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Abstract

Machine learning models increase their representational power by increasing the number
of parameters in the model. The number of parameters in the model can be increased by
introducing hidden nodes, higher-order interaction effects or by introducing new features
into the model. In this thesis we study different approaches to increase the representational
power in unsupervised machine learning models. We investigate the use of incidence algebra
and information geometry to develop novel machine learning models to include higher-order
interactions effects into the model. Incidence algebra provides a natural formulation for
combinatorics by expressing it as a generative function and information geometry provides
many theoretical guarantees in the model by projecting the problem onto a dually flat
Riemannian structure for optimization. Combining the two techniques together formulates
the information geometric formulation of the binary log-linear model. In this thesis we
provide the following contributions: (1) we use the information geometric formulation of the
binary log-linear model to formulate the higher-order Boltzmann machine (HBM) to compare
the different behaviours when using hidden nodes and higher-order feature interactions to
increase the representational power of the model. (2) We then apply the concepts learnt from
this study to include higher-order interaction terms in Blind Source Separation (BSS) and (3)
we create an efficient approach to estimate higher order functions in Poisson process. (4) We
explore the possibility to use Bayesian non-parametrics to automatically reduce the number
of higher-order interactions effects included in the model.
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CHAPTER 1

Introduction

We introduce our thesis by first providing a motivation for our work. We then provide a
brief overview of the contributions of this thesis. Lastly, we provide a brief outline of the
organization of the remaining Chapters of the thesis.

1.1 Motivation

The representational power in a machine learning model describes the ability for a model to
make the correct prediction. Additional parameters introduced models to increase its repre-
sentational power. This can be done by either adding hidden nodes, introducing interaction
effects between variables or adding more features to the model. However, selecting the ideal
number of parameters in the model to minimize error in the model is still a difficult task.
If there are too few parameters in the model, then the model will underfit and produce a
biased prediction because it is unable to express the relations between features and the target
outputs. If there are too many parameters, the model will overfit and produce a prediction
with high variance because using a large number of parameters makes it sensitive to random
noise. The balance between underfitting and overfitting is a classical problem in machine
learning known as the bias-variance trade-off which is one of the fundamental challenges to
reduce error in a machine learning model.

In this thesis, we investigate the inclusion of higher-order interaction effects in unsu-
pervised learning models by using incidence algebra and information geometry. Incidence
algebra provides a mathematical expression to write combinatorics as a generative function.
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The interaction effects in machine learning models can be represented using a combinatoric
function. Information geometry provides a geometric perspective to information theory
which allows for efficient optimization techniques. Optimization in Information geometry
is performed by projecting the graph structure onto a dually flat Riemannian manifold so
that the discrete graph structure is represented as two continuous smooth convex functions.
This projection onto a smooth manifold allows for efficient continuous optimization tech-
niques such as gradient descent and natural gradient on a discrete structure. In this thesis
we first study the difference between increasing the representation power of unsupervised
models using hidden nodes and higher-order interactions effects. We then apply our tech-
nique of including higher-order feature interactions in blind source separation (BSS) and
estimating higher-order functions in Poisson processes. Lastly, we explore using Bayesian
non-parametrics to automatically select number of higher-order interactions effects included
in the model.

1.2 Contributions

This section provides an overview of the contributions of this thesis.

1.2.1 Learning Higher-Order Interaction Effects

Chapter 3 investigates using incidence algebra to include higher-order interaction between
features and parameters in the model. Incidence algebra can be used to formulate higher-order
interaction effects as a generative function. The generative function provides a convenient
framework to mathematically represent the higher-order interaction terms between features.
We demonstrate the effectiveness of the formulation to include higher-order feature interaction
effects by applying it to the Boltzmann machine. We then explore the use of continuous
optimization algorithms for discrete structures using techniques in information geometry.
Information geometry projects the discrete graph structure onto a dually flat Riemmanian
manifold to use efficient optimization techniques such as gradient descent and natural gradient
descent. Our formulation of the Boltzmann machine can be used as a base model to include
higher-order interactions effects or to estimate high-dimensional functions as presented in
Chapter 4 and Chapter 5.

1.2.2 Hidden Nodes vs Higher-Order Interactions Effects

The number of parameters in the model can be increased by either introducing hidden
nodes or higher-order interaction effects. To this date, there has not been a study which



1.2 Contributions 3

compares the behaviour of the two approaches. Chapter 3 first uses incidence algebra and
information geometry to formulate the higher-order Boltzmann machine (HBM). We then
perform an empirical experiment to study the behaviour of increasing the representation
power of unsupervised learning models using higher-order feature interactions and hidden
nodes by comparing the error in the model.

1.2.3 Higher-Order Interactions in Unsupervised Learning

Chapter 4 extends the information geometry formulation of the binary log-linear model to
include higher-order interactions between source signals in blind source separation (BSS).
The traditional approach to BSS uses techniques such as independent component analysis
(ICA) or non-negative matrix factorization (NMF). Each of these approaches have their own
limitations. ICA assumes that the transformation from the source signal to the received signal
is an affine transformation. However, in practice, the mixing of the signal is much more
complicated than an affine transformation. Another approach is to use NMF to separate the
mixed signal into the latent source signal. However, the NMF is a degenerate approach and
loses information in its reconstruction. Chapter 4 introduces a novel approach that is able to
capture complex interactions in BSS by considering the higher-order interactions between
signals without the loss of information.

1.2.4 Estimating Higher-Order Functions

Chapter 5 extends the information geometry formulation of the binary log-linear model
introduced in Chapter 4 to estimate high-dimensional intensity function using the Poisson
process respectively. In a multivariate Poisson process, it is difficult to estimate the intensity
function of events with sparse observations or low event rate. Learning the intensity function
directly from the observations is difficult because there are often too few joint samples or
no samples to learn the joint intensity function. We propose a novel approach to estimate
higher-order intensity function between stochastic processes by using lower dimensional
projections of the intensity function.

1.2.5 Selecting Higher-Order Model-Parameters

Selecting the number of parameters in a model is challenging in any real-world applications
where there are problems arising from data quality issues such as sparsity, noisy labels,
missing data and sampling bias. A naive implementation of a Bayesian non-parametric
approach will find it challenging to select the number of parameters in the model. Often for
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these problems the parameters of the model are selected in consultation with domain experts.
However, for a complex problem it may be difficult for the domain experts to provide the
guidance to select parameters for the model because there are too many factors to consider.
Chapter 6 investigates designing machine learning models to automatically learn the number
of parameters in a model by using multi-task learning solution. The multi-task learning is
performed by using a Bayesian non-parametric approach to create a model for agglomerative
hierarchical clustering to learn the model parameters. The hierarchical cluster provides an
framework which is able to automatically select the higher-order interaction effect terms to
be included in the model.

