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Abstract. The shapes of jets with transverse energies, Ejet
T , up to 45GeV produced in neutral- and charged-

current deep inelastic e+p scattering (DIS) at Q2 > 100GeV2 have been measured with the ZEUS detector
at HERA. Jets are identified using a cone algorithm in the η−ϕ plane with a cone radius of one unit. The jets
become narrower as Ejet

T increases. The jet shapes in neutral- and charged-current DIS are found to be very
similar. The jets in neutral-current DIS are narrower than those in resolved processes in photoproduction
and closer to those in direct-photon processes for the same ranges in Ejet

T and jet pseudorapidity. The
jet shapes in DIS are observed to be similar to those in e+e− interactions and narrower than those in p̄p
collisions for comparable Ejet

T . Since the jets in e+e− interactions and e+p DIS are predominantly quark
initiated in both cases, the similarity in the jet shapes indicates that the pattern of QCD radiation within
a quark jet is to a large extent independent of the hard scattering process in these reactions.
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1 Introduction

The internal structure of a jet is expected to depend main-
ly on the type of primary parton, quark or gluon, from
which it originated and to a lesser extent on the par-
ticular hard scattering process. For cone jet algorithms
[1,2] a useful representation of the jet’s internal struc-
ture is given by the jet shape [3]. At sufficiently high
jet energy, where fragmentation effects become negligi-
ble, the jet shape should be calculable by perturbative
quantum chromodynamics (pQCD). pQCD predicts gluon
jets to be broader than quark jets as a consequence of
the gluon–gluon coupling strength being larger than that

35 Glasstone Fellow
36 an Alexander von Humboldt Fellow at University of Ham-
burg
37 supported by a MINERVA Fellowship
38 now at ICEPP, Univ. of Tokyo, Tokyo, Japan
39 present address: Tokyo Metropolitan College of Allied Med-
ical Sciences, Tokyo 116, Japan
40 supported by the Polish State Committee for Scientific Re-
search, grant No. 2P03B09308
a supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC)
b supported by the FCAR of Québec, Canada
c supported by the German Federal Ministry for Education
and Science, Research and Technology (BMBF), under con-
tract numbers 057BN19P, 057FR19P, 057HH19P, 057HH29P
d supported by the MINERVA Gesellschaft für Forschung
GmbH, the German Israeli Foundation, the U.S.-Israel Bina-
tional Science Foundation, and by the Israel Ministry of Science
e supported by the German-Israeli Foundation, the Israel Sci-
ence Foundation, the U.S.-Israel Binational Science Founda-
tion, and by the Israel Ministry of Science
f supported by the Italian National Institute for Nuclear
Physics (INFN)
g supported by the Japanese Ministry of Education, Science
and Culture (the Monbusho) and its grants for Scientific Re-
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h supported by the Korean Ministry of Education and Korea
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i supported by the Netherlands Foundation for Research on
Matter (FOM)
j supported by the Polish State Committee for Scientific Re-
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German Collaboration
l partially supported by the German Federal Ministry for Ed-
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(BMBF)
n supported by the Spanish Ministry of Education and Science
through funds provided by CICYT
o supported by the Particle Physics and Astronomy Research
Council
p supported by the US Department of Energy
q supported by the US National Science Foundation

of the quark–gluon coupling [4]. Measurements of the jet
width in e+e− interactions at LEP1 have shown that gluon
jets are indeed broader than quark jets [5]. The depen-
dence of the structure of quark and gluon jets on the pro-
duction process can be investigated by comparing mea-
surements of the jet shape in different reactions in which
the final-state jets are predominantly quark or gluon ini-
tiated.

Measurements of the integrated jet shape were made
in p̄p collisions at

√
s = 1.8 TeV using charged particles

[6] as well as both neutral and charged particles [7], and a
qualitative agreement with O(α3

S) QCD calculations [3,8]
was found. Measurements of the integrated and differen-
tial jet shapes were made in e+e− interactions at LEP1 us-
ing both neutral and charged particles [9] and were found
to be well described by leading-logarithm parton-shower
Monte Carlo calculations. It was observed [9] that the jets
in e+e− are significantly narrower than those in p̄p and
most of this difference was ascribed to the different mix-
tures of quark and gluon jets in the two production pro-
cesses.

Measurements of the integrated jet shape in quasi-real
photon proton collisions at HERA have recently been pre-
sented [10] and were found to be well described by leading-
logarithm parton-shower Monte Carlo calculations except
for the inclusive production of jets with high jet pseudo-
rapidity (ηjet) and low jet transverse energy (Ejet

T ). Fixed-
order perturbative QCD calculations at the parton level
[11] are able to describe the measured jet shapes within
the uncertainties on the matching between the theoretical
and experimental jet algorithms.

