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1.   Abstract   
Through   the   study   of   popular   games   such   as   Chess   and   Go,   countless   artificial   intelligence   (AI)   

research   has   been   conducted   in   an   attempt   to   create   algorithms   equipped   for   adversarial   search   problems.   
However,   there   are   still   a   plethora   of   avenues   that   offer   insight   into   further   development.   Mancala   is   
traditionally   a   two-player   board   game   that   originated   in   the   East   and   offers   a   unique   opponent-based   playing   
experience.   This   thesis   not   only   attempts   to   create   a   competitive   AI   algorithm   for   mancala   games   by   
analyzing   the   performance   of   several   different   algorithms   on   this   classic   board   game,   but   it   also   attempts   to   
extract   applications   that   may   have   relevance   to   other   “game-solving”   AI   problems.   

2.   Introduction   
This   thesis   focuses   on   artificial   intelligence,   or   AI,   as   it   applies   to   competitive,   adversarial   games.   

More   specifically,   two-player   board   games.   The   application   of   AI   to   board   games   is   a   fairly   recent   field   of   
study   that   first   gained   traction   in   the   1950s   with   the   development   of   an   artificial   intelligence   agent   for   the   
game   of   Chess   [12].   In   its   early   stages,   the   AI   programs   were   only   advanced   enough   to   compete   at   a   beginner   
level   or   exclusively   solve   games   that   were   in   their   final   few   moves   before   completion.   However,   over   time   
with   continued   research   and   development   in   this   field,   the   pertinent   algorithms   have   evolved   to   the   point   
where   they   can   compete   and   succeed   against   some   of   the   most   advanced   players.   The   culmination   of   AI   
game   research   was   exemplified   by   the   defeat   of   the   world’s   leading   Go   champion   by   a   Google-developed   AI   
program   called   AlphaGo   [12].      

Games   such   as   Checkers,   Chess,   and   Go   have   been   heavily   researched   in   the   artificial   intelligence   
community   not   only   due   to   their   popularity   but   as   a   result   of   the   underlying   complexity   behind   these   games   
as   well.   With   these   various   board   games,   the   main   goal   behind   the   research   is   to   develop   comprehensive   
algorithms   that   are   able   to   solve   these   games   without   being   too   computationally   expensive.   As   a   result   of   
studying   these   games,   several   advancements   in   the   field   have   been   made,   although   there   exists   a   vast   array   of   
other   two-player   games   that   have   yet   to   be   researched   to   the   same   extent.   Through   further   research   of   other   
board   games   that   each   have   their   own   unique   characteristics,   it   may   provide   insight   into   other   avenues   for   
potentially   improving   existing   AI   algorithms   or   developing   new   ones.   One   such   game   that   has   yet   to   be   
further   researched   further   is   the   board   game   of   mancala.     

Mancala   is   a   board   game   that   has   been   around   for   hundreds   of   years   and   is   played   all   around   the   
world.   The   origins   of   the   word   mancala   stem   from   the   Arabic   word    naqala    which   translates   to   ‘moved’.   Many   
individuals   commonly   associate   mancala   with   one   specific   board   game   although   the   term   refers   to   a   family   of   
board   games   in   which   there   are   several   different   variations.    Its   origins   can   be   traced   back   to   Ancient   Sudan   
or   Ghana   with   the   earliest   reliable   evidence   of   the   board   game   being   played   dating   back   to   around   3600   years   
ago   [7].   Over   time,   the   game   has   developed   with   there   currently   being   more   than   800   variations   of   the   game   
played   in   around   99   countries   with   about   200   of   those   variations   being   designed   in   more   recent   times   [13].   
The   variation   of   mancala   that   this   research   will   explore   is   called    Kalah,    and   it   was   developed   fairly   recently   in   
1940   by   Willie   Julius   Champion   Jr.   This   version   proves   to   be   the   most   popular   in   the   states   and   is   the   version   
that   many   westerners   commonly   associate   with   the   name   of   Mancala.     
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2.1   How   the   game   is   played   
The   game   (Kalah)   is   played   on   a   board   that   has   a   certain   number   of   small   pits,   called   houses,   on   each   side   
(usually   6)   and   a   big   pit,   called   the   end   zone,   at   each   end.   A   visualization   of   the   board   is   shown   in   Figure   1.   In   
each   of   the   houses   are   a   number   of   seeds   (typically   4).   The   objective   of   the   game   is   to   capture   more   seeds  
than   your   opponent.   During   a   turn,   a   player   grabs   all   the   seeds   in   a   hole   on   their   side   and   drops   them   one   by   
one   in   the   succeeding   holes   following   a   counter-clockwise   pattern   until   they   run   out   of   seeds   in   their   hand.   
The   player   deposits   the   seeds   in   any   hole   on   the   board   with   the   exception   of   the   opponent’s   end   zone.   If   the   
last   seed   dropped   lands   in   the   player’s   end   zone,   then   the   player   can   take   an   additional   turn.   If   the   last   seed   
dropped   lands   in   an   empty   house   on   the   player’s   side,   and   if   the   opposite   house   contains   seed,   all   the   seeds   in   
the   pit   where   the   last   seed   was   placed   and   all   the   opponent’s   seeds   on   the   opposite   side   go   to   the   player   and   
are   placed   in   their   end   zone.   When   a   player   does   not   have   any   more   seeds   in   their   pits,   the   game   ends   and   the   
opposing   player   can   take   all   the   remaining   seeds   and   place   them   in   their   own   end   zone.   The   player   with   the   
most   seeds   in   their   end   zone   wins.  
  

  
Figure   1:   Mancala   board   
  

The   main   reason   that   mancala   was   chosen   for   this   research   was   due   to   the   fact   that   it   is   not   as   widely   
researched   in   the   artificial   intelligence   community   as   some   of   the   aforementioned   games   such   as   Chess   and   
Go.   Mancala   offers   a   unique   playing   style   that   differs   from   other   board   games.   As   a   result,   the   algorithms   
used   on   these   games   would   need   to   be   modified   slightly,   which   in   turn   could   provide   breakthroughs   and   new   
information   on   how   to   better   improve   these   respective   algorithms.   One   of   the   unique   aspects   of   mancala   is   
its   multiple   turn   variation.   With   traditional   board   games,   the   first   player   usually   makes   their   move,   and   then   
the   next   player   makes   their   move   and   vice   versa.   However,   with   Mancala,   as   stated   in   the   rules   above,   if   a   
player   is   able   to   drop   their   last   seed   in   their   own   store,   then   they   have   the   opportunity   to   play   again.   They   are   
then   able   to   chain   multiple   moves   consecutively,   with   some   players   even   gaining   the   ability   to   go   for   4   or   
more   consecutive   turns.   Another   unique   feature   of   the   game   is   its   capturing   aspect   which   is   dependent   on   the   
player   having   an   empty   space   on   their   side   of   the   board   and   calculating   their   moves   so   that   the   last   stone   
dropped   lands   in   that   space.   Another   important   motivation   for   researching   the   game   of   Mancala   is   the   fact   
that   its   rules   are   fairly   straightforward   which   makes   it   fairly   easy   to   translate   to   a   computer   version   of   the   
game.   

The   purpose   of   this   research   was   to   develop   a   competitive   artificial   intelligent   algorithm   for   this   
particular   game   of   mancala.   The   goal   wasn’t   to   create   an   AI   that   was   fun   to   play   with,   but   rather,   create   an   AI   
that   performs   the   best   at   this   game,   and   through   the   process   develop   techniques   that   could   possibly   be   used   
for   solving   other   similar   problems.   This   research   attempts   to   do   so   by   analyzing   the   performance   of   different   
algorithms   on   this   game.   Solving   these   problems   at   a   more   basic   level,   such   as   simple   two-player   board   
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games,   gives   insight   into   possible   applications   for   more   complex   problems,   such   as   multiplayer   games,   by   
using   the   techniques   that   are   formed   through   the   exploration   of   artificial   intelligence   at   this   level.   

3.   Related   Work   
As   aforementioned,   research   regarding   the   intersection   of   artificial   intelligence   and   gaming   is   a   fairly   

recent   field   of   study   in   comparison   to   other   areas   in   computer   science.   Over   the   last   few   years,   researchers   
have   been   able   to   develop   more   refined   algorithms   as   a   result   of   repetitively   applying   and   adapting   these   
programs   to   work   with   a   certain   set   of   games.   This   research   project   analyzes   the   performance   of   six   different   
AI   algorithms   on   the   game   of   mancala.   Namely,   a   random   agent,   a   max   agent,   minimax   with   alpha-beta   
pruning,   minimax   with   an   advanced   heuristic   function,   Monte   Carlo   tree   search,   and   an   asynchronous   
advantage   actor-critic   agent   (A3C).   The   logistics   behind   each   of   these   algorithms   will   be   discussed   in   further   
detail   in   a   later   section,   but   one   of   these   things   that   this   research   aims   to   do   is   to   extract   applications   from   the   
analysis   of   these   algorithms   that   can   then   possibly   be   used   to   develop   a   new   algorithm   to   refine   these   existing   
algorithms.     

