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Abstract

Cells generally begin their lives as a pluripotent stem cell that gradually differentiates into

specialised cell fates over time. However, recent advances in cell reprogramming have suc-

cessfully converted differentiated cells to other cell types, by overexpressing a combination

of transcription factors, fundamentally altering our view of cell identity. This could have

large implications for the field of regenerative medicine as cell reprogramming offers the

potential to regrow, repair or replace tissues and organs which have been damaged from

age or disease. Despite much attention, combinations of transcription factors to drive re-

programming were mostly determined through trial and error, taking up considerable time

and resources. To this end, computational methods have been developed to simulate the

reprogramming process in silico with the goal of guiding the hypotheses to be experimen-

tally validated. These models have provided a variety of perspectives to the process of cell

reprogramming, leading to the discovery of novel cell conversions. However, they all suffer

from limitations in terms of generalisability and scalability.

Here we categorise the existing computational approaches for cell reprogramming and

critically evaluate their applicability in a broader context. We then propose a novel method

which leverages emerging multimodal single cell data. By integrating these different modes

of data, we are able to create a more holistic model of a cell’s regulatory systems which

provides a more accurate and scalable model for reprogramming. We demonstrate the

applicability our method by recapitulating known properties of cell differentiation and

reprogramming in both simulated and experimental data.

We hope that this thesis will contribute to our understanding of the role of gene reg-

ulation in cell reprogramming by synthesising the existing computational models. Fur-

thermore, our novel method may be a starting point for future computational models to

integrate data from multiple modalities to create more comprehensive models for cell reg-

ulation.
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Chapter 1

Introduction

Throughout all of history, breakthroughs in our understanding of biology was instigated

by developments in technology. For example, the invention of the microscope led to the

revelation of the cell as the fundamental unit of life. And the development of genetic

sequencing techniques led to the discovery of DNA as the blueprint for all of life. Now in

today’s information age, we are constantly developing new technologies, leading to scientific

breakthroughs at an unprecedented scale, helping us battle countless diseases, and improve

our quality of life.

In a world where data is constantly becoming cheaper and more accessible, a major

roadblock to our progress is the ability to develop mathematics and statistics to model

these new types of data. In this thesis, we will critically assess the successes and limitations

of the existing mathematical models for cell reprogramming, and develop a novel model to

address some of these limitations.

This thesis is structured as:

• Chapter 1: a brief overview of the biological and technological background behind

cell reprogramming. We focus on the significant value of potential clinical applications

and also the roadblocks that currently limit its feasibility.

• Chapter 2: a synthesis of the variety of statistical models that have currently been

developed for cell reprogramming. We analyse the perspectives that they offer to

understanding the regulatory dynamics governing cell reprogramming, and also assess

their applicability and generalisability.

• Chapter 3: a presentation of the innovative components of new computational mod-

els, and the corresponding strategy of how they could be measured in practice. We

define a regulation potential which measures the ability for a transcription factor to
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regulate a gene, and we propose and evaluate a number of possible models that use

this regulation potential to simulate transcription factor perturbations.

• Chapter 4: a critical evaluation of the final model derived in Chapter 3 using both

simulated and real experimental data. We demonstrate that our model is able to

recapitulate known properties of cell differentiation, and cell reprogramming via a

series of simulation studies. Furthermore, using real experimental data on mouse

hair follicle development, we find that our model successfully predicts the result of

overexpressing two key transcription factors.

• Chapter 5: a conclusion to the thesis discussing the features and limitations of our

work as well as future directions that could be taken.

1.1 Cell reprogramming

Multicellular organisms generally start their lives as an individual pluripotent cell that

must differentiate into more specialised cell types (Waddington, 1966). This process of

cellular differentiation allows the creation of a spectrum of cell types that perform all the

necessary functions for an organism’s survival. These specialised cells often have biological

mechanisms that help to maintain the cell’s identity, ensuring it can reliably perform its

required task. However, it has recently been shown that transitioning between these spe-

cialised cell types (Takahashi and Yamanaka, 2006), called cell reprogramming, is indeed

possible, and has been demonstrated in a variety of cell types and species. This can be

performed by many techniques where the current standard is to use lentiviruses to integrate

a desired gene into the host cell’s genome. This can be used to ectopically overexpress some

transcription factors (TFs) in cells (Aydin and Mazzoni, 2019) with the hope of changing

the cell’s identity.

Recent developments in cell reprogramming has been of great interest to the field of

regenerative medicine, as it opens up the possibility to regenerate cells that our body has

lost, and cannot normally reproduce. For example, type 1 diabetes occurs when the insulin-

producing beta cells in the pancreas are attacked by the immune system. However, recent

experiments have shown that overexpressing Pdx1 and MafA in pancreatic alpha cells have

2



Figure 1.1: Illustration of Waddington’s Epigenetic Landscape Model.

Source: Kazutoshi Takahashi, Shinya Yamanaka; A developmental framework for induced pluripotency. Development 1

October 2015; 142 (19): 3274–3285. doi: https://doi.org/10.1242/dev.114249

been able to convert them into insulin-producing beta cells, reversing type 1 diabetes in mice

(Xiao et al., 2018; Furuyama et al., 2019). Additionally, Parkinson’s disease is attributed to

the degeneration of dopamine neurons in the brain, which have been successfully replenished

using reprogrammed cells in mice (Kim et al., 2002). This has led to human trials to treat

Parkinson’s disease using reprogrammed cells which are expected to start soon (Barker

et al., 2017; Parmar et al., 2020). Cell reprogramming has been considered as a potential

cure for a variety of other diseases including heart disease (Aguirre et al., 2013), spinal cord

injury (Khazaei et al., 2017), macular degeneration (Chichagova et al., 2018), hearing loss

(Bermingham-McDonogh and Reh, 2011), and aplastic anemia (Melguizo-Sanchis et al.,

2018), among others. Furthermore, reprogramming cells from the same patient offers an

additional advantage of minimising the risk of an acute rejection, a common problem with

other transplant-based therapies (Shaik et al., 2015).

Despite the vast potential for therapeutic applications of cell reprogramming, a major
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roadblock is the challenge of determining the combination and quantity of transcription

factors to overexpress for a desired cell conversion. Historically, this was done experimen-

tally by trial and error which is time consuming and expensive (Aydin and Mazzoni, 2019;

Grath and Dai, 2019). For reference, there are an estimated 1600 human transcription

factors (Lambert et al., 2018), which means there are more than 600 million combina-

tions of three transcription factors to overexpress. Furthermore, current reprogramming

experiments are very inefficient, often with < 1% yield of the target cell (Takahashi and

Yamanaka, 2016), making it difficult to use for therapeutic purposes. Finding more ef-

ficient combinations of transcription factors and better understanding the process of cell

reprogramming could significantly increase this yield, and its feasibility for clinical use.

The field of cell reprogramming would greatly benefit from a computational method to

predict the effect of perturbing a transcription factor. This could allow many TF combi-

nations to be quickly tested, guiding the combinations and quantities to be experimentally

validated, reducing the time and cost of discovering new cell conversions. However, devel-

oping such a computational method has been a challenge because of the sheer complexity

and number of components involved in gene regulation (Spitz and Furlong, 2012).

1.2 Gene regulation

According to the Central Dogma of Molecular Biology, a cell performs its functions by using

its DNA to create RNA which in turn makes useful proteins (CRICK, 1958). However,

different cells need to perform different functions, and so regulating the extent to which

genes are expressed is a crucial process for a cell’s function. This process is managed by a

range of mechanisms including DNA methylation, micro-RNAs and transcription factors.

In our work, we focus on the gene regulation through transcription factors, which begins

with the transcription factors binding to enhancers, that is, regions along the genome

that can upregulate or downregulate a gene’s expression. This requires that the enhancer

sequence contains a transcription factor binding site, that is, a part of the genomic sequence

that matches the transcription factor’s motif. Many models assume that the more TF

binding sites there are, the more likely a transcription factor can bind to it, leading to

upregulation/downregulation of a target gene.
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Transcription factor binding is further complicated by the fact that the DNA is wound

up in many layers to ensure that it can compacted into the nucleus of a cell. This means

that only accessible regions of the DNA can be bound by the transcription factor, regardless

of whether it has a matching motif. Furthermore, this accessibility can vary between cells,

even if they are of the same cell type which contributes to the heterogeneity within cell

populations. However, a sub-category of TFs, called pioneer transcription factors, are

believed to open up the local chromatin structure which allows for other transcription

factors to bind to the enhancer. This facilitates the upregulation or downregulation of

genes, and so it is believed that they may play a key role in cell reprogramming (Zaret and

Carroll, 2011; Iwafuchi-Doi and Zaret, 2016).

Figure 1.2: Gene regulation through enhancers.

Source: Alexandre Marand, Tao Zhang, Bo Zhu and Jiming Jiang. (2016). Towards genome-wide prediction and

characterization of enhancers in plants. Biochimica et biophysica acta. 1860. 10.1016/j.bbagrm.2016.06.006.

When a transcription factor binds to an enhancer, it can form a complex with other
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proteins that attaches to the promoter of a gene. This is a chromatin interaction called a

DNA loop that occurs between two parts of the DNA sequence. This process is difficult to

model as an enhancer can regulate many genes (Fukaya et al., 2016; Qin et al., 2020), and

a gene can be regulated by many enhancers (Osterwalder et al., 2018; Qin et al., 2020).

Transcription factors are coded by genes, which themselves are in turn regulated by

other transcription factors. This leads to a network of many interconnected genes that

regulate each other, often forming complex feedback loops and cascades, allowing cells to

remain in stable states. These are called Gene Regulatory Networks (GRNs), and as an

indicator to the complexity of these networks, it is estimated that humans have more than

20,000 genes. Understanding the GRN is an important task for understanding the effect

of perturbing a transcription factor, as it would provide insight to the downstream result

on gene expression, and cell identity. However, inferring the structure of GRNs is a very

challenging task, and is an active area of research further elaborated upon in Chapter 2.

1.3 Technology

Many recent advances in biology have been supported by the development of sequencing

technologies which act as a lens into biological processes at the molecular level. Historically,

sequencing technologies could only process bulk samples, that provided a single measure-

ment for a mixture of cells. Although very useful, it is limited in that it only provides an

overall average measurement, and does not provide insight into the heterogeneity within

the cell population. In recent years however, we have seen the rise of single-cell sequenc-

ing techniques, which allow us to overcome this problem and obtain measurements on

individual cells, revealing the heterogeneity of the cell population (Kulkarni et al., 2019).

This is crucial for cell reprogramming where we observe vastly varying results when cell

populations are exposed to the same perturbations (Weinreb et al., 2020).

Many modes of data can now be collected at the single cell level, which give insight into

the different regulatory components of cells. A few important examples include:

• scRNA-seq which measures the level at which a gene is being expressed. After prepro-

cessing, this would result in a gene× cell matrix of count data. Current technologies
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are able to sequence on the order of 102-105 cells for ∼20000 genes with a total read

depth (i.e., count) ranging from 104-106 per cell (Haque et al., 2017). Here, higher

throughput protocols, that is methods which can sequence a large number of cells,

often have lower read depth. This means that high throughput technologies tend to

be very sparse, often attributed to “drop-out” events where lowly expressed genes are

not captured, and will appear as a zero in the data.

• scATAC-seq which detects accessible regions (often called peaks) along the genome.

After preprocessing, this would result in a binary peak × cell matrix of accessibility

data. However, regions along the genome can grouped into bins giving a bin × cell

matrix with count data. Current technologies are able to sequence on the order

of 102-104 cells for a read depth ranging from 103-104 per cell (Fang et al., 2021).

scATAC-seq protocols often have a very low detection rate, leading to data that is

sparser than scRNA-seq.

• Hi-C which detects the spatial chromatin interactions along the DNA. After prepro-

cessing, this generates a region× region matrix of count data with the detected con-

tacts between each pair of genomic regions. However, these matrices can be extremely

sparse, so they are often binned into large intervals (often 10kb-25kb) (Cameron et al.,

2020).

