learning techniques or SDM widely used according to literature were used 
due to their high performance and optimal results (Mateo et al., 2011), including the 
following algorithms: Generalized Linear Model (GLM), Generalized Additive Model 
(GAM), Generalized Power Regression Model (GBM), Classification Tree Analysis 
(CTA), Maxent, Random Forest (RF) and Vector Machines of Support (SVM). For the 
execution of these seven models the package SSDM was used (Schmitt et al., 2017) with 
its default settings and gam dependencies (Wood, 2017), stats (R Core Team, 2020), 
maxent (Hijmans et al., 2017), rpart (Therneau and Atkinson, 2019), gbm (Greenwell 
et al., 2020), randomForest (Liaw and Wiener, 2002) and e1071 (Meyer et al., 2019). 
However, to optimize the Maxent model, the ENMeval package was used (Muscarella 
et al., 2014) with the following configuration: threshold and hinge functions were 
deactivated to avoid overfitting the response curves, the quadratic and product functions 
were also deactivated and the regularization multiplier was 1.25 with a linear function. 
Evaluation of the models was quantified with area under the curve (AUC), where values 
0.5 indicate adequate models; however, to eliminate the spatial classification bias 
studied by Lobo et al. (2007), a point distance sampling was carried out, that is, the 
difference in distances for presences and absences was calculated in training (75%) and 
test (25%) data (Hijmans and Elith, 2013). To verify the performance of the models, the 
kappa and TSS statistics were calculated.
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	 Kappa quantifies the proportion of correctly predicted points after eliminating the 
probability of random coincidence, its value ranges from 1 to 1; values ​​close to 1 indicate 
excellent model performance and values ​​close to 1 indicate poor performance. To 
correct dependence on the prevalence of kappa, the TSS ((Specificity  Sensitivity) 1) 
was calculated, which optimizes and corrects kappa problems. TSS performance criteria 
are the same as kappa (Allouche et al., 2006). 
	 Additionally, Jacknife test was carried out to observe the contribution of each 
environmental variable to SDM, which were calculated together with the statistics 
AUC, kappa, TSS, sensitivity, specificity, proportion of correct predictions (PCP) and an 
assembly of the seven algorithms with the same SSDM package (Schmitt et al., 2017). All 
statistics ​​were averaged from the test results and training data. The raster of the seven 
models and the assembly were exported with the raster package (Hijmans, 2020) to QGIS 
Development Team versión 3.16.2 (2020).

RESULTS AND DISCUSSION
	 Five climate types were found in the environments associated with the points of 
occurrence of the species: Am (tropical, monsoon, 38.1%), Af (tropical, rainforest, 23.8%), 
Aw (tropical, savanna, 19%), Cwb (temperate, dry winter, warm summer, 14.3%) and Cfb 
(temperate, no dry season, warm summer, 4.76%). Soil types found were andosol (38.1%), 
cambisol (33.3%) and alisol (28.6%). Bioclimatic variables to evaluate SDMs were bio1, 
bio2, bio3, bio4, bio12, bio13, bio14, bio18 and bio19, which resulted from the correlation 
analysis. Variables related to temperature showed little variation, for example, bio1 
obtained a range of 17.65-21.3 °C, with an average of 20 °C. For the variables related 
to precipitation, broader ranges were obtained, for example, for bio12 there were records 
with a range of 2200-4000 mm of precipitation. 
	 GAM model obtained the highest AUC (0.96) and TSS (0.90). In general, AUC for 
the seven algorithms was 0.8, thus indicating suitable models. TSS was within optimal 
performance model range of 0.4TSS0.7 (Allouche et al., 2006). The assembly of the 
seven models was adequate in terms of AUC, kappa and TSS. PPC got values 0.8 and 
was considered acceptable (Table 2).

Table 2. Statistical parameters for SDMs of S. tacaco in Costa Rica.

Model AUC PPC Sensibility Specificity kappa TSS
GLM 0.89 0.88 0.91 0.88 0.22 0.79

GAM 0.96 0.93 0.98 0.92 0.37 0.90

GBM 0.83 0.81 0.83 0.83 0.66 0.66

CTA 0.83 0.83 0.91 0.75 0.66 0.57

RF 0.85 0.83 0.83 0.83 0.66 0.66

Maxent 0.92 0.88 0.83 0.88 0.023 0.71

SVM 0.91 0.92 0.91 0.91 0.83 0.82

Assemble 0.83 0.83 0.83 0.84 0.42 0.67

Generalized Linear Model (GLM), Generalized Additive Model (GAM), Generalized Potentiated Regression 
Model (GBM), Classification Tree Analysis (CTA), Random Forest (RF), Maximum entropy (Maxent), 
Support Vector Machines (SVM).
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	 Regarding Jacknife test, the variables with the greatest contribution in the SDMs 
were bio1, bio2, bio3 and bio14. In the assembly of the seven models, the variable with 
the greatest contribution was bio1. AAC model assigned the same contribution for all 
predictor variables (Table 3).   

Table 3. Contribution (%) of environmental variables to SDMs of S. tacaco in Costa Rica.