All   of   these   different   AI   solving   techniques   are   heavily   researched   as   there   is   a   large   body   of   work   
backing   the   six   distinct   programs   mentioned   above.   Some   interesting   research   projects   of   note   that   relate   to   
this   thesis   are   the   work   by   Babaeizadeh   et   al.   [2],   regarding   the   implementation   of   the   A3C   agent   on   a   GPU,   
the   work   of   Wright   [20]   in   regards   to   the   use   of   a   genetic   algorithm   for   parameter   optimization   --   a   
methodology   that   was   very   crucial   for   the   development   of   the   advanced   heuristic   function,   and   the   work   of   
Jeerige   et   al.   [9]   that   further   explored   the   use   of   the   A3C   agent   for   intelligent   game   playing.   In   fact,   one   
related   work   in   particular,   research   performed   by   Browne   et   al.   [3]   on   the   Monte-Carlo   tree   search   algorithm,   
is   an   excellent   example   of   how   applying   existing   AI   algorithms   to   games   in   different   contexts   can   sometimes   
yield   unexpected   insight.   The   Monte-Carlo   tree   search   methodology   was   developed   as   an   extension   of   
existing   tree   search   algorithms   in   order   to   tackle   the   complicated   game   of   Go.   

In   terms   of   the   particular   game   of   mancala,   as   previously   stated,   the   application   of   artificial   
intelligence   to   the   game   isn’t   as   heavily   researched   as   some   of   the   other   popular   board   games.   However,   there   
are   a   few   prominent   works   that   relate   to   the   game   of   mancala   and   its   AI   applications.   The   variation   of   
mancala   that   this   thesis   analyzes,   Kalah,   has   actually   been   fully   solved   in   terms   of   finding   the   optimal   moves   
for   each   succession   of   the   game.   Irving   and   Donkers   [8]   were   able   to   prove   that   Kalah   is   a   win   by   10   for   the   
first   player   given   perfect   gameplay   from   both   opponents.   In   order   to   track   all   of   the   different   combinations   
of   moves,   the   researchers   were   required   to   use   a   full   game   database   and   optimized   tree-search   algorithms.   In   
contrast   to   the   work   of   Irving   and   Donkers,   this   thesis   attempts   to   create   an   agent   that   performs   optimally   on   
the   game   of   mancala   without   the   use   of   a   full-game   database.   This   research   also   references   the   work   of   
Gifford   et   al.   [6]   as   it   explores   the   approach   of   AI   within   the   game   of   mancala   strictly   from   a   perspective   that   
employs   minimax   with   a   robust   emphasis   on   different   heuristic   options.   Although   this   research   by   Gifford   
doesn’t   employ   more   complex   algorithms   such   as   Monte-Carlo   tree   search   or   an   A3C   agent,   this   work   served   
as   a   good   basis   for   establishing   the   heuristic   approach   that   was   later   used   in   this   thesis.   

4.   Problems   with   Adversarial   Search   
Adversarial   search   is   a   set   of   problems   within   the   larger   field   of   artificial   intelligence   where   there   is   an   

“enemy”   or   “opponent”   that   is   constantly   changing   the   state   of   the   problem   with   every   step   in   a   direction   
that   is   in   contrast   to   your   desired   goals   [16].   Each   agent   needs   to   consider   the   action   of   the   other   agent   and   
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the   effect   of   that   action   on   their   performance.   These   types   of   problems   can   be   seen   demonstrated   in   all   areas   
of   life   ranging   from   board   games   like   chess   to   business   situations,   trading,   and   is   also   the   category   of   search   
problems   under   which   mancala   lies.   In   order   to   understand   the   AI   algorithms   associated   with   adversarial   
search   and   solving   the   game   of   mancala   within   this   research   project,   it   is   important   to   understand   how   these   
problems   are   modeled   from   the   perspective   of   the   computer.   These   problems   are   modeled   in   such   a   way   that   
the   first   player   (the   computer)   can   change   the   current   state,   but   is   not   in   control   of   the   next   state,   i.e.   the   
move   that   the   opponent   makes   after   the   first   player.   The   opposing   agent,   or   the   opponent,   controls   the   next   
state   and   can   either   change   it   in   a   way   that   is   either   unpredictable   or   optimal   for   them   and   hostile   for   the   first   
player.   Usually,   in   these   types   of   problems,   you   only   get   to   change   every   alternate   state,   although   it   can   vary   
depending   on   the   type   of   game   that   you   are   playing.   The   reason   these   games   fall   under   the   category   of   search   
is   due   to   the   way   in   which   a   computer   operates.   In   order   for   a   computer   to   break   down   these   types   of   
problems,   the   games   are   usually   modeled   as   a   search   problem   with   a   heuristic   evaluation   function.   Using   this   
specific   modeling,   the   computer   then   essentially   searches   through   a   broad   spectrum   of   possible   outcomes   for   
a   solution   most   advantageous   to   it   based   on   the   aforementioned   heuristic   evaluation   function.   The   way   that   
these   games   are   usually   modeled   is   through   the   use   of   a   tree   structure   where   the   nodes   of   the   tree   are   the   
game   states   and   the   edges   of   the   tree   are   the   moves   by   the   players.   To   provide   visualization   of   this   construct,   
an   example   of   the   tic   tac   toe   game   state   represented   in   a   tree   structure   is   shown   in   Figure   2   where   each   of   the   
nodes   represent   the   possible   moves   for   each   of   the   players.   

  

  
    Figure   2:   Example   of   a   game   tree   representation   

  
These   games   can   also   be   modeled   using   a   structure   known   as   neural   nets,   where   there   are   several   

layers   of   input   and   an   overall   outcome   corresponding   to   a   win   or   loss   in   a   game,   although   modeling   these   
types   of   problems   with   a   game   tree   is   more   common.   The   first   step   of   the   process   of   solving   a   game   comes   
down   to   effectively   generating   the   decision   tree   or   neural   network   associated   with   that   game   that   clearly   
encapsulates   all   the   possible   moves   and   scenarios   associated   with   those   moves.   A   game   is   considered   solved  
when   the   programs   are   able   to   predict   the   results   of   the   game   from   a   certain   state   when   all   the   players   make   
optimal   moves.   The   next   step   of   the   process   is   then   to   apply   different   complex   algorithms   to   these   structures   
in   order   to   extract   the   desired   moves   that   ultimately   lead   to   a   win   or   a   maximization   of   points   based   on   the   
heuristic   function   associated   with   that   algorithm.   
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The   main   problem   with   adversarial   search   stems   from   the   fact   that   the   state   space   of   several   games   is   
too   large   to   represent   in   a   tree   structure.   Attempting   to   search   all   the   different   possibilities   of   these   games   
would   be   too   computationally   intensive.   Take   for   instance   the   game   of   chess.   On   average   the   player   has   about   
31   to   35   legal   moves   at   their   disposal   for   each   turn   which   would   result   in   about   10 120    possible   games   as   a   
conservative   estimate   [17].   This   would   be   impossible   for   a   single   computer   to   process   in   an   efficient   amount   
of   time.   Although   mancala   isn’t   as   computationally   taxing   as   chess,   which   is   another   reason   that   makes   it   ideal   
for   this   research,   it   would   still   be   inefficient   to   attempt   to   solve   the   entire   state   space   without   the   use   of   a   full   
game   database.   The   average   branching   factor   of   a   game   of   Kalah   is   6   meaning   that   a   decent   estimate   for   
game   tree   complexity   would   be   about   1.74   x   10 13    [8].   Although   not   as   complicated   as   chess,   it   would   still   
require   a   lot   of   computational   power   to   evaluate   all   of   these   different   game   variations.   It   is   for   this   reason   that   
the   algorithms   developed   must   be   adaptive   in   their   approach   to   solving   the   game.   Although   it   would   be   
convenient,   for   most   use   cases,   to   know   the   full   picture   of   the   game   with   all   of   the   different   moves   and   
combinations   of   moves,   it   wouldn’t   be   easily   computable   and   it   would   be   incredibly   taxing   to   store   all   of   the   
information.   

