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Abstract

This dissertation explores issues related to asset pricing anomalies by focusing on
options market. It consists of 3 chapters. In Chapter 1, we find that firms’ left-tail risk
is a strong positive predictor of future bear spread returns, suggesting that the options
market underreacts to firms’ left-tail risk and the downside protection provided by
bear spreads is not adequately priced. We provide a behavioral explanation for this
phenomenon. We find that the underreaction to firms’ left-tail risk is stronger when
the underlying stocks experience larger recent losses, are closer to their 52-week lows,
and have higher information uncertainty. The options market’s underreaction to

firms’ left-tail risk mainly happens in high investor sentiment periods.

In Chapter 2, we decompose and analyze the straddle returns around firms’ earnings
announcements. Previous study shows that delta-neutral straddles earn positive
returns around earnings announcements, indicating an underpricing of earnings-
induced risk. This study uses a volatility-jump decomposition to analyze the
driving components of the delta-neutral straddle returns. We find that the volatility
component consistently generates positive returns. The jump component’s return is
positive over the pre-announcement period and becomes negative after announcement.

Our findings suggest that options market anticipates earnings-induced jumps. The

vil
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overall pattern of delta-neutral straddle’s cumulative return is mainly driven by its
jump component but the positive cumulative return after announcement is mainly

driven by its volatility component.

In Chapter 3, we propose a gambling activity measure by jointly considering open
interest and moneyness of out-of-the-money individual equity call options. The
new measure, C'allMoney, captures excessive optimism during the dot-com bubble,
the oil price bubble, and the pre-GFC stock market bubble. C'allMoney robustly
and negatively predicts both out-of-the-money and at-the-money call option returns
cross-sectionally. The option return predictability of C'allMoney is stronger when
stock price is further from its 52-week high, capital gains overhang is lower, and
when information uncertainty of the underlying stock is higher. CallMoney also
robustly and negatively predicts cross-sectional stock returns. Comparing to lottery-
like-payoffs based (indirect) gambling measures, CallMoney performs better at

predicting both option and stock returns.
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Chapter 1

Does the options market

underreact to firms’ left-tail risk?

1.1 Introduction

Loss aversion plays an important role in economic decisions. The utility of a loss-
averse investor is steeper for losses than for gains (Kahneman and Tversky, 1979;
Tversky and Kahneman, 1991). Berkelaar et al. (2004) and Jarrow and Zhao (2006)
show that the optimal portfolios for loss-averse investors include hedge and insurance
against left-tail risk. The hedging demand of left-tail risk has its profound impact
on asset prices. A growing body of literature investigates the impact of left-tail
risk on the cross section of stock returns. Lu and Murray (2019) use the returns of
bear spread constructed on Standard & Poor’s (S&P) 500 index options to capture
bear market risk and find that bear market risk is priced in the cross section of

stock returns. Kelly and Jiang (2014) construct a tail risk facor by identifying the
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common fluctuation of crash events for individual firms and find that stocks with
higher tail-risk factor loadings earn higher future returns. By contrast, Atilgan et al.
(2020a) show that the risk-return tradeoff between firms’ left-tail risk and stock
returns breaks down as firms’ left-tail risk and future stock returns have a negative
relation, generating the “left-tail momentum”. The left-tail momentum indicates

that equity investors underreact to firms’ left-tail risk.

In this paper, we present evidence of underreaction to firms’ left-tail risk in options
market by analyzing the returns of bear spreads constructed on equity options. We
document a positive relation between firms’ left-tail risk and future bear spread
returns, suggesting that the protection against firms’ left-tail risk provided by bear
spreads is underpriced. The bear spreads on high left-tail risk stocks earn a monthly
five-factor alpha 0.84% to 1.31% higher than the bear spreads on low left-tail risk

stocks.

We explore several behavioral explanations to our main finding. First, investors may
underestimate the persistence of losses and underprice the risk protection provided by
bear spreads. Atilgan et al. (2020a) show that the left-tail momentum is stronger for
the stocks that experience recent large losses. They argue that investors anticipate
short-term stock price mean-reversion and underestimate the persistence in left-tail
risk. Empirical evidence (George and Hwang, 2004; Driessen et al., 2013) also show
that stock losses persist and option implied volatilities decrease, when stock prices are
close to the 52-week low. Investors with anchoring bias underestimate the probability
of downward breakthroughs toward new 52-week lows. We find that the positive
relation between firms’ left-tail risk and future bear spread returns is stronger when
the underlying stocks experience large recent losses (left-tail momentum effect) and

2
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when stock prices are close to the 52-week low (anchoring effect). The anchoring
effect alone may not offer an explanation to our main finding. But together with the
left-tail momentum effect, we have strong evidence that investors’ underestimation
of loss persistence is one of the main sources to the underpricing of bear spreads on

high left-tail risk stocks.

Second, information uncertainty may contribute to the underreaction to firms’ left-tail
risk. Hong et al. (2000) show that firm-specific, negative information difusses slowly
and generates stock return momentum. Zhang (2006a,b) finds that information
uncertainty amplifies investors’ and analysts’ underreaction to new information
and causes greater price drift. We find that the underreaction to firms’ left-tail
risk is more pronounced when information uncertainty of a firm is higher. When
information uncertainty is high, rational investors should demand more downside
protection rather than less. Our finding of stronger bear spread underpricing when
information uncertainty is high suggests that such underpricing is likely to be driven

by behavioral biases.

Last, investor sentiment can be another behavioral explanation to the underpricing
of bear spreads. High investor sentiment may reduce the perceived value of downside
protection, causing underpricing of bear spreads. The literature shows that high
investor sentiment may cause unwarranted investor optimism, overvalued stocks,
and underestimated risk. Yu and Yuan (2011) find that the positive mean-variance
tradeoff breaks down during high market sentiment periods. Stambaugh et al. (2012)
show that a large set of anomalies in cross-sectional stock returns are amplified by
high investor sentiment. Han (2008) shows that risk hedging demand, reflected by

index options’ implied volatility smile and risk-neutral skewness, decreases when
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market sentiment is high. Using Baker and Wurgler (2006) market-based sentiment
index to measure investor sentiment, we find that the underreaction to firms’ left-tail
risk in options market mainly happens in high investor sentiment periods. While
prior literature (Baker and Wurgler, 2006; Stambaugh et al., 2012; Byun and Kim,
2016) shows that high sentiment leads to stronger overpricing of risky assets; we show,
as two sides of the same coin, that high sentiment also leads to stronger underpricing

of bear spread, an option strategy providing downside protection.

Our rationale of using bear spreads instead of out-of-the-money (OTM) or deep-
out-of-the-money (DOTM) put options to examine left-tail risk is similar to Lu and
Murray (2019). Bear spread, as a popular option trading strategy, is frequently used
to hedge against left-tail risk. A bear spread is comprised of opposite positions in
two put options. The long-short positions help mitigate the options market forces
that simultaneously impact options at different strike prices. For example, Garleanu
et al. (2008) show that demand pressure could cause positively correlated option
price deviations from the fundamental values across strike prices. Using OTM or
DOTM options alone is more prone to such options market forces and thus provides
less desirable identification of left-tail risk. Moreover, from the option valuation point
of view, OTM or DOTM option prices are determined by the relevant discounted
conditional expectation times the tail probability, using the risk-neutral probability
measure (Bates, 1991). Therefore, OTM or DOTM option prices not only capture
the tail probability, but also capture the expected tail distribution of the underlying
asset price. By contrast, the scaled bear spread price can be interpreted as the
discounted tail probability, representing the Arrow-Debreu state price of left-tail

events that is comparable in cross section.
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Our study contributes to the growing literature of tail risk and asset pricing (Kelly
and Jiang, 2014; Van Oordt and Zhou, 2016; Chabi-Yo et al., 2018; Lu and Murray,
2019; Atilgan et al., 2020a) by documenting a positive relation between firms’ left-tail
risk and future bear spread returns. Contingent claims traded in options market
offer unique opportunities to isolate, hedge and analyze tail risk. Using bear spread
option strategy, we show that the risk-return tradeoff breaks down as the options
market underreacts to firms’ left-tail risk. Option traders’ behavioral biases help
explain such underreaction. Our study highlights that although investors frequently
emphasize the importance of tail risk management, the protection against downsides
is likely underpriced in the options market. The underpricing of bear spreads shows
that adequately pricing tail risk in financial markets is more challenging than merely

recognizing its importance.

The remainder of the paper proceeds as follows. Section 1.2 describes the data, the
construction of bear spreads and variables. Section 1.3 presents the main empirical
results. Section 1.4 provides behavioral explanations for the main findings. Section

1.5 presents further discussion and Section 1.6 concludes.

1.2 Data

1.2.1 Sample construction

Our sample period is from January 1996 to December 2017. We obtain stock price
and accounting data from the Center for Research in Security Prices (CRSP) and

Compustat. Option data are from OptionMetrics, which include daily closing bid
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and ask prices, open interest, volume, implied volatility, and option Greeks. To avoid
the bid—ask bounce, the mid points of bid and ask prices are used to compute option

returns.

Following previous literature (e.g. Kelly and Jiang (2014), Gao et al. (2018), and
Ruan (2020a)), five filters are applied to the option data: (1) The option prices are
at least $0.125. (2) the underlying stock prices are at least $5. (3) options must
have nonmissing bid and ask price quotes and positive open interests. (4) bid and
ask prices must satisfy basic arbitrage bounds to filter out erroneous observations.
Arbitrage boundaries include: bid > 0, bid < ask, bid < strike and ask > max(0,
strike price — stock price); (5) options’ embedded leverage calculated following

Frazzini and Pedersen (2012) is not in the top or bottom 1% of the distribution.

The risk factors, including Fama and French (1993) three factors (MKT, SMB, HML)
and Carhart (1997) momentum factor (UMD) are from the Kenneth R. French data
library. Coval and Shumway (2001) systematic volatility risk factor (Zb-strad-rf)
data are from OptionMetrics. Zb-strad-rf factor is the excess return of a zero-beta

at-the-money (ATM) S&P 500 index straddle.

1.2.2 Bear spread construction

A bear spread is constructed by taking a long position in one OTM put option,
denoted as PUT}, with price P, strike price K; and delta A; and a short position
in a further OTM put option, denoted as PUT5, with price P,, strike price Ky and
delta Ay (K7 > Ky and Ay < Ajy). The bear spread generates a payoff of K; — Ko

when the stock price at expiration is below K5 and zero when the stock price at
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expiration is above K;. The bear spread payoff linearly decreases from K; — K3 to

zero for stock price between Ky and K.

Choosing K; and K5 in empirical studies deserves careful consideration. As discussed
in Lu and Murray (2019), if the bear region boundary K> is set to be at a constant
percentage below the forward price, the bear region would correspond to left-tail
events with different probability when the underlying assets possess different volatility
levels. To address this issue, for index option bear spreads, Lu and Murray (2019)

set Ky and K7 to be 1.5 and 1 standard deviation below the index forward price.

Since equity options have more sparse strike prices compared to index options, we use
option deltas instead of strike prices to select put options in bear spreads. Extensive
literature uses Black-Scholes deltas to identify options with the same moneyness
across assets as the absolute delta approximates the probability that an option will be
in the money at expiration (Bollen and Whaley, 2004; Driessen et al., 2009; Bali and
Murray, 2013; Jin et al., 2012; Kelly, Pastor and Veronesi, 2016; Kelly, Lustig and
Van Nieuwerburgh, 2016). The typical ranges of OTM and DOTM put option deltas
are [—0.40, —0.20) and [—0.20,0] (e.g. Kelly and Jiang (2014); Muravyev (2016)).
We construct each of bear spreads by a long (short) position in PUT; (PUT;) as
the OTM (DOTM) put option with Ay (Asg) closest to -0.30 (-0.10), the midpoint of

the OTM (DOTM) delta range.

A bear spread has a negative delta (A; — Ay), embedding an equivalent short
position in the underlying stock. Therefore, unhedged bear spread returns also
capture movements of the underlying stock. Atilgan et al. (2020a) document a

negative relation between stocks’ left-tail risk and their future returns, the left-tail
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momentum. To remove the contribution of the underlying stocks’ left-tail momentum,
we use delta-hedged bear spreads in our empirical tests.! We use static delta-hedging
which is also used by other equity option studies (Goyal and Saretto, 2009; Bali
and Murray, 2013; Byun and Kim, 2016). Following Goyal and Saretto (2009) and
Kelly and Jiang (2014), we use one-month options to construct bear spreads, and
form delta-hedged bear spreads on the first trading day immediately following the
third Saturday in month ¢ and close all positions at the option maturity on the
third Friday in month ¢ + 1. Our sample consists of 155,003 cross-sectional monthly

returns of delta-hedged bear spreads.

1.2.3 Left-tail risk measures

We estimate left-tail risk using two standard measures following Atilgan et al. (2020a):
value-at-risk (VaR) and expected shortfall (ES). VaRz (ESz) is calculated as (the
average of the observations that are less than or equal to) the = percentile of the
daily returns over the past 250 trading days. As the left-tail loss measures are
typically negative, we multiple these measures by -1 so that higher value of VaR or
ES corresponds to higher left-tail risk. At the portfolio formation date in month ¢,
we compute VaR1, VaRb5, ES1, and ES5 with the restriction that there are at least

200 non-missing past trading day returns.

Lu and Murray (2019) show in a theoretical model that delta-hedged bear spread returns
expose only to the left-tail risk.
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1.2.4 Control variables

We construct three groups of control variables that are commonly used to examine
the cross section of equity option returns in the literature (Goyal and Saretto, 2009;

Bali and Murray, 2013; Cao and Han, 2013; Byun and Kim, 2016; Ruan, 2020q).

First, we construct three variables related to firm characteristics. Firm size (SIZFE)
is the natural logarithm of firm market capitalization observed at the end of month
t — 1. Book-to-market ratio (BTM) is the ratio of a firm’s net asset’s book value at
the previous fiscal year-end to the market capitalization of the stock at the end of
month ¢t — 1. Firm leverage (DT A) is the ratio of a firm’s total liability to the book

value of total asset at the previous fiscal year-end.

Second, we construct six variables related to stock returns and stock trading activities.
Momentum (MOM) is the cumulative stock return from month ¢t — 6 to month
t — 2. Short-term reversal (REV) is the stock return in month ¢t — 1. Illiquidity
ratio (ILLIQ) is the natural logarithm of the average ratio of the absolute daily
stock return to its daily dollar trading volume multiplied by 10® in month ¢ — 1.
Idiosyncratic volatility of stock return (IVOL) is the standard deviation of the
residuals of the daily stock excess return regressed on daily market excess return in
month ¢ — 1. Stock return skewness (SKEW) and kurtosis (KU RT') are calculated

using last year’s daily stock return data.

Finally, we construct three variables related to options. Variance risk premium
(VRP) is the difference between the average implied volatility of ATM short-term

options (with moneyness between 0.95 to 1.05 and 10 to 60 day-to-maturity) and
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the annualized last-quarter’s daily stock return standard deviation observed at the
end of month ¢ — 1. Volatility of volatility (VOV') is calculated following Baltussen
et al. (2018) by scaling the standard deviation of ATM short-term option implied
volatility by the average ATM short-term option implied volatility over month ¢ — 1.
Risk-neutral skewness (RN.S) at the end of month ¢ — 1 is calculated using OTM

call and put options prices following Bakshi et al. (2003).

1.2.5 Summary statistics

Table 1.1 presents the summary statistics for delta-hedged bear spread returns, option
characteristics for PUT; and PU'T; in bear spreads, the left-tail risk measures and
control variables. The reported mean, standard deviation, 25th percentile, median,
and 75th percentile are computed as the time-series average of their cross-sectional

values.

10



ESSAYS OF ASSET PRICING Bei Chen

Table 1.1: Summary Statistics

This table presents the descriptive statistics (mean, standard deviation, 25th
percentile, median, T75th percentile) for delta-hedged bear spread returns,
characteristics of put options in the bear spreads, the left-tail risk measures, and
control variables. Statistics are computed as the time-series averages of the monthly
cross-sectional means, standard deviations and percentiles. The sample period is
from January 1996 to December 2017.

Mean Std Dev  25th  Median  75th
Panel A: Delta-hedged bear spread returns

-0.17%  13.22% -8.56% -1.74%  6.7T%
Panel B: Option characteristics

PUT;

Delta -0.30 0.05 -0.34 -0.30 -0.27
Implied Volatility 0.48 0.20 0.33 0.44 0.57
PUT,

Delta -0.12 0.03 -0.14 -0.11 -0.09
Implied Volatility 0.53 0.22 0.37 0.49 0.63
Panel C: Left-tail risk measures

VaRb 4.24% 1.57%  3.02%  3.99%  5.19%
VaR1 6.96% 2.82%  4.86%  6.44%  8.48%
ES5 6.15% 2.38% 4.34%  5.715%  7.51%
ES1 9.28% 4.41% 6.14%  833% 11.28%
Panel D: Control variables

SIZE 22.23 1.58  21.09 22.18 23.30
BTM 4.51 49.70 0.35 0.69 1.43
DTA 0.18 0.19 0.02 0.14 0.28
MOM 0.15 0.34 -0.04 0.13 0.31
REV 0.03 0.13 -0.04 0.02 0.09
ILLIQ -7.96 1.56 -9.03 -8.02 -6.89
IVOL 0.02 0.01 0.01 0.02 0.03
SKEW 0.24 1.22 -0.18 0.18 0.59
KURT 8.61 11.12 4.16 5.46 8.63
VRP 0.09 0.27 -0.06 0.09 0.25
VOV 0.10 0.06 0.06 0.09 0.12
RNS -0.63 0.58 -0.95 -0.56 -0.22

In Panel A, both mean and median of delta-hedged bear spread returns are negative,
consistent with the negative risk premium carried by the bear spreads as they provide
insurance against left-tail risk. The 75th percentile is 6.77%, indicating that at
least 25% of return observations are positive. The summary statistics reveal that

although on average the delta-hedged bear spread returns are negative, there are
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still substantial occurrences of returns are positive.

In Panel B, PUT; (OTM put option) and PUT, (DOTM put option) have the
median deltas of -0.30 and -0.11, close to our selection targets of -0.30 and -0.10
and the standard deviations deltas are moderately small, suggesting a satisfactory
selection result of option pairs in bear spread construction. PUT}’s mean implied
volatility is 48%, which is smaller than PUT,’s mean implied volatility of 53%. This
is consistent with the typical shape of volatility smirk for put options (Xing et al.,

2010).

In Panel C, VaR5 (VaR1) has a mean of 4.24% (6.96%), implying that on average
there is a 5% (1%) probability that the daily loss that a firm experiences in the prior
year exceeds 4.24% (6.96%). ES5 (ES1) has a mean of 6.15% (9.28%), which is

larger than the mean of VaR5 (VaR1) as expected.?

In Panel D, the median BT'M is 0.69 and the median DT A is 0.14. The median
MOM is 0.13, and the median REV is 0.02. These are similar to those reported
in Byun and Kim (2016). The median I LLIQ) is -8.02, similar to that reported in
Cao and Han (2013). The median IVOL is 0.02, same as reported in Atilgan et al.
(2020a). The median SK EW is 0.18 and the median KU RT is 5.46, similar to those
reported in Ruan (2020a). The median V RP is 0.09, similar to that reported in Cao
and Han (2013). The median VOV is 0.09, similar to that reported in Baltussen
et al. (2018). The median RN S is -0.56, similar to that reported in Stilger et al.

(2016).

2We also calculate correlations between the left-tail risk measures. The correlation coefficients
are in the range of 0.72 to 0.96, similar to those in Atilgan et al. (2020a).
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1.3 Empirical Analysis

1.3.1 Univariate portfolio analysis

We conduct univariate portfolio analysis to examine the relation between the left-tail
risk measures and future delta-hedged bear spread returns. In month ¢, we form
decile portfolios of delta-hedged bear spreads by sorting the underlying stocks based
on one of the left-tail risk measures (VaR1, VaRb5, ES1, ES5). The decile 10 (decile
1) portfolio contains delta-hedged bear spreads on stocks with the highest (lowest)

left-tail risk.

We compute both equal-weighted and dollar-open-interest-weighted (DOI-weighted)
hold-to-maturity monthly portfolio returns. The DOI weighting puts more weights on
options or option strategies with higher liquidity (open interests). Our construction
of DOI weighting is similar to Cao and Han (2013) and Gao et al. (2018). The
dollar-open-interest weight is calculated on the bear spread formation date as the
cost of each bear spread, multiplied by the minimum of the open interests of two put

options in that bear spread:

DOI =(PUT, PRICE — PUT, PRICE)

x min(PUTy OPEN INTEREST, PUT, OPEN INTEREST).

DOI captures the maximum possible dollar open interest to form a bear spread.

Table 1.2 reports the time-series average monthly returns of each decile portfolio,

together with the return spreads and their associated alphas between the highest

13



ESSAYS OF ASSET PRICING Bei Chen

and lowest (“10-1") left-tail risk decile portfolios. To adjust for serial correlation,

robust Newey-West (1987) t-statistics are reported in brackets.

Panel A reports the results for equal-weighted portfolios. In the first column of
Panel A, the decile 1 portfolio (with the lowest VaR5) has an average monthly
return of -0.62%, while decile 10 portfolio (with the highest VaR5) has an average
monthly return of 0.40%. The decile portfolio returns in general increase from decile
1 to decile 10. The “10-1” monthly return spread is 1.03% (t-statistic=3.60). The
corresponding “10-17 CAPM alpha is 1.23% (t-statistic=4.59). The three-factor
alpha after adjusting for the Fama-French three factors (MKT, SMB, and HML)
is 1.16% (t-statistic=4.34). The four-factor alpha after adjusting the Fama-French
three factors and the momentum factor (MKT, SMB, HML, and UMD) is 1.18%
(t-statistic=4.62). The five-factor alpha after adjusting for the four factors and the
systematic volatility factor (MKT, SMB, HML, UMD, and Zb-strad-rf) is 1.20%
(t-statistic=4.48). The other three columns in Panel A exhibit similar patterns when

portfolios are sorted on VaR1, £S5, and ES1.

In Panel B, the DOI-weighted portfolio returns have patterns similar to Panel A.
In the first column, for example, the “10-1” monthly return spread is 1.04% (-
statistic=2.44). The corresponding “10-17 CAPM alpha is 1.28% (t-statistic=3.02).
The three-factor alpha is 1.25% (¢-statistic=2.92). The four-factor alpha is 1.35%
(t-statistic=3.16) and the five-factor alpha is 1.31% (t-statistic=3.15). In Panels A

and B, the five-factor alphas range from 0.84% to 1.31% per month.

The bear spreads with bear regions concentrated in left tails provide protection

against rare events such as stock price crashes. In theory, option traders should pay

14
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adequately for such protection, accept negative risk premium, and expect negative
future returns. However, empirically we find that high decile portfolios generate higher
returns than low decile portfolios and the “10-1” return alphas are all statistically
and economically significant in both panels, indicating significant underpricing of

bear spreads when left-tail risk is high.

The positive relation between firms’ left-tail risk and future delta-hedged bear spread
returns deserves more analyses. Since there exist strong positive correlations between
the four left-tail risk measures, and the empirical distribution of VaR5 is more
well-behaved in terms of being closer to normality compared to the other three
measures (Atilgan et al., 2020a), we present our subsequent empirical results using

VaRb as the key left-tail risk measure except for Section 1.5.1.

1.3.2 Bivariate portfolio analysis

We investigate whether the positive relation between the underlying stocks’ left-tail
risk measures and future bear spread returns can be explained by other (firm, stock
or option related) variables using the dependent (conditional) bivariate portfolio

sorting method.

In month ¢, we first form decile portfolios of delta-hedged bear spreads by sorting
the underlying stocks based on one of the control variables in Section 1.2.4. Then,
within each decile, we form decile portfolios based on the left-tail risk measure VaR5.

Each left-tail risk decile portfolio is then averaged across the control variable deciles.

Table 1.3 reports equal-weighted and DOI-weighted returns of decile portfolios in
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Panels A and B, together with the raw and risk-adjusted return spreads (“10-17)
between the highest and lowest VaR5 decile portfolios. Newey-West (1987) t-statistics

are reported in brackets.

For equal-weighted portfolio results reported in Panel A, the “10-1” return spreads
and their corresponding alphas are positive and statistically significant. The return
spreads range from 0.64% (t-statistic = 3.05) to 1.09% (t-statistic = 4.99) per month.
The “10-1” CAPM alphas range from 0.78% to 1.25%. The three-factor alphas range
from 0.72% to 1.18%. The four-factor alphas range from 0.67% to 1.19%, and the
five-factor alphas range from 0.69% to 1.18%. For DOI-weighted portfolio returns
reported in Panel B, the “10-1” return spreads range from 0.50% (¢-statistic = 1.49)
to 1.16% (t-statistic = 3.44) per month. The “10-1” CAPM alphas range from 0.77%
to 1.32%. The three-factor alphas range from 0.71% to 1.28%. The four-factor
alphas range from 0.67% to 1.23% and the five-factor alphas range from 0.65% to
1.26%. The “10-1” return spreads and their corresponding alphas are all positive,

and statistically significant in most cases.

