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ABSTRACT

The Computer Analysis of Polyphonic Music

This thesis describes research on the computer analysis of polyphonic
music, concentrating on the physical problem of identifying and tracking simul-
taneous tones in an acoustical signal. Except for J.A. Moorer’s work and the
results in this thesis, little progress has been made. Identifying the harmonics

of each note is a difficult problem.

The analysis procedure involves analog to digital conversion of recorded
music, pitch estimation, and grouping pitch estimates into notes. Known signal
processing algorithms are applied to the problem, and a new spectral extraction
procedure improves the results. Error measures are defined to determine the
accuracy and sensitivity of the algorithm. Several musical examples are tested.

The pitches of notes in a synthesized Trio are determined with 99% accuracy,

(90% accuracy for the notes of a woodwind Trio).

The response of the human cochlea to polyphonic tones is simulated.
The observed amplitude modulation of the response between harmonics is enough

to distinguish pairs of superimposed tones.

Keywords:

pitch estimation, music analysis, artificial intelligence, automatic music
transcription, musical acoustics, auditory modelling, signal processing.
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CHAPTER ONE

The Computer Analysis of Music

1.1 Introduction : Statement of the Problem

Human beings are adept at distinguishing simultaneous sounds. A per-
son can understand one of several people speaking at the same time (the so
called cocktail party effect). An orchestral conductor can tell if one instrument
out of a hundred is playing out of tune. How this discrimination is made from

the acoustical signal is not well understood.

The central problem considered in this thesis is the automatic separa-
tion of simultaneous tones from an acoustical signal. This is a difficult problem,
because the harmonic frequencies of two superimposed tones are interspersed.
For consonant chords, some harmonics of different tones coincide. As an exam-
ple, when two tones sound an octave apart, the harmonics of the higher tone

coincide with the even harmonics of the lower tone.

For the work described in this thesis, recorded music is converted to a
digital signal, which is analysed at successive times to determine the pitches of
the constituent notes. These pitch estimates are then grouped together in time,

to determine the pitches, starting times and durations of the notes.

This work develops many computing techniques, but also contributes
to the fields of musical acoustics, signal processing, and auditory perception.
The identification of simultaneous musical tones is an intelligent human activity
requiring many vears of aural training. In this sense, the automated analysis of
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musical sounds is an Artificial Intelligence problem.

1.2 The Automated Analysis of Musical Pitch : A Review

In 1843 G.S. Ohm proposed the theory that the human ear acts as a
Fourier analyser, separating the harmonic components of a periodic sound wave.
Twenty years later Hermann von Helmholtz was first to observe the spectra of

sustained musical tones using acoustical resonators.

M. Metfessel, et al. (1926) developed a stroboscopic instrument to
display the fundamental frequency of tones. This system was limited by the

inability to report dynamies or frequency fluctuations.

Electronic technology overcame these limitations. A.W. Hull (1933)
designed and built a frequency meter using thermionic valves. F.V. Hunt (1935)
improved the design by low-pass filtering the signal to enhance the fundamental.
Juichi Obata et al. (1937) used low-pass filtering and automatic gain control to

enable a larger dynamic range of signals to be used.

Similar devices have since been built by C. Seeger (1951) and P.A.
Tove et al. (1966). After low-pass filtering and rectifying the incoming signal
Tove’s device charges two capacitors to determine the period of the signal. This
is mapped into a one octave frequency range. The Seeger melograph model C
(Moore 1974) has overlapping one-third octave band-pass filters. Output from
the filter of lowest frequency with significant signal level drives a frequency

meter. Spectral analysis of the musical tones can also be done.

Bengtsson (1972), and Piszscalski (1979) have suggested using such

2



methods to analyse polyphonic music, but the only successful attempt before
this thesis is by J.A. Moorer (1975). Moorer considers only two part music, with
the intervals between parts ranging from a minor third to a minor seventh. This

avoids the problem, mentioned earlier, of simultaneous tones at an octave apart.

All these methods depend on the presence of a significant component
at the fundamental frequency, which is not always present, especially for low
pitched sounds. Tones with weak fundamentals can be detected using the meth-

ods developed here.

The analysis of a synthesized Trio by J.S. Bach, described in chapter 8,
has an error rate similar to that of Moorer’s guitar example. However, the Trio
has three musical parts spanning nearly four octaves, in comparison to Moorer’s
two parts spanning two octaves. All the notes of the trills in the synthesized Trio,

some with note durations as small as 30 milliseconds, are correctly identified.

1.3 An Overview of the Thesis

The first three chapters introduce the subject. The second chapter
discusses musical sound in terms of physical acoustics, perceptual psychology
and music theory. Signal processing algorithms used in such areas as automatic

speech recognition and the analysis of seismic waves are presented in chapter 3.

The central chapters (4 to 8) of the thesis present the author’s contribu-
tion to the analysis of polyphonic music. Chapter 4 describes the hardware and
software systems developed for the analysis of musical signals. The fifth chap-
ter gives the algorithms used for estimating musical pitch. Chapter 6 presents

3



the software to group pitch estimates into musical notes and display them in
standard music notation. In chapter 7 the algorithms given in chapters 4, 5 and
6 are evaluated. Chapter 8 describes the work to determine the accuracy and
sensitivity of the analyses.

The mechanisms of hearing in the human ear and auditory cortex, and
a computer simulation of the cochlear response to musical sounds are described
in chapter 9. A neural pitch-determining mechanism is proposed to account for
the human ability to distinguish polyphonic sounds.

Finally, chapter 10 summarizes the results of the research described in

this thesis and suggests some possible areas for future research.



CHAPTER TWO

The Nature of Musical Sound

2.1 Introduction

Although the emphasis of this research is on the signal processing and
algorithmic aspects of the analysis of music, it is useful to explore the relationship

with the disciplines of Physics, Psychology and Music.

Here, sound refers to the sensation resulting from vibration within the
ear, or any vibration that can cause such a sensation. A tone is a sound that
is perceived to have pitch or musical height. A pure tone by definition has
only one sinusoidal component. Tones can be considered as the superposition of
pure tones, called the partials of the tone. If the frequencies of the partials are
multiples of the fundamental (lowest) frequency, they are called harmonics. A
note is the perceived musical entity (or the symbol in music notation) associated

with a tone. Music is a sequence of sounds, some of which may overlap in time.

Polyphony refers to the simultaneous sounding of two or more melodic
parts, whereas monophonic music has at most one instrument sounding at any

time.

Little is known about how the human brain processes musical sounds.
Roederer (1977) suggests that the desire to listen to music arises from the redun-
dant speech processing areas of the minor half of the human cortex. There are
many cases of people with brain-damage, where lesions in the left (or dominant)
hemisphere have made them unable to understand or generate speech, yet they
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can recall melodies, sing the words and apparently appreciate music with their

unimpaired minor hemisphere.

2.2 Physical Correlates of Musical Attributes

There are several perceptual attributes of musical sounds; the most
important are pitch, loudness, timbre and, for multiple tones, consonance and
dissonance. This section considers their relationship to the corresponding phys-

ical attributes.

2.2.1 The Relationship Between Pitch and Frequency

Pitch is usually defined as perceived frequency and is measured in mels.
The pitch of 1,000 mels is assigned to a pure tone with frequency 1,000 cycles per
second (1 kHz). Pitch can differ from frequency by about 19 as frequency and
loudness change. The pitch of a tone usually corresponds to the fundamental
frequency; the harmonics are generally not perceived as separate components.
There are some tones (such as those of bells and cymbals) with non-periodic
wave-shape, that have ambiguous pitches. Other tones, such as piano tones, have
upper partials with slightly higher frequencies than the corresponding harmonic
frequencies. The pitch then corresponds to the average frequency difference
of the strongest partials, and not that of the fundamental frequency (Houtsma
1972). Many tones with the fundamental completely absent are still perceived as

et al.

having the pitch of the missing fundamental (Schouten' 1962). In the remainder

of this thesis a logarithmic pitch scale is used, so musical intervals have a constant

6
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pitch difference, independent of pitch. The interval of an octave corresponds to

the frequency ratio of 2:1 or a pitch difference of 12 semitones.

Since 1939, absolute musical pitch has been generally accepted as 440
Hz for A above middle C. This will be assumed here. The pure tone frequencies
perceivable to the human ear range from about 20 Hz (cycles per second) to about
20 kHz (20,000 Hz). The fundamental frequencies of orchestral instruments
range from 30 Hz on the contra-bassoon to 2 kHz on the piccolo flute (Apel

1970).

Signal processing techniques can estimate pitch. The following example
illustrates the difficulty in using time-based methods. Figure 2.1 is a plot of a 40
millisecond segment of the steady state of a bassoon tone. The note is E below
middle C. The period is 6 milliseconds. However the zero-crossings suggest a
period of one third of this value. This is caused by a strong third and sixth
harmonic (see figure 2.2 - the spectrum of the tone). There is no superimposed

note at three times the fundamental frequency.

2.2.2 The Relationship Between Loudness and Intensity

Intensity is the power of a sound signal per unit area measured in watts
per square metre (W/m?). A pure tone at 1 kHz, with intensity 1 W/m? is near
the threshold of pain, while the same tone with an intensity of 10~!2 W/m? is
near the threshold of hearing. To encompass this wide range of intensities, the
logarithmic decibel (dB) scale is used. The dB level is defined as 10log,,(I; /L),
where Iy, I, are the intensities of the compared signals. The reference intensity,

(f
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I, is generally taken as 10~'2 W /m?. With this reference the threshold of pain
at 1 kHz is about 120 dB: the threshold of hearing is 0 dB; the musical dynamic
level of fortissimo is 80dB and pianissimo is 40dB. SometimesdB refers to the

relative intensity of two signals, for example signal to noise ratio.

Loudness, measured in phons, is the perceived dB level of a signal. A
pure tone of frequency 1 kHz and intensity 0 dB has a loudness of 0 phons.
For a pure tone of fixed intensity, loudness is maximal at about 1 kHz, and
decreases as the frequency tends toward the extremes of the audio range (20 Hz
to 20,000 Hz). A pure tone must be increased in intensity by a factor of about
20 to sound as loud at 100 Hz or at 10 kHz as it does at 1 kHz (Fletcher
1934). Loudness can also be altered by spectral characteristics. For example,
a tone of high intensity, with reverberation added, can be perceived as quieter
than one of lower intensity, but without reverberation. It appears to be coming

from further away (Chowning et al. 1974).

2.2.3 Correlates of Timbre

The physical correlates of timbre are more elusive than those of pitch
and loudness. John M. Grey (1975) differentiated musical instrument tones using
three measurable attributes: the spectral extent, the inharmonicity of the onset,
and the synchrony of the upper harmonics. This is insufficient to apply to the
automatic discrimination of simultaneous tones; human listeners are still much
better than computer programs at identifying musical instruments.

10



2.2.4 Dissonance and Consonance

Consonance refers in this thesis to chords (simultaneous tones) with
only consonant intervals (pitch differences of 3 , 4, 5, 7, 8, 9, or 12 semitones)
between the tones. Dissonance refers to chords containing at least one dissonant
interval, i.e. a pitch difference of 1, 2, 6, 10, or 11 semitones. Dissonance
increases with the amount of audible beating between the harmonics of the
constituent tones.

Consider two superimposed pure tones sin(at) and sin(bt), where a,b
are different constants and ¢ is time. If a and b are close enough, beating (ampli-
tude modulation) occurs. The beating frequency equals the difference between

the input frequencies because

(@+bt. (a—b)t

sin(at) + sin(bt) = 2 sin( ) cos(———)-
If this beating frequency is increased beyond about 20 Hz, it is perceived as
roughness or dissonance. This roughness continues as the beat frequency in-
creases through the lower audible range, until two distinct tones are heard with
no roughness. Two pure tones of nearly equal frequency are said to lie within the
critical bandwidth for that frequency, if they cannot be identified by a human
listener as two distinct tones. The critical bandwidth increases slightly with fre-
quency, but here dissonance is considered to be caused by a beating frequency
between 20 and 100 Hz, and consonance to be the absence of this beating.

To take some examples: two notes an octave apart are consonant, be-

cause the harmonics of the upper note coincide with the even harmonics of the

11



lower note. For real musical tones the fundamental frequencies could vary by 1
percent, but most of the signal energy is in the lower harmonics below 2 kHz,
so beating would still be within the critical bandwidth. For the major third with
frequencies 400 Hz and 500 Hz, the difference between adjacent harmonics is 100
Hz. This is on the border of dissonance. If the notes are played an octave lower
(200 Hz and 250 Hz), the difference frequency of 50 Hz is within the dissonant
region of the critical bandwidth. It is interesting that although a major third
is considered to be consonant by most musicians, only octaves and fifths are
allowed in the bass of consonant cadences. A thousand years ago when Grego-
rian chant began, thirds were rarely used. Thirds may have been introduced
into polyphonic music over the following centuries, as dissonance became more

acceptable.

2.3 The Perception of Musical Events

Standard Music Notation (SMN), evolved with extensive use by musi-
cians, reveals much about the perception of music. A musician perceives music
as a series of discrete events, interrelated by rhythm and key, and not as con-
tinuously changing superimposed signals. The perception of speech is similar;
the phonetic sounds of speech are grouped in the context of natural language

grammar to determine the underlying semantics.

Although there is a close correspondence between perceived musical
events and the notes of SMN, the acoustical signal is different. In performance,
the pitch and duration of notes can differ considerably from the values designated

12



by SMN. There are many ambiguities in producing SMN from the acoustical
signal. For example, a piece of music could be written in 4/4 time or 2/4 time

for the same performance.

2.3.1 The Perception of Pitch

There is more to an acoustical signal than meets the auditory cortex.
Music is usually performed in a reverberant environment, which can sustain
sounds by more than one second. This means that while a note is being played,
the reverberation of the preceding notes may also be present in the acoustical
signal (see figure 2.7). Most musical instruments have natural resonances (for-
mants). Signals at these resonant frequencies are reinforced (see figure 2.2). This
can cause narrow spectral peaks that have no relation to the perceived pitch.
For stringed instruments, such as piano, guitar or violin, undamped strings vi-
brate in sympathy with the string being played. Mechanical moving parts of
instruments produce extraneous noises. Examples are the click of the keys of a
woodwind or brass instrument, or the rasp of fingers sliding along guitar strings.
Yet the listener can mask these extraneous signals and perceive only the tone

being played.

Steady-state frequency differences of tones as little as 0.3% (a twentieth
of a semitone) can be distinguished by musicians. However, harmonic frequencies
can vary as much as a semitone during a performed note, yet the note can still

be perceived as having a single pitch.

Many musical intervals are exaggerated in performance by as much as

13



two percent, i.e. up to one third of a semitone sharp (Ward 1970). Therefore,
as well as masking out extraneous sounds, the human auditory system tolerates

deviations in pitch, and perceives pitch within the musical context.

A tune or sequence of notes can be memorized or identified indepen-
dently of the key in which it is played, although some musicians, young children,

and non-western peoples are able to recall absolute pitch with high accuracy.

2.3.2 The Perception of Time and Duration

Although we can differentiate time differences of as little as 10 mil-
liseconds, we tolerate variations of more than 100 milliseconds in the times and
the durations of performed musical tones. Durations vary with articulation from
legato to staccato. Even when a performer tries to produce exact durations,
these can vary by 100 milliseconds. Vocal, woodwind and brass performers must
take a breath from time to time, thereby shortening a tone. The transition from
one string to another in bowed violin music differs from the transition from note
to note on the same string. Also reverberation extends the effective duration of

tones.

Because of these phenomena, the time difference between the start of
successive tones (inter-onset time) is more useful in determining durations than
the time difference between the start and finish of the tone (Tucker 1977). Even
the inter-onset times vary. An onset of a tone is usually accompanied by an in-
crease in intensity, and a non-periodic or noisy signal (inharmonicity), followed
by a change in fundamental frequency. These cues are not always present. The

14



fundamental frequency can glide from one pitch to another without inharmonic-

ity and with little change in intensity.

In human perception of music, the durations appear to be determined
from the inter-onset times and are interpreted in terms of the current tempo,
which constantly adapts to the incoming tones. This behaviour is modelled by

the music plotting procedures described in chapter 6.

2.3.3 Musical Examples

The following examples illustrate the difficulties in determining the

pitches and start and finish times of musical events.

Figure 2.3 plots amplitude versus time for the first 150 milliseconds
of a piano tone. The amplitude decays after the kinetic energy of the hammer

transfers to the strings, so there is no steady state.

Figure 2.4 shows the time varying spectra of the piano tone of figure 2.3,
and the transition into the following tone, spanning a total of 600 milliseconds.
The spectra are 10 milliseconds apart, and the frequency ranges from 0 to 3 kHz.
The decay of the first tone is masked by the broad-band onset of the second
tone. Amplitude modulation occurs in the harmonics of the tones. Beating of

the treble strings can account for this.

Figure 2.5 shows the time varying spectrum (0 to 800 Hz) of the lower
harmonics of a bassoon playing the three notes; A (110 Hz), G (98 Hz) and
C (131 Hz) in succession, spanning 1.2 seconds. Observe the low frequency
distortion between 0 and 70 Hz, and the prolongation of harmonics caused by

15
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reverberation. Also the 5th and 6th harmonics have more energy than the lower

harmonies. This corresponds to Lehman’s (1964) first formant of the bassoon.

Figure 2.6 plots amplitude versus time for the first 160 milliseconds
of the onset and steady-state of a cello tone. The first 20 millisecond is non-

periodic.

Figure 2.7 displays the time varying spectra of the tone in figure 2.6 (E
below middle C), the transition into the next tone (F below middle C), and the
next (G below middle C), spanning 600 milliseconds. The time between spectra
is 10 milliseconds, and the frequency ranges from 0 to 1.5 kHz. The signals of
the different notes appear to overlap in time. This overlap may be caused by
reverberation in the instrument and in the recording room, because the notes
are played on the one string. The harmonics of the note F' continue throughout
the note G. The reverberation of the lower harmonics of the note E merge
with the harmonics of the note F. It is physically impossible to separate these.
Increasing the frequency resolution to resolve the harmonics would require the
effective time window to be increased to half a second. The spectra would then

contain components from several notes.

2.4 Musical Scales and Temperament

Musical scales probably evolved from a need to limit the range of pos-
sible pitches, as an aid to the perception and memory of melodies. Although
musicians can differentiate up to 200 pitches within an octave, the major and
minor scales have only seven notes. This corresponds to our short term memory
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capacity.

The perfect fourth and fifth with frequency ratios of 4:3 and 3:2 respec-
tively are obvious candidates for notes in the scale, and occur in the major, minor
and many non-European scales, such as the Asian pentatonic scales. There is
a pitch equivalence between octaves. Two notes an octave apart give a similar
sensation of pitch (chroma). Therefore tones outside the range of an octave can
also be mapped into the notes of the scale.

The modern major and minor scales have evolved from the ancient
Grecian modes, which derived from the theoretical scale attributed to Pythago-
ras (Apel 1970). This scale appeared at about the same time in China. It
includes the perfect fifth and the octave. The Pythagorean tone of frequency
ratio 9:8 is two fifths minus one octave (3:2 times 3:2 divided by 2:1). Therefore
the Pythagorean major scale is made up of two tones, a Pythagorean semitone
(ratio 256:243), three tones and another semitone.

In the mid 16th Century, Zarlino proposed the “just” scale using the
ratios 5:4 and 6:5 for the major and minor thirds. This created harmonious
major chords.

Both these systems, though theoretically elegant, restricted the musi-
cian to the one key, because many of the pitches differed too much from their
enharmonic equivalents in related keys.

In the late 16th Century, “mean-tone” temperament came into promi-
nence. Most of the early works of J.S. Bach and Handel were written in this
temperament. The perfect third (ratio 5:4) was derived by flattening the perfect
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fifth by 5 cents (5% of a semitone) and generating the scale in the same way
as Pythagorean temperament, but using this flattened fifth. This enabled har-
monious music to be played in six related major keys and three related minor
keys, but transposition to more distant keys produced “wolf” tones up to half a
semitone from their correct pitch.

The modern system of equal temperament divides the octave into twelve
equal semitones. This allows complete freedom in modulation but sacrifices the
harmonicity of the earlier scales. The tempered semitone has a frequency ratio
of 1.05946 ( ¥/2), and is divided into 100 cents.

Table 2.1 gives a comparison (in cents above the tonic C) of the scales
described here.

Table 2.1

Comparison of Scales

note Pythagorean Just Mean-tone  Equal
C 0 0 0 0
D 204 204 193 200
E 408 386 386 400
F 498 498 503 500
G 702 702 697 700
A 906 884 890 900
B 1110 1088 1083 1100
C 1200 1200 1200 1200

The frequency discrimination of the ear is about 5 cents, therefore the
equal tempered and mean-tone fifths are indistinguishable from the perfect fifth.
The equal tempered third is 14 cents above the perfect (just intonation) third
and differs noticeably.
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Table 2.2 gives the fundamental frequencies of the major triad based
on G at 400 Hz for the various intonations.
Table 2.2

Comparison of Scales

note Pythagorean Just Mean-tone  Equal
G 400.0 400.0 400.0 400.0
B 506.2 500.0 500.0 504.0
D 600.0 600.0 598.1 599.3

Considering the consonance of the various temperaments, from table
2.2 it can be seen that the 8th harmonic of the note B beats with the 10th
harmonic of G, at 32 Hz for equal temperament and at 50 Hz for Pythagorean
temperament. These are therefore sources of dissonance. But the 8h harmonic
of D and the 12th harmonic of G in mean tone temperament beat at 15 Hz,
which is not perceived as dissonance.