1.3 Thesis Outline

The remainder of this thesis contains a background chapter, four contributing chapters
followed by the conclusion. A brief outline of each chapter is given below.

Chapter 2 presents the background knowledge to understand the theoretical contribution
in the four contributing chapters. The background chapter is written with the assumption that
the reader has a university graduate level of understanding in machine learning, statistics,
mathematics and computer science. The background chapter provides an introduction to the
concepts used in information geometry and incidence algebra and its relation to a partially
ordered set (poset) to make high-dimensional approximations.

The four contributing chapters are from Chapter 3 to Chapter 6 which follow the same
basic structure, first an introduction which contains the motivation and related work, the
methodology, then followed by the experimental results and the summary of the chapter.
Chapter 3 investigates how to include higher-order features interactions into the Boltzmann
machines by using incidence algebra and information geometry to formulate our proposed
approach called the Higher-Order Boltzmann machine (HBM). We then apply our proposed
approach to study the behaviour of the model when increasing the representation power of
models using higher-order nodes and hidden nodes by comparing the HBM with the restricted
Boltzmann machine (RBM). In the following chapters the HBM can be generalized as a
log-linear model to formulate other machine learning models.

In the next two chapters, we demonstrate the capability of including higher-order interac-
tions in other unsupervised learning models. We demonstrate the capability of the model
to include higher-order interactions effects in Chapter 4 by applying the log-linear model
to perform blind source separation (BSS) on signals with higher-order interactions effects
in the mixed signal. We then demonstrate the capability of the model to approximate high-
dimensional functions in Chapter 5 by formulating the Poisson process to learn the intensity
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function of the higher-order interactions between stochastic processes. Both applications
to BSS and Poisson processes have shown superior performance by including higher-order
features in the model.

Finally, Chapter 6 explores using a Bayesian non-parametric approach for model se-
lection by providing a framework for parameter selection by using techniques in transfer
learning. It does this by using a hierarchy of Dirichlet process priors to formulate a model
for agglomerative hierarchical clustering to learn a common latent distribution between
datasets. The latent distribution is then used as a prior for the model to quantify uncertainty
of the unknown parameters in the model. We demonstrate the superiority of our approach by
applying our proposed approach to a real-world application to make predictions on critical
component failure in large infrastructure networks.

This thesis is then closed in Chapter 7 with a review of the contributions and potential
future research directions for applying incidence algebra and information geometry in
machine learning.





CHAPTER 2

Background

In this chapter, we present the preliminary material for this thesis. We first define how we
can increase the representational power in unsupervised learning. Then we introduce the
background on the information geometric formulation of the exponential family, this is then
followed by an introduction on incidence algebra to formulate higher-order interaction effects
as a generative function and finally we introduce the log-linear model on a partial ordered set
(poset).

2.1 Models for Unsupervised Learning

Unsupervised learning aims to find previously undetected patterns in a dataset without any
pre-existing labels. Typically in unsupervised learning intends to infer an a priori probability
distribution pX(x), where x = [x1, . . . ,xN ]. A large majority of the approaches assume
independence between the features in x to simplify the inference algorithm which limits the
representational power of the model. A model is able to increase its representational power
by including the interaction terms which is usually represented by a multiplicative product
between two or more of the features. An example of this by using additive models is,

log p(x) = ∑
i

θ
(i)x(i)+∑

i< j
θ
(i j)x(i)x( j)+ ∑

i< j<k
θ
(i jk)x(i)x( j)x(k)

+ . . .+θ
(1...n)x(1)x(2) . . .x(n)−ψ,

(2.1)
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where θ = (θ (1), . . . ,θ (12...n)) is the parameter vector, ψ is the normalizer and η =

(η(1), . . . ,η(12...n)) represents the expectation of variable combinations such that,

η
(i) = E

[
x(i)
]
= p

(
x(i) = 1

)

η
(i j) = E

[
x(i)x( j)

]
= p

(
x(i) = x( j) = 1

)

...

η
(12...n) = E

[
x(1)x(2) . . .x(n)

]
= p

(
x(1) = x(2) = . . .= x(n) = 1

)

(2.2)

We are able to increase the representational power of the model by introducing more pa-
rameters into the model by using the multiplicative product to represent the higher-order
interaction effects [25]. Our four contributing chapter explores increasing the representational
power of unsupervised learning using Equation (2.1) and Equation (2.2). Chapter 3 formu-
lates our proposed approach using information geometry to increase the representational
power in the Boltzmann Machine. We then compare our approach to increasing the represen-
tational power by using hidden nodes. We then explore how we can use our formulation to
include higher-order terms in blind source separation (BSS) in Chapter 4. Chapter 5 shows
how higher-order terms can be used to approximate high dimensional functions in Poisson
processes. Finally 6 explored how we could use Bayesian non-parametric techniques to
automatically select the terms to include into the model.

We will first introduce the unsupervised learning models studied in this thesis. Then we
will explore solutions found in information geometry to project the unsupervised learning
problem onto a statistical manifolds. By using the information geometric projection is able
advantage of many of theoretical guarantees found in the literature of information geometry.
In the next section we will introduce how the exponential family can be represented from an
information geometry perspective.

2.1.1 Boltzmann Machine

A Boltzmann Machine [1] is represented using an undirected graph G = (V,E) with a vertex
set V = {v1,v2, . . . ,vn,h1,h2, . . . ,hm} and an edge set E ⊆

{{
xi,x j

}
| xi,x j ∈V

}
. Each vertex

can be either “visible” or “hidden”, where the visible node represents a direct observation
from the dataset and the hidden node represents latent features detected in the model. The state
of each vertex is represented by x = (x1,x2, . . . ,xn+m) ∈ {0,1}n+m, which is a concatenation
of v ∈ {0,1}n and h ∈ {0,1}m. The generalized expression for the energy of the joint
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configuration (v,h) of the network is defined by:

Φ(x;b,w) =−
n+m

∑
i=1

xibi−
n+m

∑
i, j=1

xix jwi, j, (2.3)

where the parameters b = (b1,b2, . . . ,bn+m) are the biases and w =

(w1,2,w1,3, . . . ,wn+m−1,n+m) are the weights which are placed on the vertices and
the edges respectively. If {i, j} /∈ E then wi, j = 0 can be used to represent no edge
connection between the two vertices. The probability of the current configuration of the
entire Boltzmann Machine network G is given by:

p(x;b,w) =
1
Z

exp(−Φ(x;b,w)) , (2.4)

where Z is the partition function given by:

Z = ∑
x∈{0,1}n+m

exp(−Φ(x;b,w)) , (2.5)

which ensures ∑x∈{0,1}n+m p(x;b,w) = 1.
The Restricted Boltzmann Machine (RBM) is a BM in which the vertices form a bipartite

graph. The two groups of nodes are known as the “visible layer” and the “hidden layer”.
The visible layer represents the direct observations on the dataset. An activation function
is placed on the hidden nodes to model the interactions between features by the following
equation:

p
(
h j = 1

∣∣v
)
= σ

(
b j +∑

i
viwi j

)
,

where σ is the sigmoid function.
The RBM is one approach used to increase the representational power of machine learning

models. In Chapter 3, we will look into create a novel framework to represent higher-order
feature interactions to increase the representational power of the model. We then compare
the characteristics of the two different approaches to increase the representational power of
the model.

