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Abstract •  Technologies such as next generation sequencing (NGS) are 
transforming research fields at the methodological, conceptual, and or-
ganizational level. They open up new possibilities and bring with them 
new commitments and inherent limitations. We show from a philoso-
phy of science perspective how NGS-based metagenomics has trans-
formed microbial ecology and, with it, parts of agricultural soil science, 
which integrate ecological approaches with the aim to inform agricul-
tural practices. We reconstruct agricultural science as design science 
(sensu Niiniluoto) and describe how the possibilities, commitments, 
and limitations of metagenomics approaches in microbial ecology 
shape values, situation assessments, and recommendations for inter-
ventions of soil microbiology in the context of sustainable agriculture.

Metagenomische Ansätze in der mikrobiellen Ökologie und 
Forschung für nachhaltige Landwirtschaft

Zusammenfassung •   Technologien wie Next Generation Sequencing 
(NGS) transformieren Forschungsfelder auf der methodischen, konzep-
tionellen und organisatorischen Ebene. Sie eröffnen neue Möglichkei-
ten, bringen aber auch neue Festlegungen und inhärente Beschrän-
kungen mit sich. Wir zeigen aus wissenschaftsphilosophischer Perspek-
tive wie NGS-basierte Metagenomik die mikrobielle Ökologie und damit 
auch Teile der agrarwissenschaftlichen Bodenforschung transformiert 
hat, die ökologische Ansätze integrieren, um landwirtschaftliche Prakti-
ken zu verändern. Wir rekonstruieren die Agrarwissenschaft als Design-
wissenschaft (sensu Niiniluoto) und beschreiben, wie die Möglichkeiten, 
Festlegungen und Beschränkungen der metagenomischen Ansätze in 
der mikrobiellen Ökologie die Werte, Situationsbewertungen und Emp-
fehlungen für Eingriffe der Bodenmikrobiologie im Kontext nachhalti-
ger Landwirtschaft beeinflussen.
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Introduction

A metagenomics approach consist in the sampling of genomic 
material directly from a selected environment. It can capture a 
whole ecological community in a given environment such as a 
patch of soil by means of its collective genomic content. This 
approach, which became possible through next generation se-
quencing (NGS), is now widely applied in agricultural soil re-
search. The latter is generally viewed as an applied science, aim-
ing to improve agricultural practice. The common distinction 
between basic and applied science is as useful as it is problem-
atic. Much of the difficulty results from the ambiguity of the no-
tion of science involved, as it can refer to institutionalized disci-
plines as much as to research practices or results. Furthermore, 
applied science needs to be distinguished from the scientifically 
informed contexts of application.

In this paper, we adopt a framework suggested by Ilkka Niini-
luoto (1993) and construe individual projects within a given sci-
ence, in our case soil microbial ecology, as basic or design sci-
ence, respectively, depending on whether the outcome is descrip-
tive or consists in recommendations for interventions, regardless 
of the disciplinary affiliations of researchers involved. Basic sci-
ence projects can be motivated by or funded for their potential to 
produce knowledge relevant for other fields of human practice. 
But this alone does not turn them into design science if they do 
not deliver recommendations. In such cases, one might want to 
speak of ‘use-inspired basic research’ (Stokes 1997). Basic and 
design science projects can be pursued in classical university re-
search settings as well as in non-academic or combined ‘Mode 2’ 
science settings (Gibbons et al. 1994). Niiniluoto’s classificatory 
schema allows us to track how metagenomics approaches in ba-
sic science projects, aimed at developing novel descriptions and 
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establishing new ontologies, and thus pre-configuring the dis-
cursive universe in which design science recommendations are 
formulated. Alternative approaches could make the phenomena 
in question accessible in a different manner, thus resulting in dif-
ferent recommendations. We thus depart from Niiniluoto’s view 
by emphasizing the pluralistic and perspectival nature of the re-
sults of basic science. Such a view, however, is not incompati-
ble with realism and the notion that science delivers true state-
ments about the world (Massimi 2018).