At HERA, jet production has been observed in both
neutral- [12,13] and charged-current [14] deep inelastic ep
scattering (DIS) at large Q2 (where Q2 is the virtuality
of the exchanged boson). In this paper, measurements of
the differential and integrated jet shapes in neutral- and
charged-current DIS at Q2 > 100 GeV2 are presented. The
data sample used in this analysis has been collected with
the ZEUS detector in e+p interactions at the HERA col-
lider. To compare with measurements of the jet shapes
in p̄p, γp and e+e− collisions, jets are searched for with
an iterative cone algorithm [10] with radius R = 1 in the
pseudorapidity1 (η) azimuth (ϕ) plane of the laboratory
frame. Jets have been selected with jet transverse (with re-
spect to the proton beam direction) energy Ejet

T > 14 GeV
and jet pseudorapidity in the range −1 < ηjet < 2. The
jet shape has been measured using the ZEUS calorime-
ter and corrected to the hadron level. The measurements
are presented as functions of Ejet

T and ηjet. The measured
jet shapes are compared to similar measurements in other
reactions and to leading-logarithm parton-shower Monte
Carlo calculations.

1 The ZEUS coordinate system is defined as right-handed
with the Z axis pointing in the proton beam direction, here-
after referred to as forward, and theX axis horizontal, pointing
towards the centre of HERA. The pseudorapidity is defined as
η = − ln(tan θ

2 ), where the polar angle θ is taken with respect
to the proton beam direction.
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2 Experimental setup

During 1995 and 1996 HERA operated with protons of en-
ergy Ep = 820 GeV and positrons of energyEe = 27.5 GeV.
The ZEUS detector is described in detail in [15,16]. The
main subdetectors used in the present analysis are the cen-
tral tracking system positioned in a 1.43 T solenoidal mag-
netic field and the uranium-scintillator sampling calorime-
ter (CAL). The tracking system was used to establish
an interaction vertex and to select neutral- and charged-
current DIS events. The CAL is hermetic and consists of
5918 cells each read out by two photomultiplier tubes.
Under test beam conditions the CAL has energy resolu-
tions of 18%/

√
E for electrons and 35%/

√
E for hadrons.

Energy deposits in the CAL were used to identify the scat-
tered positron, to find jets and to measure jet energies. Jet
energies are corrected for the energy lost in the inactive
material in front of the CAL. This material is typically
about one radiation length. The effects of uranium noise
were minimised by discarding cells in the electromagnetic
(EMC) or hadronic (HAC) sections, if they had energy
deposits of less than 60 MeV or 110 MeV, respectively. A
three-level trigger was used to select events online [14,16,
17].

3 Data selection

Neutral-current (NC) DIS events have been selected of-
fline from the ZEUS 1995 data sample, which corresponds
to an integrated luminosity of 6.3 pb−1, using criteria sim-
ilar to those reported previously [17,18]. The main steps
are briefly discussed here. The scattered positron candi-
date has been identified by using the pattern of energy de-
posits in the CAL [19]. The energy (Ee′) and polar angle
(θe′) of the positron candidate have been determined from
the CAL measurements. The Q2 variable has been recon-
structed by the double-angle method (Q2

DA) [20], which
uses θe′ and an angle that corresponds to the direction of
the scattered quark in quark-parton model-type events.
This second angle has been determined from the CAL
measurements of the hadronic final state. The following
requirements have been imposed:

– A positron candidate of uncorrected energy Ee′ >
10 GeV. This cut ensures a high and well-understood
positron finding efficiency and suppresses background
from fake positrons in photoproduction events, where
the scattered positron escapes down the rear beampipe.

– ye < 0.95, where ye = 1 −Ee′(1 − cos θe′)/(2Ee). This
condition removes events where fake positron candi-
dates are found in the forward region of the CAL.

– The total energy not associated with the positron can-
didate within a cone of radius 0.7 units in the η − ϕ
plane around the positron direction must be less than
5 GeV. This condition removes photoproduction and
DIS events, where part of a jet has been falsely iden-
tified as the scattered positron.

– A track is required to match the positron candidate
identified in the CAL for ηe < 2, where ηe is the

pseudorapidity of the positron candidate. This require-
ment suppresses cosmic rays, beam-halo muons, pho-
toproduction and DIS events where an electromagnetic
shower in the CAL has been falsely identified as the
scattered positron.

– For ηe > 2 the transverse energy of the positron candi-
date should be larger than 20 GeV. This requirement
further reduces the number of fake positrons in the
forward region of the CAL.

– 38 GeV< (E − pZ) < 65 GeV, where E is the total
energy as measured by the CAL, E =

∑
iEi, and pZ

is the Z component of the vector p =
∑

iEiri; in
both cases the sum runs over all CAL cells, Ei is the
energy of the calorimeter cell i and ri is a unit vector
along the line joining the reconstructed vertex and the
geometric centre of the cell i. This cut removes events
with large initial-state radiation and further reduces
the background from photoproduction.