5.   Methodology   
This   research   focused   on   developing   a   competitive   artificial   intelligent   agent   for   the   game   of   mancala,   

more   specifically   the   variation   Kalah,   through   the   use   of   a   refined   algorithm   developed   and   tested   to   work   
with   the   game   space.   In   order   to   create   this   competitive   AI   agent,   6   different   algorithms   were   developed   and   
then   evaluated   thoroughly.   First,   a   playable   version   of   the   game   was   developed   from   scratch   incorporating   the   
game   rules   and   logic.   Next,   the   six   algorithms   were   developed   to   work   with   this   game.   This   was   accomplished   
through   the   representation   of   the   gamespace   in   a   format   that   the   computer   would   be   able   to   understand.   The   
board   was   represented   as   an   array   with   each   of   the   corresponding   indexes   relating   to   one   of   the   pits   on   the   
board.   There   was   also   a    getAvaliableMoves    function   that   returned   all   the   available   pits   that   a   player   could   play   
given   their   current   position   and   the   state   of   the   board.   There   were   also   functions   that   defined   the   actions   of   
scooping   up   the   available   seeds   in   a   pit   and   depositing   them   in   each   of   the   available   corresponding   pits.   Using   
these   functions,   algorithms   were   then   able   to   be   developed   to   work   with   the   game   and   form   a   strategy   for   
optimal   gameplay   via   their   own   unique   methods.   The   algorithms   developed   will   be   discussed   in   the   following   
sections   and   will   be   listed   according   to   complexity.  

5.1   Random   Agent   
This   algorithm   serves   as   the   baseline   for   the   evaluation   portion   of   the   project.   With   the   worst   

expected   performance,   if   a   developed   algorithm   isn’t   performing   well   against   the   random   agent,   then   that   
usually   means   that   there   is   some   error   within   the   algorithm.   The   random   agent   is   simply   an   algorithm   that   
looks   at   the   available   choices   for   each   turn   and   chooses   a   move   at   random.   The   pseudocode   for   the   random   
agent   is   shown   in   Algorithm   1.   
  

  
Algorithm   1:    Random   Agent 

 
    1:          function    randomAgent   
    2:                 M   =   getAvailableMoves(board)   
    3:               return    random.choice(M)   
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    4: end   function   
  

5.2   Max   Agent   
The   max   agent   calculates   the   potential   return   for   each   of   the   available   moves   during   the   player’s   turn   

and   chooses   the   strategy   that   results   in   the   highest   reward.   The   reward   is   based   on   the   number   of   stones   that   
the   player   is   able   to   collect   in   their   end   zone   from   that   particular   turn.   The   algorithm   takes   into   account   the   
state   of   the   board   and   the   available   moves   at   that   turn.   When   the   considered   move   allows   for   an   extra   turn,   as   
chain   moves   are   fairly   common   in   the   game   of   mancala,   the   algorithm   takes   that   into   account   by   running   the   
maxAgent   again   recursively   for   the   next   consecutive   move   that   the   player   is   able   to   make.   Although   this   
recursive   call   would   make   the   algorithm   more   complex,   consecutive   turns   one   average   don’t   exceed   3   or   4   
when   playing.   Therefore,   the   computational   complexity   of   the   recursive   call   can   be   ignored.   The   pseudocode   
for   the   max   agent   strategy   is   shown   in   Algorithm   2.   The   algorithm   is   deterministic,   meaning   that   the   result   of   
any   one   action   can   be   predicted   with   perfect   accuracy   since   there   are   no   random   or   unknown   variables   in   
mancala.   This   algorithm   expectedly   would   perform   better   than   the   random   agent   and   is   indicative   of   an   
average   player’s   gameplay   as   the   greedy   strategy   is   usually   the   strategy   that   most   casual   players   employ.   
  

  
Algorithm   2:    Max   Agent 

 
    1:          function    maxAgent(board,   player)   
    2:                 bestValue   =    --infinity   
    3:              chosenMove   =   [   ]   
    4:               M   =   getAvailableMoves(board)   
    5:                     pieces   =   store(board,   player)   
    6:               for   all    m   in   M    do   
     7:                           if    evaluate(m,   board,   player,   pieces)   ≥   bestValue    then   
     8:                            bestValue   =   evaluate(m,   board,   player,   pieces)   
      9:                            chosenMove   +=   m        
    10:                 end   if     
   11:               end   for   
   12:               return    chosenMove   
   13:          end   function   
   14:   
   15:          function    evaluate(move,   board,   player,   pieces)   
   16:                  if    doMove(board,   move)   is    not    terminal   
   17:                                pieces   =   evaluate(move,   board,   player,   pieces)      
   18:                  else   
    19:                                pieces   =   store(board,   player)   
   20:                  end   if   
   21:                      return    pieces   
   22:          end   function      
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5.3   Minimax   with   Alpha-Beta   Pruning   
This   algorithm   is   based   on   the   conventional   minimax   algorithm   with   the   incorporation   of   alpha-beta   

pruning   in   order   to   minimize   the   computational   complexity   by   not   having   to   expand   as   many   nodes   within   
the   tree.   This   particular   method   of   solving   games   was   briefly   discussed   in   section     4   and   deals   with   the   
representation   of   the   game   state   as   a   tree   structure   in   order   to   solve   the   game.   The   tree   represents   the   
different   moves   and   states   of   the   board,   with   one   player   choosing   moves   to   maximize   the   overall   score   and   
the   other   player   choosing   moves   to   minimize   the   overall   score.   From   the   root   node,   the   algorithm   takes   into  
consideration   all   the   available   moves   and   plays   out   each   of   them   individually   which   in   turn   leads   to   a   new   
state   of   the   board.   Oftentimes   there   are   scores   associated   with   each   respective   state   of   the   board   to   help   the   
computer   differentiate   which   moves   are   profitable   and   which   ones   are   not.   The   associated   score   with   each   of   
the   nodes   on   the   tree   is   based   on   an   evaluation   function   that   takes   into   account   how   the   game   is   played.   For   
example,   in   a   simple   game   such   as   tic   tac   toe,   moves   that   result   in   two   of   the   same   player’s   pieces   being   next   
to   each   other   would   be   rated   higher   than   a   move   in   which   the   pieces   were   randomly   placed   on   the   board.   
Ideally,   the   computer   would   be   able   to   expand   the   entire   tree   and   find   out   the   sequence   of   moves   that   would   
result   in   a   win,   but   as   stated   in   section   4,   games   like   mancala   have   too   many   moves   and   variations   for   a   
computer   to   be   able   to   feasibly   search   all   of   the   different   variations.   The   reason   why   an   evaluation   function   is   
used   is   due   to   the   fact   that   the   computer   can’t   search   the   entire   tree,   therefore   it   has   to   estimate   which   moves   
would   be   profitable   which   is   done   through   the   association   of   the   evaluation   function.   The   function   that   was   
used   for   this   particular   algorithm   was   simply   the   number   of   seeds   in   the   player’s   bin   vs.   the   number   of   seeds   
in   the   opponent’s   bin.   The   maximum   depth   of   tree   searched   was   a   depth   of   4   to   conserve   computational   
efficiency,   with   the   exception   of   a   depth   of   8   that   was   used   to   compare   the   minimax   with   alpha-beta   pruning   
algorithm   to   the   advanced   heuristic   minimax   that   will   be   discussed   in   the   following   section.     

Alpha-beta   pruning   is   the   method   of   reducing   the   computational   toll   of   the   traditional   minimax   by   
limiting   the   number   of   nodes   that   are   searched   by   the   algorithm.   It   does   so   by   updating   a   value   called   Alpha   
which   for   all   moves   associated   with   the   main   player.   As   the   algorithm   progresses   through   the   tree   if   the   
evaluation   for   a   particular   node   is   higher   than   Alpha,   then   Alpha   is   updated   for   that   value.   Similarly   to   the   
main   player,   the   opponent   updates   a   value   called   Beta   and   it   keeps   track   of   the   lowest   value   returned   from   the   
evaluation   for   each   node   as   the   algorithm   progresses.   The   algorithm   constantly   checks   if   Beta   is   less   than   or   
equal   to   Alpha   and   if   that   is   the   case,   then   all   the   following   branches   are   skipped   as   their   moves   are   of   no   
interest   to   the   main   player.   The   pseudocode   is   outlined   in   Algorithm   3.   
  