The results indicate that after controlling for various characteristic variables, there is
still a strong positive relation between firms’ left-tail risk measure VaR5 and future
returns of delta-hedged bear spreads. The return predictability of VaR5 cannot be

explained by the characteristic variables commonly used by the literature.

1.3.3 Fama-MacBeth regressions

We perform Fama-MacBeth (1973) regressions to formally test the positive cross-

sectional relation between VaR5 and future bear spread returns. The dependent
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variable is the hold-to-maturity monthly return of delta-hedged bear spread formed
in month ¢, and the variable of interest is VaR5. The control variables are from

Section 1.2.4.

Table 1.4 presents the time-series averages of the regression coefficient estimates,

along with their Newey-West (1987) adjusted t¢-statistics in the brackets.

There are 14 regression models with their results reported in the corresponding
columns. In model 1, we perform a univariate regression on VaR5. The coefficient is
0.201 (t-statistic=4.58), indicating a significantly positive relation between VaR5
and future delta-hedged bear spread return. In models 2-13, we perform regressions
on VaR5 together with each of the control variables. The coefficients on VaRb are
all positive and significant at the 1% level. In model 14, we perform regressions
on VaRb5 together with all the control variables. The coefficient on VaR5 is 0.204

(t-statistic=3.82), still positive and significant.

In model 14, the coefficient on SIZE is -0.004 (t-statistic=-4.37). Larger firms tend
to attract more attention from investors, and the protection provided by bear spreads
is likely more valuable to investors. Thus the bear spreads on larger firms tend to

generate lower future returns. The economic intuition is consistent to Goyal and

Saretto (2009), Cao and Han (2013), and Byun and Kim (2016).

The coefficients on ILLIQ and IVOL are -0.003 (t-statistic=-4.59) and -0.284
(t-statistic=-2.56) respectively. The protection of left-tail risk provided by bear
spreads is more valuable when such risk is harder to hedge for low liquidity or
high idiosyncratic volatility stocks. Thus for highly illiquid and high idiosyncratic

volatility stocks, future bear spread returns are lower. The economic intuition is
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consistent to Cao and Han (2013).

The coefficient on VRP is -0.014 (t-statistic=-1.81), suggesting a negative variance
premium of bear spreads. This is consistent to the positive vega exposure that bear

spreads carry.

The results of Table 1.4 indicate a strong and robust positive relation between
firms’ left-tail risk and future delta-hedged bear spread returns after controlling for
various combinations of control variables. Our findings suggest that options market
underreacts to firms’ left-tail risk and underprices bear spreads on high left-tail risk
stocks, resulting in the high future returns of the bear spreads when firm’ left-tail

risk is high.

1.4 Why does the options market underreact to

firms’ left-tail risk?

The positive relation between firms’ left-tail risk and future bear spread returns
indicates that options market underreacts to firms’ left-tail risk. In previous sections,
we show that such underreaction cannot be explained by the well-known characteristic
variables or risk factors. In this section, we analyse the potential behavioral

explanations to the options market’s underreaction to firms’ left-tail risk.
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1.4.1 Persistence of losses

A behavioral explanation to the positive relation between firms’ left-tail risk and
future bear spread returns is that option traders underestimate persistence of losses.
From this perspective, we analyze two effects: the left-tail momentum effect and
the anchoring effect. Atilgan et al. (2020a) show that investors underestimate loss
persistence and such underestimation contributes to the left-tail return momentum,
a negative relation between firms’ left-tail risk and expected equity returns. George
and Hwang (2004) show that anchoring behaviour helps explain loss momentum
around the 52-week low, albeit the anchoring effect is weaker than 52-week high.
Driessen et al. (2013) show that option implied volatilities decrease when stock prices
approach their 52-week low, suggesting that investors underestimate persistence in
risk due to anchoring bias. The anchoring effect by itself cannot directly explain our
main finding. By analyzing its impact on bear spread returns and combining with the
results from the left-tail momentum effect help us to pin down the underestimation
of loss persistence as one of the main behavioral sources to the positive relation

between firms’ left-tail risk and future bear spread returns.

To analyse the impact of these two effects, we construct two corresponding measures:
1) AVaRb5, change of VaR5, which is the difference between the month ¢ and the
month ¢t — 1 VaR5. A positive AV aR5 implies that the 5th percentile loss computed
in month ¢ is higher than the loss computed in month ¢ — 1, indicating larger recent
losses. 2) N L, nearness to the 52-week low, which is the current stock price divided
by the lowest stock price in the previous year. A lower N L indicates that the stock

price is closer to its 52-week low. We expect that the positive relation between firms’
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left-tail risk and future bear spread returns is stronger when AVaRb5 is positive or

when N L is lower.

To test our conjecture, we first sort bear spreads into two subsamples according
to the signs of AVaR5 of the underlying stocks: AVaR5 > 0 and AVaRb <= 0.
Alternatively, we sort bear spreads into tercile subsamples according to the value
of NL of the underlying stocks: low NL, mid NL, and high NL. Then, within
each subsample, we further sort bear spreads into deciles based on the left-tail risk

measure VaRb.

Table 1.5 reports the time-series average monthly returns for the highest and lowest
VaRb5 decile portfolios in each subsample, together with the return spreads (“10-17)
and their corresponding five-factor alphas. Newey-West (1987) adjusted ¢-statistics

are reported in brackets.
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Table 1.5: Persistence of Left-Tail Risk

This table presents return comparisons between bear spread decile portfolios sorted
based on the monthly change in VaR5 (AVaR) in Panel A and the nearness to
52-week low (N L) in Panel B. AVaR is defined as the difference between VaR5 in
month ¢ and month t — 1. NL is calculated as the the previous month-end stock
price divided by the minimum price in the previous year. Delta-hedged bear spread
portfolios are sorted into AVaR > 0 and AVaR < 0 groups or NL terciles. Then
decile portfolios are formed based on VaR5 within each group or tercile. The returns
for decile 10 and decile 1 portfolios, the return spread (”10-1") and its associated
five-factor alpha are reported. Five-factor alphas are calculated after adjusting
for Fama-French three factors, Carhart (1997) momentum factor, and Coval and
Shumway (2001) systematic volatility factor. Newey-West (1987) adjusted ¢-statistics
are presented in parentheses. The sample period is from January 1996 to December
2017.

Panel A: Sorts based on AVaR

Equal-weighted Dollar-open-interest-weighted
AVaR>0 AVaR<=0 AVaR>0 AVaR<=0
1 -0.53% -0.64% -0.56% -0.44%
10 0.48% 0.15% 1.08% -0.28%
10-1 1.02%*** 0.79%*** 1.64%*** 0.16%
(t-stat) (2.76) (2.70) (3.01) (0.43)
Five-factor alpha 1.12%*** 0.87%*** LTT%*** 0.25%
(t-stat) (2.85) (3.34) (3.11) (0.59)
Panel B: Sorts based on NL
Equal-weighted Dollar-open-interest-weighted
Low NL.  Mid NL High NL. Low NL.  Mid NL High NL
1 -0.65% -0.68% -0.21% -0.55% -0.67% -0.62%
10 0.47% 0.04% 0.31% 1.48% 0.52% -0.17%
10-1 L12%*FF  0.72%***  0.52%  2.04%***  1.19%*** 0.46%
(t-stat) (3.28) (2.74) (1.45) (3.74) (2.63) (0.73)
Five-factor alpha 1.23%*** 0.83%*** 0.76%** 2.21%*** 1.34%*** 0.55%
(t-stat) (3.26) (3.58) (2.05) (4.02) (3.03) (0.78)

Panel A presents results for the sorts based on AVaR5. For equal-weighted portfolios,
when AVaR5 > 0, the “10-1” return spread is 1.02% (t-statistic=2.76). The
corresponding five-factor alpha is 1.12% (¢-statistic=2.85). When AVaR5 < 0, the
“10-1” return spread is 0.79% (t-statistic=2.70). The corresponding five-factor alpha
is 0.87% (t-statistic=3.34). Although the positive relation between VaR5 and future
bear spread returns are statistically significant for both subsamples, the magnitudes

of the “10-1” return spread and the corresponding alpha are larger for AVaR5 > 0
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subsample than for AVaR5 <= 0 subsample.

For DOI-weighted portfolios, when AV aR5 > 0, the “10-1” return spread is 1.64%
(t-statistic=3.01). The corresponding five-factor alpha is 1.77% (t-statistic=3.11).
When AVaR5 < 0, both the “10-1” return spread and the alpha are statistically
insignificant. The positive relation between VaR5 and future bear spread returns is

only significant for AVaR5 > 0 subsample.

Combining the results for equal-weighted and DOI-weighted portfolios, Panel A shows
a strong and consistent positive relation between VaR5 and future delta-hedged
bear spread returns when AVaRb5 is positive. Since stocks that have experienced
recent large loss are more likely to experience similar large losses in the near future
(stock price’s left-tail risk momentum), the protection provided by the bear spreads
on these stocks should be more valuable. However, option traders underestimate the
left-tail risk persistence and underprice the bear spreads on the stocks with high

recent extreme losses, showing a left-tail risk momentum effect.

Panel B presents results for the sorts based on N L. For equal-weighted portfolios, in
the low N L subsample, the “10-1” return spread is 1.12% (¢-statistic=3.28). The
corresponding five-factor alpha is 1.23% (t-statistic=3.26). In the mid N L subsample,
the “10-1” return spread and the alpha are slightly lower but remain significant,
being 0.72% (t-statistic=2.74) and 0.83% (t-statistic=3.58) respectively. In the high
N L subsample, the “10-1” return spread is 0.52% and insignificant. The alpha is

0.76% (t-statistic=2.05) and is lower than those of the low and mid N L subsamples.

For DOI-weighted portfolios, in the low NL subsample, the “10-1” return spread

is 2.04% (t-statistic=3.74). The five-factor alpha is 2.21% (t-statistic=4.02). In
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the mid NL subsample, the “10-1” return spread is 1.19% (¢-statistic=2.63), and
the five-factor alpha is 1.34% (t¢-statistic=3.03). The return spread and the alpha
approximately halve those of the low NL subsample. In the high N L subsample,
the “10-1” return spread and the alpha are both insignificant. Furthermore, the
five-factor alpha difference between the low and high N L subsamples’ “10-1” spread

is 1.66% (t-statistic=2.14).

The results for equal-weighted and DOI-weighted portfolios in Panel B show that the
underestimation of the left-tail risk in the options market is stronger when the stock
price is nearer to it’s 52-week low price. Option traders anchor their loss expectation
around the 52-week low and underestimate the persistence of stock price decline,
leading to a stronger positive relation between firms’ left-tail risk and the future
bear spread returns. Our results are consistent to Driessen et al. (2013) as option
traders’ underestimation to the chance of downward breakthroughs leads to stronger
underpricing of bear spreads when stock prices approach their 52-week low, showing

an anchoring effect.

Overall, the results in Table 1.5 suggest that both the left-tail momentum effect and
the anchoring effect have strong impact on the underpricing of bear spreads. The
existence of both effects indicate that one of the driving forces of the underreaction
to firms’ left-tail risk in the options market is option traders’ underestimation of loss

persistence.
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1.4.2 Information uncertainty

Prior literature (Hong et al., 2000; Jiang et al., 2005; Zhang, 2006a,b; Kumar,
2009a) shows that information uncertainty amplifies investor behavioural biases. In
particular, high information uncertainty may lead to investors’ slow reaction to news

(especially bad news), causing predictable price drift or momentum.

Following the literature, we construct four information uncertainty proxies: 1) SIZE,
as defined in Section 1.2.4. 2) AGE, firm age, which denotes the number of years
that the firms are listed on Compustat at the previous year-end. 3) AC, residual
analyst coverage, which is the residual from the cross-sectional regression of the
logarithm of the analyst coverage on the logarithm of firm’s market capitalization in
the previous quarter. Since analyst coverage is very strongly correlated with firm
size, we control for the influence of firms’ market capitalization on analyst coverage
using the residual analyst coverage following Hong et al. (2000). 4) DISP, analysts’
forecast dispersion, which is the standard deviation of the analysts’ forecasts scaled

by the stock price in the previous quarter.

Zhang (2006b) use all the four proxies above to measure information uncertainty.
Hirshleifer and Teoh (2003) use firm size and analyst coverage as proxies for
investor inattention. Kumar (2009a) use firm age to measure valuation uncertainty.
Taking into account conceptual overlap and mixed interpretation of proxies between
information uncertainty, investor inattention, and valuation uncertainty, we use
small firm size, young firm age, low analyst coverage, and high dispersion in analyst
forecasts as proxies of high information uncertainty. We expect that high information

uncertainty amplifies the positive relation between the left-tail risk and the future
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bear spread returns.

To test our conjecture, we construct subsamples based on the median of each of the
four proxies above. Within these subsamples, we sort bear spread returns into deciles
based on the underlying stock’s VaRb5, and we calculate the time-series average

monthly returns for the decile portfolios in each subsample.

Table 1.6 reports the highest and lowest VaR5 decile portfolio returns, together with
the return spreads (“10-17) and its five-factor alphas. Newey-West (1987) adjusted

t-statistics are reported in brackets.

Panel A presents the results for equal-weighted portfolios. When portfolios are sorted
based on SIZE, the “10-1” return spread is 1.11% (¢-statistic=3.78) for the low SIZFE
group and 0.80% (t-statistic=2.85) for the high STZE group. The corresponding

five-factor alphas are 1.24% (t-statistic=4.44) and 0.83% (t-statistic=3.27).

When portfolios are sorted based on Age, the “10-1” return spread is 1.32% (t-
statistic=4.22) for the low Age group and 0.88% (t¢-statistic=3.19) for the high Age
group. The five-factor alphas are 1.44% (t-statistic=>5.11) and 1.02% (¢-statistic=3.79)

respectively.

When portfolios are sorted based on AC, the “10-1” return spread is 1.13% (t-
statistic=3.94) for the low AC group and 0.58% (t-statistic=2.15) for the high AC
group. The five-factor alphas are 1.28% (¢-statistic=4.72) and 0.81% (¢-statistic=2.77)
respectively. The difference in alpha spreads between the low and high AC' group is

0.47% (t-statistic=1.74).

When portfolios are sorted based on DISP, the “10-1” return spread is 1.10%
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(t-statistic=3.71) for the high DISP group and insignificant for the low DISP
group. The corresponding five-factor alphas are 1.18% (t-statistic=4.09) and 0.74%
(t-statistic=2.33). The difference in alpha spreads between the high and low DISP

group is 0.44% (t-statistic=1.68).

Panel B presents the results for DOI-weighted portfolios. When portfolios are sorted
based on SIZE, the “10-1” return spread is 1.71% (t-statistic=3.47) for the low
SIZFE group and insignificant for the high SIZFE group. The corresponding five-
factor alphas are 1.75% (t-statistic=3.33)and 0.66% (t-statistic=1.83). The difference

in alpha spreads between the low and high SIZFE group is 1.09% (t-statistic=2.10).

When portfolios are sorted based on Age, the “10-1” return spread is 1.93% (t-
statistic=4.40) for the low Age group and insignificant for the high Age group.
The five-factor alphas are 2.00% (t-statistic=4.66) and 0.95% (t-statistic=2.03)
respectively. The difference in alpha spreads between the low and high Age group is

1.06% (t-statistic=1.76).

When portfolios are sorted based on AC, the “10-1” return spread is 1.36% (-
statistic=2.22) for the low AC group and 0.86% (t-statistic=2.11) for the high AC
group. The corresponding five-factor alphas are 1.52% (¢-statistic=2.67) and 1.14%

(t-statistic=2.69).

When portfolios are sorted based on DISP, the “10-1” return spread is 1.69%
(t-statistic=3.68) for the high DISP group and insignificant for the low DISP group.
The corresponding five-factor alphas are 1.74% (t-statistic=3.99) for the high DISP
group and insignificant for the low DISP group. The difference in alpha spreads

between the high and low DISP group is 1.12% (t-statistic=1.74).
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Overall, the positive relation between firms’ left-tail risk and the future bear spread
returns is stronger in the high information uncertainty subsamples. Information
uncertainty usually amplifies investors’ behavioral biases such as investor underreaction
to bad news, our finding suggests that the options market’s underreaction to firms’

left-tail risk is amplified by information uncertainty.

1.4.3 Investor sentiment

Sentiment is a biased investor belief conditional on available information (Barberis
et al., 1998). Asset mispricing and risk underestimation are more likely to happen
during the high investor sentiment periods (Baker and Wurgler, 2006; Yu and
Yuan, 2011; Stambaugh et al., 2012; Lemmon and Ni, 2014; Byun and Kim, 2016).
Stambaugh et al. (2012) show that high investor sentiment contributes to the
significant profits from the short legs of long-short strategies building upon a large set
of anomalies. Byun and Kim (2016) document that the overvaluation of lottery-like
options is attributable to high investor sentiment. While prior literature focuses
more on the overpricing of risky assets, the underpricing of safer, protective assets

may also happen when investor sentiment is high.

Complementary to prior literature, we analyse potential, more pronounced underpricing
for bear spread, a protective option strategy, in high sentiment periods. We use
the monthly market-based sentiment index (BW sentiment index) constructed by
Baker and Wurgler (2006) to classify high and low investor sentiment months. A
high (low) sentiment month is one in which the value of the BW sentiment index

in the previous month is above (below) the median value for the sample period.
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Within the subsample with high (low) sentiment months, we form decile portfolios
of delta-hedged bear spreads based on VaR5 and calculate the time-series average

monthly returns for the decile portfolios.

Table 1.7 reports the returns for the highest and lowest VaR5 decile portfolios,
together with the return spreads (“10-1") and the corresponding five-factor alphas.
Newey-West (1987) t-statistics are reported in brackets.

Table 1.7: Investor Sentiment

This table presents return comparisons between bear spread decile portfolios in subsamples sorted
based on the median of Baker and Wurgler (2006) sentiment index. A high (low) sentiment month
is one in which the value of the BW sentiment index in the previous month is above (below)
the median value for the sample period. Decile portfolios are formed based on the underlying
stocks’ VaR5 within each subsample. The returns for decile 10 and decile 1 portfolios, the return
spread (”10-1”) and its associated five-factor alpha are reported. Five-factor alphas are calculated
after adjusting for Fama-French three factors, Carhart (1997) momentum factor, and Coval and
Shumway (2001) systematic volatility factor. Newey-West (1987) adjusted t-statistics are presented
in parentheses. The sample period is from January 1996 to December 2017.

Equal-weighted portfolios DOI-weighted portfolios

High Sentiment Low Sentiment | High Sentiment Low Sentiment
1 -0.57% -0.61% -0.35% -0.77%
10 0.85% -0.08% 1.13% -0.29%
10-1 1.42%%** 0.52%* 1.49%** 0.48%
(t-stat) (3.25) (1.67) (2.25) (1.09)
Five-factor alpha 1.46%*** 0.74%** 1.87%*** 0.39%
(t-stat) (3.13) (2.46) (2.75) (0.84)

Panel A presents the results for equal-weighted portfolios. In the high-sentiment
subsample, the decile 1 portfolio has a negative average return of -0.57%, while decile
10 portfolio has a positive average return of 0.85%. The “10-17 monthly return
spread is 1.42% (t-statistic=3.25). The corresponding five-factor alpha is 1.46%

(t-statistic=3.13).

In the low-sentiment subsample, the decile 1 portfolio has a negative average return
of -0.61%, while decile 10 portfolio has an average return of -0.08%. The “10-1”

monthly return spread is 0.52% (t¢-statistic=1.67). The corresponding five-factor
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alpha is 0.74% (t-statistic=2.46). The return difference between decile 1 portfolios
in subsamples is lower than decile 10 portfolios, so the difference in “10-1” return
spreads between two subsamples is mainly driven by the decile 10 (high left-tail risk)

portfolio returns.

Panel B presents the results for DOI-weighted portfolios. In the high-sentiment
periods, the decile 1 portfolio has a negative average return of -0.35%, while decile
10 portfolio has a positive average return of 1.13%. The “10-1” monthly return
spread is 1.49% (t-statistic=2.25). The corresponding five-factor alpha is 1.87%
(t-statistic=2.75). In the low-sentiment periods, the decile 1 portfolio has a negative
average return of -0.77%, while decile 10 portfolio has a negative average return of
-0.29%. The “10-1” monthly return spread and the corresponding five-factor alpha

are both insignificant.

The results in both panels show that the underreaction to firms’ left-tail risk is
stronger during the high-sentiment periods. When market sentiment is high, option
traders tend to overlook downside risk and and underprice the downside protection
provided by bear spreads. Our finding, together with the prior research on risky
asset overpricing in high sentiment periods, supports the economic intuition that
overvaluation in risky assets and undervaluation in safer, protective assets may
happen at the same time (Acharya and Naqvi, 2019). Han (2008) shows that
when market sentiment is high, the index option volatility smile is flatter and the
risk-neutral skewness of index return extracted from the index option prices is less
negative, suggesting decreased risk hedging demand. Our results are consistent to
Han (2008) as low hedging demand leads to stronger underpricing of bear spreads
during the high market sentiment periods.
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1.5 Further Discussion

1.5.1 Arrow-Debreu price

From the option prices in a bear spread strategy, we can compute Arrow-Debreu state
price of the left-tail events (Lu and Murray, 2019). If we scale the option positions
in the bear spread by K; — K», we would have a price of (P, — P,)/(K; — K3), and
a payoff of $1 when S7 < K,. Therefore, the price of the scaled bear spread should
be equal to e*TTIAE[l{ST< K»}), where 1 is the indicator function and [ represents the
expected value under risk-neutral probability. The scaled bear spread price can be

interpreted as the discounted risk-neutral state probability of left-tail events.

In our prior results, we show that options market underreact to firms’ left-tail risk
by presenting evidence of a positive risk-return relation between firms’ left-tail risk
and future bear spread returns. Now, we examine the Arrow-Debreu state price of
left tail events to shed more light on such underreaction. If options market totally
ignores and misprices firms’ left-tail risk, then Arrow-Debreu state price will exhibit
significant misalignment to the left-tail risk measures. Otherwise, if options market
prices firms’ left-tail risk but fails to fully price such risk, then Arrow-Debreu state

price should more or less align to the left-tail risk measures.

We sort firms into deciles based on one of the four left-tail risk measures (VaR1,
VaR5, ES1, ES5) and calculate the average Arrow-Debreu state price, from scaled

bear spread prices, in each decile.

Table 1.8 reports the time series average of Arrow-Debreu state price in each decile

35



ESSAYS OF ASSET PRICING Bei Chen

portfolio, together with the difference in state prices between the highest and the
lowest left-tail risk deciles. Newey-West (1987) adjusted t-statistics are reported in

brackets.
Table 1.8: Arrow-Debreu Price

This table presents the time-series average Arrow-Debreu prices
(scaled bear spread prices) formed on deciles based on firms’ left-tail
risk metrics (VaR5, VaR1, ES5, ES1), along with the price spread
between decile 10 and decile 1 portfolios. The scaled bear spread
price is calculated by scaling the bear spread price by the difference
of the strike prices of the two puts in the bear spread. Newey-West
(1987) adjusted t-statistics are reported in parentheses. The sample
period is from January 1996 to December 2017.

VaR5 VaR1 ES5 ES1
1 0.176 0.176 0.176 0.177
2 0.183 0.183 0.183 0.184
3 0.189 0.190 0.189 0.191
4 0.196 0.197 0.197 0.198
5 0.204 0.204 0.203 0.205
6 0.211 0.211 0.211 0.212
7 0.218 0.218 0.218 0.219
8 0.227 0.227 0.227 0.227
9 0.239 0.238 0.239 0.237

10 0261 0258 0260  0.253
10-1  0.085%% 0.082FFF 0.085"*% 0.0767F
(t-stat) (61.58)  (64.35)  (63.42)  (62.89)

Arrow-Debreu state price increases monotonically with all the left-tail risk measures.
For example, when portfolios are sorted based on VaR5, the average Arrow-Debreu
state price of decile 1 (10) is 0.176 (0.261). The difference is 0.085 and significant
at 1% level. Arrow-Debreu price extracted from bear spread strategy exhibits the
correct price order of hedging demand. Together with our prior results, we show
that although the options market underreacts to firms’ left-tail risk, the bear spread
prices at least partially reflect such risk. In other words, firms’ left-tail risk is priced

in, but is not adequately priced in.
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1.5.2 Transaction costs

Transactions on OTM and DOTM equity options usually incur high transaction costs.
Our prior finding might be driven by illiquid options as option traders underreact to
risk due to these options’ high transaction costs. In this section, we examine whether

transaction costs in options market severely impact our findings.

