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Search for Lepton Flavor Violation
in ep Collisions at 300 GeV

Center of Mass Energy

ZEUS Collaboration

Abstract

Using the ZEUS detector at the HERA electron-proton collider, we have searched
for lepton flavor violation in ep collisions at a center–of–mass energy (

√
s) of 300

GeV. Events of the type e+ p → ℓ+X with a final–state lepton of high transverse
momentum, ℓ = µ or τ , were sought. No evidence was found for lepton flavor
violation in the combined 1993 and 1994 data samples, for which the integrated
luminosities were 0.84 pb−1 for e−p collisions and 2.94 pb−1 for e+p collisions. Limits
on coupling vs. mass are provided for leptoquarks and R–parity violating squarks.
For flavor violating couplings of electromagnetic strength, we set 95% confidence
level lower limits on leptoquark masses between 207 GeV and 272 GeV, depending on
the leptoquark species and final–state lepton. For leptoquark masses larger than 300
GeV, limits on flavor–changing couplings are determined, many of which supersede
prior limits from rare decay processes.
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1 Introduction

Lepton flavor is conserved in all interactions of the Standard Model (SM); discovery of
lepton–flavor violation (LFV) in any form would be evidence for physics beyond our
principal particle physics paradigm. Many searches for specific reactions which violate
lepton flavor have been performed. The most sensitive include searches for µ + N →
e + N using very low–energy muons[1], for the forbidden muon decay µ → eγ [2], and
for forbidden leptonic kaon decays[3]. The limits from these processes are sensitive to
e ↔ µ flavor change, but not to e ↔ τ . Also, each of these processes involves specific
quark flavors: in the first case, only first generation quarks participate; in the second case,
for mechanisms which involve virtual quarks, the same quark flavor must couple to both
e and µ; in the last case, strange quarks must be involved. Since lepton flavor change
could involve the τ -lepton or could be accompanied by quark flavor change, there may
be LFV reactions which would be invisible to these very sensitive experiments. Hence,

6



we have no a priori reason to assume that flavor violation, should it exist, will be visible
through these specific reactions. Therefore, though less sensitive in an absolute sense,
other manifestations of flavor violation, like forbidden leptonic decays of B– and D–
mesons and of τ–leptons, are being investigated [4].

We report here a search for LFV carried out by the ZEUS collaboration at the HERA ep
collider where we have sought instances of the reaction

e+ p → ℓ+X, (1)

where ℓ represents an isolated final–state µ or τ with large transverse momentum and
X represents the hadronic final state. Processes with such topologies can be found in
ZEUS with good efficiency and with little background. It should be emphasized that any
reaction of the type (1) in which a final–state high–energy µ or τ replaces the incident
electron1 would be direct evidence for physics beyond the Standard Model, independent
of the underlying mechanism. Furthermore, this reaction should occur at some level for
a wide range of possible LFV mechanisms. LFV mechanisms which also involve a quark
flavor change, or which are stronger for heavier quarks [5] may be seen more readily at
HERA, where the sensitivity is largely independent of quark flavor2, than in low–energy
experiments.

The lepton–flavor violating reaction (1) could occur via s–, u–, or t–channel exchanges
as shown in figure 1. For the s– and u–channel processes the exchanged particle has the
quantum numbers of a leptoquark (or an R–parity violating squark). The cross sections
depend on the leptoquark species and mass, and on the couplings, λeq1 and λℓq2 shown
in figure 1. For the case of t–channel exchange, the process would be mediated by a
flavor–changing neutral boson.

For definiteness, we will describe reaction (1) with leptoquarks as the carrier of the LFV
force, treating separately the cases of direct leptoquark production and the virtual effects
of leptoquarks with masses above 300 GeV. The similarity of production formulae between
R–parity–violating squarks and certain leptoquarks permits us to relate the couplings
implied by the two mechanisms for a specified cross section. Results on flavor violation
induced by leptogluons or by flavor–changing neutral bosons as well as details of the
technique used in this analysis are also available [6]. The H1 collaboration [7] has also
searched for direct production of leptoquarks with flavor–violating couplings using similar
methods.

This analysis is based on an integrated luminosity of 0.84 pb−1 (2.94 pb−1 ) of e−p (e+p)
data taken during the 1993 and 1994 running periods. Beam energies at HERA were 26.7
GeV (27.5 GeV) for the electron beam in 1993 (1994) and 820 GeV for the proton beam.
The resulting center–of–mass energy of 296 GeV (300 GeV) is an order of magnitude
higher than for fixed–target lepton–nucleon scattering experiments.

1In the following, “electron” is generically used to denote both electrons and positrons.
2 Though the threshold for top (t) quark production is below the HERA center–of–mass energy, with

present luminosities t production would only be observable if the couplings were very large. Therefore,
we choose not to report on LFV couplings involving top in this paper.
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2 Scenarios of Lepton Flavor Violation

2.1 Leptoquarks

A leptoquark (LQ) is a hypothetical color triplet boson with fractional electric charge,
and non–zero lepton and baryon numbers. Such particles are often invoked in extensions
of the SM, e.g. in grand unified theories and technicolor models [8]. It is possible, indeed
desirable in some models, that a LQ couple to multiple lepton and/or quark flavors,
thereby providing a mechanism for flavor violation.

The simplest models involving a flavor–violating leptoquark would be characterized by
three parameters: the leptoquark mass, and the coupling at each lepton–quark–leptoquark
vertex. In order to avoid models which would involve additional parameters, we have
assumed the following four points:

1) the LQ has SU(3)C × SU(2)L × U(1)Y invariant couplings,

2) the LQ has either left– or right–handed couplings, but not both (i.e. λLλR = 0),

3) the members of each weak–isospin multiplet are degenerate in mass,

4) one LQ species dominates the production process.

There are fourteen species of leptoquarks which satisfy these conditions [9]. For fermion
number F ≡ L + 3B (L and B denote lepton and baryon number) equal to zero, the
species are denoted [8] SL

1/2, S
R
1/2, S̃

L
1/2, V

L
0 , V R

0 , Ṽ R
0 , and V L

1 . For F = 2, they are SL
0 ,

SR
0 , S̃

R
0 , S

L
1 , V

L
1/2, V

R
1/2, and Ṽ L

1/2. Here S and V indicate scalar and vector leptoquarks
respectively, which couple to left– (L) or right–handed (R) leptons as indicated by the
superscript. The subscript gives the weak isospin of the LQ3. In s-channel reactions,
F = 0 LQ cross sections are higher in e+p collisions, where they are produced via e+q
fusion, than in e−p collisions where e−q fusion occurs. The reverse is true for an F = 2
leptoquark.

A LQ scenario is defined by the leptoquark species, by the generations of the quarks
which couple to the electron and to the final–state lepton, and by the final–state lepton
flavor. Hence there are 14× 3× 3× 2 = 252 different LQ scenarios, each characterized by
two dimensionless couplings, λeq1 and λℓq2, defined in figure 1, which could induce flavor
violation. Such LQs would also mediate flavor–conserving interactions with a final–state
e or νe, which are not considered in this paper.

As an illustration, we show in figure 2 the present limits [10] on λeq1λℓq2 versus LQ
mass, MLQ, for reactions which could proceed through the left–handed scalar isosinglet
LQ, SL

0 . Note that each of the limits assumes that specific quark flavors couple to e
and µ. For example, the most sensitive limit, from µN → eN , applies only for first–
generation quarks in both initial and final states. Also in this figure are the results of
direct searches for leptoquark pair production. Searches in e+e− collisions at LEP[11]

3 The tilde differentiates LQ species which differ only in that one species couples to u-type quarks and
the other to d-type quarks. See [9] for details.
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exclude scalar leptoquarks lighter than about 45 GeV which couple to e, µ, τ , or any
neutrino. For leptoquarks with couplings of electromagnetic strength, masses below 73
GeV are excluded. While the LEP experiments did not search for flavor violation, their
non-observation of eeqq, µµqq, ττqq, or ννqq final states kinematically consistent with
leptoquark pair production imply flavor–violating leptoquark mass limits which are weaker
by at most a few GeV. At the Tevatron [12], searches in pp collisions have excluded scalar
leptoquarks lighter than 131 GeV (96 GeV) for an assumed branching fraction to qµ of
100% (50%). These limits on MLQ are independent of the LQ couplings in most models.