  
Algorithm   3:    Minimax   with   Alpha-beta   pruning 

 
    1:          function    alphaBeta(node,    α,   β,    player,   opponent,   depth)   
    2:                  if    node   is   terminal    or    depth   =   0    then    //   leaf   node   
    3:                           return    evaluate(board,   player,   opponent)   
    4:              end   if     
    5:                      if    whoIsPlaying(board)   =   player   //   player   playing:   maximize   
    6:                          bestValue   =   -- infinity   
     7:                          children[   ]   =   children(board)   
     8:                 for   all    child   in   children    do  
      9:                           value   =   alphaBeta(child,    α,   β ,   callingPlayer,   depth-1)   
    10:                           bestValue   =    max (bestValue,   val)   
   11:                                      α    =    max ( α ,   bestValue)   
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   12:                                      if    β   ≤   α    then    //pruning   
   13:                                                        break   
   14:                                      end   if     
   15:                 end   for     
   16:                 return    bestValue   
   17:                      else    //   opponent   playing:   minimize   
   18:                          bestValue   =    infinity   
    19:                          children[   ]   =   children(board)   
   20:                           for   all    child   in   children    do   
   21:                           value   =   alphaBeta(child,    α,   β ,   callingPlayer,   depth-1)   
   22:                           bestValue   =    min (bestValue,   val)   
   23:                            β    =    min ( β,    bestValue)   
   24:                                      if    β   ≤   α    then    //pruning   
   25:                                                        break   
   26:                                      end   if   
   27:                 end   for   
   28:                 return    bestValue      
   29:                      end   if   
   30:          end   function   
   31:      
   32:          function    evaluate(board,   player,   opponent)   
   33:                  return    store(board,   player)   -   store(board,   opponent)   
   34:          end   function   
   35:   
   36:          function    children(board)   
   37:                 M   =   getAvailableMoves(board)   
   38:                  for   all    m   in   M    do   
   39:                          child   =   doMove(board,   m)   
   40:                          add   child   to   children   
   41:                  end   for   
   42:                  return    children   
   43:          end   function      

  

5.4   Advanced   Heuristic   Minimax   
The   advanced   heuristic   minimax   is   similar   to   the   alpha-beta   minimax   in   the   sense   that   it   uses   that   

generic   minimax   formula   at   its   core.   However,   it   does   differ   in   one   key   factor   and   that   is   the   more   refined   
heuristic   function   that   it   incorporates   for   the   evaluation   function.   This   heuristic   function   and   process   of   
refining   it   is   based   on   the   work   of   Divilly   et   al.   [5]   although   their   work   dealt   mainly   with   the   mancala   
variations   of   Awari,   Oware,   Vai   Lung   Than,   and   Érhérhé.   The   heuristics   that   were   explored   for   this   particular   
research   were   the   following   

● H1:   Hoard   as   many   seeds   as   possible   in   one   pit.    This   heuristic   attempts   to   keep   as   many   seeds   as   
possible   in   the   leftmost   pit   on   the   player’s   side.   The   incentive   to   hoarding   pits   on   the   player’s   side   is   
that   at   the   end   of   the   game   after   the   opponent’s   side   is   cleared,   all   the   remaining   seeds   on   the   player’s   
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side   are   awarded   to   them.   According   to   the   work   of   Gifford   et   al.   [6],   the   leftmost   pit   is   denoted   to   
be   the   most   advantageous   pit   in   which   to   hoard   the   seeds   

● H2:   Keep   as   many   seeds   on   the   player’s   side.    This   heuristic   is   a   generalized   version   of   the   
previous   heuristic.   Rather   than   attempting   to   limit   the   accumulation   of   seeds   to   just   one   pit,   it   aims   
to   just   collect   seeds   in   any   of   the   pits   in   hopes   that   they   may   all   be   contributed   to   the   main   player   at   
the   end   of   the   game.   

● H3:   Have   as   many   moves   as   possible   from   which   to   choose.    This   heuristic   takes   into   account   
the   possible   moves   that   the   player   might   take   at   each   turn   and   weights   the   benefits   of   having   more   
moves   to   choose   from   for   each   turn.   It   has   a   look   ahead   of   one.   

● H4:   Maximize   the   number   of   seeds   in   a   player’s   own   store.    This   straightforward   heuristic   
attempts   to   maximize   the   number   of   seeds   that   the   player   captures   with   a   look   ahead   of   one   that   
compares   the   previous   amount   of   seeds   in   the   store   to   the   current   amount.     

● H5:   Move   the   seeds   from   a   pit   closer   to   the   opponent's   side.    This   heuristic   weighs   the   benefit   of   
moving   the   seeds   in   the   far-right   pit,   from   the   perspective   of   the   main   player,   given   that   it   has   seeds.   
If   this   pit   is   discovered   to   be   empty   then   the   next   rightmost   pit   is   checked   and   so   on.   This   strategy   
was   originally   outlined   in   the   work   of   Jordan   and   O’Riordan   [10]   when   discussing   certain   moves   that   
gave   the   player   a   winning   advantage.   

● H6:    Keep   the   opponent’s   score   to   a   minimum .   This   heuristic   has   a   lookahead   of   two   moves   and   
tries   to   limit   how   much   the   opponent   can   score   with   the   next   move   following   the   main   player's   
successive   move.   It   takes   into   account   how   many   seeds   are   added   to   the   opponent’s   score   with   their   
move.   This   heuristic   has   a   negative   value   associated   with   it   as   the   main   player   tries   to   limit   this   from   
happening   in   great   quantity.   

● H7:   Maximize   repeat   turns.    This   heuristic   attempts   to   maximize   the   chain   moves   that   are   
performed   by   the   main   player,   therefore   it   prioritizes   moves   in   which   the   player   deposits   the   last   seed   
into   their   own   store.   

● H8:   Points   difference.    This   is   the   simple   heuristic   that   was   incorporated   into   the   alpha-beta   
pruning   minimax.   It   simply   takes   the   difference   between   the   main   player’s   store   and   the   opponent’s   
store.   

● H9:   How   close   the   player   is   to   winning .   This   heuristic   captures   the   research   of   Gifford   et   al.   (10)   
which   states   that   if   a   player   reaches   1   and   a   half   the   amount   of   stones   of   the   opposing   player,   then   
they   are   guaranteed   to   win.   The   minimum   amount   of   stones   that   the   opponent   would   have   for   this   
condition   to   be   true   was   set   to   5   as   the   aforementioned   research   didn’t   outline   this   minimum.   Once   
again   the   heuristic   works   by   simply   comparing   the   number   of   stones   in   the   main   player’s   store   to   the   
number   of   stones   in   the   opponent   store.   This   has   a   look   ahead   of   one.   

● H10:   How   close   the   opponent   is   to   winning .   This   heuristic   is   simply   the   inverse   of   H9.   It   
compares   the   number   of   stones   in   the   opponent's   store   with   the   amount   in   the   main   player’s   store   
and   checks   to   see   how   close   the   opponent   is   to   having   1   and   a   half   the   number   of   the   player’s   stones.   
There   is   a   negative   value   associated   with   this   heuristic   to   discourage   this   from   happening   in-game.   

  
The   formula   for   incorporating   the   heuristics   is   simply   a   linear   function   that   adds   up   each   of   the   

heuristics   multiplied   by   their   associated   weights.   An   example   of   the   equation   would   be   computed   as:     
V   =   H1   x   W1   +   H2   x   W2   +   H3   x   W3………   H9   x   W9   +   H10   x   W10   

The   heuristics   were   first   tested   in   a   round-robin,   tournament-style   setting   in   order   to   determine   which   
heuristics   were   naturally   the   strongest   and   which   were   associated   with   a   higher   chance   of   winning.   The   
heuristics   were   then   associated   with   temporary   weights   with   the   better-performing   heuristics   being   given   a   
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higher   weight.   After   these   temporary   weights   were   assigned,   a   genetic   algorithm   was   then   used   to   fine-tune   
the   weights   and   find   a   strategy   that   incorporated   all   of   the   various   heuristics.   The   genetic   algorithm   used   a   
real   number   representation   for   the   fitness   score   and   ran   for   250   generations   with   a   population   size   of   50.   The   
mutation   rate   was   set   to   0.1   and   selection   was   based   on   their   fitness   score.   A   gaussian   mutator   was   used.   The   
fitness   score   of   a   candidate   was   based   on   how   they   competed   against   the   rest   of   the   population.   The   
candidate   in   question   with   its   unique   set   of   weights   played   5   games   going   first   and   5   games   going   second   
against   the   entire   population   including   itself.   1   point   was   received   for   a   win,   0.5   for   a   draw,   and   0   for   a   loss.   
The   fitness   value   returned   was   the   percentage   of   the   points   received   out   of   all   the   points   that   were   available   
to   be   won.   Although   the   genetic   algorithm   didn’t   converge   a   set   of   weights   was   finally   settled   on   which   is   
outlined   in   the   Results   section   6.   The   pseudocode   for   the   evaluation   portion   of   this   algorithm   is   outlined   in   
Algorithm   4.     
  