2.1.2 Independent Component Analysis

In this thesis we will study how we can include higher-order feature interactions in Inependent
Component Analysis (ICA). Independent Component Analysis (ICA) [43] is the most popular
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model used for Blind Source Separation (BSS). BSS is mathematically defined as a function
f which is able to separate a set of mixed signals X into a set of source signals Z, i.e.,
Z = f (X). However, it is generally considered to be impossible for the function f to recover
the scale and the original order of the source signal. If we apply this limitation to the BSS
problem, the problem is mathematically reduced to Z ∝ f (X).

We define ICA by letting Z = [z1, . . . ,zM],zm ∈ RN be a set of source signals and
X = [x1, . . . ,xM],xm ∈ RL be a set of received signals. The received signal X is an affine
transformation of the source signal Z by a mixing matrix A∈RL×N : A = [a1, . . . ,aN ], written
as

X = AZ, xlm =
N

∑
n=1

alnznm, (2.6)

where L is the number of received signals, N is the number of source signals and M is the
sample size. The source signal can be recovered from A and X

if L≥ N, while the source signal Z and the mixing matrix A are unknown in BSS. Our
objective is to estimate the source signal Z by learning the parameters in A using the received
signal X as the input to the model. The traditional formulation of ICA aims to learn the
inverse of A. Differently, our approach is able to learn the parameters of A directly.

However, there are several limitations in the ICA model. Firstly, we assume that the
forward model to convert the source signal to the mixed signal is an affine transformation.
However, this is usually an over simplification and the interaction between signals in the
real-world is often more complex than an affine transformation. Secondly, the sign of the
signal is not recovered in ICA. This could be problematic in many critical applications.
Thirdly, ICA is non-convex, so different weight initialization will result in different model
output. Our solution explored in Chapter 4 overcomes all these limitations in ICA.

2.1.3 Multivariate Poisson Processes

In the previous section, we introduced how we can formulate Independent Component
Analysis (ICA) with higher-order interactions. In this section, we will show how we can
estimate higher order functions in stochastic processes. A stochastic process is defined as
a collection of random variables that is indexed by some mathematical set, so that each
random variable of the stochastic process is uniquely associated with an element in the
set. A point process is a stochastic process composed of a time series of binary events
that occur in continuous time. They are used to describe a finite set of observations. For
stochastic processes where the values are non-negative, integer and non-decreasing, we can
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characterise them as a counting process [27]. One of the most prevalent type of point process
and counting process is the Poisson process which is characterized by an arrival intensity λ .
An inhomogeneous Poisson process is a general type of process, where the arrival intensity
changes with time. The process with time-changing intensity λ (t) is defined as a counting
process N(t), which has an independent increment property. For all time t ≥ 0 and changes
in time δ ≥ 0, the probability p for the observations is given as,

p(N(t +δ )−N(t) = 0) = 1−δλ (t)+o(δ )

p(N(t +δ )−N(t) = 1) = δλ (t)+o(δ )

p(N(t +δ )−N(t)≥ 2) = o(δ )

where o(·) denotes little-o notation. Given a realization of timestamps {ti}N
i=1 ⊆ [0,T ] from

an inhomogeneous Poisson process with intensity λ (t). Each ti is the time of occurrence
for the i-th event and T is the observation duration for this process. The likelihood for the
Poisson process is given by Daley and Vere-Jones [27],

p
(
{ti}N

i=1 | λ (t)
)
= exp

[
−
∫ T

0
λ (t)dt

] N

∏
i=1

λ (ti) . (2.7)

We define the functional prior on λ (t) as,

λ (t) := g [ f (t)] = exp [ f (t)] . (2.8)

The function g(·) is a positive function to guarantee the non-negativity of intensity which we
choose to be the exponential function, and our objective is to learn the function f (t). The
log-likelihood for the Poisson process with the functional prior can be described as follows:

log p
(
{ti}N

i=1 | λ (t)
)
=

N

∑
i=1

f (ti)−
∫ T

0
exp [ f (t)]dt.

The first term ∑
N
i=1 f (ti) is the unnormalized intensity function. The second term

∫
exp[ f (t)]dt is used to normalize the intensity function into the log-probability.

We generalize the likelihood function in Equation (2.7) to a multi-dimensional Poisson
process

p
(
{ti}N

i=1 | λ (t)
)
= exp

[
−
∫

λ (t)dt
] N

∏
i=1

λ (ti) , (2.9)
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where t = [t(1), . . . , t(D)] and D is the number of dimensions. Then the log-likelihood of the
multi-dimensional Poisson process with the functional prior is

log p
(
{ti}N

i=1 | λ (t)
)
=

N

∑
i=1

f (ti)−
∫

exp [ f (t)]dt. (2.10)

The objective of the multivariate Poisson process is to learn the joint intensity function of
a multi-dimensional stochastic processes. This is a challenging problem because the event
rate for the joint process can be extremely low by definition, leading to sparse observations.
The multivariate majority of the multivariate Poisson process found in literature learns the
conditional intensity function [113]. Differently, in Chapter 5 we look into estimating the
joint intensity function in the Poisson Process which is considered as a more general solution.
This form of the multivariate Poisson process is closely related to the Pitman-Yor process
and the Poisson-Dirichlet Process which we will study in more details in Chapter 6 [20].

2.2 Information Geometric Formulation of the Exponential
Family

In this section, we will present the derivation for the information geometric formulation
of the exponential family. We first define two coordinate system, θ = {θ1, . . . ,θn } and
η = {η1, . . . ,ηn } to be its Legendre transformation (The full proof of this property is located
in Section A.1) [9]. That is,

θ = ∇ϕ (η) , η = ∇ψ (θ) .

Where ψ (θ) represents the e-projection (exponential-projection) and ϕ (η) represents the
m-projection (mixture-projection). Using this notation the probability distribution for natural
exponential family is written as [9],

p(x;θ) = exp

[
∑

i
θixi−ψ (θ)

]
,

where, exp [ψ (θ)] is the partition which which is uniquely determined by,

ψ (θ) = log
∫

exp
[
∑θixi

]
dx.
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The coordinate systems θ becomes the natural parameter and η becomes the expectation
parameter. In the following sections, we introduce incidence algebra to formulate a log-linear
model on a poset which is a class of models in the exponential family.