Most techniques are only able to capture one of these modes. While it is still insightful,

such single-layered modality provides us with only one perspective of the cell’s intracellular

dynamics. Recently, new multimodal single cell techniques are able to sequence multiple

modes of data from the same cell. This includes sci-CAR (Cao et al., 2018), SNARE-seq

(Chen et al., 2019) and SHARE-seq (Ma et al., 2020) which can perform both scRNA-

seq and scATAC-seq within the same cell. These multimodal sequencing techniques will

be able to reveal much more about the intracellular dynamics governing a cell’s function.

Furthermore, as these multimodal sequencing techniques are still in their infancy, there is

a need for novel mathematical and statistical models to use this data to describe a cell’s

intracellular dynamics.

In general, a constant challenge is that omics data is generally both quite sparse and
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noisy which may not be appropriate for standard statistical analyses. In addition to this,

scRNA-seq can often fail to capture lowly expressed genes. Consequently, we may have

insufficient data on transcription factors that are known to play an important role, but

are simply lowly expressed (Martin and Sung, 2018; Haque et al., 2017). This is further

complicated by the limited data of this type, as sequencing experiments can be expensive,

and require specialised equipment and expertise. This motivates the need for simulation

frameworks to generate synthetic data which has been a powerful tool to evaluate and

benchmark bioinformatics tools.

1.4 Data and simulations

In our thesis, we leverage data from multimodal sequencing technologies as this provides a

more holistic view of the regulatory mechanisms occuring at the cellular level. In particular,

we focus on the SHARE-seq data collected by Ma et al. (2020) on adult mouse skin cells.

We choose this data set as it is the highest quality matched scRNA-seq and scATAC-seq

data available at this time (Ma et al., 2020) and a subset of these cells form a natural binary

cell fate decision. In this case, Transit Amplifying Cells (TACs) differentiate into either

an Inner Root Sheath (IRS) lineage or a Hair Shaft lineage (containing Medulla, Cuticle

and Cortex Cells). In particular, this example of directed differentiation of hair cells is of

great interest in regenerative medicine, as hearing loss can occur when auditory hair cells

die in the ear. The ability to reprogram surrounding cells into auditory hair cells could

potentially be a treatment for hearing loss (Walters et al., 2017; Luo et al., 2013; Duncan

and Fritzsch, 2013).

When developing mathematical models, it is important to benchmark them to assess

the efficiency and effectiveness of each model. This requires an extensive range of data sets

to see the models’ performance under different situations. However, experimental data is

expensive and time-consuming to collect, so there is a demand for simulation frameworks

which can produce large artificial data sets that resemble the real data. Many simulation

frameworks have been developed, such as Splatter (Zappia et al., 2017) for scRNA-seq

data and simATAC (Ghaziani et al., 2020) for scATAC-seq data. However, many of these

methods only simulate one mode of data, which can’t model the emerging multimodal data,

8



and these methods are usually designed to model the distribution of the data, rather than

the biological process of how the data is generated.

A more recent framework, dyngen (Cannoodt et al., 2020), addresses this issue by

modelling the amount of pre-mRNAs, mature mRNAs and proteins for each gene. This

has many useful applications, in particular modelling the amount of pre-mRNA and mature

mRNAs allows the use of RNA-velocity (discussed in Section 2.2). However, this doesn’t

incorporate or use scATAC-seq information. This means that there are limited simulation

frameworks available for newer types of multimodal data being generated, despite the

growing demand from the mathematical models being developed.

1.5 Summary

There are still many gaps in our understanding of gene regulation and the mechanisms

behind cell reprogramming. Modelling the gene regulatory process and the effect of TF

perturbation has proven to be a mathematical and computational challenge. However, with

the availability of new technology that has rapidly developed in recent years, we now have

access to a vast amounts of data that can allow us to resolve these unanswered questions.

In this thesis, I will close this gap by leveraging an emerging type of data to bring new

insights with a statistical model for cell reprogramming and developing a corresponding

simulation framework.
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Chapter 2

Statistical perspectives on cell

reprogramming methods

Quantifying the gene regulatory network, how gene expression changes over time, and

under perturbations has always been and remains a key challenge in cell biology, and is an

important prerequisite for cellular reprogramming. The computational challenges have been

the interpreted translation of these biological questions into a mathematical or statistical

problem. However, the translation of problems from biology to statistics have remains

a one-to-many mapping, which has resulted in a wide variety of approaches and models

that address similar but different aspects of these problems. My novel contribution in

this chapter is the synthesis of current approaches into four main categories, and critically

evaluating some of the existing models for these biological processes and examining their

successes and limitations. The current computational literature on cellular reprogramming

can be broadly classified into four main categories:

• RNA Velocity: A method that measures how a cell’s gene expression is changing

at the time it is sequenced. This method shifts the perspective of gene expression

from a static value, to one that changes over time.

• Gene regulatory network (GRN) inference: Many methods exist to infer the

GRN, allowing us to understand how transcription factors and target genes are inter-

acting with one another. Here will explore SCENIC as it integrates scRNA-seq and

ATAC-seq data in its estimation.

• TF identification for cell reprogramming: A variety of methods that predict

the key transcription factors that could drive cell reprogramming. These methods

often perform a GRN inference step, to guide the selection of candidate TFs.
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• Modelling transcription factor perturbations: Many methods to quantitatively

model the GRN, and predict how gene expression changes in response to a perturba-

tion in transcription factor concentration.

2.2 GRN Inference

2.1 RNA Velocity

2.4 TF Perturbation

Source

Cell

Target

Cell

2.3 TF Identification

TF1 TF4TF3TF2

TF 2

Predict cell state after 

in silico TF overexpression

Identify candidate TFs for a 

desired cell conversion

Identify target genes for each TF

Embedding 1

E
m

b
e

d
d
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chaning at a point in time
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Gene 7
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Gene 6

TF 4

Gene 3
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Gene 1
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Challenge

How do we reprogram a 

source cell to a target cell?

?

?

Gene 7

TF 1

Gene 4

Gene 5

Gene 6

TF 4

Gene 3
Gene 2

Gene 1
TF 3

TF 2

Figure 2.1: Overview of varying problems in systems biology and their respective goals.

2.1 RNA Velocity

A significant limitation of current RNA sequencing technologies is that the sequencing

protocol results in the destruction of the cell. This means that any measurements only

represent a static snapshot of the cell’s state in time, which in reality would be constantly

changing.

RNA Velocity is a method to partially resolve this problem, by modelling the rate of

change of RNA in a cell at the time of sequencing (La Manno et al., 2018). Knowing this

velocity effectively predicts the future state of the cell in the short-term. To calculate this,
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it is assumed that the cell should be in a steady state equilibrium where the production of

spliced mRNA from unspliced mRNA should balance out with the degradation of spliced

mRNA. This means that any excess or deficit in mRNA splicing should manifest as a

subsequent change in gene expression.

Application

RNA velocity was originally applied to the developing mouse and human brain, to predict

the future cell state on the timescale of hours. It has since been applied to many other cell

types and has been generalised to model transient cell states (Bergen et al., 2020).

Limitations

Unfortunately, using this method doesn’t predict what happens after a perturbation for

which we do not have the data for, which is a necessary goal in modelling cell reprogram-

ming.

2.2 Gene regulatory network inference

Deciphering the gene regulatory network is an important task in understanding how a cell

chooses and maintains its identity. As a result, many algorithms have been developed to

infer the GRN using a variety of techniques such as ordinary differential equations (ODEs),

correlation and partial correlation, mutual information, Boolean models, and regression

(Pratapa et al., 2020). In this section, we will explore the algorithm behind SCENIC (Aibar

et al., 2017), a widely used method which performs well in a high profile benchmarking

study (Pratapa et al., 2020). Furthermore, it infers the GRN by incorporating different

biological components of gene regulation which will be a key motivation for our novel model

introduced in Chapter 3.

SCENIC

The key idea behind this technique is to identify the target genes that each transcrip-

tion factor regulates which defines the GRN. This is done in two main steps: identifying
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coexpressed genes, and then narrowing them down to direct targets.

Step 1: identifying coexpressed genes

For a gene to be a target of a TF, coexpression is generally considered a necessary condition

so that when a TF expression varies, its target genes should vary accordingly. SCENIC

does this by using a random forest regression for each TF to find any coexpressed genes.

The choice of a random forest regression is motivated by the desire to capture nonlinear

associations, as opposed to correlation based methods (Pouyan and Kostka, 2018).

Step 2: narrowing down to target genes

Although coexpression is considered a necessary condition for a gene to be a target of a

TF, it is not always a sufficient condition. This is because many TFs can regulate each

other, forming a complex GRN where a perturbation of one TF can cause large downstream

effects through intermediary TFs. Thus, it is an important task to identify the direct targets

amongst the coexpressed genes.

SCENIC address this by filtering the list of target genes to those where the TF-binding

motif is enriched in the area around the transcription start site (TSS). This can provide

a more accurate picture of the direct targets of each transcription factor by removing

downstream targets for which the TF cannot bind to its TSS.

Once it has narrowed down the list of target genes for each transcription factor, they

are grouped together into a single module, called a regulon, all of which forms the GRN.

Application

Now that SCENIC has identified each TF’s targets, it is able to measure the activity of each

regulon in a cell, based on the enrichment of that gene set. The regulon activity can then

provide insight on the key processes taking place inside the cell, which is used to cluster

cells based on cell type, and also reveals cellular subtypes. SCENIC has demonstrated its

utility in data sets from different species (human and mouse), and different complex tissues

(oligodendroglioma and melanoma) (Aibar et al., 2017).
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Limitations

Although SCENIC has been shown to be quite successful (Pratapa et al., 2020), there are

a few key limitations. Firstly, coexpressed genes are narrowed down by only using TF

motif enrichment in the area around the TSS. This is not necessarily representative of the

regulation that occurs via enhancers which can be up to 1Mb away from the TSS of the

gene (Pennacchio et al., 2013). Furthermore, SCENIC is only able to identify gene targets

of each TF, and does not infer GRN dynamics. This is an important task if we wish to

model the effect of perturbing transcription factors, which will be explored in Section 2.4.

2.3 Transcription factor identification for cell repro-

gramming

The potential for cell reprogramming to be applied in regenerative medicine has received

much attention in recent years. However, one of the greatest roadblocks to this progress is

the challenge of identifying the transcription factor combinations that will yield a desired

conversion.

Fortunately, the development of microarray and RNA sequencing technologies gave rise

to a more holistic view of the gene expression in a cell and led to the compilation of extensive

gene expression databases. This facilitated a new wave of computational tools to identify

transcription factor combinations for cell reprogramming, even some of which have become

commercial products (Rackham et al., 2016).

The general motivation behind all of these methods is that to reprogram a source cell

type to a target cell type, a key TF should be relatively highly expressed in the target cell

type, with its target genes also highly expressed.

2.3.1 D’Alessio et al.

One of the earlier TF identification methods uses the idea that key TFs for reprogramming

to a target cell type should not only have the TF relatively highly expressed in the target

cell type, but also expressed in a cell type specific fashion (D’Alessio et al., 2015).

14



Algorithm

To quantify this, D’Alessio and colleagues define a specificity score for each TF in each

target cell type, that is how well the TF is highly expressed in the target cell type, but

not other cell types. This considers the true expression of the TF in all cell types from

a database, and compares it to an “ideal” case. In this ideal case, the TF will be highly

expressed in the target cell type but not expressed at all in the “background” cell types

(all other cell types in the database).

The Jensen-Shannon Divergence is used to measure the difference between these two

distributions. Let Px(c) represent the normalised true expression of TF x in each cell

type c, and let Qx(c) represent the normalised ideal expression of TF x in each cell

type c. Notice that this means Qx(c) = 1 if c is the target cell type and Qx(c) = 0 if c is

any other cell type. Then the Jensen-Shannon Divergence is given by

JSD(P ||Q ) = 1
2
DKL(P ||M ) + 1

2
DKL(Q ||M ),

where M = 1
2
(P +Q) and DKL refers to the Kullback–Leibler divergence so that

DKL(P ||M ) =
∑
c∈C

Px(c) log

(
Px(c)

Mx(c)

)
.

The Jensen-Shannon Divergence can be interpreted as a smoothed and symmetrised version

of the Kullback–Leibler Divergence. This can be calculated for all TFs giving each of them

a score, then allowing them be ranked on their importance for each cell type. This ranked

list is taken to be the key TFs to drive cell reprogramming.