We conduct three tests following Bali and Murray (2013). We begin our analysis
by restricting our sample to the following subsamples where liquidity or transaction
costs are of less concern: 1) Large Open Interest subsample, where we require the
minimum open interest of the two puts in the bear spread to be among the upper
quartile on portfolio formation date. The size of this subsample is 38,751; 2) Small
$Spread subsample, where we require both put options in the bear spread to have
bid-ask spreads of less than $0.15. The size of subsample is 63,526; and 3) Small
%Spread subsample, where we require both put options in the bear spread to have
percentage bid-ask spread (bid-ask spread divided by the midpoint of the bid and
ask price) to be below the lower tercile of each corresponding put option group on

each portfolio formation date. The size of subsample is 28,222.

Panel A in Table 1.9 reports the five-factor alpha on return spread between the

highest and lowest VaR5 decile portfolios for each subsample.
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Table 1.9: Transaction Costs

This table presents the results when transaction costs are taken into consideration.
Panel A reports the the five-factor alphas for return spreads between decile 10 and
decile 1 delta-hedged bear spread portfolios formed on VaR5 in three subsamples.
The Large Open Interest subsample is constructed by requiring the minimum open
interest of the two puts in the bear spread to be above the upper quartile on each
portfolio formation date. The Small $Spread subsample is formed by requiring both
options in the bear spread to have bid-ask spread of less than $0.15. The Small
%Spread subsample is formed by requiring both options in the bear spread to have
percentage bid-ask spread (bid-ask spread divided by the midpoint of the bid and
ask price) to be below the lower quartile on each portfolio formation date. Panel B
presents the results of Fama and MacBeth (1973) regressions by adding additional
controls for option liquidity and transaction costs. The dependent variable is the
delta-hedged bear spread (formed in month ¢) hold-to-maturity monthly return.
The additional controls are for the options (PUT; and PUT;) used to create the
bear spread strategy. These controls are: open interest(Openlnt), bid-ask spread
(3Spread), percentage bid-ask spreads (%Spread), volatility spread (SpreadVol),
and implied volatility spread (SpreadImuvol). Panel C presents the five-factor alphas
of return spreads between decile 10 and decile 1 delta-hedged bear spread portfolios
formed on VaR5 after paying 10%, 20%, 30% of the quoted spread on the option
positions. Five-factor alphas are calculated after adjusting for Fama-French three
factors, Carhart (1997) momentum factor, and Coval and Shumway (2001) systematic
volatility factor. Newey-West (1987) adjusted t-statistics are presented in parentheses.
The sample period is from 1996 to 2017.

Panel A: “10-1” alpha in subsamples
Equal-weighted portfolios DOI-weighted portfolios

Large Open Interest subsample

“10-1” five-factor alpha 1.22%*** 1.41%%**
(t-stat) (3.57) (3.35)
Small $Spread subsample

“10-1” five-factor alpha 1.24%%** 0.91%**
(t-stat) (3.54) (2.15)
Small %Spread subsample

“10-1” five-factor alpha 1.54%*** 1.43%**
(t-stat) (3.73) (2.25)

Table 1.9 continued from previous page

Panel B: Fama-MacBeth regressions
1 2 3 4
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VaRb 0.198%#F*F  0.213***  (.199***  (.197***
(3.28) (3.62) (3.29) (3.25)
OpenInt_PUT; 0.000 0.000 0.000 0.000
(1.33) (1.19) (1.32) (1.16)
OpenInt_PUT, 0.000%* 0.000** 0.000**  0.000**
(1.88) (2.09) (1.99) (2.02)
$Spread_PUT, 0.000
(-0.01)
$Spread_PUT, -0.009*
(-1.73)
%Spread_PUT; -0.005
(-1.59)
%Spread_PUT, 0.016*
(1.73)
SpreadV ol _PUT} -0.022
(-1.02)
SpreadV ol _PUT; -0.010
(-0.34)
SpreadImvol_PUT} -0.001
(-0.41)
SpreadImvol _PUT, -0.001
(-0.49)
Controls YES YES YES YES
Adj. R? 4.75% 4.78% 5.35% 4.42%
Panel C: Effective bid-ask spreads as percentage of quoted spreads
0% 10% 20% 30%

Equal-weighted portfolios

“10-1” five-factor alpha  1.20%*** 0.83%*** 0.46%*  0.10%
(t-stat) (4.48) (3.09) (1.72) (0.38)
DOI-weighted portfolios

“10-1” five-factor alpha  1.31%*** 1.11%*** 0.91%** 0.72%*
(t-stat) (3.15) (2.66) (2.19) (1.73)

Panel A shows that for all the low transaction costs subsamples, the “10-1” alpha
spreads remain positive and significant, confirming that our results are not only
driven by options with high transaction costs.

Next, we perform Fama-MacBeth regressions by further controlling for option liquidity
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and transaction costs proxies. We use the open interest of an option (Openlnt) as
the option liquidity proxy. We use the following four option transaction costs proxies:
1) $Spread, the dollar bid-ask spread of an option; 2) %Spread, the percentage
bid-ask spread of an option; 3) SpreadV ol, the volatility spread of an option, which
is calculated as the dollar spread divided by the option vega; and 4) SpreadImuvol,
the implied volatility spread of an option, which is calculated as the dollar spread

divided by the option implied volatility.

Panel B in Table 1.9 reports the results from Fama-MacBeth regressions. Columns 1
to 4 in Panel B use different combinations of option liquidity and transaction costs
proxies. The results consistently show that the coefficients on VaR5 remain positive
and significant at 1% level, confirming that our prior results are not driven by illiquid

options with transaction costs.

Last, we directly add transaction costs to our analysis by assuming the effective
spreads for options are equal to 10%, 20%, and 30% of the quoted spreads. Muravyev
and Pearson (2020) provide evidence that the effective spreads of option traders are

less than 30% of the quoted spreads when traders time execution.

Panel C in Table 1.9 reports the five-factor alpha of return spread between the highest
and lowest VaR5 decile portfolios. For comparison, we also include the results with
no transaction costs (effective spread = 0% of quoted spread). For both equal-
weighted and DOI-weighted portfolios, increasing transaction costs reduces ”710-1”
alphas. When the effective option spread is 20% of the quoted spread, the five-factor
alphas are 0.46% (t-statistic=1.72) and 0.91% (¢-statistic=2.19) for equal-weighted

and DOI-weighted portfolios respectively. Even at 30% of the quoted spread, the
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five-factor alpha is 0.72% (t-statistic=1.73) for DOI-weighted portfolios.

Overall, results in Table 1.9 show that our prior results largely hold when transaction

costs are taken into consideration.

1.6 Conclusion

Asset pricing research puts a lot of emphasis on tail risk. Practitioners in financial
markets also emphasize their loss aversion against investment downsides. Adequately
estimating and pricing firms’ left-tail risk is important for equity investors, option

traders, and well-functioned financial markets in general.

Using bear spreads with bear regions concentrated on firms’ left-tail, we show that
firms’ left-tail risk is a strong positive predictor of future bear spread returns. Our
finding suggests that the options market underreacts to firms’ left-tail risk and does

not adequately price in such risk.

Behavioral biases help to explain the underreaction to firms’ left-tail risk. We show
that underreaction is stronger for stocks with larger recent losses and closer to
their 52-week lows, suggesting that option traders do not adequately factor in the
persistence of losses. Higher information uncertainty amplifies investor underreaction
to bad news, leading to stronger bear spread underpricing. Investor sentiment also has
significant impact on left-tail risk underreaction as we show that the underreaction

mainly happens during high market sentiment periods.

Bear spreads provide protection against downsides and such protection should be
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priced adequately in the options market. Our finding suggests that although the loss
aversion against the left-tail risk plays an important role in financial markets, option

traders fail to demand adequate price premium for bear spreads to compensate firms

left-tail risk.

Our study contributes to the literature by using an option trading strategy, bear
spread, to isolate and analyze firms’ left-tail risk and showing that merely recognizing
the importance of left-tail risk is not enough, investors need overcome behavioral

biases to adequately price left-tail risk.
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Chapter 2

Anticipating Jumps:
Decomposition of Straddle
Returns Around Earnings

Announcements

2.1 Introduction

Quarterly earnings announcements contain important information about company
fundamentals and are closely followed by not only stock investors but also option
traders. Gao et al. (2018) find that trading delta-neutral straddles on individual firms
generates significantly positive returns around earnings announcements, indicating
that option traders underestimate the magnitude of uncertainty surrounding earnings

announcements. One of the most interesting findings of Gao et al. (2018) is that

43



ESSAYS OF ASSET PRICING Bei Chen

the cumulative returns of delta-neutral straddles remain positive even after the
announcements, suggesting a persistent underpricing of straddles constructed before

the announcements.

A straddle is formed by simultaneously buying both a put option and a call option
on the underlying stock with the same strike price and the same expiration date.
Although trading straddles is deemed a popular volatility trading strategy, a straddle
buyer actually pays a risk premium for protection against not only volatility risk
but also jump risk. The underpricing of risks in straddles could be driven by the
underpricing of either volatility risk or jump risk, or both. Coval and Shumway
(2001) motivate the use of delta-neutral straddles for examining the asset pricing
effect of stochastic volatility because of their large vegas. Cremers et al. (2015) point
out that delta-neutral straddles have large gammas as well as vegas thus they have
large exposure to jump risk as well as volatility risk. They use a combination of
short-term and long-term delta-neutral straddles to construct two tradable portfolios:
a volatility factor-mimicking portfolio with exposure only through vegas and a jump
factor-mimicking portfolio with exposure only through gammas. Distinguishing
the jump risk from the diffusive volatility risk is important in finance because
these two types of risk should be treated and priced separately. Jumps represent
the discontinuity in asset prices whereas volatility represents variation along the
continuous asset price paths ((Bates, 1996), (Pan, 2002)). Lee and Mykland (2008)
show that individual stock jumps are driven by earnings announcements and other
company-specific news events whereas the S&P 500 index jumps are associated with
general market news announcements. Dubinsky et al. (2019) find that options market

prices in earnings-induced jump risk prior to the earnings announcements.
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In this paper, we extend the volatility-jump factor-mimicking methodology developed
in Cremers et al. (2015) to a unique decomposition of delta-neutral straddle into
its volatility component (delta and gamma neutral but vega positive) and jump
component (delta and vega neutral but gamma positive). Subsequently, the delta-
neutral straddle returns can be decomposed into the returns of the volatility-jump
components. We use our decomposition method to examine the delta-neutral
straddle returns around the earnings announcements and answer the following
research question: if options market underprices the uncertainty around earnings
announcements and such underpricing manifests itself in positive straddle returns,
then what is the constitution of such underpricing with respect to volatility risk
and jump risk? Uncovering the answer to this question could significantly enhance
our understanding of the uncertainty anticipated by options market and priced in

straddles before the earnings announcements.

We analyze the return patterns of straddle trading strategies with different holding
periods around the earnings announcement date (EAD) and compare the patterns of
straddle returns to the patterns of its volatility-jump component returns. To capture
the difference between pre- and post-announcement return patterns, we focus on
two buy-and-hold strategies. Strategy [-3,-1] (Strategy [-3,1]) is the trading strategy
that delta-neutral straddles are purchased on the three trading days before the EAD,
and are sold on one trading day before (after) the EAD. We find that straddle
cumulative returns are both positive on [-3,-1] and [-3,1], with the cumulative return
on [-3,1] (post-announcement) being lower than the cumulative return on [-3,-1]

(pre-announcement).

Using our decomposition method, we find a pattern of run-up of uncertainty over the
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pre-announcement period [-3,-1], with both volatility and jump component returns
being significantly positive. Compared to the volatility component’s return, the return
of the jump component on [-3,-1] is much larger, suggesting a substantial run-up of
priced-in jump risk in straddles before the EAD. When post-announcement period
is included in the straddle holding period, we find that the volatility component’s
cumulative return remains significantly positive on [-3,1] and is larger than its
cumulative return on [-3,-1], whereas the jump component’s cumulative return on

[-3,1] turns to be significantly negative.

Our findings show that the overall pattern of delta-neutral straddle returns around
earnings announcements is mainly driven by its jump component. The pattern
consists of a run-up of uncertainty priced in straddles, dominated by an accumulation
of priced-in jump risk, over the pre-announcement period, and a drop of straddle
price after the EAD, dominated by a drop of priced-in jump risk, over the post-

announcement period.

Our decomposition results provide a new angle to explain the phenomenon of
straddle underpricing. We show that the main driver of underpricing is the volatility
component of straddles. After the EAD, the volatility component of a straddle still
has positive return, countering the significant return drop of the jump component
and keeping the straddle’s cumulative return positive. The persistent underpricing of
individual company’s straddles around earnings announcements mainly comes from

the persistent underpricing of its volatility component.

We answer our research question by showing that options market anticipates the

stock price jumps induced by earnings announcements. The discontinuity of the stock
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price around earnings announcements is the focal point of options traders. The return
patterns of both the straddle and its jump component demonstrate such anticipation.
By contrast, variation of smoothly changing part of stock price is not fully priced in
straddles. Options market appears to underestimate the volatility risk and underprice
the volatility component of straddles, leading to the positive cumulative returns on

both the straddle and its volatility component after the earnings announcements.

Gao et al. (2018) suggest that the underestimation of uncertainty around EAD is
due to the noisiness of information received by investors and the transaction costs.
We find marked difference between volatility and jump components’ responses to
information noisiness and transaction costs. On [-3,-1], information noisiness and
transaction costs strongly positively predict the straddle and its jump component
returns. Instead, they have little or negative impact on the volatility component
returns. Our results lend further support that jump component returns dominate
the risk run-up pattern of straddle returns before the earnings announcements. On
[-3,1], the positive return predictability of these measures on straddle and jump
component largely disappears or even reverses, consistent to the substantial decline

of information uncertainty after the earnings announcements.

We conduct further analysis on returns over [-3,0] by separating the announcements
during the market hours and the after-hours announcements. For firms with earnings
announced during the market hours, the volatility component returns are significantly
positive. Whereas for firms with after-hours earnings announcements, the straddle
and the jump component returns are significantly positive. Our findings show that
the pre-announcement period positive straddle returns are mainly driven by its
jump component whereas the post-announcement period positive straddle returns
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are mainly driven by its volatility component. These findings are consistent to our

findings on returns over [-3,-1] and [-3,1].

Finally, We find that in recent years (2014-2017) positive straddle returns around
the EAD largely disappear. The jump component return is negative, suggesting that
options market pays more attention to the straddle mispricing issue by pricing in
more jump risk. However, the underpricing of volatility risk is persistent and the
volatility component continues to generate significantly positive returns around the

earnings announcements.

Our paper contributes to the empirical asset pricing literature in two ways. First,
we extend the volatility-jump risk factor mimicking methodology in Cremers et
al. (2015) to a new volatility-jump decomposition method. Cremers et al. (2015)
examine the pricing of systematic volatility and jump risks in the cross-section of
stock returns by constructing factor-mimicking trading strategies using index options.
Their focal point is the roles of systematic jump risk and volatility risk in stock prices.
Our paper’s focal point is individual stock jumps anticipated by options market
around earnings announcements. Our decomposition method is used to disentangle
volatility-jump components in individual option straddles. We contribute to the
literature on disentangling jump and volatility! by showing that the methodology in
Cremers et al. (2015) can be extended to disentangle volatility-jump components in
straddles and straddle returns can be decomposed into volatility-jump component

returns.

Second, we investigate the puzzling positive straddle returns around earnings

!See Bates (1996), Liu and Pan (2003), Maheu and McCurdy (2004), Santa-Clara and Yan
(2010), Todorov (2010), Cremers et al. (2015).
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announcements in Gao et al. (2018) and find that the positive straddle cumulative
returns up to the post-announcement period are mainly driven by the positive
volatility component cumulative returns. We also show that the jump component
return is the main driving force for shaping the straddle’s pre- and post-announcement
return patterns. The literature on option prices around earnings announcement
can be traced back to Patell and Wolfson (1979,1981). Patell and Wolfson (1979,
1981) document increases in option prices preceding the EADs and show that option
traders anticipate an increase in equity volatility around EADs. Jin et al. (2012)
find that option volatility skews and volatility spreads have stronger stock return
predictability around EADs and other company-specific information events. We
contribute to the literature on option prices around earnings announcements? by
showing that volatility and jump components have markedly different return patterns
around EADs. The return patterns suggest that option traders anticipate jumps but

underestimate the volatility risk before the earnings announcements.

The remainder of the paper proceeds as follows. Section 2.2 presents the new
decomposition method and describes the data. Section 2.3 presents the empirical

results. Section 2.4 concludes.

2See also Patell and Wolfson (1979, 1981), Whaley and Cheung (1982), Billings and Jennings
(2011), Jin et al. (2012), Dubinsky et al. (2019).
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2.2 Methodology and Data

2.2.1 Decomposition method

We develop a new method to decompose a straddle’s return into its volatility-jump
component returns. Our method is an extension to the volatility-jump factor-
mimicking methodology in Cremers et al. (2015). The construction of Cremers et
al. (2015) focuses on the disentangling of volatility-jump factors using short-term
and long-term straddles. Our method focuses on a decomposition of straddle price
and return into the volatility-jump components and their corresponding component

returns.

We consider two delta-neutral straddles S1 and S2 with short and long maturities
T'1 and T2. Straddle S1 (S2) is constructed by combining one unit of call option ¢l
(€2) and —An /Ay (—Ar/Ae) unit of put option pl (p2), where Ay and A, (A

and A,,) are deltas for the call and put options.

We use S1 = (cl, —=Ax/Appl) and S2 = (2, —Ar/A2p2) to denote the composition
of straddles. The same notations will be used in the following part to explain the

decomposition of a straddle.

Vega and gamma of straddle S1 (S2) are Vegas; and Gammag, (Vegass and
Gammags). Comparing to long-maturity options, short-maturity options have
smaller vegas and larger gammas, so typically we have Vegas; < Vegaso and

Gammag; > Gammags.

We construct a volatility risk factor-mimicking portfolio V' and a jump risk factor
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mimicking-portfolio J by combining straddles S1 and S2. Portfolio V' is a delta-
neutral, gamma-neutral, and vega-positive strategy consisting of one unit of S2 and
—Gammagy/Gammag; unit of S1. Porfolio J is a delta-neutral, vega-neutral, and
gamma-positive strategy consisting of one unit of S1 and and —Vegag;/Vegags unit

of S2. The composition of these two portfolios are:

V = (—(Gammass/Gammag;)S1, S2);

J = (51,—(Vegas1/Vegas2)S2).

The construction of V' and J is the same as Cremers et al. (2015). We begin our
extension by combining portfolio V' and J to replicate short-maturity straddle S1.
In this way, we decompose both the price and the returns of S1 into its volatility and
jump components. Suppose S1 = (aV,bJ), the decomposition question is to solve
the unknown factor-mimicking portfolios” weights a and b. Utilising the straddle
notation above, the decomposition can be expressed recursively and then simplified

as follows,

S1 = (aV,bJ)
= (a(—(Gammass/Gammas;)S1, 52),b(S1, —(Vegas, /Vegass)S2))

= ((b — a(Gammags/Gammags:))S1, (a — b(Vegas, /Vegass))S2).

The conditions for the decomposition to succeed are the following two equations:

b — a(Gammags/Gammag,) = 1;

a—b(Vegagi/Vegasy) = 0.
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Solving the equations, we obtain the unique decomposition of straddle S1 by portfolios

V and J as®:
Vegagi 1
o Vegago
Sl = 1 — Vegag) Gammago V’ _ Vegagi Gammags J - (21)
Vegases Gammagi Vegases Gammagi

Eq.(2.1) shows that a straddle is a portfolio of the volatility risk factor-mimicking

portfolio V' and the jump risk factor-mimicking portfolio J, with the corresponding

Vegag,

. . . 1%
portfolio weights (a and b) being —Vem sy and —vg Sllcamma = - Therefore, a
- Vegagg Gammagq 7Vega52 Gammagq

straddle’s price can be decomposed into aV, its volatility component, and bJ , its

jump component.

Since V' and J are investable portfolios, we can decompose a straddle’s return into

its volatility-jump component returns as follows:

52 — Sl (I(‘/Q — ‘/1) b(Jz — Jl)
= 2.2
Sy A bh Vi bh (22)

where S (S3), V1 (J2) and J; (J,) are straddle price, portfolio V’s price and portfolio

a(Va—Vi) (b(Jg—Jl)

el b > is the volatlity (jump) component’s return

J’s price at time 1 (2).

contribution in total straddle return 525;151

Our study aims to understand the uncertainty anticipated by options market before
the EAD. As the delta-neutral straddles constructed in Gao et al. (2018), we do not
conduct daily rebalance of the volatility and jump component portfolios. During the

announcement period, the Greeks (delta, vega, and gamma) of options may change,

3The linear equation system to determine two unknowns a and b involves four equations matching
the units of cl, pl, ¢2, and p2 as 1, —A.1/Ap1, 0, and 0. This equation system can be reduced to
two equations with two unknowns and the solution is unique. See details in Appendix.
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leading to changed exposures to the underlying stock’s price movement, volatility
and jump. In Section 3, we devote additional discussion on how changes of Greeks

may impact our results and how to conduct adjustment in face of such changes.

2.2.2 Data

Our sample period is from January 1996 to December 2013. We choose this period
for a direct comparison to the results in Gao et al. (2018). In Section 2.3.5, we
present the results on the extended period during January 2014 to December 2017.
We obtain stock price, firm information, and earnings announcement data from
the Center for Research in Security Prices (CRSP), Compustat, and Institutional
Brokers’ Estimate System (I/B/E/S). We require that the announcement date is

available in both Compustat and I/B/E/S to be included in the sample.

We obtain option data from OptionMetrics, which provides end-of-day bid and ask
quotes, open interest, volume, implied volatility, and option Greeks for all listed
options. To avoid the bid—ask bounce from daily closing prices, we use the mid point
of closing bid and ask prices to compute option returns. Following previous literature
(Gao et al. (2018), Ruan (20200)), we apply the following filters to the option data:
(1) The option prices are at least $0.125. (2) the underlying stock prices are at least
$5. (3) options must have nonmissing bid and ask price quotes and positive open
interests. (4) bid and ask prices must satisfy basic arbitrage bounds to filter out
erroneous observations. Arbitrage boundaries include: bid > 0, bid < offer; for put
options we require strike > bid and offer > max(0, strike price — stock price); for

call options, we require stock price > bid and offer > max(0, stock price — strike
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price). (5) the moneyness of the option is defined as the strike price over the previous
day’s stock price. To be considered as at-the-money, options must have moneyness

between 0.9 and 1.1 and absolute delta between 0.375 and 0.625.

To form straddles in our study, we apply two additional rules: (al) only paired calls
and puts with matched time-to-maturity and strike price are included; (a2) options
in short-term straddles have 10 to 60 days to maturity; options in long-term straddles
expire in the calendar month that follows the short-term straddles’ expiration month,

and have within 90 days to maturity.*

When there are multiple qualified at-the-money short-term straddles for a stock, we
use two weighting schemes® to aggregate their returns at firm level: equal weighting
and dollar open-interest weighting. The dollar open interest (DOI) for each straddle

is computed based on the option information in the previous day as follows:

DOI =(CALL PRICE + PUT PRICE)

x min(CALL.OPEN_INTEREST, PUT OPEN_INTEREST),

which is the maximum possible dollar open-interest for this straddle. For long-term
straddles, we pick the call and put option pair that is closest to being at-the-money

among all qualified options.

Table 2.1 reports the summary statistics for our data from the pooled sample.

4To conduct the decomposition, we need two straddle pairs with short and long maturities. Our
choice of short-term straddles is consistent to Gao et al. (2018). Our choice of long-term straddles
ensures the options included in straddles are of relatively high liquidity.

SVolume weighting produces qualitatively similar results to the dollar open-interest weighting
scheme. Results can be obtained from the authors upon request.
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Table 2.1: Summary Statistics

This table reports summary statistics on stock characteristics (Panel A), straddle characteristics
(Panel B), and daily delta-neutral straddle returns together with its volatility-jump component
returns (Panels C and D). [-3,1] represents the period over three pre-anouncement days, the
announcement day, and one post-announcement day. The sample period is from Jan. 1996 to Dec.
2013. N is the number of observations, and P25 (P75) represents lower quartile (upper quartile).