2.3 Incidence Algebra

In this section we introduce the inclusion-exclusion principle, the zeta and the möbius
function used in incidence algebra and the Möbius inversion formula.

2.3.1 Inclusion-Exclusion Principle

The inclusion-exclusion principle is a counting technique which generalizes the familiar
methods of obtaining the number of elements in a union between finite sets. For a given
finite set A, B and C. The union between the three finite set is given as,

|A∪B∪C|= |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|. (2.11)

This mathematical expression is illustrated graphically in Figure 2.1. By inspecting Equa-
tion (2.11), we can see that as the number of terms to compute the union grows combintorially
with respect to the number of input sets.

Fig. 2.1 An illustration of the inlcusion-exclusion principle using a Venn diagram of three
sets.

Incidence algebra provides a natural construction of generating functions for the inclusion-
exclusion principle [85]. Incidence algebra is based on the principles of enumeration to
provide a powerful representation for a set of objects to be counted that is equipped with a
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partial order structure. Here we introduce the partial order structure by letting (Ω,≤) be a
partially ordered set (poset) [36], where a partial order ≤ is the relation between elements in
a set S. The poset must satisfy the following three properties for ω,ω ′,ω ′′ ∈Ω: (1) ω ≤ ω

(reflexivity), (2) ω ≤ ω ′,ω ′ ≤ ω ⇒ ω = ω ′ (anti-symmetry), and (3) ω ≤ ω ′,ω ′ ≤ ω ′′⇒
ω ≤ ω ′′ (transitivity). We assume that the set Ω is finite, where ⊥ ∈Ω and ⊥≤ ω , ∀ω ∈Ω.
To be concise, we use Ω+ to denote Ω\{⊥}. Then a discrete probability distribution can be
treated as a partial order structure [85]. We first begin our formulation with a given interval
[a,b], let the functions f,g ∈ R|[a,b]| be defined as follows,

f =




f (a,a)
...

f (a,b)


 , g =




g(a,a)
...

g(b,a)


 .

Then the addition and scalar multiplication are defined as follows,

( f +g)(a,b) = f (a,b)+g(a,b) ,

( f ∗g)(a,b) = ∑
ω∈Ω

a≤ω≤b

f (a,ω)g(ω,b) = fT g.

Where ω is an entry in space Ω.

2.3.2 Möbius Inversion Formula

Incident algebra is used to formulate the Möbius inversion formula which provides a natural
construction for a summation over an arbitrary locally finite partially ordered set. It is defined
as,

g(ω) = ∑
ω ′∈Ω

ω ′≤ω

ζ
(
ω
′,ω
)

f
(
ω
′)= ∑

ω ′∈Ω

ω ′≤ω

f
(
ω
′)

f (ω) = ∑
ω ′∈Ω

ω ′≤ω

µ
(
ω
′,ω
)

g
(
ω
′)

where the special elements zeta function ζ : Ω×Ω→{0,1} represents the integral function
and is defined as,

ζ
(
ω
′,ω
)
=





1 if ω ′ ≤ ω,

0 otherwise.
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and the Möbius function µ : Ω×Ω→ Z represents derivative and is convolutional inverse
of the zeta function ζ µ = δ defined as,

µ
(
ω,ω ′

)
=





1 if ω = ω ′,

−∑
ω ′′∈Ω

ω≤ω ′′≤ω ′

µ (ω,ω ′′) if ω < ω ′,

0 otherwise.

In the following section we will apply the Möbius information formula to define the
relationship between the natural parameter θ , probability p and the expectation parameter η .

2.4 Log-Linear Model on a Poset

We introduce the Log-linear model [2] proposed by Sugiyama et al. [97, 99]. by defining the
log probability with respect to the parameters θ and the expectation η .

log p(ω) = ∑
ω ′∈Ω

ζ
(
ω
′,ω
)

θ
(
ω
′)= ∑

ω ′∈Ω

ω ′≤ω

θ
(
ω
′) ,

η (ω) = ∑
ω ′∈Ω

ζ
(
ω,ω ′

)
p
(
ω
′)= ∑

ω ′∈Ω

ω ′≥ω

p
(
ω
′) .

Then from the Möbius inversion formula we have,

p(ω) = ∑
ω ′∈Ω

µ
(
ω,ω ′

)
η
(
ω
′) ,

θ (ω) = ∑
ω ′∈Ω

µ
(
ω
′,ω
)

log p
(
ω
′) .

We can see a clear intuition behind this formulation of the log-linear model. Naturally we
can see if we would like to compute the expectation, we need to integrate the probability
distribution and if we would like to obtain the parameters of the model we would like the
take the derivative of the probability distribution which is represented by the zeta and the
möbius function respectively.

These equations can be seen as the generalization of the Log-linear model that gives
the probability p(x) of an n-dimensional binary vector x = (x(1),x(2), . . . ,x(n)) ∈ {0,1}n in
Equation (2.1).
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In the following section we will make the connection between the formulation of the
log-linear model and information geometry. We will first show that the log-linear model is a
dually flat structure and is a Riemannian structure induced by θ and η .

2.4.1 Dually Flat Structure

A dually flat manifold is a generalization of a Euclidean space, inheriting useful properties
from it such as the Pythagorean theorem and coordinate systems. Here we present the
proof presented in Sugiyama et al. [99] that the log-linear model is a dually flat Riemannian
structure. To show this, we introduce a manifold Ω that is a dually flat Riemannian structure
induced by two functions θ and η . We first define ψ(θ) as,

ψ (θ) =−θ (⊥) =− log p(⊥)

which corresponds to the normalizer of p. It is a convex function because,

ψ (θ) = log∑
ω∈Ω

exp


 ∑

ω ′∈Ω

⊥≤ω ′≤ω

θ
(
ω
′)

 . (2.12)

The Legendre transformation of ψ(θ) is given as,

ϕ (η) = max
θ ′

[
θ
′
η−ψ

(
θ
′)] , θ

′
η = ∑

ω∈Ω+

θ
′ (ω)η (ω)

Then ϕ(η) coincides with negative entropy.

Theorem 1 (Legendre Dual [99]). The function

ϕ (η) = ∑
ω∈Ω

p(ω) log p(ω) . (2.13)

is differentiable and a one-to-one transformation. This means ϕ is used as another coordinate
system on the manifold M and it is connected to ψ by a Legendre transformation.

Since they are connected with each other by the Legendre transformation, they form a
dual coordinate system ∇ψ(θ) and ∇ϕ(η) of S, which coincides with θ and η as follows.

Theorem 2 (Dual Coordinate System [99]). A dual coordinate system can be defined by

∇ψ (θ) = η , ∇ϕ (η) = θ .
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where the two coordinate systems are connected by the Legendre transformation.