– Events have been removed from the sample if there
was a second positron candidate with energy above
10 GeV and without a track match, and the energy
in the CAL after subtracting that of the two positron
candidates is below 10 GeV. This requirement removes
elastic Compton scattering events (ep → eγp).

– 6Pt/
√
Et < 3 GeV1/2 where 6Pt is the missing trans-

verse momentum as measured with the CAL ( 6Pt ≡√
p2

X + p2
Y ) and Et is the total transverse energy in the

CAL. This cut removes cosmic rays and beam-related
background.

– The vertex position along the beam axis must be in
the range −30 < Z < 36 cm.

– Q2
DA > 100 GeV2.

Charged-current (CC) DIS events have been selected
offline from the ZEUS 1995 and 1996 data samples, which
correspond to an integrated luminosity of 14.8 pb−1, using
criteria similar to those reported in [14]. The Q2 variable
has been determined using the method of Jacquet-Blondel
(Q2

JB) [21], which uses the information from the hadronic
energy flow of the event. The following conditions have
been imposed:
– 6Pt > 11 GeV. This cut ensures high trigger efficiency.
– 6Pt/Et > 0.5. This cut rejects photoproduction and

beam-related background.
– The vertex position along the beam axis should lie in

the range −30 < Z < 36 cm.
– At least one track should point to the vertex. This

requirement rejects cosmic rays and beam–gas inter-
actions.

– The number of tracks not associated to the vertex must
be less than 20% of the total number of tracks. This
cut further reduces the background from beam–gas in-
teractions.

– The difference ∆ϕ between the azimuths of the net
transverse momentum as measured by the tracks asso-
ciated with the vertex and as measured by the CAL has
been required to fulfill |∆ϕ| < 1 rad. This requirement
removes overlays of cosmic rays on ep interactions.

– P tracks
t /6Pt > 0.1, where P tracks

t is the net transverse
momentum of the tracks associated with the vertex
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(this condition has not been applied if 6Pt > 25 GeV).
This cut rejects beam-related background, in which
6Pt is pointing to small polar angles, and events with
additional non-ep related energy deposits in the CAL
(mainly cosmic rays).

– The event has been removed from the sample if there
was an isolated positron candidate with energy above
10 GeV and a track match. This condition removes NC
DIS events.

– Pattern recognition algorithms based on the topology
of the CAL energy distribution were applied to reject
cosmic rays and beam-halo muons.

– Q2
corr > 100 GeV2, where Q2

corr denotes the corrected
value of Q2

JB as described in [14]. The resolution in the
reconstruction of Q2 is ≈ 25%.

A search for jet structure using the CAL cells (see
Sect. 5) has been performed on both samples (NC and
CC DIS), and events with at least one jet of ‘corrected’
transverse energy (see Sect. 5) Ejet

T > 14 GeV and −1 <
ηjet < 2 have been retained. The selected sample of NC
(CC) DIS consists of 6926 (231) events containing 7092
(233) jets. In both cases, the background from photopro-
duction has been estimated using Monte Carlo techniques
and was found to be below 1%.

4 Monte Carlo simulation

The response of the detector to jets and the correction fac-
tors for the jet shapes have been determined from samples
of Monte Carlo (MC) events.

NC and CC DIS events have been generated using
the lepto program [22] interfaced to heracles [23] via
django [24]. The heracles program includes photon
and Z0 exchanges and first-order electroweak radiative
corrections. The CTEQ4D [25] NLO proton parton den-
sities have been used. The hadronic final state is sim-
ulated using the colour-dipole model [26] including the
leading-order (LO) QCD diagrams as implemented in ari-
adne [27] for the QCD cascade. As an alternative, sam-
ples of events have been generated using the model of
lepto based on first-order QCD matrix elements plus
parton-shower (meps). For the generation of the samples
with meps, the soft-colour-interactions option has been
switched off.

In addition, a sample of NC DIS events has been gen-
erated using the pythia program [28]: a lowest-order elec-
troweak calculation including initial- and final-state QCD
radiation in the leading-logarithm parton-shower approxi-
mation. In this case, events have been generated using the
MRSA [29] set of proton parton densities and the first-
order QCD matrix elements have not been included. In
all cases, the lund string model [30] as implemented in
jetset [28] is used for modelling the fragmentation into
hadrons.

All MC generated events have been passed through
the ZEUS detector and trigger simulation programs [16].
They have been reconstructed and analysed by the same
program chain as the data.

5 Jet search and energy corrections

An iterative cone algorithm in the η − ϕ plane [1,2] is
used to reconstruct jets from the energy measured in the
CAL cells for both data and MC generated events, and
also from the final-state hadrons for MC generated events.
A detailed description of the algorithm can be found in
[10]. The jets reconstructed from the CAL cell energies
are called cal jets and the variables associated with them
are denoted by Ejet

T,cal, η
jet
cal and ϕjet

cal. The axis of the jet is
defined according to the Snowmass convention [2], where
ηjet
cal (ϕjet

cal) is the transverse-energy-weighted mean pseudo-
rapidity (azimuth) of all the CAL cells belonging to that
jet. The energy sharing of overlapping jets is dealt with
using the following procedure. Two jets are merged if the
overlapping energy exceeds 75% of the total energy of the
jet with the lower energy; otherwise two different jets are
formed and the common cells are assigned to the nearest
jet. The cone radius R used in the jet search is set equal
to 1.

