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ABSTRACT

Finite mixtures of probability distributions are used for the
modeling of probability distributions of incomes. These
distributions are typically non-homogenous, heavy tailed
and positively skewed. In the text a net annual incomes per
capita of the Czech households in 2004 and 2008 are
analysed. The finite mixtures of lognormal distributions are
fitted into data from the survey Results of the Living
Conditions Survey (a national module of the European Union
Statistics on Income and Living Conditions (EU-SILC)) that
has been held by the Czech Statistical Office since 2005.
Firstly, the components with known group membership are
formed according to the education of a head of a household
(factor with 5 levels) and number of children (2 levels factor
children yes/no and more detailed 5 levels factor) in the
household. Secondly, data are divided into groups with
unknown group membership in order to obtain the best
possible fit. In this case 1 to 5 components in the mixture
are used. All models fitted into data are compared with the
use of Akaike criterion.
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INTRODUCTION

Studying and analysing incomes and wages is very
important not only for experts in the field but also for general
public. Characteristics of their levels (as values of the mean
or median), characteristics of variability (standard deviation
or coefficient of variation) and Gini index of inequality are
frequently published and discussed from various points of
view. In this article a method of mixtures is used for the
estimation of distribution of annual income per capita in the
Czech Republic and characteristics mentioned above are
evaluated from these estimated distributions and compared
with sample values. Lognormal distribution for components
is used as it is known to be useful in the modelling of income
or wage distributions (an overview of other ‘income’
distributions as generalized gamma, beta or lambda
distributions, Pareto or Weibull distributions can be found in
McDonald (1984)). Many references of the topic are included
in Kleiber, Kotz (2003)). The incomes in the Czech Republic
with the use of lognormal distribution are analysed in
Barto$ova, Bina (2008), Bilkova (2009) or Pavelka (2009).
The last mentioned article by Pavelka shows the use of
mixtures of lognormal distributions for wages in the Czech
Republic, in BartoSova, Forbelska (2011) mixture of models
for SILC data are used. The unknown parameters are
estimated with the use of maximum likelihood method.

In the article data dealing with the Czech households for
2004 and 2008 are used. The set of all households is not
homogenous, the households differ in structure (number of
members, economically active members, pensioners,
children etc.) as well as in economic activities or education
of members. In the text lognormal mixture models with
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known component membership (complete data models) are
fitted to incomes for subgroups given by education of a head
of household and according to the existence of children or
number of children in the household. Separate distributions
can be found for these subgroups defined by explanatory
variables as above and these distributions are mixed
together in the overall distribution of the Czech households.

Moreover, mixture models with unknown component
membership (incomplete data models) are constructed with
1 to 5 components. In this case group membership is not
observable and observations are divided into subgroups in
order to obtain the best fit. In this case lognormal
distributions are used for components, distribution of
a mixture is not any more lognormal. This approach to the
analysis of distribution is similar to cluster analysis. For the
clustering data into groups in this text no explanatory
variables were used and probabilities of membership for
data were not computed as the goal of the analysis is to
identifie distributions in the mixture.

Methods
Finite mixtures of probability distributions

In this part the finite mixture of probability densities is
defined and its properties that are used in this article are
given (Titterington et al. (1985)). Suppose now, that for
given K there are probability densities fi(y;6;) (i = 1,., K)
depending on p dimensional (in general unknown) vector
parameter 6;. Furthermore, K weights ; fulfil obvious
constraints Zn,:l, 0<z <1, j=1.K.

A density of the mixture of these probability distributions is
defined as a weighted average of densities f; with weights
(mixing proportions) T in the form

f(,v;w)=27f,f, (3:0)). (1)
The mixture density (1) depends on the vector parameter
W, Y = (1m1,...,Tk-1,8;,j=1,...,K) with (K-1) parameters 1; and
Ko parameters theta. If the probability distribution given by
the formula (1) is used in a model, (K-1) + K, unknown
parameters are to be estimated. If all mixing proportions are
supposed to be positive, all K components are present in
the mixture. The choice of K is crucial for the proper model
as well as probability densities f;.

