SSOAR

Open Access Repository

Working with User Agent Strings in Stata: The

parseuas Command

RolRmann, Joss; Gummer, Tobias; Kaczmirek, Lars

Verdffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Zur Verfiigung gestellt in Kooperation mit / provided in cooperation with:

GESIS - Leibniz-Institut fir Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:

RoBmann, J., Gummer, T., & Kaczmirek, L. (2020). Working with User Agent Strings in Stata: The parseuas Command.
Journal of Statistical Software, 92, 1-16. https://doi.org/10.18637/jss.v092.c01

Nutzungsbedingungen:

Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur
Verfligung gestellt. Ndhere Ausklinfte zu den CC-Lizenzen finden
Sie hier:

https://creativecommons.org/licenses/by/3.0/deed.de

gesis

Leibniz-Institut
fiir Sozialwissenschaften

Terms of use:

This document is made available under a CC BY Licence
(Attribution). For more Information see:
https://creativecommons.org/licenses/by/3.0

Mitglied der

Leibniz-Gemeinschaft ;‘

Diese Version ist zitierbar unter / This version is citable under:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74534-7

http://www.ssoar.info
https://doi.org/10.18637/jss.v092.c01
https://creativecommons.org/licenses/by/3.0/deed.de
https://creativecommons.org/licenses/by/3.0
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74534-7

Journal of Statistical Software

February 2020, Volume 92, Code Snippet 1. doi: 10.18637/jss.v092.c01

Working with User Agent Strings in Stata: The
parseuas Command

Joss Roflimann Tobias Gummer Lars Kaczmirek
GESIS — Leibniz Institute GESIS — Leibniz Institute University of Vienna
for the Social Sciences for the Social Sciences
Abstract

With the rising popularity of web surveys and the increasing use of paradata by survey
methodologists, assessing information stored in user agent strings becomes inevitable.
These data contain meaningful information about the browser, operating system, and
device that a survey respondent uses. This article provides an overview of user agent
strings, their specific structure and history, how they can be obtained when conducting
a web survey, as well as what kind of information can be extracted from the strings.
Further, the user written command parseuas is introduced as an efficient means to gather
detailed information from user agent strings. The application of parseuas is illustrated
by an example that draws on a pooled data set consisting of 29 web surveys.

Keywords: user agent string, web surveys, device detection, browser, paradata, Stata.

1. Introduction

In recent years, web surveys have become an increasingly popular and important data collec-
tion mode, and today, they account for a great share of the studies in the social sciences. Web
surveys have been used to complement traditional offline surveys as a less expensive form of
pre-test or a mode of choice for respondents who are not willing to use “traditional” modes,
such as face-to-face or telephone interviews.

Along with the rising popularity of web surveys, survey methodologists have taken an increas-
ing interest in paradata, which are collected as a byproduct of the survey process (Couper
2000). Examples of paradata include the device used to complete a survey, response laten-
cies, and response patterns. These data are used for several purposes, such as to address the
strength and consistency of attitudes (Bassili 1993; Mayerl 2013; Meyer and Schoen 2014), to
study data quality issues, for example, those associated with interview durations or item level

https://doi.org/10.18637/jss.v092.c01

2 parseuas: User Agent Strings in Stata

response times (Couper and Kreuter 2013; Gummer and Rofimann 2015), questions of visual
layout (Stern 2008), and nonresponse adjustment (Biemer, Chen, and Wang 2013; Rofimann
and Gummer 2016b; Sinibaldi, Trappmann, and Kreuter 2014).

Survey researchers can choose from many different products, referred to as web survey soft-
ware (cf. Kaczmirek 2008), to conduct web surveys. Web survey software provides an interface
to program the online questionnaire and assists in managing respondents, sending out emails,
collecting the data, and many even generate ready-to-use reports. With respect to the con-
cerns of this article, they can provide information about the hardware and software that was
used by respondents to complete a survey. Broadly speaking, whenever a respondent uses a
device to participate in a web survey, the device reveals information to the server about itself
in addition to the response. This information is known as user agent strings, and servers with
a standard configuration store it in logfiles. These data can be accessed by survey software.
These short strings include comprehensive information in a compressed form. As Callegaro
(2010, 2013) shows, user agent strings are a cost efficient and easily accessible means to
collect useful paradata. These characteristics are especially important for survey research,
since several studies have shown that response behavior can differ between users of different
devices (e.g., Mavletova 2013; Peytchev and Hill 2010). Given the increasing popularity of
these paradata there is a surprising lack of detailed discussion on user agent strings in the
social sciences. To our knowledge only Callegaro (2010, 2013) provides brief discussions on
the strings’ contents.

Apart from web surveys, user agent strings are of interest for other researchers with access to
user data of web services (e.g., data on website visitors, or users of web applications). The
information included in user agent strings may help to gain a deeper understanding of user
characteristics (e.g., Mac users versus Windows users) and their use patterns (e.g., mobile
use versus home use with a personal computer). Thus, the need to extract information from
user agent strings covers a wide range of fields, for instance, computer sciences, economics,
and the social sciences.