Application

D’Alessio and colleagues were able to use this algorithm to determine a combination of

key TFs to reprogram human fibroblasts to Retinal Pigment Epithelium (RPE) cells, a

previously unperformed cell conversion (D’Alessio et al., 2015). This combination of TFs

was experimentally validated which opens up the potential for cell reprogramming to be a

treatment for vision loss as age-related macular degeneration is often caused by the loss of

RPE cells over time.
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Limitations

However, a limitation of this approach is that it only looks at the gene enrichment of the TFs

rather than all genes. This means that it doesn’t consider the entire GRN which may play

an important role in cell fate decisions during cell reprogramming. Furthermore, D’Alessio

and colleagues. don’t consider the identity of the source cell, which would already have

its own regulatory system in place, potentially influencing the effect of perturbing certain

TFs.

2.3.2 CellNet

Another early TF identification method is CellNet (Cahan et al., 2014) which aims to

incorporate information about the GRN in the TF identification. Its algorithm can be split

into three main steps.

Step 1: inferring the GRN

CellNet starts by constructing a general GRN that is common to all cell types. This is

done by taking a database of different cell types1 and using the Context Likelihood of

Relatedness method, a mutual information based algorithm for GRN inference.

Next, the general GRN is broken down into cell type specific GRNs to account for

different cell types having different regulatory systems. This is achieved by performing

community detection on the general GRN to identify core sub-networks. Then to allocate

these to different cell types, gene set enrichment analysis is performed on these sub-networks

to quantify its importance in one cell type compared to all other cell types.

Step 2: measuring the GRN activity

In a similar way to SCENIC’s regulon activity, CellNet calculates a GRN activity2 to

measure how active a GRN is for a particular cell type. The Raw GRN Activity (RGs,c
G )3

1called “cell/tissue types” by Cahan and colleagues
2called “GRN status” by Cahan and colleagues
3called “RGS status” by Cahan and colleagues
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for a GRN G in a sample s of cell type c is given by

RGs,c
G =

∑
y∈G

zcyw
s
y

where

• zcy is the z-score of the expression of gene y in cell type c relative to all other cell types

from the database. This term favours genes that are relatively highly expressed in

the cell type of interest.

• wsy is a weight proportional to the expression of gene y in the sample s. This term

favours genes that are relatively highly expressed in the sample. Weights can be

assigned to prioritise genes that are found to be important from the GRN inference

step (e.g., from a random forest classifier).

However, the Raw GRN Activity will be strongly dependent on the size of the GRN, as

larger GRNs will sum over more genes and naturally have a larger RGs,c
G . So to allow for

comparison between GRNs, it is rescaled to the GRN Activity (Gc
s,G) by dividing it by the

average RGs,c
G across all cell types.

Gs,c
G = 1000−

RGs,c
G

(
∑

k∈C RG
s,k
G )/|C|

where C denotes the set of cell types and so that (
∑

k∈C RG
s,k
G )/|C| denotes the average

RGs,c
G of GRN G in sample s across all cell types.

Step 3: calculating network influence score for a TF

Now that the activity of each GRN can be calculated, a cell reprogramming experiment

can be interpreted as trying to change the activity of some GRNs in a sample (i.e., the

source cell type) to match the desired target cell type.

To this end, Cahan and colleagues define a Network Influence Score4, denoted N s,c
x,G, to

estimate the importance of a TF x to convert the GRN G in sample s to match the target

cell type c defined by

N s,c
x,G =

∑
y∈G z

c
yw

s
y

|G|
+ zcxw

s
x (2.1)

where

4called N by Cahan and colleagues
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• |G| is the number of target genes of x in G.

• zcy (similarly zcx) is the z-score of the expression of gene y (TF x) in cell type c

relative to all other cell types from the database. This term favours genes/TFs that

are relatively highly expressed in the cell type of interest.

• ws,cy (similarly ws,cx ) is the difference in expression of gene y (TF x) for the sample

s and target cell type c in the database. This term favours genes (or TFs) that are

differentially expressed in source cell type and the target cell type.

This way, the first term in (2.1) represents the dysregulation of the target genes of

TF x between the source and target cell type5. The second term in (2.1) represents the

dysregulation of the transcription factor x between the source and target cell type. This

score can then be used to rank different TFs on how likely they may drive a desired cell

conversion.

Application

Cahan and colleagues showed that this algorithm could successfully identify transcription

factors to reprogram mouse neurons and cardiomyocytes. This method has since been

generalised to SingleCellNet which uses scRNA-seq data to classify cells into different cell

types (Tan and Cahan, 2019).

Limitations

A limitation of this approach is that it only considered gene expression data, which means

that regulatory links are established between coexpressed TFs and genes, even though they

may not be direct targets.

2.3.3 Mogrify

Extending on the models produced so far, Rackham and colleagues took advantage of

the expanding omics databases to incorporate the downstream effect of overexpressing

5Cahan and colleagues calculate the sum whereas here we are showing the mean.
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transcription factors (Rackham et al., 2016). Their algorithm, Mogrify, comprises of three

main steps6.

Step 1: differential expression calculation

Firstly, a score is calculated representing how differentially expressed each gene is for each

cell type7. To do this, a database of gene expression profiles is used, and in this case the

FANTOM5 data set was chosen.

To compute a score for differential expression, the expression of a gene for a cell type

needs to be compared to some background. The background is chosen to be the cell types

that are not too related to the cell type of interest, but also not too distant. This set of

cell types is determined by creating a tree based on cell ontology and by choosing breaking

points near the top of the tree. This can be contrasted to the work of D’Alessio and

colleagues who use all other cell types in their database as the background.

Now that the background has been created, Mogrify calculates a score for differential

expression for each gene y for a cell type c as

Gc
y = |Lcy|(− log10 P

c
y ) (2.2)

where Lcy is the log-transformed fold change in the expression of gene y in the cell type c

compared to the background. Here, P c
y is the adjusted P-value for gene y in cell type c

compared to the background. This way, a high score will correspond to a gene that is both

highly expressed and differentially expressed.

Step 2: calculating network influence score for a TF

Like CellNet, Mogrify aims to account for the effect of overexpressing TFs on their gene

targets by calculating a Network Influence Score. However, Mogrify uses a couple extra

databases to incorporate additional omics information to estimate the GRN:

• the MARA database, providing protein-DNA interactions, identifying TFs that bind

to the promoters of genes.

6Rackham and colleagues use 7 steps in their original paper which we group into 3 main steps
7called sample by Rackham and colleagues
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• the STRING database, providing many other types of interactions like protein-protein

and biological pathways.

Then, to quantify the influence of a TF x onto its gene targets y in the GRN G, a weighted

sum of gene scores is calculated by

N c
x,G =

∑
y∈Gx

Gc
y ·

1

Ly,Gx
· 1

Oy,Gx
(2.3)

where

• G denotes the GRN that is being used, in this case it will be the GRN derived from

either the MARA or the STRING database.

• Gx denotes the local subnetwork of G around the TF x. By default, it is chosen to be

the set of genes that are at most 3 nodes away from x. This way, the summation in

Equation (2.3) is over all genes y in this subnetwork Gx.

• Ly,Gx is the number of steps away gene y is from TF x in network Gx. This way, more

weight can be allocated to the direct targets of a TF as opposed to its downstream

targets.

• Oy,Gx is the outdegree of the parent of y in subnetwork Gx. This weighting prioritises

the specificity of a TF regulating important target genes. This way, TFs that regulate

a very large number of genes do not appear overly important.

Step 3: rank TFs and filter

The scores from each of Gc
x, N

c
x,MARA and N c

x,STRING are used to rank the transcription

factors in 3 different lists, and their ranks are summed together to give a final rank of the

importance of each transcription factor in each cell type.

However, for a desired cell reprogramming experiment, the source cell may already

have some key TFs highly ranked, indicating that the TF and its targets are already highly

expressed. Thus, the list of TFs is filtered down to remove those which are highly ranked

in the list for the source cell type.

Furthermore, many TFs would share similar gene targets, and so it may not be necessary

to include all such TFs in the final list of key TFs. To account for this, a TF is removed
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from the list if there is a higher ranking TF that regulates over 98% of its targets. This

produces a final ranked list of TFs which are deemed to be the key TFs for the desired cell

conversion.

Application

Mogrify was successful in recapitulating known TFs for reprogramming experiments, to a

higher accuracy compared to previous methods. Rackham and colleagues also used the

algorithm to discover two new human cell conversions that were experimentally validated,

namely fibroblast to keratinocyte and keratinocyte to microvascular endothelial cells. The

list of key TFs for any conversion are available on a web based tool, and is also commercially

used under the same name.

Limitations

Mogrify relies on information from databases like MARA and STRING to infer the GRN,

which means that it can only incorporate experimentally validated regulatory relationships.

However, this may only be a snapshot of the true underlying regulatory relationships.

2.3.4 Lisa

In a similar way to SCENIC, Lisa (Qin et al., 2020) is an algorithm that aims to predict

the TFs that regulate a set of genes (in this case, we are interested in a set of differentially

expressed genes). However, as opposed to using gene coexpression and TF binding motifs,

it uses data from ChIP-seq experiments. These experiments can determine the affinity to

which a TF binds to each part of the genome. These regions can be interpreted as enhancers

which will regulate some nearby genes.

Step 1: calculate regulatory potential

Firstly, Lisa uses a database of ChIP-seq experiments to calculate the regulatory potential

Rxy of each TF x to regulate each gene y. This is given by

Rxy =
∑
k∈Ey

wyksxk (2.4)
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where Ey is the set of enhancers within 100kb of the transcription start site (TSS) of gene

y, the value sxk is the signal strength from the ChIP-seq or DNase-seq experiment for TF

x on enhancer k, and wyk is a weight that decays exponentially with the linear genomic

distance between enhancer k and the TSS of gene y. This way, the regulatory potential

Rxy sums up the regulatory potential from each enhancer to obtain an overall measure of

how strongly a TF can regulate each gene. However, to allow for comparison between TFs,

the regulatory potential is normalised as

R′xy = log(Rxy + 1)−
∑

j∈Y log(Rxj + 1)

|Y|
(2.5)

where Y represents the set of genes so that R′xy log transforms Rxy and compares it to the

mean log-transformed values for Rxj over all genes j.

Step 2: identify TFs to predict query gene set

To identify a list of key TFs, Lisa aims to discriminate the query gene set from 3000

background genes, chosen to represent a variety of different genes. This is done by an

L1-regularised logistic regression using the normalised regulatory potential which finds an

optimal set of TFs to discriminate the query gene set.

Step 3: rank TFs

The motivation behind the ranking procedure is that key TFs should be binding to the

enhancers close to many of the query genes, so the removal of these TFs should significantly

lower the predictive power of the TF set calculated in Step 2. For each TF x and gene y,

the enhancers around the TSS of gene y are removed and the regulatory potentials are re-

calculated using Equation (2.4)8. After normalisation using Equation (2.5), the differences

in regulatory potential, ∆R′xy are calculated, weighting the results with the coefficients

from the logistic regression. The ∆R′xy of each gene in the query set are compared to the

background gene set by a Wilcoxon rank-sum test. The TFs are then ranked by P-value,

giving the list of key TFs.

8This step is called “in silico deletion” by Qin and colleagues
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Application

Qin and colleagues show that Lisa is able to recapitulate the key TF for multiple knockdown

and overexpression experiments (Qin et al., 2020). This included a GATA6 knowckdown

experiment on a stomach cancer cell line, upregulation of AR on a prostate cancer cell

line and upregulation of GR on a lung cancer cell line among others. They demonstrated

that their ranking system generally ranks the ground truth more accurately than earlier

methods that perform the same task using similar data.

Limitations

The use of this algorithm relies on ChIP-seq data for all potential TF regulators which

may not be practically possible due to the limited number of antibodies that can be used.

A workaround proposed by Qin and colleagues is to use chromatin accessibility data from

DNase-seq or ATAC-seq paired with TF binding motifs as a proxy for the affinity of a TF

to regulate a gene.

2.3.5 ANANSE

Using a similar idea to Lisa, ANANSE incorporates enhancer information to build a more

accurate estimate of the GRN (Xu et al., 2020), extending the Mogrify algorithm. There

are two key steps in this algorithm.

Step 1: inferring the GRN

Firstly, a ChIP-seq database is used to identify putative locations of enhancers and an

intensity score for each enhancer. The probability of a transcription factor binding to an

enhancer is then predicted with a logistic regression, using the motif enrichment Z-score

and enhancer intensity as predictors.

