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ABSTRACT
Dregs from the former Texcoco Lake were used to build the new international Mexico City airport and 
pumped in a quarry. The dredged sediments could have heavy metals (HMs) capable of polluting water 
bodies. The study’s objective was to evaluate the content of Cu, Zn, Cd, Ni, and Pb of the sediments 
deposited in the quarry, their transfer to the runoff water and the adsorption of Cu, Zn, Ni, and Pb in the 
subsoil. Other variables measured were water infiltration rate, HM in sediments, water runoff, and the 
HM adsorption in the subsoil. The infiltration rate in sediments is low (10-7 cm/h). HMs in sediments 
are within the maximum permissible limits by Mexican regulations, for sewage sludge. The HMs in the 
runoff from the sediments are in the range of the Mexican regulations for the discharge into rivers and for 
irrigation purposes of agricultural soils. They are also within safe limits for irrigation use considered by FAO 
and EPA. The materials adsorption capacity of Pb (1250 mg kg1), Zn (588 mg kg1), and Cu (1250 mg 
kg1) is higher than the concentration of metals in the runoff water, so the movement of HMs down into the 
subsoil is unlikely.

INTRODUCTION
 Mining of materials for construction in open-pit mines is relatively inexpensive, but it 
causes conspicuous changes in ecosystems. Among its negative effects there is deforestation, 
habitat destruction, landscape change, rock fracturing from the use of explosives, dust 
generation, alteration of the site’s hydrology, formation of large craters with risk of collapse 
(Green et al., 2005, Korkmaz et al., 2011).
 Performing large civil works involves the removal of the superficial layer of the soil or 
unstable sediments for the foundation of the structures. For the construction of the new 
international airport in Mexico City (NAICM, the acronym in Spanish language) in the 
former Texcoco Lake, it was necessary to drag and transport large volumes of sediment 
to authorized confinements (GACM, 2014). The confinements are located 10 km away in 
the middle part of the Sierra Nevada that fed the lake. Due to the origin and management 
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of the excavation material, the place of its confinement and the concentrated volume, the 
following question arises: Could the sediments represent a source of heavy metals (HMs) 
that would contaminate the bodies of water that are used for human consumption and 
other activities such as agriculture? The confinement site corresponds to an exhausted 
quarry, adjacent to a tributary of the Texcoco River, of up to 65 m of depth, abandoned 
without rehabilitation. The appropriate use of these sinkholes as confinement sites could 
solve two environmental problems of strong impact in the zone, the rehabilitation of the 
quarry and the confinement of sediments, but could unleash a greater impact in the long 
term: underground water contamination.
 The sediment from the former lake constitutes the superior clay formation (Anónimo, 
2014). It has a very alkaline pH (Balderas et al., 2006), deficient drainage, high content of 
salts and high rate of exchangeable sodium (Segura et al., 2000). This sediment contains 
Ni, Cu, Mo, Pb (Morales-García et al., 2020), Cr, Zn and V (Morton-Bermea et al., 
2009), whose origin is a combination of the open air conditions of the rock from the 
high parts of the basin, industrial activities and f low transport, among the most notable 
sources. The Fe, Pb, Cr, As, Cu, Zn, Cd, V, and Hg content was reported in sediments 
from other lakes (Vowotor et al., 2014; Pejman et al., 2015). The metals can be freed as 
a result of different processes, among them their physical alteration, which can increase 
their solubility and impact negatively the environment (Wu et al., 2014). Vowotor et al. 
(2014) suggest the following potential for ecological risk: Cd  Hg  As  Pb  Cu  
Cr  Zn.
 The HMs of the sediment have low or null potential for lixiviation because they are 
united to stable mineral fractions in the soil (Balderas et al., 2006). In an alkaline medium 
the mobility of metals is minimized, and this sediment has poor drainage, characteristic 
derived from its high content of smectites (Ortiz and Gutiérrez, 2015) and amorphous 
silica (Balderas et al., 2006), as well as the lack of structure due to its high sodium content 
(Rowell, 1994). 
 In the confinement site, the impermeability of the bottom would favor rainfall 
runoff and cracking could give rise to a preferential f low of HMs towards water table 
layers, although it is unknown whether the site has cracks formed during the material’s 
extraction. And, depending on its ability to sorb metals, it could continue its migration 
towards underground waters, since the potential of transference of HM contents in the 
sediments towards the water medium depends on their concentration and solubility 
(Kabata-Pendias, 2011).
 Soluble HMs in the infiltration water can be adsorbed in the bottom of the confinement 
(Van der Perk, 2013) and with it, reduce the risk of contamination of underground waters. 
The adsorption in the soil-water interphase (Sparks, 2003) indicates the capacity of 
substrates to retain solutes (Appelo and Postma 2005), with which their mobility can be 
predicted. The best known models to simulate the isotherms are those by Freundlich and 
Langmuir (Roy et al., 1992). The objective of this study was to evaluate the content of Cu, 
Zn, Cd, Ni and Pb of the sediments of the former Texcoco Lake and in the runoff water, 
and the sorption of Cu, Zn, Ni and Pb in the bottom of the confinement.
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MATERIALS AND METHODS
Localization and Delimitation of the Confinement of Sediments
 The site for confinement of the sediments is known as Tiro San Dieguito and it is located 
in San Dieguito Xochimanca, Texcoco, Mexico at 19° 29’ 53.08” N and 98° 49’ 42.36” 
W of latitude and longitude, respectively (Figure 1). This is a mine quarry of non-metallic 
rocky material that was abandoned some years ago. It has a surface of 2.49 ha and down 
to 66 m in its deepest part. With the help of a total station (Sokkia) and satellite image, the 
volume of the sediments in the confinement was delimited and obtained, for which the 
QGis software was used (QGIS Development Team, 2009). The weight of the confined 
sediment was determined based on its volume and apparent density (Da) obtained by the 
procedure described by Rowell (1994). 