Until now, user agent strings had to be coded manually by referring to freely available sources
like http://www.useragentstring.com/ as suggested by Callegaro (2013) or by employing
external tools, for example, the application programming interface (API) of the aforemen-
tioned website. Both approaches impose a burden on researchers using Stata (StataCorp
2019). First, researchers need to separately code the strings manually for every data set by
rifling through the different sources of user agent string information. This approach is highly
inefficient, since user agent strings are widely available data, and extracting information from
them is often needed. Second, researchers need to convert data sets and switch between
different software, which is labor intensive and takes up time that could be better used for
substantive research.

The present article introduces the user written Stata command parseuas, which automat-
ically extracts information from user agent strings and thus remedies the aforementioned
shortcomings. We give a brief introduction on the technical properties and the structure of
user agent strings and explain how to extract information from them. Then we explain how
to collect these paradata with frequently used web survey software and, more generally, by
using JavaScript. In the next section, we introduce the syntax and options of parseuas. After
introducing the command, we provide a comprehensive example using a pooled data set of
29 web surveys, and in the process, demonstrate the application of parseuas.

http://www.useragentstring.com/

Journal of Statistical Software — Code Snippets 3

2. User agent strings

Since many different browsers and devices are used to access the Internet, the software devel-
opers of web pages need to be able to detect the capabilities of browsers. This is necessary
because different browsers have different ways of rendering and displaying web pages and
vary in their implementation of JavaScript. With the emergence of more browsers and smart-
phones, variety has increased substantially. With respect to survey research, the ability of
respondents to use different devices to participate in web surveys — and even change their
device during an interview — poses new challenges in terms of equivalent measurement. A lot
of research has identified best practices and problems in visual design (for an overview see
Couper 2008; Dillman, Smyth, and Christian 2014; Tourangeau, Conrad, and Couper 2013),
and the impact of participants who use smartphones and other mobile devices to answer web
surveys. While the discussions about the best visual design continue, researchers still need to
decide whether to develop their survey along the principles of a mode-specific design or opt for
a uni-mode design. Unfortunately, a single right answer does not exist, since much depends
on the research goals. Meanwhile, the software industry has coined the term mobile-first
design, which means that developers program survey software with the goal to improve the
survey experience for mobile participants. As it turns out, respondents using desktop com-
puters and notebooks also can benefit from such an approach. Several web survey software
companies claim that they can detect the device type being used and are able to utilize this
information to send device-tailored questionnaires to respondents. Advanced survey software
offers this capability as part of a rich set of features that survey researchers can use to decide
how different types of questions (e.g., grid questions) should behave on different device types
or whether mobile devices actually should receive a different questionnaire layout.

In summary, since survey researchers need a way to tap into the information that tells them
what device is being used by respondents, the user agent string offers this type of information.
Researchers can either use web survey software that includes the user agent string as part of
the standard data download, or they can collect the user agent string themselves. Once the
user agent strings are in the data set, the Stata command parseuas extracts the most useful
information for further analyses.

2.1. The structure of a user agent string

The user agent string was developed so that each device can inform a server about the
particular product and product version being used. In an ideal world, each device would send
specific information to enable servers (and for the purpose of this article survey software)
to detect the device so that the server knows the capabilities of the browser and can send
appropriate web pages. However, as more products and new versions are developed, the
variety of user agent strings has increased to many thousands. For a comprehensive overview
of the history and current use of user agent strings and their different formats, see Zakas
(2015, pp. 276-307).

The modern user agent string includes information about the web browser, the browser ver-
sion, the rendering engine of the browser, the device type, and the operating system running
on the device. In addition, the user agent string can contain additional device-specific infor-
mation such as supported encryption or other proprietary information. Different companies
are using different formats. Since the strings are produced to be parsed by specialized pro-
grams, it will be difficult or even impossible for most researchers to understand every part of

4 parseuas: User Agent Strings in Stata

a given user agent string. By comparison, Internet Explorer 8 follows a rather easy-to-read
format (Zakas 2015, p. 279):

‘Mozilla/4.0 (compatible; MSIE Version; Operating System; Trident/Trident Version)’

The first term ‘Mozilla/4.0" is fixed and a remnant of the early days of the Internet. The
same holds for the word ‘compatible’.

In the next example, the interesting information is ‘MSIE 8.0°, which indicates Internet Ex-
plorer version 8. ‘Windows NT 5.17 actually means Windows XP. ‘Trident/4.0’ is a token
used to indicate that this is Internet Explorer version 8. This enables us to detect the correct
version even when Internet Explorer is running in compatible mode; in this case, the first
part would be ‘MSIE 7.0’. While older detection scripts would see Internet Explorer 7, newer
scripts are able to look for ‘Trident’ and detect Internet Explorer 8. This also illustrates why
a simple string match approach would deliver insufficient and potentially wrong data. The
‘NET CLR’ entries are part of the potentially long series of additional information, in this
case indicating that the machine runs five different versions of the .NET framework:

‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322;
.NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.4506.2152; .NET CLR
3.5.30729)

A principal problem of parsing user agent strings is that there is only modest uniformity
amongst the different parts of the user agent string, which complicates coding. Furthermore,
due to fast technological development, the content of user agent strings changes over time.
As a consequence, the coding scheme or dictionary used for coding has to be updated on a
regular basis to facilitate correct coding. We used information from the World Wide Web
Consortium!, the Mozilla Developer Network?, and specialized web pages® to generate the
coding scheme for this Stata command.