N P25 Median P75 Mean  Std.Dev

Panel A: Stock Characteristics
Market capitalization (in $millions) 26,180 1,045 2,911 9,131 11,782 31,998

Book-to-market ratio 26,179 0.211 0.364 0.589 0.454 0.375
Yearly stock return 26,180 -0.053 0.201 0.474 0.252 0.556
Annualized stock return volatility 26,180 0.289 0.403 0.567 0.463 0.264
Stock return skewness 26,180 -0.220 0.171 0.588 0.182 1.099
Stock return kurtosis 26,180 3.008 3.787 5.576 5.515 5.093
Panel B: Straddle Characteristics

Moneyness 40,757 0.988 1.007 1.029 1.009 0.033
Days to maturity 40,757 17 29 44 31 16
Open interest (in 100s) 40,757 191 772 2,730 3,116 8,660
Volume (in 100s) 40,757 4 62 332 595 2,388
Implied volatility 40,757 0.334 0.447 0.597 0.491 0.221
Panel C: Daily Returns over the Whole Sample Period

Straddle 1,592,357 -3.591% -1.248% 1.527% -0.575% 5.151%
Volatility 1,592,357 -2.280% -0.048% 2.267%  0.036%  4.346%
Jump 1,592,357 -4.534% -1.057% 2.905% -0.611% 6.877%
Panel D: Daily Returns over [-3,1]

Straddle 22897 -3.501% -1.080% 2.458% 0.208% = 6.228%
Volatility 22897 -0.980% 0.160% 1.368% 0.256%  2.368%
Jump 22,897 -3.969% -1.066% 2.804% -0.048%  6.453%

Panel A presents the stock characteristics including market capitalization, book-to-
market ratio, yearly stock returns and higher moments of stock returns. For each
quarter, we compute past one-year stock return up to last quarter end. Stock return
volatility (annualized), skewness and kurtosis are computed using daily stock returns
within a quarter. In total, we have more than 26,000 firm-quarter observations. The
sample size is smaller compared to Gao et al. (2018) because our analysis requires

long-term as well as short-term straddles.

The median market capitalization is about $2.911 billion, and the median book-to-
market ratio of our sample is 0.211. The median yearly stock return is 20.1%. The

median annualized stock return volatility is 40.3%. The medians for skewness and
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kurtosis are 0.171 and 3.787. Our summary statistics in Panel A are generally in

line with those in Gao et al. (2018).

Panel B presents summary statistics for option straddles. The median moneyness
level is 1.007, confirming our options are at-the-money. The median days to maturity
are 31 days. We compute open interest (volume) for a straddle as the sum of open
interests (volumes) of call and put in the straddle on the straddle construction day.
The median open interest is 772 round lots and the median daily volume is 62 round
lots, which indicate reasonable level of option liquidity in our sample. The median
implied volatility is 44.7%), suggesting high earnings announcement uncertainty priced

in options.

Panel C reports the daily delta-neutral straddle returns and the decomposed volatility-
jump component returns during the whole sample period. Panel C shows that the
median daily returns for straddles (-1.248%), volatility component (-0.048%), and
jump component (-1.057%) are all negative. All median returns are more negative
than the mean returns, indicating that the returns are positively skewed. These
summary statistics suggest that straddle buyers pay premiums for protection against
both volatility and jump risks, leading to negative returns for the straddle and its
volatility-jump components. Trading straddle sometimes generates large positive
returns, leading to positive skewness in returns. Panel D reports the daily delta-
neutral straddle returns and the decomposed volatility-jump component returns
on [-3,1]. Panel D shows that both the median and the mean daily returns for
jump components around EADs are negative, and both the median and the mean
volatility component returns are positive. These summary statistics give us some

initial evidence that around EAD the volatility component is persistently underpriced,
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leading to the positive daily returns. The median (mean) of daily delta-neutral
straddle returns is -1.080% (0.208%), both are larger than those of the whole sample
in Panel C. In particular, the positive mean return suggests potentially underpriced

straddles around EADs.

2.3 Empirical Analysis

2.3.1 Straddle return decomposition

We analyze straddle returns and its volatility-jump component returns around the
EAD. We focus on a group of buy-and-hold strategies in which the delta-neutral
straddles are purchased before the EAD and then sold on or after the EAD. For a
strategy [t1,t2], t1 (< 0) is the straddle purchase day and ¢, (> 0) is the day when
the straddle is sold. Table 2.2 reports the delta-neutral straddle returns and the
volatility-jump component returns for each of these strategies. Panel A (B) shows
the pooled sample (time-series sample) results. Within a firm, either equal weights or

dollar open interest weights are used when there are multiple at-the-money straddles.
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Table 2.2: Straddle Returns and Volatility-Jump Component Returns around
Earnings Announcements

This table reports the mean values of delta-neutral at-the-money straddle returns and its
volatility-jump component returns around earnings announcements, together with their
t-statistics. Day 0 is the earnings announcement day. For a stock with more than one
pair of at-the-money straddles, average returns are calculated using either equal weights
or dollar open interest weights. Panel A reports the pooled sample returns. Panel B
reports the time-series sample returns where we first compute the quarterly equal-weighted
returns across firms, and then we average returns over all quarters. For Panel B, the
t-statistics are computed using Newey—West (1987) standard errors with 3 lags. The
sample period is from Jan. 1996 to Dec. 2013. *** ** and * indicate significance at 1%,
5% and 10% levels.

Holding Period Straddle ¢-Stat. Volatility ¢-Stat. Jump t-Stat.
Panel A: Pooled Sample
Equal Weight within Firms

[-3,-1] L.72%*** 2557 0.10%** 2.19  1.62%***  20.05
[-3,0] 1.89%***  15.90 0.41%*** 7.31  1.48%***  11.63
[-3.1] 0.63%*+* 3.82  1.31%***  21.32 -0.67%***  -3.99
[-1,0] 1.03%***  10.39 0.49%***  10.55  0.54%*** 4.92
[-1,1] 0.53%*+* 3.40  1.35%*FF 2496 -0.82%***  -5.07
Dollar Open-Interest Weight within Firms

[-3,-1] 1.79%*** 2586 0.10%** 2.05  1.69%***  20.29
[-3,0] 1.93%***  15.62 0.41%*** 719  1.51%*FF  11.46
[-3,1] 0.58%*** 3.40 1.33%***  21.15 -0.75%***  -4.27
[-1,0] 1.01%*** 9.87 0.50%***  10.66 0.51%*** 4.46
[-1,1] 0.45%%+* 2.84  1.37%** 2489 -0.92%***  -5.51

Panel B: Time-Series Sample
Equal Weight within Firms

[-3,-1] 1.58%*** 717 0.15% 1.30  1.43%*** 5.88
[-3,0] 1.99%*** 5.43  0.36%*** 2.59  1.63%*** 4.05
[-3,1] 0.89%* 1.65  1.16%*** 6.70 -0.27% -0.49
[-1,0] 1.35%*** 4.66 0.96%*** 2.87  0.39%*** 4.90
[-1,1] 1.06%** 2.04  1.18%%** 9.85 -0.12% -0.22
Dollar Open-Interest Weight within Firms

[-3,-1] 1.65%*** 7.25 0.14% 1.21  1.51%*** 6.06
[-3,0] 2.03%*** 5.32  0.36%™** 2.58  1.68%*** 4.02
[-3,1] 0.85% 1.52  1.18%*** 6.70 -0.33% -0.58
[-1,0] 1.35%*+* 4.47  0.41%**+* 5.07  0.94%*** 2.71
[-1,1] 1.01%* 1.88  1.21%*** 9.97 -0.20% -0.34

In Panel A, straddle returns are positive across all strategies with different within-firm
weighting schemes, with 1% significance level. Straddle returns on [-3,-1] (1.72% and
1.79%) are lower than the returns on [-3,0] (1.89% and 1.93%) and higher than the
returns on [-3,1] (0.63% and 0.58%). Straddle returns on [-1,0] (1.03% and 1.01%)
are higher than the returns on [-1,1] (0.53% and 0.45%). There is a pattern that
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straddle return goes up before the EAD and drops after the EAD. The significantly
positive returns on [-3,1] and [-1,1] indicate that the option traders who sell the

straddles before the EAD underestimate the earnings announcement uncertainty.

The volatility component and the jump component returns show distinct patterns.
The volatility component returns are significantly positive across the five strategies
with 1% significance level, except for strategy [-3,-1] (positive return with 5%
significance level). The volatility component returns on [-3,0] (0.41% for both
weighting schemes) are higher than the returns on [-3,-1] (0.10% for both weighting
schemes) and lower than the return on [-3,1] (1.31% and 1.33%). The volatility
component returns on [-1,0] (0.49% and 0.50%) are lower than the returns on [-1,1]
(1.35% and 1.37%). The volatility component return is always positive and keeps
increasing over the announcement period, indicating a persistent underpricing of the

volatility component.

The jump component returns are significantly positive for strategies [-3,-1] (1.62% and
1.69%), [-3,0] (1.48% and 1.51%) and [-1,0] (0.54% and 0.51%), with 1% significance
level. In contrast, its returns are significantly negative for strategies [-3,1] (-0.67%
and -0.75%) and [-1,1] (-0.82% and -0.92%), also with 1% significance level. The
results indicate that the jump component returns capture the uncertainty run-up in
the pre-announcement period and the uncertainty decline in the post-announcement
period. Option traders anticipate earnings-induced jumps. The straddle buyers
before the announcements pay jump risk premium and such premium manifests itself

in negative post-announcement jump component returns.

The pooled sample results may lose some information on the time variation of straddle
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returns. The returns calculated using the pooled sample may give more weights to

observations in recent years because option trading is more active in recent years.

In Panel B, we examine the time series sample in which the returns are first averaged
over all firms in each quarter and then averaged across all quarters. The results in
Panel B confirm the general patterns we find in Panel A, although some returns are
not significantly different from zero. The straddle and the jump component returns
are both significantly positive during the pre-announcement period and decrease
after the announcement date, whereas the volatility component return increases over
the announcement periods. To provide a more intuitive understanding of the return

patterns, we visualize these patterns in Figure 2.1.

Figure 2.1 illustrates the straddle return decomposition on the time period [-3,1]
with the time series sample. Within firms, dollar open-interest weights are used

when there are multiple at-the-money straddles.
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Figure 2.1: Straddle and Volatility-Jump Component Returns around Earnings
Announcements

This figure displays the average straddle and volatility-jump component returns over
[-3,1], where day 0 is the earnings announcement day. When multiple straddles are
available for a firm, the dollar open-interest weighted returns are used. Returns
are aggregated across firms in each quarter and the average quarterly returns are
displayed. The data are from Jan. 1996 to Dec. 2013. The solid line represents the
delta-neutral straddle returns, the dotted line represents the volatility component
returns, and the dashed line represents the jump component returns.

Figure 2.1 shows that the straddle return and the volatility-jump component returns
are all positive during the pre-announcement period and the jump component
return is much higher than the volatility component return. After the EAD, the
jump component’s cumulative return goes down to negative, while the volatility
component’s cumulative return continues its increase. The straddle’s cumulative
return also goes down but is still positive. Figure 2.1 shows that the patterns of
straddle return are mainly driven by its jump component and the positive cumulative

straddle return after the EAD is mainly driven by its volatility component.

There are some important points we want to discuss before we move on to further
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tests. The first point is about the magnitude of returns. The cumulative straddle
returns in Figure 2.1 are smaller than those in Gao et al. (2018). For example, our
cumulative return on [-3,0] is 2.03%, while Gao et al. (2018) report 3.34% on [-3,0]
. The main reason is that Gao et al. (2018, p2593) calculate the straddle delta as
the dollar-weighted portfolio delta, whereas our study uses the quantity-weighted

portfolio delta.b

For a portfolio consisting of a quantity w; of option i, its quantity-weighted portfolio

delta is given by:
i=1

where A; is the delta of the ith option. The quantity-weighted portfolio delta is the
common way to compute portfolio delta and determines the position in the options
to construct a delta-neutral portfolio (e.g. Hull 2018, Chap 19. p 430). In our paper,
we use the quantity-weighted portfolio delta throughout. We note that although
the dollar-weighted portfolio delta inflates straddle returns, it does not change the

general patterns of straddle returns.

The second point is about the static nature of our decomposition and the dynamic
nature of option Greeks. A delta-neutral straddle constructed on day -3 may not
be delta-neutral on day 1 due to the change of option deltas. A vega-neutral or
gamma-neutral portfolio’s vega or gamma may also change over the time. Figure 2.2
illustrates the boxplots of volatility component aV’s and jump component bJ’s delta,

vega, and gamma around the EAD. The straddles are constructed and decomposed

6There is one more subtle reason. Our sample leans towards more liquid stocks as our
decomposition method requires at least two straddles with short and long maturities. And more
liquid stocks may have lower straddle returns around the EAD. But the return difference will not
be large.
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on day -3. On day t, we use day ¢t — 1’s closing time option Greeks to calculate

portfolio’s Greeks.”

Figure 2.2 shows that the median deltas of the volatility component aV are around 0.
The dispersion increases from day -2 to day 1, but there is no systematic bias toward
either positive or negative delta. The distribution of al'’s vega is relatively stable
with all vega values being positive. The median gammas of al/ are approximately 0.

Though the dispersion increases over time, they are generally symmetric around 0.

The median deltas of the jump component bJ are approximately 0, with increasing
dispersion over time; but there is no systematic bias toward either positive or negative
delta. The distribution of bJ’s gamma is relatively stable with all gammas being
positive. The median, together with upper and lower quartiles of vega, turn negative

from day -1, suggesting that bJ’s returns also reflect some exposure to negative vega.

For the absolute magnitude of the Greeks, volatility component aV’s median vega is
much larger than jump component b.J’s median vega whereas jump component b.J’s
median gamma is much larger than volatility component aV’s median gamma. al”

(bJ) captures more exposure on volatility (jump) risk than bJ (aV/).

On balance, the volatility component al/ should serve as a reasonable vega-positive
proxy of volatility risk. The return patterns of aV is not likely to reflect any systematic
bias toward either positive or negative deltas and gammas. The return patterns of
bJ need adjustment to remove the exposure to negative vega. This adjustment can
be done by examining vega-positive aV portfolio’s returns. The cumulative returns

of aV on [-3,1] show a monotonically increasing pattern. So the adjustment to bJ’s

"Using the average of ¢ and t — 1’s closing time option Greeks does not qualitatively change our
findings.
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cumulative returns is a monotonically decreasing return component; with absolute
return magnitude being much lower than aV’s returns. After such adjustment, the
jump component’s returns will shift upward, reinforcing our previous finding that
straddle return’s patterns are mainly driven by its jump component. Since the
vega exposure embedded in the jump component is much smaller comparing to the
volatility component, the adjustment is not likely to change our previous finding
that the positive cumulative straddle return on day 1 (post-announcement) is mainly
driven by its volatility component. If there is an underpricing of straddles before the

EAD, the underpricing still much likely comes from the volatility component.

The last point is about the data on day 0 (the EAD). Strategies with ending period
on day 0 (e.g. [-3,0]) capture a mixture of pre-announcement and post-announcement
effects because some earnings announcements are released after the trading hours.
Gao et al. (2018) do not separate the earnings announcements inside and outside
of the market hours and this may bias some of their results. In our subsequent
analysis, we focus on strategies [-3,-1] and [-3,1] to capture the pre-announcement and
post-announcement effects separately. In Section 2.3.4, we re-examine the returns on
[-3,0] by separating the firms that made announcements before or after the market

close.

2.3.2 Portfolio sorting analysis

We use the portfolio sorting approach to investigate the factors that may impact
straddle returns and the volatility-jump component returns. The factors fall into four

categories: 1) high moments ; 2) stock price jumps; 3) cumulative abnormal returns
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around EADs; and 4) transaction costs. The first category includes annualized stock
return volatility VOL and kurtosis KURTOSIS using daily return data over the
previous quarter. The second category includes jump frequency JUM P_FRE() and
jump size JUM P_S1Z E using past one year’s daily stock return data. JUM P_FREQ
and JUMP_SIZFE are obtained by using the non-parametric method in Lee and
Mykland (2008). The third category includes the variance of the cumulative
abnormal return around EAD (var(CAR)) over the past eight quarters and the
absolute value of the cumulative abnormal return around EAD (|CAR|) in the
last quarter. The cumulative abnormal return is computed on [-1,1]. The fourth
category includes the daily closing time bid-ask spreads scaled by closing price for
options (OPTION_SPREAD) and stocks (STOCK_SPREAD), averaged over the

previous quarter.

Gao et al. (2018) also examined these four categories of factors. They find that
high noisiness of company information (proxied by higher moments, jumps, and
the cumulative abnormal returns) and high transaction costs help explain the
positive straddle returns around earnings announcements. Their study focuses
on straddle returns over [-3,0]. To separate the pre- and post-announcement effects,
our study focuses on straddle returns over [-3,-1] and [-3,1]. Information noisiness
and transaction costs may impact straddle’s volatility and jump component returns
in different ways over different periods, and portfolio sorting based on these factors

should uncover such difference.

For each quarter, we sort firms into four equal-sized groups based on one factor and
calculate the average straddle and component returns in each group. When there is

more than one qualified straddle for a firm, we calculate straddle returns using the
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dollar open interest weighting scheme. Finally, we compute the mean returns over

72 quarters for each group.

Table 2.3 reports the portfolio sorting results for returns on [-3,-1]. These results

capture the pre-announcement impacts by the factors.

Panel A shows the portfolio sorting results based on high moments. For straddle
returns, the spread between the highest and lowest volatility (kurtosis) groups
“High-Low” is 1.52% (1.07%), with 1% significance level. In the pre-announcement
period, higher stock return volatility and kurtosis predict higher straddle returns.
For volatility component returns, the spread between the highest and lowest volatility
groups is -0.83%, with 1% significance level. And the spread based on kurtosis sorting
is not significantly different from 0. Stock return volatility negatively predicts the
volatility component returns in the pre-announcement period. For jump component
returns, the spread between the highest and lowest factor value groups sorted on
volatility (kurtosis) is 2.35% (1.11%), with 1% significance level. Both volatility and
kurtosis positively predict the jump component returns. In contrast, in untabulated
results stock return skewness has insignificant impact on volatility-jump component

returns as the vega and gamma exposures to stock movement are undirectional.

Panel B shows the portfolio sorting results based on jumps in previous stock returns.
The spread of straddle returns between highest and lowest jump frequency (jump size)
groups is 1.35% (0.97%), with 1% (5%) significance level. Jump frequency and jump
size positively predict straddle returns. For the volatility component returns, the
spreads based on jump frequency and jump size sorting are not significantly different

from 0. For the jump component returns, the spread between the highest and lowest
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factor value groups sorted on jump frequency (jump size) is 1.29% (0.77%), with 1%
(10%) significance level. Jump frequency and jump size positively predict the jump

component returns.

Panel C shows the portfolio sorting results based on var(CAR) and |CAR|. The
spread of straddle returns between the highest and lowest var(C AR) (|C AR|) groups
is 1.40% (1.10%), with 1% significance level. Both var(C AR) and |C' AR| positively
predict straddle returns, suggesting that higher past earnings surprise leads to higher
straddle returns. For the volatility component returns, the spread between the
highest and lowest var(C AR) groups is -0.23%, with 5% significance level. The
spread based on |C'AR| sorting is not significantly different from 0. The results
suggest that var(C AR) negatively predicts the volatility component returns. The
spread of the jump component returns between the highest and lowest var(C AR)
(|CAR]) groups is 1.63% (1.32%), with 1% significance level. Both var(C AR) and

|C'AR| positively predict the jump component returns.

Panel D shows the portfolio sorting results based on transaction costs. The spread of
straddle returns between the highest and lowest OPTION_SPREAD (STOCK_SPREAD)
groups is 1.29% (1.79%), with 5% (1%) significance level. The spread of the volatility
component returns between the highest and lowest OPTION_SPREAD groups is
not significantly different from 0 whereas the spread between the highest and lowest
STOCK_SPREAD groups is -0.99% with 1% significance level. The spread of
the jump component returns between the highest and lowest OPTION_SPREAD

(STOCK _SPREAD) groups is 1.23% (2.79%), with 10% (1%) significance level.

On balance, the results in Tables 2.3 suggest that in the pre-announcement period,
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high information noisiness and transaction costs increase both straddle and the jump
component returns but decrease the volatility component returns. The increase of
both straddle and jump component returns shows that the run-up of uncertainty in
the pre-announcement period is mainly driven by the run-up of the uncertainty on
earnings-induced jumps. When information noisiness (transaction cost) is higher,
option traders focus more on jump risk induced by earnings announcements, driving
up the jump component’s return. When stock price discontinuity is the focal point,
option traders focus less on volatility risk and the volatility component’s return

declines.

Table 2.4 reports the portfolio sorting results for returns on [-3,1]. These results

capture the post-announcement impacts by the factors.

Panel A shows the portfolio sorting results based on high moments. The spread of
straddle returns between the highest and lowest volatility groups is not significantly
different from 0. The spread based on kurtosis sorting is -0.74%, with 10% significance
level. In the post-announcement period, higher kurtosis predicts lower straddle

returns. The relation is opposite to what we find in the pre-announcement period.

The spread of the volatility component returns between the highest and lowest
volatility groups is -0.61%, with 1% significance level. The spread based on kurtosis
sorting is not significantly different from 0. Stock return volatility negatively predicts
the volatility component returns in the post-announcement period as well as the
pre-announcement period. When historical stock return volatility is higher, options
market prices in higher volatility risk in straddle price, leading to lower pre- and

post-announcement volatility component returns.
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The spread of the jump component returns between the highest and lowest volatility
groups is not significantly different from 0. The spread based on kurtosis sorting
is -0.91%, with 5% significance level. In the post-announcement period, kurtosis
negatively predicts the jump component returns. The relation is opposite to the

findings in the pre-announcement period.

Panel B shows the portfolio sorting results based on jumps in previous stock returns.
All spreads are insignificant, suggesting that past jumps have no return predictability
on straddles and the volatility-jump components return in the post-announcement

period.

Panel C shows the portfolio sorting results based on var(C AR) and |C' AR|. var(C AR)

losses its predicting power on all spreads. The spread of straddle returns between

the highest and lowest |C'AR| groups is 0.9%, with 10% significance level.

Panel D shows the portfolio sorting results based on transaction costs. The spreads of
straddle returns are insignificant. The impact of OPTION _SPREAD (STOCK_SPREAD)
on volatility component return spread is positive (negative), yielding inconclusive
results. The spread of the jump component returns between the highest and lowest
OPTION_SPREAD groups is -1.39%, with 5% significance level. The spread based

on STOCK_SPREAD sorting is insignificant.

On balance, the results in Table 2.4 suggest that in the post-announcement period,
information noisiness and transaction costs have little or mixed impacts on the
volatility component returns. The generally insignificant or negative impacts on the
straddle and the jump component returns are in opposite to the observations in the

pre-announcement period, suggesting that high information noisiness and transaction
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costs loss their positive return predictability after the earnings information is released

on day 1.

Combining the results in Tables 2.3 and 2.4, we find that in both pre- and post-
announcement periods, the jump component return and straddle return respond to
the sorting factors in similar ways. Options market puts its emphasis on earnings-
induced jumps before the EAD, and such emphasis also dominates the patterns of

straddle returns.

2.3.3 Fama-Macbeth regressions

We further examine the impact factors of straddle and its component returns around
earnings announcement in the cross section using Fama-Macbeth (1973) regressions.
We run quarterly cross-sectional regressions for straddle returns and its components’
returns during the pre-announcement period [-3,-1] and the post-announcement
period [-3,1]. For each regression, the variable of interest is one of the factors we use
in the portfolio sorting analysis. Control variables include option maturity, option
moneyness, firm size, book-to-market ratio, and the last yearly stock return. To avoid
multicollinearity, we remove firm size in regressions involving OPTION_SPRFEAD
and STOCK_SPREAD. We add VOL and stock return skewness into control
variables in regressions involving KU RTOSI1S. We report the estimated coefficients
on the variables of interest, together with Newey-West adjusted t-statistics and the
adjusted R-squared. The estimated coefficients on control variables and the intercept
are omitted for brevity, but full results are available upon request. Table 2.5 reports

the regression results of returns on [-3,-1].
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Table 2.5: Fama-Macbeth Regressions: Returns on [-3,-1]

This table reports the results of the Fama-MacBeth (1973) regressions. The dependent variable
is the straddle return, the volatility component return or the jump component return over [-3,-
1]. Day 0 is the earnings announcement day. The variable of interest is one of the following
characteristics. Historical second moment VOL and fourth moment KURTOSIS are computed
using the last quarter daily returns. JUMP_FREQ and JUMP_SIZFE are jump frequency and
jump size measures observed at the last quarter-end, following Lee and Mykland (2008) procedure.
The cumulative abnormal return, CAR, is computed over [-1,1] around earnings announcements
and adjusted for the market return, and the absolute value of CAR (|CAR|) in the last quarter
is taken. The variance of CAR (var(CAR)) is computed from the previous 8-quarter data.
OPTION_SPREAD is calculated as the average closing time bid-ask spread scaled by the price of
the option in the last quarter. STOCK_SPRFEAD is calculated as the average closing time bid-ask
spread scaled by the price of the stock in the last quarter. Control variables include option maturity,
option moneyness, firm size, book-to-market ratio, and the last year’s stock return. In regressions
of OPTION_SPREAD and STOCK_SPREAD, the control variable firm size is removed. In
regression of KURTOSIS, additional control variables VOL and stock return skewness are added.
The sample period is from Jan. 1996 to Dec. 2013. The average coefficient for the variable of
interest and the adjusted R? are reported. The t-statistics are computed using Newey-West (1987)
standard errors with 3 lags. *** ** and * indicate significance at 1%, 5% and 10% levels.