Permeability Test in the Sediments
 Permeability (as infiltration speed) was measured using the procedure proposed by 
Siltecho et al. (2015). Waterproof PVC tubes were used (5 cm of diameter by 40 cm of 
length), to obtain unaltered samples in the bottom of the quarry (Figure 1b), 30 cm deep; 
2 L of rain water was added to measure the infiltration at 24 and 48 hours.

Sampling and Cd, Cu, Zn, Ni and Pb analyses in the Sediments
 Through random sampling of the confinement area (2.49 ha), 19 samples (2 kg) of 
sediment were collected from the superficial layer of 0-20 cm. The samples were dried 
at 35 °C for 72 h and sifted in a size 10 sieve (2 mm) according to the NMX-AA-132-
SCFI-2006 (SE, 2017). The HMs were determined through digestion of the sample with 
nitric acid according to the NOM-004-SEMARNAT-2002 (SEMARNAT, 2003) and 
reading was made in an inductively coupled plasma spectrophotometer (ICP-OES) Varian 
725-ES model (Agilent Technologies, 2012). 

Figure 1. a) Location of the NIAMC (SCT, 2014) and b) sampling points on the quarry used as disposal area.

a
b
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Sample and Cd, Cu, Zn, Ni and Pb analyses in Runoff Water 
 The runoff water of the sediment was sampled in the quarry during the rainfall period 
(May to August 2018). After each rainfall, simple samples from the surface of the sediment 
were obtained in the zones flooded, and with these a compound sample was obtained 
according to the NMX-AA-003-1980 (SECOFI, 1980). The pH was determined from 
the samples potentiometrically (Rowell, 1994). Later, they were acidified (pH2) through 
the addition of nitric acid, kept at 4 °C and filtered (NMX-AA-051-SCFI-2016; SE, 
2016a). The quantification of metals was done with ICP-OES. The pH and the EC were 
determined by the procedures described previously.