The script is written in a way so that it also works with a 10-year older format of user
agent strings, which is possible because the industry has not changed the basic user agent
string format. Instead, user agent strings have been gradually complemented with additional
content for newly developed browsers, devices, and operating systems.

2.2. Device type: mobile, tablet, or desktop

The identification of the device used by the client is a common application of user agent
strings. In general, three types of devices can be detected: desktop computers (including
notebooks, ultrabooks, and netbooks), tablet computers, and mobile phones. Depending on
the brand and type of the device, it can be identified directly or by combining different pieces
of information. For instance, the user agent string of Android smartphones contains the
terms ‘android’ and ‘mobi(le)’ whereas the user agent string of Android tablets only contains
‘android’ or a combination of ‘android’ and ‘tablet’. The user agent string of other brands

"http://www.w3.org/TR/2014/WD-UAAG20-Reference-20140925/

’https://developer.mozilla.org/en-US/docs/Browser_detection_using_the_user_agent,
https://developer.mozilla.org/en-US/docs/Web/HTTP/Gecko_user_agent_string reference

3http://wuw.useragentstring.com/ and http://user-agent-string.info/

http://www.w3.org/TR/2014/WD-UAAG20-Reference-20140925/
https://developer.mozilla.org/en-US/docs/Browser_detection_using_the_user_agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Gecko_user_agent_string_reference
http://www.useragentstring.com/
http://user-agent-string.info/

Journal of Statistical Software — Code Snippets

of mobile phones include the terms ‘iPhone’, ‘Windows Phone’, ‘Symbian’, or ‘BlackBerry’.
Other tablet computers are associated with the terms ‘iPad’, ‘Playbook’, or ‘Kindle (Fire).
User agent strings that do not include any of these terms are most likely desktop computers.
However, some minor exceptions exist, especially since some older devices have to be identified
by other information included in the user agent string, for instance, the device number.

2.3. Operating system

The operating system is given in most user agent strings. In addition, it often is possible to
identify the version of the operating system. For instance, the user agent string ‘Windows
NT 6.1’ refers to Windows 7, ‘Windows NT 6.3’ is Windows 8.1, whereas the Windows NT
token’s value changed to ‘Windows NT 10.0’ with the new Windows 10.0 operating system.
In some cases, the user agent string also contains information on the hardware of the device
(e.g., if the software runs on a 32- or 64-bit system, or if a Macintosh computer is used).

2.4. Browser name, version, and rendering engine

With regard to the web browser, the user agent string includes several bits of information.
First, the rendering engine can be Gecko, WebKit, AppleWebKit, Presto, Trident, Edge-
HTML, or Blink. Second, the user agent string usually includes the name of the browser. The
currently most popular browsers are Firefox, Internet Explorer, Chrome, Safari, and Opera.
Third, in most instances, the user agent string includes the version of the web browser.
Usually, the version directly follows the browser name (e.g., ‘Firefox/*.*’ or ‘MSIE *.*’).
Detection of the browser and the browser version are complicated due to some notable ex-
ceptions. First, the same user agent string can be used potentially by different browsers, for
example, some Chrome versions use the Safari user agent string. Second, some specific issues
occur with respect to gathering the version of the browser that needs to be considered (e.g.,
the version number statement changes between different versions of the Opera browser). Ac-
cordingly, rules for the detection of the browser name and version have to take into account
some specific cases.

2.5. Examples indicating different devices and browsers

In the following, we discuss five instructive examples of common combinations of the browser,
operating system, and device in user agent strings.

The first example contains the substring ‘Firefox/31.0” which indicates that the browser is
Firefox 31.0. The expression ‘Gecko’ reveals that the rendering engine of the browser is Gecko.
‘Windows NT 6.1 is Windows 7, while ‘WOW64’ shows that a 32-bit application is running
on a 64-bit processor. The computer is a desktop or notebook.

‘Mozilla/5.0 (Windows NT 6.1; WOW64; rv:31.0) Gecko/20100101 Firefox/31.0°

The second example is a Chrome browser in the version 34.0.1847.114 as indicated by the
substring ‘Chrome/34.0.1847.114". The rendering engine is AppleWebKit. Further, it can be
inferred from the expression ‘Android 4.1.2’ that the operating system is Android version
4.1.2 running on a tablet computer because the user agent string does not include ‘mobi(le)’.
Accordingly, the device number ‘GT-P5100° shows that the device is a Samsung Galaxy
Tab 2 10.1.

6 parseuas: User Agent Strings in Stata

‘Mozilla/5.0 (Linux; Android 4.1.2; GT-P5100 Build/JZ0O54K) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/34.0.1847.114 Safari/537.36

The third example is Chrome 34.0.1847.114, which uses an AppleWebKit rendering engine. It
can be inferred from the combination of the expressions ‘Android 4.4.2’ and ‘Mobile’ that the
device is a smartphone using Android 4.4.2 as the operating system. The term ‘GT-19505
tells us that the device is a Samsung Galaxy S4.