For the MC generated events, the same jet algorithm
is also applied to the final-state particles. The jets found
are called hadron jets and the variables associated with
them are denoted by Ejet

T,had, ηjet
had, and ϕjet

had. Hadron jets
with Ejet

T,had > 14 GeV and −1 < ηjet
had < 2 are selected.

The comparison of the reconstructed jet variables be-
tween the hadron and the cal jets in MC generated events
[31] shows no significant systematic shift in the angular
variables ηjet

cal and ϕjet
cal with respect to ηjet

had and ϕjet
had.

However, the transverse energy of the cal jet underesti-
mates that of the hadron jet by an average amount of
≈ 16% with an rms of 11%. This effect is due mainly to
energy losses in the inactive material in front of the CAL
and is corrected for using the following procedure. The
transverse energy corrections to cal jets averaged over the
azimuthal angle are determined using the samples of MC
generated events [31]. These corrections are constructed as
multiplicative factors, C(Ejet

T,cal, η
jet
cal), which, when applied

to the ET of the cal jets, give the ‘corrected’ transverse
energies of the jets, Ejet

T = C(Ejet
T,cal, η

jet
cal) × Ejet

T,cal [31].

6 Jet shape

The differential jet shape is defined as the average fraction
of the jet’s transverse energy that lies inside an annulus in
the η−ϕ plane of inner (outer) radius r−∆r/2 (r+∆r/2)
concentric with the jet defining cone [3]:

ρ(r) =
1

Njets

1
∆r

∑

jets

ET(r −∆r/2, r +∆r/2)
ET(0, R)

, (1)

where ET(r − ∆r/2, r + ∆r/2) is the transverse energy
within the given annulus and Njets is the total number
of jets in the sample. The differential jet shape has been
measured for r values varying from 0.05 to 0.95 in ∆r =
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0.1 increments. The integrated jet shape defined by

ψ(r) =
1

Njets

∑

jets

ET(0, r)
ET(0, R)

(2)

is also used. By definition, ψ(R) = 1. It has been measured
for r values varying from 0.1 to 1.0 in∆r = 0.1 increments.

The following procedure is used to reconstruct the dif-
ferential jet shape from the CAL cells in data and MC
generated events: for each jet the sum of the transverse
energies of the CAL cells assigned to the jet, ET,cal(r −
∆r/2, r+∆r/2), with a distance r′ =

√
(∆η)2 + (∆ϕ)2 to

the jet axis between r−∆r/2 and r+∆r/2 is determined
and divided by ET,cal(0, 1). The differential jet shape as
measured with the CAL, ρcal(r), is then defined in anal-
ogy with (1), where the sum now runs over all the cal jets
in the selected sample and Njets is the total number of
cal jets in the sample. Similarly, the integrated jet shape
as measured with the CAL, ψcal(r), is defined in analogy
with (2).

The same jet shape definition as used above for the
CAL cells is applied to the final-state particles in the case
of MC generated events and the resulting differential (in-
tegrated) jet shape is denoted by ρMC

had(r) (ψMC
had(r)).

6.1 Jet shape correction

The differential and integrated jet shapes as measured
with the CAL are corrected back to the hadron level us-
ing the samples of MC generated events. The corrected
differential and integrated jet shapes, ρ(r) and ψ(r), refer
to jets at the hadron level with a cone radius of one unit
in the η − ϕ plane. The measurements are given for jets
with Ejet

T > 14 GeV and −1 < ηjet < 2 in the kinematic
region Q2 > 100 GeV2.

The corrected jet transverse energy is used only to
select the sample of jets (Ejet

T > 14 GeV) and to study
the dependence of the jet shape as a function of Ejet

T .
The reconstructed jet shapes are then corrected for ac-
ceptance and smearing effects using the samples of MC
generated events. The correction factors also take into ac-
count the efficiency of the trigger, the selection criteria,
the purity and efficiency of the jet reconstruction, and the
effects of the energy losses due to inactive material in front
of the CAL. The corrected differential (integrated) jet
shape is determined bin-by-bin as ρ(r) = GMC

cal (r) · ρcal(r)
and ψ(r) = FMC

cal (r) · ψcal(r), where the correction factors
are defined as GMC

cal (r) = ρMC
had(r)/ρMC

cal (r) and FMC
cal (r) =

ψMC
had(r)/ψMC

cal (r) and are determined separately for each
region of ηjet and Ejet

T .
For this approach to be valid, the uncorrected jet shapes

in the data must be described by the MC simulations at
the detector level. As shown later, this condition is sat-
isfied by the ariadne and meps simulations in all ηjet

and Ejet
T regions studied. The samples of events gener-

ated with ariadne are used to correct the jet shapes.
The correction factors GMC

cal (r) do not show a strong de-
pendence on ηjet or Ejet

T and vary between 0.7 and 1

for r ≥ 0.15. The correction factors for the integrated
jet shape FMC

cal (r) differ from unity by less than 25% for
r ≥ 0.2. Close to the centre of the jet the correction fac-
tor GMC

cal (r = 0.05) ≡ FMC
cal (r = 0.1) is large and varies

between 1.4 and 1.7 depending on ηjet and Ejet
T .