It follows immediately from (1) that a cumulative distribution
function F of the mixture is defined as
K

F(rw)=27,F,(»:0,), (2)
where Fj(y;6) is a distribution function of the j-th distribution
in the mixture. For an expected value of the mixture
a formula similar to cumulative distribution function can be
used and the expected value can be evaluated as

a weighted average of the expected values of its
components with weights ;.



These simple formulas are not true for higher moments or
for values of a quantile function. In the text standard
deviation of the mixture is frequently used as well as
quantiles. Let X; is a random variable with density function
fj, expected value E(X;) and finite variance D(X;), (j = 1,., K).
Then formulas (3) and (4) valid

E(Y):ﬁ;;r,E(X,), @)
(y):gﬁ,E(xf)_(E(y))z:gn,(D(x,)+(E(X,)Z)_(E(y))? )

The 100P% quantile yp can be found as a solution of an
equation

K
F(ye Lp):erjF(yp;el):P,0<P<1. (5)
j=1
This equation should be solved numerically, as the weighted
average of component 100P% quantiles is not equal to yp.
But it is a good first guess for numerical procedure. This
approach was used in this text when selected quantiles were
evaluated.

Likelihood function (from a sample y;, i=1,.,n) can be written

as
Hf Vi

Suppose now, that the random sample arises from
a population divided into K subpopulations and for each
observation y; the subpopulation j is observed together with
the value. Data of this type are called complete. In this case
i-th observation’s contribution to the function L is only
mifi(y;6;) (if this observation comes from the j-th
subpopulation). The likelihood function (6) can be then
rewritten in the form (according to Titterington et al. (1985))

n K 2
L@)= 1T (vie,)"

where z; are known 0/1 vectors with K components and z;
is equal to 1 if i-th observation , comes from the j-th
density and 0 otherwise. The vector = contains subgroup
frequencies (number of observations in each subgroup).
Taking logarithm in (7), the logarithmic likelihood function |
can be written in the form

() Zz FALES +ZZZ Inf, (y,:8; ).

i=1j=1 i=1j=1

n_ K

S a8,

i=1 j=1

(6)

@)

=InL(y (8)

The function | in (8) splits into two parts, the first part
depends only on mixing proportions and the second one
only on parameters of probability densities (values z; are
known, as we suppose, that data are complete). Both parts
in (8) can be maximized separately. Maximum likelihood
estimates of proportions are sample relative frequencies of
components and estimates of parameters of the component
densities can be found as maximum likelihood estimates in
each subgroup.

If the group membership is not known, the logarithm of (6)
is equal to

/(q,)zim[

In this case the logarithmic likelihood function cannot be split
into parts as in (8) and the function is usually maximized
with the use of EM logarithm (Pavelka (2009)). This is
a numeric procedure that consists of two steps. First step is
called Expectation (probabilities 11j are estimated) and the
second one Maximization, where estimated values from the

K
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first step are used in order to found new approximations of
parameters theta. These two steps are repeated until
a solution is found. Generally, EM algorithm doesn’t
guarantee absolute maximum of the logarithmic likelihood
function but only the local extreme (Titterington et al.
(1985)). Moreover for higher number of components it can
be time consuming and even after thousands of steps
convergence may not occur. It is the case of poor initial
approximations as it was in this text.

All estimates in the text are maximum likelihood estimates
and in order to compare different fits, Akaike criterion was
used in the form

©)
If different models are compared, the smaller the value of
AIC the better fit.

All estimated characteristics of distributions based on
maximum likelihood estimates of unknown parameters are

also maximum likelihood estimates and have all theoretical
properties of such estimates.