Sampling and Characterization of the Subsoil of the Quarry
 Previous to removing the sediments, samples were obtained from the subsoil exposed 
in the mine’s sinkhole at a depth of 0-20 cm. The samples were prepared for their 
characterization according to the NMX-AA-132-SCFI-2006 (SE, 2017), characterized, 
and the determinations of Cd, Cu, Ni, Pb and Zn were made with the procedures described 
previously. In the sediments and the material from the bottom of the sinkhole, the pH, 
electric conductivity (EC), capacity for cationic exchange (CCE), sodium adsorption ratio 
(RSA), apparent density (Da) and texture following the procedures described by Rowell 
(1994) were measured.

Adsorption of Heavy Metals in the Subsoil 
 In balance experiments, the adsorption of HM was estimated (Roy et al. 1992). In 
reactors of 50 mL, 5 g of subsoil were added with increasing concentrations (50, 100, 
200, 500, 1000 and 2000 mg/L) of HM with electrolytic solution of CaCl2 0.01 M to 
maintain the ionic strength, in a 1:4 soil-solution rate. The solutions were prepared with 
the following salts: Ni (NO3)2, Pb(NO3)2, ZnSO4.7H2O and CuSO4.5H2O. The isotherms 
of Cd were not determined since the concentration of this element in the sediments is very 
low. The interval of concentrations was chosen in function of the change in the slope 
of the isotherms, although avoiding for precipitation of the element to take place. The 
suspension was agitated during 6 h at 120 rpm at 20 °C, until equilibrium concentration. 
It was centrifuged at 2200 rpm for 10 min and the supernatant was filtered with Whatman 
42 paper. The equilibrium concentration of Ni, Pb, Zn and Cu was determined in atomic 
absorption equipment by the flame technique (SE, 2016a). The pH was measured 
during equilibrium. The adsorption isotherms were obtained when graphing adsorption 
in function of the equilibrium concentration. The adjustment of the Freundlinch and 
Langmuir equations was evaluated using the linear form of each equation ( Jain et al., 2004). 
The respective constants and isotherms predicted by each equation with the adjustment 
constants were calculated, to compare with the experimental isotherms.

Freundlich equation 
x
m

K CF
n

1

 Where: 
x
m
 adsorption per unit of mass. KF is Freundlich’s distribution coefficient, 

n is the correction factor, and C is the equilibrium concentration of the adsorptive.
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Langmuir equation  
x
m

K MC

K C
L

L

=
+( )1

 Where: 
x
m
 adsorption per unit of mass. KL is the constant related with the retention 

force, M is the maximum adsorption and C is the equilibrium concentration of the 
adsorptive. To ensure the quality control of the data and the repeatability of the analyses, 
the experiments and analyses were made by triplicate. Certified standards were used 
(Purity) for the preparation of calibration curves of the equipment.

RESULTS AND DISCUSSION
Delimitation of the Confinement of Sediments
 In the quarry, andesitic limestone predominates, which are igneous volcanic rock (tephra) 
fragments solidified at some point of the volcanic eruption, whose mineral composition is 
similar to the andesitic rock and size smaller than 4 mm (SGM, 2002). Until June 2018, 
1 074 960 m3 of sediments had been deposited in the confinement site, corresponding to 
1 096 459 kg of sediment, taking as reference the average apparent density.

Permeability of the Sediments from the Former Texcoco Lake
 The sediment presented null to extremely low hydraulic conductivity (Hazelthon and 
Murphy, 2007) during the trial that lasted 48 hours. In determinations made in situ with 
sediments of the former Texcoco Lake, López et al. (2016) reported very low permeability 
(of 10-3 to 10-6 cm/s) in the hard layer of the sediment, whose thickness varies from 30 
to 32 m. Tarín and Velázquez (1986) found that the hydraulic conductivity is 0.1 cm/h, 
even lower than the one determined in this study. The poor permeability is attributed to the 
lack of structure (Segura et al., 2000; Carranza, 2018) and the content of smectite, which 
expands and closes the porous spaces when hydrated (Musso et al., 2017). Therefore, a low 
probability of metal lixiviation is considered. However, under conditions of cracking, not 
studied in this study, the transference of metals to greater depths (reaching underground 
water) would be a potential risk.