As the purpose of applying Niiniluoto’s framework is to dis-
tinguish projects with descriptive and normative outcomes in 
order to reconstruct their interrelation, and to analyze the as-
pects of values and goals, situation assessments, and interven-
tions characterizing design science projects, issues of realism 
need not be further discussed here. While we take these aspects 
on board, we complement Niiniluoto’s account in a way that al-
lows us to move beyond the focus on theoretical results empha-
sized by Niiniluoto as much as by perspectivists. According to 
these views, knowledge about phenomena in form of the respec-
tive representations constitutes a perspective or is transferred 
from basic to design science. We focus, instead, on the ways 
that research practices themselves are directional and selective 
in the way suggested by the metaphor of perspective for theoret-
ical representations. The actor’s category of an approach seems 
to express this fact: to approach an object implies to move to-

wards it from a given direction and to access it in a particular 
way. On our account, an approach is embodied in an experimen-
tal system enabling specific and selective material and cognitive 
access to epistemic objects (Rheinberger 1997). Approaches are 
translated from basic to design science projects and with them 
theoretical perspectives. Pluralism then results from the co-ex-
istence of approaches.

To return to our case, metagenomics approaches were inte-
grated in experimental systems in microbial ecology and pro-
vided access to different aspects of microbial life than earlier 
culture-based approaches and made them available for basic sci-
ence descriptions in ecological and genomic terms. In addition 
to the descriptive knowledge, the approach that enabled such 
knowledge itself was translated by adapting it to design science 
projects in agricultural soil science. In this way, the latter inher-
ited the new possibilities and inherent limitations for material 
access and cognitive and symbolic representation, which then 
shaped its technical norms.

In the next section, we will show how accessing microbial 
communities through their collective genomic material (metage-

theoretical perspectives regarding soil microbial communities, 
re-orients the outlook of the respective design science projects 
delivering recommendations informing agricultural contexts.

The translation of approaches from basic 
to design science projects

Niiniluoto defines design science as “research aiming at knowl-
edge that is useful for the activity of design”, where design “in 
the broad sense includes all ‘artificial’ human activities, i. e., 
the production, preparation, or manipulation of natural systems 
[…] or artefacts” (Niiniluoto 1993, p. 8). Agricultural science 
is among Niiniluoto’s examples of design science. The relevant 
profession is the farmer, the practice is agriculture, the skill in-
volved is the art of farming. Such human practices underwent 
processes of mechanization, i. e., the development of tools, as 
well as scientification, i.  e., the development systematic bod-
ies of rules. Design science supports both these developments 
and results in what Niiniluoto calls ‘technical norms’ (not to be 
confused with technical standards), defined as statements re-
lating means and ends of the form ‘If you want A, and you be-
lieve that you are in a situation B, then you ought to do X’. Such 
statements, unlike the descriptive statements of basic science, 
are clearly normative. Whether or not one adopts Niiniluoto’s 

view that their truth value “is an ‘objective’ and general fea-
ture of the world” (Niiniluoto 1993, p. 12), it is clear that agents 
can agree on the validity of the statement even if they disagree 
whether the recommendation should be followed. As Niiniluoto 
points out, there can be disagreement regarding the values and 
associated goals, the actual state of the current situation, or the 
causal relations underlying an intervention. While the latter two 
issues can be addressed by empirical research, the former is sub-
ject to political debate. In any case, design science is justified 
when it is relevant, i. e., the situations expressed in its technical 
norms do obtain and the values inscribed in the goal in its an-
tecedent are held by at least some group. Values and associated 
goals can result from public policy planning or attitudes of seg-
ments of civil society.