‘Mozilla/5.0 (Linux; Android 4.4.2; GT-19505 Build/KOT49H) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/34.0.1847.114 Mobile Safari/537.36’

The substrings ‘Safari’ and ‘Version/7.0” indicate that the browser in the fourth example is
Safari 7.0. The combination of ‘iPhone’ and ‘OS 7 1 1’ further reveals that the device is an
iPhone using iOS 7.1.1 as the operating system.

‘Mozilla/5.0 (iPhone; CPU iPhone OS 7_1_1 like Mac OS X) AppleWebKit/537.51.2
(KHTML, like Gecko) Version/7.0 Mobile/11D201 Safari/9537.53’

The last example is a desktop or notebook computer. The substrings ‘Safari’ and ‘Ver-
sion/7.0.3’ show that the browser is Safari 7.0.3. The operating system is Mac OS X 10.9.3
as displayed by the expression ‘Mac OS X 10_9 3’

‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.75.14 (KHTML,
like Gecko) Version/7.0.3 Safari/537.75.14’

3. How to obtain the user agent string during a web survey

Basically, there are two ways to access user agent strings when conducting a web survey.
The information is either part of the standard export of a survey software tool or the survey
researcher needs to insert program code in the web survey to obtain and store the information.

Many survey software tools provide this information as a variable in the standard data export.
These variables usually have names like “browser” or “agent”. The information usually is
obtained when the respondent begins to answer a survey. This means that the variable
stores the user agent from the device that is being used when a respondent starts a survey.
This information might be sufficient to get an overview of the devices being used; however,
when survey researchers expect that respondents may pause a survey and switch their devices
during participation, one measurement will not convey the full story of which devices have
been used to complete the survey. In this case, researchers could include program code on
every page of a web survey or at least on several pages to capture the user agent information.
When comparing six different surveys in a Dutch probability-based panel (LISS), Lugtig and
Toepoel (2016) found that between 1.5% and 4.7% of respondents switched from a personal
computer to a mobile device in a following survey. However, the likelihood of switching from
a tablet or smartphone to a personal computer was much higher. Among respondents who
used a mobile device in a survey, between 16.4% and 46.0% switched to using a PC in a
following survey.

Journal of Statistical Software — Code Snippets

When looking at the variables in a data set, survey researchers will find it easy to see whether
the user agent string is provided by the survey software tool as a standard output variable
because of its unique content and string type (see Section 2). Since hundreds of web survey
software tools are available to conduct web surveys (e.g., http://www.websm.org/c/1283/
Software/?preid=1283 lists about 340 web survey software tools) and updates often are
released several times a year, a list of features would soon be outdated. The authors of the
present article suggest as general rule of thumb: the more features and flexibility a web survey
software tool offers, the more likely it is that the user agent string is already in the data set.
Whenever a survey software tool offers the flexibility to insert HTML and JavaScript code to
program survey questions, it is always possible to collect the user agent string. It seems that
professional survey software tools that focus on the low-budget, fast, do-it-yourself market —
with a large but fixed set of features — are less likely to offer user agent information.

We checked whether the user agent string is available for a couple of web survey software
tools. At the time of the writing of this article, customer support at Google Consumer
Surveys and SurveyMonkey informed us that they do not provide access to the raw user
agent string data in their standard data output, and it also is not possible to program your
own survey questions from scratch with the standard tools they offer. However, if you are a
professional programmer and plan to program your own tool or app and are able to access
an available API, it is likely that you also will be able to access this information.

To give some examples, the following software tools provide the user agent string as a standard
variable or allow the collection of this information as part of a web survey: Blaise, Confirmit,
EFS, Hlume, and Qualtrics. It should be noted that companies who support research by
providing respondents, such as online access panel providers® or paid crowd-sourcing services
(e.g., Amazon Mechanical Turk or WorkHub), are not part of this discussion whether the
user agent string can be obtained or not because a researcher would still need a web survey
software tool or at least an online form to collect the data.

Whenever it is possible to insert your own survey questions in a web survey software tool, the
user agent string can be obtained by adapting and inserting the following code. We provide
two examples. The first includes an input field that will be filled with the user agent string.

<html>
<!-- This is the input field which will be filled with the user agent
string. The input field is usually invisible and the contents is submitted
to the server together with other information when a respondent clicks
on a 'next'-button. -->
<input id="v1" value="" type="text" size="120">
<script type="text/javascript">
/* to store the user agent string in an input field we need to know the
id of the input field */
var id = "v1";

4The authors of the present article do not endorse any particular products. All product names are only
provided as examples. A survey researcher should always consider the full set of required features before
making a purchase decision. Kaczmirek (2008) gives an overview of the features of web survey software tools
that should be taken into consideration.

SMany professional companies are members of professional survey and market research organizations such
as http://www.aapor.org/ or http://www.dgof.org/.

