
 

CONTEXT-DEPENDENCY IN VALUATION 
 

Agnieszka Tymula1, Hilke Plassmann2,3 

1. School of Economics, The University of Sydney 

2. Marketing Area, INSEAD, France 

3. Cognitive Neuroscience Laboratory, INSERM, France 

 
 

This is the accepted version of a manuscript that has been uploaded to this 

institutional repository to meet ARC funding requirements to make this 

research open access.  

The final version of this manuscript can be found at the journal 

website here: https://doi.org/10.1016/j.conb.2016.06.015 

 

Please cite this article as below: 
Tymula, A. & Plassman, H. (2016). Context-dependency in 
valuation. Current Opinion in Neurobiology, 40, 59-65. 
https://doi.org/10.1016/j.conb.2016.06.015 

https://doi.org/10.1016/j.conb.2016.06.015
https://doi.org/10.1016/j.conb.2016.06.015


Context-dependency in valuation 

   

Agnieszka Tymula1 and Hilke Plassmann2,3  

 

In the last few years, work in the nascent field of neuroeconomics has advanced understanding of 

the brain systems involved in value-based decision making. An important modulator of valuation 

processes is the specific context a decision maker is facing during choice. Recently, 

neuroeconomics has made great progress in understanding, on both the brain and behavioral 

level, how context-dependent perception affects valuation and choice. Here we describe how 

context-sensitive value coding accounts for choice set effects, differential perceptions of gains and 

losses, and expectancy effects of external (economic) signals. 
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Introduction  

 

It is not new to neurobiologists that an individual’s reaction to stimuli depends on the context in 

which they are presented. For example, it has been long known and understood how our 

perception of image brightness depends on how bright other images in our field of vision are and 
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how bright the images we saw previously were. However, until recently, these ideas have not been 

applied to the neurobiology of valuation, and standard economic theories suggest that valuation 

should be independent of context. We review here how efforts in decision neuroscience can bridge 

the gap between theories in economics, psychology and neurobiology. 

 

Neurobiological basis of choice set effects  

 

When considering which alternative to pick from a choice set (e.g. what to pick from a menu in a 

cafeteria), individuals’ valuation of available options is affected by what other alternatives are 

offered. Marketers long ago realized that they can affect the relative desirability of products by 

offering additional, irrelevant products that they do not expect to sell. These products, called 

decoys, should make one of the selling products look better on more dimensions (e.g. taste, price, 

size) than the other selling product by increasing its perceived attractiveness [1–4]. Economists 

call decoys irrelevant alternatives, and most decision-making models assume that valuation obeys 

the independence of irrelevant alternatives (IIA) axiom.1 This runs counter to empirical evidence 

that the number of alternatives offered affects choice. When selecting from more alternatives, 

people make worse decisions [5], are more disappointed with their choice [6], and even avoid 

choice [6–10]. This is surprising, because free choice is usually perceived as desirable. Moreover, 

people should prefer choosing from bigger choice sets that are more likely to contain preferred 

alternatives. Nevertheless, when information is costly to encode and process, large choice sets 

eventually become a liability. 

 
1The IIA axiom holds that if an individual prefers apples to bananas when considering the choice set {apple, banana}, 
then he or she also prefers apples to bananas in any other choice set (e.g. {apple, banana, carrot}). Alternatively, one 
can say that the relative probability of choosing apple to the probability of choosing banana should be the same 
independent of whether a carrot is available or not [67,68]. 
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In the 1960s Barlow [11] hypothesized that an organism with limited capacity (a limited number 

of neurons with limited firing range) would not perceive stimuli objectively but instead should 

adapt perception to the “statistics” of the environment. Wainwright and colleagues [12] showed 

that a form of such adaptation, divisive normalization [13] (Box 1), maximizes information about 

the relative values of stimuli [14]. Divisive normalization has been found in various sensory 

systems [15–18]. Louie and colleagues [19] found that neurons in value-coding brain regions 

follow divisive normalization as well. This naturally implies that valuation is not independent of 

irrelevant alternatives. To give an example, when choosing between lunch options in a cafeteria 

the neural signature of the value of lasagna depends on what other food options are available (as 

explained in the box below).  