The jet shapes have been also reconstructed using tracks
instead of CAL cells both in data and MC-generated ev-
ents. Since the use of tracks gives an improved spatial
resolution for the transverse-energy flow of the charged
particles within a jet, this study provides a cross-check of
the resolution in r for the jet shape reconstructed using
the CAL. The resulting corrected jet shapes are consistent
with those using the CAL cells within the uncertainties of
the measurements (see next section).

6.2 Systematic uncertainties

A detailed study of the sources contributing to the sys-
tematic uncertainties of the measurements has been car-
ried out [32]. The uncertainties have been classified into
four groups:

– The energy corrections to the jets and the correction
functions to the jet shapes in NC and CC DIS have
been evaluated using the meps generator. Comparing
to ariadne the changes induced in ρ(r) are typically
below 10%.

– The absolute energy scale of the cal jets in the MC
generated events has been varied by ±3%. The result-
ing corrected ρ(r) changes typically by less than 3%.

– Variations in the simulation of the CAL response to
low-energy particles yielded changes in ρ(r) typically
below 3%.

– Variations in the simulation of the trigger and a vari-
ation of the cuts used to select the data within the
ranges allowed by the comparison between data and
MC simulations resulted in negligible changes in the
corrected jet shapes.

For the measurements of jet shapes in NC DIS, the
statistical errors are negligible compared to the systematic
uncertainties. Conversely, the statistical errors dominate
in the CC DIS analysis. The total positive (negative) sys-
tematic uncertainty on ρ(r) at each value of r has been de-
termined by adding in quadrature the positive (negative)
deviations from the central value. The systematic uncer-
tainties have been added in quadrature to the statistical
errors and are shown as error bars in the figures.

7 Results

7.1 Jet shapes in DIS

The differential and integrated jet shapes are measured
for jets in the reactions

e+p → e+(ν) + jet + X

with Q2 > 100 GeV2. Jets are required to have Ejet
T >

14 GeV and −1 < ηjet < 2. There are 6018, 855 and 53
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Fig. 1. Measured differential jet shapes corrected to the
hadron level, ρ(r), in neutral-current DIS with Q2 > 100GeV2

for jets with Ejet
T above 14GeV in different ηjet regions (black

dots). The error bars include the statistical and systematic
uncertainties added in quadrature (typically smaller than the
dots). The predictions of pythia (dotted lines), ariadne (solid
lines), and meps (dashed lines) are shown for comparison. The
predictions have been obtained by an integration over the same
bins as for the data and are presented as smooth curves joining
the calculated points.

events in the NC DIS data sample with Q2 in the range
100–1000 GeV2, 1000–5000 GeV2 and 5000–25000 GeV2.
The corresponding numbers for the CC DIS data sample
are 84, 123 and 24 events.

Jet shapes in NC DIS
The measured differential jet shapes in NC DIS for differ-
ent regions in ηjet and Ejet

T are shown in Figs. 1 and 2,
respectively. The differential jet shape exhibits a promi-
nent peak at the centre of the jet. It decreases by a factor
≈ 40 from the centre of the jet (r = 0.05) to the edge
of the jet (r = 0.95). Figure 3 shows the measured aver-
age fraction of the jet’s transverse energy that lies inside
an inner cone of radius r = 0.5 concentric with the jet
defining cone, ψ(r = 0.5), as functions of ηjet and Ejet

T .
Note that ψ(r = 0.5) has been measured in ranges of Ejet

T
and the data points in Fig. 3 (lower plot) are located at
the weighted mean in each Ejet

T range. It is observed that
the jets become narrower as Ejet

T increases. The measured
ψ(r = 0.5) exhibits no significant dependence on ηjet.

The predictions of ariadne, meps and pythia are
compared to the measured jet shapes in Figs. 1 to 3. The
predicted jet shape of the colour-dipole model (ariadne)
describes the measured jet shape well in all ηjet and Ejet

T

Fig. 2. Measured differential jet shapes corrected to the
hadron level, ρ(r), in neutral-current DIS with Q2 > 100GeV2

for jets in the ηjet range between −1 and 2 in different Ejet
T

regions (black dots). The error bars include the statistical
and systematic errors added in quadrature. The predictions of
pythia (dotted lines), ariadne (solid lines), and meps (dashed
lines) are shown for comparison. The predictions have been ob-
tained by an integration over the same bins as for the data and
are presented as smooth curves joining the calculated points.

regions considered. The predicted jets of pythia tend to
be narrower at low Ejet

T than those in the data (see Fig. 3).
In the case of meps, the predicted jets show a tendency
to be broader at low ηjet than those in the data.