AIC=-2*|(p) + 2*number of parameters

Lognormal distribution

For the modeling of distribution of incomes, the lognormal
distribution is frequently used with satisfactory results. In
this paper two-parametric lognormal distribution is used for
densities fj and components differ only in the parameters.
Under these assumptions the random variable Y has
a distribution given by a mixture density

(|nyu,-)2]

f(V"">=,K§”f (visecf) = Zﬁzay ( 20

The vector of parameters y has (K-1) + 2K components (;
W, o%,j =1,...K).

Known formulas for distribution function, quantile function
and moments of lognormal distribution (Johnson et al.
(1994)) are used in (2) - (5) in order to evaluate
characteristics of the mixture.

The estimates &, 1,6 of unknown parameters in (8) can
be evaluated as (j =1,.,K)

.18 "
":E;zjhuj Zlnyu

Niz=

For the incomplete data, a package flex mix (Griin, Leisch
(2008)) in program R 2.13.1 was used for the maximization
of the logarithmic likelihood function |I. The package
estimates parameters for mixtures of normal distributions
(mixing proportions, expected values and standard
deviations of normal distributions). This program was used
for the logarithms of analysed incomes. Values of
logarithmic likelihood function were evaluated in original
incomes, not in their logarithms.

=13 (ny,

i:zj=1

Data and results

In this part of the article the concept of mixtures of lognormal
distributions from previous part is used to the modeling of
incomes of the Czech households. Data from EU-SILC
(European Union — Statistics on Income and Living
Conditions) survey from two years 2005 and 2009 were
used. The survey has been held by the Czech Statistical
Office yearly since 2005, the survey EU-SILC 2005 refers
to the incomes from 2004 and EU-SILC 2009 to 2008. The
aim of the survey is to gather representative data on income
distribution for the whole population and for various
household types. For each household in the sample an
annual income per capita (in CZK) was evaluated as a ratio



of a total of all incomes (net) and a total of members of the
household. All incomes in the text are in CZK, average rates
were 1Euro=31.90 CZK in 2004 and 24.94 CZK in 2008.
Suppose that the income of a household per capita is the
random variable Y with mixture distribution discussed in the
previous parts. The survey from 2005 consists of 4,341
households, in 2008 there were 9,911 households included
in the sample. In this text the households are divided into
subgroups according to education of a head of household
(5 levels — the head with primary (or without any education)
(B), secondary and vocational (without leaving exam) (S),
complete secondary (CS), tertiary up to baccalaureate (BS),
university education with the magister or PhD titles (MS)).
This model is referred as education. In this text only the
impact of education of the head of household is analysed
without taking into account education of other members
(especially of the partner of the head of the household). The
head of household for couples with or without children is
always the male, regardless of his economic activity. In
lone-parent families or non-family households the first
criterion for determining of head of household was economic
activity and the secondary criterion was income of
household members (CZSO).

Number of children in the household is used as a second
explanatory variable. Two models are constructed: one
model with only two components (households with children
and without children) and more detailed division with
5 components (number of children 0-3 and more than 3).
One can expect these groups to be suitable for improving
the fit. Data are complete in all these models and estimation
of unknown parameters was performed with the use of
formulas given above. These two models are referred as
childer2 and children 5.

Moreover mixtures of one to five components with unknown
group membership (models with incomplete data) were fitted
into the sample. In this text the estimated values of unknown
parameters are not given. We will concentrate on the quality
of fits and the analysis of given or estimated subgroups.
These models are referred K=1 to K=5.

In the Table 1 quality of fits is compared for all 8 models
mentioned above. In the Table values of logarithmic
likelihood function (for estimates in the model) and Akaike
criterion are given for all models. In order to obtain
comparable results (in each analysed year separately) all
values are evaluated from the original sample, not from
logarithms of income. It means that values in Table 1 are
not those given by flexmix program.