The LQ–induced cross sections for reaction (1), given in detail in the appendix, depend
on the initial quark density, the couplings, and the species of LQ involved in the reaction,
as well as on the kinematic event variables x (the Bjorken scaling variable) and y (the
inelasticity). Here x is defined as x = −q2/(2q · P ) and y as y = (q · P )/(k · P ), where
k, k′, and P are the four–momenta of the initial–state electron, the final–state lepton
and the proton respectively, and q = k − k′. The square of the center–of–mass energies
of the electron–proton and the electron–quark systems are given by s = (k + P )2 and
ŝ = xs respectively. The remaining Mandelstam variables are given by t = −sxy and
u = −sx(1− y).

For a given coupling, the cross section is largest when the LQ mass, MLQ, is less than√
s. In this case, the LQ is produced in the s–channel, as indicated in figure 1a. Such a

leptoquark will appear as a narrow resonance in the x–distribution peaked at x0 ≡ M2
LQ
/s.

In the narrow–width approximation described in the appendix, the cross section for this
process using unpolarized beams can be written

σeq1→ℓq2 =
π

4s
λ2

eq1
Bℓq2 q1(x0,M

2
LQ
)
∫

dyf(y), (2)

where f(y) =

{
1 scalar LQ
6(1− y)2 vector LQ,

and q1(x,M
2
LQ
) is the quark density in the proton for the initial–state quark (or antiquark)

flavor q1, λeq1 is the coupling at the LQ production vertex andBℓq2 is the branching fraction
of the LQ to lepton ℓ and quark flavor q2. In this process, the final state lepton will have
a transverse momentum (P ℓ

t ) of order MLQ/2.

For resonant s–channel production, the cross section for flavor–violating events is propor-
tional to λ2

eq1
Bℓq2. We will set limits on this quantity as a function of MLQ.

For the caseMLQ ≫ √
s, either or both s– and u–channel contributions may be important.

The corresponding cross sections can be written as

σeq1→lq2 =
s

32π

[
λeq1λℓq2

M2
LQ

]2 ∫
dx dy xq1(x, ŝ)f(y), (3)

σeq2→lq1 =
s

32π

[
λeq1λℓq2

M2
LQ

]2 ∫
dx dy xq2(x,−u)f(y), (4)

where f(y) =





1

2
s-channel scalar LQ

1

2
(1− y)2 u-channel scalar LQ

2(1− y)2 s-channel vector LQ
2 u-channel vector LQ,
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and the indices q1 and q2 specify the quark flavors which couple to the electron and the
final–state lepton, respectively. Here the final–state lepton again will have large transverse
momentum with P ℓ

t ≈
√
ŝ/2.

Notice that in the high–mass case, all information about the leptoquark mass and cou-
plings is contained in the quantity λeq1λℓq2/M

2
LQ
, which is the quantity on which we set

limits. As might be anticipated, other LFV processes mediated by leptoquarks, such as
flavor violating meson decays, are sensitive to exactly this quantity. Hence, our results
may be compared directly with prior LFV searches. This is done in section 5.

2.2 R–Parity Violating Squarks

Squarks (q̃) are the hypothesized supersymmetric partners of quarks. In supersymmetry
(SUSY), R–parity is defined as RP = (−1)3B+L+2S where B, L, and S denote baryon
and lepton numbers and spin respectively. This implies that RP = +1 for SM particles
and RP = −1 for SUSY particles. If R–parity were conserved, SUSY particles would be
produced in pairs and ultimately decay into the lightest supersymmetric particle (LSP),
which would be stable and neutral. We refer here to this LSP as the photino (γ̃). In
a model with R–parity violation, denoted 6RP , single SUSY particle production would
occur and the LSP would decay into SM particles. Of particular interest for ep collisions

are R–parity violating superpotential terms of the form [13] λ′

ijkL
i
LQ

j
LD

k
R. Here LL, QL,

and DR denote left–handed lepton and quark doublets and the right handed d-quark
singlet chiral superfields respectively, and the indices i, j, and k label their respective
generations. Expanded into four-component Dirac notation, the corresponding terms of
the Lagrangian are

L = λ′

ijk

[
ν̃i
Ld

k

Rd
j
L + d̃jLd

k

Rν
i
L + (d̃kR)

∗(νi
L)

cdjL − ẽiLd
k

Ru
j
L − ũj

Ld
k

Re
i
L − (d̃kR)

∗(eiL)
cuj

L

]
+ h. c.

(5)
For i = 1, the last two terms will result in ũ and d̃ production in ep collisions. Identical
terms are found in the Lagrangians for the scalar leptoquarks S̃1/2 and S0, respectively
[14].

Lepton–flavor violating ep interactions would occur in a model with two non-zero couplings
λ′

ijk which involve different lepton generations. For example, the process ed → ũj → µdk

shown in figure 3a involves the couplings λ′

1j1 and λ′

2jk. Similarly, non–zero values for

λ′

11k and λ′

3jk would lead to the reaction eu → d̃k → τuj shown in figure 3b. Down–type

squarks have the additional decay d̃k → νidj, a mode unavailable to up–type squarks.

The difference between mechanisms involving R–parity violating squarks and leptoquarks
is that the squarks may have additional R-parity conserving decay modes with final–state
neutralinos, such as q̃ → qγ̃ (shown in figure 3c) or with final–state charginos, as in
ũ → dχ̃+. The branching ratios Bqγ̃ for the RP–conserving decay q̃ → qγ̃ and B′

ijk for
any 6RP decay mode are related [14] by

B′

ijk

(λ′

ijk)
2
=

Bqγ̃

8παe2q̃(1−m2
γ̃/m

2
q̃)

2
, (6)

where λ′

ijk is the 6RP coupling at the decay vertex, α is the electromagnetic coupling4, eq̃
4We evaluate α at the scale MZ (α=1/128) because ŝ is of order MZ at HERA.

10



is the squark charge in units of the electron charge and the photino and squark masses
are mγ̃ and mq̃, respectively.

Coupling limits for LFV decays of an SL
0 leptoquark can be interpreted as d̃k coupling

limits through the correspondence λeq1

√
Bℓq2 = λ′

11k

√
B′

ijk where i and j are the genera-

tions of the LQ decay products ℓ and q2. Similarly, coupling limits on the S̃L
1/2 LQ can be

converted to limits on couplings to ũj via λeq1

√
Bℓq2 = λ′

1j1

√
B′

ijk, where i and k are the

generations of ℓ and q2.

If the stop (t̃) [15] is lighter than the top quark, then the RP–conserving decay t̃ → tγ̃
(figure 3c) will not exist. In the case of t̃, the correspondence with the coupling limit

on S̃L
1/2 is given by λed

√
Bℓq2 = cos θtλ

′

131

√
B′

i3k where θt is the mixing angle between the
SUSY partners of the left– and right–handed top quarks. Over a broad range of possible
stop masses, it is expected that cos2 θt ∼ 0.5 [15].

3 The ZEUS Detector and Event Simulation

The main components of the ZEUS detector [16] used for this analysis were the uranium–
scintillator calorimeter (CAL) [17] and the central tracking detector (CTD) [18].