Similar to Lisa, a regulation potential9 is then calculated for each TF x on gene y as

a weighted sum of TF binding intensities onto each enhancer k of the gene.

Rxy =
∑
k∈Ey

wyksxk (2.6)

9called “TF-gene binding score” by Xu and colleagues
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where Ey is the set of enhancers within 100kb of the transcription start site (TSS) of gene

y, sxk is the predicted binding intensity of TF x onto enhancer k, and wyk is a weight that

decays exponentially with the linear genomic distance between enhancer k and the TSS of

gene y. This way, the regulatory potential Rxy sums up the regulatory potential from each

enhancer to obtain an overall measure of how strongly a TF can regulate each gene.

This quantifies the overall potential for a transcription factor to regulate a gene via

enhancers. However, for a true regulatory relationship, one would expect that both the

transcription factor and target gene should be highly expressed. Thus, a TF-gene inter-

action score is then calculated to be the mean of the TF-gene binding score, the TF

expression and gene expression.

Pxy =
Rxy + g(x) + g(y)

3

where g(x) and g(y) denote the gene expression of TF x and gene y respectively. This way,

a high TF-gene interaction score means that the TF and target gene are highly expressed,

with the possibility for regulation via enhancers. This score can then be used to identify

the strongest TF-gene interactions which can be used as an estimate of the GRN.

Step 2: calculating network influence score for a TF

In a similar way to Mogrify, a network influence score can be calculated for each TF

measuring how important it will be for a desired conversion. To do this, a differential GRN

is obtained by taking the TF-gene interactions of the target cell type and removing any

interactions present in the source cell type. This differential GRN can be interpreted as

the required regulatory changes for the desired cell conversion. The network influence score

N s,c
x,G of a TF x on the differential GRN G of source cell type s and target cell type x is

calculated by

N s,c
x,G =

∑
y∈Gx

|Gs,c
y |

Px,y
Ly,Gx

where

• G denotes the differential GRN calculated above.

• Gx denotes the local subnetwork of G around the TF x. By default, it is chosen to be
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the set of genes that are at most 3 nodes away from x. This way, we are summing

over all genes y in this subnetwork.

• |Gs,c
y | is the log-transformed fold change of the expression of gene y between the source

cell type s and target cell type c.

• Px,y is the TF-gene interaction score of TF x onto gene y as calculated in step 1.

• Ly,Gx is the number of steps away gene y is from TF x in subnetwork Gx. This

way, more weight can be allocated to the direct targets of a TF as opposed to its

downstream targets.

Essentially, N s,c
x,G sums the expression of each gene target, weighted by the TF-gene inter-

action score, and the distance of regulation. This means that a high scoring TF will have

target genes that are differentially expressed, and have a strong potential to bind to the

enhancers near the gene. All TFs are then ranked by their network influence score, which

forms the final list of key TFs.

Application

ANANSE was shown to successfully recapitulate many key TFs for known cell reprogram-

ming experiments to a higher accuracy than all earlier approaches. Xu and colleagues also

compile a list of key TFs in different human tissues.

Limitations

However, a major limitation of ANANSE (and Lisa) is that they assume that the regulatory

effect of an enhancer decays with linear genomic distance. This does not account for the

three dimensional spatial chromatin structure where distal enhancers can form DNA loops.

Furthermore, ANANSE doesn’t consider the accessibility of the enhancers which is required

for a TF to be able to bind to the enhancer.

2.3.6 Transcription factor identification summary

All of these transcription factor identification methods have led to the discovery of many

novel cell conversions, with exciting applications in regenerative medicine.
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Table 2.1: Summary of TF identification methods for cell reprogramming.

Method Year Data GRN Estimation Ranking Algorithm

D’Alessio

et al.
2015 RNA-seq N/A

Jensen-Shannon Divergence

to identify TFs that are

highly expressed in a cell-

type specific way.

CellNet

(Cahan et

al.)

2014 RNA-seq

Mutual infor-

mation to build

main network,

community detec-

tion to identify

sub-networks

GRN activity estimated for

each subnetwork. Network

Influence Score calculated

to estimate impact on GRN

activity.

Mogrify

(Rackham

et al.)

2016 RNA-seq

Known inter-

actions from

protein-protein in-

teraction databases

(STRING and

MARA)

Network Influence Score

calculated to estimate im-

portance for TF to regulate

required genes.

Lisa (Qin

et al.)
2020

ChIP-seq,

DNase-seq

Regulatory poten-

tial estimated from

ChIP-seq

Identifying key regulators

of differentially expressed

genes based on regulatory

potential.

ANANSE

(Xu et al.)
2021

RNA-seq,

ChIP-seq

Regulatory poten-

tial estimated from

ChIP-seq

Network Influence Score

calculated to estimate im-

portance for TF to regulate

required genes.

However, they are limited in that they are only able to rank transcription factors, failing

to identify the combinations or quantities that are needed for a desired conversion. They

also do not determine the effect of overexpressing these TFs and so does not account for the
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efficiency of such perturbations. Furthermore, by only considering the source and target

state, these methods would not identify transcription factors that need to be expressed

transiently in the reprogramming process.

In addition, most of these methods were validated and benchmarked against each other

by recapitulating key TFs of experimentally validated reprogramming experiments. How-

ever, this may be a source of bias as this does not account for possible TF combinations

that have not yet been discovered. This motivates the need for a model that can predict

the effect of perturbing a transcription factor.

2.4 Modelling transcription factor perturbations

To model the process of cell reprogramming, one must model the underlying gene regu-

latory network and quantitatively predict the effect of perturbing a transcription factors.

Several types of models have been proposed, which each bring a different perspective to

the complex GRN dynamics. The models that will be discussed include Boolean network

models, dynamical systems models and regression models.

2.4.1 Boolean network models

The first approaches to model a GRN came in the form of Boolean Networks (Bornholdt,

2008), where the activity of each gene is simplified into an “on” or “off” state. This way,

every gene is represented as a node in a network, and regulatory relationships between TFs

and genes are represented as a directed edge. The network then follows fixed rules which

govern how each state of the network leads to a future state. As there are only finitely

many possible states, one can find steady states or cycles which reflect stable cell states,

and the downstream effect of perturbing TFs on these states can then be modelled.

Although the model is simple, it has been successfully used to model the GRN of

differentiation and reprogramming processes like hematopoiesis, cardiac development and

myeloid differentiation (Mandon et al., 2019).
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Figure 2.2: Identifying key TFs in a Boolean network model.

Hopfield neural networks

An innovative approach to model the evolution between cell states was developed by Lang

and colleagues, who used Hopfield neural networks (Lang et al., 2014) to model the entire

epigenetic landscape, as described by Waddington (Waddington, 1966). This landscape H

is constructed by using known experimental results:

H = Hbasin +Hbias +Hculture +Hswitch

where

• Hbasin ensures that observed cell states are valleys in the landscape, that is stable

steady states.

• Hbias adds bias towards the TFs that will be introduced in the reprogramming ex-

periment.

• Hculture incorporates the culture conditions which may add environmental signals that

are favourable to certain cell fates.

• Hswitch adds the effect of regular cellular development where the cell state naturally

evolves over time.
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This assigns an “energy” to each possible cell state (a binarised gene expression space)

which determines how cells transition from high to low energy states. Lang and colleagues

successfully used this model to recapitulate some known key TFs for a variety of repro-

gramming protocols, such as pluripotent stem cells, cardiomyocytes, and neurons.

Toggle switches

Okawa and colleagues introduced another powerful application of Boolean networks, which

can infer properties of the GRN, creating a more biologically meaningful model (Okawa

et al., 2016). This model is motivated by the theory that binary cell fate decisions are

directed by antagonistic TF pairs, often called toggle switches and these TF pairs may

be key candidates for cell reprogramming (Heinäniemi et al., 2013).

In this scenario, a stem/progenitor cell state would have a balanced expression of these

two TFs, but the overexpression of either TF would cause the other to be suppressed and

eventually lead the cell into a distinct daughter cell fate. Thus, identifying such pairs could

reveal the key TFs that drive cell fate, and possibly cell reprogramming.

This was done by calculating a Normalised Ratio (NRD) Difference for any TF pair

between a progenitor and daughter cell type defined by

NRD =

CP
1

CP
2
− CD

1

CD
2

CP
1

CP
2

where CP
1 and CP

2 are the expression values of TFs 1 and 2 in the progenitor cell type and

CD
1 and CD

2 are the expression values of TFs 1 and 2 in the daughter cell type.

For a binary cell fate decision, the NRD can be calculated for each TF pair in both

lineages. Then, the TF pairs with significant NRD in both lineages in opposite directions

are taken to be the lineage determinants.

Using this, Okawa and colleagues were able to reconstruct the GRN in a Boolean Net-

work only using gene expression data. This allowed them to recapitulate known toggle

switches, and also discover a novel toggle switch for the mouse neuronal stem cell system,

which they experimentally validated.

However, a limitation of this approach is that it may only find markers of the cell fate,

and not necessarily the drivers of the lineage specification.
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IQCELL

A recent approach, IQCELL (Heydari et al., 2021), aims to take advantage of single cell

data which provides a greater resolution into the process behind cell differentiation. Firstly,

they arrange the cells into a pseudo-time ordering which can be used to infer the causality

of gene interactions. They then score gene-gene interactions using mutual information

between gene pairs, and then correlation is used to determine the sign of the regulation

(activation or repression). The gene expression is then binarised and the pseudo-time

ordering is then used to form a gene interaction hierarchy. A modified network inference

strategy, the Z3 engine, is used to find the logical rules representing how the cell states can

evolve, by assigning up to four activators, and two repressors per gene.

This method has the advantage of using a data-driven approach to determine the reg-

ulatory relationships in the Boolean Network in an unbiased way. In contrast, the earlier

methods required extensive experimental literature to assign model parameters which would

fail to incorporate regulatory relationships that have not been experimentally validated.

Limitations

However, the Boolean aspect of the model requires the simplification of genes into an “on”

or “off” state. This may not be representative of the true gene activity, for example some

cell fate decisions may require genes to be expressed at specific intermediary levels, which

not be able to be captured in a Boolean model.

2.4.2 Dynamical systems model

Another natural model for cell reprogramming would be to use dynamical systems, which

can model how variables change over time. This has made dynamical systems fundamental

to developments in many fields of science, which study how phenomena change over time.

In our case, we wish to model the gene expression as a function of transcription factor con-

centration over time. These dynamical systems can be solved, numerically or analytically,

which can reveal steady states and their stability, corresponding to stable cell states.
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Figure 2.3: Identifying key TFs in a dynamical systems model.

Genetic feedback controllers

The time can be treated as continuous, which can be modelled with ordinary differential

equations (ODEs). For example, Del Vecchio and colleagues (Del Vecchio et al., 2017)

devise a blueprint for a genetic feedback controller, and model the cell reprogramming

process using ODEs. Here, the regulatory effect of n TFs x = [x1, x2, . . . , xn] on each other

is modelled as a set of ordinary differential equations, for i = 1, 2, . . . , n:

dxi
dt

= Hi(x)− γixi + ui

where Hi(x) is the Hill function capturing the GRN regulation of TF xi, γi is the constant

decay rate of TF xi, and ui is the input of the perturbation corresponding to TF xi.

This model was used to show that simply overexpressing TFs to some preset value may

not be able to reprogram a source cell type to the desired cell fate. This is significant

31



because the current protocols for transcription factor overexpression forces the key TFs to

be expressed at some high preset level. For a desired cell conversion, the key TFs may need

to be maintained at some intermediary level, so näıvely overexpressing the TFs to a high

level may force the cell to bypass the desired cell state, ending up in an undesired terminal

fate.

Del Vecchio and colleagues provide the blueprints for an alternative method for TF

overexpression that resolves this issue. This takes the form of a genetic feedback controller

that is able to continuously update the value of ui so that it is equal to Gi(x
∗
i − xi) where

x∗i is the desired target concentration and xi is the current concentration. This allows the

concentration of the desired TF to reach the desired state, and at this point, the input is set

to 0 and the endogenous system takes over and maintains the stability of the reprogrammed

state.