The dually flat structure shows that the optimization problem can be represent the expo-
nential family using two convex functions ψ (θ) and ϕ (η), which represents the partition
function and negative entropy respectively. These two functions are connected via the Legen-
dre transformation. The two functions have a dualistic structure meaning that the parameters
are defined locally instead of globally making it much more efficient for optimization. In the
following section we will show that the log-linear model is a Riemannian structure which
allows us to take advantage of many different optimization techniques.

2.4.2 Riemannian Structure

A metric tensor is a function which takes a pair of tangent vectors at a point on a surface of a
manifold and produces a real number scalar that has properties of a dot product of vectors
in Euclidean space. We present the proof that the proof shown by [99], that the Möbius
inversion formula enables us to compute the Riemannian metric of Ω.

Theorem 3 (Riemannian Metric [99]). The manifolid (Ω,G(ξ )) is a Riemannian manifold
with the Riemannian metric G(ξ ) such that for all ω,ω ′,∈Ω+,

Gωω ′ (ξ ) =





∑ω ′′∈Ω ζ (ω,ω ′′)ζ (ω ′,ω ′′) p(ω ′′)−η (ω)η (ω ′) if ξ = θ ,

∑ω ′′∈Ω µ (ω ′′,ω)µ (ω ′′,ω ′) p(ω ′′)−2 if ξ = η .

An affine connection ∇ is a differential operator defined on a manifold to allow us to
define covaiant dervaitive of vector fields, parallel transpot of vectors on tagent planes along
a smooth surve and geodesics. The Levi-Civita connection is a special case of the affine
connection that is defined on a Riemannian manifold that has properties that are torsion
free and parallel transport is an isometry (the inner product between tangent vectors are
preserved).

Theorem 4 (Riemannian Connection [99]). The Riemannian connection Γ(ξ ) on the mani-
fold (Ω,g(ξ )) is given in the following for all ω,ω ′,ω ′′ ∈Ω+,

Γωω ′ω ′′ (ξ ) =



1
2 ∑
ω ′′′∈Ω

[ζ (ω,ω ′′′)−η (ω))(ζ (ω ′′,ω ′′′)−η (ω ′))(ζ (ω ′′,ω ′′′)−η (ω ′′)] p(ω ′′′) , if ξ = θ ,

−1
2 ∑
ω ′′′∈Ω

µ (ω ′′′,ω)µ (ω ′′′,ω ′)µ (ω ′′′,ω ′′) p(ω ′′′)−2 , if ξ = η .
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The Riemannian structure is a smooth manifold where the inner product is defined at
each point. By projecting discrete structures onto a Riemannian structure it allows us to
take advantage of continuous optimization techniques such as gradient descent, co-ordinate
descent and natural gradient. In the following section, we will explain how optimization can
be performed using the projection algorithm.

2.4.3 The Projection Algorithm

The projection algorithm is an iterative algorithm used to estimate the parameters in the
model. The Bregman divergence is the canonical divergence that measures the difference
between the two distribution P and Q on a dually flat manifold defined as,

D [P,Q] = ψ (θP)+ϕ (ηQ)−θPηQ

Substituting the equations from Theorem 1 ϕ(ηQ) = ∑x∈S q(ω) logq(ω) and θPηQ −
ψ(θP) = ∑x∈S q(ω) log p(ω) we get,

D [P,Q] = ∑
ω∈Ω

q(ω) log
q(ω)

p(ω)
,

which coincides with the reverse Kullback-Leibler (KL) divergence.
The parameters in the log-linear model and the poset structure can be estimated using the

projection algorithm. We define this by first letting S(β ) be a submanifold of Ω such that

S(β ) = {P ∈Ω|θP (ω) = β (ω) for all ω ∈ dom(β )} ,

specified by a function β with dom(β )⊆Ω+. The projection of P ∈Ω onto S(β ) is called
the m-projection which is defined as the distribution Pβ ∈ S(β ) as





θPβ
(ω) = β (ω) if ω ∈ dom(β ) ,

ηPβ
(ω) = ηP (ω) if ω ∈Ω+ \dom(β ) ,

is the minimizer of the KL divergence from P to S(β ),

Pβ = argmin
Q∈S(β )

DKL (P,Q)
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We can switch η and θ in the submanifold S(β ) to obtain the e-projection





θPβ
(ω) = θP (ω) if ω ∈Ω+ \dom(β ) ,

ηPβ
(ω) = β (ω) if ω ∈ dom(β ) .

By alternating between the e-projection and m-projection, we are able to compute the gradient
required to minimize the KL-divergence to estimate the parameters p, θ and η in the model.

2.5 Summary

In this chapter we presented the preliminary material for this thesis. We first showed how the
representational power can be increased in unsupervised learning models. We then gave an
overview of the unsupervised learning models studied in this thesis. We have also reviewed
the information geometric formulation of the exponential family and how it can be extended
to efficiently represent the inclusion-exclusion principle using properties in information
geometry. The remainder of the thesis is structured as follows, Chapter 3 formulates our
proposed approach using information geometry to increase the representational power in the
Boltzmann Machine. We then compare our approach to increasing the representational power
by using hidden nodes. We then explore how we can using our formulation to include higher-
order terms in blind source separation (BSS) in Chapter 4. Chapter 5 shows how higher-order
terms can be used to approximate high dimensional functions in Poisson processes. Finally 6
explored how we could use Bayesian non-parametric techniques to automatically select the
terms to include into the model.





CHAPTER 3

Increasing Representational Power
with Higher Order Feature Interactions

This Chapter investigates the differences in using hidden nodes and higher-order feature
interactions to increase the representational power of machine learning models. We apply
our approach to the Boltzmann machine as a representative example to compare the two
approaches. In this Chapter we outline the formulation of the higher-order feature interactions.
Chapter 4 and Chapter 5 uses concepts in this Chapter to include higher-order feature
interactions in Blind Source Separation (BSS) and to an efficient estimation of higher-order
functions in a multivariate Poisson process respectively.

This Chapter is organized as follows: We first present an introduction on using higher-
order feature interactions and hidden nodes in hierarchical models and the Boltzmann
machine. We then provide the preliminaries for the Boltzmann machine, restricted Boltzmann
machine (RBM) and the information geometric formulation of the binary log-linear model.
The binary log-linear model can be represented visually as a partially ordered set (poset).
We then present our proposed inference algorithm for the Higher-Order Boltzmann Machine
which uses a combination of Gibbs sampling and Annealed Importance Sampling (AIS) in
inference to overcome the computational and numerical problems encountered in training.
Finally we present an empirical study to compare the different characteristics in using higher-
order feature interactions and hidden nodes to increase the representational power of machine
learning models.
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3.1 Introduction to Hierarchical Machine Learning Models

Hierarchical machine learning models can be used to identify higher-order feature interactions.
They include a wide range of models used in machine learning such as graphical models
and deep learning because they can easily be generalized for many different applications.
Hierarchical models are widely used as they can use a large number of parameters to create
a high representative power for modeling interactions between features. However, turning
towards the optimal model includes a classical machine learning problem known as the
bias-variance trade-off [32]. Despite the prevalence of hierarchical models, the bias-variance
trade-off for higher-order feature interactions have not been well studied.