The CAL, which covers polar angles5 between 2.2◦ and 176.5◦, is divided into forward
(FCAL), barrel (BCAL), and rear (RCAL) parts. Each part is further subdivided into tow-
ers which are longitudinally segmented into electromagnetic (EMC) and hadronic (HAC)
sections. In depth, the EMC is one interaction length; the HAC sections vary from six
to three interaction lengths, depending on polar angle. Under test beam conditions [17],

the calorimeter has an energy resolution of σE(GeV) = 0.18
√
E(GeV) for electrons and

σE(GeV) = 0.35
√
E(GeV) for hadrons. In this analysis, only cells with energies above

noise suppression thresholds (60 MeV for EMC, 110 MeV for HAC) were used.

A superconducting coil located inside the CAL provides a 1.43 Tesla magnetic field parallel
to the beam axis in which the charged particle tracking system operated. The interaction
vertex is reconstructed with a resolution of 4 mm (1 mm) along (transverse to) the beam
direction. The muon detection system [19] was used to check the efficiencies and the
background estimates for the primary muon identification, which used only the CAL and
the CTD. The muon detectors are also divided into three sections covering the forward,
barrel, and rear regions. In the barrel and rear sections, which were used for this analysis,
the detectors consist of eight layers of limited streamer tubes, four layers on each side
of the 80 cm thick magnetized iron yoke. Luminosity was measured [20] from the rate
of bremsstrahlung events (ep → epγ) detected by a photon calorimeter (LUMI) located
downstream of the main detector. The luminosity is known to 3% for the e−p data and
to 2% for the e+p data.

To evaluate detection efficiencies, we have simulated flavor–violating LQ processes using a

5 The ZEUS coordinate system is right–handed with the Z axis pointing in the proton beam direction,
hereafter referred to as forward, and the X axis horizontal, pointing toward the center of HERA. The
polar angle θ is taken with respect to the proton beam direction from the interaction point.
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modified6 version of pythia [21] and also with lqmgen which is based on the differential
LQ cross-sections given in [9]. The calculations included initial state bremsstrahlung.

For background estimation, charged–current (CC) and neutral–current (NC) deep–inelastic
scattering (DIS) events with electroweak radiative corrections were simulated using lepto
[22] interfaced to heracles [23] via django [24]. The MRSA [25] parton density pa-
rameterization was used. The hadronic final state was simulated using ariadne [26] and
jetset [21].

Photoproduction processes were simulated using herwig [27], and photoproduction of cc
and bb pairs by pythia and aroma [28]. The processes γγ → µ+µ− and γγ → τ+τ−

were generated using zlpair [29]. Finally, production of W bosons was simulated using
epvec [30].

All generated events were passed through a geant [31] based detector simulation which
tracked final state particles and their decay and interaction products through the entire
detector. The simulated events were processed with the same analysis programs as the
data.

4 Trigger and Analysis

The signature of LFV events (e + p → ℓ +X) in this experiment is an isolated µ or τ of
high transverse momentum, P ℓ

t ∼
√
ŝ/2, balanced by a jet of hadrons.

4.1 Search Strategy

Our search strategy relies on the fact that the LFV signal events will almost always have
a large net transverse momentum 6P cal

t measured in the calorimeter. We reconstruct 6P cal
t

as 6P cal
t = (P 2

X + P 2
Y )

1/2. Here PX =
∑

iEi sin(θi) cos(φi) and PY =
∑

i Ei sin(θi) sin(φi)
where the sums run over all calorimeter cells and Ei, θi, and φi are the energy, polar angle
and azimuthal angle of cell i, calculated using the reconstructed event vertex. We also
reconstruct the azimuth of the missing transverse momentum, determined from cosφmiss =
−PX/ 6P cal

t and sin φmiss = −PY / 6P cal
t .

A high energy muon is a minimum ionizing particle, typically producing a measured energy
of about 2 GeV in the calorimeter. If the much larger muon transverse momentum, P µ

t ,
is balanced by a jet of hadrons, then 6P cal

t ≈ P µ
t . Thus the signature for such an event

would be a large 6P cal
t and a high momentum track which points to an isolated calorimeter

cluster with approximately 2 GeV of energy at an azimuthal angle φmiss.

A final–state τ decays promptly to a small number of charged particles (1 or 3, 99.9% of
the time), zero or more neutral hadrons, and at least one neutrino. Since the τ mass is
small (mτ = 1.78 GeV) compared to its transverse momentum, the τ decay products will

6The final–state electron and quark from these generators were replaced by the appropriate lepton
(µ or τ), and quark species, before the simulation of parton showering and fragmentation. Both s– and
u–channel exchange contributions were included.
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be collimated in a cone of opening angle ∼ 0.03 radians. For events in which the τ decays
via τ → µνν, the experimental signature will be similar to an event with a final state
muon except with P µ

t < 6P cal
t . If the τ decays via τ → eνν, the event will be characterized

by large 6P cal
t (due to the undetected neutrinos) and the presence of a high–transverse–

momentum electron with azimuth φmiss. Finally, in the case of a hadronic τ decay, we
would again see a large 6P cal

t due to the neutrino, and a compact hadronic cluster with 1
or 3 tracks, also at azimuth φmiss.

4.2 Trigger

Data were collected with a three–level trigger system [16]. Since the signature which we
are seeking is one with missing transverse momentum measured in the calorimeter, our
triggering scheme was largely calorimeter based. The first–level triggers used net trans-
verse energy, missing transverse energy, as well as EMC energy sums in the calorimeter.
The thresholds were well below the offline requirements. The second–level trigger rejected
backgrounds (mostly p–gas interactions and cosmic rays) for which the calorimeter timing
was inconsistent with an ep interaction. Events were accepted if 6P cal

t exceeded 9 GeV
and either a track was found in the CTD or at least 10 GeV was deposited in the FCAL.
The latter alternative was intended to accept events with jets which are too forward for
the tracks to be observed in the CTD. The third–level trigger applied stricter timing cuts
and also pattern recognition algorithms to reject cosmic rays.

4.3 Leptoquark Mass Reconstruction

For MLQ < 300 GeV, the leptoquark is produced as an s-channel resonance and conse-
quently, the invariant mass distribution of the qℓ final state is sharply peaked at MLQ.
When searching for a leptoquark of a given mass, the expected background can be reduced
by requiring the reconstructed qℓ mass to be consistent with MLQ.

We reconstruct the leptoquark mass as follows using a simple ansatz based on three
approximations: 1) the four–momentum of all final state muons and neutrinos can be
represented by a single massless pseudoparticle; 2) the contribution of the proton remnant
to the reconstructed mass can be ignored; and 3) no energy escapes through the rear beam
hole.

The four–momentum of the invisible pseudoparticle, P invis, is related to the net four–
momentum P = (E, PX , PY , PZ) measured in the calorimeter as P invis

X = −PX , P
invis

Y =
−PY , and E − PZ + Einvis − P invis

Z = 2Ee where Ee is the electron beam energy. The
reconstructed leptoquark mass is given by (M rec

LQ
)2 = (P + P invis)2.