  
Algorithm   4:    Advanced   heuristic   minimax 

 
    1:          function    evaluate(board,   player,   opponent)   
    2:                 H1   =   stonesInLeftPit(board,   player)   
    3:              H2   =   stonesInPits(board,   player)   
    4:               H3   =   numberOfNonEmptyPits(board,   player)     
    5:                     H4   =   store(board,   player)   
    6:               if    doMove(board,player)   is   rightmost    then   
     7:                          H5   =   1   
     8:               else      
      9:                          H5   =   0   
    10:               end   if   
   11:              H6   =   -   store   (board,   opponent)   
   12:                  if    doMove(board,   move)   is    not    terminal   
   13:                                H7   =   1      
   14:                  else   
    15:                               H7   =   0   
   16:                  end   if   
   17:                    H8   =   store(board,   player)   -   store(board,   opponent)   
   18:                  if    store(board,   opponent)   ≥   5   
    19:                          H9   =   -   (store(board,   opponent)   *   1.5)   -   store(board,   player)   
   20:                  end   if   
   21:                  if    store(board,   player)   ≥   5   
   22:                          H10   =   (store(board,   player)   *   1.5)   -   store(board,   opponent)   
   23:                  end   if   
   24:   
   25:                  return    H1*W1+H2*W2+H3*W3+H4*W4+H5*W5+H6*W6+H7*W7   
   26:                                    H8*W8+H9*W9+H10*W10   
   27:          end   function   
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5.5   Monte   Carlo   Tree   Search   
Monte   Carlo   Tree   (MCT)   search   is   a   unique   algorithm   that   was   developed   as   an   alternative   to   the   

minimax   algorithm   as   a   tree   searching   algorithm   for   game   development.   As   opposed   to   the   minimax   
algorithm   MCT   search   does   not   need   a   heuristic   function.   The   tree   is   established   in   the   same   fashion   as   
minimax   in   the   sense   that   each   node   represents   the   state   of   the   game   and   the   different   branches   of   the   tree   
represent   respective   moves.   The   main   difference   however   is   that   rather   than   receiving   an   evaluation   function   
at   each   node,   MCT   search   solely   takes   in   the   following   information   from   the   node:   if   it’s   a   terminal   state,   the   
available   moves,   and   if   it   is   a   terminal   state   information   about   which   player   won.   The   algorithm   then   uses   this   
info   to   play   out   simulations   of   the   game.   Starting   from   the   root   node   it   chooses   moves   until   it   reaches   a   
terminal   state.   The   process   of   choosing   moves   can   be   more   or   less   random   but   at   its   base,   there   is   a   strategy   
to   picking   the   moves   that   incorporate   balancing   between   moves   already   played   and   moves   never   played.   This   
is   also   called   the   process   of   exploitation   and   exploration.   The   result   of   the   game,   whether   it   is   a   win   or   a   loss   
is   then   backpropagated   to   the   root   node.   After   the   algorithm   plays   out   the   set   number   of   simulations,   it   then   
chooses   the   best   move.  

The   development   of   this   algorithm   was   based   on   the   work   of   Moghadam   [15]   and   the   research   of   
Chaslot   [4].   The   computational   budget   was   set   as   the   number   of   iterations   with   the   maximum   number   of   
iterations   being   4000.   During   the   selection   process,   the   nodes   are   picked   using   an   upper   confidence   bound   
for   trees   (UCT)   formula   with   a   constant   C p =√2/2.   The   UCT   formula   only   takes   into   account   the   score   of   the   
player   that   is   playing   at   that   node.   The   reward   that   is   backpropagation   to   the   root   node   is   a   vector   containing   
the   score   of   each   of   the   players   for   that   particular   gameplay.   The   value   associated   with   a   victory   is   1   and   
likewise,   the   value   associated   with   a   loss   is   0.   Once   the   algorithm   is   completed,   the   incoming   move   that   is   
selected   is   the   most   visited   node.   In   terms   of   the   expansion   step,   a   combination   of   a   random   and   greedy   
strategy   was   used   known   as   the   epsilon-greedy   strategy   where   at   each   turn   the   algorithm   has   a   probability   
associated   with   the   fact   that   it   plays   randomly,   ε,   otherwise   it   chooses   the   moves   based   on   a   greedy   strategy.   

5.6   Asynchronous   Advantage   Actor-Critic   Agent            
The   implementation   of   the    Asynchronous   Advantage   Actor-Critic   (A3C)   agent   was   made   possible   

through   the   use   of   the   python   libraries   Tensorflow   and   Keras   and   was   based   upon   the   implementation   of   
Julani   [11].   The   A3C   agent   is   a   fairly   newly   developed   method   for   deep   reinforcement   learning.   Traditionally   
for   reinforcement   learning   involving   game   development,   Deep   Q   Networks   (DQNs)   which   heavily   revolved   
around   the   discovery   and   refinement   of   Q   values   --   values   that   denoted   an   associated   reward   with   each   
action,   were   used.   The   A3C   agent,   however,   was   recently   developed   and   popularized   by   Google’s   DeepMind   
team.   Its   success   can   be   attributed   to   the   fact   that   it   differs   from   the   DQN   by   combining   aspects   of   Q-value   
learning   from   DQNs   with   a   policy   gradient   in   order   to   take   advantage   of   both   styles   of   reinforcement   
learning.   Other   work   that   was   referenced   during   the   creation   of   and   training   of   this   agent   was   the   work   of   
Mnih   et   al.   [14]   and   the   work   of   Alp   and   Guzel   [1].   

An   A3C   agent   is   comprised   of   an   actor   and   a   critic.   The   actor   is   responsible   for   choosing   the   actions   
that   the   main   player   takes   and   the   role   of   the   actor   is   to   control   the   behavior   of   the   player   by   learning   the   best   
policy.   The   actor   takes   a   specific   state   as   the   input   and   outputs   the   best   action.   It   does   so   by   using   the   
feedback   that   it   receives   from   the   critic.   The   critic   learns   a   value   function   that   represents   the   expected   value   
from   each   state   based   on   the   specific   action.   It   uses   this   value   function   to   determine   how   advantageous   it   is   
to   be   in   a   particular   state.   Over   time   the   actor   and   the   critic   both   become   refined   to   the   point   where   they   
have   a   pretty   good   working   policy   for   the   gameplay.     
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Figure   3:   The   actor-critic   architecture.   From   Sutton   &   Barto   [18]   

  
The   A3C   agent   differs   from   the   DQN   in   the   sense   that   it   doesn't   need   to   learn   the   Q   values   for   each   

state   which   in   turn   saves   its   calculation   time   allowing   for   a   more   robust   algorithm.   Instead   of   the   Q   value,   the   
advantage   is   used   which   is   denoted   as   the   difference   between   the   actual   return   at   a   specific   state   and   the   
predicted   value   which   is   derived   from   the   value   function.   The   advantage   is   how   the   critic   can   tell   if   its   
predicted   value   is   good   or   bad.   The   advantage   is   an   estimation   function   that   is   commonly   written   as:   

A(s)   =   r+γV(s’)   -   V(s)     
where   r   is   the   current   reward   and   γ   is   the   discount   factor.   The   critic   knows   the   value   of   the   state   but   doesn’t   
know   how   much   better   the   value   returned   from   the   value   function   is.   This   is   where   the   advantage   comes   into   
play.   The   higher   the   advantage,   the   more   agents   will   look   at   doing   the   action.   

The   actor   and   the   critic   loop   through   each   step   of   the   game,   or   in   the   cases   of   mancala   the   different   
board   states,   and   update   the   weights   and   policy   accordingly.   The   workflow   for   this   agent   typically   looks   like   
this.   The   worker   (actor)   takes   in   the   parameters,   the   value   function,   from   the   critic.   Using   these   values   it   
receives   from   the   critic,   it   then   updates   its   probability   distribution   and   interacts   with   the   environment.   The   
worker   then   calculates   the   value   and   policy   loss   at   the   end   of   the   episode.   The   worker   then   gets   gradients   
from   the   loss.   Lastly,   the   worker   updates   the   global   networks   with   the   gradients.   With   the   A3C   agent,   this   all   
takes   place   asynchronously   and   oftentimes   there   are   multiple   workers   that   are   approaching   the   environment   
while   being   initialized   differently   meaning   that   they   are   dealing   with   different   states   of   the   game.   Although   
having   several   workers   being   trained   asynchronously   is   a   little   bit   more   computationally   expensive,   it   does   
speed   up   the   overall   process.   These   workers   are   all   solving   the   environment   in   different   ways   and   updating   
the   global   network.   