This has been theoretically applied to model the process of reprogramming to pluripo-

tency using two transcription factors Nanog and Oct4.

Cell-cell communication

In a similar way, Franke and MacLean (2021) use ODEs to model how cell-cell communi-

cation influences cell fate decisions during differentiation. They use the following model

dG

dt
= −β1G+

α1A+ α2G

1 + γ1A+ γ2G+ γ3GP
dP

dt
= −β2P +

α3B + α4P

1 + γ4B + γ5P + γgGP + γ7GX

dX

dt
= −β3X +

α5G+ α2G

1 + γ8G+ γ9C

where G, P and X are the transcription factor concentrations, βi are the degradation rates,

αi are the activation rates, γi are the inhibition rates, and A, B and C are external signals,

which arise from cell-cell communication. This allows them to model the heterogeneity

that is observed in cell reprogramming experiments (Weinreb et al., 2020) and provides a

biologically meaningful explanation for it.

They successfully apply this to model the antagonistic TF pair GATA1 and PU.1 in

the commitment of a myeloid progenitor cell to the erythroid/megakaryocyte lineage or

granulocyte/monocyte lineage.
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Difference equations

In a dynamical system, the time can be considered in discrete intervals, which can then

be modelled with difference equations. For example, Ronquist et al. (2017) model xk, the

gene expression of the cell at time k, based on the following difference equation

xk+1 = Akxk + Buk

where

• Ak is the transition matrix, representing the time-varying changes to the cell state

at time k. It is calculated from time series data of the source cell type, representing

the natural cell cycle dynamics.

• B is the regulatory matrix indicating the regulatory effect of each TF on each gene.

This is estimated using the number of transcription factor binding sites within 5kb of

the transcription start site of the gene. It is also weighted by its activity (activator

or repressor) using information from a literature search, and also weighted by gene

accessibility from publicly available DNase-seq data.

• uk is to be estimated, representing the binary input vector indicating which TFs to

introduce. The optimal value of uk is found by minimising the Euclidean distance

between the final state xT and the target state z.

Ronquist and colleagues use this algorithm to demonstrate that some TFs have a preference

for being added at the start or end of the cell cycle. This suggests the importance of

considering the timing for overexpressing TFs in cell reprogramming, especially as a cell’s

state is constantly changing. Furthermore, they successfully recapitulate combinations of

key TFs for known cell reprogramming experiments with fibroblast as the source cell type

and embryonic stem cell, myotube and heart cell as the target cell types.

Limitations

However, estimating the parameters of large dynamical systems models can be rather diffi-

cult, making these methods difficult to generalise to more complex systems. This is because

they are often determined from results in experimental literature, or they need to be mod-

elled with time course data which may not be readily available in public databases. Even
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if one were to generate their own data, this would take additional time and resources, and

narrows the options for source cell types to those used in the experiment.

2.4.3 Regression models

A major limitation of many of the methods discussed so far is that they assume that

the initial cell population is homogeneous and can be modelled with a single GRN. This is

mostly due to the fact that these methods were mostly developed when only bulk sequencing

data was available, only providing a general average of the cell population.

This can be a major issue for cell reprogramming as the outcome can be highly depen-

dent on the individual cell states. Recent single cell technologies have shown that there is

usually large heterogeneity within cell populations (Weinreb et al., 2020; Gam et al., 2019),

which may explain the inefficiency of cell reprogramming experiments, and can often lead

to several clusters of undesired cell fates.

However, regression models are well suited to take advantage of the increasingly available

single cell data that provides a lens into the dynamics of individual cells.

Figure 2.4: Identifying key TFs in a regression model.
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CellOracle

Unlike earlier approaches, CellOracle is the first method to explicitly predict the effect of

overexpressing a transcription factor at a single-cell level by inferring the GRN. This can

then be used to compare the effect of overexpressing different transcription factors, helping

to determine which ones should be experimentally validated (Kamimoto et al., 2020).

The first step in the algorithm is to build a base GRN structure, representing a list

of potential TF-gene regulations. This is done by using scATAC-seq data, and identifying

co-accessible promoters/enhancers, and then scanning the DNA sequences for TF binding

motifs. This means that they only consider TF-gene pairs for which the TF has the potential

to regulate the gene.

The remaining TF-gene pairs are fitted to a linear model in each cell type cluster, as

it often believed that different cell types have different GRNs. This linear model is fit

using Bayesian Ridge or Bagging Ridge as the regularisation helps to remove unnecessary

variables, and reduces overfitting. The base regression equations are of the form

yj = αj1 + Xβj + εj (2.7)

where yj is the gene expression to be predicted from TF expression X, and αj,βj, εj are

the fitted intercept, coefficients and residuals respectively. The coefficients of the linear

model βj can be used to predict the effect of perturbing a transcription factor, and the

following downstream effect can be predicted by propagating this signal through the model

multiple times.

By comparing the simulated gene expression values with that of the local neighbours, the

identity of the reprogrammed cell can be estimated by the cell type of these local neighbours.

This can be used to calculate a cell identity/state transition probability. Combining this

together for all cells creates a transition trajectory graph, essentially an RNA velocity after

the perturbation of a TF.

Application

CellOracle was used to computationally recapitulate known changes in hematopoiesis under

TF perturbations. It also predicts Fos to increase the efficiency of reprogramming mouse
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embryonic fibroblasts to induced endoderm progenitors which was validated experimentally.

The success of the CellOracle algorithm paves the way to computationally test the effect

of perturbing transcription factor expression. This has the potential to significantly reduce

the time and resources spent to experimentally reprogram cells.

Limitations

However, the regression used in CellOracle does not use the motif/ATAC-seq information,

and so assumes that the effect of TF perturbations is felt evenly throughout the population.

Furthermore, it only makes linear predictions, which may not be suitable for long term

predictions. This could be necessary for cell reprogramming which results in large complex

changes in the cell state.

2.5 Summary

All of the different types of models discussed so far have brought different perspectives to

the complex challenge of modelling a GRN under a perturbation. However, each model

was limited by the data that could be collected with the available technology at the time.

In particular, as most methods were developed when there were only bulk sequencing

technologies, we see that many of them are unable to account for cellular heterogeneity.

Furthermore, more recent methods (Kamimoto et al., 2020; Franke and MacLean, 2021)

are still only able to make short-term predictions about the future cell state, which would

not be able to model the vast changes that occur during cell reprogramming.

However, we saw that as sequencing technologies developed, more detailed and insightful

models could be developed. Given the pace at which sequencing technologies are continuing

to improve, creating larger data sets at a single cell resolution, we should expect to see

more methods in the future, draw greater insight from these data. In the remainder of our

thesis, we will introduce our model for cell reprogramming which will leverage data from

emerging single cell multimodal sequencing techniques to create more accurate and longer

term predictions for cell reprogramming.
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Table 2.2: Summary of TF identification methods for cell reprogramming.

Method Year Category Data GRN Inference

Hopfield Neu-

ral Networks

(Lang et al.)

2014
Boolean

Networks
RNA-seq

Waddington’s epigenetic land-

scape estimated from experimen-

tal data.

Toggle

Switches

(Okawa et

al.)

2016
Boolean

Networks
RNA-seq

Normalised Ratio Difference

of TF pairs to identify toggle

switches.

IQCELL

(Heydari et

al.)

2021
Boolean

Networks
scRNA-seq

Mutual information of gene ex-

pression from cells sorted by

pseudo-time.

Del Vecchio et

al.
2017

Dynamical

Systems

(ODEs)

RNA-seq
ODE parameters estimated from

experimental literature.

Ronquist et

al.
2017

Dynamical

Systems

(Difference

Equations)

RNA-seq

Transition matrix estimated from

time series data. Regulatory ef-

fect estimated by the number of

TFBSs.

Franke et al. 2021

Dynamical

Systems

(ODEs)

scRNA-seq
ODE parameters estimated from

experimental literature.

Kamimoto et

al.
2020 Regression

scRNA-seq,

scATAC-seq,

TF motifs

All possible regulations filtered

from scATAC-seq and TF motif

data, then further filtered from

regression with scRNA-seq data.
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Chapter 3

scREMOTE: single cell

reprogramming model through

enhancers

Cell reprogramming offers a potential treatment to many diseases, by regenerating spe-

cialised somatic cells. Despite decades of research, discovering the transcription factors

that promote cell reprogramming has largely been accomplished through trial and error,

a time-consuming and costly method. A computational model for cell reprogramming,

however, could guide the hypothesis formulation and experimental validation, to efficiently

utilise time and resources. Current methods (described in Chapter 2) are unable to account

for the heterogeneity observed in cell reprogramming or capture complex and long-term

predictions.

In this chapter we present scREMOTE (single cell REprogramming MOdel Through

Enhancers), a novel computational model for cell reprogramming that leverages data from

emerging multimodal single cell sequencing techniques. Using data at single cell resolution

will allow us to capture a greater extent of the regulatory systems at the cellular level, cre-

ating a more holistic model for cell reprogramming. Through our development, we propose

and assess a variety of regression-based models for cell reprogramming and their respective

components. These models will be motivated by the goal of modelling the regulation that

occurs through enhancers. This will require the integration of several modalities of data,

which capture the different mechanisms behind gene regulation.

This chapter is arranged as follows:

1. Model components;
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2. Deconvolution of the chromatin conformation;

3. Regulation potential; and

4. Modelling TF perturbations.

3.1 Model components

The motivation for this model is to incorporate four key components of gene regulation

(Figure 3.1) which will be the inputs into the model. If we have sequenced n cells (of k cell

types) for p genes (t of which are transcription factors) with q enhancers1, we have:

Figure 3.1: The components of gene regulation.

• E is a p× n matrix measuring Gene Expression.

This component measures the activity of each gene in each cell and this data can be

easily obtained through standard scRNA-seq protocols, for which there are extensive

public databases.

1This model can generalise to all cis-regulatory elements, including silencers. We will simply refer to

these as enhancers for this thesis.
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• A is a q × n matrix measuring Enhancer Accessibility.

This component measures the accessibility of each enhancer in each cell. Standard

scATAC-seq protocols can detect accessible regions along the entire genome, sorted

into bins. Using the locations of enhancers from an external database, this can

correspond to the accessibility of each enhancer in each cell.

• T is a q × t matrix measuring Transcription Factor Binding Probability

This component measures the probability that each TF will be able to bind to each

enhancer. This can be quantified in a variety of ways including:

– TF motif enrichment analysis, where it is assumed that enhancers that are highly

enriched for a TF’s motif have a higher chance for the TF to bind to the enhancer.

– ChIP-seq analysis, which detects protein-DNA interactions, measuring how much

a TF is binding to an enhancer (as in Lisa and ANASE).

ChIP-seq analysis of TFs would provide the most accurate representation of TFs

binding to enhancers, however there is very minimal data of this form due to limited

availability of antibodies (Qin et al., 2020). Thus for our analysis, we choose to

quantify T using TF motif enrichment analysis as the motif information and genome

sequence are readily available and consistent across cell types.

• C is a p× q matrix measuring Chromatin Conformation

This component measures the possible three dimensional chromatin interactions across

the DNA for each cell type. This is used as a measure of how likely each enhancer

can form a DNA loop with the promoter of each gene which may activate or repress

the gene expression. This data can be collected with the Hi-C sequencing proto-

col, detecting chromatin interactions across the entire genome. However, current

Hi-C protocols have a rather low resolution, often detecting interactions in 10kb bins

(Teng et al., 2015).

For cases where we distinguish chromatin interactions between different cell types,

we will denote this as CK which would give us a p× q× k array, as there would be a

C for each cell type.
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To account for cellular heterogeneity, we ideally would want to take all measurements

within the same cell. However, as of the publication of this thesis, the most recent sequenc-

ing technologies can only measure E and A in the same cell (Ma et al., 2020). Fortunately,

T should not change between different cells as it depends on the motifs that a TF can

recognise, which is constant across all cells of the same organism. This means that we can

still reliably measure T from a database instead of each individual cell.

On the other hand, the chromatin conformation C is known to vary between cell types,

and we are not yet able to simultaneously measure this with gene expression and enhancer

accessibility. Further complicating this is that current Hi-C protocols operate at the bulk

level and it is rather difficult to perform, requiring specialised equipment and expertise

(Yardımcı et al., 2019). This means that there will often be limited data of this type

available in online databases.