We have applied this mass reconstruction to simulated LFV events and determined two
functions, µrec

LQ
(MLQ) and σrec

LQ
(MLQ) which give the mean and the standard deviation of a

Gaussian fit to the reconstructed mass distribution as a function of the true MLQ. Studies
of simulated LQ signals indicate that the mass resolution improves from about 13% at
MLQ = 100 GeV, to about 6% at MLQ = 250 GeV.
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4.4 Event Selection

The most important offline selection requires that 6P cal
t exceed 12 GeV. The initial event

selection is designed to accept all ep collisions which meet this condition, while efficiently
rejecting the high–rate backgrounds from cosmic rays, proton–gas interactions, off–beam
protons, and beam–halo muons. Triggers from these backgrounds usually do not have a
reconstructed vertex. In cases where a spurious vertex is reconstructed, it typically is made
from a small number of low–momentum spiraling tracks which do not intersect with the
beam line. Unlike ep collisions, for which the distribution of Z vertex position is centered
at Z = 0 with an r. m. s. width of 12 cm, the spurious vertices have a Z distribution
which is roughly uniform. In cases of protons colliding with residual gas in the beam pipe,
or with the beam–pipe itself, the low–multiplicity spurious vertex is accompanied by a
large number (10 to 100) of tracks which are not correlated with the vertex. Occasionally
a cosmic ray or a beam–halo muon will coincide with an ep interaction which provides the
reconstructed vertex. In these cases the vertex tracks are typically of quite low momentum
(O(100 MeV)).

In order to remove such backgrounds, we require that a vertex is reconstructed and that it
lie within 50 cm of the nominal interaction point. We define Ntrk to be the total number
of reconstructed tracks, Ngood to be the number of tracks with transverse momentum
Pt > 300 MeV and a distance of closest approach to the beam–line of less than 1.5 cm,
and Nvtx to be the number of tracks forming the vertex. We require Ngood ≥ 1 and
Ngood ≥ 0.05Ntrk. In order to reject proton–induced background, for which the energy
deposited in the calorimeter is concentrated at small polar angles, we remove events with
PZ/E > 0.8(0.94)7 if Ntrk − Nvtx ≥ 80 (20). In addition, we require the timing of each
calorimeter cluster with energy above 2 GeV to be consistent with an ep interaction. To
reduce the cosmic ray background, we apply an algorithm which rejects events in which
the pattern of calorimeter energy deposits is consistent with a single penetrating particle
traversing the detector.

The 175 events which passed these cuts were visually examined and 29 events clearly
initiated by cosmic rays, muons in the beam halo, or anomalous photomultiplier discharges
were removed, leaving 146 ep collision events. These events were divided into two classes:
those for which no isolated electron with energy Ee > 10 GeV was found in the calorimeter
(class 6e); and those for which such an electron was found (class e). The following selection
cuts, which were developed in Monte Carlo studies, were applied to each sample in order
to eliminate SM backgrounds.

6e: There were 114 events with no isolated electron. Six events were rejected because
an electron of more than 5 GeV was observed in the luminosity electron calorimeter
and they were thus recognized to be background due to photon–proton (γp) col-
lisions. This left 108 6e events, which agrees well with the Monte Carlo estimates
of 100 CC DIS events and 15 γp and γγ events. The 6P cal

t distribution of this 6e
sample is compared with the Monte Carlo prediction in figure 4a. The 6e sample
serves as the source of flavor violation candidates with a muon in the final state, as

7 Here PZ and E are reconstructed from the calorimeter cells in a manner similar to the components
PX and PY described above.
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well as of candidates with final–state τ ’s which subsequently decay via τ → µνν or
τ → ν+hadrons.

e: There were 32 events which contained an isolated electron. In order to reject NC
DIS background, for which the electrons are concentrated at large polar angles, we
required the electron polar angle to be less than 100◦. After this cut, 12 events
remained in the e sample, compatible with the Monte Carlo prediction of 14 NC
DIS events. The 6P cal

t distribution of these remaining events is compared with the
Monte Carlo prediction in figure 4b. LFV candidates with a final–state τ which
decays via τ → eνν (18% branching fraction) were sought in this sample.

The final cuts rely on a clustering algorithm8 which assigns each calorimeter cell above
noise threshold to one and only one cluster. Each cluster is characterized by its en-
ergy, Eclu, as well as the energy–weighted mean azimuth, φclu, and pseudorapidity, ηclu =
− ln[tan(θclu/2)]. We expect the final–state lepton in a LFV event to produce a single
isolated cluster. To decide if a cluster is isolated, we examine the set of all calorimeter
cells which are within 0.8 units in ηφ of the cluster ([(φclu−φcell)

2+(ηclu−ηcell)
2]1/2 < 0.8).

A cluster is defined to be isolated if the summed energy of all calorimeter cells in this set
which do not belong to the cluster is below 2 GeV. For each cluster, we also compute φclu,
which is defined as the energy weighted mean azimuth of all cells in the entire calorime-
ter, except for those assigned to the cluster. Note that for LFV events φclu differs only
slightly from φmiss which is computed using all calorimeter cells. A cluster is said to be
6P cal

t –aligned if it satisfies the inequality: cos(φclu −φclu) < cos 170◦. This ensures that the
isolated cluster is opposite in azimuth to the rest of the energy in the calorimeter.

To enter the final sample for µq or τq final states, an event must satisfy the criteria of
one of four selections, described below.

µ or τ → µ: In a class 6e event, there must exist an isolated 6P cal
t –aligned cluster with

energy 0.5 GeV < Eclu < 6 GeV and at most 80% of its energy in the electromagnetic
layer of the calorimeter. It must have exactly one matching track9 and that track
must have momentum exceeding 20 GeV. The efficiency10 to satisfy these cuts for
scalar (vector) leptoquarks which decay to µq decreases with LQ mass from 74%
(78%) at MLQ = 80 GeV to 31% (50%) at MLQ = 260 GeV. The background
estimate for the µ selection was 0.1 events from the inelastic process γγ → µ+µ−.
Zero events were observed in the data.

To check the efficiency of the muon selection, we performed an independent event
selection which did not use the CAL, but required a track in the barrel or rear muon
chambers which was matched to a CTD track with a transverse momentum of at
least 5 GeV. In order to select events with isolated muons, we rejected events which
had an electron found in the calorimeter or had more than three tracks fitted to

8 The clustering algorithm joins each cell with its highest energy neighbor, thus producing one cluster
for each cell which has more energy than any of its neighbors. Two cells are defined as neighbors if they
are in towers which share a face or an edge. Cells on the forward or rear edges of the BCAL are also
neighbors with the FCAL or RCAL cells which are behind them, as viewed from the interaction point.

9 A matching track is defined such that the distance of closest approach between the extrapolated
track and the calorimeter cluster is less than 30 cm.

10All quoted efficiencies include the trigger efficiency.
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the vertex. A total of 15 events, which contained 17 CTD–matched muon chamber
tracks passed these cuts. This number agrees with the Monte Carlo estimate of 20
events from γγ → µ+µ−. All 17 tracks were matched to an isolated calorimeter
cluster which passed the cuts described above (except for the 6P cal

t -alignment).

τ → e: In a class e event, the isolated electron must be 6P cal
t –aligned. The efficiency

to satisfy these cuts for scalar (vector) leptoquarks with final–state τq, and the
subsequent decay τ → eνν, rises with LQ mass from 23% (17%) at MLQ = 80 GeV
to 75% (75%) at MLQ = 260 GeV. The background estimate for the τ → e selection
was 0.2 events from NC DIS. Zero events were observed in the data.

τ → hadrons: In a class 6e event, there must exist an isolated 6P cal
t –aligned cluster with

Eclu > 10 GeV, which has either 1 or 3 matching tracks. At least one track must
have a momentum exceeding 5 GeV. The efficiency to satisfy these cuts for scalar
(vector) leptoquarks with final–state τq and hadronic τ decay rises with leptoquark
mass from 15% (12%) at MLQ = 80 GeV to 39% (47%) at MLQ = 260 GeV. We
estimated a background of 0.4 events for this selection coming from CC DIS (0.2
event), γγ → µ+µ− (0.1 event), and cc production (0.1 event). We observed zero
events.