After   the   global   network   is   updated,   the   different   workers   are   then   also   updated   in   turn   from   the   
global   network   with   the   updated   value   functions   which   in   turn   update   the   policy.   Each   of   these   workers,   
however,   are   doing   independent   exploration   and   training   before   they   update   therefore   the   updates   are   not   
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happening   simultaneously.   This   is   one   of   the   drawbacks   to   the   asynchronous   nature   of   the   A3C   agent.   It   is   
quite   possible   that   the   different   agents   are   playing   with   older   versions   of   the   parameters.     

From   the   perspective   of   neural   networks,   the   agent   gives   two   outputs:   the   value   and   the   policy.   The   
value   output   is   a   function   that   represents   the   sum   of   rewards   when   starting   in   state   s   and   following   the   policy.   
The   policy   output   is   a   vector   that   represents   the   probability   distribution   over   all   of   the   actions,   or   rather   the   
probability   to   select   each   action.   The   actions   that   are   performed   by   the   neural   network   are   chosen   
non-deterministically   based   on   the   probability   that   they   will   be   selected.   Based   on   these   two   separate   forms   
of   output   we   arrive   at   two   loss   functions   for   the   neural   networks   which   were   automatically   implemented   into   
the   code   architecture.   The   goal   is   to   minimize   these   loss   functions.   (R   represents   the   discounted   future   
rewards).   The   value   loss   is   a   simple   sum   squared   error   which   is   represented   as   

L   =   Σ(R   -   V(s))²     
with   R   signifying   the   discounted   future   rewards.   The   policy   loss   is   a   logarithmic   function   that’s   represented   by     

L   =   -log(π(a   |   s))   *   A(s)   -   β*H(π).     
H(π)   is   the   entropy   and   is   simplified   to   the   function     

H(π)=-Σ(P(x)   log(P(x)).     
The   entropy   represents   how   spread   out   the   probabilities   are   and   incorporating   it   into   the   equation   limits   the   
chance   of   the   policy   converging   to   a   local   optimum.   The   two   loss   functions   are   then   combined   to   get   a   single   
loss   function   for   the   model   overall.   The   equation   is   represented   as   

  L   =   0.5   *   Σ(R   —   V(s))²   -   log(π(a   |   s))   *   A(s)   -   β*H(π).     
As   is   evident   from   the   equation,   the   value   loss   is   set   to   50%   in   order   to   put   more   emphasis   on   policy   learning   
as   opposed   to   value   learning.   

As   aforementioned   in   the   workflow   of   the   A3C   agent,   training   of   the   two   networks   is   performed   
separately   and   gradient   ascent,   as   opposed   to   gradient   descent   is   then   used   to   find   the   global   maximum   and   
update   both   their   weights.   Some   key   components   of   the   code   architecture   were   (17):   

- AC_Network :   The   class   containing   all   the   Tensorflow   ops   to   create   the   networks   themselves   
- Worker :   The   class   containing   a   copy   of   AC_Network,   an   environment   class,   as   well   as   all   the   logic   

for   interacting   with   the   environment   and   updating   the   global   network   
- High-level   code    for   establishing   the   worker   instances   and   running   them   in   parallel   

5.7   Closing   Methods   
After   these   respective   algorithms   were   developed   and   refined,   they   were   then   evaluated   and   

compared   through   a   number   of   tests   and   simulated   gameplay.   All   development   for   these   aforementioned   
algorithms   was   done   in   python.   

6.   Results   
Every   combination   of   algorithms   was   tested   for   1000   simulated   games   where   they   played   against   

each   of   the   developed   algorithms   including   themselves.   The   results   demonstrate   the   strong   first   move   
advantage   that   exists   in   the   game   of   mancala.   The   performances   of   the   respective   algorithms   were   also   
roughly   in   line   with   the   algorithm’s   complexity.   The   results   of   the   algorithm   matchups   are   demonstrated   in   
Table   1.   
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Table   1:   Table   comparing   the   win   percentages   of   each   player   
  

The   table   is   organized   in   a   structure   where   the   agent   playing   as   the   first   player   is   in   the   left   column   
and   player   2   is   represented   in   the   top   row.   Going   across   each   of   the   rows   shows   how   many   games   the   specific   
algorithm   won   playing   as   the   first   player.   Going   down   each   column   shows   how   many   games   the   algorithm   
lost   going   as   the   second   player.   The   win   percentages   were   based   on   the   percentages   of   games   won   out   of   all   
the   simulated   games   that   were   played   (1000).   The   remaining   percentage   that   is   not   accounted   for   in   the   
algorithm’s   win   percentage   doesn’t   necessarily   signify   a   loss   but   could   also   account   for   draws,   which   is   fairly   
common   in   the   game   of   mancala.     

Based   on   the   figure   we   can   see   that   the   A3C   agent   appears   to   have   the   overall   higher   win   
percentages,   albeit   by   a   small   margin   in   comparison   to   the   Monte   Carlo   tree   (MCT)   search   and   the   heuristic   
minimax,   while   the   random   algorithm   expectedly   performs   the   worst.   The   significant   trend   exemplified   in   the   
table   is   the   fact   that   the   win   percentages   go   up   based   on   the   complexity   of   the   algorithm.   The   heuristic   
minimax,   MCT   search,   and   A3C   agent   all   perform   at   around   the   same   level   as   each   of   them,   differentiating   
levels   of   success   against   various   algorithms   without   one   completely   outperforming   the   other.   For   example,   
although   the   A3C   agent   has   higher   win   percentages   against   the   max   agent   and   the   alpha-beta   pruning   
minimax,   it   does   not   perform   as   well   against   the   random   agent   as   the   heuristic   minimax   and   MCT   search.   

The   minimax   algorithms   weren’t   compared   to   the   MCT   search   in   a   manner   that   could   show   a   single   
result   for   the   win   percentage.   Rather,   they   were   compared   iteratively   showing   the   relationship   between   the   
number   of   iterations   for   MCT   search   and   the   depth   of   the   minimax   algorithms   in   order   to   establish  
thresholds   for   both   algorithms.   As   aforementioned,   the   figures   that   were   eventually   settled   on   were   4000   for   
the   number   of   iterations   and   4   for   the   depth.   This   comparison   between   the   minimax   algorithms   and   the   
MCT   search   is   shown   in   Figure   4   and   Figure   5.   In   addition,   the   A3C   agent   wasn’t   compared   to   the   MCT   
search   due   to   the   computational   load   of   both   of   these   algorithms.   

Lastly,   when   looking   at   the   table,   we   can   see   that   the   winning   percentages   for   an   algorithm   playing   
against   itself   go   up   as   the   complexity   of   the   algorithm   increases.   The   winning   percentage   should   in   theory   be   
around   50%   as   is   exemplified   by   the   random   agent.   However,   mancala   holds   a   strong   first   move   advantage   

  

  Random    Max   Agent    Minimax   
(Alpha   
Beta)   

Heuristic   
Minimax   

Monte   
Carlo   Tree   
Search   

A3C   Agent   

Random    51.3%    4.1%    2.7%    0.5%    0%    4%   

Max   Agent    96%    55.3%    15.2%    12.5%    4.5%    26.4%   

Minimax   
(Alpha   
Beta)   

98.2%    85.8%    61.5%    35.2%    N/A    48%   

Heuristic   
Minimax   

99.5%    90.2%    68.5%    61%    N/A    53.5%   

Monte   
Carlo   Tree   
Search   

100%    87.4%    59.3%    44.7%    61.3%    N/A   

A3C   Agent    97.6%    89.3%    71.4%    67.1%    N/A    79%   
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meaning   that   given   perfect   gameplay   from   both   parties,   the   player   that   goes   first   is   guaranteed   to   win.   
Therefore,   it   is   shown   that   as   the   algorithms   become   more   complex,   they   take   advantage   and   capitalize   on   
this   first   move   advantage   in   increasing   effect.   It   is   for   this   reason   that   the   A3C   agent   has   a   win   percentage   of   
79%   against   itself   because   as   the   first   player   it   won   79%   of   the   matches.   Theoretically,   the   perfect   agent   
should   win   100%   of   the   matches.   

As   mentioned   in   section   5.4,   the   weights   associated   with   the   heuristic   function   were   trained   using   a   
genetic   algorithm.   To   first   establish   which   weights   held   the   strongest   influence   over   the   winning   percentages   
of   the   game,   they   were   first   compared   in   a   round-robin   style   tournament.   Using   just   one   heuristic   as   the   
evaluation   function,   10   games   were   played   against   all   the   other   heuristics.   The   results   of   the   tournament   are   
shown   in   Table   2   with   the   winning   percentage   being   the   percentage   of   games   won   out   of   all   the   matchups   
that   were   played.    
  