In practice the tuning of musical instruments can differ by a few per-
cent from these ideal tunings. Well tuned instruments can fall out of tune
with temperature and humidity variations, and even during performance. Pitch
variation in most performed music is similar to the differences in the modes of
intonation. Equal temperament will be assumed for the remainder of this thesis.
It is easy to calculate, because pitch is directly proportional to the logarithm of

the frequency.

2.5 Problems Relating to Polyphonic Perception
This section considers what is known about the perception of polyphony
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and looks at some of the problems which must be overcome in the automated
analysis of polyphonic music.

Consider an inverted chord, for example, G seventh in the second inver-
sion with frequencies 300 Hz, 400 Hz, 500 Hz, and 700 Hz. The frequencies of
the harmonics of these notes are divisible by 100 Hz. The chord has a periodicity
of 10 milliseconds. Most musicians would be able to identify the four individual
notes, when performed on musical instruments. Chowning (1981) showed that
a such a chord synthesized with exact frequencies, is perceived as a single tone
with a pitch of 100 Hz. But if the frequency of each note varies independently by
1%, the harmonics fuse together and four natural sounding notes are perceived.

A similar phenomenon occurs with stopped organ pipes where several
tones of different frequency are perceived as a single sound. The resultant bass
saves the cost of manufacturing of large organ pipes (Apel 1970). Independent
vibrato of musical parts is also an important cue in the perception of unison or
quasi-consonance, because of the varying beating between parts.

Rasch (1978) has shown that a difference of as little as 10 milliseconds
in onset time is enough to distinguish polyphonic sounds. His examples use
a rapid onset of less than 1 millisecond followed by an exponentially decaying
amplitude envelope. The onset transients of musical instrument tones can last
as long as 200 milliseconds, and differ widely even when the note is repeated by
the same performer.

Another important cue in the discrimination of simultaneous tones is
the stereo effect. Sound is located by the phase and amplitude difference of
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the signals arriving at each ear. The diffraction pattern of the outer ear is also
important in sound localization (Schroeder 1975).

Melodic expectation, within the musical context of key signature and
tempo, helps to determine the musical events in an acoustical signal. Timbre of
instruments also assists in the tracking of individual parts of music.

The following musical examples illustrate some of the difficulties in
determining the tones in polyphonic music.

Figure 2.8 shows the time varying spectra of the final 200 milliseconds
of a bassoon tone (E of frequency 165 Hz), followed by a chord of three tones;
a bassoon (A at 220 Hz), and two oboes (Cf at 554 Hz and E at 660 Hz). Each
spectrum advances by 10 milliseconds from the previous one, and the frequency
ranges from 0 to 3 kHz. The onsets of the three superimposed tones are difficult
to distinguish.

Figure 2.9 shows all the harmonics of a half second transition between
two chords in the woodwind Trio. The notes of the first chord are; Bb p13 (pitch
13}, Bb p25, and G p34. The notes of the second chord are; C pl5, G p22, and
Eb p30. The exact time of transition of the harmonics differs by as much as 100
milliseconds.

Figure 2.10 is a plot of amplitude versus time for two oboes and a
bassoon playing simultaneously. It is difficult to determine from the plot which
notes are played. A prominent periodic feature is the series of marked peaks with
a time difference of 3.46 milliseconds, but this periodicity does not correspond
to any of the three fundamental frequencies.
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Figu'i'é-- 2.11 is the spectrum of the superimposed tones and the three
correct estimates of the notes being played.

Figure 2.12 displays the result of the harmonic summing algorithm,
described in section 5.5. The D and Bb estimates an octave below the correct
estimates are eliminated, because the even harmonics are significantly stronger
than the odd harmonics. The G estimate an octave above the correct value
cannot be eliminated by the criteria of the earlier monophonic example (figure
2.2). This estimate is stronger than would be expected from the bassoon alone,
because the 2nd, 4th and 6th harmonics of the D also contribute to this.

The example of figures 2.10 to 2.12 is used throughout the thesis to
illustrate the spectral extraction procedure (section 5.6), to compare pitch es-
timating techniques (section 7.2), and to simulate the response of the human

cochlea to simultaneous tones (section 9.4).

2.8 Conclusion

This chapter has investigated the nature of musical sound. The phys-
ical and perceptual attributes of musical tones were discussed and compared.
Examples of musical tones were presented to demonstrate the difficulties in pre-

dicting perceptual attributes, especially pitch, from acoustical signals.
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CHAPTER THREE

Pitch Estimating Algorithms: The State of the Art

3.1 Introduction

This chapter introduces standard signal processing techniques used for
pitch estimation in speech and music. Oppenheim and Schafer (1975) give a de-
tailed discussion. The techniques are applied in either the time domain (section
3.2) or the frequency domain (section 3.4). Section 3.3 describes the method
of spectral analysis used in this thesis. All the techniques of this chapter are
applied to a finite set of data (sampling window) sampled at equal time intervals.
Time is assumed to take integral values, the integer N denotes the width of the

sampling window, § = /=1 and cis z = cosz + jsin 2.

3.2 Time Domain Methods

A function, z(t), is said to be almost periodic if there exists a period
T, and a function e(t), such that; z(t) = z(t + T) + e(t), and e(t) is small with
respect to z(t). For the steady state of most musical tones, the maximum value
of e(t) is only a few percent of that of z(t). If e() is zero for all ¢ then z(t) is said

to be periodic, but for signals sampled from the real-world this rarely occurs.

3.2.1 Autocorrelation

discrete
The autocorrelation A(t), of a function z(t), is:

N-1

Aty =5 Y alnjz(n+1)

n=0

where t is an integer.
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The autocorrelation function is equivalent to the inverse Fourier trans-
form of the power spectrum of z(t). The evaluation of A(t) (fort = 0,N — 1)
requires O(N?) multiplications whereas the fast Fourier transform (see section
3.3) requires only O(N log N). Therefore for large N (eg. N > 100), A(t) is more
economically derived using the fast Fourier transform.

If z(t) has period T, then A(nT') is locally maximal for integral n.

3.2.2 Average Squared Difference Function
The average squared difference function (ASDF) S(t), of z(t) is:
N-1
1 2
S(t) = N [z(n) — z(n + 1)]°,
n=0

where t 1s an integer.

If z(t) has period T, then S(nT) is locally minimal for integral n.

3.2.3 Average Magnitude Difference Function

The average magnitude difference function (AMDF) M(t), of z(t) is:

=
M(t) = % D la(n) = a(n +1),
n=0

where t is an integer. This function is also called the optimum comb filter
(Moorer 1974).

If z(t) has period T, then M(nT) is locally minimal for integral n.

From Schwarz’s inequality, M(t)®> = b(t)S(t), where b(t) < 1.0. Ross et al.
(1974) showed empirically, from a wide range of speech samples, that b(¢) is not

strongly dependent on t, and lies in the range (0.4 , 1.0]. The AMDF is more
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economical to compute than the ASDF, where multiplication takes significantly

longer than addition.

3.2.4 Linear Predictive Coding

Linear Predictive Coding (LPC) was developed by several workers
(Schroeder 1970, Markel 1972, Makhoul 1973, Maksym 1973) for the automatic
recognition of speech. The speech signal, z(n), is modelled as a signal generated

by the vocal cords (glottis) which is filtered by the vocal tract:

p
z(n) = Z arz(n — k) + en,
k=1

where A = {ax}(k = 1,...,p) is the set of filter coefficients modelling the vocal

tract and E = {e,}(n = 1, N) is the set of glottal excitation samples. LPC

N

n=1

finds A to minimize ) eZ, where N is some large integer. This technique is
not applicable to pitch recognition in music, because it assumes white noise or a

periodic pulse train as the signal source. Moorer (1974) found it was not useful

for distinguishing simultaneous tones.

3.2.5 Spectral Flattening

Spectral flattening is a pre-processing technique that improves pitch
estimation. Methods such as cubing the signal values (Tucker 1977) can improve
pitch estimation by reducing the amplitude of the strongest spectral peaks of the
signal. Inverse filtering (Markel 1972) flattens the spectral envelope of a signal,
by finding the LPC filter coefficients, determining the inverse filter, and applying
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it to the signal. Tucker used this technique for enhancing the pitch estimation of
musical instruments such as the bassoon. The author applied spectral flattening
techniques to simultaneously sounding musical tones, but found no improvement

in pitch detection for polyphonic music.

3.3 Spectral Analysis
Let z(n), (for n =0,...,N — 1) be sampled data spanning one period

of a signal. The discrete Fourier transform (DFT) of z(n) is:

N—1 .
1 —2mik
X(k)= N Z z(n]exp(—-—-"; n),
n=0

for k= 005 N — 1,

To evaluate this transform the summing term must be calculated N?
times. (Cooley, Tukey 1965) developed the fast Fourier transform
(FFT) to evaluate the DFT in O(Nlog(N)) multiplications, which is a significant
computational saving for large N. Detailed accounts of the FFT can be found in
the literature (Cooley, Tukey 1965), Brigham (1975), Winograd (1978)). Section

4.3.2 describes the implementation used in this thesis.

3.3.1 Spectral Leakage

Spectral peaks are broadened, if the width of the sampling window
is not a multiple of the period of the signal. This is called spectral leakage,
and results from the incorrect assumption that the signal is infinitely repeated
outside the sampling window. To avoid this, the sampled points may be either
scaled in time to an exact multiple of the period, or multiplied by a bell shaped

36



weighting function (denoted Wy, for n = 0,...,N — 1). The effect of this
weighting function is to reduce the discontinuity at the boundary of the periodic
extension. Multiplication in the time domain is equivalent to convolution in the
frequency domain, therefore this weighting function broadens the spectral peaks

to the shape of the weighting function’s frequency response.

3.3.2 Weighting Functions
The Dirichlet Kernel is introduced to explain spectral leakage. Consider
a digital signal that is unity in the range (0, N — 1), and zero elsewhere. The

frequency response of this signal is the Dirichlet kernel:

1 cis(—) sin Tn
Din) = — &
(n) N sin (%)
Therefore,
sin(7n)
Nh—r.noo D) == (mn)

This is a good approximation to D(n), if N is large.

The Dirichlet kernel, D(n) is zero for all integral, non-zero n. It has a
maximum amplitude of 1 at n = 0 (main lobe) and locally maximal amplitudes
(sidelobes) between the points of zero amplitude. If N is large the sidelobes
occur at £1.5,+2.5,£3.5, ete.

A delta function, 6(n), is defined to be unity for n = 0, and zero
for all non-zero real n. The convolution of a Dirichlet kernel, D(n), with a
delta function, 8(n), is also a Dirichlet kernel. More precisely, the convolution
D(n) % §(n — k) = D(n — k), for all real k. If k is integral then the convolution
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is a delta function, §(n — k), otherwise D(n — k) takes non-zero values for all

integral n. In the time domain, this is equivalent to saying that if the width of

the window is a multiple of the period of the sampled signal, no spectral leakage

oceurs, and the DFT has a single non-zero value corresponding to this period.
Consider the following weighting function:

4

Wy = Z a; cos (21;"').
i=0

The frequency response of such a function is the weighted sum of shifted Dirichlet
kernels. When this is applied to a periodic signal before calculating the DFT,
the spectral peaks of the harmonics are broadened to the shape of the frequency
response of this weighting function. This shape can be tailored to the application
by altering the weightings.

As an example of this weighting function, consider the Hann window,

with frequency response,

D(n) D(n—1) D(n+1)
2 + 4 * 4

The first sidelobe has a maximum amplitude of, D(2.5)/2+ D(1.5)/4+ D(3.5)/4
or .0243, which is 32 dB below the main lobe with maximum amplitude 1.

The Hamming window has frequency response:
.54D(n) + .23D(n — 1) + .23D(n + 1)

Here, the weighting of the central kernel, D(r), is increased and the weighting of
the shifted kernels {D(n + 1), D(n — 1)} decreased. A value of zero is produced
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in the first sidelobe, making the second sidelobe at n = 3.5 the strongest at 43

dB below the main lobe.

Harris (1978) found that by adding further Dirichlet kernels at two

and three DFT points from the centre, he could reduce the maximum sidelobe

amplitude to 67 dB and 92 dB respectively below the main lobes, at the cost

of widening the main lobes. The weighting functions used in this thesis can be

found in Table 3.1.

Table 3.1

Spectral Weighting Functions

name sidelobe 6 dB weightings

attenuation bandwidth aop a, as as Gy
Rectangle 13 dB 1.21 1.0 0 0 0 0
Hann 32 dB 2.00 0.5 0.5 0 0 0
cos® z 39 dB 2.32 0.375 0.5 0.125 0 0
cos' z 47 dB 2.59 0.3125 0.4687 0.1875 0.03125 0
Hamming 43 dB 1.81 0.54 0.46 0 0 0
3 term minimal
Blackman-Harris 67 dB 1.81 0.4232  0.4975 0.079 0 0
4 term minimal
Blackman-Harris 92 dB 2.72 0.3587 0.4882 0.1412 0.0117 0
Gaussian 69 dB 2.52 not applicable

The sidelobe attenuation is the difference in decibels between the max-

imum amplitude of the main lobe and that of the highest sidelobe. The 6dB

bandwidth is the range of frequencies with response within 6dB of the main

lobe, and is used as a measure of the width of spectral peaks.

The 3 term minimal Blackman-Harris weighting function is used in this
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thesis, because it provides the narrowest peak consistent with sufficient sidelobe
attenuation (67 dB) to isolate harmonics from noise. The signal to noise ratio
of recorded music is about 60 dB, corresponding to an error of 0.1

The Gaussian weighting function is defined by:

)

W, = exp —a(

2|

where « is a constant.

The Gaussian window has sidelobe attenuation similar to, and spectral
peaks half as wide again as the 3 term minimal Blackmann-Harris window.

The heterodyne filter, used by Moorer (1975), is equivalent to a DFT
applied to a sampling window containing one period of the signal. If the signal
is dissonant or has no readily identifiable period, spectral leakage occurs. By
comparison, the weighting functions have the advantage that the leakage of
spectral peaks has a predictable shape and can be confined to effect only closely
neighbouring peaks.

Figure 3.1 compares a spectral analysis using the Gaussian weighting
function (upper spectrum) with the heterodyne filter (lower graph). The signal
is a steady state bassoon tone with fundamental frequency 128 Hz. The first,
4th, 5th, 8th, and 9th harmonics of the heterodyne filter produce narrow peaks,
because their frequencies are close to the exact harmonic frequencies determined
by the average magnitude difference function. The 2nd, 3rd, 6th and 7th har-
monics, however, deviate far enough from the exact harmonic frequencies to
cause severe spectral leakage over a wide portion of the spectrum. Any har-
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Figure 3.1 compares the Gaussian window spectral analysis (upper spectrum) with the

Heterodyne filter output (lower graph).
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monic signal with frequency between these spectral peaks, and intensity 25 to
50 dB below the peaks would be masked by the heterodyne filter. but not by

the Gaussian spectrum.

3.4 Frequency Domain Methods

3.4.1 Period Histogram

The harmonic frequencies of a periodic signal are multiples of the fun-
damental frequency. Schroeder (1970) suggested exploiting this in pitch estima-
tion of speech, although no results were presented. His method was to make a
histogram of the submultiples of the harmonic frequencies, and take the most
frequent submultiple as the estimate of the fundamental. For example, given the
harmonic frequencies 300, 400, 500 Hz, the submultiples are (150,100,75,60,...),
(200,133,100,80,...) and (250,167,125,100,83,...) respectively. The most frequent

submultiple, 100 Hz, is taken as the fundamental frequency.

Piszczalski (1979) applied this method to musical tones, using a his-
togram of the highest common factor of pairs of harmonic frequencies. A similar
method was implemented by the author to determine the pitch of simultaneously

sounding tones (see section 5.4).

3.4.2 The Cepstrum and Deconvolution

The cepstrum is the inverse Fourier transform of the log power spec-
trum of the signal. The cepstrum of two convolved signals is the sum of their
cepstra. The name cepstrum is coined by reversing the “spec” in the word
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spectrum. Time is termed quefrency (coined from frequency), and frequency

differences are termed repiodicity (coined from periodicity).

The cepstrum was introduced in 1963 by Bogert et al. as a heuristic
technique for separating seismic signals from their echoes. The echo impulse
response is convolved with the seismic signal. In the frequency domain the
frequency responses of the signal and its echo are multiplied. By taking the
logarithm of the amplitude the signal spectra are additive and can therefore be

easily separated.

Stockham et al. (1975) used the same method for improving old sound
recordings, notably those of Enrico Caruso. The frequency response of early
recording equipment is constant throughout the recording, therefore it is possible
to determine, and then filter out the characteristic metallic sound of the old

recordings.
Similar work has been done on the removal of blurs from video images
(Oppenheim et al. 1968), and the removal of room reverberation from audio

signals (Schafer 1969).

With speech signals, the cepstrum can be used to deconvolve the vocal

tract response from the glottal source (see 3.2.4).

3.4.3 Walsh Transform

The Walsh Transform is based on a set of orthonormal binary functions,
in the same way that the Fourier transform uses orthonormal sinusoidal functions
(K.G. Beauchamp 1975).
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Walsh transforms are generally faster to calculate than Fourier trans-
forms, because logical operations are used instead of multiplications and addi-
tions. Tucker (1977) concludes that there is no advantage in using Walsh trans-
forms to analyse music, because of the strongly sinusoidal nature of musical

signals.

3.5 Conclusion

This chapter presents signal processing techniques currently used for
the estimation of pitch in speech and music. The usefulness of these techniques
is discussed for analysing polyphonic music. The method of spectral estimation

used in this thesis is described in more detail.
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CHAPTER FOUR

Computer Hardware and Software for the Analysis of Music

4.1 Introduction

This chapter describes the software and hardware used in this research
for the automated analysis and transcription of recorded musie. This includes
the analog-to-digital conversion of music (section 4.2), the interactive software
for plotting signals, several signal processing procedures, and original procedures
for automatically determining pitches of notes (section 4.3). The system for
transcribing these notes into standard music notation is described in chapter 6.
The author wrote all the programs mentioned in this chapter, except the UNIX

system software.

Figure 4.1 shows the interface between the computer and the musician.
Music can be entered as a sound recording, or it can be played in on an electronic
keyboard. Output can be heard via an organ or digital-to-analog converter, or

plotted in standard music notation.

4.2 Hardware for Digitizing Music

Conventional audio recording and amplification devices represent sound
as a continuously varying voltage signal. Before this signal can be processed by
a general purpose digital computer, the analog voltage has to be measured and
recorded at successive points in time. This process, termed analog-to-digital
(A/D) conversion, first low-pass filters the analog input, then samples and holds
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Figure 4.1 is the interface between the computer and the musician. Music <c¢an Dbe

input as a 1live performance or as a sound recording via the A/D converter, or 1t

can be played in on an electronic keyboard or via a music notation editor.
Conversely, music can be output as sound via the organ or D/A converter, or plotted

on a graphics terminal.



the instantaneous voltage until the conversion is complete, and finally, stores the
digital value. A/D conversion is controlled by a clock that samples the signal at

a constant rate.

4.2.1 Digitization Errors

Two major types of error produced by A/D conversion are referred to
as aliasing and quantization error.

First, aliasing is caused by the ambiguity of digitizing signals with
frequencies greater than half the sampling frequency. Indeed, there is no way to
distinguish between a signal of frequency f and its alias of frequency (f, — f),
where f, is the sampling frequency. This problem is countered by sampling at
twice the highest frequency of interest, and applying a low-pass filter to the input

signal with cut-off frequency less than f,/2 (the so called Nyquist frequency).

The second type of error results from the quantization of the analog
signal. For example, the A/D converter used for this research maps the voltage
range of plus or minus 10 volts into a 12 bit register. Therefore a single digital
step corresponds to an analog difference of 10/2048 volts (4.88 millivolts), which

maximum
represents a'signal to noise ratio of 74 dB. This compares favourably with the
signal to noise ratio of analog recording techniques, which range from 55 dB for

portable cassette recorders to 80 dB for professional studio recorders. Blesser

(1978) gives a comprehensive examination of digitization.

The sampling rate of 25.6 kHz was used because the significant fre-
quency range of musical signals lies below 10 kHz. 25 kHz was also used by J.A.
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Moorer (1975). The value of 25.6 kHz makes the UNIX block size of 256 words

correspond to 10 milliseconds of signal.

In the final stage of A/D conversion, storage of data was critical. The
data had to be transferred to disk storage on a second computer, because there
was no mass storage device on the computer performing the A/D conversion.
The speed of the data link (9600 baud) between the computers, caused the
A/D conversion to be interrupted when all the memory buffers were filled with
data. This meant that the maximum duration of continuously digitized data
was only one second. To record longer segments it was necessary to replay the
analog recording repeatedly. The A/D conversion was triggered by the first
sampled data that exceeded the recorded noise threshold. Successive segments
of data (1 second in duration) were recorded after each replay. The digitized
data contained discontinuities between the segments, caused by minor variations
in response to the analog trigger, and differences in the analog signal during
successive replays. When a Fourier transform is applied to a time segment

containing a discontinuity, spectral leakage occurs (see 3.3.1).