Regarding basic science, Niiniluoto holds a realist view. On 
his account, basic research delivers descriptive knowledge of 
causal regularities governing the relation of A, B and X under-
lying the technical norms of design science. In the following, we 
will go beyond this analysis, by showing how basic science ap-
proaches make phenomena accessible in the first place, thereby 

We will show how basic science pre-configures 
the discursive universe in which design science recommendations 

are formulated.

25

SPECIAL TOPIC · NExT gENErATION SEquENCINg

 (2021) 30/2: 24–29 Robert Meunier, Saliha Bayır



come the shortcomings of culturing techniques and character-
ize the biodiversity of environmental samples, researchers be-
gan to integrate molecular biology techniques. Following Fred-
erick Sanger’s development of a sequencing technique in 1977 
and using the insight of Carl Woese and colleagues that highly 
conserved ribosomal ribonucleic acid (rRNA) subunits can be 
employed for phylogenetic characterization (Woese 1983), Nor-
man Pace and colleagues began to adjust this molecular tech-
nique as a culture-independent approach for studying the biodi-
versity of naturally-occurring microbial communities, using en-
vironmental samples (Pace et al. 1986).

The early development of sequencing techniques thus offered 
a new way to access the complexity of microbial life. Molecular 
phylogenetic analysis and the conclusions drawn about species 
richness and abundance prompted the beginning of environmen-
tal metagenomics approaches. As a result of this change of re-
search culture and ensuing possibilities of environmental micro-
biology to become more ecology-oriented and address microor-
ganisms at the community level, microbial ecology established 
itself as a hybrid between ecology and microbiology (O’Mal-
ley 2014).2 As the field pushed the advancement and integra-
tion of sequencing methods, the development of NGS platforms 
around 2005 had a strong impact on microbial ecology. NGS al-
lowed for massive parallel sequencing of millions of short reads 
(i. e., sequences of DNA or RNA strings of several hundred base 
pairs), as it decreased the time and costs of sequencing signifi-
cantly (Slatko et al. 2018).

This had several consequences as researchers were now able 
to a) detect also viral particles and free DNA sequences; b) im-
prove the description of community composition and phyloge-
netic relations (Pereira et al. 2017); and c) analyze and predict 

community functions such as nitrogen or sulfur metabolism, res-
piration, motility, etc. (Fierer et al., 2012). Especially the latter 
point implies a new, systems-based understanding of microbial 
communities based on the analysis of the whole DNA content 
of a sample as it characterizes the new NGS-based metagen-
omics approaches. Analyzing the genes present in a commu-
nity, the proteins they potentially encode, and the gene-transfer 
networks and metabolic pathways they form, gradually became 
more central to research agendas than identifying individual spe-
cies, community structure, and phylogenetic relations (Gupta 
et al. 2019). The shift of emphasis from community structure 
to community functions resulted in a view of microbial com-
munities as integrated functional units themselves rather than a 

2   Ecological communities are composed of various species, which interact with 
each other in a given habitat.

nome) re-oriented the conceptual representation of microbial 
life, from a focus on taxonomic groups (microbiota) and their 
phylogeny (i. e., evolutionary relationships) and physiology (i. e., 
their functions as a living system), to the study of integrated 
and interacting communities (microbiomes) and their structure 
and function, which were then mainly characterized on the level 
of genes and gene functions.1 Subsequently, we will indicate 
how agricultural soil science adopted these metagenomics ap-
proaches and with them the genome-centered representation of 
microbial life. This shaped the conceptualization of goals, sit-
uations, and interventions in terms of soil quality in relation to 
agricultural practices and thus the resulting technical norms that 
potentially inform policy makers, actors in agribusiness, and 
farmers.