Heavy Metals in the Sediment
 Due to the values of pH, EC and SAR, the sediment is classified as strongly alkaline, 
very strongly saline, and with high sodium concentration compared to calcium and 
magnesium (Hazelton and Murphy, 2007; SEMARNAT, 2003). This is an impediment 
for the development of many cultivated plant species (Sparks, 2003) and can induce the 
degradation of the soil per salinization (Table 1).
 In contrast to what was reported for other lake areas (Morales-García et al., 2020), and 
in sediments from other lakes (Luo et al., 2008), the HM concentrations are compared 
with the limits established in national and international regulations; the HMs of the 
sediments are within the maximum permissible limits for their use with agricultural, 
forestry, and soil improvement purposes, which includes their urban use with direct 
public contact during their application, and were classified as excellent according to 
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Table 1. Heavy metals, pH, electrical conductivity (EC), cation exchange capacity (CIC) and sodium adsorption ratio (SAR) in the disposed 
sediment, and maximum permissible limits in the nation regulation for aquatic life protection in North-America.

Cd Cu Ni Pb Zn
pH CE

dS/m
CIC

cmolc/kg SAR
mg/kg

Maximum 0096 1.91 0.31 1.7 0.88 10.4 10.3 16.2 733

Minimum ND 7.45 1.98 7.29 12.62 10.9 97.3 27.1 16772

average1 0.030.03 3.661.35 0.510.36 2.041.32 2.472.63 10.70.15 70.923.42 22.62.5 47904119

NOM-00412 39 1500 420 300 2800

NOM-1473 37 -- 1600 400 --

GPCS4 0.6 35.7 35 123

NEP4 3.5 197 91.3 315

NF5 0.1-0.3 10-25 9.9 4-17 7-38

CP6 0.38 32 15 30 94

n19 No. of samples. 
1 Average  deviation standard.
2 Mexican Official Regulation 004-SEMARNAT-2002 (SEMARNAT, 2003).
3 Mexican Official Regulation-147-SEMARNAT/SSA1-2004 (SEMARNAT, 2004).
4 GPCSSediment quality guidelines for the protection of aquatic life (CCME, 2019a).
5 Backgrownd levels for NOAA (Buchman, 2008).
6 Probable concentration for 20% toxic doses (Field et al., 2002), NOAA screening quick references Tables (Buchman, 2008).

the NOM-004-SEMARNAT-2002 (SEMARNAT, 2003). This implies that the metals 
have a low risk of entering the trophic chain through the absorption by plants. The 
concentrations are found below the maximum limits permissible of contaminated 
soils according to the NOM-147-SEMARNAT/SSA1-2004 (SEMARNAT, 2004) 
and of metals in sediments to protect the aquatic life of bodies of fresh and marine 
water established in the Canadian Guide and United States legislation. They are 
also considered from normal (Cd, Ni and Pb) to adequate (Cu and Zn), according to 
the NOM-021-SEMARNAT-2000 (SEMARNAT, 2002). In reference to the values 
compiled by Kabata-Pendias (2011) for natural soils, the Cu and Zn concentrations 
from the samples are considered normal.