A high-speed link was later installed between the computers to enable
large segments of data to be transferred continuously. Double buffering was used
on both machines to provide a continuous flow of data, uninterrupted by system

overheads such as initiating direct memory access (DMA) transfers.

4.2.2 Detection and Correction of Discontinuities

The digitized signal is validated to check for discontinuities, and to de-
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termine if the correct recording amplitude was used. If the recording amplitude
is low, the quantization noise can be too great. However, when the voltage of
the signal being converted is too large, signals are peak-clipped at the maximum
recordable values. For example, if the input voltage is 11 volts, one volt above
the maximum, a value corresponding to 10 volts would be recorded. The sam-
pled points at this maximum value are counted, and if they are too numerous,

the piece of music must be re-recorded at a lower amplitude level.

Discontinuities occur when the A/D converter is driven neur the maxi-
mum conversion speed. The data register occasionally gives incorrect readings,
which cause spikes in the sampled data. These errors occurred less than one in
10,000 samples. The recording is smoothed by polynomial interpolation between

the points adjacent to the erroneous samples.

Spikes and discontinuities are detected by calculating the first and sec-
ond order differences between sample values, and determining when the absolute
second order difference exceeds a constant (generally one hundred points or about
500 mV). Second order differences are necessary because first-order differences
do not detect cusps; that is, points where the signal is continuous, but its first

derivative is discontinuous.

4.3 Interactive Software for Audio Signal Analysis

An interactive system is used for studying musical signals, and for
evaluation of signal processing algorithms applied to these data.
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4.3.1 A Description of the Interactive Program

This program interactively computes signal processing functions and
represents them in graphic form on the terminal. It is invoked with a data file
as an argument. After opening files and initializing data, the user is prompted
for commands. The help command gives information on the commands that
are available. There are about 30 commands, and further procedures are easily
compiled and linked to the program.

The program acts on complex floating point data stored in a buffer. In the time domain only
the real part is used, while in the frequency domain both real and imaginary
parts are used. The contents of this buffer can be saved and recalled if different

data segments need to be compared.

Three ways of introducing data to the buffer are: reading from the
data file at a given time, recalling a saved buffer, or using a synthesis routine to
superimpose sine waves, sawtooth waves or pulse waves of given phase, frequency

and amplitude. This synthesis routine is used for calibration and testing.

The size of the buffer is determined by the user. The maximum buffer
size of 4096 corresponds to 160 milliseconds of sound, and is too large to isolate
some musical events. A buffer size of 1024 or 2048, (40 or 80 milliseconds), 1s
usually enough to separate rapidly changing musical events, while maintalning

adequate frequency resolution for isolating harmonics in the spectra.

Data is plotted on a graphics terminal. This is an economical represen-
tation, and is a convenient way for the user to identify the relevant chara cteristics
of the data. Long listings of data may also be printed for detailed examination.
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Voltage can be plotted against time. In the frequency domain, spectra
can be graphed either as log amplitude, amplitude, complex amplitude, or phase,
versus frequency. The signal processing techniques of chapter 3 can be invoked

interactively.

Finally, the harmonic grouping algorithms described in chapter 5 can
be applied and the results plotted. Spectral peaks can be isolated and the
frequencies compared for near integral ratios, to give the most likely fundamental
frequency estimates (Schroeder (1970), Noll (1964), Piszczalski (1979)). Cepstra,
the harmonic summing algorithm, and the spectral extraction method can

also be applied.

4.3.2 Fast Fourier Transform Implementation

Spectral analysis is central to this research. Considering the amount
of processing time spent evaluating the fast Fourier transform (FFT) and its

inverse, some care has been taken to improve this procedure.

The author improved the FFT with pointers to arrays instead of in-
dices. The sine and cosine functions are evaluated in the order required by the
FFT when the program begins. This enables pointers to the sine and cosine
tables to be merely incremented during FFT evaluation. The ordering of these
tables is independent of the value of N, so the tables do not have to be re-
evaluated if N is changed. See Appendix IV for the C source code of the FFT
program used.
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4.4 Software for Automated Pitch Recognition

The interactive system was used to test algorithms, and determine
optimal parameters for segments of musical data. These algorithms were then
applied repeatedly to generate pitch estimates for complete musical pieces. The
time between pitch estimates must be small enough to detect the briefest of
musical events. This is typically 10 to 50 milliseconds.

This system can also be used for simulating the response of the human

cochlea to musical sounds. This is dealt with in chapter 8.
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APPENDIX IV

An In-Place Fast Fourier Transform
# define begin {
# define end }

float co[N],si[N];
float xr[N],xi[N];

/*
¥ compute FFT of xr.xi
*
/
FFT(n,nu)
int n,nu;
begin
int i;
for (i=0;i<n;i++)
xifi) = -xili] ;
IFFT(n,nu);
for (1I=0;1<n;i++)
begin
xr[i] = xr[i]/n ;
xili] = -xili]/n;
end
end
*
¥ find the nu bit reverse of k
*
/
int BitReverse(k,nu)
int k,nu;
begin
int i,k1,k2 kk;
kl =k;
kk = 0;
for (i=1;i<=nu;i++)
begin
k2 =kl>>1;
kk = (kk< <1) - (k2< <1) + kI;
kl =k2:
end
return(kk);
end

/* end BitReverse */

53



/*
% Set up sine, cosine tables.
X Entries are sorted in the order required for IFFT().
¥ i.e. 0, pi/2, pi/4, 3pi/4, pi/8, etc.
*
/
SinCosTable(n,nu)
int n,nu;
begin
int i;
float arg,p;
p = 3.1415926 / n ;
for (i=0;i<n;i+= 2)
begin
arg = p * BitReverse(i,nu) ;
coli+1] = -(si[i] = sin(arg)) ;
arg = p * BitReverse((i+1),nu) ;
coli] = si[i+1] = sin(arg) ;
end
end

IFFT(n,nu)
/* This procedure computes the Inverse Fast Fourier
** Transform of n points, n is 2 to the power of nu;
** xr, xi are the real and imaginary parts
** respectively to be transformed
%
int n,nu;
begin
float tr ti,*e, *s,*r1,*r2,*il,*i2;
int 1,j,k,m,n2;

n2 = n>>1;
for (m=0;m<nu;m++)
begin

C ==¢0;

s = si;

r2 = n2 + (rl = xr);
i2 = n2 + (i1 = xi);
for (i=0;i<n2;i++)

begin
tr = *12;
ti="%2

*124++ = *rl - tr;

*1244 = *il - ti;

*r1++ +=tr;

*l++ += ti;
end
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k =1<<m;
for (j=1)<k;j++)

begin
rl +=n2;
11 += n2;
r2 += n2;
12 += n2;
c++;
s+,
for (i=0;i<n2;i++)
begin
tr = (*r2)*(*c)+(*12)*(*s);
ti = (42 (- (12" (*s);
*124++ = (*rl) - tr;
*i24++ = (*i1) - ti;
*ri4++ +=tr;
¥il++ += ti;
end
end
n2 >>=1;
end
rl = xr;
= iy
for (i=0;i<n;i++)
begin
if ((j=BitReverse(i,nu)) > i)
begin
r2 = &xrfj);
12 = &xilj);

tr = *r2 ; ti = *i2;
*19 = *l"l; *12 — *11;
*rl = tr ; ¥l = ti;
end
rl-+-t;
il4++;
end

end /* end IFFT */
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CHAPTER FIVE

Algorithms for the Estimation of Pitch in Polyphonic Music

5.1 Introduction

This chapter describes the algorithms implemented by the author for
the separation of simultaneously sounding musical tones. These algorithms esti-
mate instantaneous pitch. Chapter 6 describes the grouping of these estimates
in time to determine the musical notes. Chapter 7 compares these algorithms
by applying them to musical examples.

Four basic algorithms are considered for the estimation of pitches of

simultaneous tones. These are:
(1) Moorer’s comb and heterodyne filtering method,
(2) cepstral analysis,
(3) the harmonic frequency ratio algorithm, and
(4) the harmonic summing algorithm.

All these algorithms act in the frequency domain to group the har-
monics of the tones. Moorer's method traces the time varying frequency and
amplitude of the harmonics, which are then grouped to identify tones. The
cepstrum (developed for seismic signal processing), and the harmonic ratio al-
gorithm have limited success at distinguishing polyphonic tones. The fourth
algorithm, developed by the author, will be treated here in greater detail. Sec-
tion 5.6 introduces some original heuristics and a spectral extraction procedure
to improve the accuracy of estimation of the above four algorithms.
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All these algorithms work well for monophonic music, with most of the
incorrect estimates occurring an octave above or below the correct ones. For
polyphonic music, the number of harmonically related errors increases dramat-

ically with the number of parts.

Efficiency was not a consideration in the design of these algorithms; the
main objective was to discover techniques that worked. The double precision
arithmetic (56 bit mantissa) and the spectral resolution (12 Hz per DFT point)

were sufficient to prevent round-off errors.

The estimates determined by the algorithms have three attributes: a
pitch, a likelihood, and a strength. Pitch is 12log,(f/55) where f is the fre-
quency; that is, the number of semitones above A of frequency 55 Hz. The
likelihood is a measure of the probability that the pitch of the estimate corre-
sponds to the pitch of a tone in the signal, and one estimate is said to be more
likely than another if its likelihood is greater. Strength is a measure of the dB
level of the constituent harmonics, and one estimate is said to be stronger than

another if its strength is greater.

5.2 James A. Moorer’s Method

The method used by J.A. Moorer (1975) finds the period of the signal
using an average magnitude difference function (see section 3.2.3). A heterodyne
filter is used to extract the harmonic components for this fundamental period.
The harmonic components are band-pass filtered and then comb-filtered to give
the exact harmonic frequencies. These harmonic components are traced over
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time, and a function based on amplitude envelope and frequency variation is used

to select the best traces. These are then grouped to determine the estimates.

Spectral leakage of the heterodyne filter (see section 3.3.1) caused many
of the spurious traces that Moorer had to remove later. This also masked some
low amplitude harmonics. Moorer states that many chords (especially discords)
have ambiguous periodicity. That is, there is no frequency that is a common
factor of all the harmonic frequencies of the simultaneous tones. Therefore for
such chords, the heterodyne filter tuned to any period will fail to detect some
harmonics. For this reason the spectral analysis method of section 3.3 is used

for the other algorithms described in this chapter.
Moorer applies the following constraints on the music he analyzes:
(a) Only two part music is considered.

(b) The intervals between parts range from a minor third to a minor sev-
enth. This avoids the problem, mentioned earlier, of discriminating

simultaneous tones an octave or more apart.

(¢) The steady state portion of the tones must be sustained for at least 80

milliseconds.
(d) No trills or vibrato are allowed.

(e) The lowest three partials must be present. Harmonics are rejected as
candidates for a fundamental if there is another spectral peak at one
half or one third of its frequency. This restricts the range of intervals
to less than one octave.
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The music analyzed in this thesis has none of these constraints. Note
durations as small as 30 milliseconds can be detected, and up to 5 simultaneous

tones have been correctly identified (see section 5.5).

5.3 Cepstral Analysis

The spectrum (or log power spectrum) of a harmonically dense tone
is a series of equidistant peaks. Applying a Fourier transform to this spectrum
should therefore produce a peak corresponding to the frequency difference be-
tween peaks. In this way the cepstrum (being the inverse Fourier transform
of the log power spectrum) can be used to determine pitch. For simultaneous
tones the equidistant spectral peaks of the tones are superimposed, therefore
the cepstrum will produce peaks for all the fundamentals present. Many other
pitch estimates are also produced which are harmonically related to the tones
(especially at octaves). The autocorrelation function can be used to discrimi-
nate polyphonic tones, for the same reasons, as it is equivalent to the inverse
Fourier transform of the power spectrum. Section 7.2 shows examples of the

autocorrelation and cepstral analysis of music signals.

5.4 Frequency Ratios of Harmonics

The frequencies of the partials of a tone are close to multiples of the
fundamental frequency, even for tones with vibrato or tremolo (frequency or am-
plitude variation). When several tones are played simultaneously, the frequency
ratios are closer to small integer ratios for harmonics within a tone, than for
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harmonics from different tones.

Piszezalski (1979) exploited this to determine the pitch content
of monophonic music (see section 3.4.1). They also suggested the feasibility of
applying it to polyphonic music, though no successful results were reported.
Here follows a description of the method of Piszezalski as implemented by the
author.

To begin, the most significant spectral peaks are determined from the
spectrum. Rather than use a fixed amplitude threshold to select spectral peaks,
the local average for 10 DFT points on either side of peaks is subtracted from the
spectrum. This allows low intensity isolated peaks to be detected while rejecting
the sidelobes of high intensity peaks.

Then for every combination of two such peaks, common factor frequen-
cies (CFFs) are stored, ordered, and clustered to determine the fundamental
frequency estimates. For every pair of spectral peaks with frequencies fi, fo,
and integers 1, 7, the tolerance function, defined as |if; — jf2|/(fi + f2) is used
to determine whether the peaks belong to the same tone or to different tones. If
this tolerance function has a magnitude less than a fixed tolerance, then a CFF
is produced with frequency: f = (f1/25 + f2/21).

The frequencies f/2,f/3 etc. are also used as CFFs. The initial
strength of a CFF is the sum of the decibel levels of the harmonic peaks at
fi and f,. This biases the CFFs toward the higher intensity harmonics. The
CFFs with frequencies f/n, where n is a positive integer, are weighted by (0.5)™,
because the sequence {f/n} clusters together as n increases. This decreases the
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strength of the lower frequency CFFs to compensate for the larger number of
CFFs in the low frequency clustered groups.

After sorting all the CFFs in ascending order, they are grouped in the
following way:

- consecutive frequencies differing by more than a fixed tolerance are
assigned to different groups;

- the frequency of a group is taken as the average (weighted by CFF
strengths) of all the frequencies for that group, and the likelihood of a
group is the sum of all the estimate strengths for that group;

- the frequencies of the groups with highest likelihood estimates are
rounded to a twelve-tone-per-octave logarithmic pitch and stored.

As an example, the harmonic ratio algorithm is here applied to the
same woodwind Trio chord given in figure 2.10 (G minor chord with fundamental
pitches of 22, 41, and 49). The frequencies and log amplitudes of the 13 strongest

spectral peaks in the range, 50 to 5,000 Hz are:

Frequency(Hz)  Log Amplitude (dB)

1: 901 73

2: 1152 70

3: 1370 40

4: 1531 37

o: 1730 55

6: 1795 58

7. 2053 38

8: 2300 38

10: 2882 49
11: 3457 43
12 3592 41
13: 3842 25
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The second and fifth spectral peaks are due to the second and third
harmonics of the tone D with a fundamental frequency of 576 Hz. If f; =
1152, fo = 1730, = 3 and j = 2, then the tolerance function, |if; —jf2|/(f1 +

(compared to 1)
f2) equals 0.0014, which is small enough‘to accept f; and fo as the frequencies
of the second and third harmonics of a tone. This tolerance function typically

ranges from 0 to 10. The strength of this CFF is 125 (the sum of the dB levels:

70 and 55) and the frequency is 576 Hz (the average of f;/j and f3/%).

This frequency comparison is applied to every pair of spectral peaks
and the resulting CFFs are clustered to obtain the following list of fundamental

estimates:

tone  pitch  likelihood
C 15 194
G 22 434
Bb 25 113
c 27 189
D 29 353
D 30 150
G 34 655
Bb 37 307
D 41 801
G 46 203
Bb 49 639

Three of the four most likely estimates of the Trio chord are correct
(pitches 22, 41, 49), but the incorrect estimate (pitch 34), an octave above the
correct estimate (pitch 22), has a higher likelihood. The use of heuristic weight-
ing and spectral extraction overcome this (see 5.6).
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5.5 Harmonic Summing Algorithm

The harmonic summing algorithm evaluates the function:

h
Hu(f) = ) _ 10log,o S(if).
i=0

where S(f) is the instantaneous power spectrum, f the frequency and h the
number of harmonics being considered (h is assumed constant). Most tones are
harmonically dense, some having strong formants, or low amplitude fundamen-
tals. This function enhances the detection of the fundamental frequency of such
tones.

The highest peaks are quadratically interpolated to determine the fre-
quencies and hence the pitches of the estimates. The strength of an estimate is

the average decibel level of the harmonic peaks. That is,

Hh(f)/h$

where f is the fundamental frequency of the estimate. Simultaneous tones dif-
fering in intensity by as much as 30 dB can still be distinguished from each
other.

This function H can correctly identify simultaneous tones even when
only a few harmonics are present. The most spectacular result is the correct
identification of a 5 tone pianoforte chord consisting of Bb, Bb, F, Bb and D in
ascending order, which is the last chord of figure 7.32. Taking the number of
harmonics h as 8, the 5 estimates of greatest strength corresponded exactly to
the tones that are present. It is, however, not obvious from the pitch estimates
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whether 4, 5, or 6 notes are being played (see figure 5.1). The number of simul-
taneous tones varies even for music with a fixed number of parts, because some
parts can rest while others sound. Therefore the number of simultaneous tones
cannot be assumed as a fixed parameter. A more advanced method such as that
in 5.6 needs to be applied.

Most erroneous pitch estimates are harmonically related to the tones
being played. For example, if 2 tones with fundamental frequencies 200 Hz and
300 Hz are played simultaneously with harmonic frequencies 200, 400, 600, ...
and 300, 600, 900, ..., then the combined spectrum appears to contain a tone
with fundamental frequency 100 Hz, but missing the fundamental, 5th, 7th, and
11th harmonics ete. Also the incorrect estimate with harmonic frequencies 600,
1200, 1800 .. is reinforced by both tones. When three or more tones are playing,
the number of harmonically related errors increases dramatically. Incorrect
estimates at an octave above and below the played tones are the major problem.

Moorer avoided the problem of harmonically related errors by requiring
that the fundamental of each tone be present. This criteria is not adopted here
because of possible interference with low frequency peaks such as those caused
by wow or flutter. Besides, the human ear can detect tones with lower partials
absent (Schouten et al. 1962). Furthermore, many of the low pitched tones
encountered in this research have strongly attenuated lower partials.

These harmonically related erroneous pitch estimates are generally not
as strong as the estimates for the correct tones. A notable exception is the

instance of an inverted major or dominant seventh chord. Consider the chord
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Figure 5.1 presents the out-put of the harmonic summing algorithm for a chord with

five notes. The strongest pitch estimates corresponded exactly to the notes that

were present. (B-flat, B-flat, F, B-flat & D)



with fundamentals 300, 400, 700, and 1000 Hz,

An estimate with fundamental frequency 100 Hz is missing the Ist,
ond. 5th and 11th harmonics, and an estimate at 200 Hz is only missing the
fundamental, 11th, 13th etc., and has harmonics 400, 600, 800, 1000, 1200,
1400, 1600, 1800, 2000, 2400 i.e. all harmonics from 2nd to 10th. Therefore the

estimate at 200 Hz appears a likely candidate when in fact it is absent.

Figure 5.2 compares the spectra of this second inversion chord trans-
posed up a minor tenth (15 semitones). The chord is from the Menuet by J.S.
Bach, and played on pianoforte. The four correct estimates (D - pitch 41, G -
pitch 35, Bb - pitch 25, and F - pitch 20) and the incorrect estimate (Bb - pitch
13) are shown above the spectrum. The dots on the estimates give the point
where the exact harmonic should be, while the vertical lines show the nearest
spectral peak, corresponding to the respective harmonic. Notice that the 2nd
to 10th partials of the incorrect estimate (pitch 13) all correspond to spectral

peaks.

5.6 Spectral Extraction and Pitch Determining Heuristics

The algorithms described in sections 5.2 to 5.5 can be improved by two
methods. One method is to apply heuristics to discriminate between correct and
harmonically related incorrect estimates. The other is to iteratively calculate
the likelihoods of estimates and attenuate the harmonics of the most likely es-
timates. This second method can determine the number of tones being played,

because after all the harmonics of the correct estimates have heen extracted, the
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Figure 5.2 compares the spectra of four correct estimates (D p4l, G p35, A#p25 and
F p20) and an incorrect estimate (A#pl3) above the original spectrum from the
Menuet.



residual spectrum provides no further estimates of significant strength. The best
results reported in this thesis use both these methods applied with the harmonic
summing algorithm of section 5.5.

A set of weightings for the heuristic functions was found empirically to
work well on several polyphonic pieces. These weightings were chosen and are
held constant throughout the analysis of a piece of music. The weightings and

error rates are considered in chapters 7 and 8.

5.6.1 Heuristics For Finding the Best Estimate
These heuristics help to distinguish between correct estimates and har-
monically related erroneous ones.

The five heuristic functions are:

H1:

odds minus evens :- If the sum of the log amplitudes of the even harmon-
ics exceeds that of the odd harmonics, a fraction of this difference is subtracted
from the likelihood of the estimate.

The reason for this is, if the even harmonics are significantly stronger
than the odd harmonics, then it is likely that there is a tone an octave above

the current estimate but not at the current estimate.

H2:

octave, twelfth, 2 octaves below :- If there is an estimate with non-zero
likelihood an octave, a twelfth or two octaves below another estimate, a fraction
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of that likelihood is subtracted from the likelihood of the higher pitch estimate.