Jet shapes in CC DIS
The results for ρ(r) in CC DIS for different regions of
Ejet

T are shown in Fig. 4. The differential jet shape shows
similar general features to those of the jets in NC DIS.
Figure 5 shows the measured ψ(r = 0.5) as functions of
ηjet and Ejet

T . The measured ψ(r = 0.5) exhibits no sig-
nificant dependence on ηjet and its dependence on Ejet

T is
similar to that observed in NC DIS. The predictions of
ariadne and meps (see Figs. 4 and 5) provide a reason-
able description of the measured jet shape.

The measured jet shapes in NC DIS are compared with
those in CC DIS in Fig. 6 and found to be very similar
in each region of Ejet

T . Measurements of the ratio of the
differential jet shapes in CC and NC DIS, ρCC(r)/ρNC(r),
for the same regions of Ejet

T as above are also shown in
Fig. 6 (lower part of each plot) and found to be com-
patible with unity. In these measurements some of the
systematic uncertainties common to NC and CC DIS can-
cel. The median of the Q2 distribution has been deter-
mined for the NC and CC DIS samples of jets in each
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Fig. 3. The measured integrated jet shape corrected to the
hadron level at a fixed value of r = 0.5, ψ(r = 0.5), as a
function of ηjet (upper plot) and Ejet

T (lower plot), in neutral-
current DIS with Q2 > 100GeV2 for jets with Ejet

T > 14GeV
in the ηjet range between −1 and 2 (black dots). The error bars
include the statistical and systematic errors added in quadra-
ture. The predictions of pythia (dotted lines), ariadne (solid
lines), and meps (dashed lines) are shown for comparison. The
predictions have been obtained by an integration over the same
bins as for the data and are presented as smooth curves joining
the calculated points.

Ejet
T region: 310 GeV2 (450 GeV2) for 14 < Ejet

T < 21 GeV,
710 GeV2 (1000 GeV2) for 21 < Ejet

T < 29 GeV, 1260 GeV2

(1600 GeV2) for 29 < Ejet
T < 37 GeV and 2000 GeV2 (2200

GeV2) for 37 < Ejet
T < 45 GeV in the NC (CC) DIS sam-

ples of jets. Some differences are observed in the Q2 distri-
butions of the two processes for a given range in Ejet

T . As
a cross-check, the jet shapes in NC and CC DIS have been
measured in a common region of Q2 for each range in Ejet

T
and no significant difference has been found. Therefore,
the observation that the jet shapes in NC and CC DIS
are very similar, for the same range of Ejet

T , is indepen-
dent of the different Q2 distributions in these processes.

Q2 dependence of the jet shape
The differential and integrated jet shapes in NC DIS have
been measured in different ranges of Q2 (100–300 GeV2,
300–500 GeV2, 500–1000 GeV2 and 1000–25000 GeV2) for

Fig. 4. Measured differential jet shapes corrected to the
hadron level, ρ(r), in charged-current DIS with Q2 > 100GeV2

for jets with −1 < ηjet < 2 in different Ejet
T regions (black

dots). The predictions of ariadne (solid lines) and meps
(dashed lines) are shown for comparison. The predictions have
been obtained by an integration over the same bins as for the
data and are presented as smooth curves joining the calculated
points.

the same interval in Ejet
T (14 < Ejet

T < 17 GeV). No signifi-
cant dependence onQ2 is observed. The observed indepen-
dence of the jet shape with the virtuality of the exchanged
photon, for a given Ejet

T , indicates that the measured jet
shape (in the laboratory frame) is not affected by the in-
duced boost. Therefore, a comparison can be made of the
jet shapes in NC DIS measured in the laboratory frame
with those in e+e−, p̄p and photoproduction interactions.

7.2 Comparison to jet shapes in photoproduction

In photoproduction, two types of QCD processes contri-
bute to jet production at LO [33,34]: either the photon
interacts directly with a parton in the proton (direct pro-
cess) or the photon acts as a source of partons which in-
teract with those in the proton (resolved process). It has
been noted that resolved processes dominate jet photopro-
duction in the entire Ejet

T region studied [31]. In the case
of dijet photoproduction the contributions of resolved and
direct processes can be separated [35] by using the variable
xOBS

γ = (
∑

jetsE
jet
T e−ηjet

)/(2Eγ), where the sum runs over
the two jets of highest Ejet

T and Eγ is the initial photon en-
ergy. This variable represents the fraction of the photon’s
momentum participating in the production of the two jets
with highest Ejet