5The code can be downloaded from http://www.kaczmirek.de/stata/uas/getuseragent.html.

http://www.websm.org/c/1283/Software/?preid=1283
http://www.websm.org/c/1283/Software/?preid=1283
http://www.aapor.org/
http://www.dgof.org/
http://www.kaczmirek.de/stata/uas/getuseragent.html

8 parseuas: User Agent Strings in Stata

// to access the input field we get the reference to the input field

var useragent = document.getElementById(id);

/* we change the value of the input field to contain the user agent
string */

useragent.value = navigator.userAgent;

</script>

In contrast, the second example features a hidden input field.

<!-- This is a shorter example with hidden input field -->
<input id="v2" value="" type="hidden" size="120">

<script type="text/javascript">

var useragent = document.getElementById("v2");
useragent.value = navigator.userAgent;

</script>

</html>

4. The parseuas command

4.1. Description

The parseuas command is built on an engine that acknowledges the variable structure of
user agent strings. As discussed previously in this article, user agent strings incorporate a
varying degree of information on browser, operating system, and device. This information is
partially non-consistent over time, for instance, the string ‘Windows NT 6.3’ does not refer to
a latter version of Windows NT but to Windows 8.1, while the Android operating system is
expressed by a string ‘Android *.*” where *.* resembles the Android’s version. Accordingly,
when programming parseuas, the parsing process was designed stepwise, to search the user
agent string for information on the browser, then the operating system, and finally the device.
In each step, we relied on information from a variety of sources (see Section 2) to draw as
much information from the string as possible.

Each step builds on a sequence of queries about whether the user agent string contains an
identifying piece of information. Most of these queries rely on regular expressions, especially
the regexm function because the exact position of information in the user agent string is
unknown. regexm verifies whether a string (in this case the user agent string) contains another
string (i.e., the identifying information). For example, to detect an Android operating system,
we would use an expression like:

(...) regexm(useragentstring', "Android") (...)

The parseuas command relies on queries like this to parse user agent strings into useful infor-
mation. Depending on what information the user requires, respective variables are created.

The code is written to minimize maintenance and consider expectations of future, yet unknown
user agent strings. Thus, parseuas is able to automatically parse the version of the most
common browsers and operating systems. For example, the code can detect “Android 5.5”

Journal of Statistical Software — Code Snippets

even if it was released later than the most recent version of parseuas. In this example it would
detect ‘Android’ and then search the string for information on the version.

However, when extracting information from user agent strings, we sometimes fail to achieve
optimal results. This failure may be a result of a less common user agent or technological
development (e.g., new browsers or operating systems) not yet covered by parseuas.” Thus,
we believe residual categories to be a crucial indicator of validity when applying the parseuas
command. To prevent misinterpretation, the command is designed to extract as much in-
formation as possible. If detailed information is missing (e.g., the version of an operating
system), parseuas provides more general information. For example, the user agent string is
searched for information about whether the operating system was Android. If the informa-
tion on the version of the operating system is missing, the user agent string will be coded as
“Android (other)”. Those user agent strings that contain non-interpretable information will
be coded into broader residual categories, e.g., “Browser (other)”. Note that these residual
categories only apply when more detailed information cannot be extracted.

4.2. Syntax

The syntax for parseuas to extract information from user agent strings is:

parseuas string [4if] [4in] [, browser(newvar) browserversion(newvar)
os(newvar) device(newvar) smartphone(newvar) tablet(newvar) numeric noisily]

4.3. Options

The parseuas command optionally stores the information from the user agent strings in new
variables.

e browser (newvar) generates a variable containing the information on the browser name.

e browserversion(newvar) generates a variable containing the information on the ver-
sion of the browser.

e os(newvar) generates a variable containing the information on the operating system
of the device.

e device(newvar) generates a variable containing the information on the device type.

e smartphone(newvar) generates a dummy variable, which indicates whether a smart-
phone was used.

e tablet(newvar) generates a dummy variable, which indicates whether a tablet com-
puter was used.

e numeric causes parseuas to create numeric variables instead of strings.

e noisily provides output of frequency tables for browser name, browser version, oper-
ating system, and device type.

"Note that tools exist that can be used to mask or manipulate a user agent string and, hence, some strings
may contain non-interpretable information.

10 parseuas: User Agent Strings in Stata

4.4. Examples

To demonstrate the use of parseuas, we present two examples. The first illustrates the ap-
plication of the parseuas command, while the second provides the reader with a basic un-
derstanding of how the content of user agent strings has changed over time and, hence, how
technical development has progressed over several years. In the second example, we also show
how to interpret the residual categories to face-validate the application of parseuas.

Application of parseuas

To illustrate the application of parseuas, we pooled 29 web surveys, which were conducted
between 2009 and 2015 as part of the German Longitudinal Election Study (Rattinger, Ro8-
teutscher, Schmitt-Beck, WeBels, and Wolf 2009-2015). Each survey included about 1,100
respondents, thus giving us a total of 36,575 observations. The user agent strings were col-
lected by the web survey software and included in the data set as a string variable.