Heavy Metals in Runoff Water
 The pH (9.7) is alkaline and it is not considered adequate for irrigation water (Bastian 
and Murray 2012). The EC present in the runoff water was 76 dS m1, and exceeds the 
acceptable value for irrigation water in agriculture (SEMARNAT, 1997) and therefore 
it is not adequate for the development of crops (Ayers and Westcot, 1985), due to its high 
content of soluble salts (Table 2). It has been argued that the runoff water quality is of great 
importance, since the impermeability of the confinement (Ortiz and Gutiérrez, 2015) 
favors leaching and the leachate could contaminate the intermittent water courses that 
exist in the zone. The deposits on the margin of a tributary of the Texcoco River can have 
serious effects for soils downstream.
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 Cadmium, Cu, Ni, Pb and Zn are lower than the maximum permissible limits of 
contaminants in residual water discharges in water and soil, and in its use for agricultural 
irrigation established in the NOM-001-SEMARNAT-1996 (SEMARNAT, 1997). 
Cadmium and Cu are within the maximum permissible limits to spill residual waters 
into the urban drainage systems. Likewise, the HM values are within the limits that are 
considered safe for the protection of agriculture established by the Food and Agriculture 
Organization of the United Nations (FAO; Ayers and Westcot, 1985); the Unites States 
Environmental Protection Agency (EPA; Bastian and Murray, 2012), and the Canadian 
Council of Ministers of the Environment (CCME, 2019a). Only the levels of Cd and Pb 
slightly exceed the safe limit (CCME, 2019b), although it should not be forgotten that 
concentrations in pristine water are of the order of micrograms per liter.
 The low values of soluble metals determined in the runoff water are congruent with the 
concentrations of the sediments from the present study. Balderas et al. (2006) reported that 
Cu, Pb and Zn from an agricultural soil near the extraction zone of the sediments of this 
study are adsorbed in clays and oxides, so they have low solubility, and this agrees with the 
reports already mentioned previously for lake sediments.

Characteristics of subsoil of the Confinement
 The rock base where the sediments were deposited is the sinkhole bottom of the mine 
of rocky materials is a compacted and dense material, alkaline and with high EC (Table 3). 
According to its C.I.C. it is classified as normal, deficient and low, respectively; due to its 
strongly alkaline pH, and based on EC and RAS, it is moderately saline and with high rate 
of sodium absorption (SEMARNAT, 2002). Likewise, it has a low organic matter content 
(1.96%) and a high proportion of sand (62%) compared to silt (22%) and clay (16%), which 
is why it is classified as loam-sandy. These characteristics make the quarry unfavorable 
for good plant development, so in order to rehabilitate it, corrections are required to 

Table 2. Water soluble metal concentrations in leachates and permissible concentrations.

Cd Cu Ni Pb Zn
mg/L

Average1 0.01 0.06 0.09 0.36 0.13

DE2 0.009 0.047 0.086 0.254 0.044

NOM-0013   soils 0.05 4 2 5 10

NOM-0013   rivers 0.2 4 2 0.5 10

FAO4            irrigation 0.01 0.2 0.2 5.0 2.0

EPA5            irrigation 0.01 0.2 0.2 5.0 2.0

GCA6           irrigation 0.005 0.2–1.0 0.2 0.2 1-5
1 leachate sampling after rain (n5), April 27, may 21, June 6 and 12 and July 2019.
2 DE, Standard deviation.
3 Mexican official regulation-001-SEMARNAT, monthly average (SEMARNAT, 1996).
4 Maximum concentration in irrigation water (Ayers y Westcot, 1985).
5 Maximum concentration in irrigation water (Bastian y Murray, 2012).
6 Water Quality Guidelines for the Protection of Agriculture, Canada (CCME, 2019b).
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improve its agronomic characteristics. The concentrations of HMs measured are below the 
maximum permissible limits of contaminated agricultural soils, according to the NOM-
147-SEMARNAT/SSA1-2004 (SEMARNAT, 2004).

Sorption of Ni, Cu, Pb and Zn 
 The subsoil from the quarry has low permeability; however, under occasional conditions 
of cracking and superficial runoff, an extreme situation can be foreseen, in which the 
percolation water drags high concentrations of HMs, and the possible transference to the 
base of the confinement and underground waters; this is why the capacity of sorption of 
HMs was determined in confinement materials, which could be a filtrating barrier for the 
transport of metals towards the aquifer.
 Sorption is very high, as can be observed in the strong slopes of the isotherms at low 
equilibrium concentrations, to then decrease to high concentrations (L Curve, Sparks, 
1995; Figure 3), which indicates a relatively high affinity of the substrate to metals at low 
concentrations, and decreases as the concentration increases and the specific surface of the 
adsorbent is saturated.
 The slopes of the Zn and Pb isotherms remained high, although they decreased as 
the concentration increased. The slope of the Cu isotherm was asymptotic since its slope 
is high at low concentrations and then approximates zero. The slope of the isotherm of 
Ni decreased when increasing the concentration. The isotherm that best describes the 
behavior of Zn is that of Freundlich (Figure 2a), and this agrees with Cortés et al. (2015) 
since a good adjustment was observed to the adsorption of Zn in andisols, vertisols and 
humic acids.
 In the case of Cu neither of the two isotherms described appropriately the tendency 
of the isotherm, but at high concentrations the most proximal was Langmuir’s (Figure 
2b), which agrees with the report from other authors who reported that the Langmuir 
(Abdelhamid et al., 2012) and Bourliva et al., 2015) and Redlich-Peterson isotherms 
provided the best adjustment for Cu (Han et al., 2006). The Langmuir isotherm described 
well the retention of Pb (Figure 2c). This agrees with Melichová and Hromada (2013), 
who found that Langmiur’s isotherm explains the behavior of Pb and Cu using natural 
bentonite as adsorbent. Salem and Akbari-Sene (2011) obtained better adjustment with 
Langmuir for Pb in zeolite-kaolinite-bentonite adsorbent.