6P cal
t > 80 GeV: Leptoquarks with mass in the range 200 GeV< MLQ < 300 GeV would

be strongly boosted in the forward direction so that the final state µ or τ would
often have polar angle less than 10◦. In such cases, the final–state lepton would be
outside the CTD acceptance and would consequently fail the track matching cuts.
In order to maintain high efficiency at these masses, we accept any event from either
class e or class 6e for which 6P cal

t > 80 GeV. For 240 GeV leptoquarks which decay
to µq, accepting events with 6P cal

t > 80 GeV increases the overall acceptance from
36% to 69% for scalars, and from 53% to 76% for vectors. For the 6P cal

t > 80 GeV
selection, we estimated a background of 1.0 events from CC DIS and we observed
zero events.

For the low–mass leptoquark search (MLQ < 300 GeV), one additional cut was applied,
which, in contrast to all cuts described above, depends on MLQ, the mass of the LQ being
searched for. The leptoquark mass was reconstructed using the method described in 4.3
and we required that the reconstructed mass must lie within 3σrec

LQ
(MLQ) of µ

rec

LQ
(MLQ).

5 Results

With no candidate events for LFV found in either the e−p or e+p data samples with
integrated luminosities Le− = 0.84 pb−1 and Le+ = 2.94 pb−1 , we set upper limits on the
couplings of the various LFV processes described in section 2. The upper limit on the
coupling λ is obtained from the relation N =

∑
i=e+,e− Liǫiσi(λ), where ǫ is the efficiency,

σ(λ) is the cross section for a coupling λ, and N is the Poisson 95% confidence level (CL)
upper limit [32] on the number of events. The signal efficiencies and background estimates
were determined by Monte Carlo studies. We estimate the systematic uncertainties in
the efficiencies to be 5%. Cross sections were calculated using the formulae given in
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the appendix and the GRV–HO [33] parton density parameterization. Cross sections
calculated using the MRSH [34] parameterization differ in magnitude by less than 12%
for u, d, s, or c quarks in the initial state, and by less than 19% for initial–state b quarks.

5.1 Low-Mass Leptoquark Limits (MLQ < 300 GeV)

In the case of low–mass leptoquarks, we calculate upper limits on λ2
eq1

Bℓq2 using equation
2. Since our limits are largely independent of the final state quark type (as long as the

top quark is not involved), we show in figures 5 and 6 the upper limits on λeq1

√
Bℓq2, for

scalar and vector leptoquarks where q1 is a first–generation quark and q2 is the final–state
quark of any generation (except top). The limits for ℓ = µ and for ℓ = τ are shown
separately as a function of LQ mass for the various scalar and vector LQ species. We note
that for several LQ species, we probe coupling strengths as small as λ2

eq1
/4π ≈ 10−3α for

MLQ = 100 GeV and Bℓq2 = 0.5.

In figure 7 we compare these limits on LFV with those from previous searches for two
representative LQ species, S̃R

0 and V R
0 . Assuming that Bℓq2 = 0.5, we plot as a solid curve

the upper limit on λeq1 as a function of the LQ mass. Curves are shown for both µ (upper
plots) and τ (lower plots) final states. In contrast with many other limits on LFV, the
coupling limits from this experiment apply to final–state quarks of any generation (except
top). The various broken curves are low–energy limits quoted from reference [10]. For
each of these curves, the pairs of numbers in parentheses denote the generations of quarks
which couple to e and ℓ. Coupling limits for Bℓq 6= 0.5 can be obtained by multiplying the

limit on λeq1 plotted in figure 7 by
√
0.5/Bℓq. We emphasize two important implications

of figure 7:

1. The ZEUS limits on ed → µb via S̃R
0 (V R

0 ) for MLQ <
√
s supersede previous

upper bounds [37] from B → µe, for MLQ below 200 GeV (220 GeV). On the other
hand, the limits from µ conversion in titanium [1] and from forbidden K decays [3]
which involve only first and second generation quarks are much stronger than the
corresponding ZEUS limits.

2. ForMLQ below 200 GeV, the ZEUS limits on ed → τq2 through S̃R
0 and V R

0 supersede
previous limits from τ → πe [35], τ → Ke [36], and B → τeX [37], for q2 = d, s,
and b, respectively.

Figure 7 illustrates examples in which the existing low–energy limits, though less stringent
than the ZEUS limits at low MLQ, become more stringent at higher masses. As described
in the next section, this is not always the case.

An alternative approach to setting limits, which was employed in reference [7] is to assume
that the branching ratio Bℓq2 is given11 by λ2

ℓq2/(λ
2
eq1 + λ2

ℓq2), and to set limits on λℓq2 for
a fixed value of λeq1. Such limits are shown in figure 8. For F = 0 LQs, our limits are
similar to those of reference [7], while for F = 2 LQs, the ZEUS limits are stronger due
to inclusion of e−p data.

11This formula for Bℓq2 assumes that the leptoquark does not couple to neutrinos.
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Finally, a third way to illustrate the sensitivity is to assume that the LQ couplings have
electromagnetic strength (λ2

eq1
= λ2

µq2
= 4πα for LQs which couple to e and µ) and to

determine a lower limit on the allowed LQ mass. Such limits are shown in table 1. For
scalar leptoquarks, lower mass limits between 207 GeV and 259 GeV are set. Somewhat
stronger mass limits, between 219 GeV and 272 GeV, are set on vector leptoquarks for
which both the production cross section and detection efficiency are higher.

5.2 High–Mass Leptoquark Limits (MLQ ≫ 300 GeV)

For high–mass leptoquarks, the cross section is proportional to the square of Ψeq1ℓq2 ≡
λeq1λℓq2/M

2
LQ
, and a factor which does not depend on either the leptoquark couplings

or mass (see equations 3 and 4). This is also true of rates for lower energy forbidden
processes [10]. For a given limit on Ψeq1ℓq2, the limit on the product λeq1λℓq2 is proportional
to M2

LQ
. As MLQ increases, the upper limit on the product of the couplings eventually

exceeds unity and the perturbation expansion, on which the formulae in the appendix are
based, breaks down. Even so, the parameter Ψeq1ℓq2 serves as a reasonable figure of merit
for experimental comparisons.

Tables 2, 3, 4 and 5 summarize the 95% CL upper bounds on Ψeq1ℓq2, in units of 10−4

GeV−2 from this experiment and also from previous experiments [10]. Here q1 and q2
are the generation indices of the quarks which couple to e and to ℓ respectively12. Two
important characteristics of these tables are summarized below.

1. In the e ↔ µ case, for LQ species V L
1/2, Ṽ

L
1/2, S

L
1/2, or S̃

L
1/2, the limits from this exper-

iment supersede prior limits in some cases where heavy quark flavors are involved,

2. For the e ↔ τ case, we also improve upon existing limits for the same LQ species
as in point 1. In addition, because the existing limits on e ↔ τ are much weaker
than those for e ↔ µ, the ZEUS limits are the most stringent for several additional
LQs which couple to c or b quarks.

5.3 Limits for 6RP Squarks

Coupling limits for S0 and S̃1/2 leptoquarks were converted to coupling limits on d̃, ũ,
and t̃ as described in section 2.2. Figure 9 shows 95% CL limits on coupling vs. mass for
6RP squarks which decay to µq and τq. Here we assume the couplings at the production
vertex (λ′

11k for d̃
k, λ′

1j1 for ũ
j) and at the decay vertex (λ′

ijk) to be equal. The solid curves

are the ZEUS limits which are given for two assumptions. The lower curves (and the t̃
limits) assume that all squark decays are R-parity violating. The upper curves illustrate
the impact of gauge decays on the limits. They assume that a single R-parity conserving
decay, namely q̃ → qγ̃ exists and that the photino is much lighter than the squark. Since
our analysis is not sensitive to such decays (for which the branching fraction is given by
equation 6) these limits are somewhat weaker. The stop mixing angle is assumed to be

12 Certain entries in these tables have been corrected and/or updated from reference [10] after consul-
tation with the authors [38].
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cos2 θt = 0.5. The dashed curves are limits from low–energy experiments, adapted from
reference [10]. Table 6 gives lower mass limits for d̃, ũ, and t̃ assuming that the couplings
at the production and decay vertices are equal to the electromagnetic coupling (

√
4πα).