T . The LO direct and resolved processes
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Fig. 5. The measured integrated jet shape corrected to the
hadron level at a fixed value of r = 0.5, ψ(r = 0.5), as a
function of ηjet (upper plot) and Ejet

T (lower plot), in charged-
current DIS withQ2 > 100GeV2 for jets with Ejet

T > 14GeV in
the ηjet range between −1 and 2 (black dots). The inner error
bars represent the statistical errors of the data, and the outer
errors bars show the statistical and systematic uncertainties
added in quadrature. The predictions of ariadne (solid lines)
and meps (dashed lines) are shown for comparison. The pre-
dictions have been obtained by an integration over the same
bins as for the data and are presented as smooth curves joining
the calculated points.

largely populate different regions of xOBS
γ , with the direct

processes being concentrated at high values.
In Fig. 7 the measured integrated jet shape in NC

DIS is compared to those in dijet photoproduction [10] for
two different regions: xOBS

γ ≥ 0.75 and xOBS
γ < 0.75. The

comparison between the jet shapes in NC DIS and dijet
photoproduction is made for the same ranges of ηjet and
the Ejet

T spectrum is similar in these two processes. The
jets produced in NC DIS are narrower than those in dijet
photoproduction but closer to those dominated by direct
processes (xOBS

γ ≥ 0.75). This comparison can be under-
stood in terms of the large fraction of final-state quark
jets expected in NC DIS (e+q → e+q) and direct pro-
cesses in photoproduction (dominated by the subprocess
γg → qq̄). The remaining differences may be attributed to
the contribution from the direct subprocess γq → qg and
that of resolved processes, in which the jets are broader

Fig. 6. Measured differential jet shapes corrected to the
hadron level, ρ(r), in charged-current DIS with Q2 > 100GeV2

for jets with −1 < ηjet < 2 in different Ejet
T regions (open cir-

cles). The measured jet shapes corrected to the hadron level
for jets in neutral-current DIS with Q2 > 100GeV2 with
−1 < ηjet < 2 are shown for comparison (open squares). Mea-
surements of the ratio ρCC(r)/ρNC(r) are shown underneath
each plot. The inner error bars represent the statistical errors
of the data, and the outer errors bars show the statistical and
systematic uncertainties added in quadrature.

as shown by the measurements in dijet photoproduction
with xOBS

γ < 0.75.

7.3 Comparison to measurements in e+e−
and p̄p collisions

The measured jet shape in NC (CC) DIS with Q2 >
100 GeV2 for jets with transverse energy between 37 and
45 GeV, with a mean of 40 GeV (41 GeV), is compared to
the measurements of the jet shape corrected to the hadron
level in p̄p collisions by CDF [6] and DØ [7] and in e+e−
interactions by OPAL [9]:

– The CDF data [6] have been obtained using an itera-
tive cone algorithm with R = 1 similar to that used
here. The measurements shown are for jets with trans-
verse energy between 40 and 60 GeV, with a mean of
45 GeV, and pseudorapidity 0.1 < |ηjet| < 0.7. The
contribution to the jet shape due to the underlying
event was found to be small.2 If a jet shares more than
75% of its energy with a jet of higher energy, the two
are merged together; otherwise, they are defined as
distinct and the particles common to both jets are as-
signed to the nearest jet.

2 In NC and CC DIS the underlying event is not expected
to contribute in the kinematic region studied here.
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Fig. 7. Measured integrated jet shape corrected to the hadron
level, ψ(r), in neutral-current DIS with Q2 > 100GeV2 for
jets with Ejet

T above 14GeV and −1 < ηjet < 2 (black dots).
The measured jet shape corrected to the hadron level for jets
in dijet photoproduction with Ejet

T above 14GeV and −1 <
ηjet < 2 is shown for comparison: for dijet production with
xOBS

γ < 0.75 (stars) and for dijet production with xOBS
γ ≥ 0.75

(open circles).

– The DØ data [7] have been obtained also using an
iterative cone algorithm with R = 1 similar to that
used here. The jet direction was defined according to
a convention different from that of Snowmass; how-
ever, this difference is not expected to have a signifi-
cant effect on the results [36]. The jet shape has been
measured for jets with transverse energy between 45
and 70 GeV, with a mean of 53 GeV, and pseudora-
pidity |ηjet| < 0.2. The jet shape has been corrected
to remove the small contribution due to the underly-
ing event. Two jets were merged if more than 50% of
the ET of the jet with smaller ET was contained in the
overlap region; otherwise, the two jets were not merged
and each particle in the overlap region was assigned to
the nearest jet.

– The OPAL data [9] have been obtained using a cone
algorithm especially designed to emulate that of the
CDF measurements, i.e. defining the cone in the η −
ϕ plane, using R = 1, demanding |ηjet| < 0.7 and
measuring the transverse energy flow. The jet shape
has been measured for jets with energy greater than
35 GeV, with a mean of 40.4 GeV. The e+e− data have
no underlying event. Overlapping jets are treated using
the same procedure as CDF.