 

Box 1. Divisive normalization model  

Firing rate corresponding to reward i is given by: 

𝑆𝑉𝑖(𝐯) = 𝑟𝑚𝑎𝑥

𝑣𝑖
𝛼 + 𝛽

𝜎𝛼 + ∑ 𝑣𝑗
𝛼

𝑗
+ ε𝑓 + ε𝑆 

where v = [v1, v2, … vn] is the vector of all inputs (rewards in the choice set), 𝜎 is the experience-

based expectation, 𝛽 is the baseline firing rate, and rmax controls the maximum response rate; 𝛼 

exponentiates all the inputs. ε𝑓~𝑁(0, 𝜎𝑓𝑖𝑥𝑒𝑑
2 ) is a fixed noise term and ε𝑠~𝑁(0, 𝑆𝜇) is mean-scaled 

noise where S controls how the variance scales with the mean μ. Intuitively, the denominator 

decorrelates the informational signal of each neuron by removing information common to all 

inputs (∑ 𝑣𝑗
𝛼

𝑗 ). See [20] for a recent review.  
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In the divisive normalization equation (Box 1), the valuation (i.e., firing rate) of each option in the 

choice set is divided by the same number (𝜎𝛼 + ∑ 𝑣𝑗
𝛼

𝑗 ). Hence, the relative ranking of any two 

alternatives is preserved in any choice set. However, as the denominator increases (because the 

value or number of other alternatives increases), firing rates decrease2 and discriminability 

between options declines. Figure 1 plots a hypothetical distribution of firing rates for two high-

value alternatives (solid and dashed black lines) and low-value irrelevant alternatives 

(distractors) (gray lines). As the number (A) and value (B) of distractors increase, the firing rate 

distributions of high-value options overlap more, discriminability is reduced, and the chooser 

picks second-best more often. Thus, context-dependent valuation can explain why and predict 

when irrelevant alternatives affect choice [21,22].  

 

 

Figure 1. Hypothetical distributions of neural activity representing the values of two high-value 
options (solid and dashed black lines) in the absence or presence of A: different numbers of low-

value distractors and B: different distractor values (gray lines). Adapted from [21,22]. 

 
2 A prediction observed in the neural data [69,70]. 
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Neurobiological basis of gain-loss asymmetry  

 

Context-dependent valuation can also explain observed asymmetries in valuation of gains and 

losses [20,23,24]. Kahneman and Tversky in hundreds of studies observed that people tend to 

avoid risks when betting on monetary gains and take risks when betting on losing money. 

Consider two decision problems from their seminal paper [25]: 

 

Problem 1: You have been given $1,000. You are now asked to choose between (a) a gamble with a 

50% chance of winning an additional $1,000 and a 50% chance of winning nothing, or (b) winning 

an additional $500 with certainty. 

 

Problem 2: You have been given $2,000. You are now asked to choose between (a) a gamble with a 

50% chance of losing $1,000 and a 50% chance of losing nothing, or (b) losing $500 with certainty. 

 

These problems are equivalent in terms of distributions over the final wealth states. Nevertheless, 

the majority of subjects chose the sure option in Problem 1 and the risky lottery in Problem 2. 

Kahneman and Tversky hypothesized that people behave in this way because they value rewards 

relative to a reference point (rather than in absolute terms), and sensitivity to rewards diminishes 

away from the reference point [25]. Value function in their model is thus S-shaped: concave 

(convex) over gains (losses) relative to the reference point (see Figure 2A).  

 

 

 

Acc
ep

ted
 M

an
us

cri
pt



 

Figure 2 A: The original value function in prospect theory reprinted from [25]. B: Subjective value 
functions (above) corresponding to assumed prior probability distributions over rewards (below) 

centered at different reference points: $1,000 (black) and $2,000 (gray). Black (gray) curves 
represent lower (higher) reference point. Adapted from [20,23]. 

 

While Kahneman and Tversky proposed the S-shaped value function well before any neural 

evidence on subjective value coding was available, it is well aligned with recent developments in 

neuroeconomics. Given a fixed neural activity budget, an efficient neural representation of 

subjective value should aim to increase discriminability between the most likely inputs. Therefore, 

it should align the steepest region of the subjective value function with the most likely input 

values. In the language of neuroeconomics, subjective value function should be the steepest 

around the reward expectation (see figure 2B) [23]. In the normalization model, this is achieved 

by modulation in 𝜎, the expected reward value, which aligns the subjective value function with the 

distribution of expected rewards [20]. Sensory systems construct the distribution of expected 
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stimuli by tracking experienced stimuli statistics [26–28]. In valuation this is a more complex 

process (reviewed in Neural systems underlying expectancy effects section).  