As with the low–mass leptoquark case described earlier, the ZEUS limits improve on
existing limits in cases where quark flavor change accompanies the lepton flavor change,
especially for e ↔ τ flavor changes.

6 Conclusions

We have searched for signatures of lepton–flavor violation with the ZEUS detector. Hy-
pothetical exotic particles such as leptoquarks could induce lepton–flavor violation ob-
servable at HERA. The tight constraints from sensitive searches for processes such as
muon conversion in titanium and rare muon and meson decays do not apply to all pos-
sible cases of LFV, many of which could be seen in ep collisions. Using 3.8 pb−1 of data
taken at HERA during the 1993 and 1994 running periods, we have found no candidate
events for LFV. The data permit us to constrain specific leptoquark coupling strengths
as small as 10−3α and to exclude leptoquark masses as large as 270 GeV (for electro-
magnetic coupling) with 95% confidence. For MLQ ≫

√
s, we calculate upper limits on

the product of lepton flavor violating couplings divided by the square of the leptoquark
mass, λeq1λℓq2/M

2
LQ
, and directly compare these with existing bounds from rare decays.

Especially for e ↔ τ flavor changes, ZEUS has improved on existing limits for many
flavor–violating scenarios.
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8 Appendix

We summarize here the cross section formulae [9] for processes involving leptoquarks which
couple only to left–handed or right–handed leptons. Process (1) can be mediated by either
s-channel or u-channel leptoquark exchange. For the s-channel process, eq1 → ℓq2, the
differential cross section, for unpolarized beams, can be written as:

d2σ

dxdy
=

1

32πxs
q1(x, ŝ)

λ2
eq1λ

2
ℓq2s

2x2

(sx−M2
LQ
)2 +M2

LQ
Γ2

LQ

×
{

1

2
scalar LQ

2(1− y)2 vector LQ,
(7)

where q1(x, ŝ) is the parton density13 for the initial state quark or antiquark, λeq1 and λℓq2

are the couplings at the production and decay vertices, and ΓLQ is the total width of the
leptoquark. The partial width for decay into lepton ℓ, and quark q2, is

Γℓq2 = MLQλ
2

ℓq2
×

{
1

16π
scalar LQ

1

24π
vector LQ,

(8)

so that the typical LQ sought here has ΓLQ ≪ MLQ. In the narrow width approxima-
tion, which holds when the variation of q1(x) is small as x is varied by δx ∼ ΓLQ/MLQ,
integration of equation (7) leads to the formula 2, with Bℓq2 = Γℓq2/ΓLQ.

For the u-channel process eq2 → ℓq1, the differential cross section is given by:

d2σ

dxdy
=

1

32πxs
q2(x,−u)

λ2
eq2λ

2
lq1 s

2 x2

[
sx(1− y) +M2

LQ

]2 ×
{

1

2
(1− y)2 scalar LQ

2 vector LQ.
(9)

In the limit that M2
LQ

≫ s, integration of equations (7) and (9) lead to equations (3) and
(4), which are accurate to better than 10% for MLQ > 500 GeV.

Note that any leptoquark will take part in both s- and u- channel interactions. For
example an SR

0 leptoquark will mediate the s-channel process e+u → µ+c as well as the
u-channel reaction e+c → µ+u.

13 For s- and u-channel processes, we have used ŝ and −u respectively as the scale in the parton
densities. If we had used Q2, the calculated cross sections would vary by less than 4% for initial–state u

and d quarks and by less than 16% for initial–state s, c, or b quarks.
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[5] I.I. Bigi, G. Köpp, and P.M. Zerwas, Phys. Lett. 166B (1986) 238.

[6] S. Yang, Ph.D. thesis, Columbia University, CU-95-396 (1995).

[7] H1 Coll., S. Aid et al., Phys. Lett 369B (1996) 173.

[8] B. Schrempp, Proc. of the 1991 Workshop on Physics at HERA, ed. W. Buchmüller
and G. Ingelman, (DESY, Hamburg 1992), p.1034, and references therein.

[9] W. Buchmüller, R. Rückl, and D. Wyler, Phys. Lett. 191B (1987) 442.

[10] S. Davidson, D. Bailey, and B. Campbell, Z. Phys. C61 (1994) 613.

[11] L3 Coll., B. Adeva et al., Phys. Lett. 261B (1991) 169;
OPAL Coll., G. Alexander et al., Phys. Lett. 263B (1991) 123;
DELPHI Coll., P. Abreu et al., Phys. Lett. 316B (1993) 620.

[12] CDF Coll., F. Abe et al., Phys. Rev. Lett. 75 (1995) 1012;
D0 Coll., S. Abachi et al., Phys. Rev. Lett. 75 (1995) 3618.

[13] V. Barger, G.F. Giudice, and T. Han, Phys. Rev. D40 (1989) 2987.

[14] J. Butterworth and H. Dreiner, Nucl. Phys. B397 (1993) 3, and references therein.

[15] T. Kon and T. Kobayashi, Phys. Lett. B270 (1991) 81;
T. Kon, T. Kobayashi and K. Nakamura, Proc. of the 1991 Workshop on Physics at
HERA, ed. W. Buchmüller and G. Ingleman, (DESY, Hamburg 1992), p.1088.

[16] The ZEUS Detector, Status Report 1993, DESY 1993.

[17] M. Derrick et al., Nucl. Inst. Meth. A309 (1991) 77;
A. Andresen et al., Nucl. Inst. Meth. A309 (1991) 101;
A. Bernstein et al., Nucl. Inst. Meth. A336 (1993) 23;
A. Caldwell et al., Nucl. Inst. Meth. A321 (1992) 356.

[18] N.Harnew et al., Nucl. Inst. Meth. A279(1989)290;
B.Foster et al., Nucl. Phys., Proc. Suppl. B32(1993);
B.Foster et al., Nucl. Inst. Meth. A338(1994)254

[19] G. Abbiendi et al., Nucl. Inst. Meth. A333 (1993) 342.

[20] J. Andruszków et al., DESY 92–066 (1992).

21



[21] PYTHIA 5.6 and JETSET 7.4, H.U. Bengtsson, T. Sjöstrand,
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LQ species SL
0 SR

0 S̃R
0 SL

1/2 SR
1/2 S̃L

1/2 SL
1

µq 231 242 214 258 259 234 243
τq 223 236 207 253 254 228 236

LQ species V L
0 V R

0 Ṽ R
0 V L

1/2 V R
1/2 Ṽ L

1/2 V L
1

µq 234 243 264 225 254 252 272
τq 227 237 261 219 248 246 270

Table 1: The 95% confidence level lower limits on the LQ mass (GeV) for nominal elec-
tromagnetic coupling. For leptoquarks which couple to µ, we set λ2

eq1
= λ2

µq2
= 4πα. For

leptoquarks which couple to τ , we set λ2
eq1

= λ2
τq2

= 4πα. Limits are shown for all scalar
(S) and vector (V) leptoquark species.
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e ↔ µ F = 2

SL
0

SR
0

S̃R
0

SL
1

V L
1/2 V R

1/2 Ṽ L
1/2

(q1q2) e−u e−u e−d e−(u+
√
2d) e−d e−(u+ d) e−u

ν d ν (
√
2u+ d) ν d ν u

(11) µN → eN µN → eN µN → eN µN → eN µN → eN µN → eN µN → eN

2× 10−6 2× 10−6 2× 10−6 5× 10−7 7× 10−7 4× 10−7 7× 10−7

0.09 0.09 0.12 0.05 0.05 0.03 0.04
(12) K → πν̄ν D → µē K → µē K → µē K → µē K → µē D → µē