The measured differential jet shapes in NC and CC
DIS are compared to that measured in e+e− interactions

Fig. 8. Measured differential jet shapes corrected to the
hadron level, ρ(r), in neutral- (charged-) current DIS with
Q2 > 100GeV2 and a median of 2000GeV2 (2200GeV2) for
jets with ηjet in the range between −1 and 2 and 37 < Ejet

T <
45GeV are shown as squares (open circles). The measurements
in CC DIS have been obtained for the same values of r as those
in NC DIS, and for an easier comparison the measurements
are plotted at r+ 0.025. The measurements of the jet shape in
e+e− interactions by OPAL (black dots) is shown for compar-
ison. The ratio of differential jet shapes in NC DIS and e+e−

interactions, ρNC(r)/ρe+e−
(r), is shown in the lower part of

the figure.

in Fig. 8 and are found to be similar. The ratio of the
differential jet shapes in NC DIS and e+e− interactions,
ρNC(r)/ρe+e−

(r), is also shown in Fig. 8 (lower part of the
figure) and is found to be compatible with unity within the
uncertainties of the DIS measurements, which are domi-
nant. For the selected samples of jets, the jet shapes in
e+e− interactions and DIS are expected to be similar due
to the large fraction of final-state quark jets in these two
processes. However, some differences may appear since
there are configurations of colour flow (for example, that of
initial-state QCD radiation) in DIS which are not present
in e+e−. The striking similarity in the jet shapes indicates
the large extent to which the pattern of QCD radiation
within a quark jet is independent of the hard scattering
process in these reactions.

The measured integrated jet shapes in DIS are com-
pared to those in e+e− interactions and p̄p collisions in
Fig. 9. The measured jets in DIS at HERA are found to
be narrower than those in p̄p collisions. The measurements
in p̄p collisions have been performed for jets with slightly
higher energy than those in NC and CC DIS. This differ-
ence cannot explain the discrepancy in the jet shapes since
the jets become narrower as the jet energy increases. As
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Fig. 9. Measured integrated jet shapes corrected to the
hadron level, ψ(r), in neutral- (charged-)current DIS with
Q2 > 100GeV2 for jets with ηjet in the range between −1
and 2 and 37 < Ejet

T < 45GeV are shown as stars (diamonds).
The measurements in CC DIS have been obtained for the same
values of r as those in NC DIS, and for an easier comparison
the measurements are plotted at r+ 0.025. The measurements
of jet shapes in p̄p collisions by CDF (triangles) and DØ (cir-
cles) and in e+e− interactions by OPAL (squares) are shown
for comparison.

stated in [9], most of the difference between the jet shapes
in e+e− interactions and p̄p collisions can be ascribed to
the larger fraction of gluon jets in the latter reaction. The
comparison between the measured jet shapes in DIS and
p̄p collisions suggests that, also in this case, the difference
can be attributed to differences between quark and gluon
jet properties.

8 Summary and conclusions

Measurements have been presented of the differential and
integrated jet shapes in neutral- and charged-current deep
inelastic e+p scattering at

√
s = 300 GeV using data col-

lected by ZEUS in 1995 and 1996. The jet shapes refer
to jets at the hadron level with a cone radius of one
unit in the η − ϕ plane and are given for the kinematic
region Q2 > 100 GeV2. Jets with Ejet

T > 14 GeV and
−1 < ηjet < 2 have been considered. The jets become nar-
rower as Ejet

T increases. No significant ηjet dependence of
the jet shape has been observed. The measured jet shapes
in neutral- and charged-current DIS are found to be very
similar.

The measurements of jet shapes have been compared
to the predictions of Monte Carlo generators using dif-

ferent models for the QCD radiation. The colour-dipole
model as implemented in ariadne provides a reasonable
description of the measured jet shapes in all ηjet and Ejet

T
regions studied. The parton-shower approach without first-
order QCD matrix-elements predicts jets which are slightly
narrower at low Ejet

T than those in the data for all the ηjet

regions studied. The inclusion of first-order QCD matrix-
elements improves the description of the data for ηjet > 1,
but leads to jets which are slightly broader for ηjet < 1.

The jets in neutral-current DIS are narrower than those
in dijet photoproduction but closer to those in direct-
photon processes for the same ranges in jet transverse
energy and pseudorapidity. The jets in DIS are found to
be narrower than those in p̄p collisions. This difference
can be attributed to a larger contribution of gluon jets
in p̄p collisions. The measured jet shapes in neutral- and
charged-current DIS are similar to those in e+e− interac-
tions for comparable ranges of jet transverse energy. Since
the jets in e+e− interactions and deep inelastic e+p scat-
tering are predominantly quark initiated, the similarity in
the jet shapes indicates that the pattern of QCD radiation
within a quark jet is to a large extent independent of the
hard scattering process in these reactions.
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