The fit of two parametric lognormal distribution into data sets
can be seen for incomplete data and K=1. This fit is
supposed to be really unsatisfactory. In the case of complete
data we obtain information about the distribution of different
groups but as it can be seen in the Table 1 the resulting
mixture density provides not generally better fit to data than
the two-parametric lognormal distribution. For the division
of households according to number of children the resulting
fit is worst (in comparison by AIC) than two parametric
lognormal distribution. The division given by the education
of a head of household is for both analysed years better
even in comparison with subgroups with unknown group
membership. For both years the best fit from incomplete
data was met with the choice K=4. In case of 5 components
the numeric procedure took really a lot of steps to obtain
maximum likelihood estimates of (4+10)=14 unknown
parameters and it were necessary to pay attention to the
choice of initial approximation of the parameters. The
combination of random group membership (provided by flex
mix package) and the membership guessed from order
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values of incomes was used and the numeric procedure was
performed from more initial guess, the higher number of
components K, the greater number of fits and iterations and
so the longer time to perform the analysis.

Table 1: Quality of fits in 2004 and 2008

2004 2008
Model il AlC -l AIC
children2 55,169 110,349 133,473 259,606
education 49,727 99,481 115,08 230,186
K=1 52,785 105,575 122,297 244,598
K=3 52,508 105,031 121,526 243,067
Model - AlC -l AlC
children5 56,503 113,033 129,789 260,956
K=5 52,502 105,032 121,52 243,159
K=2 52,534 105,078 121,63 243,669
K=4 52,502 105,026 121,509 243,04
Source: own computations

In Table 2 estimated mixing proportions are given for all
models. For the models with complete data these values
are relative frequencies of subgroups in the sample. For
models with incomplete data estimated values of component
probabilities are shown. For the model children5 proportions
of the last group of households with more than 3 children
(0.005) are not shown in the Table. This group is very small
even in the large samples in this analysis. For incomplete
data subgroups are sorted in increasing order according to
estimated parameters p. Expected value of the lognormal

distribution depends not only on this value but also on o2
and the expected values of components in the table are not
always ordered from the lowest to the highest. In the case
of 3 artificial groups for incomplete data we can see similar
structure of subgroups, for 4 components there is an
increase in the second group (+7%) and in the group of
highest incomes (+2.1%). Similar values are for groups
according to education and even for models based on
number of children.

Table 2: Estimated mixing proportions for mixtures

K=2 K=3 K=4

Year j=1 j=2 =1 j=2 j=3 =1 j=2 j=3 j=4

2004 037 0,63 0259 0616 0,125 0,245 0,372 0,371 0,012

2008 0,624 0,376 0,275 0,613 0,112 0,231 0,439 0,297 0,033
Education Children

Year B S CS BS MS No Yes 1 2 3

2004 0,127 0,451 0,293 0,015 0,114 0,674 0,326 0,148 0,148 0,025

2008 0,125 0,452 0,297 0,017 0,109 0,689 0,311 0,143 0,137 0,026

Source: own computations

In the Tables 3-5 the estimated characteristics of the level
(mean and median, first part of the table) and variability
(standard deviation and coefficient of variation, second part
of the table) of all subgroups are given in order to analyse
and compare them. In the Tables 3 and 4 results obtained
from complete data are given, in the Table 4 these
characteristics are shown for incomplete data. In the Table
3 we can see that it is worth studying or at least to live in a
household with a head with high education. All results are
in nominal values of incomes. The inflation rate from 2004
to 2008 was (CZSO) 1.1413. For example the estimated
expected value (year 2004) of income per capita for
households with the head with magister education multiplied
by inflation gives 181,552 CZK, the nominal value (Table 3)
is 199,691 CZK. In addition to estimated values of
characteristics an increase (in % of 2004 value) in all
characteristics (except for coefficient of variation) is given
in the Tables 3 and 4.