Straddle Volatility Jump
Coef. Adj. R? Coef. Adj. R? Coef. Adj. R?
In(VOL) 0.222 0.65% -0.189** 0.48% 0.411%* 0.59%
[1.24] -2.31] [2.47]
In(KURTOSIS) 0.001*** 0.87% 0.000 0.59% 0.001*** 0.58%
[4.28] [0.42] [3.0]
JUMP _FREQ 0.002%* 0.53% 0.000 0.28% 0.001 0.43%
[2.29] [1.37] [1.51]
JUMP SIZE 0.000 0.46% 0.000 -0.03% 0.000 0.47%
[1.36] [-1.03] [1.56]
var(CAR) 0.196%** 0.93% -0.002 0.41% 0.199%** 0.80%
[6.15] -0.11] [5.62]
|CAR)| 0.123*** 0.75% -0.007 0.40% 0.130*** 0.66%
[5.95] [0.44] [4.68]
OPTION_SPREAD 0.035 0.27% -0.001 0.34% 0.037 0.18%
[1.61] 0.12] [1.53]
STOCK_SPREAD 0.530%** 0.40% -0.240*** 0.52% 0.771%%* 0.31%
[3.76] [-3.42] [5.68]

For regressions on straddle returns, the estimated coefficients on In(KURTOSIS),
var(CAR), |CAR|, STOCK_SPREAD are 0.001, 0.196, 0.123, and 0.530 respectively,
all being significant at 1% level. The estimated coefficient on JUM P_F RE(Q) is 0.002,
being significant at 5% level. The estimated coefficients on In(VOL), JUMP_SIZE,
and OPTION_SPRFEAD are insignificant. Overall, information noisiness and

transaction costs positively predict pre-announcement straddle returns.
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For regressions on the volatility component returns, the estimated coefficients on
In(VOL) and STOCK SPREAD are -0.189 and -0.240, significant at 5% and 1%
levels respectively. The estimated coefficients are insignificant for other factors.
Overall, a few regression results show that information noisiness and transaction

costs negatively predict pre-announcement volatility component returns.

For regressions on the jump component returns, the estimated coefficients on
In(KURTOSIS), var(CAR), |CAR|, STOCK_SPREAD are 0.001, 0.199, 0.130,
and 0.771 respectively, significant at 1% level. The estimated coefficient on in(VOL)
is 0.411, significant at 5% level. The estimated coefficients on JUMP_FREQ),
JUMP_SIZE, and OPTION_SPREAD are positive and insignificant. Overall,
information noisiness and transaction costs positively predict pre-announcement

jump component returns.

Table 2.5 confirms our previous finding that in pre-announcement period, high
information noisiness and transaction costs lead to high straddle and jump component
returns but low volatility component returns. The run-up of uncertainty is mainly

the run-up of jump uncertainty induced by earnings announcements.

Table 2.6 reports the regression results for returns on [-3,1].

For regressions on straddle returns, the estimated coefficient on JUMP_SIZFE is
-0.001, significant at 1% level. The estimated coefficients on var(CAR) and |C AR
are 0.125 and 0.077, significant at 10% level. The estimated coefficients on other

factors are insignificant.

For regressions on the volatility component returns, the estimated coefficients on
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Table 2.6: Fama-Macbeth Regressions: Returns on [-3,1]

This table reports the results of the Fama-MacBeth (1973) regressions. The dependent variable
is the straddle return, the volatility component return or the jump component return over [-
3,1]. Day 0 is the earnings announcement day. The variable of interest is one of the following
characteristics. Historical second moment VOL and fourth moment KURTOSIS are computed
using the last quarter daily returns. JUMP_FREQ and JUMP_SIZFE are jump frequency and
jump size measures observed at the last quarter-end, following Lee and Mykland (2008) procedure.
The cumulative abnormal return, CAR, is computed over [-1,1] around earnings announcements
and adjusted for the market return, and the absolute value of CAR (|CAR|) in the last quarter
is taken. The variance of CAR (var(CAR)) is computed from the previous 8-quarter data.
OPTION_SPREAD is calculated as the average closing time bid-ask spread scaled by the price of
the option in the last quarter. STOCK_SPRFEAD is calculated as the average closing time bid-ask
spread scaled by the price of the stock in the last quarter. Control variables include option maturity,
option moneyness, firm size, book-to-market ratio, and the last year’s stock return. In regressions
of OPTION_SPREAD and STOCK_SPREAD, the control variable firm size is removed. In
regression of KURTOSIS, additional control variables VOL and stock return skewness are added.
The sample period is from Jan. 1996 to Dec. 2013. The average coefficient for the variable of
interest and the adjusted R? are reported. The t-statistics are computed using Newey-West (1987)
standard errors with 3 lags. *** ** and * indicate significance at 1%, 5% and 10% levels.

Straddle Volatility Jump
Coef. Adj. R? Coef. Adj. R? Coef. Adj. R?
In(VOL) 0.001 1.10% -0.004 0.86% 0.005 0.66%
[0.18] [-1.23] [0.74]
In(KURTOSIS) -0.003 1.32% 0.004%** 0.91% -0.007* 0.84%
[-0.61] [3.53] [-1.71]
JUMP _FREQ 0.001 0.97% 0.000 0.66% 0.001 0.53%
[1.31] [0.30] [1.12]
JUMP SIZE -0.001*** 0.92% 0.000 0.50% -0.001#4* 0.43%
[-4.05] [-0.97] [-3.64]
var(CAR) 0.125% 1.35% 0.057** 1.00% 0.068 0.92%
[1.89)] [2.09] [1.10]
|CAR)| 0.077* 1.21% 0.027%* 0.75% 0.050 0.71%
[1.89] [1.84] [1.16]
OPTION_SPREAD -0.011 0.97% -0.002 0.84% -0.010 0.71%
[-0.43] [-0.16] [-0.40]
STOCK_SPREAD 0.061 1.04% -0.172%* 0.86% 0.230 0.65%
[0.32] [-2.26] [1.31]

In(KURTOSIS), var(CAR) and |CAR| are 0.004, 0.057 and 0.027, significant at
1%, 5% and 10% levels. The estimated coefficient on STOCK_SPREAD is -0.172,

significant at 10% level.

For regressions on the jump component returns, the estimated coefficients on
In(KURTOSIS) and JUMP_SIZE are -0.007 and -0.001, significant at 10% and

1% levels. The estimated coefficients on other factors are insignificant.
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Overall, the impacts of information noisiness and transaction costs in the post-
announcement period are not as strong as in the pre-announcement period. Past
jump size significantly negatively predicts both straddle and the jump component
returns in the post-announcement period, suggesting that options market anticipated
and priced in jump risk before the EAD. High information noisiness in general
predicts high volatility component returns, suggesting underpricing of volatility risk

is more persistent when information is more noisy.

Results in Tables 2.5 and 2.6 suggest that straddle returns’ main patterns in the
pre- and post-announcement periods are driven by its jump component returns as
they response mostly in the same way to the same factors. Noisiness and transaction
costs positively predicts pre-announcement straddle and the jump component returns
but such predicting power disappears or reverses in the post-announcement period,

suggesting options market anticipate earnings-induced jumps.

2.3.4 After-hours earnings announcements

Our previous empirical analysis focuses on returns over [-3,-1] and [-3,1], because
they provide clear identification of pre- and post-announcement effects. Returns over
[-3,0] capture a mixture of the pre-announcement effect and the post-announcement
effect as the earnings announcements may occur outside of the normal trading hours.
Berkman and Truong (2009) show the importance of separately considering after-
hours earnings announcements as the stock price response to the announcements will
be delayed by one day. If the earnings announcement is made after day 0’s market

close time, then the earnings information should be mainly reflected in the stock

7



ESSAYS OF ASSET PRICING Bei Chen

price on day 1, rather than on day 0.

The option markets close at 4:02 p.m. Eastern Standard Time (EST), while the
stock markets close at 4:00 p.m. EST. We choose 4:00 p.m. as the cut-off time
for after-hours earnings announcements. We examine the straddle returns and its
volatility-jump component returns on [-3,0] by dividing the sample into two sub-
samples: a) firms making announcements before 4:00 p.m. market close on day 0;
and b) firms making announcements after 4:00 p.m. market close on day 0. The
cumulative returns over [-3,0] for sub-sample a) mainly capture post-announcement
effect, and returns over [-3,0] for sub-sample b) mainly capture pre-announcement

effect.

Table 2.7 reports the straddle returns, volatility component returns, and jump
component returns on [-3,0].

Table 2.7: After-hours Earnings Announcements

This table separately reports the average time-series straddle returns and its volatility-jump
component returns over [-3,0] for the firms that make earnings announcements before (after) the
market close time 4:00 p.m. in Panel A (B). Day 0 is the earnings announcement day. The sample
period is from Jan. 1996 to Dec. 2013. For a stock with more than one pair of at-the-money
straddles, average returns are calculated using equal weight or dollar open interest weight. The
quarterly equal-weighted returns across firms are computed and then aggregated over all quarters
to obtain the time-series average return. The ¢-statistics are computed using Newey—West (1987)
standard errors with 3 lags. *** ** and * indicate significance at 1%, 5% and 10% levels.

Straddle ¢-Stat. Volatility ¢-Stat. Jump t-Stat.
Panel A: Returns for Firms that Announce Earnings before Market Close

Equal Weight within Firms 0.25% 0.49 0.83%*** 475 -0.58% -0.99
Dollar Open Interest Weight within Firms — 0.22% 0.40  0.83%*** 4.67 -0.61% -1.03
Panel B: Returns for Firms that Announce Earnings after Market Close

Equal Weight within Firms 3.70%*** 6.54 -0.17% -0.89  3.87%*** 5.87
Dollar Open Interest Weight within Firms = 3.82%*** 6.57 -0.13% -0.71  3.95%*** 5.87

Panel A shows that for sub-sample a), both straddle and the jump component returns
are insignificant, whereas the volatility component returns are significantly positive.

The results are consistent to our findings on post-announcement returns.
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Panel B shows that for sub-sample b), both straddle and the jump component returns
are significantly positive, whereas the volatility component returns are insignificant.

The results are consistent to our findings on pre-announcement returns.

Table 2.7 shows that the patterns of straddle and the jump component returns
are similar. When we adjust for the after-hours earnings announcements, the high

straddle return around the EAD is mainly a pre-announcement phenomenon.

2.3.5 Returns in recent years

In the previous sections, we examine the straddle and the components’ returns during
year 1996-2013 for a direct comparison with the results in Gao et al. (2018). Now we
analyze the returns using the sample of 2014-2017, which includes the most recent
available option data. We calculate the time-series average of straddle returns and
the corresponding components’ returns around earnings announcements, where we
use equal weight across firms in each quarter and two different weighting schemes

within firms. We report the results in Table 2.8.
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Table 2.8: Straddle Returns and Volatility-Jump Component
Returns: 2014-2017

This table reports time-series average straddle returns and its volatility-
jump component around earnings announcements. Day 0 is the earnings
announcement day. The sample period is from Jan. 2014 to Dec. 2017. At the
firm level, for a stock with more than one pair of at-the-money straddles, average
returns are calculated using equal weight or dollar open interest weight. The
quarterly equal-weighted returns across firms are computed and then aggregated
over all quarters to obtain the time-series average return. The t-statistics are
computed using Newey—West (1987) standard errors with 3 lags. *** ** and *
indicate significance at 1%, 5% and 10% levels.

Holding Period  Straddle ¢-Stat. Volatility ¢-Stat. Jump t-Stat.
Equal Weight within Firms

[-3,-1] 0.66%*** 2.74  0.91% 1.40 -0.25% -0.34
[-3,0] 0.06% 0.26  0.76%*** 2.73 -0.70% -1.57
[-3,1] S2.71%*** 454 1.45%*F* 3.83 -4.17%***  -11.19
[-1,0] -0.03% -0.08 0.93%*** 3.43 -0.96%***  -2.88
[-1,1] -2.26%***  -3.83 1.61%*** 6.54 -3.87T%***  -7.50
Dollar Open-Interest Weight within Firms
[-3,-1] 0.69%*** 3.46 0.84% 1.34  -0.15% -0.23
[-3 0] 0.00% 0.00 0.77%*** 2.70  -0.77%* -1.87
[-3,1] -2.88%***  -4.95 1.50%*** 3.91 -4.38%*** -12.00
[-1,0] -0.16% -0.49  0.94%*** 5.24 -1.10%***  -3.79
[-1,1] -2.49%*** 421 1.5TR** 8.25 -4.06%***  -9.45

Panel A (B) presents the returns using equal weights (dollar open interest weights)
within firms. The return patterns in both panels are very consistent. As can be
seen from the table, first, the straddle returns are lower for all strategies comparing
to the returns in Table 2. Straddle returns on [-3,1] and [-1,1] even turn to be
significantly negative. Second, the volatility component returns are positive across
all strategies, and are being significant over [-3,0], [-3,1], [-1,0], and [-1,1]. Third, the
jump component returns are negative across all strategies, and are being significant

over [-3,1], [-1,0], and [-1,1].

Overall, the disappearance of the positive cumulative straddle returns after the EAD
is evident in recent years. This result suggests that financial markets pay more
attention to the straddle (option) underpricing issue in recent years. Options market

puts even more emphasis on jumps, which is manifested by the significantly negative

80



ESSAYS OF ASSET PRICING Bei Chen

jump component returns around EAD in recent years. The volatility risk is still
underestimated by options market around earnings announcement, leading to the
significantly positive volatility component returns. Although the positive straddle
returns around EADs disappear in recent years, the marked difference between

volatility-jump component return patterns persists.

2.4 Conclusion

Option straddles have positive exposures to both volatility risk and jump risk. In
this study, we decompose the straddles into one component with only volatility risk
exposure, and the other component with only jump risk exposure. We examine
the underpricing issue of the straddle around earnings announcements by analyzing
the return patterns of its volatility component and jump component around the
announcements. We find that the volatility component is consistently underpriced,
generating significantly positive returns. Jump component’s return is significantly
positive over the pre-announcement period and becomes either insignificant or
significantly negative after the announcements. We find that option traders anticipate
the earnings-induced jump risk, while they underestimate the uncertainty of diffusive

volatility surrounding the announcements.
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Chapter 3

Measuring gambling activity in

options market

3.1 Introduction

Recent research shows that investors have gambling preference for assets with lottery-
like payoffs, causing overvaluation and low returns on these assets (Brunnermeier
et al., 2007; Mitton and Vorkink, 2007; Barberis and Huang, 2008; Kumar, 20090;
Bali et al., 2011; Conrad et al., 2013; Boyer and Vorkink, 2014). Options, especially
out-of-the-money (OTM) ones, exhibit dramatic lottery features, exemplified by their
high ex-ante return skewness. Boyer and Vorkink (2014) find that OTM options
have several times higher ex-ante return skewness compared to stocks. Blau et al.
(2016) and Doran et al. (2011) document that calls, especially OTM calls, are actively
traded when investors have gambling demand. These studies provide the foundation

of using OTM call options to measure investors’ gambling activity.
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In this paper, we propose a gambling activity measure, C'allMoney, using open
interest and moneyness of OTM individual equity call options. Specifically, we
calculate weighted average moneyness with the weight being the associated open
interest as a percentage of shares outstanding. This measure is monotonically
increasing with both OTM call open interest and moneyness, capturing gambling
demand and optimistic expectation among option traders. Our work is closely related
to Bergsma et al. (2020). Bergsma et al. (2020) propose a dollar volume-weighted
average moneyness measure, aveMoney, to capture informed option trading. They
show that aveMoney positively predict future stock returns. Inspired by their work,
we use OTM option moneyness and its associated open interest to capture gambling

activity in options market.

To provide initial evidence that C'all Money is a gambling measure, we conduct four
analyses. First, we show that market and industry-wide CallMoney time series
successfully captures excessive investor optimism during the dot-com bubble, the
oil price bubble, and the pre-GFC stock market bubble. CallMoney time series
exhibits conspicuous spikes during the bubbles. Second, we use a variety of univariate
and multivariate tests to show that C'all Money is higher for stocks with lottery-like
characteristics identified by previous literature. Third, single sort portfolio analysis
shows a negative relation between C'all M oney and next month’s delta-hedged returns
for OTM and at-the-money (ATM) call options. The return spread between the
highest and lowest CallMoney decile portfolios of OTM (ATM) calls is -1.321%
(-0.831%) per month. Fama-French-Carhart four-factor alpha is -1.285% (-0.778%)
per month. Fourth, we use a non-parametric approach based on stochastic dominance

to compare option returns in high and low CallMoney groups. We show that delta-
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hedged option returns in low C'all Money group dominate those in high C'allMoney
group by the second-order stochastic dominance. The result implies that risk-averse
investors will prefer option returns in low CallMoney group, which lends support

for using CallMoney as a gambling measure.

Previous empirical asset pricing literature proposes several indirect gambling measures
based on lottery-like asset payoffs. Assets with lottery-like payoffs tend to attract
investors with gambling preference and gambling activity will lead to high contemporaneous
asset prices and subsequently earn low returns. Bali et al. (2011) find that stocks with
high maximum daily return (M AX) over the past month earn low subsequent returns.
Kumar (2009b) considers high idiosyncratic volatility (IVOL) and high idiosyncratic
skewness (ISKEW) as the lottery-like characteristics of stocks, and show that
investors have a greater propensity to gamble in stocks with these characteristics.
Byun and Kim (2016) use both M AX and ISKEW as the features of lottery-like
stocks and find individual call options on lottery-like stocks tend to be overvalued
and earn low returns. Boyer and Vorkink (2014) show that ex-ante skewness for

options (OSK EW) negatively predicts option returns.

Compared to the lottery-like-payoffs based (indirect) gambling measures, our measure
directly gauges option traders’ gambling activities. As investors with excessive
optimism overweight the probabilities of extreme positive returns, they will participate
aggressively in OTM calls with high moneyness, driving up the value of C'allMoney.
For financial market regulators and policy makers, a direct gambling measure such
as Clall Money can be much more useful than indirect ones. Widespread gambling
activities on financial instruments like OTM individual equity call options provide

instant warning signals to financial market regulators. By contrast, assets with lottery-
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like-payoffs always exist but may not always lead to excessive investor optimism,
asset overpricing, and subsequent low returns. Regulators and policy makers are not
likely to use indirect gambling measures to help determine or prevent speculative

excess that leads to financial bubbles and crashes.

We perform double-sort tests to compare our new gambling measure Call Money
against the indirect gambling measures (M AX, IVOL, ISKEW  and OSKEW).
After controlling one of the indirect gambling measures, the spread and alpha between
the highest and lowest C'all M oney option quintile portfolios are significantly negative.
While after controlling C'allMoney, the spread and alpha between highest and lowest
quintile portfolios sorted based on the indirect gambling measures are small and not

statistically significant.

Moreover, Fama-MacBeth (1973) regression analyses show that C'allMoney robustly
and negatively predicts future OTM and ATM call option returns after controlling
indirect gambling measures as well as other stock and option characteristics. By
contrast, in OTM call return regressions, the coefficients of ISK EW and OSKEW
are insignificant, and the coefficient of IVOL is only significant at 10% significance
level. In ATM call return regressions, the coefficients of ISKEW and OSKEW are
insignificant. CallMoney, as a direct gambling measure, performs more robustly

comparing to indirect gambling measures.

We investigate how gambling behaviour, measured by CallMoney, interacts with
investors’ reference-dependent preferences and informational environment. Recent
studies relate investors behaviour biases to lottery (skewness) preference. An et al.

(2020) find that the lottery-like-payoffs related anomalies are state dependent. Choi
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et al. (2019) show that disposition effect and skewness preference are correlated.
We find that the option return predictability of C'allMoney is stronger when the
underlying stock’s price is further from its 52-week high, or when shareholders
experience larger capital losses. This finding is consistent to the explanation that
investors are more likely to gamble when the stock price is far from its 52-week high or
when they experience capital losses, causing overpricing on call option prices. We also
find that the C'all M oney’s option return predictability is accentuated by low analysts’
coverage and high analysts forecast dispersion on the underlying stock. This finding
is consistent to the explanation that investors exhibit stronger behavioural bias and
are more likely to gamble when there is greater information uncertainty. The findings
give more support on using Call Money as a gambling measure and distinguish it

from Bergsma et al. (2020)’s informed option trading measure ave Money.

Investor optimism of the underlying stock, captured by gambling activity in options
market and measured by C'all Money, should also negatively predicts underlying stock
returns. Empirical results from Fama-MacBeth regressions confirm this intuition.
CallMoney robustly and negatively predicts future stock returns, after controlling
stock characteristics and indirect gambling measures. By contrast, when CallMoney
is included in regressions, M AX has no stock return predictive power while the
coefficient of ISK EW is only significant at 5% level. Again, CallMoney performs

more robustly than indirect gambling measures.

In further analyses, we show that option (stock) return predictability is more
pronounced when the market volatility is high, consistent with the argument that
gamblers are more active following high market volatility periods (Clark et al., 2018).
We also show that option (stock) return predictability is more pronounced when the
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market sentiment is high, indicating more pronounced overpricing of the assets with
high CallMoney when investors are more optimism. Furthermore, we show that
option (stock) return predictability is robust to alternative measure constructions
using the point estimate or the change of CallMoney. CallMoney’s option and
stock return predictability cannot be explained overpricing caused by option (calls

plus puts) demand.

Our study has three important contributions to the literature. First, we put forth
CallMoney as a gambling activity measure. CallMoney has the advantages of
being economically intuitive, model-free, easy to measure. And its estimation is
not necessarily dependent on past time series. Second, we distinguish between
direct and indirect gambling measures. CallMoney is a direct gambling measure
based on investors’ activity, whereas MAX, IVOL, ISKEW , and OSKEW are
indirect measures based on lottery-like payoffs. We show that CallMoney performs
more robustly than indirect measures with respect to option and stock return
predictability, and more reliably capturing the overpricing of options and stocks. Our
work helps understanding the gambling related anomalies in equity option returns
and stock returns.! Third, CallMoney provides a new way to construct and analyse
weighted-average of moneyness comparing to Bergsma et al. (2020)’s aveMoney.
While ave M oney captures informed trading in options market, C'all M oney captures

optimism and gambling activity in options market.

The rest of the paper is organized as follows. Section 3.2 defines the measure and

Section 3.3 describes the data used in this study. Section 3.4 discusses our empirical

1See Bernales et al. (2019) for a good summary of investors’ behavioral biases and anomalies in
equity option returns.
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findings. Section 3.5 presents discussions on robustness. Section 3.6 concludes.

3.2 Gambling activity measure: CallMoney

Extensive literature discusses gambling behaviours in capital market. De Long et al.
(1990) suggest that there exist noise traders who are drawn to financial markets to
take risks, and are less concerned about fundamental values. Brown et al. (2018)
show that sensation-seeking fund managers take on more risk that is unrelated
to performance. Clark et al. (2018) demonstrate that pension-plan participants
who show gambling-like behaviours are drawn to the market when there is higher
market volatility, which is not compensated by commensurate return. This strand of
literature indicates that gamblers enter the market for risk-based excitement and
behave as noise traders, but they do not generate higher returns. Such behaviour

stands in clear contrast to the implications of traditional models of risk and return.

Another strand of literature suggests that gamblers tend to be those who overweight
small probability events, and overpay for assets with lottery features (Barberis and
Huang, 2008; Kumar, 2009b; Doran et al., 2011). Following these studies, we consider
lottery preference as the main feature to identify gamblers. OTM call positions are
ideal arenas for gamblers with lottery preference to enter, as they offer substantially
high ex-ante return skewness (Boyer and Vorkink, 2014). Several studies propose
that deep OTM single stock calls resemble overpriced lottery-like securities (Barberis
and Huang, 2008; Doran et al., 2011; Boyer and Vorkink, 2014; Félix et al., 2019).
This provides economic intuition of using OTM calls for the construction of our

gambling activity measure.
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We propose a new gambling measure by jointly considering the information of open
interest and moneyness, which is motivated by Lakonishok et al. (2006) and Boyer
and Vorkink (2014). Lakonishok et al. (2006) find that open interest as a percentage
of shares outstanding for OTM calls increased substantially during the dot-com
bubble, and they attribute this increase to the speculation demand from investors in
options market during the bubble period. Boyer and Vorkink (2014) show that call
options with larger moneyness provide substantially higher skewness, implying that
call options with higher moneyness will be more attractive to gamblers with lottery
preference. By jointly considering open interest and moneyness of OTM individual

equity call options, we propose a new activity-based gambling measure.