   Table   2:   Table   showing   the   results   of   the   round-robin     
   matchups   for   the   heuristic   values   

  
Based   on   the   results   of   the   tournament   it   was   fair   to   conclude   that   the   strongest   heuristics   were   H4,   

H6,   and   H7   with   the   weakest   one   being   H3.   To   initialize   the   genetic   algorithm,   these   heuristics   were   then   
given   a   higher   weight   than   all   of   the   other   respective   heuristics.   The   weaker   heuristic   was   also   initialized   to   a   
lower   value.   The   genetic   algorithm   ran   for   20   different   rounds   and   the   results   can   be   seen   in   Table   3.   
  

  

Heuristic    Win   Percentage   

H1    56%   

H2    44%   

H3    0%   

H4    100%   

H5    33%   

H6    78%   

H7    89%   

H8    67%   

H9    22%   

H10    11%   

Run    W1    W2    W3    W4    W5    W6    W7    W8    W9    W10    Fitness  

1    0.322    0.124    0.442    1    0.665    0.657    0.776    0.585    0.127    0.263    57.3   

2    0.136    0.195    0.671    1    0.561    0.548    0.848    0.676    0.278    0.371    58.4   

3    0.356    0.303    0.366    1    0.413    0.669    0.943    0.639    0.153    0.159    59.5   
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Table   3:   Table   showing   the   weights   of   the   heuristics   after   20   iterations   of   the   genetic   algorithm   
  

Although   the   genetic   algorithm   didn’t   converge   to   a   specific   set   of   weights,   there   are   some   observable   
patterns   with   the   heuristic   weights   that   are   presented   in   the   table.   It   is   clear   to   see   that   H4   is   one   of   the   most   
important   heuristics   as   its   weight   is   consistently   the   highest   value   or   tied   for   the   highest   weight.   For   each  
iteration,   H4   receives   a   weight   of   1   which   is   the   highest   value   for   a   weight   that   a   heuristic   can   receive.   Based   
on   the   table   it   is   also   evident   that   H7   is   the   second-highest   weighted   heuristic.   These   results   for   the   most   
prominent   heuristic   are   predictable   based   on   the   outcome   of   the   round-robin   tournament.   H1,   H2,   H9,   H10   
are   rated   rather   lowly   as   heuristics   as   they   can   be   seen   to   never   have   a   weight   over   0.4.   There   does   exist   some   
correlation   between   these   sets   of   algorithms   as   H2   is   simply   the   abstracted   version   of   H1   and   H9   and   H10   
are   the   same   heuristic   but   for   different   opponents.   H3   on   its   own   was   a   bad   heuristic.   It   did   terribly   during   
the   round-robin   tournament   as   is   evidenced   in   the   prior   section.   However,   surprisingly   in   7   of   the   rounds,   it   
had   a   weight   over   0.5.   Lastly,   the   table   also   shows   that   the   weight   associated   with   H8   fluctuates   by   the   
greatest   degree.   Sometimes   it   is   one   of   the   highest   and   then   it   will   suddenly   become   one   of   the   smallest   from   
run   to   run.   This   is   a   heuristic   that   either   needs   to   be   modified   or   omitted   in   future   research   as   it   seems   its   
contribution   is   inconclusive.   With   H4   and   H7   being   the   two   highest-rated   heuristics,   evidently,   the   overall   
heuristic   function   leans   towards   a   more   offensive   strategy   

  

4    0.046    0.286    0.438    1    0.659    0.656    0.741    1    0.116    0.112    59.7   

5    0.301    0.163    0.526    1    0.428    0.887    0.984    0.829    0.392    0.399    63.9   

6    0.274    0    0.418    1    0.462    1    0.855    0.452    0.391    0.366    60.3   

7    0.354    0.197    0.325    1    0.491    0.621    1    0.754    0.272    0.257    61.4   

8    0.245    0.285    0.398    1    0.673    0.584    0.969    0.167    0.319    0.378    61.2   

9    0.379    0.376    0.714    1    0.632    0.797    0.991    0    0.219    0.159    60.7   

10    0.225    0.283    0.576    1    0.644    0.778    0.936    0.987    0.229    0.214    64.9   

11    0.148    0.212    0.777    1    0.637    0.629    0.814    0.654    0.128    0.384    62.1   

12    0.142    0.081    0.474    1    0.653    0.512    0.715    0.594    0.246    0.247    59.9   

13    0.121    0.324    0.434    1    0.466    0.514    0.824    0.632    0.314    0.125    58.3   

14    0.021    0.241    0.339    1    0.599    0.642    0.825    0.586    0.261    0.382    60.5   

15    0.136    0.078    0.317    1    0.437    0.579    0.768    0.993    0.194    0.375    60.9   

16    0.123    0.124    0.314    1    0.413    0.532    1    0.914    0.122    0.339    64.3   

17    0.212    0.388    0.393    1    0.664    0.527    0.957    0.467    0.365    0.326    65.2   

18    0.336    0.132    0.682    1    0.696    0.667    0.748    0.229    0.111    0.229    68.6   

19    0.225    0.122    0.654    1    0.484    0.694    0.918    0.667    0.194    0.297    68.7   

20    0.234    0.266    0.465    1    0.415    0.527    0.962    0.332    0.349    0.329    66.2   
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Figure   4:   Comparison   of   MCT   search   with   the   Alpha   Beta   minimax   at   different   depths   
  

Figure   5:   Comparison   of   MCT   search   with   the   Advanced   Heuristic   minimax   at   different   depths   
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When   analyzing   the   comparison   of   the   MCT   search   and   the   two   different   minimax   functions   
(represented   in   Figure   4   and   Figure   5),   the   number   of   iterations   that   are   performed   for   MCT   search   and   the   
depth   of   the   respective   minimax   algorithms   are   taken   into   account.   In   comparison   to   the   minimax   algorithm,   
MCT   search   is   a   fairly   computationally   expensive   agent.   By   analyzing   the   performance   of   MCT   search   at   
different   numbers   of   iterations,   patterns   can   then   be   extracted   as   to   which   level   of   iterations   are   sufficient   for   
solving   the   problem   as   the   graph   starts   to   flatten   over   time.   It   is   for   this   reason   that   4000   was   settled   on   for   
the   number   of   iterations   as   the   graph   began   to   flatten   around   this   number.     

Based   on   Figure   4   it   is   evident   that   the   MCT   search   performs   very   well   against   the   alpha-beta   
minimax   when   it   is   at   depth   1.   However,   as   the   alpha-beta   minimax   algorithm   increases   in   depth,   we   see   that   
the   performance   of   the   MCT   search   begins   to   drop.   Reaching   about   60%   win   percentage   against   the   
algorithm   at   a   depth   of   4.   It’s   interesting   to   see   the   MCT   search   doing   so   poorly   against   the   minimax   
algorithms   especially   considering   that   the   MCT   search   is   the   only   algorithm   that   was   able   to   get   a   win   
percentage   of   100%   against   the   random   agent.   Something   that   both   minimax   algorithms   were   not   able   to   do.   

Analyzing   the   graph   in   Figure   5,   the   MCT   search   expectedly   performs   worse   against   the   advanced   
heuristic   minimax   with   the   MCT   search   not   even   being   able   to   achieve   a   win   percentage   of   100%   against   the   
heuristic   minimax   at   a   depth   of   1.   It   is   also   shown   that   at   a   depth   of   4   for   the   advanced   heuristic   minimax,   
the   graph   of   the   MCT   search   win   percentages   begins   to   flatten   out   at   around   42%.   For   both   minimaxes   at   a   
depth   of   8,   the   MCT   search   has   trouble   reaching   a   win   percentage   of   over   30%.   It   should   also   be   noted   that   
when   dealing   with   the   minimax   algorithms   at   a   depth   of   8,   their   computational   costs   outweigh   that   of   the   
MCT   search.   

The   last   comparison   that   was   conducted   was   between   the   alpha-beta   pruning   minimax   at   depth   8   and   
the   advanced   heuristic   minimax   at   the   normal   depth   for   the   research,   depth   4,   in   order   to   see   by   what   margin   
the   advanced   heuristic   minimax   was   better   than   the   alpha-beta   pruning   one.   These   two   algorithms   were   run   
for   500   games,   and   surprisingly   the   advanced   heuristic   minimax   still   outperformed   the   alpha-beta   pruning   
minimax   at   a   depth   of   8   with   the   advanced   heuristic   minimax   having   a   win   percentage   of   54.5%.   Although   
not   a   large   margin,   this   is   still   impressive   considering   that   the   advanced   heuristic   minimax   is   operating   at   a   
lower   depth.   