In this Chapter, we study the differences in using hidden layers and higher-order interac-
tions to achieve higher representation power in hierarchical models. In our study, we focus
on the Boltzmann Machine (BM) [1], one of the fundamental machine learning models. The
family of BMs has been used in a wide range of machine learning models including graphical
models and deep learning. The Restricted Boltzmann Machine (RBM) [40] (Figure 3.1a)
and the Higher-Order Boltzmann Machine (HBM) [94, 69] (Figure 3.1b) are fundamental
models for learning higher-order feature interactions. However, the two models have different
methods for achieving a higher representation power. The RBM is represented by a bipartite
graph consisting of two groups, the “visible layer” and the “hidden layer”. The visible layer
represents the direct observations of the data, while the hidden layer is used to identify latent
features. The bias and the edge weights between the visible nodes and hidden nodes are
tuned to model the interaction between the features. The HBM is represented using a finite
partially ordered set (poset) using a Hasse diagram [28, 36]. The poset is used to represent
the outcome space of the HBM. A weight is placed on each of the nodes in the outcome
space to model the higher-order feature interactions. From a theoretical perspective, both the
RBM and HBM are capable models in modeling higher-order feature interactions [56].

In our study, we empirically perform a bias-variance decomposition for both the RBM
and HBM to study the total errors of each model from the trade-off between bias and variance.
For our study, we use Contrastive Divergence (CD) as the inferencing technique for the
RBM. For the HBM, we use the recent information geometric formulation of the HBM by
Sugiyama et al. [98, 99] presented in Chapter 2 and use gradient descent to maximize the
likelihood. The generalized Pythagorean theorem from information geometry enables us to
decompose the total error represented as the Kullback–Leibler (KL) divergence into bias
and variance terms. Our analysis uses a synthetic dataset with varying features, samples
and model complexity. Our contribution includes: 1) A proposal to use a combination of
Gibbs sampling and Annealed Importance Sampling (AIS) in inference to overcome the
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(b)

Fig. 3.1 Example of Boltzmann machine modeling high-feature interactions. (a) A Restricted
Boltzmann machine with a configuration of 4 visible nodes and 3 hidden nodes. (b) The
outcome space of the Higher-Order Boltzmann machine with 4 visible nodes. The green,
blue, red and white nodes show first, second, third and fourth order interactions respectively.
The bottom node (black) is used to normalize the Boltzmann machine.

computational and numerical problems in training the HBM. 2) A study which compares the
bias-variance trade-off in hidden layers and higher-order interactions.

Our results have shown that using hidden layers and higher-order interactions produce a
similar error from the bias and higher-order interactions produce less variance for a smaller
sample size. For larger datasets, the error from the bias is more dominant, therefore for
sufficiently large datasets, hidden layers and higher-order interactions have a comparable
error with a similar order of magnitude.

3.2 Preliminary Models

This section presents the hierarchical probabilistic models to analyze the error in modeling
higher-order feature interactions. We first introduce the generic Boltzmann machine along
with the Restricted Boltzmann Machine (RBM). We then present the information geometry
formulation of the log-linear model of hierarchical probability distribution, which includes
the family of Boltzmann machines.
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3.2.1 Restricted Boltzmann Machine

Recall in section 2.1.1, we have introduced the Boltzmann Machine. Here we introduce the
Restricted Boltzmann Machine (RBM) which is a class of BM in which the vertices form a
bipartite graph. The two groups of nodes are known as the “visible layer” and the “hidden
layer”. The visible layer represents the direct observations on the dataset. An activation
function is placed on the hidden nodes to model the interactions between features by the
following equation:

p
(
h j = 1

∣∣v
)
= σ

(
b j +∑

i
viwi j

)
,

where σ is the sigmoid function. We apply the efficient contrastive divergence technique to
adjust the weights and biases to maximize the product of probabilities of generating a given
dataset by the BM [39, 106]. The updates for the weights and the biases is given by:

∆W = ε
(
vhT −v′h′T

)
, ∆b = ε

(
x−x′

)
.

Where v′, h′, x′ represents the samples reconstructed from the model and ε represents the
learning rate.

Additional hidden layers can be added to create the Deep Boltzmann Machine (DBM) to
increase the representation power [87, 88]. However, this is not analyzed in our study due to
the exponential increase in complexity to compute the partition function in Equation (??).

3.2.2 Information Geometric Formulation of the Log-Linear Model

The information geometric log-linear probabilistic model has been introduced by Amari et
al. [4, 73, 74]. Further advances in the log-linear formulation by Sugiyama et al. [98] has
enabled to analytically compute the Fisher information of parameters in hierarchical models.
This formulation of the hierarchical model uses a partial order structure to represent the
possible model outcomes.

Here we introduce the log-linear formulation introduced in Sugiyama et al. [98]. Let
(Ω,≤) be a partially ordered set (poset) [36], where a partial order ≤ is the relation
between elements in a set S. The poset must satisfy the following three properties for
ω,ω ′,ω ′′ ∈Ω: (1) ω ≤ ω (reflexivity), (2) ω ≤ ω ′,ω ′ ≤ ω⇒ ω = ω ′ (anti-symmetry), and
(3) ω ≤ ω ′,ω ′ ≤ ω ′′⇒ ω ≤ ω ′′ (transitivity). We assume that the set Ω is finite, where
⊥ ∈Ω and ⊥≤ ω , ∀ω ∈Ω. To be concise, we use Ω+ to denote Ω\{⊥}.
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The zeta function ζ : Ω×Ω→ {0,1} and the Möbius function µ : Ω×Ω→ Z are two
functions used to construct the partial order structure. The zeta function is defined as:

ζ
(
ω
′,ω
)
=





1 if ω ′ ≤ ω,

0 otherwise.

The Möbius function µ is defined to be the convolution inverse of the zeta function, i.e:

µ
(
ω,ω ′

)
=





1 if ω = ω ′,

−∑ ω ′′∈Ω

ω≤ω ′′<ω

µ (ω,ω ′′) if ω < ω ′,

0 otherwise.