Our new gambling activity measure Call Money, is defined at time ¢ as:

N
CallMoney;, = Z

Jj=1

100 x O,
SO,

M;, x 100,

where OI;; is the open interest associated to the jth moneyness level, SO; is the
number of total outstanding shares; moneyness level M;; = % with .S; being the
current stock price and Kj; being jth strike price; IV is the number of different strike
prices of OTM calls. The factor of 100 in the numerator converts the open interest
into an equivalent number of shares of the underlying stock (100 shares per option

contract). The final factor of 100 converts the quantity into a percentage.

Comparing to Bergsma et al. (2020)’s aveM oney measure, our construction has two
major differences. First, we only use OTM call option moneyness. By doing that,

our measure captures more on lottery features of options and traders’ gambling
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preference on such features. Second, while aveMoney uses dollar volume as weight,
we use open interest versus shares outstanding as weight. Using trading volume as
weight reflects more on traders’ information, and using normalised open interest as
weight reflects more on (OTM call) option demands. Combining option demands
with lottery features of OTM calls, C'all Money captures gambling demands that

mainly reflects traders’ optimism of the underlying stock.

OTM call options are those with moneyness higher than 1.05. Our empirical results
are robust when we choose 1.025 as an alternative moneyness threshold. Since
short-term options provide the highest return skewness (Boyer and Vorkink, 2014),
and therefore being more attractive to gamblers, we use options with short-term
maturity (between 7 to 40 days) to construct this gambling measure. We average
daily CallMoney, in a month to create a monthly CallMoney measure. One thing
that the readers should be cautious when interpreting our results is that since we use
the OTM call options’ information to measure the gambling activity, our measure

can only capture gambling activity in stocks with available OTM call option data.

The open interest on call options comprises both long and short positions. Lakonishok
et al. (2006) find that written calls are comprised mainly of covered calls so both
long and short positions in calls represent positive exposure on the underlying stock
price. Furthermore, Andreou et al. (2018) show in a theoretical framework that
option trader’s optimal choice of moneyness monotonically increases with optimism
level, irrespective of the selection of long or short option positions. In our work, we
draw upon the results of these two studies and do not distinguish between long and

short positions in OTM call’s open interest.
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To provide intuitive evidence of CallMoney being a gambling activity measure,
we examine the relation between CallMoney’s historical time series patterns and
financial bubbles. Figure 3.1 illustrates the yearly time series of market and industry-

wide median Call Money from 1996 to 2017.2.
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Figure 3.1: CallMoney time Series: 1996-2017

The figure illustrates the time series of yearly median CallMoney measures for
HiTech industry, energy industry and the whole sample from 1996 to 2017. A Stock
is classified into HiTech industry if its Compustat SIC code is within 7370-7391 or
8730-8734, and into energy industry if its Compustat SIC code is within 1200-1399
or 2900-2999.

The market-wide C'all Money time series have two spikes, one in 2000-2001 (the dot-
com bubble) and the other in 2007-2008 (the pre-GFC stock market bubble). HiTech
industry Call Money time series also have two spikes, but the spike in the dot-com
bubble is more pronounced than the pre-GFC one. Energy industry CallMoney time

series have an opposite pattern, with a more pronounced spike in 2008 comparing

2Quarterly and monthly Call Money time series also exhibit similar (but noisier) patterns
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to the dot-com one. In 2007-2008, oil price bubble and pre-GFC stock market
bubble together drive the excessive speculation in engergy sector which is successfully

captured by industry-wide CallMoney.

Market and industry-wide CallMoney time series show that our new measure
captures investors’ excessive optimism and gambling activity during the bubble
periods. Comparing to the valuation-based bubble measures (such as Shiller PE
ratio®), Call Money has the potential to serve as a bubble warning measure from the

angle of options market trading activity.

3.3 Data

We collect data from several sources. We obtain stock trading data from the Center for
Research in Security Prices (CRSP). The accounting data are from Compustat. The
Fama-French-Carhart common risk factors and the risk-free rate are from Kenneth
French’s website. The analyst coverage and forecast data are from I/B/E/S. The

institutional ownership data are from Thomson Reuters (13F) database.

Options data are obtained from OptionMetrics from January 1996 to December
2017. The data include the daily closing and ask quotes, trading volume, strike
price, open interest and implied volatility. Closing option prices are calculated as
the midpoint of the closing bid and ask prices. We apply a series of data filters to
minimize the impact of recording errors in the options market following previous

literature. First we eliminate all observations for which the ask price is lower than

3The adjusted stock market price-earnings ratio defined by Shiller (2015). Shiller PE ratio peaks
around 1929, 2000 and 2007, in all major market bubbles.
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the bid price. Second we eliminate options with zero or missing bid price. Third
we eliminate options with zero open interest. Fourth we eliminate options with
nonstandard settlement (settlement flag to be nonzero). Fifth we eliminate options
with missing or zero implied volatility. Sixth we eliminate options with delta to be
below —1 or above +1. Our final sample contains 235,224 option-month observations
for OTM calls and 236,520 for ATM calls. We present summary statistics of gambling
measures and their correlations in Table 3.1. These measures are defined in details
in Appendix A.

Table 3.1: Summary statistics and correlations of gambling measures

The table reports the summary statistics and correlations for the gambling
measures: CallMoney, maximum daily return (M AX), idiosyncratic volatility
(IVOL), idiosyncratic skewness (ISKEW), and option ex-ante skewness
(OSKEW). At the end of each month, lower quartile (P25), median, upper
quartile (P75) and standard deviation (SD) of each variable and correlation
matrix among variables are calculated cross-sectionally, resulting in a time-series
of summary statistics. The time-series summary statistics are then averaged and
reported in Panel A. Panel B reports the time-series average of cross-sectional
correlations. The sample period is from January 1996 to December 2017.

Panel A: Summary statistics of gambling measures

P25  Median P75 SD
CallMoney  0.022 0.075 0.242 2.321
MAX 0.032 0.047 0.070 0.046
IVOL 0.016 0.022 0.031 0.014
ISKEW -0.243 0.204 0.695 1.153
OSKEW 1.316 1.667 2.108 6.699

Panel B: Correlation matrix
MAX IVOL ISKEW OSKEW

CallMoney  0.132 0.189 0.022 0.080
MAX 0.403 0.037 0.180
IVOL 0.074 0.229
ISKEW -0.102

Table 3.1 shows that C'all M oney has very large standard deviation (2.321) and skews
to the right as expected. Summary statistics for indirect gambling measures are
generally in line with previous literature. The correlations between CallMoney and

indirect gambling measures are positive and in general small, indicating that our
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new measure captures different set of information.

In this paper, we consider both option returns and stock returns. For option returns,
we focus on delta-hedged call option returns as they are generally immune from the
underlying stock price movement. In line with Cao et al. (2017) and Ruan (20200),
we define the delta-hedged option gain as the change in value of a self-financing
portfolio consisting of a long call position, hedged by a short position in delta units

of underlying stock, with the proceeds earning the risk-free return.

Specifically, if a self-financing portfolio is rebalanced N times over a period [t,t + 7],

its delta-hedged gain is:

N—-1 N—-1
anTr "
H@J+¢):Chf—C}—;%AqMKXmH)—S@@}—n0:mgﬂﬂm)—Aq&S@@L

where Ac,, is the delta of the option C at date t,,; 7, is the annualised risk-free
rate at date t,,; and «,, is the number of calendar days between ¢, and ¢,,,. Then
scale the dollar return I1(¢,t 4+ 7) by AyS; — C; to obtain delta-hedged call option

return as follows:

I(t,t + 1)

Rtt+7)=—1 ' 2

i+ =5 -6
In subsequent empirical tests, all option and option portfolio returns are delta-hedged
returns. We use one OTM call (moneyness lower than 1.20 and higher than 1.05, and
closest to 1.10) and one ATM call (moneyness lower than 1.05 and higher than 0.95,
and closest to 1) for each stock when we examine option returns. The moneyness
range selection of OTM call and ATM call options follows the option literature (Xing

et al., 2010; Doran et al., 2011; Boyer and Vorkink, 2014).
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3.4 Empirical analysis

3.4.1 Direct and indirect gambling measures

In Section 3.2, we show that market-wide C'allMoney captures investors’ excessive
optimism and gambling activity during the bubble periods. In this section, we
examine the cross-sectional relation between gambling activity measure C'all Money
and stocks’ lottery features. We conduct both univariate and multivariate tests to
examine whether C'all Money is higher for lottery-like stocks. We adopt lottery-like
payoff characteristics (i.e. indirect gambling measures) as identified by previous

literature: MAX, IVOL and ISKEW .

We first sort our stock-month observations into quintiles based on each of the indirect
gambling measures observed at the previous month-end. We then report time-series
average C'all M oney across quintiles. Panel A of Table 3.2 reports the results of the

analysis.

4We do not investigate OSK EW in this section as it is an option-specific variable.
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Table 3.2: CallMoney and lottery characteristics

This table reports CallMoney across each of the three lottery characteristics (Panel A) and the
results of Fama-MacBeth regressions of month ¢ 4+ 1 CallMoney on month ¢ lottery characteristics
and control variables (Panel B). The lottery characteristics include maximum daily return (M AX),
idiosyncratic volatility (IVOL), and idiosyncratic skewness (ISKEW). The control variables
include stock return in the past month (REV'), cumulative stock return from past 11 months
(MOM), log market capitalization (log(SIZFE)), beta (BET A), illiquidity (ILLIQUIDITY ), and
book-to-market ratio (BT M). In Panel A, stock-month observations are first sorted by each of
the lottery characteristics during the prior month. Then time-series average CallMoney across
quintiles, and the difference between extreme quintiles and the associated t-statistics are reported.
Panel B presents the time series averages of the monthly cross-sectional regression coefficients and
the associated t-statistics. Also reported are the average adjusted R-square. The sample period is
from January 1996 to December 2017.

Panel A: CallMoney across lottery characteristics
MAX, ; IVOL;,; ISKEW,,

Q1 0.125 0.090 0.244
Q2 0.165 0.146 0.266
Q3 0.217 0.208 0.238
Q4 0.329 0.294 0.259
Q5 0.457 0.555 0.286
Q5-Q1 0.332FF%  0.465%%%  (.043%*

(15.49) (11.64) (2.28)
Panel B: Fama-MacBeth regressions of CallMoney
Model 1 Model 2 Model 3

MAX 1.715%%%
(6.16)
IVOL 16.218%%*
(2.82)
ISKEW 0.007%*
(2.33)
REV -0.294%%% _0.075 -0.039
(-3.04)  (-0.84)  (-0.50)
MOM 0.044  -0.121 -0.055
(-073)  (-1.34)  (-0.88)
log(SIZE) -0.090%¥% -0.043%F* -0, 104%*
(-2.85)  (-2.67)  (-3.47)
BETA 0.087F%%  0.066%**  0.099%**
(6.65) (6.70) (7.79)

ILLIQUIDITY  -0.312%%% -0.336%%* -0.310%%*
(-3.55)  (-342)  (-3.44)

BTM 0.024%  -0.021 -0.028*
(-1.68)  (-1.12)  (-1.82)
INTERCEPT  YES YES YES

Adjusted R? (%) 5.99%  6.82% 4.33%

Panel A shows that CallMoney increases across MAX, IVOL, and ISKEW
quintiles in the previous month. The difference between extreme quintiles (Q5-

Q1) are all statistically significant. These results indicate that CallMoney depends
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on the lottery features of stocks observed during the previous month.

We then conduct multivariate tests to determine whether CallMoney is higher
for each of these indirect gambling measures controlling for other firm-specific
characteristics. Following Kumar (20090), we conduct Fama-MacBeth (1973) regressions,
where the dependent variable is C'all M oney, and the key independent variables are the
indirect gambling measures (M AX, IVOL, and ISK EW) observed at the previous
month-end. The control variables include stock return in the past month (REV),
cumulative stock return from past 11 months (MOM), log market capitalization
(log(SIZFE)), beta (BET A), illiquidity (/LLIQUIDITY), and book-to-market ratio
(BT M). These variables are defined in details in Appendix A. We report the time-
series averages of the coefficients of the monthly cross-sectional regressions, along

with their ¢-statistics in Panel B of Table 3.2.

In Model 1, we estimate the multivariate regressions with the key independent variable
being M AX. The coefficient on M AX is 1.715 with a t-statistic of 6.16, confirming
that M AX can positively predict future C'all Money. We obtain qualitatively similar
results in Models 2 and 3 with the key independent variable being IVOL and
ISK EW respectively. We show a robust positive relation between C'allMoney and
the lottery-like characteristics. This result indicates that investors’ preference for
lottery stocks is reflected in higher C'all M oney value. We also look into the coefficients
on the other control variables. The coefficients on log(SIZFE) and ILLIQUIDITY
are consistently negative, indicating that C'allMoney is higher for smaller-size firms
and stocks with higher liquidity. The coefficient on BET A is significantly positive,

indicating that C'all Money is higher for firms with higher systematic risk.
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3.4.2 Single-sort portfolio analysis and stochastic dominance

We provide some intuitive evidence that CallMoney negatively predicts option
returns and high Call Money value captures option traders’ gambling activity. We
sort OTM/ATM call options into 10 decile portfolios based on their previous month’s
CallMoney levels, where decile 10 (decile 1) option portfolio is the one with the
highest (lowest) CallMoney. We equally weight delta-hedged monthly option returns
to compute decile portfolio’s returns.® Table 3.3 reports the average monthly returns
and their corresponding Fama-French-Carhart (1997) four-factor alphas of the decile
portfolios; together with the spread between the highest and lowest CallMoney

decile portfolio returns (“10-1") and its associated four-factor alpha.

Single-sort portfolio results in Table 3.3 show that decile option portfolio returns
monotonically decrease when C'allMoney increases. For OTM call options, the “10-1”
return spread is —1.321% per month and its four-factor alpha is —1.285% per month.
While for ATM options, the “10-1” return spread and its alpha are —0.831% and
—0.778% per month. The spreads and alphas are all significant at 1% level. The
larger return spread for OTM calls may be attributed to the higher return skewness

of OTM options, which endear them to gamblers more than ATM options.

We further employ a non-parametric test based on stochastic dominance to examine
whether the negative option return predictability by C'allMoney is driven by risk
factors that are not captured by Fama-French-Carhart four factors. The stochastic
dominance approach provides an utility-based framework to compare choices under

uncertainty. Previous finance literature applies stochastic dominance approach to

5We use the equal-weighted portfolio return because all the option returns are delta-hedged
returns.
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examine return puzzles and anomalies (e.g. Monday effect, January effect, and
momentum) to rule out the possibility of omitted risk factors (Seyhun, 1993; Fong

et al., 2005; Cho et al., 2007; Fong, 2010).

Following these studies, we conduct a stochastic dominance analysis on option
returns. We divide OTM call options into low CallMoney and high CallMoney
groups, based on their Call Money values relative to the median CallMoney level.
Figure 3.2 illustrates the empirical cumulative distribution functions (CDFs) of low

and high C'allMoney groups’ equal-weighted monthly returns.

1.0

= High CallMoney
Low CallMoney

08
|

Cumulative distribution functions
04

02
|

| | | | | |
-0.10 -0.05 0.00 0.05 0.10 0.15

Delta-hedged option portfolio returns

Figure 3.2: Stochastic dominance: cumulative distribution functions of high and low
CallMoney groups’ returns

OTM call options are divided into two (High and Low CallMoney) groups based on
CallMoney values relative to the median CallMoney level. The figure illustrates
the cumulative distribution functions of the equal-weighted monthly delta-hedged
returns of High and Low CallMoney option groups. The sample period is from
January 1996 to December 2017.

Using the test proposed by Davidson and Duclous (2000), we find that low C'allMoney
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group’s returns dominate those of high CallMoney group by the second order
stochastic dominance, suggesting all risk-averse investors will prefer low C'allMoney
group to high CallMoney group.® The stochastic dominance analysis shows that
CallMoney’s option return predictability cannot be explained by omitted risk factors.
The trading activity in high Call M oney option group is more likely to be initiated

by gamblers, who enter the market for risk-based excitement.

3.4.3 CallMoney versus lottery-like-payoffs based measures:

double-sort analyses

CallMoney provides a direct gauge on investors’ gambling activity. By contrast, the
indirect gambling measures use lottery-like-payoffs as a proxy of optimism-induced
gambling. We compare the performance on option return predictability of our
gambling measure CallMoney to the existing lottery-like-payoffs based (indirect)
gambling measures (M AX, IVOL, ISKEW , and OSKEW) by conducting double-
sort analyses. Table 3.4 reports the average equal-weighted monthly OTM call

portfolio returns based on double sorts of direct-indirect gambling measures.”

6There is no first-order stochastic dominance because the two CDFs cross. See Appendix B for
details on Davidson and Duclous (2000) test.

"We obtain qualitatively similar results for ATM call option returns. The results are available
from the authors upon request.
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Table 3.4: Portfolio double sorted on CallMoney and indirect gambling measure

This table reports the OTM call option returns double sorted by CallMoney and the indirect
gambling measures. In each month, all OTM call options are double sorted in two ways. In
one double sort, options are first sorted into quintiles based on one of the four indirect gambling
measures: maximum daily return (M AX), idiosyncratic volatility (IVOL), idiosyncratic skewness
(ISKEW), and option ex-ante skewness (OSKEW). Then within each quintile, options are further
sorted into five equally weighted portfolios by their CallMoney (1 = Low CallMoney, 5 = High
CallMoney). Panel A reports the average monthly delta-hedged returns for portfolios thus obtained.
The second double sort reverses the sort order, and the corresponding results are reported in Panel
B. The sample period is from January 1996 to December 2017. The t-statistics are reported in
parentheses. * ** ***indicate significance at the 10%, 5% and 1% level. All returns are expressed
as percentages.

Panel A: Sorted by CallMoney controlling other measures
MAX IVOL ISKEW  OSKEW

1 (Low CallMoney)  0.279 0.367 0.263 0.243

2 0.133 0.170 0.153 0.107

3 -0.030  0.004 -0.007  -0.002

4 0221 -0.140  -0.191  -0.175

5 (High CallMoney) -0.702  -0.533  -0.746  -0.520

5-1 S0.982%F% 0.900%F*F  -1.009%FF -0, 763%+*
(-10.63)  (-8.13)  (-9.47)  (-7.68)

5-1 FF4 Alpha S0.973FK 0. 8O5FRE (ORI (), 726¥HF

(-11.01) (-8.48) (-10.22) (-8.16)
Panel B: Sorted by other measures controlling CallMoney
MAX IVOL ISKEW  OSKEW

1 (Low) 0.146  -0.166  -0.161  0.056
2 0.097  -0.088  -0.026  -0.171
3 -0.067  0.103 0.066  -0.121
4 -0.044  0.100 0103 -0.144
5 (High) 0183 -0.093  -0.172  0.036
5-1 0.037  0.073 0.011  -0.020
(-0.28)  (0.62) (-0.17)  (-0.14)
5-1 FF4 Alpha 0.053 0.132 0.012  -0.001

(0.47) (1.15) (-0.20)  (-0.01)

In Table 3.4 Panel A, we sort OTM calls on CallMoney after controlling for each
of the four indirect gambling measures. For example, we control for M AX by first
forming quintile portfolios ranked based on M AX of the underlying stock. Then,
within each M AX-ranked portfolio, we sort options into quintile portfolios ranked
based on CallMoney so that quintile 1 (quintile 5) contains options with the lowest
(highest) CallMoney. The first column of Table 3.4 Panel A presents monthly

option returns for each CallMoney quintile averaged across the M AX quintiles.
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After controlling for M AX, the “5-1” portfolio spread is -0.982% per month with
a t-statistic of -10.63, the associated four-factor alpha is -0.973% per month with
a t-statistic of -11.01. Using the same approach, the second to fourth columns in
Panel A show that after controlling for IVOL, ISKEW , and OSK EW  the return
spreads and the corresponding alphas between the highest and lowest Call Money
quintiles are all negative and significant at 1% level. Results in Panel A imply that
none of the indirect gambling measures can explain the high (low) returns of low

(high) CallMoney call options.

In Table 3.4 Panel B, we perform double sorts on the reversed order, sorting options
on each of the four gambling measures after controlling for C'allMoney. The results
show that the portfolio return explanation power of MAX, IVOL, ISKEW and
OSKEW  after controlling for Call Money, are insignificant; as portfolio spreads
and the corresponding four-factor alphas are statistically insignificant. These results
indicate that Call Money is better than the indirect gambling measures at predicting

future option returns.

3.4.4 Fama-MacBeth regressions

In this section, we use Fama-MacBeth (1973) regressions to formally test the negative
relation between CallMoney and cross-sectional future option returns by controlling

indirect gambling measures and other variables.

The dependent variable is delta-hedged OTM/ATM call returns. The control variables
include REV, MOM, log(SIZE), BETA, BT M, stock turnover (ITURNOV ER),

ILLIQUIDITY , realized-implied volatility spread (V RP), volatility of volatility
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(VOV), and option bid-ask spread (PBA). Extant literature shows that option
implied volatility contains private information of option traders (Xing et al., 2010;
Cremers and Weinbaum, 2010; Jin et al., 2012; An et al., 2014). Following An et al.
(2014), we also control for change in ATM call implied volatilities (CIV') and change
in ATM put implied volatilities (PIV') to rule out the possibility that the result is
driven by informed trading in options market. The variables are defined in details in

Appendix A.

Fama-MacBeth regressions are extensively used in the literature to examine the
cross-sectional return predictability of the interested predictors (see e.g. Xing et al.
(2010), Cao and Han (2013), Byun and Kim (2016), and Atilgan et al. (20200)).
However, there are several limitations to the regression methodology. First, it imposes
linearity on the relation between the dependent variable and the independent variable.
To solve this, we have conducted portfolio sorting analysis to examine the relation
between C'allMoney and call option returns in Sections 3.4.2 and 3.4.3. Furthermore,
the second stage of Fama-MacBeth regressions is to conduct inference on the time-
series of the coefficients by assuming the coefficients over time are independent
and identically distributed. However, there may exist the autocorrelation structure
of the time series of coefficients. To adjust for the time-series correlation of the
coefficients, we use the Newey-West (1987) adjustments to calculate the t-statistics

of the coefficients.

We report the time-series averages of the coefficients, along with their Newey-West
adjusted t-statistics in Table 3.5 (for OTM calls) and in Table 3.6 (for ATM calls).

Both tables include 7 models.
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Table 3.5: Fama-MacBeth regression analyses: OTM call return predictability

The table presents the results of Fama and MacBeth (1973) regressions of month ¢ + 1 delta-hedged
OTM call option returns on month ¢ CallMoney and control variables. The table presents the
time series averages of the monthly cross-sectional regression coefficients. Also reported are the
average adjusted R-square. The sample period is from January 1996 to December 2017. Newey

and West (1987) t-statistics are reported in parentheses.

5% and 1% level.