Table 3: Estimated characteristics of the level and variability of
components (CZK). The complete data, households divided
according to education of a head of household

Expected value Median

5 5 BS MS B Bs

89457 | 99,113 | 116,285 131,421 | 159,075 | B4.288 | 91,309 | 104,611 | 114,921 | 139,246

Year B S CS MS

2004 |

2008 | 119,826 130,207 | 152,848 | 183,481 | 199691 | 112,308 | 121,905 | 139,944 | 159,692 |175.606

34 31 31 34 34
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Standard deviatio Caoefficient of var

incomes then for higher income households with coefficient
of variance greater than 100 per cent, in 2008 for the four
components model the standard deviation is 140 per cent
of the expected value for the group of the highest incomes
per capita. The only decline in expected value or median
occurs in 4 components model in the group of households
with very high incomes. Absolute variability decreased,
coefficient of variation increased from 110% to 141%.

20041 31004 § 41,084 | S6ohs J U0z | DATE: | DI ] A4S 1 0ol | 0SAL Table 5: Estimated characteristics of the level and variability of
|20 ] 4574 | ARAES | 67,104 10015 [INR1TY | a0 | SASD | 041 | DA | 0S| mixture components (CZK) for incomplete data, K=2, 3, 4
— = — Expected value
Source: own computations K=2 K=3
] ) ] Year j=1 =2 =1 =2 =3
The subgroup ref.erred'as chlldren Ng is the subgrqup in 2004 96.967 118,081 95613 109,866 145136
both models dealing with children. It is a subgroup in the
model chidren2 as a group of household without children 2008 128,551 171,787 119535 146,527 197,689
and in the model children5 a subgroup with number of K=4
children 0. =1 =2 =3 =4
In the Table 4 negative impact of number of children in the 2004 95.1 113336 110616 378488
household on incomes is obvious. This fact could be | |2008 118,064 141,862 157,71 268,866
reduced in case of the use of equivalised incomes (CZSO) Standard deviation
instead of incomes per capita. In the methodology of K=2 K=3
European Union the head of household has weight 1, other car =1 =2 =1 =2 i=3
adult members of household weight 0.5 and children 0.3. z J ! J ! !
It means, that a complete family with two children has total 2004 15,812 7,218 12,192 51,413 135,797
of weights 2.1=1+0.5+2 . 0.3 instead of 4. For a complete | | 2008 30,9 114208 17,303 58,079 196,849
family with four children the difference between EU weight K=4
and number of members is even higher with 2.7 instead of =1 =2 =3 =4
6. Than total income of this household is divided by 2.7 to 2004 11,838 72,4 43,475 416,675
obtain equivalised income and by 6 to obtain per capita 2008 15.892 45818 92 747 377 762
income. Second problem is very small number of m 'd. - - -
observations of households with 3 and more than 3 children. cdian
This fact makes results for these groups of households very K=2 K=3
imprecise. Year  j=1 =2 =1 =2 =3
Table 4: Estimated characteristics of the level and variability of 2004 95,703 101,114 94,845 99,509 105,979
mixture components (CZK) for complete data, components 2008 124,991 143,057 118,302 136,216 140,084
according to number of children K=4
I R Medin =1 j=2 =3 j=4
[Fre) Mo yer | 1| L2y 2o = 2004 94,372 95511 102,95 254,485
2004 120, 670 |97.968 | 81,1 7| 87,641 | 73,865 | 53,637 | 53423
_1IIIIR:I5-I..‘IS_ .k.tﬂ_"il:l.'\l\.l_._ 07,625 89,759 | 65,1 3, 5_“.").."“‘): HI.-“J'-‘:r’-I.!S'I: 2008 1171008 134!996 135!944 155Y905
28 | 37 | 39 | 33 | 53 | 15 | 2% 1 | 35 | s6 | s Coefficient of variation
1!]|l1‘-|'}.lllr\ I.‘-..'\'J!.-' :‘“:Id"l . 5:. 041 II.SI‘I mrll:.l.:ll\nl‘TI:II:II.“"lIITIS 0.35 K=2 K=3
.luln(:m].\xr\:‘-‘-.(lvx:{|1{:‘S:l!_il{._!(l_“l rm: 0.39 0.46 0.45 0.41 0.45 035 year j=1 =2 =1 =2 =3
L N N & 2004 0,16 0,6 0,13 0,47 0,94
Source: own computations 2008 0,24 0,66 0,14 0,4 1
In the Table 5 estimated values of location (first part of the K_4 - - -
table) and variability (second part of the table) =1 =2 =3 =4
characteristics are shown for artificial components in | [2004 0,12 0,64 0,39 1,1
incomplete data problem. The components are ordered from | | 2008 0,13 0,32 0,59 1,41
the lowest expected value to the highest expected value. Source: own computations