The log-linear model on Ω provides a mapping of the discrete probability distribution to
the structured outcome space (Ω,≤). Let the probability distribution P denote a probability
distribution that assigns a probability p(ω) for each ω ∈Ω while satisfying ∑ω∈Ω p(ω) = 1.
Each probability p(ω) for ω ∈Ω is defined as:

log p(ω) = ∑
ω ′∈Ω

ζ
(
ω
′,ω
)

θ (ω) = ∑
ω ′≤ω

θ (ω) ,

θ (ω) = ∑
ω ′∈Ω

µ
(
ω
′,ω
)

log p
(
ω
′) .

(3.1)

η (ω) = ∑
ω ′∈Ω

ζ
(
ω,ω ′

)
p
(
ω
′) ,

p(ω) = ∑
ω ′∈Ω

µ
(
ω,ω ′

)
η
(
ω
′) .

(3.2)

Sugiyama et al. [99] has shown that the set of distributions Ω =

{P | 0 < p(ω)< 1 and ∑ p(ω) = 1} always become a dually flat Riemannian mani-
fold. This makes the two functions θ and η a dual coordinate system on Ω which is
connected through the Legendre transformation.

3.3 Proposed Model

This section details the information geometric formulation of the Higher-Order Boltzmann
Machine (HBM) and our proposed inference algorithm.
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3.3.1 Higher-Order Boltzmann Machine

Higher order interactions in a Boltzmann machine are capable of modeling higher-order fea-
ture interactions. However, they are very rarely used in practice due to the high computational
cost for inferencing and learning. The log-linear formulation of the Boltzmann machine
provides an elegant representation of the outcome space. This formulation allows any param-
eters to be included or removed from Ω+. For a given Boltzmann machine S(B) = 2V with
V = {1,2, . . . ,n}, the energy function of the kth order Boltzmann machine is defined as:

Φ(x;b,w) =− ∑
i1∈V

bi1xi1− ∑
i1,i2∈V

wi1i2xi1xi2− ∑
i1,i2,i3∈V

wi1i2i3xi1xi2xi3 (3.3)

−·· ·− ∑
i1,i2,...,ik∈V

wi1,i2,...,ikxi1xi2 . . .xik , (3.4)

Sugiyama et al. [98, 99] have shown that the log-linear model can be used to represent the
family of Boltzmann Machines. A submanifold of Ω can be used to represent the set of Gibbs
distribution of the BM B given by

S(B) = {P ∈Ω | θ (ω) = 0,∀x /∈ B} . (3.5)

The Gibbs distribution in Equation (??) directly corresponds to the log-linear model in
Equation (3.1) by:

log p(ω) = ∑
ω ′∈B

ζ
(
ω
′,ω
)

θ
(
ω
′)−ψ (θ) ,

ψ (θ) =−θ (⊥) = logZ,
(3.6)

where magnitude of θ (ω) corresponds to the model parameters which model the order of
interactions in the Boltzmann machine

B =
{

ω ∈Ω
+ | |x|= 1 or x ∈ E

}
, (3.7)

that is; θ (ω) = bi if |x|= 1 and θ (ω) = wxi j if |x| = 2. The log-linear formulation of the
Boltzmann machine shown in Equation (3.6) can be extended to be a kth order Boltzmann
machine by B = {ω ∈Ω+ | |x| ≤ k}.
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3.3.2 Inference Algorithm

The log-linear formulation of the Boltzmann machine can be trained by minimizing the KL
(Kullback-Leibler) divergence to approximate a given empirical distribution P̂:

min
PB∈S(B)

DKL
(
P̂,PB

)
= min

PB∈S(B)
∑

PB∈S(B)
p̂(ω) log

p̂(ω)

pB (ω)
. (3.8)

This is equivalent to maximizing the log-likelihood L(PB) = N ∑ω∈Ω p̂(ω) log pB (ω). The
gradient is obtained as,

∂

∂θB (ω)
DKL

(
P̂,PB

)
=

∂

∂θB (ω) ∑
ω ′∈Ω

p̂
(
ω
′) log pB

(
ω
′)

=
∂

∂θB (ω) ∑
ω ′∈Ω

(
p̂
(
ω
′)

∑
⊥<ω ′′≤ω ′

θB
(
ω
′′)
)
− ∂

∂θB (ω)
ψ (θB) ∑

ω ′∈Ω

p̂
(
ω
′)

= η̂ (ω)−ηB (ω) .

However, ηB (ω) is computationally expensive to compute because it requires to compute all
values of PB. We propose to use a combination of Gibbs sampling and Annealed Important
Sampling (AIS) [76, 86] to approximate the distribution of PB.

3.3.3 Gibbs sampling for ηB

Gibbs sampling [35] is a Markov Chain Monte Carlo (MCMC) algorithm which approximates
a multivariate probability distribution. It fixes all the other model parameters and updates
each of the model parameters one-by-one until convergence. MCMC can be applied directly
to estimate the parameters θ and η . But in our approach we will use gradient to guide our
optimisation. The equation for each MCMC step is given by,

P(xi = 1|x−i;θ) =
P(x;θ)

P(x−i;θ)
∝ P(x;θ) ,

where x−i = (x1, . . . ,xi−1,xi+1, . . . , ,xn). We apply Gibbs sampling to generate samples for
x = (x1, . . . ,xn). By generating samples, we are able to approximate the un-normalized
distribution denoted as f ∗. The un-normalized probability distribution is proportional to
the normalized distribution by a constant Z, i.e. P = 1

Z f ∗ ∝ f ∗. We will later provide a
solution using AIS to approximate the normalization constant Z. To update each xi, we use
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the difference between the energy functions in each node.

∆Φi (x;θ) = Φi (xxi=0;θ)−Φi (xxi=1;θ)

=−C log(P(xxi=0;θ))− (−C log(P(xxi=1;θ)))

=C log(P(xxi=1;θ)−C log(1−P(xxi=1;θ))) ,

where C represents the constant in the Boltzmann distribution. Rearranging the equation to
solve for P(xxi=1;θ), we have

exp
(
−∆Φi (x;θ)

C

)
=

1−P(xxi=1;θ)

P(xxi=1;θ)
,

P(xxi=1;θ) =
exp(∆Φi (x;θ)/C)

1+ exp(∆Φi (x;θ)/C)
.

The term with the change in energy is calculated by:

exp
(

∆Φi (x;θ)

C

)
= exp

(
1
C
[Φi (xxi=0;θ)−Φi (xxi=1;θ)]

)

= exp
(
− logP(xxi=0;θ)− (− logP(xxi=1;θ))

)

= exp

(
∑
s∈S

ζ (s,xxi=1)θ (s)−∑
s∈S

ζ (s,xxi=0)θ (s)

)
.

A set of M samples can be generated to approximate ηB by using Equation (3.2) by empiri-
cally estimating the distribution of P∗B . The overall run-time for each interaction for the Gibbs
sampling step is O

(
M |S(B)|2

)
.