We used parseuas with all options to extract the information from the user agent strings:

. parseuas useragent, bro(browser) browserv(browserversion)
> os(operatingsystem) device(device) smart(smartphone) tab(tablet) numeric
> noisily

parseuas performed well in our example and extracted the requested information from 36,575
strings in approximately 2 seconds. After noisily running parseuas, we could assess the data
stored in the newly created variables, and the command reported basic findings on the data:

Browser name | Freq. Percent Cum.
__________________ o
Android Webkit | 834 2.28 2.28
Browser (other) | 64 0.17 2.46
Chrome | 3,749 10.25 12.71
Edge | 70 0.19 12.90
Firefox | 17,603 48.13 61.03
Iceweasel | 22 0.06 61.09
Internet Explorer | 11,188 30.59 91.67
Iron | 21 0.06 91.73
K-Meleon | 9 0.02 91.76
Maxthon | 15 0.04 91.80
Netscape | 5 0.01 91.81
Opera | 635 1.74 93.55
Safari | 2,262 6.18 99.73
SeaMonkey | 67 0.18 99.92
Silk | 31 0.08 100.00
__________________ e
Total | 36,575 100.00
Browser version | Freq Percent Cum
_______________________ o

Journal of Statistical Software — Code Snippets

127

107

034
387

158

.72

.73

.19

.84

.06

.01

.30

.68

.35

.29

17
.06

.43

2.

12.

58.

88.

91.

93.

99.

99.

28

.84

90

05

25

76

54

26

89

40.
41.

99.

Android Webkit 4.0 | 629
...
Chrome 40.0.2214.115 | 268
...
Edge 12.10240 | 70
...
Firefox 40.0 | 674
...
Internet Explorer 8.0 | 5,143
...
K-Meleon 1.5.4 | 3
...
Opera 9.64 | 111
...
Safari 8.0 | 614
...
SeaMonkey 2.30 | 4
...
Total | 36,575
Operating system version | Fr
Android (other) |
...
Android 4.1.2 |
...
Linux Ubuntu (other) |
...
Mac 0S X 10.6 |
...
Windows 7 | 11,
Windows 8.0 |
...
i0s 8_1_3 |
...
Total | 36,
Device type | Freq
_______________________ +
Device (other) | 33,337
Mobile phone (Android) | 1,137
Mobile phone (Windows) | 44
Mobile phone (iPhone) | 739
Mobile phone (other) | 18
Tablet (Android) | 450

.32

.34

17
23

16

11

12 parseuas: User Agent Strings in Stata

15

Use of device in %
10
1

5
L

T T
0 10 20 30
Surveys 1 —29 (2009 - 2015)

smartphone =~ ———-—- tablet ‘

Figure 1: Use of smartphones and tablets in 29 web surveys from 2009 to 2015.

Tablet (Windows) | 115 0.31 97.99

Tablet (iPad) | 735 2.01 100.00

_______________________ e
Total | 36,575 100.00

Further applications

The data set we collected enabled us to illustrate how user agent strings changed between
2009 and 2015. As mentioned previously, due to technological development, new user agent
strings emerge. For example, when a new operating system is released, we can find this
information in the user agent string.

In our example, we focus on the emergence of mobile devices and different versions of Win-
dows. The former is an application that we would expect to be used in the context of a web
survey, whereas the latter illustrates the use of parseuas when, for instance, analyzing data
of website users.

We relied on information on the device type to analyze the use of mobile devices to complete
the 29 web surveys over time (2009-2015). The results shown in Figure 1 reflect the techno-
logical development that has led to the increasing spread of mobile devices. The ability of
parseuas to detect the increasing use of smartphones and tablets is due to user agent strings
containing the necessary information to detect a mobile device.®

In Figure 2, we plotted the use of different versions of Windows over time. Note that Windows
7 was released in October 2009, Windows 8 in October 2012, and Windows 10 in July 2015.
Similar to the patterns of use of mobile devices, newly developed versions of the operating
system emerge and become increasingly used, while older versions such as Windows XP and
Vista vanish. This development of new technology is reflected in changing user agent strings
which, again, enabled us to detect them. Our data show the emergence of user agent strings
with information referring to Windows 7 in survey 8, Windows 8 in survey 19, and Windows

8With respect to survey 17, the trend may be explained partially by a change in the online access panel
provider.

Journal of Statistical Software — Code Snippets

Use of OS in %
40 60 80
1 1 1

20
L

0 10 20 30
Surveys 1 —29 (2009 - 2015)
Windows
Xr - Vista --------- 7
———-80&38.1 10.0

Figure 2: Use of Windows in 29 web surveys from 2009 to 2015.

Information %
Browser (other) 0.17
OS (other) 0.09
Mobile phone (other) 0.05
Tablet (other) 0.00

Table 1: Relative frequencies of residual categories for parsed information.

10 in survey 29.9 The appearance of the respective user agents fits the release dates: survey
8 was carried out in December 2009, survey 19 in January 2013, and survey 29 in September
2015.