* k% kkx
) b

indicate significance at the 10%,

Model 1 Model 2 Model 3 Model 4  Model 5 Model 6 Model 7
CallMoney -0.005%**  -0.005%**  -0.005%** -0.005*** -0.005***  -0.005***  -0.005%**
(-7.08) (-5.95) (-5.99) (-5.53) (-5.87) (-5.82) (-5.58)
MAX -0.032%** -0.029***
(-2.67) (-2.60)
IVOL -0.076* -0.050
(-1.75) (-1.15)
ISKEW 0.000 0.000
(-0.84) (-0.67)
OSKEW 0.000 0.000
(-0.95) (-1.43)
REV 0.004 0.009* 0.004 0.004 0.004 0.009*
(0.99) (1.88) (1.03) (0.95) (1.11) (1.78)
MOM -0.003** -0.002**  -0.002 -0.002** -0.002** -0.002
(-2.17) (-2.03) (-1.59) (-2.04) (-2.03) (-1.48)
log(SIZE) 0.001 0.000 0.000 0.001 0.000 0.000
(1.62) (0.95) (0.76) (1.58) (1.40) (0.34)
BETA 0.001* 0.001** 0.001** 0.001* 0.001* 0.001**
(1.94) (2.10) (2.09) (1.93) (1.88) (2.20)
BTM -0.000 -0.000 0.000 -0.000 0.000 0.001
(-0.09) (-0.10)  (0.14) (-0.11) (0.17) (0.37)
TURNOVER 0.000*** 0.000***  0.000%**  0.000%** 0.000*** 0.000***
(2.79) (3.37) (2.65) (2.72) (2.77) (3.04)
ILLIQUIDITY -16.813**¥*  _15.597**% _15.334%* _16.876*** -16.886*** -14.813**
(-2.62) (-241)  (-241)  (-2.61) (-2.59) (-2.26)
CIV -0.051%**  _0.048%**  -0.050%** -0.051***  -0.052%**  -0.047***
(-4.93) (-4.47) (-4.87) (-4.92) (-4.96) (-4.43)
PIV 0.006 0.003 0.004 0.006 0.006 0.001
(0.57) (0.31) (0.41) (0.54) (0.54) (0.12)
VRP -0.000%**  -0.000%**  -0.000%** -0.000***  -0.000%**  -0.000***
(-3.90) (-4.36) (-3.07) (-3.86) (-3.82) (-3.48)
VOV -0.039%**  _0.037***  -0.037FF*  -0.039*¥**  -0.038***  -0.036***
(-8.05) (-7.83) (-7.97) (-7.92) (-7.98) (-7.63)
PBA 0.017*** 0.017***%  0.016%**  0.017%** 0.018*** 0.017***
(5.29) (5.15) (4.96) (5.28) (5.18) (4.81)
INTERCEPT YES YES YES YES YES YES YES
Adjusted R? (%) 0.62 5.22 5.54 5.57 5.26 5.38 6.01
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Table 3.6: Fama-MacBeth regression analyses: ATM call return predictability

The table presents the results of Fama and MacBeth (1973) regressions of month ¢ + 1 delta-hedged
ATM call option returns on month ¢ CallMoney and control variables. The table presents the time
series averages of the monthly cross-sectional regression coefficients. Also reported are the average
adjusted R-square. The sample period is from January 1996 to December 2017. Newey and West
(1987) t-statistics are reported in parentheses. *, ** *** indicate significance at the 10%, 5% and
1% level.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

CallMoney -0.004%FF0.004FFF  -0.004%FF -0.004FFF -0.004FFF -0.004FFF -0.004FF
(-5.18)  (-7.11)  (-7.08)  (-6.62)  (-7.08)  (-7.06)  (-6.58)

MAX -0.039%% -0.033%**
(-6.63) (-6.02)

IVOL -0.141%% -0.116%**
(-5.81) (-4.75)
ISKEW -0.000 -0.000
(-1.25) (-0.52)
OSKEW 0.000  -0.000
(-1.52)  (-0.20)
REV 0.002  0.004 0.002  -0.002  -0.002  0.004
(-1.12)  (1.46) (-0.89)  (-1.13)  (-1.21)  (1.60)
MOM 0.000  -0.000  0.000 0.000  -0.000  0.000
(-0.53)  (-0.63)  (0.53) (-0.46)  (-0.62)  (0.69)

log(SIZE) 0.001%FF  0.001¥FF  0.001%**  0.001%%*  0.001%F*  0.001%+*
(5.91) (4.51) (3.34) (5.89) (5.91) (2.74)
BETA 0.000  0.000 0.000 20.000  -0.000  0.000
(-0.35)  (0.11) (0.51) (-0.36)  (-0.35)  (0.71)
BTM 0.001 0.001 0.001 0.001 0.001 0.001
(1.04) (1.02) (1.03) (1.02) (1.08) (1.18)

TURNOVER 0.000%  0.000%%* 0.000%*  0.000%  0.000%%  0.000%%*
(1.90) (3.50) (2.57) (1.89) (2.10) (3.84)

ILLIQUIDITY STTIBRRE G070 6.221FFF 7 GE5FRE 7 T9IRRE 5 Q7%
(-3.38)  (-2.63)  (-2.66)  (-3.38)  (-3.42)  (-2.18)

CIvV -0.044%F% 0.043%%%  0.045%FF  _0.044FFF  0.044%FF 0. 043%F*
(-8.50)  (-8.12)  (-8.61)  (-8.44)  (-8.46)  (-8.09)
PIV 0.011%%  0.011¥  0.010%¥  0.011%*  0.011*  0.009
(2.02) (1.92) (1.82) (2.01) (1.93) (1.64)

VRP -0.000%%*%  -0.000%%*  -0.000%** -0.000%** -0.000%** -0.000%**
(-4.78)  (-5.69)  (-4.63)  (-4.76)  (-4.86)  (-5.57)

VOV S0.014%FF 0. 012%F%  0.013%FF  _0.014FFF  0.014%FFF 0. 012%%*
(-7.31)  (-6.59)  (-7.07)  (-7.20)  (-7.46)  (-6.49)

PBA 0.014%FF  0.014%FF  0.013%%%  0.014%%F  0.016%F*F  0.015%+*
(4.65) (4.68) (4.34) (4.66) (4.79) (4.39)
INTERCEPT  YES YES YES YES YES YES YES
Adjusted R? (%) 1.00 6.09 6.53 6.65 6.11 6.35 7.22

In Model 1, we estimate univariate regressions of option returns on C'allMoney. The
coefficient on CallMoney is -0.005 (-0.004) and with a ¢-statistic of -7.08 (-5.18) for
OTM (ATM) call regressions, confirming that C'allMoney can negatively predict

future option returns.
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In Model 2, we estimate the multivariate regressions by adding control variables.
The coefficients on CallMoney remain negative and significant at 1% level. The
CallMoney’s option return predictability is robust after controlling for option and
stock characteristics. The coefficients on ILLIQUIDITY, VRP, and VOV are
negative and significant, in line with findings of Goyal and Saretto (2009) and
Ruan (20200). While log(SIZFE), BET A, and PBA have positive and significant
coefficients, consistent with the studies of Ruan (2020b), Cao and Han (2013) and
Choy (2015). The coefficient on CIV is significantly negative, while the coefficient
on PIV is significantly positive in Table 3.6. This is consistent with the argument
that informed option traders’” demand will influence option implied volatility level

and option prices (Garleanu et al., 2008).

From Model 3 to Model 7, we further control for each and then all of the indirect
gambling measures (M AX, IVOL, ISKEW , and OSKEW) . The negative and
significant option return predictability of C'all M oney holds consistently across models.
This confirms that C'allMoney’s option return predictability cannot be explained
by any of the indirect gambling measures. By contrast, the coefficient on IVOL in

Table 3.5 and the coefficients on ISK EW and OSK EW are insignificant.

Tables 3.5 and 3.6 show that C'allMoney is better at capturing the gambling activity
in the options market and its option return predicability is robust after controlling

indirect gambling measures and other variables.
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3.4.5 Anchoring and gambling behaviour: 52-week high and

capital gain overhang

Investors’ trading behaviour tends to anchor on past return performance. We analyse
how investors’ anchoring behaviour interacts with gambling activity in options market.
If investors’ behavioural biases such as anchoring induce more risk-taking activity,

then these biases should increase the return predictability of our gambling measure.

The 52-week high stock price is one of the most readily available information of past
stock price performance. Acting as a resistance level in technical analysis, 52-week
high represents a psychological price barrier to investors. George and Hwang (2004)
find that 52-week high price explains a large portion of the momentum investing
profits. Driessen et al. (2011) find that option implied volatilities decrease when
the stock prices approach 52-week highs, suggesting option treaders’ optimism is
negatively associated to the nearness to the 52-week high price. Following previous
studies, we define nearness to 52-week high (denoted as N H) for each stock at the

end of month ¢ as:

by

NH = _— '
T 52HIGH,

where P, is the price of stock at the end of month ¢, and 52HIGH, is the highest

daily closing price from the beginning of month ¢ — 11 to the end of month ¢.

Another behavioural anchoring concept is capital gain overhang. Grinblatt and Han
(2005) find that investors tend to be risk-seeking (risk-averse) as they experience
capital losses (gains). An et al. (2020) find that the lottery-related anomalies are

more pronounced when stocks experience capital losses. They argue that in order
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to break even, investors are more likely to gamble after capital loss. Following
Grinblatt and Han (2005), we calculate capital gain overhang (denoted as CGO) as
the normalized difference between the current stock price and the reference price.

The reference price, a proxy for stock purchase cost, is defined as:

n—1

T
;( 1:[ 1= Vinsr) ) P,

RP;, =

T =

where P, is the stock price at the end of week ¢, V; is week t’s stock turnover, 7' = 260,
the number of weeks in the previous 5 years, and k = 25:1 <V}_n Hfj (1— I/;_HT))
is a constant that normalise the weights on past prices sum to one. The CGO at

week ¢ is defined as:

b1 — RP,

CGO, = iz
t—1

Following Wang et al. (2017), we use the last-week’s CGO in each month as monthly
CGO. We conduct independent double-sort analysis on CallMoney and NH /CGO
by sorting call options into five groups based on CallMoney, and then sorting
independently into five groups based on their underlying stocks’ NH or CGO. We
next construct 25 portfolios defined by the intersections of this 5 x 5 sort, and
we eqaul-weight the delta-hedged option returns when computing option portfolio

returns. Table 3.7 presents the independent double-sort results.

Panel A of Table 3.7 reports the independent double-sort results of sorting by
CallMoney and NH. For OTM calls, when stock price is far from its 52-week high
(“Low NH”), return spread between high and low CallMoney quintile portfolios

(“5-1") is -1.103% per month, with the corresponding four-factor alpha being -1.122%
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per month, both significant at 1% level. In contrast, when stock price is near its 52-
week high (“High NH”), the “5-1” return spread is -0.679%, and the corresponding
four-factor alpha is -0.660%. Column “N5-N1” reports the difference between the
above return spreads (1.103%—0.679%) and alphas (1.122%—0.660%). The difference
in return spreads is 0.424%, significant at 10% level, and the difference in alphas is

0.462% per month, significant at 5% level.

For ATM calls, when stock price is far from its 52-week high (“Low NH”), the “5-1”
return spread is -0.902% per month, with the corresponding four-factor alpha being
-0.890% per month, both significant at 1% level. In contrast, when stock price is
near its 52-week high (“High NH”), the “5-1” return spread is -0.340%, and the
corresponding four-factor alpha is equal to -0.293%, only about one-third of the
low N H’s alpha spread. Column “N5-N1” reports the difference between the above
return spreads (0.902% — 0.340%) and alphas (0.890% — 0.293%). This difference
in return spreads is 0.562% and the difference in alphas is 0.597% per month, both

significant at 1% level.

Results in Panel A indicate that C'allMoney’s option return predictability is stronger
when the underlying stock is further from its 52-week high, suggesting that option
traders gamble more heavily when the current stock price is further from its
psychological barrier. All the “5-17 return spreads are negative in Panel A, indicating

a consistently negative option return predictability across different N H states.

Panel B of Table 3.7 reports the results of sorting by Call Money and CGO. For
OTM calls, within the low C'GO quintile, the return spread between high and low

CallMoney quintile portfolios is -1.371% per month, with the corresponding four-
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factor alpha being -1.393% per month. In contrast, within the high CGO quintile,
the return spread is -1.014%, and the corresponding four-factor alpha is equal to
-1.001%. Column “C5-C1” reports the difference between the above return spreads
(1.371% — 1.014%) and alphas (1.393% — 1.001%). The difference in return spreads
is 0.357%, and the difference in alphas is 0.392% per month, both significant at 5%
level. For ATM calls, the difference “C5-C1” in return spreads (alphas) is 0.297%

(0.350%) per month, both significant at 1% level.

Results in Panel B indicate that C'all M oney’s option return predictability is stronger
when capital gain overhang is lower, suggesting that option traders gamble more
heavily when the desire to cover previous losses and break even is stronger. Again, all
the “5-1” return spreads are negative in Panel B, indicating a consistently negative

option return predictability across different CGO states.

Overall, our findings in Table 3.7 suggest that the interaction between gambling
activity and past stock performance anchoring amplifies the negative option return
predictability of C'all Money when stock price is further from its 52-week high or

investors have suffered capital loss.

3.4.6 Information uncertainty and gambling

Information plays an important role of rational investors’ decision making process.
Previous literature (Hirshleifer, 2001; Jiang et al., 2005; Kumar, 2009¢q; Zhang,
2006b) shows that investors exhibit stronger behavioural bias when there is greater
information uncertainty. We examine whether C'all M oney’s option return predictability

is weakened or accentuated by information uncertainty of the underlying stock. If
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driven by investors’ behavioural bias such as gambling, the predictability should

accentuate when information uncertainty is high.

Following previous literature (Zhang, 2006b; Jiang et al., 2005), we use two proxies
of information uncertainty: analysts’ coverage and analysts forecast dispersion. A
firm with larger analysts’ coverage is likely to have more information available and is
therefore less uncertain in its valuation. We measure analyst coverage (AN ALY ST'S)
as the number of analysts following the firm. A larger analysts forecast dispersion
reflects less of consensus among analysts, implying a higher degree of information
uncertainty. We calculate analysts’ forecast dispersion (DISP) as the standard

deviation of analysts forecasts scaled by the mean analysts’ forecast.

To analyse the interaction between gambling activity and information uncertainty,
we conduct independent double-sort on CallMoney and each of the information
uncertainty proxies. We independently sort call options into quintiles based on
CallMoney, and quintiles based on their underlying stocks’” information uncertainty
proxies and then calculate the equal-weighted delta-hedged call option returns for

each of the 25 resulting portfolios. The results are reported in Table 3.8.

Panel A of Table 3.8 reports the results on sorting by C'all Money and ANALY STS.
For OTM calls,when analysts coverage is low (“Low ANALY STS”), the return
spread between high CallMoney and low CallMoney quintiles (“5-17) is -1.591%
per month, and the corresponding four-factor alpha is -1.577% per month. When
analysts coverage is high (“High ANALY STS”), the “5-17 return spread is -0.566%
per month, and the corresponding four-factor alpha is -0.506% per month. The

“A5-A1” column reports the differences between the above return spreads and alphas.
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Both differences (1.025% and 1.071% per month) are significant at 1% level, showing

that more analysts’ coverage decreases C'all Money’s predictability on option returns.

For ATM calls, when analysts coverage is low, the “5-1" return spread between high
CallMoney and low CallMoney quintiles -1.211% per month, and the corresponding
four-factor alpha is -1.174% per month. When analysts coverage is high, the “5-
1”7 return spread is -0.360% per month, and the corresponding four-factor alpha
is -0.320% per month. The “A5-A1” difference in return spreads is 0.851% per
month and the difference in alphas is 0.854% per month, both are significant at 1%
level. Panel A shows that option return predictability of C'all Money is stronger
when analysts’ coverage is lower. More analysts’ coverage leads to less information

uncertainty and less overpricing of OTM/ATM call options.

Panel B of Table 3.8 reports the independent double-sort results of sorting by
CallMoney and DISP. For OTM calls, when analysts forecast disperion is low
(“Low DISP”), the “5-1” return spread between high C'allMoney and low CallMoney
quintiles is -0.748% per month, and the corresponding four-factor alpha is -0.717%
per month. When analysts forecast disperion is high (“High DISP”), the “5-1”
return spread is -1.048% per month, and the corresponding four-factor alpha is
-1.025% per month. Column “D5-D1” reports the difference between the above
return spreads (-0.300%), and the difference in four-factor alphas (-0.308%), with
5% significance level. For ATM calls, the sorting results show similar pattern. The
“D5-D1” difference in return spreads is -0.262% and difference in alphas is -0.254%,
both are significant at 5% level. Panel B shows that option return predictability of

CallMoney stronger when analysts forecast dispersion is higher.
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Overall, results in Table 3.8 support that C'allMoney’s option return predictability
comes from option traders’ gambling activity. Traders gamble more when company
information is more uncertain and gambling activity leads to overpricing of OTM/ATM
call options. Also, In Table 3.8, all “5-1” spreads are negative, suggesting CallMoney’s
consistent negative option return predictability across all information uncertainty

levels.

3.4.7 CallMoney and stock returns

If CallMoney successfully captures gambling activity in options market driven by
investors’ optimism in the underlying stock, then this optimism will also cause
overvaluation of the stock and should negatively predict stock returns. In this

section, we test whether CallMoney has stock return predictability.

We run Fama-MacBeth regressions with monthly future stock returns as dependent

variable. We consider six regression models and Table 3.9 reports the results.

116



ESSAYS OF ASSET PRICING Bei Chen

Table 3.9: Fama-MacBeth regression analyses: stock return predictability

The table presents the results of Fama and MacBeth (1973) regressions of month ¢ 4 1 stock returns
on month ¢t CallMoney and control variables. The table presents the time series averages of the
monthly cross-sectional regression coefficients. Also reported are the average adjusted R-square.
The sample period is from January 1996 to December 2017. Newey and West (1987) t-statistics are
reported in parentheses. *, ** *** indicate significance at the 10%, 5% and 1% level.

Model 1 Model 2 Model 3 Model 4  Model 5 Model 6

CallMoney -0.006%F  -0.006%*F -0.006"** -0.006%%F -0.006%*F -0.006%**
(-3.67)  (-4.17)  (-4.17)  (-3.83)  (-4.13)  -3.83
MAX -0.012 0.001
(-0.71) (0.10)

IVOL -0.222%% -0.218%*
(-3.01) (-3.19)

ISKEW -0.001%*%  -0.001%*
(-2.41)  (-2.47)

REV 0.014%%  -0.012%  -0.013%F  -0.014%F  -0.013**
(-2.25)  (-1.84)  (-2.15)  (-227)  (-2.02)

MOM 0.004 0.004 0.005%  0.004 0.005%*
(1.54) (1.64) (1.89) (1.64) (2.05)

log(SIZE) 0.000 0.000 -0.001 0.000 -0.001
(0.39) (0.27) (-1.02)  (0.34) (-0.96)
BETA 0.000 0.000 0.001 0.000 0.001
(0.16) (0.21) (0.40) (0.18) (0.38)

BTM 0.003  -0.003  -0.003  -0.003  -0.003
(-1.10)  (-1.11)  (-1.28)  (-1.08)  (-1.27)

ILLIQUIDITY 8.000%FF  9.153%Kk 0 G35¥KK G QITHRE Qg
(2.78) (2.91) (2.89) (2.79) (2.99)
CIV 0.008 0.008 0.005 0.007 0.004
(0.68) (0.67) (0.49) (0.62) (0.37)

PIV 0.010  -0.009  -0.010  -0.009  -0.009
(-1.06)  (-0.94)  (-1.04)  (-1.01)  (-0.92)
INTERCEPT  YES YES YES YES YES YES
Adjusted R? (%) 0.55 8.71 9.16 9.40 8.77 9.78

In Model 1, we estimate univariate regressions of future stock returns on C'all Money.
The coefficient is negative (—0.006) and statistically significant (with a ¢-statistic of

—3.67), confirming that CallMoney can negatively predict the future stock returns.

In Model 2, we estimate the multivariate regressions after controlling for the stock
characteristics. The control variables are those typically used in the empirical asset
pricing literature (e.g. Bali et al. (2011)). We also control for the option informed

trading measures C'IV and PIV. The coefficients on C'allMoney remain negative
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and significant at 1% level. The coefficients on the other variables have the signs

consistent with the literature (Bali et al., 2011; Andreou et al., 2018).

From Model 3 to Model 6, we further control for each or all of the indirect gambling
measures (M AX, IVOL, and ISK EW).® The negative and significant stock return
predictability of C'allMoney holds consistently across these models. In Model 3, the
coefficient on M AX is insignificant. In Model 4, the coefficient on IV OL is negative
and significant at 1% level. In Model 5, the coefficient on I.SKEW is negative and
significant at 5% level. In Model 6, when all indirect gambling measures are included,

the coefficient on M AX is insignificant.

Across all models, the magnitude of CallMoney’s coefficient persists at —0.006,
indicating a unique set of information content that cannot be explained by either
control variables or indirect gambling measures. C'allMoney performs better than

indirect gambling measures at predicting stock returns.

We conduct one additional test in this section to provide evidence that the gambling
activity measure C'allMoney captures irrational speculative trading behaviours. As
mentioned in Section 3.2, one strand of literature defines gamblers as those who
enter the market for risk-based excitement and are less concerned about fundamental
values. We test whether gambling activity as measured by CallMoney is more
active in stocks with higher volatility but are expected to have worse fundamental
performance. We sort stock-month observations into quintiles based on the standard
deviation of stock daily return VOL observed in the previous month. We then report

time-series average CallMoney across quintiles. Column 1 of Table 3.10 shows

8We omit OSKEW because it is option contract dependent measure.
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that C'all Money increases across increasing VOL quintiles. The difference between
extreme quintiles (Q5-Q1) is 0.320 with a ¢-statistic of 10.41. This indicates that

CallMoney increases on the stock return volatility during the previous month.

Table 3.10: Call Money and stocks’ risk and mispricing characteristics

This table reports Call M oney across quintiles of stock volatility and stock mispricing level. Stock
volatility VOL is the standard deviation of stock daily return during the previous month. Stock
mispricing level Mispricing is calculated following Stambaugh and Yuan (2017). At the beginning
of each month, we sort stocks into quintiles based on each of the two proxies observed at the
previous month-end, where Q5 (Q1) is the quintile with the highest (lowest) level of the proxy.
Then we calculate and report the time-series average of the mean CallMoney in each quintile. We
also report the C'all M oney spread between Q5 and Q1. The t-statistics are reported in parentheses.
* Rk kEE ipdicate significance at the 10%, 5% and 1% level.

Sort by VOL;_1 Sort by Mispricing; 1

Q1 0.280 0.189
Q2 0.211 0.184
Q3 0.240 0.217
Q4 0.299 0.245
Q5 0.600 0.360
Q5-Q1  0.3207%% 0.1717F%
t-stat  (10.41) (5.17)

Though we show that a higher C'all Money is associated with a lower future stock
return, our result is based on realized returns. We would like to know whether the
risk-seeking investors are pursuing “worse-performance” stocks ex ante. Stambaugh
and Yuan (2017) estimate a mispricing level for each stock using the accounting-based
information, and identify stocks that are relatively overpriced (high mispricing level)
and underpriced (low mispricing level). Stocks with high (low) mispricing level
are expected to underperform (outperform) the counterparties, and the accounting
information is publicly available ex ante. We therefore estimate an accounting-based
mispricing level following Stambaugh and Yuan (2017), and we examine the relation
between the mispricing level of stocks in month t — 1 and CallMoney in month ¢.
We sort stock-month observations into quintiles based on the mispricing level of stock
observed at the previous month-end. We then report time-series average C'all Money
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across quintiles. Column 2 of Table 3.10 shows that CallMoney increases across
increasing mispricing quintiles. The difference between extreme quintiles (Q5-Q1) is

0.171 with a t-statistic of 5.17.

Combining the above results, the positive relations between C'all Money and VOL,
and between C'all Money and mispricing level indicate that the traders in stocks with
high Call Money are trading securities with higher risk but lower expected return.
This is consistent with our evidence from the stochastic dominance analysis, where

the high CallMoney investors are risk-seeking.

3.4.8 Subperiod analysis

In this section, we conduct subperiod analysis. We first examine whether the negative
option and stock return predictability of CallMoney is more pronounced during
high market volatility periods, as Clark et al. (2018) show that gamblers prefer a
volatile stock market to express their predisposition to take risks. Kumar (20095)
also argues that gamblers are willing to undertake more risk as they believe that the
extreme return events observed in the past are more likely to be realized again when

volatility is high.

We define a high (low) market volatility month as one in which the average VIX
level in the month is above (below) the sample median, and we examine the
option and stock return predictability of CallMoney using Fama-MacBeth (1973)
regressions following high market volatility months (High_-VIX) and low market
volatility months (Low_VIX) respectively. We report the time-series averages of the

coefficients, along with their Newey-West adjusted t-statistics in Panel A of Table

120



ESSAYS OF ASSET PRICING Bei Chen

3.11.

Table 3.11: Fama-MacBeth regression analyses: different market volatility and
sentiment subperiods

This table presents the results of Fama-MacBeth (1973) regressions for high/low market
volatility periods (High-VIX/Low_VIX) in Panel A and for high/low market sentiment periods
(High_sent/Low_sent) in Panel B. The dependent variables are month ¢ + 1 delta-hedged OTM call
option returns (Panels Al and B1), delta-hedged ATM call option returns (Panels A2 and B2),
and stock returns (Panels A3 and B3). The independent variables are CallMoney measures and
the control variables in month ¢. High (low) market volatility month is the month in which the
average VIX level in the month is above (below) the sample median. High (low) market sentiment
month is the month in which the Baker and Wugler sentiment index level in the month is above
(below) the sample median. The time series average coefficients on CallMoney of the monthly
cross-sectional regressions are reported. Also reported are the average adjusted R-square. The
sample period is from January 1996 to December 2017. Newey and West (1987) t-statistics are
reported in parentheses. *, ** *** indicate significance at the 10%, 5% and 1% level.