Table 3. pH, electrical conductivity (EC), cation exchange capacity (CEC), and heavy metals in the subsoil of the disposal 
facility.

Concentration
Cd Cu Ni Pb Zn pH CE

dS/m
C.E.C.

cmolc/kgmg kg1

Máximum 0.02 0.2 0.23 0.61 0.49 10.1 11.9 2.59

minimum DL 0.09 0.13 0.18 0.22 9.65 1.21 1.56

Average 0.02 0.14 0.16 0.39 0.35 9.72 5.16 1.96

DE* 0.006 0.081 0.05 0.21 0.26 0.31 5.86 0.54
aLDBelow detection limit. bDEStandard desviation. n4 replicates.
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 Nickel adsorption was well fit by Freundlich’s equation (Figure 2d). The divergence 
in the sorption at intermediate concentrations can be the result of joint processes of 
adsorption, precipitation and change of surface in the adsorbent by the alkaline pH (Wang 
and Cheng, 2009).
 When the equilibrium concentration of metals was increased, there was a decrease of 
the pH (Figure 3), which implies that chemical sorption took place (chemisorption) in the 
subsoil, characterized by liberation of hydronium ions (Sparks, 2003). This implies a more 
stable adsorption. However, Bradl (2004) mentions that the pH in the solution controls the 
sorption processes, because the hydrogen ions are constituted in an adsorbent, strongly 
competitive, and affected by the presence of functional groups. The sorption of cations 

a

0
500

1000
1500
2000
2500
3000
3500

0 500 1000 1500

Zn
 so

rp
tio

n 
m

g 
g-1

Zn concentration mg L-1

Freundlich Langmuir Experimental

  

 

  

 

 

 

b

0

1000

2000

3000

0 500 1000 1500

C
u 

so
rp

tio
n 

m
g 

g-1

Cu concentration mg L-1

d

0

200

400

600

800

0 500 1000 1500

N
i s

or
pt

io
n 

 m
g 

g-1
Ni concentracion mg L-1

Experimental Freundlich Langmuir

 

 

 

 

 

 

 

 

 

 

c

0
2000
4000
6000
8000

10000
12000

0 500 1000 1500

Pb
 so

rp
tio

n 
m

g 
g-1

Pb concentration mg L-1

Freundlich Langmuir Experimental 

Freundlich Langmuir Experimental 

Figure 2. Experimental and simulated (using Langmuir and Freundlich equations) sorption isotherms of a) Zn, b) Cu, c) Pb, 
and d) Ni in the subsoil of the disposal facility.

 

0
1
2
3
4
5
6
7
8
9

0 500 1000 1500 2000 2500

pH

Equilibrium concentration mg/L

Zn

Cu

Pb

Ni

Figure 3. The pH at the equilibrium solution of the Zn, Cu, Pb, and Ni isotherms.