This compensates for the harmonic summing algorithm producing peaks
at multiples of the fundamental frequency of the correct estimates. For a single
tone, the sum of the even harmonics of a tone will produce a strong estimate as
well as the sum of all the harmonics. Two tones at an octave apart can only be
detected if the estimate of higher pitch is significantly stronger than the estimate
of lower pitch. It was not necessary to consider estimates on the harmonic series
more than two octaves away, because their contribution to the higher pitched

estimates was insignificant.

H3:

centre of gravity - A fraction of the difference between the centre of
gravity (amplitude weighted mean frequency) of the harmonic peaks and half the
number of harmonics considered (median frequency) is added to the likelihood

of the estimate.

This biases the estimation in favour of the tones of higher pitch, where
there is less interference from the harmonics of the other tones that are present.
This also helps to distinguish between correct and incorrect estimates. The latter

rarely have monotonically decreasing harmonic amplitudes.

H4:

harmonic amplitude increments :- A fraction of the sum of all positive
steps in log amplitude from one harmonic to the next is subtracted from the
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likelihood.

This heuristic function is zero if the harmonic amplitudes are mono-
tonically decreasing, and positive otherwise. An incorrect estimate would result
from the harmonics of harmonically related tones, but with some harmonics
missing, and should therefore have a series of amplitudes that is not monoton-
ically decreasing. This therefore biases the estimation in favour of the correct

estimate, and also the higher pitch estimates.

For most tones, the amplitude decreases as the harmonic number in-

creases. Three exceptions are:
(a) clarinet, or stopped organ pipes where the even harmonics are absent,

(b) low pitched sounds (piano, bassoon, etc.) where fundamental and lower
harmonics are attenuated and,

(¢) stringed or woodwind instruments where formants or resonances cause
variations in spectra. The music considered in this thesis includes piano

and bassoon tones, testing the generality of the algorithms.

H5:

variance of harmonic frequencies - A fraction of the variance (mean
squared difference) of the frequencies of partials from the corresponding ideal
harmonic frequencies is subtracted from the likelihood. The ideal harmonic
frequencies refer to exact multiples of the fundamental frequency.

The frequencies of partials of a tone have near integral ratios. An

incorrect estimate contains several harmonics from harmonically related tones,
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which would lack the synchrony of the harmonics of a single tone, and should
therefore have a larger variance. Most pipe or stringed instruments exhibit phase
locked partials, and the relative phases of the harmonics in the steady-state is
stable even in the presence of amplitude or frequency variation (Beauchamp
1974, Fletcher 1978). This is not true of multiple stringed instruments like the

piano.

Table 5.1 shows the differences between partial frequencies and the
corresponding harmonic frequencies, for some estimates from the woodwind Trio
chord shown in figure 2.10. The partial frequencies are found by climbing the
spectral peak from the harmonic frequency to the maximum point. The right
hand column (sigma) gives the standard deviation of the differences. The three
correct estimates; G of pitch 22, D of pitch 41, and Bb of pitch 49, have the
smallest standard deviations.

Table 5.1

Difference Between Harmonic and Partial Frequencies

pitch 1 2 3 4 5 6 7 8 sigma
G 10 450 055 0.00 064 -932 0.62 0.00 040 4.65
G 22 -1.50 -1.33 -1.35 -1.81 0.15 0.51 421 -0.14 1.97
D 29 17.14 -4.23 1097 -143 -097 -1.14 383 -1.94 7.99
G 34 327 -423 041 -082 566 -027 042 220 3.08
Bb 37 2385 1.14 7.19 -073 -279 -1.44 -152 -0.53 9.46
D 41 -5.06 0.53 1.11 -048 077 053 -0.22 045 2.01
G 46 -10.10 -3.27 -2.17 276 -060 -093 174 441 4.59
Bb 49 367 -007 -149 034 159 147 -227 083 1.93

Taking a weighted sum of these heuristic functions is a simplistic method

71



for deriving the likelihoods of estimates. The five heuristics used here are by
no means the only heuristics that could be applied. However, the success of
this method justifies the simplification. These heuristics could also be applied
to other estimation techniques, such as autocorrelation.

The heuristics in this section will henceforth be referred to as H1, H2,

H3, H4, and H5.

5.8.2 Iterative Extraction of Tones From Spectra

Each estimate has a measure of likelihood, based on the strength of the
estimate, and a linear combination of 5 weighting functions. These weighting
functions help to differentiate between correct and incorrect estimates.

The algorithm is as follows:

for every new time
begin
determine the log spectrum ;
compute the harmonic sum ;
while there remains a significant estimate
begin
calculate the heuristics and likelihoods ;
with the most likely estimate

do

record strength and pitch of the estimate ;
attenuate the harmonics in the log spectrum;
end ;
compute the harmonic sum of the residual spectrum;
end ;
end ;

An estimate with strength greater than 40 dB is considered significant.
This was found to work well for the music considered here, because of the small
dynamic range. To generalize this for music with a wide dynamic range, a
better criteria would be to consider only estimates within 30 dB of the strongest
estimate at that time. This is comparable to the human auditory masking of

simultaneous tones. All points in a spectral peak are attenuated equally to give
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an unaltered frequency when quadratically interpolated on the next iteration.
No peak is attenuated below the ambient noise level.

Choosing the amount of attenuation to be applied to the harmonics of
the most likely estimate requires a compromise. If the attenuation is too small,
peaks that are shared by more than one tone are not changed to the extent of
distorting the spectra of the other tones, but more iterations are required before
a new pitch is found. Processing time is reduced if a higher level of attenuation
is used, but incorrect estimates are selected more often.

The example of figure 2.10 is used here to illustrate the extraction
procedure. This figure gives the result of the harmonic summing algorithm
applied to a woodwind Trio chord. The bassoon is playing G 22 (the tone
G with pitch 22), and the oboes are playing D 41 and Bb 49. The incorrect
estimates D 29 and Bb 37 (an octave below the correct tones) can be eliminated
by applying H1 (see 5.6.1), because their even harmonics have greater intensity
than their odd harmonics. These incorrect estimates are due to the presence
of the tones an octave above. The estimate G 34, an octave above the correct
tone G 22, cannot be eliminated by comparison of likelihoods. This estimate is
stronger than would be expected from the bassoon alone, because the 2nd, 4th
and 6th harmonics of the D 41 also contribute.

Tables 5.2a to 5.2e give pitch estimates for the example of figure 2.10
for each iteration of the extraction procedure.

The pitch, fundamental frequency, dB level of the first 8 harmonics,

strength and likelihood of each estimate are given. The strength is the result
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Table 5.2

Harmonlic levels before extraction of most likely estimate (denoted *)
Table 5.2a - first iteration

Pitch Freq(Hz) 1 2 3 4 5 6 T 8 strength Likelihood
22 191 56 64 71 51 30 70 30 37 51 35
D29 289 21 71 43 69 27 55 21 7 41 0
G 34 383 64 51 70 37 15 37 57 7 42 21
Bb 37 449 41 73 30 58 20 54 13 40 41 0
D 41 575 71 70 52 37 49 43 25 25 46 * 93
G 46 769 51 37 37T 18 25 26 20 8 27 20
Bb 49 897 | 73 58 54 41 25 20 19 19 38 74
Table 5.2b - second iteration
Pitch Freq(Hz) 1 2 3 4 5 6 7 8 strength Likelihood
G 22 191 56 64 59 51 30 58 30 37 48 36
D 29 289 21 59 43 58 27 45 21 22 37 0
G 34 383 64 51 58 37 15 31 57 7 40 21
Bb 37 449 41 73 30 58 20 54 13 40 41 0
C 39 513 25 38 37 38 24 21 40 17 30 16
D 41 575 59 58 45 31 41 36 21 21 39 53
G 46 769 51 37 31 18 25 21 20 8 26 13
Bb 49 897 73 58 54 41 25 20 19 19 38 *78
Table 5.2¢ - third iteration
Pitch Freq(Hz) 1 2 3 4 5 6 7 8 strength Likelihood
G 22 191 56 64 59 51 30 58 30 37 48 41
D 29 289 21 59 41 58 29 45 21 22 37 0
G 34 383 64 51 58 37 15 31 47 18 40 22
Bb 37 450 41 60 33 46 14 45 13 34 35 0
C 39 514 25 38 37 36 24 21 34 17 29 21
D 41 575 59 58 45 31 41 36 21 21 40 * 54
G 46 769 51 37 31 18 25 21 16 8 25 7
Bb 49 897 60 48 45 34 21 16 16 16 32 40
Table 5.2d - fourth iteration
Pitch Freq(Hz) 1 2 3 4 5 6 T 8 strength Likelihood
G 22 191 56 64 44 51 30 42 30 37 144 *39
D 29 288 21 44 41 42 29 38 21 21 32 0
G 34 383 64 51 42 37 15 31 47 18 38 21
Bb 37 449 41 50 30 40 20 38 13 29 32 0
C 39 514 25 38 37 36 24 21 29 17 28 22
D 41 570 44 42 38 21 24 25 21 2 29 33
G 46 769 42 37 21 18 21 20 14 8 22 6
Bb 49 898 50 40 38 29 21 14 15 14 27 18 |
Table 5.2e - fifth iteration
Pitch Freq(Hz) 1 2 3 4 5 6 7 8 strength Likelihood
G 22 190 47 53 41 46 30 40 26 31 39 20
C 27 256 29 925 42 38 23 32 40 38 33 4
D29 288 21 41 41 40 29 38 21 21 31 0
F 32 341 32 15 38 34 36 38 18 41 31 6
G 34 380 53 46 40 31 18 20 35 17 32 15
Bb 37 449 41 50 30 40 20 38 13 29 32 0
C 39 514 25 38 32 36 24 21 29 17 27 24
D 41 570 41 40 36 20 24 25 21 20 28 *33
Bb 49 898 50 40 38 29 21 14 15 14 27 18
Bb 49 008 | 50 24 42 31 22 21 18 20 28 21 |

74



of the harmonic summing algorithm, and the likelihood is the strength plus the
weighted sum of the heuristics described in section 5.6.1. The heuristic weight-

ings are 0.600, 0.500, -1.000, 1.000, 0.100 for H1, H2, H3, H4, H5 respectively.

At each iteration the harmonics of the most likely estimate (indicated
by * in Table 5.2) are attenuated by 15 dB. The likelihoods are then re-evaluated.
When an estimate is extracted it is selected as one of the tones present. The
iterative extraction is repeated until another estimate is found (C 39), but its
strength (26 dB) is too small to support the hypothesis of a fourth tone with

this pitch.

Although the incorrect estimate, D 34, is significant in the first itera-
tion (Table 5.2a), it is not selected by the iterative extraction procedure. The
extraction procedure is one of the major discoveries of this work, providing a

marked improvement in the determination of simultaneous tones.

5.6.3 Coincidence of Harmonics

A major problem is the coincidence of the harmonics of different tones.
For example, for two tones at a musical fifth apart, the second harmonic of the
upper tone is coincident with the third harmonic of the lower tone. Spectral
peaks are broadened because of the finite sampling time. The effective width
(6dB attenuation bandwidth) of peaks is typically 30 Hz, and is independent of
frequency. If the frequencies or amplitudes vary within the time window, the

peak width is even greater.

If two overlapping peaks differ in phase by 180 degrees, they cancel.
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This is, however, a rare event. Assume that the phase of the harmonics, and
their log amplitudes, are random variables with constant probability density
functions. In that case, for two independent overlapping peaks to cancel each
other to the extent of leaving a hole at least 20 dB below the highest peak, their
phases must differ by between 174 to 186 degrees, and their amplitudes must
differ by less than 1 dB. The likelihood of these peaks completely cancelling each

other is less than 0.001, assuming a 30 dB dynamic range.

Overlapping harmonics that do not cancel still cause problems. The
larger peaks distort the spectrum of a tone with lesser peaks. Superimposed
peaks can combine to form a single peak that is removed as much as 30 Hz from
the ideal harmonic frequencies. This makes the variance heuristic too large and
can therefore reject the correct estimate. When attenuating peaks, if one side of
the peak has a phase different from the other side, then it is assumed that two
nearby peaks are present, and only half of the peak is attenuated on the side
nearest the ideal harmonic frequency. This method was applied to the spectral

attenuation, but the resulting improvement was insignificant.

5.7 Deconvolution of Reverberation

Reverberation can be a major problem in the analysis of musical tones.

Note durations are prolonged by reverberation, causing overlap. The effect is

more serious with short tones. The resonant characteristics of the instruments
et al.

and the recording room also distort the spectra. Stockham' (1975), and Schafer

(1969) showed that recorded signals can be modelled as the convolution of the
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source signal and the impulse response of the room or instrument reverberation.
This means that in the frequency domain the reverberation frequency response
is multiplied with the spectrum of the source signal. In the log spectrum the
signal and reverberation are additive, and if enough is known about them they
can be separated (deconvolved). The room and recording reverberation is nearly
constant throughout a piece of music, but the resonances of different instruments

are only present when those instruments are playing.

In this work an adaptive deconvolution method is applied to spectra
before pitch extraction. A decaying average of previous spectra is used to at-
tenuate the current spectrum. The parameter controlling this is the half hfe
of the decaying average of previous spectra used to attenuate the current spec-
trum. Unlike Stockham’s work, where the recording reverberation is assumed
to be constant, this method can adapt to the changing reverberation of the in-
struments that are present. An interesting bonus of this method is that for the
bassoon, formants are attenuated over a series of tones, enhancing pitch de-
tection. For the piano, tones sustained by reverberation are attenuated, which

helps to differentiate tones of shorter duration.

5.8 Conclusion

Several low-level techniques applied to spectra are considered for dis-
criminating simultaneous tones. Some heuristic functions are presented to im-
prove the discrimination, and a spectral extraction procedure is described which
iteratively attenuates the spectral harmonics of the most likely estimates, thereby

avoiding many harmonically related errors.
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CHAPTER SIX

Algorithms for the Analysis and Plotting of Music

8.1 Introduction

This chapter describes the algorithms for grouping pitch estimates (re-
sulting from the algorithms of chapter 5), determining the notes, and plotting
the music. Music can be displayed on the system either as a pitch profile (section

6.2), or as standard music notation.

The automatic plotting of music notation is a non-trivial problem. De-
tails of other systems for music printing can be found in Kassler (1977), Smith
(1973), Tucker (1977), Boker-Heil (1972), and Byrd (1974). All these systems
are aids to musical typesetting and require substantial human intervention to
determine the musical symbols and to position them. The music plotting soft-
ware described here was developed by the author to provide a rapidly produced,
and easily read representation of musical data. Music notation is plotted au-
tomatically from the pitch estimate data. It was not intended to produce high
quality output suitable for printing. The work in this thesis considers the issues
of automatic determination of key and tempo, and the horizontal and vertical
positioning of notes, bar-lines, and accidentals, but further research must be

done before fully automated music printing can be realized.

The music shown in the figures of this thesis is produced automatically
from analysed sound and is not post-edited. Plotting is controlled by a set of

run-time parameters.



6.2 The Pitch Profile

The pitch profile consists of notes plotted on horizontal lines. These
lines represent equally tempered semitones spanning five octaves, and centred
at Eb above middle C. This corresponds to a fundamental frequency range of
60Hz to 1.7kHz. The vertical width of the line is a measure of the strength or
loudness of the note, and the horizontal position and length give the time of
occurrence and duration respectively of the note. The pitch profile is the most

direct representation of pitch estimates.

6.3 An Overview of the Music Notation Plotting Programs

Plotting standard music notation is more involved. Pitch estimates
must first be grouped into notes as described in section 6.5. The times and
durations of these notes must then be fitted to the correct musical durations
(section 6.6). The key (tonality) must also be determined for plotting accidentals

and key signatures.

Two programs are used. One is tailored to music in which a fixed num-
ber of instruments are either playing or resting, e.g. the Brandenburg woodwind
Trio. This is called the fixed part analysis. The other more general program is
for music where the number of parts varies or is not known in advance, (e.g. for
piano). Here the plotting of too many rests would be a hindrance, not a help,

in reading the music. This is called the general part analysis.
Optional run-time parameters include:

- the starting time and finishing time of the music to be plotted,
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a scale factor for the plotting dimensions,

the minimum duration of notes to be plotted,

the minimum strength of pitch estimates that are considered,

the tempo,

the maximum number of parts,

and a flag for producing detailed information about the analysis.
Music can be entered into these plotting programs via an electronic
organ keyboard, and data can be automatically played on the organ. Input
from the organ already has the information on the starting and finishing times
of the tones. The tone starts when a key on the keyboard is depressed and ends
when it is released. Music entered via the organ does not require the grouping
procedures described in section 6.5.

The tempo (or number of crotchets per minute) is determined (see
section 6.6) and the times and durations of all notes (in milliseconds) are scaled
to the equivalent musical durations. Finally, the notes are allocated in order
of pitch to the different parts (bass, tenor, alto, or soprano), and the music is
plotted.

Musical data are represented internally as a structure called an Event,
which has three attributes: the Time at which the Event begins, the Duration of
the Event and the Pitch (being the number of semitones above the note A with
fundamental frequency 55 Hz). An Event with a negative Duration represents the
end of an Event stream, while a negative Pitch denotes a rest with an associated
Time and Duration.
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6.4 Deleted
6.5 Grouping the Pitch Estimates

Pitch estimates have three attributes: a pitch, a time of occurrence
and a strength (or measure of loudness).

Pitch estimates are grouped together in time by leaky-bucket integra-
tors; one for each pitch. For each point in time and for every estimate at that
time, the level in the bucket is increased, if the strength of the estimate is large
enough, otherwise it is decreased. When a bucket is full it overflows and can be
filled no more. The onset or beginning of a tone is the time at which an empty
bucket begins to refill. The finish time of a tone is the time at which a bucket is
completely emptied, minus the time taken to empty a full bucket. The duration
of a note is the finish time minus the onset time.

Sporadic pitch estimates will only partly fill the bucket, which will soon
empty, so the corresponding duration will be insignificant. A strong tone may
be masked for a short time by the onset or vibrato of another tone, or by noise.
During this time the bucket will partially empty but will be replenished when
the masking ceases. This helps to correctly identify the single note, instead of
two consecutive notes.

The time for the bucket to freely empty, is typically 40 to 100 mil-
liseconds. The minimum strength is set at 40 dB below the maximum recorded
amplitude to reject any estimates caused by noise or signal distortion.

An alternative approach is to set the onset time to the time when the
bucket is first full, and the finish time to when it completely empties. This means
that the note duration is smaller, if the bucket level rises slowly. This approach
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is adopted when the number of musical parts is known (fixed part analysis).
On filling a bucket, a new note is opened (i.e. created) for that part, and the
previous note closed and recorded, provided its duration is large enough. If the
bucket of the current note for any part empties, then that note is closed and a
rest is opened. The part to which a note belongs is determined from the pitch
ordering of all the notes that are currently sounding. The note with the highest
pitch is assigned to the highest part. If some of the other parts are resting, then
the note is assigned to the part which previously had the pitch nearest to the
pitch of the current note. Rests are treated in the same way as notes. They
require the same minimum duration, and are sorted and aligned with the other

notes.

This process of grouping the pitch estimates into notes is similar to

low-pass filtering the output for each pitch.

6.5.1 Detection of Rapidly Changing Note Sequences

For the music considered in this thesis, most passages of rapidly chang-
ing notes proceed by small musical intervals; generally a single step of one or
two semitones. To incorporate this, and to reject sporadic estimates far re-
moved from the expected path of the various parts, the following heuristics are
included. Where the number of parts is known (fixed part analysis), the mini-
mum duration required to accept the previous note is correspondingly increased,
if the current candidate for a note is more than 2 semitones from the previous
pitch for that part. For example, in the Trio, if the oboes moved by 1,2,3,4,5 or
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more semitones, then the preceding note had to be at least 60,60,100,140 or 180
milliseconds in duration respectively to be accepted. This allows the detailed ex-
plication of trills and other ornaments without causing numerous sporadic errors

at other times in the music.

Where the number of parts is not known (general part analysis), notes
that are 1 or 2 semitones removed from the strongest estimate at any time are
forcibly closed at the time of filling of the bucket of the strongest estimate. This
masks any weaker estimates within two semitones of this strongest estimate. For
example, in the Piano Partita (Figure 7.24), a common mordent is Bb, C, Bb,
A, then Bb. The three Bb notes appear to merge into one, because each Bb is
sustained until the hammer re-hits the string. Therefore without this masking,
only a single Bb tone would be detected instead of three with the C and A

interleaved.

6.6 Determination and Scaling of Tempo

Tempo (the number of crotchets per minute) can be given as a pa-
rameter to the plotting program, or determined automatically by one of two

methods.

The first method used here is to sample the local amplitude at regular
time intervals (typically 10 msec to 100 msec), and compute the spectrum of
this set of values. Local amplitude refers to the average amplitude over a small
interval (typically 1 millisecond). The largest peak in the range 0.3 to 2 Hz is
taken as the tempo. Then by looking at the spectrum at one half, one third, and
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one quarter of this frequency, the beat (2/4, 3/4 or 4/4 time) can be determined.
This method gave a tempo of 119 crotchets per minute, and a beat of 3/4 time

for the Trio example in section 7.4.4.