Panel A: Market volatility
Panel Al: OTM_call Panel A2: ATM_call Panel A3: Stock
High_VIX Low_VIX High VIX Low_VIX High VIX Low_VIX

CallMoney -0.0067FF  -0.003%FF -0.006%FF -0.003%FF -0.009%FF -0.003%FF
(-5.15) (-3.75)  (-6.61) (-4.61)  (-3.89) (-2.67)
CONTROL YES YES YES YES YES YES
INTERCEPT  YES YES YES YES YES YES
Adjusted R? (%) 6.13 4.29 6.80 5.37 10.80 6.59

Panel B: Market sentiment
Panel B1: OTM_call Panel B2: ATM_call  Panel B3: Stock
High sent Low_sent High sent Low_sent High sent Low_sent

CallMoney 20.006%FF  -0.004%FF -0.005%FF  -0.003%FF -0.007FFF  -0.004%FF
(-4.97) (-4.05)  (-6.59)  (-4.28)  (-3.18)  (-3.14)
CONTROL YES YES YES YES YES YES
INTERCEPT  YES YES YES YES YES YES
Adjusted R% (%) 5.88 4.59 6.46 5.75 8.64 6.79

In Panel A1, for regressions of OTM call returns, the coeffcient on CallMoney is
-0.006 with a t-statistic of -5.15 for High_VIX periods, and -0.003 with a t-statistic
of -3.75 for Low_VIX periods. In Panel A2, for regressions of ATM call returns,
the coeffcient on CallMoney is -0.006 with a t-statistic of -6.61 for High VIX
periods, and -0.003 with a t-statistic of -4.61 for Low_V I X periods. In Panel A3, for
regressions of stock returns, the coeffcient on C'allMoney is -0.009 with a t-statistic
of -3.89 for High_V I X periods, and -0.003 with a t-statistic of -2.67 for Low_VIX

periods. Overall, the results show that the negative option/stock return predictability
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of CallMoney is more pronounced when the market volatility is high, indicating

that gamblers are more active during high market volatility periods.

We argue that C'allMoney measures investors’ gambling activity by showing that it
captures excessive investor optimism during the bubble periods, and it negatively
predicts future option/stock returns. We would like to know whether such gambling-
induced overpricing of options/stocks differs in periods with different investor
optimism levels. To determine the market optimism level, we use the well-known

Baker and Wurgler (2006) market sentiment index (denoted as BW).

We define a high-sentiment (low-sentiment) month as the one with the BW index
above (below) the sample median value in the month, and we examine the option and
stock return predictability of CallMoney using Fama-MacBeth (1973) regressions
following high market sentiment months (High_sent) and low market sentiment
months (Low_sent) respectively. Panel B of Table 3.11 reports the time-series

averages of the coefficients, along with their Newey-West adjusted t-statistics.

In Panel B1, for regressions of OTM call returns, the coeffcient on CallMoney is
-0.006 with a t-statistic of -4.97 for High_sent periods, and -0.004 with a t-statistic
of -4.05 for Low_sent periods. In Panel B2, for regressions of ATM call returns, the
coeffcient on CallMoney is -0.005 with a t-statistic of -6.59 for High_sent periods,
and -0.003 with a t-statistic of -4.28 for Low_sent periods. In Panel B3, for regressions
of stock returns, the coeffcient on C'allMoney is -0.007 with a t-statistic of -3.18 for

High_sent periods, and -0.004 with a t-statistic of -3.14 for Low_sent periods.

Overall, the results suggest that the negative option/stock return predictability of

CallMoney exists in both high and low market sentiment periods. Nevertheless, the
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negative option/stock return predictability of C'allMoney is more pronounced when
the market sentiment is high, indicating that there is more pronounced overpricing

of options and stocks by the gamblers during high market sentiment periods.

3.5 Discussions

3.5.1 Alternative constructions of CallMoney

In this section, we check the robustness of C'all M oney under alternative constructions.
We test whether C'all M oney; observed at the last trading day of each month and the
change of CallMoney (ACallMoney) also have option and stock return predictability.
We calculate ACallMoney as the change in CallMoney relative to the average of

past 6-months’ C'allMoney as follows:

CallMoney — CallMoney

ACallMoney = Callifoney

Y

where C'all M oney is the average C'allMoney for the firm over the previous 6 months.

We perform Fama-MacBeth regressions of delta-hedged OTM call option returns and
stock returns on these two alternative C'all Money measures. Table 3.12 presents the

regression results.
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Table 3.12: Fama-MacBeth regression analyses: alternative C'all M oney measures

The table presents the results of Fama and MacBeth (1973) regressions. The dependent variables are
month ¢ 4+ 1 delta-hedged option returns for OTM call options and stock returns. The independent
variables are one of the alternative C'all Money measures and month ¢ control variables. The
alternative CallMoney measures are: 1) CallMoney; estimated on the last trading day of month
t; and 2) ACallMoney, the change in monthly CallMoney relative to the 6-month average of past
CallMoney. The table presents the time series averages of the monthly cross-sectional regression
coefficients. Also reported are the average adjusted R-square. The sample period is from January
1996 to December 2017. Newey and West (1987) t-statistics are reported in parentheses. *, ** *%*
indicate significance at the 10%, 5% and 1% level.

Panel A: OTM calls Panel B: Stock
CallMoney, -0.005%** CallM oney, -0.006***
(-6.27) (-4.54)
ACallMoney -0.003*** | ACallMoney -0.001%***
(-8.33) (-2.67)
REV 0.003 0.004 REV -0.013* -0.013**
(0.89)  (0.99) (-1.93)  (-2.05)
MOM -0.003**  -0.002* MOM 0.003 0.003
(-2.31) (-1.84) (1.23) (1.35)
log(SIZE) 0.001*  0.001 log(SIZE) 0.001 0.001
(1.70)  (1.57) (0.83) (0.84)
BETA 0.002** 0.001* BETA 0.000 0.000
(207) (191 (0.26) (-0.08)
BTM -0.000 -0.000 BTM -0.004 -0.003
(0.12)  (-0.02) (-1.14)  (-1.05)
TURNOVER 0.000** -0.000 ILLIQUIDITY 18.342%FF*  10.068***
(2.54)  (-0.55) (3.34) (3.11)
ILLIQUIDITY -19.169**  -18.744%*%* | CIV 0.002 0.007
(2.21)  (-2.84) (0.12) (0.59)
CIV -0.049%F*  _0.049*** | PIV -0.004 -0.011
(-4.30)  (-4.76) (-0.28)  (-1.18)
PIV 0.007 0.012 INTERCEPT YES YES
(0.56) (1.14) Adjusted R?* (%) 8.81 8.38
VRP -0.000%**  -0.000***
(-4.38)  (-3.94)
VOV -0.043%*F*  _0.037***
(-7.30) (-7.45)
PCR 0.017%%%  0.019%**
(5.34)  (5.68)
INTERCEPT YES YES
Adjusted R? (%) 5.78 5.00

Panel A and B of Table 3.12 report the results for regressions on future OTM call
option returns and stock returns respectively. The coefficients on both C'all Money;

and ACallMoney in both panels are negative and significant at 1% level, after
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controlling for option and stock characteristics. This results indicate that the
negative C'allM oney-return predictability is robust to alternative specifications for
CallMoney. Compared to the indirect gambling measures that depend on time-series
observations for construction, C'all M oney only needs point observation to capture

investors’ gambling demand.

3.5.2 Gambling activity and option demand

The open interest normalised by either trading volume or shares outstanding is an
important proxy of option demands. The option overpricing may come from option
demand as option dealers charge a higher option premium when the option demands
are higher (Cao and Han, 2013). We show that C'allMoney’s return predictability
cannot be explained by option demands of both call and put options, highlighting
the importance of considering OTM call options to capture gambling demands. We
calculate option demand OD as the ratio of total number of option contracts (calls

and puts) that are open to shares outstanding.

Then we double sort option (stock) portfolios in two ways We first form decile option
(stock) portfolios ranked based on OD, and within each OD decile, we sort options
(stocks) again into decile portfolios based on CallMoney. And we also conduct the
reverse sort by sorting on OD after controlling CallMoney. Table 3.13 report the

double-sort results.
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Table 3.13: Portfolios double sorted on C'all Money and option demand

In each month, all OTM call options (stocks) are double sorted in two ways. In one double sort,
options are first sorted into deciles based on option demand measure OD. Then within each decile,
options (stocks) are further sorted into ten equally weighted portfolios based on CallMoney (1
= Low CallMoney, 10 = High CallMoney). Panel A reports the average monthly returns for
portfolios thus obtained. The second double sort reverses the sort order, and the corresponding
results are reported in Panel B. The sample period is from January 1996 to December 2017. The
t-statistics are reported in parentheses. *, ** *** indicate significance at the 10%, 5% and 1% level.
All returns are expressed as percentages.

Panel A: Sorted by CallMoney controlling for OD | Panel B: Sorted by OD controlling for CallMoney
OTM call Stock OTM call Stock
1 (Low CallMoney)  0.401 0.817 1 (Low OD) -0.377 0.553
2 0.316 0.830 2 -0.164 0.737
3 0.228 0.787 3 -0.150 0.520
4 0.206 0.845 4 0.014 0.593
5 0.082 0.610 5 0.011 0.539
6 0.006 0.502 6 0.031 0.517
7 -0.025 0.454 7 0.117 0.541
8 -0.241 0.436 8 0.085 0.493
9 -0.367 0.298 9 0.104 0.457
10 (High CallMoney) -0.767 -0.089 10 (High OD) 0.157 0.571
10-1 -1.168%**  -0.906*** 10-1 0.533***  0.018
(-11.27) (-3.98) (6.83) (0.14)
10-1 FF4 Alpha -1.122%F% - _(.9627%** 10-1 FF4 Alpha 0.495%%*  0.077
(-11.84) (-5.84) (6.53) (0.68)

Panel A of Table 3.13 shows the option and stock decile portfolio returns sorted
by CallMoney after controlling for OD.When OD is controlled for in Panel A, the
return spread between decile 10 and decile 1 option portfolios (“10-1") is -1.168% per
month (¢-statistic -11.27). The magnitude is only slightly lower than the portfolio
return spread reported in Table 3.3. The spread between decile 10 and decile 1
stock portfolios (“10-17) is -0.906% per month (¢-statistic -3.98). Resutls in Panel
A suggest that option demand cannot explain CallMoney’s option (stock) return

predictability.

In Panel B, we sort options into deciles based on OD after controlling for C'all Money.
The spread between decile 10 and decile 1 portfolios (“10-17) is significantly positive at
0.533% per month. Cao and Han (2013) show that option demands negatively predict
delta-hedge option returns. After controlling C'allMoney the negative predictability
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of option demands flips to be a positive one. The spread and four-factor alpha

between “10-1”7 OD deciles for stock returns are both insignificant.

Table 3.13 shows that CallMoney’s option (stock) return predictability cannot be

explained by overpricing caused by option demands.’

3.5.3 Dot-Com Bubble

We show in Figure 3.1 that aggregate C'allMoney successfully captures the bubble
events in the market. In this section, we formally test the relation between C'all M oney
and the market bubble level. We focus on the bubble events in the Nasdaq index, as
the literature uses the aggregate market to book ratio of the Nasdaq index to capture
the overvaluation of the Nasdaq index and the Nasdaq bubble (e.g. the Dot-Com
bubble) (Péstor and Veronesi, 2006; Li and Xue, 2009). Following these studies, we
calculate the aggregate market to book ratio of the Nasdaq index (M/B), and test

the relation between M/B and CallMoney of the HiTech/non-HiTech firms.'°

Following Clark et al. (2018), we perform the following time-series OLS regressions

to examine the contemporaneous relation between C'allMoney and M/B:

CallMoney,; = Bo; + 1 M/ By + €,

where C'allMoney,; is the median CallMoney of HiTech firms or non-HiTech firms

9We conduct Fama-MacBeth regressions by regressing future option and stock returns on
orthogonalized C'all Money, OD and all control variables and we find orthogonalized CallMoney
still has a significantly negative coefficient. The orthogonalized CallM oney is the residual term
via regressions of Call Money on OD. We also conduct robustness check by considering put-call
trading volume ratio in Fama-MacBeth regressions, CallMoney’s negative return predictability
still robustly hold. These results can be obtained from authors upon request.

10We define non-HiTech firms as those firms that are not classified into the HiTech industry.
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in quarter ¢, and M /B, is the aggregate market to book ratio of the Nasdaq index
in quarter t. We also perform an alternative test to examine the relation between

change in CallMoney and change in M/B:

%oCallMoney;; = Yo + Y14 %0M/ By + €4,

where %CallMoney;; (%M/By) is the percentage change in CallMoney,,; (M/By)

from quarter t — 1 to quarter t.

We expect to observe significantly positive 8; and v, for HiTech firms if C'all Money
successfully captures HiTech investors’ optimism during the Nasdaq bubble. We are

also interested in whether the coefficients are significant for the non-HiTech firms.

Table 3.14 reports the coefficients on M/B; and %M /B; and the adjusted R? for
Model 1 (2), where the dependent variable is CallMoney,; (%CallMoney;;), and
the independent variable is M /B, (%M /B;).

Table 3.14: Nasdaq bubble and CallMoney

This table presents the OLS regression results, where the dependent variable is the gambling activity
measure for HiTech (Non-HiTech) firms in Panel A (B), and the independent variable is the Nasdaq
Index valuation proxy. In Model 1, the dependent variable is C'allM oneyy, the median C'allM oney
in quarter ¢, and the independent variable is M/B;, the aggregate market to book ratio of the
Nasdaq Index in quarter . In Model 2, the dependent variable is %Call M oney;, the percentage
change of CallMoney; from quarter ¢t — 1 to quarter ¢, and the independent variable is %M/ By,
the percentage change of M/B; from quarter ¢t — 1 to quarter ¢t. The sample period is from January
1996 to December 2017. The t-statistics are reported in parentheses. *, ** *** indicate significance
at the 10%, 5% and 1% level.

Panel A: HiTech firms Panel B: Non-HiTech firms
Model 1 Model 2 Model 1 Model 2

Bi/m 0.033%%  0.187%%F  0.002  0.058
t-stat (2.30)  (2.97) (0.18)  (1.24)
INTERCEPT  YES YES YES YES
Adjusted R? (%) 4.69 8.31 0.04 0.63

Panel A presents the results for the HiTech firms. The coefficient on M/B; is 0.033
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(t-stat=2.30) in Model 1, and the coefficient on %M /B; is 0.187 (t-stat=2.97) in
Model 2. The significantly positive coefficients in both models indicate that the
gambling activity in HiTech firms is more active when the Nasdaq index is more
overvalued. Panel B presents the results for the non-HiTech firms. The coefficients
in both models are insignificant. Collectively, these results imply that during the
Nasdaq bubble, the market participants gamble actively in the HiTech firms instead

of the non-HiTech firms.

3.6 Conclusion

We propose a new gamling activity measure, C'all Money, by jointly considering open
interest and moneyness of OTM call options. The time series of C'all Money captures
the excessive optimism during the previous financial bubbles. C'allMoney negatively
and robustly predicts cross-sectional delta-hedged call option returns and stock
returns, suggesting the overpricing of call options and stocks when gambling activity
is high. Empirical study shows that CallMoney generally outperforms existing

indirect gambling measures with respect to option (stock) return predictability.

This negative CallMoney return predictability is more pronounced when the stock
price is further far from its’ 52-week high, stock’s capital gain overhang is lower, and
when information uncertainty of stock is higher, further suggesting that C'allM oney

captures gambling activity in options market.
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Appendix A

Appendix to Chapter 2:

Mathematical Proof

Proof of Proposition 1: Proof of the uniqueness of decomposition in Eq.

(1)

We construct a volatility factor-mimicking portfolio V' and a jump risk-factor

mimicking portfolio J using a short-maturity straddle S1 and a long maturity

straddle S2:
V = (—(Gammags/Gammag)S1, S2);

J = (S1,—(Vegagi/Vegass)S2),
where straddle S1 (52) is composed of one unit of the call option ¢l (¢2) and
—Aua/Ap (—Aw/Ay2) units of the put option pl (p2). Therefore, V and J are
investable portfolios of cl, ¢2, p1 and p2. The construction can be expressed by a
4 x 2 matrix Y, where the first (second) column contains the composition of V' (.J),

and the first, second, third, and fourth row contain the units of cl, pl, ¢2 and p2
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respectively:
—Gammagy/Gammag, 1
Gammags/Gammagy X Aei /Ay —Aa /A
Y =
1 —Vegas1/Vegags
—Ac2/Ap2 Vegasl/Vega52 X ACQ/ApQ

We need to solve portfolio weights a and b in decomposition S1 = (aV,bJ). That is

to solve a and b from the following equation system:

1
a _Acl/Apl
Y x =
b 0
0

There are four equations but only two of them are linearly independent, therefore

the equation system has a unique solution for a and b:

Vegasi

Vegaga
a =
1 — Vegasi Gammagso
Vegags Gammag,
1
b=

Vegasy Gammags *
1 — Vegas: Gammass
Vegagso Gammagy
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Appendix B

Appendix to Chapter 3: Variable
Definitions and Davidson and

Duclos test

B.1 Variable definitions

This appendix provides definitions of the variables used in this paper.

Maximum daily return (M AX): Bali et al. (2011) show a negative relation between
the maximum daily return over the past month (M AX) and stock return in the future.
They argue that this is driven by investors’ preference for lottery-like assets. Byun and Kim
(2016) also document a negative relation between M AX and option returns. Following

their studies, we calculate M AX as the maximum daily return within month t.

Idiosyncratic volatility (IVOL): We estimate idiosyncratic volatility (IVOL) following
Ang et al. (2006). We run time-series regressions of excess stock returns on the Fama and
French (1973) three-factors (market, SMB and HML factors) using daily stock returns in

each quarter, and obtain the residuals from the model. We calculate IV OL for each stock
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as the standard deviation of the residuals in the last quarter.

Idiosyncratic skewness (ISKEW): Previous studies regard stocks with high idiosyncratic
skewness (ISKEW) as lottery-like (Barberis and Huang, 2008; Kumar, 2009b; Mitton
and Vorkink, 2007). Mitton and Vorkink (2007) document a negative relation between
ISKEW and stock return; Byun and Kim (2016) document a negative relation between
ISKEW and option return. Following Byun and Kim (2016), we calculate ISK EW using

daily returns over last quarter and fit the following equation:

Rig— Rya= i+ Bi(Rma— Rsa) +vi(Rmd— Rpa)? + €ia,

where R; 4, Ry, g and Ry 4 are the day d returns on stock 4, the market portfolio, and the

risk-free rate respectively. ISKEW is the skewness of daily residuals ¢; 4.

Option Skewness (OSKEW): Boyer and Vorkink (2014) construct the ex-ante skewness
of option returns (OSKEW), and find a negative relation between OSKEW and future
option returns. This suggests that investors not only overprice lottery-like stocks, but
also overprice lottery-like options. We construct ex-ante skewness measure for the option
returns following Boyer and Vorkink (2014). Consider a call option written on stock ¢ with

the strike price K and time to maturity 7 in years:

Z(piy o5, M, 7) = 3Y (g, 04y M, 7) X (115, 04, M, 7) + 2X (i, 04, M, 7)3

OSKEW = )
(Y (i, 0, M, 7) — X (pi, 04, M, 7)2)3/2

where M = K/S;, p; and o; are the stock log return and volatility respectively. We estimate

w; and o; using daily stock returns during the quarter prior to the portfolio formation date.
Expressions for X (u;, 04, M, 7), Y (i, 04, M, 7), and X (u;, 05, M, T) are given as follows:

o2
X(,ui, o;, M, 7') = emp[(,ui + i)T]N(dl) — MN(dg)

2
2
Y (ni, 04, M,7) = exp|(2p; + 207)7]N (d3) — 2M exp[(p; + %)T]N(dl) + M?N(dy)

Z (i, 05, M, 7) = exp[(3p; + gaf)T]N(d@ — 3Mexp|(2p; + 202-2)7]N(d3)
2

+ 8Meap|(u; + )7IN(dy) — MPN(d),
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where

di(pi, 04, M, 7) = (—InM + (p; + 0'22'2)7)/01,\5
do (i, 0, M, 7) = dy (5, 04, M, T) — 04\/T
ds(pi, 03, M, 7) = di (s, 03, M, 7) + 03/7
da(pi, 00, M, 7) = d (i, 04, M, 7) + 203/7.

N(x) denotes the probability that a variable with a standard normal distribution will be

less than z.

Short-term reversal (REV): Following Jegadeesh (1990), the reversal for each stock is

defined as the return in month ¢.

Momentum (MOM): Following Jegadeesh (1990), we caculate the momentum variable
for each stock in month ¢ as the cumulative return on the stock over the previous 11 months

starting from month ¢ — 11 to month ¢ — 1.

Firm size (SIZE): We calculate firm’s size as the firm’s market capitalization at the
end of month ¢ (stock price multiplied by the number of shares outstanding). We take

logarithm of firm’s size, log(SIZFE), and use it in our regressions.

Beta (BETA): We estimate firm’s beta as the slope coefficient from the time-series
regressions of excess stock returns on the excess market returns using three years of
monthly stock returns including month ¢. We require a minimum of 12 non-missing

monthly observations.

Book-to-market ratio (BT M): We calculate firm’s book-to-market ratio as the ratio
of book value of common equity to the market capitalization of the equity at the end of

the last quarter.

Turnover (TURNOV ER): We compute the monthly turnover of each stock by averaging
daily turnover within month ¢. Daily turnover is calculated as the ratio of the number of

shares traded to the number of shares outstanding (Bali et al., 2016).

Miquidity (ILLIQUIDITY): Following Amihud (2002), we calculate the stock illiquidity

in month ¢ as the ratio of the absolute monthly stock return to its dollar trading volume.

Change in call implied volatility (CIV): Following An et al. (2014), we calculate call

146



ESSAYS OF ASSET PRICING Bei Chen

implied volatility change as the difference between short-term ATM calls’ average implied
volatilities over month ¢t and month ¢t — 1. ATM calls have moneyness ranging from 0.975

to 1.025 and maturity between 10 to 60 days.

Change in put implied volatility (PIV'): Following An et al. (2014), we calculate put
implied volatility change as the difference between short-term ATM puts’ average implied
volatilities over month ¢t and month ¢t — 1. ATM puts have moneyness ranging from 0.975

to 1.025 and maturity between 10 to 60 days.

Variance risk premium (VRP): We estimate variance risk premium (VRP) as the
difference between ATM calls’ and puts’ implied volatilities IV and monthly stock volatility.
We use 30-day realized volatility in month ¢ as a proxy for monthly stock volatility following

Cao and Han (2013).

Volatility-of-volatility (VOV): We calculate volatility of volatility (VOV') following
Baltussen et al. (2018). We first calculate the average of ATM calls’ and puts’ implied
volatilities (/V) with moneyness ranging from 0.975 to 1.025 and maturity between 7 to
40 days on each day. We then calculate the standard deviation of the implied volatilities

within month ¢, and scale it by the average implied volatility over the month ¢.

Option bid-ask spread (PBA): Following Cao and Han (2013), we calculate option
bid-ask spread as the ratio of bid-ask spread of option quotes over the midpoint of bid and
ask quotes at the end of month ¢.

Analysts’ coverage (ANALY STS): We measure analyst coverage (ANALY STS) as

the number of analysts following the firm in month ¢.

Analysts forecast dispersion (DISP): We calculate forecast dispersion (DISP) as the

standard deviation of analysts forecasts scaled by the mean analysts’ forecast in month ¢.

B.2 Davidson and Duclos (2000) test

This Appendix provides the construction of Davidson and Duclos (2000) non-parametric

second stochastic dominance (DD) statistics.

Let y and z be two risky assets, both with N observations, with common support of [a, b],
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and with the corresponding cumulative distribution functions to be F, and F, respectively.

Let D}(x) = [ Fi(s)ds, for i =y, z.

y is said to dominate z stochastically at second-order if DZ(z;) < DZ(x;) for all 4, with
strictly significant inequality for some i. The DD statistic to test the null hypothesis of
the equality of D7 (x;) = D2 () is:

T(x) =~ —,
V2 (x)
where
V3 (z) =V} (2) + V2 (z) — 2V, (2)
) 1<
DZ(x) - N Z(ﬂf —Yi)+
i=1
) 1 &
Di(w) N Z(l‘ — %)+
i=1
2 11 2702
V@) = 55 2@~ v)t — Dj@)”

To test for stochastic dominance, we select a pre-designed finite number of x following Fong
et al. (2005). We first partition the data equally into 10 major grids. Then we partition
each major grid into 10 equal sub-intervals. For the obtained fixed values of z1, x2, ..., Tm
and their corresponding statistics T'(x;) for ¢ = 1,2, ..., m, the following hypotheses are

investigated:

Hy : D} (x;) = D2(x;) for all i;
Hp : DZ(x;) # DZ(x;) for some i;
Hpy : D2(x;) > D2(x;) for all 4 D2 (x;) > D2(;) for some i;

H o : D2(x;) < D2(x;) for all 4; D (x;) < D2(;) for some i;

For risk averters, the null hypothesis is rejected in favor of the alternative hypothesis that y
(low CallMoney group) dominates z (high CallMoney group) if none of the DD statistics

is significantly positive and at least some of the DD statistics are significantly negative.
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Statistical inference is based on the student maximum modulus (SMM) distribution for

K = 10 and infinite degrees of freedom. The 5% asymptotic critical value of the SMM
distribution is 3.254 from Stoline and Ury (1979).
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