Model Bio1 Bio2 Bio3 Bio4 Bio12 Bio13 Bio14 Bio18 Bio19
GLM 0.22 4.01 8.01 0.1 6.54 12.36 4.76 37.99 26.07

GAM 23.92 0.29 40.19 14.8 1.68 4.47 1.24 1.65 11.73

GBM 26.63 30.42 2.11 18.04 1.66 0.64 0.21 1.05 18.85

CTA 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11

RF 53.74 7.85 6.61 7.9 3.25 5.03 6.85 1.99 6.74

Maxent 16.8 8.4 43.7 3.5 1.6 1.5 0.3 16 8.3

SVM 24.52 3.78 2.79 11.83 2.17 6.87 30.68 13.06 4.24

Assemble 27.48 10.01 10.54 10.10 6.07 8.57 4.72 10.41 12.04

Generalized Linear Model (GLM), Generalized Additive Model (GAM), Generalized Potentiated Regression Model (GBM), 
Classification Tree Analysis (CTA), Random Forest (RF), Maximum entropy (Maxent), Support Vector Machines (SVM).

	 GLM and GAM models show large territorial extensions for a suitability of 0.25 (Figure 
2A-B). GBM model indicated suitability with probability of 1 for the Central Valleys of 
Costa Rica (Figure 2C), peculiarly ACC model showed the maximum suitability in a 
longitudinal axis of Costa Rican territory that covers part of Alajuela, San José, Cartago, 
and Puntarenas provinces (Figure 2D).
	 RF, Maxent and SVM models showed suitability of 1 in very similar regions (Figure 
3 A-C), however, RF model had a greater territorial extension in Central Valleys and 
in the South Pacific where Talamanca Mountain is located. The assembly of the seven 
models (Figure 3D) presented a potential distribution area very similar to that predicted by 
Maxent model.
	 Because 80% of the Costa Rican territory has A climate type, it would be expected that 
the climate type is not a conditional to determine the distribution of S. tacaco, considering 
also that climate is strongly related to the bioclimatic variables bio1 and bio12.
	 AUC values ​​for training and testing (0.97 and 0.93) determined a good modeling 
for potential distribution of S. tacaco. Values ​​very close to 1 are usually indicative of 
restricted distribution of species (Phillips et al., 2006), just as it happens for S. tacaco. 
Lira et al. (2018) found AUC values ​​higher than 0.95 in wild populations of S. edule, 
which are only distributed in the states of Oaxaca and Veracruz, Mexico. Generally, 
endemic species tend to have low levels of genetic diversity due to the small size of their 
populations; however, it is necessary to evaluate them with molecular markers, since 
in some cases it has been found that these species may have moderate or high levels of 
genetic diversity (Forrest et al., 2017). 
	 Average annual temperature (bio1) plays an important role in the distribution of 
S. tacaco, although it is a semi-cultivated species, it is difficult to determine the optimal 
temperature and irrigation requirements as a crop due to the scarce agronomic research. 
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Figure 2. SDMs for S. tacaco in Costa Rica. A. Generalized Linear Model (GLM) B. Generalized Additive Model 
(GAM) C. Generalized Potentiated Regression Model (GBM) D. Classification Tree Analysis (CTA).

Figure 3. SDMs of S. tacaco in Costa Rica. Techniques based on machine learning, A. RF, B. Maxent, C. SVM 
and D. Assembling of seven models.
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Figures 1 and 2, in agreement with Monge and Loría (2017), show a possible trend that S. 
tacaco may be introduced or distributed in Panama, especially with ACC, RF, Maxent y 
SVM models. This constitutes an important aspect to investigate, agronomic response of 
S. tacaco in other edaphoclimatic conditions. Andosol and Cambisol soil that predominate 
in two thirds of the occurrence points, are characterized by being of volcanic origin and 
having a high cation exchange capacity, which is positively correlated with the amount of 
organic matter (Dai et al., 2018).
	 Distribution models are predictions of the suitability for species, they provide relevant 
information on geographic regions that contain germplasm of interest, which is undoubtedly 
important for conservation and breeding studies. The previous approach is relevant if it is 
considered that seeds of Sechium species are recalcitrant and cannot be conserved in seed 
banks. Due to its endocarpic nature, the seed germinates even within the fruit, and it does 
not show signs of senescence, since it is not carotenogenic, that is, it does not change color. 
In the case of S. tacaco, it is relevant to determine real and potential distribution areas for 
in situ conservation, and for the collection of specimens that contribute to maintaining its 
diversity. 

CONCLUSIONS
	 Generalized Additive Model (GAM) turned out to have the best area under the curve 
(AUC) and TSS ((Specificity  Sensitivity) 1); however, all seven models and the assembly 
showed adequate performance. Bioclimatic variables related to temperature are the ones 
with the greatest contribution to models and the main limitations in the distribution of S. 
tacaco, which, being a species with restricted distribution, requires very specific climatic 
conditions. Areas with high suitability are found in the central valleys of Costa Rica, 
covering regions of the provinces of Alajuela, Cartago, San José and Puntarenas, which 
can be sources of germplasm for future conservation and breeding studies.
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