Thus, in order to obtain an estimate for C, we could perform Hi-C on the same tissue

of interest that would give an overall indication of the chromatin conformation of the

corresponding cell type. We could also consider estimating a general background chromatin

conformation across all cell types, using a database of DNA-DNA interactions, coming from

a variety of tissue types and sequencing protocols, including Hi-C among others like 3C,

4C, 5C, Capture-C, ChIA-PET and IM-PET (Teng et al., 2015). In both cases, this data

comes from a bulk tissue sample, which would include multiple cell types.

We aim to refine our estimate for chromatin conformation by deconvoluting the bulk

Chromatin Conformation data into individual cell types for a more accurate estimate of

C for each cell type. To do this, we use a similar approach to DC3 (Zeng et al., 2019),

originally designed to deconvolute bulk Chromatin Conformation data, given unmatched

single cell gene expression and genome accessibility data for the same tissue (Figure 3.2).

Our approach is slightly different in that it uses matched single cell gene expression and

genome accessibility data, and the chromatin capture data comes from a different sample.

This is described in the next section.
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Figure 3.2: Schematic of DC3 algorithm. Bulk Hi-C data is deconvoluted using scRNA-seq

and scATAC-seq data.

Source: Zeng, W., Chen, X., Duren, Z. et al. DC3 is a method for deconvolution and coupled clustering from bulk and

single-cell genomics data. Nat Commun 10, 4613 (2019). https://doi.org/10.1038/s41467-019-12547-1

3.2 Deconvoluting the chromatin conformation

Here, we attempted to perform a modified version of DC3, with the goal of deconvoluting

bulk Chromatin Conformation data given matched scRNA-seq and scATAC-seq data of the

same tissue with cell type labels. The data that we are given is:

• E,A,C, as defined in the previous section.

• H is a k × n binary matrix representing the cell type assignments. Here, there are

k cell types, and each column i contains one 1 indicating the cell type of cell i and

the remaining entries are 0. This can be generalised to a non-binary matrix which
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represents transient cell types which may have properties of multiple cell types.

• Λ is a k × k diagonal matrix whose ith entry is proportional to the size of cluster i

and whose terms sum to 1. This term will be used to rescale values to match the size

of each cell type cluster.

To deconvolute the bulk data into individual cell types, we just need to estimate the average

gene expression and enhancer accessibility for each cell type:

• W1 is a p×k matrix representing the mean gene expressions for each cell type cluster.

• W2 = a q × k matrix representing the mean enhancer accessibility for each cell type

cluster.

In this way, we can obtain approximate expressions for each of E,A and C in terms of W1

and W2:

• E ≈W1H;

• A ≈W2H; and

• C ≈ αW1ΛWT
2 where α is a scaling constant.

Writing C in this way splits each value into a contribution from each cell type cluster, ef-

fectively deconvoluting the bulk data. We achieve this by solving the following optimisation

problem:

min
W1,W2>0

µ1

2
‖E−W1H‖2F +

µ2

2
‖A−W2H‖2F +

µ3

2
‖C− αW1ΛWT

2 |2F

where µ1, µ2, µ3 are weights and ‖X‖F refers to the Frobenius norm of the matrix X.

For simplicity, we assume that each entry of E,A and C is normally distributed with

means as the corresponding entry in W1H,W2H and αW1ΛWT
2 and with variances of σ2

1,

σ2
2 and σ2

3 respectively. We can choose the weights in the loss function to satisfy µi
2

= 1
2σ2

i

for i = 1, 2, 3 which balances the contribution of each component to the loss function and

reduces the number of parameters to be estimated.

Note that most observed omics data is often very skewed and sparse (de Torrenté et al.,

2020), meaning it may not be appropriate to assume that the gene expressions, enhancer
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accessibility and chromatin conformation are normally distributed. However, we proceed

with these assumptions for mathematical simplicity.

We can then take an initial estimate for W1 and W2 as the corresponding means of

each cell type in the observed data, and iteratively estimate (W1,W2) and (α, σ2
1, σ

2
2, σ

2
3)

using maximum likelihood estimation.

We attempted to perform this using matched scRNA-seq and scATAC-seq taken from

the adult mouse brain from the SNARE-seq protocol (Chen et al., 2019) and Hi-C data of

the developing mouse brain (Bonev et al., 2017). However, we found that our deconvolution

was not meaningful, as it often failed to incorporate the information in C. This could be

because our model assumes that all values should be normally distributed. But it could

also be that the Hi-C data was not taken from the same tissue as the scRNA-seq and

scATAC-seq, as we could not find an experiment performing Hi-C on the adult mouse

brain.

Perhaps this method could be more useful for matched scRNA-seq and scATAC-seq data

with Hi-C data from the same tissue. However, due to the recentness of these technologies,

such data is not available yet.

In what follows, we take the bulk chromatin conformation to be our estimate for C.

Although we could not deconvolute this into individual cell types, it would still provide a

crude estimation of the chromatin interactions that can occur in a cell.

3.3 Regulation potential

Before we can create our model for perturbing transcription factors, we need to create

some measure for the potential for a TF to regulate a gene, in a similar way to Lisa and

ANANSE. We assume that for a TF to regulate a gene via an enhancer, it is required that:

• The enhancer is enriched with the TF motif, allowing the TF to bind to it.

• The enhancer is accessible, allowing the TF to bind to it.

• There can be a chromatin interaction between the enhancer and promoter of the

gene, allowing the formation of a DNA loop.
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Each of these components can be quantified using our data, as explained in Section 3.1.

Then we can then consider the product of three scores to be the regulation potential of a

TF to a gene via an individual enhancer.

To find the total potential for a TF to regulate a gene via all enhancers, we can sum

up the regulation potential for all enhancers. We can represent this for a particular cell i

for each TF-gene pair by

Ri = CAiT

where Ai is a q × q matrix with the enhancer accessibility scores for the ith cell along the

diagonal, and zeroes elsewhere. This gives us a p× t matrix which represents the potential

for all t transcription factors to regulate all p genes via all enhancers. Calculating this for

all n cells, we end up with a p × t × n array which we call R containing the regulation

potential of all transcription factors to each gene in each cell.

To verify that our proposed regulation potential is capturing true regulatory relation-

ships, we calculate the regulation potential using the SHARE-seq data (details in Section

4.2.1) and compare it to known TF-gene regulations. There are a variety of databases that

record known and predicted regulations, such as TRRUST (Han et al., 2018), hTFtarget

(Zhang et al., 2020), TFBSDB (Plaisier et al., 2016), RegNetwork (Liu et al., 2015) and

MSigDB (Subramanian et al., 2005; Kolmykov et al., 2021). As our regulation potential is

at a single cell resolution, we took the average over all cells to obtain a gene× TF matrix

to compare it to these databases. If the regulation potential is accurate, we expect that the

TF-gene regulations from the databases should have a greater regulation potential than a

random subset of TF-gene regulations.

By resampling 1 million random subsets of the same size as each database, we compute

an empirical p-value as the probability that the mean regulation potential from a random

sample is greater than the mean regulation potential of the database interactions. From

Table 3.1, we see that all databases are significantly enriched with interactions containing

a high regulation potential, implying that our regulation potential captures true regulatory

TF-gene relationships.
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Table 3.1: Results from testing regulation potential for TF-gene interactions in

databases.

Database Number of Regulations Empirical p-value

TRRUST 43 0.03

hTFtarget 10294 < 1× 10−6

TFBSDB 5253 < 1× 10−6

RegNetwork 729 3.9× 10−5

MSigDB 695 < 1× 10−6

Combined 14112 < 1× 10−6

Here, the number of regulations is those that remained after filtering. The Combined

database takes the union of interactions from the 5 other databases.

3.4 Predicting the effect of transcription factor per-

turbations

Now that we can measure the potential of each transcription factor to regulate each gene, we

can combine this with the gene expression information to estimate the effect of perturbing

transcription factors.

To state this in mathematical terms, for a gene j, we wish to predict

• yj is a vector of length n, representing the expression of gene j in all n cells.

given

• X is a n× t matrix, representing the gene expression of the t transcription factors in

all n cells.

• Rj is a n× t matrix, representing the regulation potential of all transcription factors

onto gene j in all n cells. This can be interpreted as a slice of the array R that

corresponds to the gene j.

The motivation for our model is that a true regulatory relationship between a TF and

a gene should have a high regulation potential between the TF and gene, and they should
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Figure 3.3: Illustration of the inputs to the regression model.

both be coexpressed.

For now, we only consider linear models, like CellOracle, for interpretability and the

ability to form predictions. We have proposed a few candidates for a model for transcription

factor perturbations.

Model 1

The first model we consider is for benchmarking purposes (Kamimoto et al., 2020). This

is a simple model that only uses the gene expression values, and not regulation potential,

similar to the model used in CellOracle. For Model 1 we use the regression equation

yj = αj1 + Xβj + εj, (3.1)

where yj is the gene expression to be predicted, X is the TF expression, αj and βj are the

fitted intercept and coefficients respectively, and εj is residual noise. However, a disadvan-

tage of this model is that many genes are correlated in their expression, making it difficult

to determine the structure of the regulation network and causing fitted coefficients to have

large standard errors.

Model 2

This model, illustrated in Figure 3.3, extends Model 1 to incorporate the regulation po-

tential on top of the gene expression. The sparsity of X and Rj should in theory only

allow true regulatory TFs to have non-zero coefficients. This is because the TF needs to

be coexpressed with its target gene but also needs the potential for gene regulation via
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enhancers. For Model 2 we use the regression equation

yj = αj1 + (X�Rj)βj + εj, (3.2)

where yj is the gene expression to be predicted, X is the TF expression, Rj is the regulation

potential, αj and βj are the fitted intercept and coefficients respectively, and εj is residual

noise. As this model captures the biological processes that govern gene regulation, we

choose to use this model for our simulation study, explored in Section 4.1. However, when

applied to real data, we found that X and Rj were too sparse, and the values in Rj were

often very skewed, as it is a product of 3 sparse matrices. This led the fitted models to use

very limited information and ultimately were not insightful.

Model 3

To address the issue of Rj having skewed values, we considered normalising the values

before using it in the model. This can be achieved by raising each term in Rj to the power

of λ, where a value for λ between 0 and 1 would bring all the regulation potential values

closer to 1. For Model 3 we use the regression equation

y = αj1 + [X� (Rj)
λ]βj + εj, (3.3)

where yj is the gene expression to be predicted, X is the TF expression, Rj is the regulation

potential, λ is a weight, αj and βj are the fitted intercept and coefficients respectively, and

εj is residual noise. However, we found that the model still did not have enough information

from the data. This could be because this normalisation does not change 0 values, leaving

Rj being too sparse, which is compounded by taking the Hadamard product with X, which

is generally sparse as well, as it comes from scRNA-seq.

Model 4

To account for such sparsity in Rj, we consider adding a small constant to all values in

Rj. This has the effect of when Rj values are all not available (i.e., 0) for a particular TF,

the regression will rely on the available gene expression values only. However, if Rj values

are available (i.e., some not 0) for a TF, then they will be incorporated into the regression.
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For Model 4 we use the regression equation

yj = αj1 + [X� (w1n×t + (1− w)Rj)]βj + εj, (3.4)

where yj is the gene expression to be predicted, X is the TF expression, Rj is the regulation

potential, αj and βj are the fitted intercept and coefficients respectively, and εj is residual

noise. Here, w is a parameter which can be used to weight the influence of Rj when

available, choosing a default value of w = 0.1. We found that this model was the most

effective when applied to real data, as it was robust to the sparsity.

3.4.1 Model comparison

To test the usefulness of each model, we compare their ability to recapitulate the effect of

overexpressing key TFs in the simulation framework under Section 4.1. Here, we start at a

source cell type (A) and predict the effect of overexpressing the key TFs for two different

cell types (B and C). In our simulation, these key TFs are the drivers of cell identity, so

an effective model should direct the source cells towards the target cell type. We test each

model under 4 scenarios, with or without dropouts in E and with or without dropouts in

R.
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Scenario 1: no dropouts in E, no sparsity in R

In this case, all models have complete information about the data so we would expect them

to perform well. We can see that indeed in Figure 3.4, all models generally perturb the

source cells in the correct direction.