The second method, developed by Harris (1982), finds the most frequent
inter-onset time. The histogram of the difference in starting time of the notes is

maximal for the tempo (see table 7.1).

Once the tempo is determined, the times and durations of the notes
are scaled to match the internal representation of duration. The beat is used
for placement of bar lines and time signatures. This scaling works well for short

segments of music without tempo variation or pauses.

Internally the duration of a crotchet is represented by 24, so that com-
pound time or triplets can be accommodated, and notes as brief as a demi-semi-

quaver (an eighth of a crotchet) can be represented.

6.7 Music Analysis Procedures

These analysis procedures determine the key signature for the plotting
and harmonic analysis of the music. They assume major or harmonic minor

tonality.

6.7.1 Determination of Key

Key (tonality) is determined by minimizing the number of chromatic
notes for all the harmonic minor and major keys. This is done at the beginning
of a piece of music to determine the initial key signature, and whenever a note
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is encountered that is not in the current key, to determine if a modulation (key
change) has occurred, or just a transitory chromatic. The key is determined

locally; that is, only the next 20 notes are used to determine the key.

8.7.2 Harmonic Analysis

These programs attempt to determine the basic harmony (or the chords)
of the piece of music. The chord at a given time is determined by considering
the intervals between all the notes sounding at that time that are in the current
key. If there exists an interval of a third within the chord, then a third below
the lower note is found repeatedly until the root of the chord is determined. The
root of a chord has no third below it. Intervals are determined by the number
of steps in the scale of the current key. If there is a note at an interval of a
seventh or ninth above this root, a flag is set to show that the chord is a seventh

or ninth chord respectively.

Applying this method to the C 6th chord with notes C, E, G, A, would
be give A minor 7th (Am7). To resolve this musical context must be taken
into account. Also the chord with notes G, B, F, A could be a G ninth or an F
eleventh chord, depending on which third is found first. The analysis is relative
to the current key. Unless a modulation (change of key) is detected, thirds are
ignored if either note is not in the current key. Only chords with the root and

third in the key are detected.



6.8 Music Plotting

Music is plotted as a series of straight lines on a graphics terminal or
a plotter. Figure 6.1 is an example of an expanded plot of some music showing

how the treble clef, notes, and accidentals are constructed.

6.8.1 Horizontal Positioning of Notes in a Bar

The simplest form of horizontal positioning of notes is to separate them
in direct proportion to their duration. The problem with this is that the short

notes become too crowded.

The method adopted here is to position each note at a horizontal dis-
tance proportional to a constant plus the duration of the previous note. This
constant is equivalent to a crotchet, so that a crotchet takes 2 units of space
while a quaver takes 1.5 units of space. Notes starting at the same time are plot-
ted in the same vertical line. Notes with differing onset times are plotted in the
order of their onset times. Consequently, if a crotchet is played simultaneously
with two quavers, the crotchet is spaced with the two quavers and take up the
same room of 3 units. If the crotchet is played on its own without simultaneous
notes of shorter duration, it takes only 2 units. If an accidental is required, all
the notes at that time are moved right to make room for the accidental. There-
fore synchrony of simultaneous notes is maintained while preventing crowding

of passages with accidentals and notes of short duration.

Bar lines are automatically inserted. If the starting time of the note to
be plotted is greater than the product of meter and the number of bars already
plotted, a new bar is placed before plotting the note.

86



21q213

ay3

*p23OoN135UOD @1k S[EJU3PIOOE pue s83ou ‘381D
moy buimoys orsnw awos Jo 301d pspuedxs ue jo afdwexa ue sT [*9 ainbig

N

g
@ @ﬂ 1

(UOT}0DJ}X] O }814n3H) 014]

87



One problem with allocating musical times by dividing by a constant,
is notes that are nearly simultaneous may have different onset times, and there-
fore may be plotted separately. For example with a crotchet duration of 500
milliseconds and 2/4 time, two notes with onset times 980, and 1010 millisec-
onds would be plotted on opposite sides of the first bar-line. Whether two notes
should be considered simultaneous is determined by the variable, overlap, which
is the amount of time both notes are playing minus twice the difference in onset
times.

Table 6.1 gives three examples of the overlap of pairs of notes. The

times are given in milliseconds.

Table 6.1
Example note A note B overlap
onset  finish  duration onset  finish  duration
1 0 100 100 20 120 100 40 yes
0 100 100 60 120 60 -80 no
3 0 500 500 100 500 400 200 yes

If overlap is sufficiently large, as in Example 1 and Example 3 (table
6.1), and their onset times do not differ by more than 160 msec., then the onset
times are given the same value and the notes are then plotted on the same
vertical line. This gives a significant improvement to the vertical alignment of

simultancous notes.

6.8.2 Determination of Accidentals
Rests are represented as negative pitch values. For notes with positive
pitch, the vertical plotting position is determined from the pitch and current
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key. There is an ambiguity here; for example G in the key of A would be Ab in
the key of Eb, and would therefore require a different vertical position depending
on the key. The following procedure determines which accidental is required if

Pitch is not in the current key.

(a) If Pitch of the note is not in the current relative major key and the
note is the seventh or leading note, then the key is minor and the note is plotted
as a sharp or natural, not a flat. For example, to plot B in the key of C minor
(relative minor of Eb), Bl is the seventh note of the scale, and Eb is not in the
key of F major; therefore a natural is plotted. If the key had been D minor and
the leading note C}, the leading note would be written as a sharp and not as a

Db, because the note F is in the key of F major.

(b) If the note is not the leading note of a minor key, and Pitch is in the
key of C, a natural is written, otherwise a sharp or a flat depending on whether
the tonic of the current key is in the key of G. This minimizes the harmonic
distance of the note from the current key; that is, the number of steps of a fifth
from the tonic of the key to the note. For example, in the key of D major, a Bb
would be written as a flat and not as an Aj. Bb is 4 steps from D in the cycle

of fifths, while A} is eight steps from D.

6.8.3 Vertical Positioning of Notes

The current key and the pitch of the note to be plotted are used to
determine the vertical positioning. A note with pitch 40, for example, could be
plotted as a Cf or at a higher vertical position as a Db.
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If the vertical position is outside the range of the bass or treble five

lines, then ledger lines are drawn to the note.

To plot a note, a semi-breve is first drawn. If the duration of the note is
less than a minim, the plotted semi-breve is filled and the required tail is added.
If the duration is divisible by the duration of a dotted demi-semi-quaver, then a
dot is placed after the note to show that the note is prolonged by half as much

again.

6.8.4 Allocation of Musical Parts

In the fixed part analysis of the woodwind Trio, the following assump-

tions are made:

-at most, only a fixed number of instruments are playing at any one time,

- each part is required to lie in a range of pitches, typical for the instrument.
-the parts never cross each other.

The higher pitched first oboe is denoted by upward stems and the
second oboe by downward stems, while the bassoon is placed on its own on the
bass clef. If there are insufficient estimates in the oboe range, a rest is plotted
in the treble clef.

In the general part analysis the number of parts can vary, so the plot-
ting of rests is suppressed to avoid cluttering the output. This is useful for
plotting piano music where the number of simultaneous notes can vary greatly.
The parts (numbered 0 to 3) represent the soprano, alto, tenor and bass parts

respectively. The parts are determined by counting the number of coincident
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notes with a higher pitch. Two notes are coincident if the first note to finish
does so at least a demi-semi-quaver (50 to 100 milliseconds) after the other note
begins. If a note is allocated to soprano and has a pitch less than E above middle
C, it is reallocated to the alto part. If the alto is below middle C, it is moved
to the tenor part. The lowest note is finally assigned to the bass. The soprano
and alto are plotted in the treble clef, while the tenor and bass are in the bass
clef. The soprano and tenor have upward stems while the alto and bass have
downward stems. If the number of overlapping notes exceeds four, then some of

the notes will be assigned to the same part depending on the pitch of the notes.

6.9 Corniclusion

This chapter describes programs to output the results of analysed mu-
sic. This includes the grouping of pitch estimates in time to determine the onset
and finish times of notes, the determination of key, tempo, and beat, and the

plotting of notes in the required positions with the appropriate accidentals.
The programs assume major or minor tonality, and equal temperament.

There are several ways the music plotting could be improved. Notes of
duration less than a crotchet are plotted as independent short notes, and could
be beamed together in groups of a crotchet duration. Notes of long duration are
not split and tied across bar lines. The placement of bar-lines could be made
more accurate by using adaptive beat tracking (see Harris 1982). Staves could
be scaled horizontally to make them line up at the right-hand side of the page.
And finally, the part allocation or voicing algorithm could be improved to track
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parts as independently moving melodies, by minimizing note steps from one note
to the next in each part.

Despite these limitations, the plotting system does provide an easily
read output for musical data, a vast improvement on deciphering listings with
thousands of numbers and letters. Instead of requiring human intervention for
the determination and positioning of musical symbols, the plotting is fully au-

tomated.
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CHAPTER SEVEN

Evaluation of Analysed Music

7.1 Introduction

This chapter presents the results of applying the algorithms of chap-
ters 5 and 6 to music examples. Section 7.2 compares the low level techniques
described in chapter 5, namely, autocorrelation, the cepstrum, the harmonic
summing algorithm, and the frequency ratio algorithm. The iterative extrac-
tion procedure is considered in section 7.3, and section 7.4 evaluates the musical
analysis and plotting described in chapter 6. The benchmark test is treated in
section 7.5. Section 7.6 applies the error measures defined in chapter 8 to the

analyses in this chapter.
The analysed pieces of music are:
(a) Fugue number 11 from the 48 Preludes and Fugues,
(b) Prelude from Partita number 1,
(¢) Menuet II from Partita number 1,

(d) Trio I for two oboes and bassoon from the Brandenburg Concerto 1
performed by L.A. Philharmonic on Deutsche Grammophon recording 2707 098.

All the music is by J.S. Bach, and (a), (b), and (c) are played on piano,
performed by Dinu Lipati on EMI recording HQM 1210.

Much of the data analysed is polyphonic piano music. A piano tone is
a difficult musical tone to analyse. It lacks a steady state, and has a complicated
decay function due to beating of multiple strings and inharmonicity of partials,
caused by string stiffness (the higher partials tend to be sharp). Cues such
as quasi-consonant beating (chorus effect) do not apply. These problems are
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compounded when more than one tone sound simultaneously. Yet the algorithms

developed in this thesis give good results even for piano music.

7.2 Comparison of Low Level Techniques

Figure 7.1 shows the cepstrum of the chord with two oboes and a
bassoon. This is the same chord as that shown in figure 2.10. The oboes are
playing a Bb (frequency 930 Hz) and D (590 Hz), and the bassoon a G ( 196
Hz). In this example all the notes present are correctly detected, but some
harmonically related incorrect estimates also occur. The errors mainly occur
at an octave, twelfth, etc. below the correct estimates. These errors occur at
multiples of the fundamental period and could be corrected using a procedure

similar to heuristic H2 (see 5.6.1), but applied in the time domain.

Figure 7.2 plots the autocorrelation of the same chord as figure 7.1.
Again the harmonically related errors occur, and the second oboe estimate (560

Hz) is a semitone flat.

Figure 7.3 shows the cepstrum of the steady state of a bassoon tone;
the same tone shown in figure 2.1. In this monophonic case the cepstrum gives

a single unambiguous peak corresponding to the tone.

7.2.1 Fugue Example

The Fugue is used for comparison of low level techniques, because the
first four bars are monophonic and the remainder is polyphonic. Bar lines and
bar numbers have been inserted by hand on all the pitch profiles to simplify
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comparison with the written musiec.

Figure 7.6 shows all the harmonics of the first 10 seconds of the Fugue.
Many of the notes can be determined by observing just the fundamentals. Such

a technique, however, would not apply to music with attenuated fundamentals.

Figure 7.7 gives the cepstrum of the first 10 seconds of the Fugue. The
monophonic section of figure 7.7 (bars 1 to 4) is clearly tracked (with another
false estimate at an octave below), but the polyphonic section (bars 5 to 8)
contains many harmonically related errors. Similarly, the autocorrelation of the

same music (figure 7.8) fails to discriminate the polyphonic part.

Figure 7.9 displays the output of the harmonic ratio algorithm and fig-
ure 7.10 displays the output of the harmonic summing algorithm for the Fugue.
The harmonic summing algorithm appears to be the best of the low level tech-

niques, and the harmonic ratio algorithm the worst.

Figure 7.13 gives the original written music for comparison.

7.2.2 Woodwind Trio Example

Figure 7.14 shows the cepstrum of the first 12.5 seconds of the Trio.
The oboes are clearly tracked, but the bassoon is almost undetectable. Similarly
the autocorrelation (figure 7.15) provides a clear trace for the oboes, but not the
bassoon part.

Figure 7.16 plots the output from the harmonic ratio algorithm for
the first 9 seconds of the Trio. This algorithm is more successful at detecting

woodwind tones than piano tones (figure 7.9), because the frequencies of the
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harmonics are close to integral ratios of the fundamental.

Figure 7.17 displays the output from the harmonic summing algorithm

applied to the first 12.5 seconds of the Trio.

Figure 7.18 plots the harmonic summing algorithm applied to the first
12.5 seconds applied to the Trio with heuristic HI used. Here, estimates with
even harmonics stronger than odd harmonics are suppressed (see 5.6.1).

Figure 7.19 plots the harmonic summing algorithm applied to the first
12.5 seconds of the Trio with heuristics H1, H2, H3, H4 and H5 used (respective
weightings are: 1,.3,-1,1,.1), but with no spectral extraction. The results improve

as more heuristics are introduced.

7.3 Heuristic Extraction

Figure 7.11 plots the harmonic summing algorithm applied to the first
10 seconds applied to the Fugue with heuristics H1 to H5 applied, and v-vith the
best estimate iteratively extracted from the spectrum (see section 5.6).

Figure 7.13 shows the original written music for comparison.

Figures 7.24 and 7.25 show the the results of the harmonic summing
algorithm applied to the first 20 seconds of the Partita Prelude, with heuristics
H1 to H5 applied, and with iterative extraction of estimates.

Figure 7.27 shows the original written music for comparison.

Figures 7.28 and 7.30 display the harmonic summing algorithm applied
to the first 20 seconds of the Menuet, with heuristics H1 to H5 applied and
iterative extraction.
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Figure 7.32 shows the original written music for comparison.

Figure 7.20 plots the output to the harmonic summing algorithm ap-
plied to the first 12.5 seconds of the Trio with heuristics H1 to H5 applied and

with the best estimate iteratively attenuated.

Figure 7.21 plots the output of the harmonic summing algorithm ap-
plied to the first 12.5 seconds of the Trio with heuristics H1 to H5 applied and
the best estimate iteratively attenuated, but without the recorded reverbera-
tion deconvolved. All the previous examples have reverberation automatically
removed. Here, reverberation can sustain signals up to half a second after the

finish of some notes.

In all these examples the results are improved by applying the the

iterative extraction procedure.

7.4 Music Analysis and Plotting

All the music plotted in this section uses pitch data from the heuristic
extraction procedure (section 5.6), and deconvolution of reverberation. Errors

have been circled by hand.

7.4.1 Fugue Example

Figure 7.12 shows the music output for the Fugue, derived from figure
7.11. The note B preceding the A in the trill at time 8 seconds and in bar 7 is
missing from the analysis. The pitches of the other notes are correct. There are,
however, several errors in the music plotting. The crossing of the parts (bar 6)
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cannot be determined by the algorithm used, because the note with the lowest
pitch, at any time, is assigned to the bass part. The D (p29) in bar 7 and the
D (p29), C (p27), and D (p29) in bar 8 are all incorrectly assigned to the bass,
because there is no detectable note below them. The Bl (p26) at the beginning

of bar 8 is played as a passing note to C' (p27).

Here, the minimum duration of notes included in the analysis is 100

bucket ) ) o
milliseconds, and the pitch ¥ filling time (see 6.5) is 100 milliseconds. The tempo
(178 crotchets per minute) and the starting time are set as parameters to fit the

bar lines correctly.

7.4.2 Partita Example

Figure 7.26 shows the music output for the Partita Prelude. The mini-
mum duration is 60 milliseconds, the bucket filling time is 120 milliseconds, and
the tempo is 51.3 crotchets per minute. Several notes of long duration are split,
due to masking by other notes (eg. the Bb p25 in the first bar). The C (p39) in
the middle of bar 2 (figure 7.26) is incorrect. The F' (p32) at the end of bar 2 is
incorrect. The D (p41) at the beginning of bar 3 is not strong enough to cause
the note C (p39) in the previous bar to finish (see section 6.5.1). The C (p39)
is therefore assumed to continue throughout the duration of the D (p41). The
same phenomenon occurs at the beginning of the next bar. In bar 4 the note G

(p46) is missing and the note C (p39) is incorrect.
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7.4.3 Menuet Example

Figure 7.29 shows the music output for the first 10 seconds of the
Menuet. The Bb (p37) in bar 3 (figure 7.29) is missing. The E (p19) in bar 6 is
incorrect. The grace note (D p41) in the last bar is not separated from the rest

of the chord, because its overlap is too great (see 6.8.2).

Figure 7.31 shows the music output for the second 10 seconds of the
Menuet. The F (p32) in bar 1 is incorrect. The Bb(p13) in bar 2 is incorrect. The
D (p29) in bar 4 is incorrect. The Eb (p30) in bar 5 is incorrect. The incorrect
note, Bb in the bass at the end of the fifth bar in figure 7.31 (at 5.5 seconds
on figure 7.30) is the same problem as the second inversion chord presented in
section 5.5 and displayed in figure 5.2. The G (p46) in bar 6 is missing. The
D (p29) in bar 6 is missing. The minimum duration is 80 milliseconds, and
the bucket filling time is 100 milliseconds. The masking of adjacent notes is

suppressed. The tempo is 152 crotchets per minute.

7.4.4 Trio Example

Figure 7.22 shows the music output for the Trio. Here, the general part
analysis is used. The bassoon is not assumed to lie below a pitch of 30 (as in the
fixed part analysis), but is taken as the note with lowest pitch. The minimum
duration is 80 milliseconds, and the bucket filling time is 120 milliseconds. Apart
from the exact transcription of the trills, the pitches of all the notes are correct.
The grace notes of the top oboe (F and D) in bars 5 an 6 respectively, are played
on the recording but are not shown in figure 7.23. The first bassoon tone of bar
8 fails to line up with the oboes. This is because the early part of the bassoon
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tone is masked by the onset of the oboes. The note A p36, in bar 6, at 8.5
seconds in figure 7.20 is really two notes, the first played by the top oboe and
the second played by the bottom oboe. Figure 7.22 plots this as one note, but
in figure 6.1 of the last chapter, the fixed part algorithm of section 6.8.5 is used,

and both notes are shown.

The tempo of the Trio was determined automatically from the inter-
onset times. Table 7.1 shows the inter-onset time histogram for the Trio. The
tempo suggested by the histogram is 120 crotchets per minute. The tempo used
to generate figure 7.22 is 121.5 crotchets per minute.

Table 7.1

Inter-Onset Time Histogram of Trio (first section)

250 3k 2k 3% ok ok % %k ok ok ok K %k %k %k %k Xk

275 % 2k 3k % 2k ok % %k % %k %k %k X

300 % % %k % %k ok k ok

325 % ok % % % Xk

350 kK %k %

375 % % %k % % ok %k Kk Xk

400 sk ok ok o K ok K

425 % ok ok ok %k ok 3k %k %k kK

450 % 2k ok ok % ok %k Xk ok %k %

475 3K o ok ok ok 3K ok ok ok ok ok ok K ok ok K K ok ok ok ok ok Kok X
500 3¢ sk 3k ok ok 3k ok 3k ok ok ok sk ok sk ok ok sk s ok sk sk sk sk sk ok ok sk sk sk ok ok ok ok ok ok ok ok
525 s ok ok %k ok ok ok ok ok ok ok ok %k ok ok ok ok ok % ok K ok kK ok ok ok
550 ok ok 2k ok ok Sk ok ke ok ok oK ok ok ok ok ok ok ok ok Xk

575 % % %k % %k k

600 % ok ok ok %k ok ok ok %k

625 % ok ok ok ok ok ok ok ok ok ok k k%

650 % sk ok ok sk ok ok ok ok %k ok Xk

675 % 2% ok K ok Kok Xk

700 & ok ok ok ok ¥

705 ok ok sk ok %k % ok %k %k %k k %k %

750 % %k % % %k %k % % % ok %k %k

7.5 Trio Benchmark

The second half of the Trio was reserved as a benchmark test. Param-
eters were chosen on the basis of earlier analyses, but the results reported here
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are the first, unaltered automated analysis of the music.

This section of the Trio starts at the twentieth bar (twelfth bar of the
second section) of figure 7.23. At the end of the page of music the second section
is repeated. The notes of this piece are specified by either the onset time or the
number of bars from the twentieth bar.

Figures 7.33 to 7.36 show the pitch profile (spanning a total of 50
seconds) for the Trio benchmark. Full heuristic extraction is used. Figures 7.37
to 7.40 give the music output for the benchmark. Here, the fixed part analysis
is used (see section 6.5).