7.   Discussion   
While   the   Actor-Critic   (A3C)   Agent   does   appear   to   have   better   win   percentages,   albeit,   by   a   slight   

margin   in   comparison   to   the   Monte   Carlo   Tree   (MCT)   search   and   Advanced   Heuristic   minimax   (AHM)   
algorithm,   there   are   advantages   and   disadvantages   associated   with   each   of   the   respective   algorithms.   Although   
the   three   aforementioned   algorithms   all   perform   comparably   well,   in   terms   of   overall   strength,   the   Heuristic   
minimax   actually   proves   to   be   the   strongest   algorithm   developed   for   mancala   due   to   its   computational   
efficiency   in   comparison   to   the   other   two   algorithms.   Once   its   heuristic   was   fine-tuned,   the   AHM   algorithm   
was   able   to   perform   considerably   well   without   requiring   too   much   depth.   While   the   A3C   Agent   is   also   
excellent,   it   does   require   loading   a   large   model,   expensive   training,   and   fine-tuning   hyperparameters.   The   
MCT   search   on   the   other   hand   also   plays   acceptably   well   considering   it   does   not   have   any   knowledge   of   the   
game   nor   does   it   employ   any   state   evaluation   functions.   However,   MCT   search   requires   high   numbers   of  
iterations   to   obtain   results,   resulting   in   high   computational   times.   In   addition,   MCT   search   performs   poorly   
against   the   AHM.   The   research   goal   of   creating   a   competitive   artificial   intelligence   algorithm   for   mancala   was   
accomplished.   The   heuristic   minimax   algorithm   is   currently   the   best   algorithm   developed   for   approaching   
this   particular   game   of   mancala   due   to   its   robust,   and   unique   heuristic   function   that   enables   it   to   perform   
competitively   well   at   a   lower   computational   cost   than   the   other   algorithms.   
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The   success   of   the   AHM   can   be   attributed   to   the   fact   that   it   took   advantage   of   a   greedy   strategy,   a   
component   that   was   reflected   in   its   heuristics.   H4   and   H7   were   two   of   the   highest   performing   heuristics   
which   ended   up   receiving   some   of   the   higher   weights   as   the   genetic   algorithm   evolved.   H4   and   H7   were   two  
of   the   main   defining   characteristics   of   the   max   agent,   and   as   is   evident   from   its   relative   performance   mancala   
is   a   game   that   tends   to   reward   a   greedy   strategy.   The   only   problem   is   that   the   max   agent’s   lookahead   is   only   
limited   to   one   with   the   rare   exception   being   in   the   incorporation   of   chain   moves.   AHM   in   a   sense   provides   
the   best   of   both   worlds   by   not   only   being   fine-tuned   to   incorporate   the   greedy   strategy   but   also   providing   a   
higher   look   ahead   and   incorporating   other   strategies   as   well.     

The   random   agent   and   alpha-beta   minimax   (ABM)   both   served   as   excellent   baselines   throughout   the   
experiment.   The   random   agent   was   a   baseline   for   all   the   algorithms   as   it   was   expected   to   perform   the   worse,   
therefore   it   was   beneficial   to   judge   the   performance   of   an   algorithm   based   on   how   it   did   against   the   random   
agent.   The   ABM   algorithm   more   served   as   a   baseline   for   the   AHM.   Although   the   ABM   was   competitive   on   
its   own   and   would   probably   be   the   implementation   used   to   play   as   the   computer   for   a   commercial   version   of   
this   game,   its   main   purpose   was   to   comparatively   measure   the   performance   of   the   AHM   due   to   the   fact   that   
all   of   its   functionality   such   as   the   alpha-beta   pruning   aspect   and   evaluation   function   was   incorporated   and   
extended   upon   in   the   AHM.   The   main   advantage   of   the   ABM   is   its   ability   to   be   competitive   at   the   lowest   
computational   cost   in   comparison   to   all   the   other   complex   algorithms.   

As   stated   earlier,   the   max   agent   was   meant   to   be   representative   of   average   player   gameplay.   Although   
the   max   agent   performed   poorly   against   the   more   complex   algorithms,   it   provided   insight   into   the   fact   that   
mancala   is   a   game   that   is   more   supportive   of   an   offensive   strategy   i.e.   attempting   to   maximize   your   pieces   
rather   than   trying   to   limit   that   of   your   opponents.   This   concept   then   evolved   into   the   AHM.   The   main   
advantage   of   MCT   search   is   the   fact   that   it   requires   no   prior   knowledge   or   a   heuristic   function   to   work.   The   
algorithm   also   performs   extremely   well   against   agents   without   a   concrete   strategy   such   as   the   random   agent   
but   breaks   down   when   going   up   against   more   complex   agents   with   refined   strategies.   The   main   downside   is   
the   computational   toll   that   is   required   in   order   to   get   higher   performance.   The   higher   the   number   of   
iterations,   the   better   the   performance,   although   the   computational   expense   begins   to   outweigh   the   increase   in  
performance   at   around   4000   iterations.   

Lastly,   out   of   all   the   algorithms,   the   A3C   agent   showed   the   most   potential   and   demonstrated   
indications   that   it   could   possibly   outperform   the   AHM   given   a   few   modifications.   The   main   drawback   of   the  
A3C   is   the   fact   that   it   is   meant   to   work   in   a   continuous   action   space.   Possibly   finding   a   method   to   refine   it   to   
work   with   a   deterministic   action   space   such   as   a   board   game   could   possibly   improve   its   performance   on   
mancala.   As   it   stands   right   now,   due   to   the   fact   that   the   A3C   agent   is   meant   to   work   with   more   complicated   
games,   for   approaching   this   process   of   solving   mancala,   the   A3C   agent   seemed   a   bit   overkill   and   was   taxing   
both   in   the   training   and   development   process.   As   previously   mentioned,   based   on   this   research   the   AHM   is   
the   best   competitive   agent   for   the   game   of   mancala.   A   possible   improvement   for   the   future   could   be   further   
refinement   of   its   heuristic   weights   using   the   genetic   algorithm.   Although   the   genetic   algorithm   is   
computationally   expensive,   the   advantage   for   the   AHM   lies   in   the   fact   that   the   genetic   algorithm   does   not   
need   to   be   run   each   time   that   the   AHM   is   used.     

8.   Future   Work   
There   are   several   further   avenues   for   development   of   this   research.   The   main   one   being   the   

development   of   a   graphical   interface   to   accompany   this   project.   In   this   manner,   players   could   select   which  
algorithm   they   would   like   to   play   (organized   by   difficulty)   or   they   could   watch   a   live   animated   version   of   two   
of   the   algorithms   playing   against   each   other.   The   use   of   the   command   line   was   sufficient   for   the   development   
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of   this   research,   however,   a   visual   aspect   would   provide   a   better   connection   with   those   not   familiar   with   how   
the   game   works   or   technical   procedures.     

Another   avenue   for   future   research   is   the   analysis   of   different   variations   of   mancala.   As   
aforementioned,   there   are   over   800   variations   of   the   game   all   with   different   rules   and   playing   styles.   To   name   
a   few   of   the   popular   ones   in   addition   to   Kalah   there   is   also   Awari,   Oware,   Vai   Lung   Thlan,   Ohvalhu.   Some   of   
these   variations   also   have   different   board   configurations.   Applying   these   algorithms   to   some   of   the   different   
variations   would   provide   interesting   insight   especially   since   the   advanced   heuristic   minimax   was   originally   
created   to   work   with   Kalah.   

Lastly,   as   was   mentioned   earlier,    one   of   the   main   contributing   factors   to   the   success   of   the   AHM   was   
the   refinement   of   the   weights   which   was   made   possible   through   the   genetic   algorithm.   Taking   into   
consideration   how   well   the   genetic   algorithm   performed   in   regards   to   the   refinement   of   the   heuristic   and   how   
the   A3C   agent   works   it   is   possible   that   a   combination   of   the   two   would   yield   beneficial   results   to   research   on   
the   game.   This   would   look   similar   to   the   research   applied   by   Wang   [19]   in   regards   to   a   hybrid   variation   of   a   
genetic   algorithm   and   a   neural   network.   That   being   said,   both   of   these   agents   are   very   computationally   
expensive,   therefore   a   method   for   cutting   down   the   computational   cost   of   the   A3C   agent   could   possibly   be   
modifying   it   to   work   primarily   with   a   continuous   action   space   to   more   of   a   deterministic   one,   whether   this   
means   the   incorporation   of   predefined   heuristics   or   some   other   method.   
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