From microbial cultures to an ecology 
of genomes in microbial ecology

Microbial ecology emerged from environmental microbiology 
as the study of the relationships of microorganisms with their 
environment and among each other. Due to the need for develop-
ing procedures for examining microbial life in its natural context 
and bringing to light life forms which are otherwise invisible, en-
vironmental microbiology was a technology-driven field since 
its inception at the beginning of the twentieth century. Soil and 
marine microbiology were crucial in the development of micro-
bial ecology. The outlook of these fields differed significantly 
from those of medical microbiology and food production, which 
conceived of specific microbes as pathogens to be removed from 
bodies, or as reagents, respectively (O’Malley 2014). Soil micro-

biologists, instead, considered the diversity of microbial compo-
nents of soil as fundamental and as contributing to the richness 
of soil as substrate for plants. Therefore, the methods of soil mi-
crobiologists were developed in the context of or applied by ag-
ricultural sciences early on (Ackert 2007).

Environmental microbiologists were aware of a discrepancy 
between the types of viable cells in the cultured samples and the 
range of diversity observed with microscopes. In the late 1970s 
it became apparent that only 0,1–1 % of microbial life from sam-
ples could be retrieved with available culturing techniques, a 
fact referred to as the “great plate count anomaly” (Staley and 
Konopka 1985; for recent criticism, see Martiny 2019). To over-

1   While the term ‘microbiota’ refers to all microbes in a given environment, ‘mi-
crobiome’ denotes microbial communities in a given habitat, their internal and 
external interactions, as well as their genomic content (Berg et al. 2020).

Metagenomics approaches generate a selective, genome-centered 
theoretical perspective on soil ecology.
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plying knowledge and approaches of basic science to the assess-
ment of situations and the identification of causal regularities 
suitable for interventions. The study of the microbial dimension 
of soil in agricultural science has been strongly enhanced by 
NGS technologies. In the following, we will briefly indicate how 
the adoption of metagenomics approaches from microbial ecol-
ogy has shaped the articulation of values and goals, the assess-
ment of situations, as well as the recommended interventions in 
the technical norms delivered by agricultural soil research.

Values and Goals
Since agricultural research became institutionalized in various 
national contexts in the latter half of the nineteenth century, in-
creasing productivity was a central goal (Noll 2016). With an ev-
er-increasing demand for food, feed, fiber, fuel and pharmaceuti-
cals, many depict this goal as more urgent than ever. This goal is 
derived from the underlying, albeit promissory values of (global) 
prosperity and well-being. Detrimental effects of agricultural 
intensification such as ecosystem degradation and biodiversity 
loss led to a new agenda aimed at halting these processes, result-
ing in calls for sustainable agriculture (Thompson 2016). The 
role of science is then seen as mitigating these processes, either 
by developing alternative strategies, or by delivering technolog-
ical fixes (Puig de la Bellacasa 2015). In some of these contexts, 
design science projects could be perceived as ‘post-normal sci-
ence’ (Funtowicz and Ravetz 1993), which provides advice un-
der conditions of uncertain facts and diverging values.

In the context of agricultural science and policies informing 
its goals, the maintenance of ecosystems and biodiversity is typ-
ically not presented as an intrinsic value, but in a rather utilitar-
ian way with respect to the overarching values of prosperity and 
well-being (Haines-Young and Potschin 2010). The latter are de-
scribed as depending on ecosystem services which are provided 
by intact and diverse ecosystems. The notion of ecosystem ser-
vices implies an anthropocentric understanding of ecosystem 
function. Without these, it is feared, not only will productivity 
eventually break down, but other negative consequences, for in-
stance regarding climate change, will ensue. In the context of 
these externally set values and goals, agricultural science aims 
to deliver technical norms that are hoped to mediate the de-
mands of productivity and sustainability. With metagenomics 
approaches, ecosystem functions of soils become re-interpreted 
in terms of networks of genes available in the ecosystem and the 
metabolic pathways they sustain (Schloter et al. 2018). This then 
has consequences in turn for the way specific goals are formu-
lated regarding possible achievements or fixes, and ultimately 
determines the kinds of interventions suggested.