2× 10−5 0.14 10−6 6× 10−7 6× 10−7 6× 10−7 0.07
0.12 0.12 0.14 0.06 0.09 0.06 0.08

(13) Vub B → µē Vub B → µē B → µē

0.004 0.01 0.004 0.005 0.005
* 0.15 0.07 0.10 0.10 *

(21) K → πν̄ν D → µē K → µē K → µē K → µē K → µē D → µē

2× 10−5 0.14 10−6 6× 10−7 6× 10−7 6× 10−7 0.07
0.12 0.12 0.14 0.06 0.05 0.03 0.04

(22) µ → eγ µ → eγ µ → eγ µ → eγ µ → eγ µ → eγ µ → eγ

2× 10−4 2× 10−4 8× 10−5 4× 10−5 0.15 6× 10−3 6× 10−3

0.24 0.24 0.20 0.09 0.10 0.08 0.13
(23) B → ℓνX B → µ̄eK B → µ̄eK B → µ̄eK B → µ̄eK

0.04 6× 10−3 3× 10−3 3× 10−3 3× 10−3

* 0.21 0.11 0.13 0.13 *
(31) Vub B → µē Vub B → µē B → µē

0.004 0.01 0.004 0.005 0.005
* 0.16 0.08 0.05 0.05 *

(32) B → ℓνX B → µ̄eK B → µ̄eK B → µ̄eK B → µ̄eK

0.04 6× 10−3 3× 10−3 3× 10−3 3× 10−3

* 0.26 0.13 0.11 0.11 *
(33) µ → eγ µ → eγ µ → eγ µ → eγ

8× 10−5 4× 10−5 0.01 0.01
* 0.29 0.14 0.15 0.15 *

Table 2: The best upper bounds on λeq1λµq2/M
2
LQ

for F = 2 leptoquarks, in units of 10−4

GeV−2. Each column corresponds to a given leptoquark species and each row to the quark
flavors q1 and q2 which couple to e and µ, the generation indices of which are specified in
the first column. The top line in each box gives the previous measurement [10] which had
obtained the strictest limit. The limit from that experiment is given on the second line in
the box and the ZEUS limit, shown on the third line, is printed in boldface if it supersedes
the previous limit. The asterisks denote those cases where lepton flavor violation occurs
only via processes involving top.
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e ↔ µ F = 0

SL
1/2 SR

1/2 S̃L
1/2 V L

0
V R
0

Ṽ R
0

V L
1

(q1q2) e−ū e−(ū+ d̄) e−d̄ e−d̄ e−d̄ e−ū e−(
√
2ū+ d̄)

ν ū ν d̄ ν ū ν (ū+
√
2d̄)

(11) µN → eN µN → eN µN → eN µN → eN µN → eN µN → eN µN → eN

2× 10−6 7× 10−7 2× 10−6 7× 10−7 7× 10−7 7× 10−7 3× 10−7

0.07 0.06 0.10 0.06 0.06 0.04 0.02
(12) D → µē K → µē K → µē K → µē K → µē D → µē K → µē

0.14 10−6 10−6 6× 10−7 6× 10−7 0.07 6× 10−7

0.08 0.06 0.10 0.07 0.07 0.06 0.03
(13) B → µē B → µē Vbu B → µē Vbu

0.01 0.01 0.002 0.005 0.002
* 0.11 0.11 0.08 0.08 * 0.08

(21) D → µē K → µē K → µē K → µē K → µē D → µē K → µē

0.14 10−6 10−6 6× 10−7 6× 10−7 0.07 6× 10−7

0.17 0.12 0.17 0.07 0.07 0.06 0.03
(22) µ → eγ µ → eγ µ → eγ µ → eγ µ → eγ µ → eγ

5× 10−5 5× 10−5 0.07 0.07 9× 10−3 5× 10−3

0.24 0.16 0.20 0.10 0.10 0.13 0.05
(23) B → µ̄eK B → µ̄eK B → µ̄eK B → µ̄eK B → µ̄eK

6× 10−3 6× 10−3 3× 10−3 3× 10−3 3× 10−3

* 0.21 0.21 0.13 0.13 * 0.13
(31) B → µē B → µē Vbu B → µē Vbu

0.01 0.01 0.002 0.005 0.002
* 0.20 0.20 0.07 0.07 * 0.07

(32) B → µ̄eK B → µ̄eK B → µ̄eK B → µ̄eK B → µ̄eK

6× 10−3 6× 10−3 3× 10−3 3× 10−3 3× 10−3

* 0.26 0.26 0.11 0.11 * 0.11
(33) µ → eγ µ → eγ µ → eγ

0.001 0.001 0.001
* 0.29 0.29 0.15 0.15 * 0.15

Table 3: The best upper bounds on λeq1λµq2/M
2
LQ

for F = 0 leptoquarks, in units of 10−4

GeV−2. Each column corresponds to a given leptoquark species and each row to the quark
flavors q1 and q2 which couple to e and µ, the generation indices of which are specified in
the first column. The top line in each box gives the previous measurement [10] which had
obtained the strictest limit. The limit from that experiment is given on the second line in
the box and the ZEUS limit, shown on the third line, is printed in boldface if it supersedes
the previous limit. The asterisks denote those cases where lepton flavor violation occurs
only via processes involving top.
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e ↔ τ F = 2

SL
0

SR
0

S̃R
0

SL
1

V L
1/2 V R

1/2 Ṽ L
1/2

(q1q2) e−u e−u e−d e−(u +
√
2d) e−d e−(u+ d) e−u

ν d ν (
√
2u+ d) ν d ν u

(11) GF τ → πe τ → πe GF τ → πe τ → πe τ → πe

0.003 0.02 0.02 0.003 0.01 0.005 0.01
0.15 0.15 0.23 0.09 0.09 0.05 0.06

(12) K → πν̄ν τ → Ke K → πν̄ν K → πν̄ν τ → Ke

2× 10−5 0.05 2× 10−5 10−5 0.03
0.20 0.20 0.27 0.11 0.19 0.13 0.16

(13) Vbu B → τ ēX Vbu B → τ ēX B → τ ēX

0.004 0.08 0.004 0.04 0.04
* 0.28 0.14 0.23 0.23 *

(21) K → πν̄ν τ → Ke K → πν̄ν K → πν̄ν τ → Ke

2× 10−5 0.05 2× 10−5 10−5 0.03
0.22 0.22 0.31 0.12 0.09 0.05 0.06

(22) τ → eγ τ → eγ τ → eγ τ → eγ

0.5 0.5 0.3 0.1
0.60 0.60 0.48 0.22 0.25 0.19 0.31

(23) B → ℓνX B → τ ēX B → ℓνX B → τ ēX B → τ ēX

0.04 0.08 0.04 0.04 0.04
* 0.50 0.25 0.33 0.33 *

(31) B → ℓνX B → τ ēX B → ℓνX B → τ ēX B → τ ēX

0.04 0.08 0.04 0.04 0.04
* 0.34 0.17 0.10 0.10 *

(32) B → ℓνX B → τ ēX B → ℓνX B → τ ēX B → τ ēX

0.04 0.08 0.04 0.04 0.04
* 0.65 0.32 0.26 0.26 *

(33) τ → eγ τ → eγ

0.3 0.1
* 0.72 0.36 0.38 0.38 *

Table 4: The best upper bounds on λeq1λτq2/M
2
LQ

for F = 2 leptoquarks, in units of 10−4

GeV−2. Each column corresponds to a given leptoquark species and each row to the quark
flavors q1 and q2 which couple to e and τ , the generation indices of which are specified in
the first column. The top line in each box gives the previous measurement [10] which had
obtained the strictest limit. The limit from that experiment is given on the second line in
the box and the ZEUS limit, shown on the third line, is printed in boldface if it supersedes
the previous limit. The asterisks denote those cases where lepton flavor violation occurs
only via processes involving top.
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e ↔ τ F = 0