Agro productividad 2021. https://doi.org/10.32854/agrop.v14i8.1952

tends to be favored for pH values higher than 4.5, and the sorption of anions prefers a low 
value of pH between 1.5 and 4 (Tejeda-Tovar et al., 2015). Measuring the pH is important 
since Chaudhurib et al. (2014) mentioned that a reduction in the pH can unleash the 
transference of HMs from the adsorbent to the equilibrium solution.
 Wang et al. (1997) concluded that the percentage of Cu2 adsorbed, in most of the 
sediments studied, reached 100% after reaching a pH of 8.5. At a high pH the forms of 
Cu are more stable and there is higher adsorption in the residual fraction (Balderas et al., 
2006). Kaya and Ören (2005) point out a fast removal of Zn in the equilibrium, when the 
pH was higher than 7 and, according to Jain et al. (2004), the degree of adsorption of Zn 
increased with an increase of the pH. Bourliva et al. (2015) point out that the adsorption 
of Pb, Cu and Ni increases with the pH. It is suggested that it would be necessary to break 
the buffer capacity of the adsorbent to reduce significantly the pH. It is likely that the 
adsorption of the HMs reduces the possibilities of their lixiviation to the lower layers.
 The maximum Cu, Pb, and Ni absorption could be estimated, since the slope tends to 
zero when increasing the equilibrium concentration (Table 4). The capacity for adsorption 
is higher than the concentration observed in the muds deposited in the confinement. 
A maximum in the sorption of Zn was not observed, for an asymptote curve was not 
generated in the graphic representations.
 The readings of metals in the filtered supernatant were made when reaching the 
equilibrium, without controlling the pH or any other parameter as is done in some studies 
about adsorption (Musso et al., 2017). The pH of the adsorptive medium influences 
the behavior of the metal and its solubility, generally increasing with the rise in the 
concentration of hydrogen ions and influence of the intensity of the reduction-oxidation 
reactions (Appelo and Postma 2005). Elbana et al. (2018) reported that the soils with high 
content of organic matter and with alkaline pH show a strong adsorption for Cd, Cu, 
Ni, Pb and Zn, due to the presence of carbonate; however, in complex systems, as in the 
present study, it is not possible to differentiate adsorption from precipitation of insoluble 
forms.

CONCLUSIONS
 The concentrations of Cd, Cu, Ni, Pb and Zn from the sediment of the former Texcoco 
Lake confined in the quarry were within the maximum permissible limits by the Mexican 
laws, applicable to residual water muds for use. However, SAR, EC and pH are limiting 
factors for the development of plant species with low adaptation to salinity and alkalinity. 

Table 4. Zn, Cu, Pb, and Ni adsorption fitting parameters to the Langmuir and Freundlich equations on the subsoil of the quarry.

Metal
Langmuir Freundlich

SqMin.
M (mg/ g) KL (L/mg) R2 SqMin. KF (mg/ L /g) 1/n R2

Zn 588 0.54 0.76 6.48 141.3 0.37 0.92 1.13

Cu 2000 0.07 0.99 3.87 354.6 0.26 0.89 8.56

Pb 5000 0.133 0.99 2.28 808.5 0.29 0.93 13.51

Ni 580 0.021 0.88 0.05 137 0.191 0.452 0.07

SqMin. Square minimums  106.
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The concentrations of HMs in the runoff water are within the acceptable limits established 
by the Mexican laws for the discharge of waters into rivers and the soil for irrigation; they 
are also within the safe limits for irrigation proposed by FAO and EPA. However, the 
pH and EC would limit their use in irrigation. Considering Freundlich and Langmuir’s 
adsorption isotherms, the material from the subsoil of the confinement sorbs metals 
following the decreasing affinity order: Pb  Zn  Cu. The capacity for adsorption of 
Pb, Zn, Cu and Ni in the materials from the bottom is higher than its concentration in the 
runoff water.
 The materials from the bottom present low Cd, Cu, Ni, Pb, and Zn concentrations, 
poor fertility and high pH values. These last characteristics anticipate their low capacity to 
support wild vegetation or cultivated normally. However, there is still the need to evaluate 
the capacity to liberate the metals adsorbed, desorption, which could be increased if the 
pH or the content of salts varies in the system.
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