It should be noted however that the perturbations do not point directly to the target cell

type. This would most likely be due to the source cell retaining aspects of its cell identity

in the short term. In Chapter 4, we will be modelling the long term result of perturbing a

TF, where the identity of the source cell is eventually suppressed.

Figure 3.4: Perturbation results for Scenario 1: no dropouts in E, no sparsity in R.

Coloured arrows indicate the predicted change after a perturbation of a key TF (coloured

accordingly to the cell type). Centroids of each cell type cluster are drawn in, and arrows

are drawn from centroid of cell type A.
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Scenario 2: many dropouts in E, no sparsity in R

Here we have replaced up to 60% of the observed gene expression with 0, closer resembling

the data from scRNA-seq experiments. Here we can see in Figure 3.5 that models 2 and

3 are barely affected with stable predictions, since they also incorporate the information

from the regulation potential. However, models 1 and 4 become much less accurate as their

inputs essentially become much noisier.

Figure 3.5: Perturbation results for Scenario 2: many dropouts in E, no sparsity in R.

Coloured arrows indicate the predicted change after a perturbation of a key TF (coloured

accordingly to the cell type). Centroids of each cell type cluster are drawn in, and arrows

are drawn from centroid of cell type A.
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Scenario 3: no dropouts in E, large sparsity in R

Here we have forced up to 99.5% of the values in R to be 0, closer resembling what it would

look like in reality. Here we can see in Figure 3.6 that models 1 and 4 are barely affected

with stable predictions, since they are able to use the gene expression data. However,

models 2 and 3 become much less accurate as they lose a lot of information from the

regulation potential, a necessary input.

Figure 3.6: Perturbation results for Scenario 3: no dropouts in E, large sparsity in R.

Coloured arrows indicate the predicted change after a perturbation of a key TF (coloured

accordingly to the cell type). Centroids of each cell type cluster are drawn in, and arrows

are drawn from centroid of cell type A.
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Scenario 4: many dropouts in E, large sparsity in R

Now we have set 60% of the values in E to be 0 and forced up to 99.5% of the values in R

to be 0, most closely resembling experimental data. Here we can see in Figure 3.7 that only

model 4 is able to retain a reasonable prediction, most likely as it can take advantage of

the little signal available in the data. However, all other models become much less accurate

as they have lost a lot of information from one of their necessary inputs. This justifies the

use of model 4 when we apply this to experimental data in section 4.2.

Figure 3.7: Perturbation results for Scenario 4: many dropouts in E, large sparsity in R.

Coloured arrows indicate the predicted change after a perturbation of a key TF (coloured

accordingly to the cell type). Centroids of each cell type cluster are drawn in, and arrows

are drawn from centroid of cell type A.
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3.5 Summary

Here, we have introduced scREMOTE, a framework for predicting the effect of transcrip-

tion factor perturbations for cell reprogramming. We calculated a regulation potential

that captures the regulatory relationships between TFs and target genes, which we demon-

strated was able to recapitulate known regulations. We proposed several models for cell

reprogramming, and found a model that was robust to dropouts in gene expression and

regulation potential.
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Chapter 4

Impact of scREMOTE on single cell

biology

This chapter’s original contribution is to demonstrate the utility of our concept by two

innovative applications of our scREMOTE. The first novel application will be in a data

simulation, showing that our framework can recapitulate some key properties of cells during

development and reprogramming. This will be the first simulation framework for matched

scRNA-seq and scATAC-seq data in single cell research that allows for the estimation of

transient cell states. The second application will be to simulate a cell reprogramming ex-

periment using experimentally obtained matched scRNA-seq and scATAC-seq data. By

recapitulating known results, we show for the first time that a computational model, scRE-

MOTE, has the potential to model the regulatory mechanisms behind cell reprogramming

and make long-term predictions at the cellular level.

4.1 Multi-modal simulation

Experimental data is often expensive and time consuming to collect, requiring extensive

expertise, equipment and materials. This motivates the need for methods to simulate omics

data to supplement experimental data for validating and benchmarking the continuously

growing collection of bioinformatics tools.

Multiomics sequencing methods are becoming increasingly popular, which can be ex-

pected to be followed by a wave of computational tools to analyse and use this new type

of data. While there are extensive benchmark studies (Cao et al., 2021), to my knowledge,

there are currently no tools available to simulate matched scRNA-seq and scATAC-seq

data. Our framework provides a natural connection between these two modalities opening

up the possibility to simulate them simultaneously.
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4.1.1 Simulation components

Our simulation framework will take the following parameters:

• p = the number of genes. Default value chosen to be p = 500.

• q = the number of enhancers. Default value chosen to be q = 100.

• k = the number of cell types. Default value chosen to be k = 3.

• n = the number of cells. Default value chosen to be n = 150.

• t = the number of transcription factors (a subset of the genes). Default value

chosen to be t = 20.

• t′ = the number of key TFs per cell type. These will be the transcription factors

responsible for maintaining cell identity. Default value chosen to be t′ = 3.

• q′ = the number of enhancer targets for each TF. That is, the enhancers that each

TF will be able to bind to. Default value chosen to be q′ = 2.

• p′ = the number of gene targets for each enhancer. That is, the genes that an

enhancer can form a DNA loop with. Default value chosen to be p′ = 2.

For now, we assume that t′, q′ and p′ are constant across all cell types, TFs and enhancers

respectively. In reality, this would not be the case as some TFs are considered as master

regulators that may regulate many other genes (Oestreich and Weinmann, 2012), and some

enhancers are consider super-enhancers that are targeted by many TFs (Whyte et al., 2013).

A future simulation method could sample t′, q′ and p′ from some statistical distribution,

perhaps a negative binomial. We can now simulate the model components as explained in

section 3.1.
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4.1.2 Data initialisation

Step 1: generate T

Firstly, we select the enhancer targets for each TF by randomly selecting q′ enhancers out

of q for each TF. Next, we generate T by

T =


T11 T12 · · · T1t

T21 T22 · · · T2t
...

...
. . .

...

Tq1 Tq2 · · · Tqt


where Tij ∼ N(µT , σ

2
T ) if enhancer i is a target of TF j, and Tij = 0 otherwise. We choose

default values of µT = 1 and σT = 0.3

Note that this is quite a simplification because certain TFs would have greater affinity to

target certain enhancers. In practice, this selection of target enhancers should guided by

experimental data. However, we continue with this purely theoretical example to demon-

strate the potential of our model.

Step 2: generate CK

Here, we will generate a C matrix representing the chromatin interactions for each cell type

h which we denote as Ch. The collection of all Ch will form CK . We start by creating a

base regulatory structure (common to all cell types) by randomly selecting p′ gene targets

out of p genes for each enhancer. Then we create a cell type-specific regulatory structure

(common to cells of the same cell type) by randomly selecting a further p′ gene targets

out of p genes for each enhancer. We select the key TFs for each cell type by selecting t′

random TFs out of t. Then we generate C by

Ch =


Ch

11 Ch
12 · · · Ch

1q

Ch
21 Ch

22 · · · Ch
2q

...
...

. . .
...

Ch
p1 Ch

p2 · · · Ch
pq
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where

Ch
ij =


w(µC + µhkey) + εij if gene i is a target of enhancer j in cell type h

0 otherwise

• w is a weight that scales and determines the sign of the regulatory relationship. We

choose w = −0.3 if j is a target enhancer of a key TF in cell type h, and i is a key

TF of another cell type and w = 1 otherwise. This way, key TFs will downregulate

the key TFs of other cell types. This simulates antagonistic TF-pairs that determine

the cell fate (Okawa et al., 2016; Heinäniemi et al., 2013).

• µC is a base chromatin conformation score for which the enhancer can form a DNA

loop with the gene’s promoter. We choose µC = 1.

• µhkey is an additional score that favours key TFs of the same cell type. We choose

µhkey = 2 if j is a target enhancer of a key TF in cell type h, and i is a key TF of

the same cell type and µhkey = 0 otherwise. This way, key TFs of a cell type will

upregulate each other. This simulates feedback loops in GRNs which help maintain

cell identity (Burda et al., 2011).

• εij ∼ N(0, σ2
C) adds random noise to the data. We choose σC = 0.3.

Again, this simulation is quite a simplification and ideally the selection of target genes and

value of additional parameters should be guided by experimental data.

Step 3: generate A

To generate the enhancer accessibility matrix, we use

A =


A11 A12 · · · A1q

A21 A22 · · · A2q

...
...

. . .
...

Ap1 Ap2 · · · Apq


where

Aij = Abaseij + Acelltypeij + Anoiseij

and
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• Abaseij ∼ NB(µbase, σ
2
base) using the mean and variance to parameterise the negative

binomial distribution. This term represents a base enhancer accessibility common to

all cells. We choose µbase = 0.2 and σ2
base = 0.24.

• Acelltypeij ∼ NB(µcelltype, σ
2
base). This represents a cell type-specific enhancer accessi-

bility common to cells belonging to the same cell type, helping to create cell type

structure. We choose µcelltype = 0.2 and σ2
celltype = 0.24.

• Anoiseij ∼ NB(µnoise, σ
2
noise). This cell adds noise at the individual cell level, simulating

the heterogeneity of the cell population. We choose µnoise = 0.2 and σ2
noise = 0.24.

Step 4: generate E

Here, we generate the gene expressions of all the cells in three parts.

Step 4.1: Firstly, we calculate an initial TF expression. The cells are randomly allo-

cated into one of k cell types. Then we simulate an initial gene expression of TFs given

by

E′TF =


E ′11 E ′12 · · · E ′1n

E ′21 E ′22 · · · E ′2n
...

...
. . .

...

E ′t1 E ′t2 · · · E ′tn


where

E ′ij = max (µbase + µkey,ij + εij, 0)

and

• µbase is a base TF expression, which we choose to be µbase = 0.3.

• µkey,ij increases the expression for key TFs. We choose to be µkey = 3 if TF i is a key

TF for the cell type of cell j, and µkey = 0 otherwise.

• εij ∼ N(0, σ2
tf ) which adds random noise to the data. We choose σtf = 0.1.

However, this initial gene expression may not resemble a biologically possible cell state. To

resolve this, we proceed to our next step.
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Step 4.2: Secondly, we want our TF expression to converge to a steady state,

representing a biologically possible state. To do this, we iteratively recalculate the TF

expression in a similar form to Equation (3.1), using the previously simulated matrices.

That is, we calculate the regulation potential for cell i using

Ri = CAiT
T

where Ai is a q × q matrix with the enhancer accessibility scores for the ith cell along the

diagonal, and zeroes elsewhere. And then R is a p× t× n array of all Ri’s. Then for TF

j, the expression yj is given by

yj = X�Rj + εj (4.1)

where X is the TF expression, Rj is the regulation potential corresponding to gene j and

ε is residual noise. Note that Equation (4.1) does not need any coefficients, as the gene

expression values can be assumed to be scaled in our simulation. Each value will then

converge, giving us our ETF .

Step 4.3: Lastly, we can generate the gene expression in all cells. Now that we have

the expression of the TFs that represent the biological steady states, we can simulate the

expression of any gene j using Equation (4.1). And since the genes do not regulate each

other, no reiteration is required.

We have now simulated the T, C, A and E matrices.

4.1.3 Estimating transient cell states

One useful application of our simulation method is that it allows for the estimation of

transient cell states. That is, we may often have data about distinct cell types but we may

be interested in other cell states that have properties of multiple different cell types. Or

we may be interested in the differentiation trajectory from a progenitor cell type to a more

specialised cell type.

Naively, we could interpolate the gene expression and enhancer accessibility between

two cell types to obtain an estimate for an intermediary cell state. However, this state
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may not be biologically stable, and so is not an accurate representation of a cell state. To

resolve this, we can iteratively apply Equation (4.1) to the interpolated state, and the cell

state will eventually converge, representing a biologically stable steady state.

To apply this idea to our data simulation, we first interpolate between our three cell

types. This is done by simulating new cells that have gene expression and enhancer ac-

cessibility of varying proportions from the three cell types (Figure 4.1) with some added

noise.

These cells are then left to converge to a steady state based on their GRN, modelled by

Equation (4.1). In this case, we can see that the interpolated cells converge to two distinct

paths between the cell types. This could represent possible differentiation trajectories

across these cell types.
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Figure 4.1: The simulation framework reveals possible differentiation trajectories between

cell types.