SL
1/2 SR

1/2 S̃L
1/2 V L

0
V R
0

Ṽ R
0

V L
1

(q1q2) e−ū e−(ū+ d̄) e−d̄ e−d̄ e−d̄ e−ū e−(
√
2ū+ d̄)

ν ū ν d̄ ν ū ν (ū+
√
2d̄)

(11) τ → πe τ → πe τ → πe GF τ → πe τ → πe GF

0.02 0.01 0.02 0.002 0.01 0.01 0.002
0.11 0.09 0.18 0.11 0.11 0.07 0.04

(12) τ → Ke K → πν̄ν τ → Ke τ → Ke K → πν̄ν

0.05 2× 10−5 0.03 0.03 5× 10−6

0.12 0.10 0.18 0.15 0.15 0.10 0.05
(13) B → τ ēX B → τ ēX B → ℓνX B → τ ēX B → ℓνX

0.08 0.08 0.02 0.04 0.02
* 0.18 0.18 0.16 0.16 * 0.16

(21) τ → Ke K → πν̄ν τ → Ke τ → Ke K → πν̄ν

0.05 2× 10−5 0.03 0.03 5× 10−6

0.34 0.26 0.39 0.14 0.14 0.10 0.05
(22) τ → eγ τ → eγ

0.2 0.2
0.60 0.37 0.48 0.25 0.25 0.31 0.13

(23) B → τ ēX B → τ ēX B → ℓνX B → τ ēX B → ℓνX

0.08 0.08 0.02 0.04 0.02
* 0.50 0.50 0.33 0.33 * 0.33

(31) B → τ ēX B → τ ēX Vbu B → τ ēX Vbu

0.08 0.08 0.002 0.04 0.002
* 0.47 0.47 0.15 0.15 * 0.15

(32) B → τ ēX B → τ ēX B → ℓνX B → τ ēX B → ℓνX

0.08 0.08 0.02 0.04 0.02
* 0.65 0.65 0.26 0.26 * 0.26

(33) τ → eγ τ → eγ

3.4 3.4
* 0.72 0.72 0.38 0.38 * 0.38

Table 5: The best upper bounds on λeq1λτq2/M
2
LQ

for F = 0 leptoquarks, in units of 10−4

GeV−2. Each column corresponds to a given leptoquark species and each row to the quark
flavors q1 and q2 which couple to e and τ , the generation indices of which are specified in
the first column. The top line in each box gives the previous measurement [10] which had
obtained the strictest limit. The limit from that experiment is given on the second line in
the box and the ZEUS limit, shown on the third line, is printed in boldface if it supersedes
the previous limit. The asterisks denote those cases where lepton flavor violation occurs
only via processes involving top.

27



d̃ → µq ũ → µq t̃ → µq d̃ → τq ũ → τq t̃ → τq

50% gauge decays 217 223 - 209 216 -
no gauge decays 231 234 223 223 228 216

Table 6: 95% CL mass limits (GeV) for squarks with 6RP -couplings, of electromagnetic
strength (λ2

11k = λ2
ijk = 4πα = 4π/128). The first line gives the mass limits for the case

where the total branching fraction for gauge decays is 50%, the second line gives the mass
limits for a squark which always has 6RP decays. The limits which assume 50% gauge
decays are weaker because we did not search for the gauge decays. The mixing angle of
the stop is assumed to be cos2 θt = 0.5.
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q1 q2

e ℓ

λeq1 λℓq2

a)

q2 ℓ

e q1

λℓq2

λeq1

b)

q1 q2

e ℓ

λq1q2

λeℓ

c)

Figure 1: The (a) s–, (b) u–, and (c) t–channel Feynman diagrams for LFV. For the
s–channel and u–channel diagrams, we denote the couplings as λℓq, where the indices refer
to the lepton and quark flavors.
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Figure 2: Existing 95% CL limits [10] on the product of the couplings λeq1λℓq2 vs. lepto-
quark mass MLQ for a SL

0 leptoquark mediating e ↔ µ and e ↔ τ transitions accompanied
by various quark flavor changes. Each limit curve excludes the region above it. The verti-
cal lines indicate lower limits of allowed leptoquark mass from LEP [11] and the Tevatron
[12]. The Tevatron limits apply to any scalar leptoquark which couples to µ and depend
on the branching fractions Bµ to the µq final state. The limits are shown for Bµ equal to
0.5 and 1.
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Figure 3: RP violating single squark production in ep collisions. Diagrams a) and b)
show production of ũ and d̃ squarks with leptoquark–like 6RP decays, where ℓi denotes the
final–state charged lepton of generation i. The indices j and k denote the generations of
up–type and down–type (s)quarks respectively. Diagram c) shows ũ production with an
RP–conserving decay.
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Figure 4: Net transverse momentum ( 6P cal
t ) distribution of events in the class 6e sample (a)

and the class e sample (b). The points represent the data. The solid lines show the Monte
Carlo prediction, which includes CC DIS, NC DIS, resolved and direct photoproduction
and γγ interactions. In the top plot, the shaded region shows the Monte Carlo prediction
for all processes except CC DIS. In the bottom plot, the shaded region shows the Monte
Carlo prediction for all processes except NC DIS.
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Figure 5: The upper limit on the coupling at the production vertex (λeq1) times the square
root of the branching fraction to the µq or τq final state (Bℓq2) vs. leptoquark mass MLQ,
at 95% CL for scalar leptoquarks. The horizontal line indicates nominal electromagnetic
coupling (λ2

eq1
= 4πα = 4π/128) and Bℓq2 = 0.5.
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Figure 6: The upper limit on the coupling at the production vertex (λeq1) times the
square root of the branching fraction to the µq or τq final state (Bℓq2) vs. leptoquark
mass MLQ, at 95% CL for vector leptoquarks. The horizontal line indicates nominal
electromagnetic coupling (λ2

eq1
= 4πα = 4π/128) and Bℓq2 = 0.5.
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Figure 7: The 95% CL upper limits on λeq1 vs. leptoquark mass MLQ, for selected LQ
species which decay to ℓq, where ℓ = µ (above) or τ (below), assuming Bℓq2 = 0.5. The
solid curves are ZEUS results and the various broken curves show existing limits [10].
Paired numbers in parentheses indicate the generations of the quarks which couple to e
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Figure 8: The upper limit on the coupling at the decay vertex (λℓq2) vs. leptoquark mass
MLQ, for several values of the first–generation coupling at the production vertex (λeq1).
Each curve is labeled by the value of λeq1. The dotted curves are for F = 2 leptoquarks
and the solid curves are for F = 0 leptoquarks.
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Figure 9: Limits on the 6RP coupling λ′

ijk at 95% CL for squarks which decay to µq

(i = 2) or τq (i = 3). For d̃ limits, we assume that λ′

11k = λ′

ijk, while for ũ (including

t̃) limits, we assume that λ′

1j1 = λ′

ijk. The lower solid curves give the ZEUS limits for
squarks which decay purely via R-parity violation. The upper solid curves give the ZEUS
limits for the case where, in addition, the gauge decay q̃ → qγ̃ exists, and where the
photino is much lighter than the squark. In the case of t̃, we only consider 6RP decays
and assume that the stop mixing angle is given by cos2 θt = 0.5. The values of j and k
for which each limit applies are indicated above the plots. The dashed and dotted curves
show the limits from other experiments (adapted from [10]). These limits depend on the
generation of the quark which couples to the µ or τ as indicated.
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