The interpretation of these groups for K=2 divide households
into subgroups with lower and higher per capita income, for
K=3 groups with low, medium and high per capita income
and in case of K=4 the group of households with very high
per capita income appears. The estimates of probabilities
of components are given in the Table 2 and the structure of
groups according to the level of per capita income is obvious
from the table. Expected value of the low income group for
3 components increased by 25 per cent (from 2004 to 2008),
the group of medium incomes by 33% and the group of high
incomes by 36 per cent. Standard deviation increase was
higher, in these groups it was 42, 13 and 45 per cent.
Standard deviations in particular groups increase with the
expected value. Relative variability (relative to the expected
value) is smaller for groups of households with lower
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In the Table 7 the estimated characteristics of the level and
variability of corresponding mixture distributions are shown
for 6 fits (results are given only for incomplete data with two
to four components). All the models (in each year) are fitted
into same data and the estimated values in the Table 7 can
be compared to sample characteristics given in Table 6.
From the table we can see that expected values evaluated
from all fits are very similar and characterise well the sample
values. The same is true for the medians, but it is not the
case of standard deviations. Standard deviations of all fits
underestimate (some of them remarkably) sample standard
deviations. The best agreement between sample and
estimated standard deviations is for the 4 components
incomplete data model. The model with subgroups defined



with the use of education of the head of household is good
according to the value of AIC criterion, but the model doesn't
express well standard deviations.

In both tables 6 and 7 an increase of all characteristics is
given (in % of the value from 2004). The percentages for
location characteristics are similar (approximately 30 per
cent, with one exception of 45% for the model defined by
number of children in the household).

Table 6: Sample characteristics of location and variability (CZK)

Year Mean Median Standard deviation
2004 111,024 97,05 77,676

2008 145,277 126,595 93,397

% 31 30 20

Source: own computations

Table 7: Estimated characteristics of the level and variability of per
capita income (CZK) for the complete data (first part) and
incomplete data for K=2, 3, 4 (second part)
Education (5 levels) Children (2 levels)
year E(Y) y0.5 VD) E(Y) y0.5 VD)
2004 110,238 97,39 56,671 109,556 100,953 49,873
2008 144,113 129,487 68,34 143,354 132,969 61,095
% 31 33 18 31 31 23
K=2 K=3
2004 110,269 97,463 58,239 110,583 97,101 64,649
2008 144,808 128,246 77,063 144,834 126,806 83,55
% 31 32 32 31 31 29
Children (5 levels)
year E(Y) y0.5 JD(ry
2004 109,572 97,959 49,971
2008 143,267 142,091 61,305
% 31 45 23
K=4
2004 111,041 97,143 75,442
2008 145,263 126,814 94,711
% 31 31 26
Source: own computations

In the Figure 1 the estimated probability densities for
selected models (children5, education5, artificial
components K=2-4) are shown for 2004 (left part of the
figure) and 2008 (right part of the figure). For both years the
estimated density from the fit with incomplete data is closed

to sample one even for only 2 components. The fits from
complete data are similar to the density obtained from single
lognormal distribution (not shown in the figure). In the figure
also the modification of 2004 curves into 2008 curves can
be assessed.

Conclusions

In the paper the use of the mixtures of lognormal
distributions is proposed as a suitable model for annual per
capita incomes in the Czech Republic. The expected as well
as strange properties of the models are described and
quantified in the text. The goal of the text is a description of
component distributions. Differences in the use of mixture
models with known and unknown group membership are
illustrated.