 

The diminishing sensitivity from the reference point, a descriptive property of the subjective value 

function [25], is essentially equivalent to the normative property of making the subjective value 

function the steepest around the expectation for better discriminability. The consequence of an S-

shaped value function is risk aversion over gains and risk seeking over losses. Although 

counterintuitive, seemingly contradictory choices in Problems 1 and 2 above can be explained by 

context-dependent value coding. Kahneman and Tversky suggested that the reference point 

against which outcomes are evaluated is $1,000 in Problem 1 and $2,000 in Problem 2 [25].  

 

In the language of context-dependent coding in neuroeconomics, perception is optimally adapted 

to different distributions of expected rewards. In Problem 1, the probability distribution is 

centered around $1,000 (black lines in Figure 2B); in Problem 2 it is centered around $2,000 (gray 

lines in Figure 2B). It is then straightforward to see from Figure 2B that individuals prefer the sure 

option in Problem 1 (SV1(safe)>SV1(lottery)) and the lottery in Problem 2 

(SV2(lottery)>SV2(safe)). Hence, the consequence of context-dependent value coding is risk 

aversion over perceived gains and risk seeking over perceived losses, with rewards classified as 

gains or losses relative to a reference point. By changing the reference point, we can alter choice.3 

 

 

 

 
3 People tend to show greater sensitivity to losses than to gains of equivalent size, a property labeled loss aversion 
[25]. For neural signatures of loss aversion, see for example [71].  

Acc
ep

ted
 M

an
us

cri
pt



Neural systems underlying expectancy effects  

 

Expectations play an important role in the formation of reference points [29] and thus are central 

to context-dependent valuation. Expectations are beliefs and predictions about future feelings, 

events, or outcomes of decisions. They are linked to learning and conditioning [30] and the 

context-dependent meaning of the option for choice [31,32]. They can be influenced by external 

(economic) cues that generate quality expectations, such as the price of the good [33,34] and the 

information on the packaging etc. [35–37]. Such cognitive psychological concepts and learned 

values lead to expectations that, in turn, influence valuation of goods and services even when the 

physical properties of consumed goods are kept constant [38–40].  

 

They can also change subsequent behavior. For example, hotel room attendants whose daily work 

was framed as physical exercise (a) perceived themselves to be getting significantly more exercise 

than before and (b) showed a decrease in blood pressure, body fat, waist-to-hip ratio, and body 

mass index relative to a control group [41]. These findings suggest that expectations can create 

“self-fulfilling prophecies” and trigger psychological processes potentially going beyond mere 

rational expectations about the likelihood of decision outcomes and the setting of reference 

points.  

 

Understanding the brain processes underlying expectations, value, and learning is critical to 

understanding why expectations have such a powerful influence on valuation. A few studies have 

investigated whether expectations alter valuation of positive experiences (see for a review [40]). 

In one study [42], activity in the mOFC/vmPFC in response to the consumption of wine depended 
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on quality beliefs about its price. Consuming identical wines with high versus low price tags 

correlated with changes in neural activity in the mOFC/vmPFC, which has been considered a 

“secondary taste cortex” and responds to value-related signals and conceptual processes outside 

the gustatory realm [43,44]. 

 

These findings parallel the wealth of research on placebo hypoanalgesic effects (see for recent 

reviews [45,46]). Studies in this area have shown placebo hypoanalgesic effects on (a) physiologic 

and autonomic responses such as skin conductance and pupil diameter (e.g. [47]), (b) a range of 

neuroendocrine responses such as serotonin and cortisol (e.g. [48]) and gut-level hormones such 

as ghrelin [49], and (c) distributed neural patterns of pain processing that are both sensitive and 

specific to pain (e.g. [50]). Neuroimaging studies on placebo hypoanalgesic effects have 

contributed substantially to the understanding of the underlying neural systems involved in pain 

placebo effects. They found that pain placebos do not only decrease neural activity on pain 

pathways in the brain (shown in blue in Figure 3), but also alter autonomic nociceptive responses 

in the spinal cord [46,51,52].  