Situation assessment
The assessment of situations in which the goals are relevant and 
that can be changed through intervention happens on a global 
and a local level. The growing demands for agricultural prod-
ucts and the degree of ecosystem degradation and biodiversity 
loss need to be determined on a global or national level such that 

sum of individual organisms (Konopka 2009). But as indicated 
by the concept of the microbiome, these units are now mainly 
understood through their collective genome (Berg et al. 2020).

While we showed how NGS technologies enabled access to 
previously inaccessible dimensions of microbial life, we con-
clude that metagenomics approaches generated a genome-cen-
tered theoretical perspective on soil ecology. Despite our empha-
sis on the selective nature of these approaches and the resulting 
perspective on the biological dimension of soil, it is important 
to note that microbial ecologists typically employ different com-
plementary strategies in addition to NGS. For instance, soil is 
submitted to chemical and physical characterizations (Fierer, 
2017). Furthermore, microbial ecologists are aware of and ad-
dress limitations of the approach: 1) Predicted community func-
tions reflect only potential activity as many genes may originate 
from dormant cells or DNA debris and as genes are transcribed 
and translated into proteins only under certain environmental 
conditions (Prosser 2020). 2)  Testing sequence-based predic-
tions and gaining knowledge about cell-level anatomy and phys-
iology, as well as modes of interaction among microbes and 
between microbes and plants would require culturing microor-
ganisms in the lab. However, even though new culturing tech-
niques are developed, various factors such as dormancy, symbi-
otic interdependency, low abundance, and competition still con-
stitute difficulties for cultivation under lab conditions (Lewis 
et al. 2021). 3) Metagenomics results in massive amounts of data 
and the ‘bioinformatics bottleneck’ diagnosed for other fields 
employing NGS applies here as well (Desai et al. 2012). Filter-
ing out information irrelevant for the pursued research question 
and analyzing and interpreting data requires special expertise 
(Kulkarni and Frommolt 2017). Therefore, collaboration with 
bioinformaticians becomes a necessary organizational feature 
of microbial ecology.

The next section addresses the fate of metagenomics ap-
proaches to soil microbiology in the context of agricultural sci-
ence.

The constituents of technical norms 
in research for sustainable agriculture

Agricultural science is a multidisciplinary field producing 
knowledge about elements of agricultural practice on various 
levels, including soil, plants and pests, chemical and mechani-
cal production technologies, and crop management strategies, as 
well as economic and political dimensions (Noll 2016). Many 
projects deliver descriptive knowledge on these aspects and can 
be categorized as use-inspired basic research. However, large 
parts of agricultural science aim at technical norms, i. e., rec-
ommendations about how to treat soil, choose or improve crops, 
handle pests, use technologies or design and implement policies. 
Such recommendations typically involve (methods for) the as-
sessment of situations and are delivered under the assumption 
of a set of values and goals. Technical norms are derived by ap-
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sessment of situations and possible interventions. We are not 
suggesting that these fields are limited to a metagenomics ap-
proach and the associated theoretical perspective. Physical and 
chemical technologies for soil analysis are also used and further 
developed. Nonetheless, metagenomics approaches have ori-
ented the outlook of agricultural soil microbiology strongly on 
a genome-centered notion of ecosystem services.

Our analysis suggests that this perspective tends to support 
instrumental attitudes towards sustainability. In extension to Ni-
iniluoto’s advice that in order to avoid short term “instrumen-
tal reason”, focusing solely on economic or technical efficiency, 

“a technical norm should include among its antecedent A all the 
relevant valuations that concern the direct and indirect conse-
quences of the recommended action X” (Niiniluoto 1993, p. 16), 
it would be possible to suggest another meta-technical norm, 

i. e., a recommendation as to how to construct technical norms, 
based on our analysis: When developing or adopting technical 
norms, the directed and selective nature of approaches underly-
ing the assessment of situations and delineation of causal rela-
tions should be taken into account and they should be considered 
and framed against the background of alternative approaches.
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