User agent strings may lack information or include content that parseuas is not able to
fully interpret. As outlined in Section 4.1, the command is set up to handle these cases by
coding the available information into residual categories. Evidently, the residual categories
are an important source when validating the results of the application of parseuas. “Browser
(other)”, “OS (other)”, “Mobile phone (other)”, or “Tablet (other)” indicate that parseuas
did not identify the exact type of browser, operating system, or device. In our examples, we
relied on a data set that was collected when we were developing parseuas. Hence, only a few
user agent strings (<1% in each variable) were not optimally parsed, and these numbers are
what we consider an ideal case of residuals when using the command. Table 1 illustrates the
distribution of “others” for parsed information on the browser, operating system, and device.

5. Remarks

The Stata command will be updated on a regular basis to keep up with the development of
new browsers, operating systems, and devices. Thus, we recommend using the latest version
of parseuas. For this purpose, Stata provides the command adoupdate, which automatically

9Some respondents (<1%) had been using Windows 7, 8, and 10 before these surveys. Presumably, these
operating systems were pre-release versions.

13

14 parseuas: User Agent Strings in Stata

updates user-written ados (see adoupdate). In addition, to guarantee the reproducibility of
analyses using parseuas, we recommend citing the ado with information on the used version,
e.g., as in Rofmann and Gummer (2016a).

Moreover, as outlined in Section 4.1 (for an application, see Section 4.4), we recommend
inspecting the frequencies of residual categories after applying parseuas to a data set. If
user agent strings cannot be parsed in an optimal way, they are coded into these categories.
This situation may be the result of either drawing on a data set including a large amount
of uncommon user agents or technological developments (e.g., completely new browsers or
operating systems) that have not yet been accounted for in the most recent version of parseuas.
In the exemplary application based on 36,575 user agent strings that we collected over 7 years,
the residual categories did not exceed 1% of all observations. Hence, we would recommend
this threshold as a rule of thumb for researchers to face-validate the successful application of
parseuas.

6. Conclusion

In this article, we introduced the new Stata command parseuas to extract detailed information
from user agent strings. These data can be used for methodological and substantive research
questions. Particularly in the field of web survey research, interest in paradata (e.g., device
types) has been increasing. Apart from survey methodology, user agent strings are commonly
available data on the user level when using web services. Thus, analyzing information from
user agent strings is of great importance to researchers and practitioners in a multitude of
fields ranging from computer sciences to market research.

As our example illustrates, parseuas provides Stata users with an easily applicable command
to automatically generate meaningful data. Nevertheless, new user agents will emerge due
to technological developments (e.g., new devices, browsers, and operating systems), or users
may want to extract information that is not provided by the latest version of parseuas. Thus,
our article details how to parse user agent strings, which should enable users to modify the
parseuas command to serve their individual purposes.

In addition to detailed information on user agent strings and how to parse them, we have pro-
vided an overview of how to collect these paradata with frequently used web survey software
and, more generally, by implementing JavaScript code.

Acknowledgments

We would like to acknowledge the support of GESIS, which ultimately led to the creation of
parseuas. We would like to thank Andrei Artimof, Wolfgang Bandilla, Ulrich Krieger, and
Bart Meuleman for testing and reviewing earlier versions of parseuas.

References

Bassili JN (1993). “Response Latency versus Certainty as Indexes of the Strength of Voting
Intentions in a CATI Survey.” Public Opinion Quarterly, 57(1), 54-61. doi:10.1086/
269354.

https://doi.org/10.1086/269354
https://doi.org/10.1086/269354

Journal of Statistical Software — Code Snippets 15

Biemer PP, Chen P, Wang K (2013). “Using Level-of-Effort Paradata in Non-Response Ad-
justments with Application to Field Surveys.” Journal of the Royal Statistical Society A,
176(1), 147-168. doi:10.1111/j.1467-985x.2012.01058.x.

Callegaro M (2010). “Do You Know Which Device Your Respondent Has Used to Take Your
Online Survey?” Survey Practice, 3(6), 1-13. doi:10.29115/sp-2010-0028.

Callegaro M (2013). “Paradata in Web Surveys.” In F Kreuter (ed.), Improving Surveys
with Paradata: Analytic Uses of Process Information, pp. 261-280. John Wiley & Sons,
Hoboken.

Couper MP (2000). “Usability Evaluation of Computer-Assisted Survey Instruments.” Social
Science Computer Review, 18(4), 384-396. doi:10.1177/089443930001800402.

Couper MP (2008). Designing Effective Web Surveys. Cambridge University Press, New York.

Couper MP, Kreuter F (2013). “Using Paradata to Explore Item Level Response Times in
Surveys.” Journal of the Royal Statistical Society A, 176(1), 271-286. doi:10.1111/j.
1467-985x.2012.01041 .x.

Dillman DA, Smyth JD, Christian LM (2014). Internet, Phone, Mail, and Mized-Mode Sur-
veys: The Tailored Design Method. John Wiley & Sons, Hoboken.

Gummer T, RoBmann J (2015). “Explaining Interview Duration in Web Surveys: A Mul-
tilevel Approach.” Social Science Computer Review, 33(2), 217-234. doi:10.1177/
0894439314533479.

Kaczmirek L (2008). “Internet Survey Software Tools.” In NG Fielding, RM Lee, G Blank
(eds.), The Sage Handbook of Online Research Methods, pp. 236-254. Sage, London.