 

If we apply context-dependent coding to these findings, an intuitive prediction would be that pain 

hypoanalgesic expectations change the reference point and hence the distribution of neuronal 

firing in the neurologic pain signature. A related idea has been suggested recently by Buechel et al. 

[46], who proposed a Bayesian model where the autonomic and the central pain systems resemble 

a recurrent system allowing for the implementation of predictive coding. Their framework 

suggests that the brain is actively making inferences based on prior experiences that account for 

parts of the placebo response [46].  
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Interestingly, existing models built around the idea that valuation depends on expectations 

[24,29,46,53] need to be extended to account for an interesting finding in the psychology 

literature suggesting that learning and updating between expectations and actually experienced 

value take place only to a limited degree. In other words, these models suggest that with 

repeated experience expectancy effects would attenuate through the computation of prediction 

errors and associated learning processes, but none of the pain placebo studies has reported such 

findings to date [45]. Strikingly, even if participants are told that they are receiving a placebo pill, 

they still exhibit a placebo hypoanalgesic response [54], and in some studies the magnitude of 

placebo effects increased over time [55,56]. This could be partly due to the fact that beyond 

bottom-up pain processes, affective, motivational, and self-regulatory responses were also found 

to mediate pain placebos [45,46] (areas showing increasing activity, illustrated in red in figure 3). 

That means that, in addition to relying mainly on expectations as informational signals, a model 

that would fully capture expectancy effects also needs to incorporate expectations as motivational 

signals. Such a motivational component has been demonstrated in analgesia studies, for example 

by volunteers “wanting” to terminate pain that contributed significantly to placebo hypoanalgesia 

[45,56–60]. Thus, placebo could become self-reinforcing.  
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Figure 3: Brain systems involved and their potential functions in pain placebo analgesia (source 
[21]). Areas shown in blue show reduced responses to pain after placebo treatment. These are the 
medial thalamus (mThal), anterior insula (aINS), dorsal anterior cingulate cortex (dACC), 
periaqueductal grey (PAG) and secondary somatosensory cortex–dorsal posterior insula (S2–
dpINS). Areas shown in red are associated with increased activity to placebo treatment. These are 
the ventromedial prefrontal cortex (vmPFC), dorsolateral PFC (dlPFC), lateral orbitofrontal cortex 
(lOFC), nucleus accumbens–ventral striatum (NAc–VS), PAG and rostroventral medulla (RVM).  

 

Last, it is important to note that placebo responses also have limitations. The predictive coding 

model from Buechel et al. [46] suggests that if expectations and actual experience are distributed 

too far apart in their subjective pain perception, then the usual assimilation effects confirming the 

expectation will turn and result in contrast effects [46]. This idea was empirically tested by Gneezy 

et al. [61], who showed that a higher-priced “bad” wine is liked less than the identical wine with a 

lower price tag. Interestingly, placebo effects might be a uniquely human primate process: studies 

in capuchin monkeys could not show evidence for placebo effects of price, although the same lab 
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showed that they exhibit a range of other context-dependent valuation processes similar to those 

of human primates [62,63]. 

 

Conclusions  

 

The goal of neuroeconomics has always been to explain and predict behaviors that traditional 

economics and psychology models cannot account for. Many behavioral phenomena that were 

previously unexplained and labeled as “irrational“ errors because they are against axioms of 

normative rational choice theories in economics (in a sense that they lower individual’s payoff 

from a single decision in all possible circumstances) have now been successfully explained on the 

level of the nervous system. Neuroeconomists no longer label these behaviors as irrational and 

instead interpret them as efficient responses of a system that makes a series of decisions and has 

limited neural resources available for valuation and choice. It is noteworthy that not only 

functional properties of neurons and systems of neurons (as reviewed above in Neurobiological 

basis of choice set effects) but also structural properties of the brain seem to be related to 

individual choices [64,65] and individual sensitivity to context [66]. The ongoing challenge is to 

understand exactly how reference points, central to virtually all modern theories of choice but 

nonetheless not yet fully specified, are formed on the neural level and then to incorporate this 

knowledge into theoretical choice models.  
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