The errors in the pitch, onset and durations of notes are treated in

chapter 8. Other errors include:

split notes (eg. the note A p36 in bar 2),

enharmonic errors (bar 1, bassoon plotted as Db instead of C})

the exact transcription of the trills,

the tying of notes across bar lines (eg the note A pl12 in bar 3 should

continue into bar 4)

premature bar lines. (eg. bars 23, 24, and 29)

7.6 Error Analysis of the Music Examples

This section tabulates the error measures defined in chapter 8 for the
music examples of this chapter.

Except for the Benchmark (see 8.3), the exact onset times of the notes
were not known. Therefore E1 and E2 measures are not considered here. Match-
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ing of events is based on the author's comparisons of pitch profiles with the
written music. Matching of events in the Trio Benchmark is treated formally in
chapter 8. The definitions of E3, E4, and E6 are given in section 8.2.4.

Table 7.2

Heuristic Weightings

PARAMETER WEIGHTINGS
name H1 H2 H3 H4 H5
Benchmark Fig 7.36 .6 .5 -1 1.2 e |
Trio Fig 7.21 6 3 0 1 1
Prelude Fig 7.11 4 A5 15 .6 1
Partita Fig 7.24 4 A5 15 .6 il
Menuet Fig 7.28 4 15 1.5 6 |

Table 7.3

Error Measures

Inclusion Errors Exclusion Errors
name Total E3 E4 E6 Total E3 E4 E6
Events Events
Benchmark Fig 7.36 318 38 31 06 350 15.1 93 117
Trio Fig 7.21 80 0 0 0 80 6.2 0 3.7
Prelude Fig 7.11 69 0 0 0 70 1.4 0 1.4
Partita Fig 7.24 123 28 0 0 116 29 29 29
Menuet Fig 7.28 128 52 08 08 122 2.8 0 0

Increasing the bucket filling time can overcome the problem of analyses
splitting notes into a sequence of notes of shorter duration. This can only be
done at the expense of introducing other errors, such as failing to detect notes of
short duration. The erroneous pitches in these examples are introduced at the
stage of estimating the pitches (section 5.5) and cannot be improved by altering
the plotting parameters (eg. the bucket fill time and the minimum strength).
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7.7 Conclusion

A range of musical examples is used to test the algorithms of chapters
5 and 6. The low level techniques described in sections 5.2 to 5.5 are compared.
The harmonic summing algorithm appears to give the best results. The pitch
estimation is further improved by the application of heuristics and a procedure
to iteratively extract the most likely estimates from the spectra. The additional

errors in the automated transcription to music notation are considered.
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Figure 7.1 displays the cepstrum of the chord with two oboes and a bassoon, shown
in figure 2.10.
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Pitch Profile of Fugue (Hormonic Components)
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Figure 7.6 displays all the harmonics of the first 10 seconds of the
11 for piano by J.S.Bach.
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Pitch Profile of Fugue by J.S.Bach (Cepstrum)
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Figure 7.7 displays the cepstrum of the first 10 seconds of the Fugue number 11 for
plano by J.S.Bach.
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Pitch Profile of Fugue by Boch (Haormonic Ratios)
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Figure 7.9 displays the output of the harmonic ratio algorithm for the first 10

seconds of the Fugque.
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Pitch Profile of Fugue (Heuristic Extraction)
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Figure 7.11 plots the harmonic summing algorithm of the first 10 seconds of the
Fugue with heuristics H1 to HS5 applied.

o)
w
(=)}



el

Fugue (Heuristic Extraction)
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Figure 7.12 shows the music output for the Fugue, derived from figure 7.11.
The pitches of all the notes are correct.
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Figure 7.13 is the original written music of the Fugue.

(from J.S. Bach, Partiten 1-3, Urtext Edition).
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Pitch Profile of
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Figure 7.18 plots the harmonic summing algorithm of the first 12.5 seconds of the

Trio with heuristic H1l applied
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Pitch Profile of Trio (Heuristics without Extroction)
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Figure 7.19 plots the harmonic summing algorithm of the first 12.5 seconds of the

Trio

with heuristics

H1,

H2, H3, H4 and H5 applied

l1,.3,-1,1,.1), but with no spectral extraction.
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Figure 7.20 plots the output of the harmonic summing algorithm for the first 12.5

seconds of the Trio
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Figure 7.21 plots the output of the harmonic summing algorithm for the first 12.5
seconds of the Trio with heuristics H1 to HS5 applied with the best estimate
iteratively attenuated, but without the recorded reverberation deconvolved.
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Figure 7.23 is the original written music of the Trio.

(from I Concerto Brandebourgeois, Heugel and Cie, France).
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Figure 7.24 plots the harmonic summing algorithm of the first 10 seconds of the

Partita Prelude, with heuristics H1 to HS applied, and with iterative extraction.
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Partita by J.S.Bach

Figure 7.26 shows the music output for the Prelude.
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Figure 7.27 is the original written music of the Partita Prelude.

(from J.S. Bach, Partiten 1-3, Urtext Edition).
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Figure 7.28 displays the harmonic summing algorithm of the first 10 seconds of

10 sec
the

Menuet, with heuristics H1 to HS applied with iterative extraction.
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Pitch Profile of Menuet by J.S5.Boch
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Figure 7.30 plots the harmonic summing algorithm of the second 10 seconds of the

Menuet with heuristics H1 to HS5 applied with iterative extraction.
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Pitch Profile of Trio I by J.S.Bach
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Figure 7.36 is the pitch profile for the Trio bench-mark.
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CHAPTER EIGHT

Error Measures for Comparing Music Analyses

8.1 Introduction

This chapter describes additional work done to establish the error rate

of the music analysed in this thesis.

The problem here is to compare the musical events of a recording with
the musical events.produced by the analysis procedure. While visual compari-
son of recorded and analysed events shows a high coincidence, quantifying this
similarity is non-trivial. Comparing musical events is complicated by the multi-
dimensional nature of events; pitches, onset times and durations must all be
compared. There are many ways of defining errors for an analysis, and no single

error measure is adequate to compare analyses with the recorded music.

Section 8.2 defines some error measures and section 8.3 gives the values
of these measures when applied to the music analysed in this thesis. Section
8.3.1 describes the verification of the woodwind Trio performance used as the
Benchmark in section 7.5. The error measures are applied to analyses of the
woodwind Trio (section 8.3.3) and synthesized music (section 8.3.4). Finally,

section 8.4 presents a sensitivity analysis of the pitch determining algorithm.

8.2 Error Measures

An error measure determines the accuracy of an analysis by comparing
recorded music with the analysis results. Here, measures are chosen to reflect
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listeners’ perceptions. Harmonically related errors are less perceptible than those
which are harmonically unrelated; errors of short duration are less perceptible
than those of long duration (Tobias 1970); onset errors are harder to hear than
pitch errors; and errors in the finish time of notes are even less serious than
onset errors (Knowlton 1971). Taking the difference in pitch as a measure of
seriousness, for example, would be inappropriate; a tone played out of tune by
one semitone would sound worse, to most listeners, than if it was played an

octave away.

The error measures described in this chapter are applicable to any
polyphonic music. They are applied here to the benchmark introduced in section
7.5; that is the final 48.5 seconds of Trio I from the Brandenburg concerto I, by
J.S. Bach. The Trio has the form AABB. The benchmark performance begins
(0 seconds) at the 12th bar of the first section B and finishes (48.5 secs.) at the

end of the second section B. The repeat of section B occurs at 14.5 secs.

8.2.1 Terminology

A musical event is defined to have 3 attributes; a pitch, an onset time,
and a duration. The pitch is the number of semitones above the musical note
A of frequency 55Hz; onset and duration are specified in milliseconds. The
onset, duration, and pitch of an event X; are denoted T(X;), D(X;) and P(X;)

respectively. The finish time of an event X;, is T(X;)+D(X;).

Let the performance (denoted X) be the set { X;} (i = 1, N;) of discrete
musical events representing the analog recording. Let an analysis (denoted Y)
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be the set {¥;} (§ = 1, N,) of musical events identified by the pitch analysis
algorithms given in sections 5.6 and 6.5.

An error measure E, is a function that compares X and Y and takes
values in the range [0,1]. If all the events in the analysis are identical to those
in the performance, then E = 0. Errors can be of two types; either events are
in Y (the analysis) and not in X (the performance) (these are called inclusion
errors) or they are not in Y but are in X (exclusion errors).

The purpose of an error measure is to provide a quantitative method
of comparing analyses of musical recordings. It is therefore desirable to combine
the inclusion and exclusion errors in some way.

Let Ny, and N, be the number of events in an analysis and perfor-
mance respectively, and let L, and L; be the respective number of inclusion

and exclusion errors. Then the inclusion error measure is

E' P Ly
incl -~— _"“N
y
and the exclusion error measure is
E.zcl L
excl «— 7 *
N,

The following 3 combined measures are increasing functions of the number of
inclusion and exclusion errors, which take the value zero when E;, and E,..q

are zero and the value 1 when E;,o and E.z. are 1.

Eaver = (Ein.cl’ + Ec::cl)/Q
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Emaz = max(El'nchEezcl)
Ecomp = (L:c + Ly]/(Ns + Ny)

If E¢zc is zero, and Ejpq is near to 1, and Ny is large compared to Ng,
then Egper would take the value 0.5 while Eynq2 and E.omp the value 1. This
would occur if an analysis produced every possible note playing all the time.
Every note in the performance would find a match in the analysis, and although
there are no exclusion errors it is clear that the analysis is completely wrong so
the combined error measure should have a value 1. The combined error measure
E,yer 1s therefore unsuitable.

E .4z is independent of the minimum of ( Ejner, Eezer ) and does not
reflect variations in the lesser of Eipet and Eezer. Eeomp i the combined error
measure adopted in this thesis, because it reflects variations in the lesser of E;pc
and E.z¢, and has the value one in the degenerate cases where the number of

events in the analysis (Ny) is very large or very small.

8.2.2 Error Measures Used in this Thesis

An error measure E depends on the criteria used to determine whether
an element of X matches an element in Y, and the weighting (or seriousness) of
the error. These criteria can be combined in many ways. The Error measures
used here are based either on the proportion of events that are in error, or on
the proportion of time that the events are in error. The measures can also be
qualified by considering only events with duration larger than some threshold;
for example, the time resolution of the spectral analysis. The six error measures
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described in sections 8.2.3 and 8.2.4 combine several of these criteria, and have
been applied to the analyses in this thesis. They are all defined as inclusion,
exclusion and combined error measures as described in the previous section.
For sections 8.2.3 and 8.2.4 the Overlap of events X; and Y; is defined
as: Overlap(X;,Y;) := Min((T(X;)+D(X,)),(T(¥;)+D(¥;)) - Max(T(X:),T(¥;)),

where T(X;) is the start time and D(X;) is the duration of event X;.
8.2.3 Time Based Error Measure

El:
E1 is the proportion of time that X and Y fail to coincide in pitch, P.
Define the matching function as:
1, when Overlap(X;,Y;) > 0, and P(X;) = P(Y;);
M(X;,Y;) = {

0, otherwise.

The inclusion error for E1 is defined as:

E._n Eg—o M(X;, Y;)Overlap( X;, Y})
E:::o Overlap(Y;,Y;)

Elipa(X,Y):=1-

The exclusion error for E1 is defined as:

Sz Tt o M(X;, Y;)Overlap(X;, Y;)

Ele;a(X,Y):=1- N
Y im0 Overlap( X;, X;)

The combined error for E1 is defined as:

E;—o ZJ_ M(X;,Y;)Overlap(X;,Y;)

Elcomb(X,Y):z l = .
Zg—o Overlap(Y;,Y;) + Z:—o Overlap( X;, X;)
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8.2.4 Event Based Error Measures

Each of E2, E3, E4,E5 and E6 measure the error as the number of
events that match in proportion to the total number of events. They differ by
the matching criteria used. For E5, the events are weighted by their duration.

The inclusion, exclusion and combined error measures for E2, E3, E4, E5, and

E6 are defined as:

Zi-o Mmcl(Ys')W(Ys‘)
Eu_o W(YI]

Eipa(X,Y) =1~

]

N. . ‘
Bppu(X,Y) = 1 — 2imo Mezetl X)W (X:)
Sz W(X)

N, N, ‘ |
Ecomb(_X,Y) =1- Ei=° Mud(x )W(X') i E;_o Mncl( ;)W(Y.)’
YN WX + i W(Ys)

where

1, when 3X;, such that M(X;,Y;) = 1;
(I)Miucl(yj) =

0, otherwise.

1, when 3Y}, such that M(X;,Y;) = 1;
(2)Mezcl(xi) =
0, otherwise.
(3) the weighting function is defined as:
D(X;), for error measure E5 and
W(X;):=

1, for error measures E2, E3, E4 and E6.

147



The matching functions M(X;,Y;) for E2 to E6 follow.

E2:
Here,
1, when Overlap(X,,Y;) > 0, P(X;) = P(Y;),
[T(Y;) - T(X;)] < onset_limit,
M(X;,Y;) = [T(Y;)+D(Y;) - T(X;)-D(X;)] < finish limit;

0, otherwise.

where onset_limit and finish_limit are the tolerances in determining the onset

and finish times of tones.

E3:

For E3,

1, when Overlap(X;,Y;) > 0, P(X;) = P(Y;);
M(X;,Y;) =
0, otherwise.

E3 is a special case of E2 with onset_limit and finish_limit set to infinity.
This means that the start and finish times of an event Y; in the analysis can
differ by any amount from those of an event X; in the performance, but the

events still match, provided the pitches are equal and the overlap is positive.

E4:
This has the same as matching criteria as E3, but only applies to events
with duration greater than some limit, typically 100 milliseconds.
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E5:
E5 uses the same matching criteria as E3 but differs in the weighting

of errors.

E6 :
Here,
1, when Overlap(X;,Y;) > 0, P(X;) = P(Y;) modulo 12;
M(X;,Y;) =
0, otherwise.

An E6 match allows events that are several octaves apart. That is, two

events match if they overlap and their pitches differ by a multiple of octaves.

8.2.5 Comparison of Error Measures

E1 determines the proportion of time that the events in the analysis
and performance do not match, while E2 to E6 determine the number of events
that match, as a proportion of the total number of events.

E2 requires that the difference in onset and finish times of the compared
events be within the accuracy of the performance times and the time resolution
of the spectral analysis. E3, E4, E5, and E6 measure the accuracy of pitch, but
not that of onset or duration; however, a positive overlap is required to prevent
the matching of events with the same pitch that occur at different times. They
are more generous than the E2 measure, but match musicians’ tolerance to
errors in onset and finish times.

Consider the example where a single event of 2 seconds duration is
recorded. Suppose the analysis gives an event with correct pitch but with a
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duration of 1 second and an onset time 1 second late. This can occur if some
other sound masks the acoustical signal, or if the analysis selects an incorrect
pitch at the onset of the event. The E2 inclusion and exclusion measures would
reject the events in the analysis, while all the other error measures would accept

the events.

More generally, if the onset and finish times of the analysed events
differ from those of the recorded events, then the E1 error will increase in
proportion to the difference, but the other errors will remain the same, provided

the matching functions for all events do not change value.

For E4 and E5, erroneous events of large duration are more significant
than those of small duration. A listener may not hear the diference when a
single note of 100 milliseconds duration is absent from a trill; the omission of a
note of 1 second duration would be more perceptible. E4 applies only to events
with durations greater than some limit, typically 100 milliseconds (the durations
of all the notes in J.A. Moorer’s analyses were greater than 200 milliseconds).
The notes in the trills of the Trio performance are typically 100 milliseconds
in duration and they account for half the E3 exclusion errors in the woodwind

Trio analysis.

E6 matches events with pitches differing by a multiple of octaves. A

listener would notice a discordant error more than a harmonically related error.

8.3 Automated Comparison of Analyses

A comparison program was written to determine the error rates for
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the analyses, and the sensitivity of the analysis algorithm to variations of the

parameters.

8.3.1 Verification of the Performance

The determination of onset and finish times in real music is a difficult
problem. Tones can take several hundred milliseconds to attain a steady state.
Sometimes the steady state is never attained. Tones can start with low signal
level, and considerable noise. Some tones can change continuously in pitch to
another tone, with no transients. Onset times of tones can be determined, by a
human listener, more accurately than their finish times (Knowlton 1971). Also
reverberation, gradual attenuation of the end of the note, and the masking by
other notes makes the determination of the finish times more difficult. For the
Trio, all the instruments play continuously except for breaths and phrasing.
Therefore, for simplicity, the finish time of a note is taken to be the starting

time of the next note, for each instrument.

The start and finish times of the performance were determined by lis-
tening to the recording, timing events with a stop-watch, comparing the recorded

music with the written music, and using computer analyses.

The pitch of the events in the performance was verified by listening to
the music. William James (Mus. Bach. Adel.), organist and choir master at St.
James Church, Melbourne, listened to the recording repeatedly and attests to

the accuracy of the notes and their pitches.

The onset times of the performance events were verified by stop-watch.
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A further computer analysis of the pitch estimates was done; onset times were
only assigned if 4 consecutive estimates of increasing strength occurred. This
criterion was tested by stop-watch comparisons of the difference between a sam-
ple of onset times. This accounted for onset times for 81% of the notes in
the performance. The onset times of the remaining notes were determined by

stop-watch comparisons for notes of long duration.

It is difficult to hear the onset times of the notes in rapidly changing
music, such as trills. Therefore, these times were determined by linear interpo-
lation between known onset times. The duration of these events is less than 100

milliseconds, therefore the error from interpolating is less than this.

A stop-watch with 10 milliseconds resolution was used to determine
the time difference between the onset times of notes. The recorded segment was
played repeatedly, so that the observer could anticipate the onset of the events
he was comparing. The variation of the measured onset times was typically 30

to 50 milliseconds.

The accuracy of determining the onset times of the performance from
the recording is typically 50 milliseconds, and in the worst case is 150 millisec-

onds.

8.3.2 Differences Between the Performed and Written Music

It is interesting to compare the performance with the set of events
representing the written music, although only the performance is used for the
comparison of analyses in this work. The notes of the last 2 bars are played
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later and for longer duration than specified by the written music (it is performed
ritardando). Table 8.1 shows the passing notes, and the grace notes performed
by the oboes, that are not in the written music. The bars and notes of the
written music refer to figure 7.23 and the times of the performance refer to the
horizontal axis of figures 8.1a, b, and c.

Table 8.1

Comparison of Performed and Written Trio

Performance Written Music

time part line bar

25.0 trill on Fj and G Ob.I 3 2 Fy
25.6 shortened Bb,

26.4 passing notes D, E, F Ob.Il 3 3 Bb
32.3 B,C}{,D Ob.Il 3 7 F.E,D
37.1 shortened D,

37.7 passing notes G, A Ob.I 4 2 D
37.1 shortened F,

37.7 passing notes Bb,C Ob.II 4 2 F
41.8 glissando to D Ob.Il 4 5 trillon Cf and D
42.0 passing notes D and F Ob.I 4 5 CH\,E,G

8.3.3 Error Measures for the Analysis of the Woodwind Trio

The regular rhythm and moderate dynamic range of the woodwind Trio
constrains some of the problems of analysing music, while providing a challenging
example to test the pitch estimation algorithms in the face of reverberation,
instrument resonances, and trills. It is therefore a good test for the algorithms
described in sections 5.6 and 6.5.

Table 8.2 lists the error measures for the woodwind Trio analysis. The
E5 error rates are less than the E3 rates, because many of the errors are for
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notes of short duration. For completeness, the E3 errors are listed in tables 8.3a
and 8.3b. Figures 8.1a 8.1b and 8.1c show the comparison of the woodwind Trio
analysis (above the lines) with the transcription described in 8.3.1 (below the
lines). Markings above the pitch lines, but not below, correspond to the errors
of Table 8.3a. Markings below the lines, but not above, correspond to the errors
of Table 8.3b. The pitch estimate profiles for the woodwind analysis are shown

in figures 7.33 to 7.36 in the previous chapter.