4.1.4 Simulating cell reprogramming

Our simulation approach models the cell state based off the TF expression, we can also

use it for simulating transcription factor perturbations. We can simply overexpress a TF,

like in a real cell reprogramming experiment, and iteratively apply Equation (4.1) until the
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perturbed cells converge to a new cell state.

Applying this to our data simulation, we can overexpress the key TFs for our target

cell type in our source cell type and we can see that there is an initial shift that pushes the

cells towards the target state (Figure 4.2). Then using the simulation, we allow the cells

to converge to a steady state and we can see that only a small fraction of cells successfully

reprogram. This is in line with observations in reprogramming experiments where the

reprogramming efficiency remains very low (Takahashi and Yamanaka, 2016).

Interestingly, our simulation reveals that the differentiation trajectory after a perturba-

tion is decided early on, where individual cells that are closer to the target state are more

likely to successfully reprogram as opposed to cells that are further away. This supports

a recent theory that suggests that the initial state of the cell plays a critical role in de-

termining the outcome of cellular differentiation or reprogramming (Weinreb et al., 2020;

Kong et al., 2020). This can be contrasted to previous models which often assumed that

the heterogeneity of the outcome was purely due to the stochastic nature of these processes

(Buganim et al., 2012; Floettmann et al., 2012).
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Figure 4.2: The simulation framework reveals different reprogramming trajectories depen-

dent on the initial cell state.

4.2 Application to matched single cell data

To demonstrate the utility of our model on experimental data, we use SHARE-seq data

collected by Ma et al. (2020) on adult mouse skin cells. This data measures matched

scRNA-seq and scATAC-seq at a single cell resolution, representing the gene expression

and enhancer accessibility respectively. Here, Transit Amplifying Cells (TACs) differentiate
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into either an Inner Root Sheath (IRS) lineage or a Hair Shaft lineage and we will study the

effect of TF perturbations on this system. GATA3 has been long associated with the IRS

fate during lineage determination in skin (Kaufman et al., 2003; Kurek et al., 2007). But

more recently, it has been found that GATA3 is a key reprogramming TF with ATOH1

whose upregulation is able to reprogram supporting cells into hair cells (Walters et al.,

2017). Similarly, Runx1 has been known to play a key role in the differentiation of the hair

follicle (Osorio et al., 2008; Hoi et al., 2010) and has been shown to be a key reprogramming

factor for the Hair Shaft cell fate (Raveh et al., 2006).

4.2.1 Methods

We downloaded the SHARE-seq data from GEO (Accession number: GSE140203) and

obtained the cell type labels directly from the authors (Ma et al., 2020). Chromatin con-

formation data was downloaded from the 4D Genome Database (Teng et al., 2015) using

the full mouse dataset. TF motifs were downloaded from the JASPAR database (Fornes

et al., 2019) using the full vertebrates position frequency matrices.

In the chromatin conformation data, all coordinates were realigned from the mm9

genome to the mm10 genome using the LiftOver tool provided by the Human Genome

Browser at UCSC (Kent et al., 2002). This list of chromatin interactions is filtered down

to those which include gene promoters, determined as any interactions within 500bp of the

TSS of a gene. Gene coordinates were downloaded from the Mouse Genome Informatics

(MGI) website (Eppig, 2017).

All chromatin regions which had an interaction with a promoter were taken to be an

enhancer. These regions were sorted into bins of length 1000bp which is now taken as

our enhancer list. We then construct C as a binary matrix which indicates a recorded

connection between an enhancer and gene. Usually the chromatin conformation would be

measured as a score representing the strength of the connection, however we are using a

database containing many different experiments which would not be comparable.

The ATAC-seq data from the SHARE-seq protocol is then realigned to match our new

enhancer list in 1000bp bins. As the bin cutoffs did not match exactly, any observed ATAC-

seq measurement that overlapped with our 1000bp enhancers was considered as a count.
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Applying this to all our enhancers gives us our A matrix.

And now that we have the coordinates of our enhancers, we obtained the genomic se-

quence using the BSgenome.Mmusculus.UCSC.mm10 package on Bioconductor. TF Motif

enrichment was performed on each sequence using the AME function in the MEME Suite

collection (McLeay and Bailey, 2010) with default settings. Only TFs that were highly

enriched (marked as true positives) were kept, and their Position Weight Matrix score was

normalised by dividing by the maximum value, so all values are between 0 and 1. This is

then used as the corresponding value in T.

The gene expression matrix was taken directly from the SHARE-seq protocol but due

to the sparsity of the data, we only used the 1000 most highly expressed genes which were

then log(x+ 1) transformed.

4.2.2 Results: Gata3 overexpression

We then applied Equation (3.4) to see the effect of a constant upregulation of Gata3. This

was simulated by increasing the log expression of Gata3 by 1 at each iteration of Equation

(3.4) for 25 time steps, after which Gata3 is no longer added to the system and the cell’s

natural GRN dynamics are allowed to take over.

The perturbed cells tend towards the IRS cell fate (Figure 4.3) and remain there while

Gata3 is constantly introduced into the system. However, when Gata3 is no longer ec-

topically added to the system, the cells quickly fall back to their original cell state (Figure

4.4).

We can further interrogate the identity of these reprogrammed by looking at the effect

on marker genes. We see that as Gata3 is overexpressed (Figure 4.5), average Mical3 levels

increase accordingly, a marker gene for the IRS cell fate (Ma et al., 2020). On the other

hand, average Lef1 levels decrease accordingly, a marker gene for the Hair Shaft cell fate

(Ma et al., 2020). And then when Gata3 is no longer overexpressed at time point 25, we see

the expression return to the original values. This suggests that the when Gata3 is added

to the system, the TAC cells adopt an IRS cell identity.
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Figure 4.3: Increasing the Gata3 expression converts the TACs (orange) towards the IRS

cell fate (green).

Figure 4.4: Removing the Gata3 overexpression causes the reprogrammed cells (grey) to

lose their identity returning to the starting state (orange).
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Figure 4.5: Perturbing Gata3 causes changes in markers for IRS (green) and Hair Shaft

(blue) fates. The red dotted line indicates when Gata3 is no longer added to the system.

4.2.3 Results: Runx1 overexpression

Similarly, we model the overexpression of Runx1 by increasing the log expression of Runx1

by 1 at each iteration of Equation (3.4) for 25 time steps, after which Runx1 is no longer

added to the system and the cell’s natural GRN dynamics are allowed to take over.

The perturbed cells tend towards the Hair Shaft cell fate (Figure 4.6) and remain there

while Runx1 is constantly introduced into the system. However, when Runx1 is no longer

ectopically added to the system, the cells quickly fall back to their original cell state (Figure

4.7).

Checking the marker genes, we see that as Runx1 is overexpressed (Figure 4.8), average

Lef1 levels increase accordingly whereas average Mical3 levels barely change. And then

when Runx1 is no longer overexpressed at time point 25, we see the expression return to

the original values.
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Figure 4.6: Increasing the Runx1 expression converts the TAC cells (orange) towards the

Hair Shaft cell fate (blue).

Figure 4.7: Removing the Runx1 overexpression causes the reprogrammed cells (grey) to

lose their identity returning to the starting state (orange).

69



Figure 4.8: Perturbing Runx1 causes changes in markers for IRS (green) and Hair Shaft

(blue) fates.

However, we can see that in both cases, the perturbed cells generally converge to a

single steady state, which is not representative of reality which should have a heterogeneous

population and possibly multiple terminal fates. This could be a limitation of our modelling

framework or the data.

4.3 Summary

Here, we have shown that scREMOTE can successfully integrate data from multiple modal-

ities, creating a holistic model for the regulatory mechanisms occurring in individual cells.

The ability to recapitulate known experimental results demonstrates the potential for scRE-

MOTE to discover novel transcription factor combinations to drive cell reprogramming,

accelerating research in regenerative medicine.

70



Chapter 5

Conclusion

5.1 Discussion

Understanding the regulatory dynamics in a cell is a complex yet important challenge,

especially in the context of cell reprogramming, which results in large changes to the cell’s

identity. In this thesis, we synthesise the current mathematical literature in this area and

address the challenges by developing scREMOTE, a model for long-term predictions of TF

perturbations at the single cell level that extends on existing algorithms (Kamimoto et al.,

2020).

We acknowledge several important limitations in our model. As with all previous models

for cell reprogramming, the most significant limitation is due to the data that we have

available. scRNA-seq data is generally very sparse, with many dropouts due to genes being

lowly expressed and the stochasticity of gene expression (Qiu, 2020). This means that many

important genes (especially TFs) which are lowly expressed will have an overwhelming

proportion of missing data, leading to large bias in the linear regression coefficients. In our

case, we only considered genes (and TFs) that were rather highly expressed, which meant

that we were very limited in the TFs that we could test for overexpression. Unfortunately,

this meant that we could not test any combinations of key TFs for the cell types available.

However, as sequencing technologies improve in the coming years, we may be able to

sequence all key TFs to sufficient depth allowing our model to test the perturbation of

relevant combinations in a variety of cell types.

Furthermore, our model may be oversimplifying the biological processes occurring in the

cells. For instance, we assume that the effect of perturbing TFs is additive and linear, which

may not resemble reality where TFs work synergically (Cumbo et al., 2017) and non-linearly.

We also assume that the GRN dynamics stays constant throughout the reprogramming
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process. However, as the cell undergoes reprogramming, it could be possible that as its

identity is changing, its GRN is changing as well. Finally, we also took our enhancers

to be any part of the genome from our chromatin conformation database, which may not

necessarily be reliable. A better alternative could be to use enhancer locations from a

database (Wang et al., 2016), however this would be limited by the completeness of the

database.

In light of the above mentioned limitations, we propose a few directions for future

research in each of the two main applications.

Data simulation - In this thesis, we used a rather crude estimate for the distribution

of the scRNA-seq and scATAC-seq data. In the future, we could use a more realistic

distribution such as zero-inflated negative binomial which would account for drop outs.

We could also devise some evaluation metrics to compare our simulation to the real

data and measure its similarity on data properties (eg. mean and variance) and biolog-

ical properties (eg. differentially expressed genes). We could also test its computational

scalability, which would be a way to demonstrate the utility of our simulation framework.

Transcription factor perturbation - An important task for future work would be to

test our model for other TF perturbations and cell conversions. Although there is currently

limited high quality data of matched scRNA-seq and scATAC-seq, these technologies are

still being developed and improved. For example, a recent study profiled more than 450,000

brain cells in human, marmoset monkey and mouse using SNARE-seq2 (Bakken et al.,

2020), another matched scRNA-seq and scATAC-seq protocol.

Our results and predicted conversions could also be validated in more detail. This

could take the form of a method to estimate the cell type after conversion and a metric to

evaluate the conversion efficiency, similar to that of CellOracle (Kamimoto et al., 2020).

Alternatively, any predictions could be experimentally validated, however this will require

assistance from a wet lab with access to the required cells, equipment and expertise.

The model could also be extended, by considering non-linear relationships between TFs

and target genes. Regularisation (like LASSO) could also be incorporated into the model to

reduce the effect of unimportant TFs, however given our small number of reasonably highly

expressed TFs this was not necessary. Cells could also be clustered using fuzzy clustering
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to account for transient cell states that contain properties of multiple cell types.

5.2 Conclusion

In summary, this thesis provides an in-depth review and synthesis of the current state of

the mathematical models for cell reprogramming and related concepts including identifying

key TFs for cell reprogramming. Each of these methods have introduced an insightful

perspective into these complex biological processes. However, these algorithms were greatly

limited by the data available at the time.

Here, we introduced a new method to use emerging matched scRNA-seq and scATAC-

seq data to obtain a more accurate model for the intracellular dynamics governing gene

regulation. We have shown that our model can be used to simulate matched scRNA-seq

and scATAC-seq data, recapitulating known properties of cell differentiation and cell repro-

gramming. We further demonstrate that this model can be used on real data, simulating

the effect of overexpressing key TFs in different hair cell lineages.

We hope that this framework will improve the ability to predict the effect of perturbing

TFs in silico, guiding the TF combinations and quantities to be experimentally validated.

This should significantly reduce the time and cost of finding new cell conversions, acceler-

ating the development of cell reprogramming therapies, alleviating a significant portion of

the world’s disease burden.
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