Lugtig P, Toepoel V (2016). “The Use of PCs, Smartphones, and Tablets in a Probability-
Based Panel Survey: Effects on Survey Measurement Error.” Social Science Computer
Review, 34(1), 78-94. doi:10.1177/0894439315574248.

Mavletova A (2013). “Data Quality in PC and Mobile Web Surveys.” Social Science Computer
Review, 31(6), 725-743. doi:10.1177/0894439313485201.

Mayerl J (2013). “Response Latency Measurement in Surveys. Detecting Strong Atti-
tudes and Response Effects.” Survey Methods: Insights from the Field. doi:10.13094/
SMIF-2013-00005. Retrieved from https://surveyinsights.org/?p=1063.

Meyer M, Schoen H (2014). “Response Latencies and Attitude-Behavior Consistency in a Di-
rect Democratic Setting: Evidence from a Subnational Referendum in Germany.” Political
Psychology, 35(3), 431-440. doi:10.1111/pops.120309.

Peytchev A, Hill CA (2010). “Experiments in Mobile Web Survey Design: Similarities to
Other Modes and Unique Considerations.” Social Science Computer Review, 28(3), 319—
335. doi:10.1177/0894439309353037.

Rattinger H, Rofiteutscher S, Schmitt-Beck R, WeBlels B, Wolf C (2009-2015). Long-Term
Online Tracking, T1-T29 (ZA5334-ZA5351 and ZA5719-ZA5729). GESIS Data Archive,
Cologne.

https://doi.org/10.1111/j.1467-985x.2012.01058.x
https://doi.org/10.29115/sp-2010-0028
https://doi.org/10.1177/089443930001800402
https://doi.org/10.1111/j.1467-985x.2012.01041.x
https://doi.org/10.1111/j.1467-985x.2012.01041.x
https://doi.org/10.1177/0894439314533479
https://doi.org/10.1177/0894439314533479
https://doi.org/10.1177/0894439315574248
https://doi.org/10.1177/0894439313485201
https://doi.org/10.13094/SMIF-2013-00005
https://doi.org/10.13094/SMIF-2013-00005
https://surveyinsights.org/?p=1063
https://doi.org/10.1111/pops.12039
https://doi.org/10.1177/0894439309353037

16 parseuas: User Agent Strings in Stata

Rofimann J, Gummer T (2016a). parseuas: Stata Module to Extract Detailed Information
from User Agent Strings. Version 1.3, URL http://EconPapers.repec.org/RePEc:boc:
bocode:s457937.

RoBmann J, Gummer T (2016b). “Using Paradata to Predict and Correct for Panel Attrition.”
Social Science Computer Review, 34(3), 312-332. doi:10.1177/0894439315587258.

Sinibaldi J, Trappmann M, Kreuter F (2014). “Which Is the Better Investment for Non-
response Adjustment: Purchasing Commercial Auxiliary Data or Collecting Interviewer
Observations?” Public Opinion Quarterly, T8(2), 440-473. doi:10.1093/poq/nfu003.

StataCorp (2019). Stata Statistical Software: Release 16. StataCorp LLC, College Station.
URL http://www.stata.com/.

Stern MJ (2008). “The Use of Client-Side Paradata in Analyzing the Effects of Visual Layout
on Changing Responses in Web Surveys.” Field Methods, 20(4), 377-398. doi:10.1177/
1525822x08320421.

Tourangeau R, Conrad F, Couper M (2013). The Science of Web Surveys. Oxford University
Press, Oxford.

Zakas NC (2015). Professional JavaScript for Web Developers. 3rd edition. John Wiley &
Sons, Indianapolis. doi:10.1002/9781118722176.

Affiliation:

Joss RoBmann, Tobias Gummer

GESIS - Leibniz Institute for the Social Sciences

68159 Mannheim, Germany

E-mail: joss.rossmann@gesis.org, tobias.gummer@gesis.org

Lars Kaczmirek

University of Vienna

1010 Vienna, Austria

E-mail: lars.kaczmirek@univie.ac.at

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
February 2020, Volume 92, Code Snippet 1 Submitted: 2016-01-08

doi:10.18637/jss.v092.c01 Accepted: 2018-07-13

http://EconPapers.repec.org/RePEc:boc:bocode:s457937
http://EconPapers.repec.org/RePEc:boc:bocode:s457937
https://doi.org/10.1177/0894439315587258
https://doi.org/10.1093/poq/nfu003
http://www.stata.com/
https://doi.org/10.1177/1525822x08320421
https://doi.org/10.1177/1525822x08320421
https://doi.org/10.1002/9781118722176
mailto:joss.rossmann@gesis.org
mailto:tobias.gummer@gesis.org
mailto:lars.kaczmirek@univie.ac.at
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v092.c01

	Introduction
	User agent strings
	The structure of a user agent string
	Device type: mobile, tablet, or desktop
	Operating system
	Browser name, version, and rendering engine
	Examples indicating different devices and browsers

	How to obtain the user agent string during a web survey
	The parseuas command
	Description
	Syntax
	Options
	Examples
	Application of parseuas
	Further applications

	Remarks
	Conclusion