Table 8.2
Comparison of Error Measures for the Woodwind Analysis
inclusion exclusion combined
E1l 12.0% 27.2% 19.6%
E2 (limits=100) 39.6% 47.4% 43.5%
E2 (limits=200) 24.7% 32.3% 28.6%
E2 (limits=300) 17.7% 26.0% 21.8%
E3 3.8% 15.4% 9.7%
E4 (duration > 100) 3.1% 8.7% 6.0%
E4 (duration>200) 4.5% 7.5% 6.0%
E5 2.9% 7.5% _ 5.2%
E6 0.6% 11.7% 6.1%
Table 8.3a

E3 Inclusion Errors for the Woodwind Analysis
(* shows estimates that are also E8 errors)

Bassoon Oboe2 Oboel
time dur pitch time dur pitch (no E3 errors)
3566 530 27
18957 795 22
19953 264 27

20550 264 27 26388 65 34
26720 65 34
29705 264 8 30036 65 31

37401 264 25
40320 530 :
*42708 264 29
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Table 8.3b
ES3 Exclusion Errors for the Woodwind Analysis
(* shows estimates that are also E8 errors)

Bassoon Oboe2 Oboel
time dur pitch time dur pitch time dur pitch
*600 70 48
*4970 525 13 *6520 175 44 *6790 90 48
*6955 95 48
*7050 75 46
*7330 70 41 *7350 75 44
*7605 555 48
9900 310 43
10720 60 40
¥10890 60 40
13940 255 20 *18165 80 43
*18320 60 43
*18480 70 43
¥18550 270 44
20060 245 43
*21730 70 45
¥21765 60 37 ¥22150 120 43
22350 550 13
22900 600 25 23100 125 39 *23220 65 48
*23370 30 41 *¥23415 90 49
*23490 65 41 ¥23545 85 49
*23605 50 41 *23765 85 46
¥25180 70 45
*25360 90 45
*25450 20 43
*32260 90 48
*32465 70 438
*32665 55 48
*32875 65 44
33190 835 48
*33270 705 43
37130 520 13 37775 150 48
*38920 180 43 39240 130 48
*39305 75 44 *39480 105 44
*39525 95 41 ¥39755 565 48
39865 455 44
40300 490 13 42130 100 43
¥42350 580 16 *42510 145 29
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Figure 8.1a shows the first 17 seconds of the comparison of the woodwind analysis
(above the lines) with the transcription described in 8.3.1 (below the lines). Markings
above the pitch lines, but not below, correspond to the errors of Table 8.3a. Markings
below the lines, but not above, correspond to the errors of Table 8.3b.
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Figure 8.1b shows the second 17 seconds of the comparison of the woodwind analysis
(above the lines) with the transcription described in 8.3.1 (below the lines). Markings

~above the pitch lines, but not below, correspond to the errors of Table 8.3a. Markings

below the lines, but not above, correspond to the errors of Table 8.3b.
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Figure 8.1c shows the final 17 seconds of the comparison of the woodwind analysis
(above the lines) with the transcription described in 8.3.1 (below the lines). Markings
above the pitch lines, but not below, correspond to the errors of Table 8.3a. Markings
below the lines, but not above, correspond to the errors of Table 8.3b.
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8.3.4 Analysis of Synthesized Music

Synthesized music was used to determine the accuracy of analysed onset
and finish times. Here, there is no variation in pitch, no reverberation or decay
at the finish of notes, and the notes start and finish abruptly. Therefore, the set
of events that generates the synthesized music is an accurate performance with
which to compare analyses. Using synthesized music also eliminates noise and
signal distortion introduced by the recording and digitization processes.

Any music could have been synthesized, but here it was decided to make
the synthesized events match the events of the Trio performance. Each event
in the performance was converted to a saw-tooth wave of fixed amplitude, and
superimposed as a digital recording. The saw tooth wave was chosen because it
is rich in harmonics and the harmonic amplitudes decrease with increasing har-
monic frequency. The durations of 19 notes (of a total of 350) were shortened
to correspond to breaths and phrasing in the Trio, the remaining notes finish
when the following note begins. The inserted rests provide examples of 0, 1, 2,
and 3 simultaneous tones. The synthesized music was analyzed and the onset
and finish times of the analysis compared with those of the synthesized perfor-
mance. The standard deviation of the time differences between corresponding
events in the performance and the analysis was 12 milliseconds. This compares
with a standard deviation of 80 milliseconds for the onset time differences (100
milliseconds for the finish time differences) between the woodwind analysis (see
section 8.3.3) and the performance.

The accuracy of analysed onset and finish times can be modelled statis-
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tically. Let Z be a random variable being the difference between a synthesized
time (onset or finish) and the matching analysed time. The precision in determin-
ing the times of events is limited by the effective width of the sampling window
(i.e. 40 milliseconds) because finite-time spectral analysis is used. Assuming Z
is normally distributed, the 68.3 percentile can be used to estimate the standard
deviation. Any value of Z beyond 3 standard deviations is not normal with a
confidence of 99.7% Applying this to the synthesized Trio means that any time
difference greater than 36 milliseconds is an E2 error with a confidence of 99.7%
For the performance, the error in determining the times is added to the uncer-
tainty of the finite-time spectral analysis, so an onset (or finish) time difference
must be greater than 240 (300) milliseconds to be an error with 99.7% confi-
dence. There are many criteria for choosing the limit that determines whether
an analyzed event is in error. It would be arbitrary to set a fixed limit for E2.
From the discussion above, values between 40 and 300 milliseconds could be
justified. It is however useful to observe the cummulative distribution of tim-
ing differences using E2 with various limit values. A particular E2 limit is also

useful for comparing analyses.

Table 8.4 is a histogram of the differences between the synthesized
and analyzed onset times. Here only the 2 oboe parts are synthesized, and the
spectral analysis is applied every millisecond, to determine the distribution at
high resolution. A negative difference means that the analyzed event begins
before the matching synthesized event. The finish time differences are similarly
distributed.
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Table 8.4

Onset difference histogram for synthesized oboes

-10 *
-9 *
-8 *
_7 * %
-6 % ok %k %
5 kKX

-4 RXEEKX
ok o o Kk Kok o Kok ok o ok ok ok ok
LD RRRRRR KRR KRR KKK KK

_i % ok ok o ok ok ok ok K ok ok ok ok ok kK ok ok k ok k
0 s sk ok ok sk ok ok ok ok ok ook ok sk ok ok ok sk ke ok ok ke sk sk sk ok sk ok ok sk ok sk ok Sk ke ok ok ok ok ok ok ok ok ok ok
1 s ok 3 ok o ok ok ok ok ok ok ok ok %k ok ok ok ok ok ok sk ok kbR skokok ok ok sk ok sk ok kR k kb ko ko Rk
92 % 3k %k ok ok ok ok ok ok o ok o ok ok ok ok ok 6 ke ok ok ook ok ok ok ok ok ok
3 s ok ok ok ok ok ok ok sk ok ok ok ok ok %k Kk k
4 %k ok kK k
5 3 ok ok sk ok ok ok ok
6 * kK %
7 * %k
8 *
9 *
10 *

Table 8.5 lists the error measures for the synthesized Trio, and Table
8.6a and 8.6b list the E2 errors with onset_limit and finish_limit set to 50 mil-
liseconds. Onset time (time), duration (dur), pitch, onset differences and finish
time differences are given for each error. Figure 8.2 shows the pitch profile of
the first 17 seconds of the synthesized Trio, and figure 8.3 shows the compari-
son of the analysis (above the line) with the synthesized music (below the line).
Markings above the pitch lines but not below correspond to the errors of Table
8.6a, and markings below the liies but not above correspond to the errors of
Table 8.6b. Figure 8.4 is the music output of the analysis.
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Figure 8.2 shows the pitch profile of the first 17 seconds of the synthesized Trio.
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Figure 8.3 shows the comparison of the analysis (above the line) with the synthesized
music (below the line). Markings above the pitch lines but not below correspond to
the errors of Table 8.6a, and markings below the lines but not above correspond to the
errors of Table 8.6b.
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Figure 8.4 is the music output of the analysis. The note E of the top oboe is absent
bar, and the semi-demi-quaver, note F, in the 9th bar should not be in the analysis.
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Table 8.5

Comparison of Error Measures for the Synthesized Trio

inclusion exclusion combined
El 1.9% 3.9% 2.9%
E2 (limits=10) 31.3% 29.7% 30.6%
E2 (limits=20) 10.1% 8.3% 9.2%
E2 (limits=50) 5.9% 4.0% 4.9%
E2 (limits=100) 5.4% 3.4% 4.4%
E2 (limits=200) 4.8% 2.9% 3.8%
E3 0.6% 0.9% 0.7%
E4 (duration>100) 0.0% 0.4% 0.2%
E5 0.1% 0.3% 0.2%
E6 0.0% 0.0% 0.0%

Table 8.6a

E2 Inclusion Errors for the Synthesized Analysis

(* shows estimates that are also E3 errors)

differences
time dur pitch onset  finish part

12860 1060 32 -10  -300 Oboe2
14170 40 32 1300 -10 Oboe2
16020 170 43 -10 375 Oboe2
16530 30 43 500 -65 Oboe2
20010 230 43 -50 -65 Oboel
22650 50 49 * * Oboel
23410 220 49 -5 125 Oboel
25610 520 46 0 -830 Oboel
26630 30 41 220 -10 Oboe2
26650 310 46 1040 0 Oboel
37120 50 32 0 -470 Oboe2
37130 90 41 -5 -445 Oboel
37220 30 44 " " Oboel

7260 400 41 125 -5 Oboel
37320 100 32 200 -220 Oboe2
37470 160 32 350 -10 Oboe2
40280 360 32 -40  -695 Oboe2
40730 590 32 410 -15 Oboe2
46080 2390 5 30 -80 Bassoon
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Table 8.6b

E2 Exclusion Errors for the Synthesized Analysis

(* shows estimates that are also E3 errors)

differences
time dur pitch onset finish part

9900 310 43 * * Oboel
12870 1350 32 -10 -300 Oboe2
16030 535 43 -10 -375 Oboe2
20060 245 43 -50 -65 Oboel
23415 90 49 -5 125 Oboel
23505 40 48 * % Oboel
23545 85 49 -135 0 Oboel
25610 1350 46 0 -830 Oboel
26410 260 41 220 -10 Oboe2
37120 520 32 0 -470 Oboe2
37135 530 41 -5 -445 Oboel
40320 1015 32 -40 -695 Oboe2
42130 100 43 * % Oboel
46050 2500 5 30 -80 Bassoon

There are two E3 inclusion errors and three E3 exclusion errors and all
are an octave from the corresponding correct event. Therefore there are no E6
errors. The E3 exclusion errors at time 9900 and 42130 milliseconds result from
the failure to detect the higher pitched oboe tone when the oboes are playing
an octave apart. At time 14000 the bassoon plays an octave below the second
oboe, masking the oboe tone for the duration of the bassoon tone and splitting
the analyzed oboe tone in two. This single problem causes two inclusion errors;
one starting at time 12860 and finishing at 300 milliseconds early, and the other
starting 1300 milliseconds late at time 14170. All the E2 errors with onset
or finish differences greater than 100 milliseconds appear to be caused by the
masking of one note by another an octave, a twelfth, or 2 octaves below (12, 19
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or 24 semitones below). In each case, the note with fundamental frequency a
half, a third, or a quarter of the missing note is extracted first, thus removing

the harmonics of the higher note.

By comparison, J.A. Moorer’s analysis of the guitar duet had one

note missing of a total 57 notes, an exclusion error of 1.8% for the measures

E3,E4, E5, and E6.

8.3.5 Reasons for the Errors

The steady state dynamic range (30dB) is enough to cause masking of
quieter tones by louder ones. Incorrect estimates that are harmonically related
to correct ones often occur, especially those an octave apart. The notes of short
duration are more prone to error. The Oboe I exclusion errors at time 9900 and
42130 are the same as those described in 8.3.4 for the analysis of the synthesized
Trio. The long onset and decay of tones, reverberation, dynamic range, and

signal noise, all contribute the remaining errors in the woodwind analysis.

As an example, at time 39900 the bassoon plays a strong tone at 70 dB,
which is rich in harmonics, and has a pitch of 8 (see table 8.7). The fundamentals
of the oboes coincide with the eighth and tenth harmonics of the bassoon. The
higher oboe harmonics suggest a dB level of 30 to 40 dB. The oboe tones are
exclusion errors in the woodwind analysis, but are successfully detected in the
synthesized Trio, where the dB level of all tones are the same.
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Table 8.7

Harmonics at time 39900 msecs

Pitch Frequency Harmonic dB level

(Hz) 1 2 3 4 5 6 7 8 9 10
F8 84.7 51 42 55 61 53 68 31 64 58 57
F 44 679.9 68 63 31 25 23 17 21 12 12 5
A 48 849.5 57 55 34 27 1T 8 22 5 10 7

8.4 Sensitivity Analysis

An analysis of the algorithm was done to determine the sensitivity
of error rates to small parameter variations. The number of data points was
limited, because each iteration required 8 CPU hours and there are many pa-
rameters. Even techniques like Nelder and Mead’s simplex method (1965) are
computationally prohibitive. Several analyses of the full 50 seconds were done to
study the behaviour of the algorithm with different parameters and a sensitivity

analysis was done for the first 17 seconds, this being a representative sample.

Table 8.8 shows the E3 error rates and different parameter weightings
for several analyses of the woodwind Trio. The errors given are the E3 inclu-
sion, exclusion, and combined (E.oms) errors. The parameters are the effective
duration of the sampling window (width), the time between successive pitch es-
timates (delta), and the weightings for the extraction heuristics. H5 was not
used for the analyses of Table 8 8. The first row gives the error measures and
weighting for the analysts described in section 8.3.3.
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Table 8.8

E3 errors for the woodwind analyses

Error Measures Parameters
E3;ne E3.zci B8 comits width delta H1 H2 H3 H4
3.8 15.4 9.6 40 25 .6 5 -1 1.2
4.8 12.3 8.6 40 10 .6 3 -1 1.2
4.1 13.1 8.6 40 10 E° D -5 1.0
2.7 13.7 8.2 40 10 .5 5 S5 1.0
4.2 16.0 10.2 40 10 5 3 25 1.0
6.2 11.4 8.8 40 10 3 3 20 1.0
5.7 11.7 8.7 40 10 .5 2 20 1.0
5.1 10.3 1 40 10 .5 5 20 1.0
6.2 13.7 99 40 10 .6 5 20 1.2
4.4 11.1 7.8 40 10 .6 .5 1.0 1.2
4.4 11.4 79 40 10 .6 .6 1.0 1.2
3.0 14.9 9.0 40 10 1 5 1.0 1.0
3.5 B | 7.3 40 10 .5 .5 1.0 1.0
1.8 15.1 8.9 80 10 D 5 S 1.0
i 18.9 13.4 80 10 95 .5 50 1.0
5.0 14.6 9.8 80 10 .3 D 25 1.0
3.9 11.7 7.8 40 5 4 D S5 12
7.0 14.3 10.7 40 10 4 A5 1.5 .6

It is desirable that the analysis algorithm be insensitive; that is, the
relative change in error rate should be small for small relative changes in the

parameters. The condition number K, for a parameter a is defined by:

E(a + b6a)— E(a), ,  ba

Parameters are varied independently of each other. The parameters
tested are:
- the weightings for the heuristics given in chapter 5,
- the duration of the sampling window (width),

169



the number of harmonics (harms) used in the harmonic summing algo-

rithm, and for the grouping of estimates (section 6.5)

the time to fill a pitch bucket | and

the minimum duration (mindur)

The first 17 seconds of the synthesized Trio was used for the sensitivity
analysis. The parameters used in 8.3.4 are taken as the basis for the sensitivity
analysis. The base parameter values were determined by repeating the sensi-
tivity analysis until a local minimum was found. Each parameter was varied
independently above and below the base value to record the changes in error
rate. The parameters were varied by 109% and 2096 above and below the base
values, although some discrete parameters required a greater increment. The E1
combined measures and condition numbers are given in Table 8.9. This error
measure was chosen because it is the most sensitive to small changes in the onset
and finish times of analysed notes. The optimal parameter setting depends on
the measure used. For example, decreasing the weighting of H4 by 209 de-
creases the E2 combined error (limits=50msec.) from 3.5% to 3.1%, while the
E1 exclusion error increases. Optimality is also dependent on the music being
analyzed. The set of weightings found to work well for the piano music of chap-
ter 7, is far from optimal when applied to the Trio (see the last row in Table
8.8).
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Table 8.9

Sensitivity Analysis

parameter base éaja Elcoms Elcoms El.oms K

value of decreased base increased

parameter parameter error parameter
H1 0.2 .10 2.49% 2.48% 2.49% 04
Hl1 0.2 .20 2.58% 2.48% 2.49% .20
H2 0.24 .10 2.52% 2.48% 2.58% 40
H2 0.24 .20 2.58% 2.48% 2.58% .20
H3 1.6 .10 2.48% 2.48% 2.51% 12
H3 1.6 .20 2.49% 2.48% 2.52% .08
H4 0.9 .10 2.54% 2.48% 2.52% .24
H4 0.9 20 2.69% 2.48% 2.53% 42
H5 0.1 .10 2.48% 2.48% 2.48% .0
H5 0.1 .20 2.48% 2.48% 2.49% .02
harms 8 .20 3.28% 2.48% 3.40% 1.85
width 40msec 1.0 5.73% 2.48% 5.42% 1.31
mindur 50msec .20 2.48% 2.48% 2.49% .02
pitcher 60msec a7 2.59% 2.48% 2.60% .28

The analyser is well conditioned with respect to the parameters for
this base set of parameter values. The algorithm is most sensitive to change
in the number of harmonics (harms), and the width of the sampling window
(width). The parameters harms and width should be considered constants of

the algorithm.

8.5 Conclusion

The error measures presented allow comparisons to be made between
algorithms for analysing music. These error measures may be useful to future
researchers for comparing analyses of other music, and for comparing new al-
gorithms. A sensitivity of the pitch determining algorithm showed no great
changes in errors for small changes in parameters. The woodwind Trio analysis
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was 90.3% accurate and the synthesized Trio analysis was 99.3% accurate, using

the E3 combined measure.



CHAPTER NINE
A Computer Simulation of the Human Cochlea:

A Model for the Discrimination of Superimposed Tones

9.1 Introduction

The human auditory system is proficient at distinguishing superim-
posed tones. A trained musician, for example, can hear a single instrument
playing out of tune in a large orchestra. It is interesting therefore to consider
what is known about human auditory signal processing, and to suggest an hy-

pothesis to bridge the gaps in our knowledge.

Section 9.2 surveys the current knowledge of human auditory signal
processing. Some new mathematical models are presented (section 9.3), and used
to simulate the response of the human cochlea to polyphonic tones. (section 9.3).
The observed amplitude modulation of the response is shown to be enough to

distinguish superimposed tones.

9.2 Human Auditory Signal Processing: Mechanisms of Hearing

Sound waves striking the outer ear (Pinnae) pass through the external
ear canal to the timpanic membrane (ear drum) at the entrance to the middle
ear (Bekesy 1963). The middle ear contains three small bones (ossicles) which
transmit the vibrations from the timpanic membrane to the oval window of the
inner ear. The vibration of the basilar membrane (BM) in the inner ear then
causes neural impulses to be sent along the auditory nerve to higher centres of
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the brain (auditory cortex). Figure 9.1 is a diagram of the human ear.

9.2.1 The Outer Ear

The outer ear is important in the localization of sound. Sound waves
entering the outer ear canal are filtered by diffraction at the Pinnae. This diffrac-
tion pattern differs, depending on the direction of the sound source. Schroeder
(1975) states that this diffraction is responsible for the localization of sounds
above, behind, and in front of a listener, when the sound impinging on each ear

is identical in amplitude and phase.

9.2.2 The Middle Ear

The middle ear contains three connected bones, called the ossicles,
which link the timpanic membrane to the cochlea. They are, from the outside,

the incus, malleus and stapes.

The middle ear acts as an acoustical impedance transformer, to match
the low impedance of the air to the high impedance of the cochlear fluid (or
perilymph). This impedance transformation of a factor of 20 gives a 5 fold

improvement in power transmission through the inner ear (Moller 1973).

The ossicles also act as an “automatic gain control” protecting the
inner ear from overloading and possible damage (Schroder 1975). At high sound
intensities the mobility of the ossicles is reduced by involuntary contraction of
adjoining muscles. This compression of the incoming signal is maintained for
several milliseconds. Therefore the signal is not peak clipped, but compressed
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by a constant factor over many cycles. This nonlinearity of the middle ear is
partly responsible for combination tones and aural harmonics at high signal

levels (Allen 1977).

9.2.3 The Inner Ear

The cochlea (from the Greek word for a spiral shaped snail) is the fre-
quency selective part of the ear and is about 35 millimetres long in humans. The
cochlea is partitioned by the BM. This membrane supports the organ of Corti,

where the 25,000 hair cells convert the BM displacement to neural impulses.

G. Ohm (1843) was the first to suggest the frequency selectivity of
the cochlea. Hermann von Helmholtz (1863) proposed that the BM was under
tension and that the varying tension accounted for the varying resonance. G.
von Bekesy (1960) observed through a microscope, waves travelling along the
basilar membrane from the stapes (the innermost ossicle bone) to the apex of
the cochlea. The travelling waves caused by pure tones, increase in intensity as
they move toward the apex, and are then abruptly attenuated. Low frequency
signals travel further along the BM than high frequency signals before being
attenuated; therefore the point of maximum stimulation of the BM is nearer
the stapes for high frequencies, and nearer the apex for low frequencies. The
characteristic frequency for any point on the BM is the frequency that produces
a maximum response at that point. If z is the distance of a given point from the
apex and f. is the characteristic frequency for that point, then f, is proportional
to exp(kz), where k is constant. The band-width of the cochlear tuning curve
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increases with characteristic frequency. Bekesy (1960) showed that the tuning
property of the BM was caused by exponentially increasing stiffness of the BM,
and not tension as Helmholtz had presumed. The tuning curves derived by von
Bekesy were broader than those of normally functioning cochleas, because he
worked with dead animals and applied high amplitude signals. Rhode

(1971) obtained much narrower tuning curves with a wider dynamic range than
Bekesy. He used a Doppler phenomenon at the nuclear level (Mossbauer effect)

that enables amplitudes as small as 20 Angstroms to be measured.

9.2.4 The Auditory Nerve and Higher Centres of the Brain

Neurons are the functional units of the nervous system and are in-
terconnected at synapses. If the total post-synaptic potential reaching the cell
body at any time exceeds a threshold, the neuron fires and a spike potential is
transmitted along the axon to the synapses, which then produce post-synaptic

potentials in neighbouring neurons. Synapses can be inhibitory or excitatory.