The concept of mixture distributions is well applicable to
income data, as these values form usually very non-
homogenous data sets. In some cases we have information
about a person’s (or a household) characteristics as
education, age or location. In this case it is useful to take
into account only the distribution of incomes in the particular
subgroup, because such information frequently determines
well personal income.

If data are divided into subgroups according to a known
explanatory variable, we obtain information about subgroups
and additionally these distributions can be weighted into
a distribution for the whole sample. This model doesn’t
ensure better fit even in case of subgroups with rather
different shapes of distributions. In the text this fact was quite
apparent in the models that use number of children in the
household.

In case of incomplete data, where the group membership is
not known and observations are clustered into artificial
groups, the numerical algorithm searches for a chosen
number of homogenous subgroups in order to obtain optimal
model. These subgroups are artificial and there is no easy
interpretation of the model. For the values in the sample we
don’t have group membership even after the proces of
estimation, only probabilities for the groups can be
estimated. This concept is closed to cluster analysis, but we
are interested in distributions in the clusters (and their size)
more than in group membership of observations. The fitted
model improves with every new component and the choice
of the proper number of components is very important as
well as the choice of suitable probability distribution for
components. For too many components there are too many
parameters in the model and numerical problems can

12,E-06

— ] cOMpoNENts
10,E-06

= 3 components
08E-06 4 components
06.E-06 = === children 5
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Figure 1: Estimated mixture densities in 2004 (left) and 2008 (right)
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occure, too few components don‘t provide acceptable fit. In
the case of too many components the procedure could
become time consuming and even after many observations
the solution is not obtained (the procedure doesn’t
converge). It is sometimes difficult to clearly interpret
subgroups in such complicated models.

In this text all component densities come from the same
family of distributions (lognormal distributions) and differ only
in parameters. In some applications the mixtures tha
consists of components from different distributions can be
succesfully used.

Acknowledgment

The paper was supported by a project IGS 24/2010 from the
University of Economics in Prague.

References

BartoSova, Jitka and Vladislav Bina. Modelling of Income Distribution
of Czech Households in Years 1996 — 2005. Acta Oeconomica
Pragensia. Vol. 17. Iss. 4. 3 = 18. 2009.

Bartosova, Jitka and Marie Forbelska. 2011. Differentiation and
dynamics of household incomes in the Czech EU-SILC survey in the
years 2005-2008. In: Kovacova, M. (ed.), 10th International
Conference APLIMAT 2011, Bratislava, February 1-4, 2011,
Proceedings. Slovak University of Technology, Bratislava, 2011, s.
1451-1460.

Bilkova, Diana. Application of Lognormal Curves in Modeling of
Wage Distributions. Journal of Applied Mathematics. Vol. 1. Iss. 2.
341 - 352. 2008.

CZSO0, Czech Statistical Office. www.czso.cz.
CNB, Czech National bank. www.cnb.cz.

Flachaire, Emmanuel and Olivier Nunez. Estimation of the Income
Distribution and Detection of Subpopulations: an Explanatory Model.
Computational Statistics & Data Analysis. 2007.

Griin, Bettina and Friedrich Leisch. Flexmix version 2: Finite mixtures
with concomitant variables and varying and constant parameters.
Journal of Statistical Software, 28(4):1-35, 2008.

Johnson, N. L., Narayanaswamy Balakrishnan and Samuel Kotz.
Continuous Univariate Distributions. Vol. 1. New York: John Wiley
& Sons, 1994.

McDonald, J.B. Some Generalized Functions for the Size Distribution
of Income. Econometrica, Vol. 52, No. 3, 647-665, 1984.

Pavelka, Roman. Application of density mixture in the probability
model construction of wage distributions, Applications of
Mathematics and Statistics in Economy: AMSE 2009, Uherské
hradisté, 2009, 341-350, 2009.

Titterington, D.M., A.F. Smith and U.E. Makov. Statistical analysis
of finite mixture distributions, Wiley, 1985.

46