The spontaneous firing rate of individual auditory nerves is typically 50
spikes per second. The maximum firing rate is limited by the refractory period
of about 1 millisecond between spikes, but is rarely greater than 200 spikes per
second. When the BM is vibrating, neurons are more likely to fire as the BM is
moving upwards. The probability of a neuron firing is proportional to the rate of
upward motion of the BM. By observing a group of neighbouring auditory nerve
fibres at a point of excitation on the BM, volleys of firing occur in synchrony
with the incoming signal. Rose et al. (1969) observed that the average firing
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rate of a neuron is proportional to the positive-half-wave-rectified part of the
incoming signal.

With continued stimulation, a given neuron becomes depleted of the
chemicals required for spiking, and the probability of firing is decreased until the
chemical balance is restored. This mechanism is called adaptation. Adaptation
is a contributing factor in the compression of signals with different intensities.
Efferent (from the brain) nerve fibres provide negative feedback from the audi-
tory cortex, and contribute to signal compression.

Kiang et al. (1974) observed that auditory nerve fibres responded to
all signals of frequency lower than the nerve’s characteristic frequency, but did
not respond to signals above the characteristic frequency. The response to low
frequency signals was about 40 dB below the maximum response for any partic-
ular nerve. This concurs with Bekesy's observation that signals of low frequency
travel through regions of high characteristic frequency before reaching their
point of maximum resonance on the BM. The tuning curves of Rhode and Kiang
are narrower than Bekesy's.

Although Kiang and Rhode derived their tuning curves using labora-
tory animals, Harrison et al. (1981) demonstrated the similarity between human
and animal action potential tuning curves. Q;o4p is defined as the ratio between
the centre frequency, and the frequency difference between spectral points at a
level of 10 dB below the maximum response. By using a tone on tone masking
procedure, Harrison found the Q;04p to be 4.2 at 2 kHz, 6.5 at 4 kHz, and 8.5

at 8 kHz.



9.2.5 Place vs Periodicity Theories of Pitch Perception

The place theory was first proposed by Ohm and Helmholtz, who
claimed that pitch was determined by the position of maximum vibration on
the BM. Seebeck (1841) proposed that periodicity, and not place, was the mech-
anism for pitch recognition. This was based on the argument that some periodic
signals without a fundamental are still perceived as having the same pitch as
the fundamental, although there is no stimulation ai that point on the BM.
Ohm and Helmholtz argued that Seebeck’s hypothesis was erroneous. Schouten
(1962) reinstated the periodicity theory with his experiments on residue pitch.
Houtsma et al. (1972) demonstrated that pitch is not determined at the cochlea
but in the auditory cortex, because residue pitches are perceived whether the
components are played together through one ear or separately, but simultane-
ously, through both ears. Both theories are consistent with data now available
on the tuning characteristics of the BM and auditory nerves (Bekesy, Kiang,
Rhode). At low characteristic frequencies the harmonics are resolvable on the
BM (place theory), and at high characteristic frequencies all the harmonics are
superimposed to give a time domain replica of the incoming signal (Rose et al.),

allowing the periodicity to be determined in the auditory cortex.

9.3 Models of the Cochlea

Several models of the cochlea have been proposed. Flanagan (1962)
made a mathematical and electrical model based on Bekesy's data for the BM
response. Kim et al. (1973) and Schroeder (1975) introduced nonlinearities of
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the cochlea into the model. J.B. Allen (1977), among others, introduced models
to account for the narrower tuning curves of Kiang and Rhode. Three models are
considered here: an electrical analogue model (9.3.1), a Gaussian tuning curve
(9.3.2), and a mathematical model fitted to Kiang's data (9.3.3). The first is a
simplification of Flanagan’s model, and the other 2 are new models proposed by
the author. These models were chosen because they fit the empirical data well,
but they are also easier to calculate than the more rigorous models based on
cochlear mechanics (eg. Allen 1977). Figure 9.2 compares stylized tuning curves

of Bekesy and Kiang with the mathematical models of this section.

9.3.1 Electrical Analogue

Taking a simplified version of Flanagan’'s model (1962), the mass of the
BM can be considered to act in the same way as an electrical inductor, atten-
uating high frequency signals. Energy losses of the perilymph (cochlear fluid)
and BM act in the same way as an electrical resistance. The compliance of
the basilar membrane acts like a capacitor, storing the mechanical vibration.
Stiffness (inverse of compliance C) was found by Bekesy (1960) to vary expo-
nentially with the distance from the stapes. Schroeder (1975) suggested making
R a quadratically increasing function of amplitude, to account for combination

tones resulting from non-linearities of the cochlea.

Here the impedance of the BM is modelled as:
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Figure 92 compares the empirical tuning curves of Bekesy and Kiang et al. with the
mathematical models of section 9.3. (CF is the characteristic frequency and SF is the incomming signal frequency).



Z(w)=jwL+ R+ .—1-,
jw

where w is the radian frequency, 5§ = v/—1; jwL represents the mass
impedance; R, the resistive loss in the cochlear fluid and the BM; and jwC the

admittance.

The BM response is:

1
M=, -

~ Zw) 1-LCw?+jRCw

To study the behaviour of this function, consider the transformation:

y = 1
IM|*’
z = w?LC,
R?C
k= y
L
Lemma 9.1
If y=(1—-1z)° +kz, then y is minimal at z =z = 1 — g, and the
k2

minimal value for y i Ymin = k — 5

Lemma 9.2

If ¥y = aymin where a is a constant greater than 1, then

&= zoi\/k(l - i—)(a - 1).

182



The proof for Lemmas 9.1 and 9.2 can be derived from elementary

calculus.
M is maximal if and only if y is minimal, therefore from Lemma 9.1:
maz|M(w)| = [
¢ “\ k4 -k
1—k
at w = wo = \/ —*

LC *

Using Lemma 9.2 with a = 100, if M(w) = 0.1M(wp) then,

Ww?LC = wZLC + \[99k(1 — 2).

k is small compared to 1, therefore
w2
k 2 0.01[1 — —]? wdL?C>.
Wo

Table 9.1

Values of k' for the Electrical Analoque Model

input signal frequency wo et o k] k!,
> 2 kHz 12,000 0.85 1.2 00078 .00195
1 kHz 6,000 0.8 1.3 00131 0048
500 Hz 3,000 0.7 1 .00263 .0246

where w; and ws are characteristic frequencies such that:

M(w,) = M(wz) = 0.1M(wp), w; < wy,
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K, =0.01[1 - L)%

and

w32
@:mm-é,

If this is an accurate model of the basilar response, then ki and kb
should be nearly equal for each characteristic frequency. The average value of
k! and k%, over the range of required characteristic frequencies is used for sim-
ulation. To fit Kiang's data, the model should be more left-skewed for high
characteristic frequencies, and more right-skewed for low characteristic frequen-
cies.

The response of the basilar membrane M can be considered to be either
a function of the frequency w of the incoming signal, for a fixed point on the
BM with characteristic frequency wg, or to be a function of the position on the
basilar membrane, denoted by wp, for some incoming pure tone of frequency w.
Nonlinearities of the cochlea response are ignored, for computational economy.
The BM response to a given signal can be considered to be the superposition of

pure tone responses.

9.3.2 Gaussian Model

For the Gaussian Model the BM response is:
M(w) = i B

M(w) is symmetrical in the frequency domain, and
Mpaz = M(wo) = 1.
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If w is such that M(w) = 0.1M;,2, then

__ log, 10
=T

Table 9.2

Values of k for the Gaussian Model

input signal frequency wo :’—,: fﬁ ki ko
>-2 kHz 12,000 0.85 1.2 102 57
1 kHz 6,000 0.8 1.3 57 25
500 Hz 3,000 0.7 1.6 25 6

where w; and w, are characteristic frequencies such that:

M(w;) = M(wz) = 0.1M(wo), w1 < wg,

and
log, 10 .
k. == W, fors = 1,2.

In this model k is taken as the average of k; and ko for the range of

frequencies of interest.

9.3.3 zt* Root of z Model
The tuning curves derived from Kiang's data (see figure 8.2) show a
rapid increase in frequency response then an asymptotic tapering off with in-

creasing frequency. One function that behaves like this is:

elog, z
z

y = k(elog,(¥/z) — 1) = k( —1),

where e is the natural logarithm base, (& 2.71828).
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The derivative of y is:

dy _ ek(1 - log, z)
dz z? '

therefore y is maximal at

2= e With Yz = 0.

In this model the BM response is:

M(w)= e k(%) = e¥, where z = :)_w‘
0

Exponentiation is a monotonic function, therefore M(w) is maximal at

w = wy and Mpqez = M(wg) = 1. As w increases, M(w) tends to e~ *. If w is

such that
M(w) = 0.1 M4,
then
1
k(28T _ 1) = log, 0.1 ~ —2.30.
Table 9.3
Values of & for the z;;, root of z Model

input signal frequency wo e o ky ko

> 2 kHz 12,000 0.85 1.2 156 156

1 kHz 6,000 0.8 1.3 80 79

500 Hz 3,000 0.7 1.6 29 28

where:

o log, 0.1
‘T Eog, (=) - 1)

for ¥ = 1,2.
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9.4 Computer Simulation

Using the models of section 9.3, a computer model is used to simulate
the BM response to various signals. The parameter k is first derived for the range
of characteristic frequencies required. The inverse Fourier transform of this
frequency response is calculated, and multiplied (in the complex time domain)
with successive segments of the incoming signal. The Fourier transform is then
determined to give the convolution of the BM response with the spectrum of
the incoming signal. This is then displayed as a time-varying plot for all the
characteristic frequencies of interest.

Amplitude modulation with beating frequency of the input fundamen-
tal, occurs at many points on the simulated cochlea. This phenomenon, hence-
forth termed inter-harmonic amplitude modulation (IHAM), was investigated
to determine its applicability as a pitch-determining criterion for superimposed
tones.

The IHAM detector can be an idealized neuron with an exponentially
decaying threshold. When the signal for that particular point on the cochlea
exceeds the threshold, the IHAM detector fires, and the threshold is reset to a
level greater than the strength of the signal that caused the firing. Consequently,
larger peaks can be detected, while the smaller ones are rejected. The [HAM
detector also adapts to changes in the average signal level.

Alternatively, IHAM detectors can model the firing behaviour of groups
of neighbouring neurons.

Figure 9.3 shows the time-varying, simulated neural firing probabil-
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ity as a function of characteristic frequency. Time (spanning 40 milliseconds)
increases vertically up the graph. The horizontal widths of the lines are pro-
portional to the firing probabilities. The input signal is the steady state of a
bassoon tone with fundamental frequency 494 Hz. The z** root of z model is
used. Signals are assumed to travel from points of high characteristic frequency
(on the right of the graph) to points of low characteristic frequency (on the
left). Also, the times of maximum firing probability occur at the rate of the

fundamental frequency, even for the higher harmonics.

Figure 9.4 shows the signal level for one point on the cochlea (charac-
teristic frequency = 590 Hz) as a function of time for the bassoon tone. Figure
9.5 shows the time-varying threshold level for the IHAM detector at this point.
The threshold decay rate is 8.5% per millisecond. The maxima correspond to
the [HAM firings. Figure 9.6 gives the time-varying firing times of all the [HAM
detectors in the characteristic frequency range 0 to 1.2 kHz. The time difference
between firings for most characteristic frequencies corresponds to the period of

the incoming signal.

The IHAM detector can distinguish the fundamentals of two simultane-
ous tones. Figure 9.7 shows the time-varying, simulated neural firing probability
of a two-tone signal as a function characteristic frequency. Time increases ver-
tically up the graph. The horizontal widths of the lines are proportional to
the firing probabilities. The input signal contains two superimposed saw-tooth
waves with frequencies, 261.6 Hz and 207.2 Hz (a major third). The Gaussian
model for the cochlear frequency response is used here.
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Figure 9.8 gives a time-varying plot of IHAM firings as a function of
characteristic frequency. Figure 9.9 gives a histogram of the times between
firings of all the [HAM detectors in the characteristic frequency range 0 to 2 kHz.
The marked peaks correspond to the periods of the two tones, and result from
the periodic behaviour of many IHAM detectors during the simulation. Figure
9.10 gives a histogram of the times between firings of all the [IHAM detectors in
the characteristic frequency range 0 to 2 kHz for the Trio example of figure 2.10.
The threshold decay rate is 4% per millisecond. The 3 highest peaks correspond
to the period of the bassoon tone (197 Hz, G p22) and an octave below the two
oboes tones (294 Hz and 456 Hz). Figure 9.11 gives a histogram of the times
between firings of all the [HAM detectors in the characteristic frequency range
0 to 2 kHz for the Trio example of figure 2.10. The threshold decay rate is 21%
per millisecond. The 2 highest peaks correspond to the periods of the two oboes

tones (1.09 milliseconds for Bb p49 and 1.72 milliseconds for D p41).

The computer simulations of the cochlear response to superimposed
tones, showed that the phenomenon of amplitude modulation was sufficient to

identify the fundamental frequencies of the tones.

It is interesting that this model also matches human pitch perception

of pure tones and tones with the fundamentals absent.

9.5 Cybernetic Model

Timbral cues, stereophonic location, and context play an important role
in the separation of acoustical events by human listeners. However, at the level
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Neural Firing Probability vs Chorocteristic Frequency
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Figure 19.3 plots the time wvarying, simulated neural firing probability as “a
function of characteristic frequency. Time increases vertically up the graph (40

milliseconds). The horizontal widths of the lines are proportional to the
probabilities. The input signal was the steady state of a bassoon tone.



Neural threshold vs time
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Figure 9.4 plots the time varying threshold level for the 1HAM detector
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Neural Spike Detector vs Cochlear Frequency
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Figure 9.8 is a time varying plot of all the IHAM detector firings in the CF range

0 to 3 kHz.
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Figure 9.9 is a histogram of the inter-firing times of all the IHAM detectors in
the CF range 0 to 2 kHz. Note the strong peaks corresponding to the periods of the

two tones.
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Figure 9.10 is a histogram of the inter-firing times of all the IHAM detectors in
the CF_range 0 to 2 kHz, for the Trio seament of figure 2.10
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Figure 9.11 is a histogram of the inter-firing times of all the IHAM detectors in
the CF range 0 to 2 kHz, for the Trio segment of figure 2.10



of pitch estimation, the IHAM detector is a reasonable hypothesis to account for

the human ability of polyphonic perception.

Consider two periodic signals with fundamental frequencies; f; and fs,
presented to the ear. The firing pattern in the acoustic nerve would resemble
that of figure 9.8. If the acoustic nerve signal is then passed through a set of
IHAM detectors, with threshold decay times in the range 1 to 20 milliseconds,
some will fire periodically at the rate of f;. Others will fire at the rate of f,,
while others will fire at harmonically related frequencies or at random. If the
THAM detectors’ output of period f; and f> is significant, then a neural network
of positive feedback delay-loops with varying delay-times could autocorrelate
these signals to determine the periodicities. The attention of the higher cortical
functions could be directed to either component of the incoming signals. These
cortical functions would take into account other cues (phase, timbre, amplitude
and context) to determine the correct pitches. The IHAM detector could be a
single neuron with a threshold decay half-life of the same order as the period it

is required to detect, or a neural network serving the same purpose.

9.6 Conclusion

The response of the human cochlea to polyphonic tones was simulated.
The observed amplitude modulation of the simulated response was found to be
enough to distinguish superimposed tones. A neural mechanism was proposed
(IHAM detector) to account for the differentiation of simultaneous tones. This
mechanism can detect the pitch of sinusoidal tones as well as the pitch of periodic

tones with missing lower harmonics.
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CHAPTER TEN

Conclusions and Future Research

10.1 Summary

The central problem of this thesis is the automatic identification of
simultaneously sounding tones from acoustical music recordings. Recorded mu-
sic is entered via an analog-to-digital converter. Each digitized sample is then
analysed to determine the pitches of the constituent tones. Finally the pitch
estimates of the samples are grouped together in time to determine the pitches,

onset times and durations of the notes.

Several signal processing algorithms were investigated to determine
their applicability to the problem of separating the parts of polyphonic mu-
sic, and new procedures and heuristics were developed to improve these results.
The heuristics help to distinguish correct pitch estimates from harmonically re-
lated incorrect ones. An iterative procedure for extracting the harmonics of the
most likely estimates from spectra gives a further improvement by reducing the

effect of other tones present.

An interactive graphics signal processing system was developed by the
author to test the algorithms, and to determine the optimal parameters for
small segments of musical data. These algorithms were applied successively to
generate pitch estimates for complete musical pieces. The pitch estimates were
automatically grouped into notes and transcribed in standard music notation.
The author developed software for determining key signatures and the required
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accidentals to fully automate the process of generating output from the computer
analyses in a form that is easy for musicians to recognize.

Error measures were defined to compare musical recordings with anal-
ysed results. These measures were used to determine the accuracy of analyses
and the sensitivity of the algorithms to variations in parameters. The pitch ac-
curacy was 99% for a three part synthesized Trio, and between 909 and 100%
for piano recordings with as many as 5 notes sounding simultaneously. This is a
significant advance on the work of Moorer (1975). The method used here allows
a wide range of fundamental frequencies ranging from 50 Hz to 1 kHz (a musical
range of over four octaves), and unlike Moorer’s work, no restriction is made on
the musical intervals.

The pitch grouping algorithms and plotting procedures can run in real-
time, but the spectral analysis and pitch analysis procedures are much slower.
For a piece of music of length 10 seconds, a pitch profile takes 6 seconds of
central processing time (cpu time), the music plotting takes 9 seconds cpu time,
but determination of the pitch estimates requires 500 seconds of cpu time (on a
VAX 11/780).

A computer model for the response of the human cochlea to sound was
developed, based on empirical research in psychoacoustics and auditory physi-
ology, in an attempt to bridge the knowledge gap between high-level cognitive
processes and low-level neural processes. A phenomenon of amplitude modula-
tion was observed, corresponding to the fundamental frequencies of the applied
tones. Some mechanisms were proposed to help explain the human ability to
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discriminate simultaneous tones.

10.2 Future Research

Future research areas are proposed in this section for improving the
results of this thesis. These areas include heuristics for pitch selection, im-
proved music plotting, and pitch grouping strategies that exploit knowledge of

the musical style.

The pitch grouping described in 6.5 could be improved by adaptively
changing the time to empty a bucket, to match the average duration of the notes
near to that time. This integrating function could also be weighted in favour of
the stronger pitch estimates, instead of using a constant value. The minimum
strength for accepting a pitch estimate could be varied to accommodate dynamic
variations of the music. Pattern recognition techniques could be applied. For

example, trills could be detected by matching an incomplete trill with a template.

Heuristics using musical knowledge and context could also improve the
accuracy. For example, use could be made of the fact that most parts move by
1 or 2 semitones from one note to the next. Steps of 3, 4 and 8 semitones are
the next most frequent. Notes of short duration (for example, trills and passing
notes) often step by 1 or 2 semitones. Rules of harmony such as the resolution

of dissonance and the expected movement of parts could also be applied.

For the algorithms described in this thesis, most errors are harmonically
related to the tones being played. The identification of two tones sounding an
octave apart is particularly difficult. The algorithms could be further refined to
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use time varying spectral templates for the musical instruments. A harmonic of
one tone of given frequency could be extracted from the signal without removing

the harmonic components of the same frequency but belonging to different tones.

With the music plotting system, there are still a number of drawbacks
which could be improved. Notes of duration less than a crotchet are plotted as
independent short notes, and could be beamed together in groups of a crotchet
duration. Notes of long duration are not split and tied across bar lines. The
placement of bar-lines could be made more accurate by using adaptive beat
tracking (see Harris 1982). And finally, the part allocation or voicing algorithm
could be improved to track parts as independently moving melodies, by mini-

mizing note steps from one note to the next in each part.

10.3 Applications

The computer simulation of the cochlea could be used to aid in the de-
velopment of cochlear implant hearing aids. Research in Neurophysiology and
Psychoacoustics could be done to investigate inter-harmonic amplitude modula-

tion in the auditory nervous system.

This research could also find application in other signal processing areas
such as speech analysis. Communication channels with multiple signals could

be separated into their constituent signals.

The direct application of this research is in the area of automatic musie
printing, and as an automatic music scribe for musicologists. The music anal-
ysis and plotting software described in this thesis could be implemented (at a
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reasonable cost) on any general purpose computer system with A/D conversion
facilities and graphic output.

The analysis algorithms developed here could form the basis for a mu-
sician’s assistant. The pitch profile would be a useful aid to transcription, and
would provide an objective means for comparing performed music with a musical
score. It would rely on the musician’s visual pattern recognition, aural ability
and musical knowledge. It may be possible in the future to engineer this exper-
tise, and develop an expert system for transcribing sounded polyphonic music.
This system could apply adaptive rhythm tracking (Harris 82), improved pitch
grouping, and heuristics about the musical context.

By using an FFT processor with a 1024 point transform time of less
than 10 milliseconds, it is feasible to build a dedicated hardware system, based
on the results of this research, to transcribe polyphonic music automatically in
real time. With the advent of very large scale integrated (VLSI) circuits and
the ever diminishing computing costs, such a device will soon be economically

viable.
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