3.3.4 Annealed Importance Sampling to Approximate PB

We propose to use AIS [76, 86] to overcome the numerical problems in computing the
normalization parameter in the partition function Z. By inspecting Equation (??), we can
identify a number of problems in computing Z. Firstly, it is clear that the value of Z is
extremely large because it takes the sum of the exponential of all energy functions. The large
value of Z often creates numerical problems for most implementation. Secondly, computing
the energy function Φ(x) for all nodes is extremely computationally expensive. AIS provides
a solution to approximate the value of log(Z) without having to compute Z or evaluate the
energy function Φ(x).
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AIS approximates the normalization constant by tracking the gradual changes of an
MCMC transition Tk (xn+1|xn) operation such as Gibbs sampling. AIS uses a sequence of
intermediate probability distributions to evaluate the importance weight w(i)

AIS which is an
estimation of the ratio between the first and last distribution.

For our study, we use one of the most prevalent methods to generate a sequence of
intermediate probability distributions for k = 0, . . . ,K by using the following geometric
property,

fk (x) ∝ f ∗0 (x)
1−βk f ∗k (x)

βk

where 0 = β0 < β1 < .. . < βK = 1. There have been several other more advanced techniques
to model the path of the intermediate distributions [37]. However, this is not the focus of
our study and can be subjected to further study in future work. The AIS weight wAIS can be
calculated by using

w(i)
AIS =

f ∗1 (x1)

f ∗0 (x1)

f ∗2 (x2)

f ∗1 (x2)
. . .

f ∗K−1 (xK−1)

f ∗K−2 (xK−1)

f ∗K (xK)

f ∗K−1 (xK)
,

where f ∗ denotes a function to calculate the un-normalized probability distribution. After
completing M runs of AIS, the ratio of the first and final constant of the partition function
can be estimated as

ZK

Z0
≈ 1

M

M

∑
i=1

w(i)
AIS = r̂AIS (3.9)

Neal [76, 77] has theoretically shown that the Var(r̂AIS) ∝ 1/MK. For practical implementa-
tions Equation (3.9) should be in log scale to avoid numerical problems. The standard form
is shown here for conciseness. From Equation (3.9), the final logZ can be estimated without
computing Z if Z0 is known. Then logZ0 can be calculated efficiently if we initialize PB

uniformly, i.e. for HBM, θ (⊥) =− logZ = N log(2) and θ (ω) = 0, ∀x ∈Ω+.

3.4 Experiments

Here we present the main results of this Chapter. This section presents the formulation of the
bias-variance decomposition, the set-up of the experiment and the experimental results and
discussion.
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m-projection:DKL (P
∗, P ∗B)

DKL

(
P ∗, P̂B

)
= DKL (P

∗, P ∗B) +DKL

(
P ∗B , P̂

∗
B

)

e-projection:DKL

(
P ∗B , P̂B

)

P ∗B P̂B

P ∗

S ′ (B) θ (x) = 0,∀x /∈ B

S ′ (P ∗) η (x) = η∗ (x) ,∀x ∈ B

Fig. 3.2 An illustration of the decomposition of the bias and variance.
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Fig. 3.3 Empirical evaluation of the error generated from the bias and variance of the RBM

3.4.1 Bias-Variance Decomposition

We use a bias-variance decomposition to compare the behavior of the higher-order feature
interactions between the RBM and HBM by varying the complexity of the model. We focus
on the expectation of the KL divergence E[DKL(P∗, P̂B)] from the true (unknown) distribution
P∗ to the maximum likelihood estimation (MLE) P̂B of the empirical distribution P̂ by a
Boltzmann machine with the parameter set B. This term represents the total error in the
model accumulated from the bias and variance in the model.

The KL divergence for probabilities in the exponential family can be decomposed into
bias and variance using its information geometric properties. We can calculate the true
variance of the model by replacing P̂ with P∗ in Equation (3.8). The bias and variance can be
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Fig. 3.4 Empirical evaluation of the error generated from the bias and variance for the HBM

separated into two components which are orthogonal as illustrated in Figure 3.2. Using this
decomposition of the bias and variance, the total error in the model can be calculated using
the Generalized Pythagorean Theorem [6],

E
[
DKL

(
P∗, P̂B

)]
= E [DKL (P∗,P∗B)]+E

[
DKL

(
P∗B , P̂B

)]

= DKL (P∗,P∗B)+E
[
DKL

(
P∗B , P̂B

)]

= DKL (P∗,P∗B)︸ ︷︷ ︸
bias

+var(P∗B ,B)︸ ︷︷ ︸
variance

.

3.4.2 Experiment Setup

A synthetic dataset is generated to study the bias-variance trade-off in HBM and RBM. The
synthetic data is created by drawing a random probability [0,1] from a uniform distribution
for each P∗ ∈ P∗ such that ∑P∗∈P∗ P∗ = 1, where P∗ represents the set of probabilities for
all possible feature combinations. A sample size of N = { 1×10, 3×10, 5×10, 1×102,
3×102, 5×102, 1×103, 3×103, 5×103, 1×104, 3×104, 5×104 } are drawn from the
descrete probability distribution P∗ using a multinomial. For each sample size N, we create
24 independent datasets to be used for both the HBM and RBM. The MLE of the HBM
is calculated analytically by directly placing the true probability distribution P∗ into the
model. While, for the RBM, it is not analytically tractable to calculate the MLE, it is instead
approximated by placing a dataset several orders of magnitude larger than the experimental
dataset, in our case, we have generated a dataset with the sample size of 1×106 and have
assumed this to be the MLE. Both the HBM and the RBM has been run using 10,000 Gibbs
samples, a learning rate of 0.1 and 10,000 iterations.
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Fig. 3.5 Empirical evaluation of the error generated from the bias and variance for varying
hidden nodes in the RBM
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Fig. 3.6 Empirical evaluation of the error generated from the bias and variance for varying
order of interactions in the HBM
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Fig. 3.7 Empirical evaluation of the error generated from the bias and variance for varying
sample size in the RBM
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Fig. 3.8 Empirical evaluation of the error generated from the bias and variance for varying
sample size in the HBM
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Fig. 3.9 Comparing empirical error in model for the HBM with RBM against the number of
model parameters

3.4.3 Experiment Results

The empirical evaluation in Figure 3.3 and Figure 3.4 have shown that both RBM and
HBM have shown similar trends, with a positive correlation between the number of model
parameters and variance and an inverse relationship between the sample size and variance.
Surprisingly, the bias does not show any clear correlation between the number of model
parameters and the sample size.

The error generated from the variance is much more dominant for a smaller sample size
and a larger number of model parameters. Comparing Figure 3.5 and Figure 3.6, the RBM
has shown to be more effective at reducing the variance with a larger sample size. The
importance sampling used to estimate the partition function in HBM may have led to the
higher variance in empirical results for the HBM. Figure 3.7 and Figure 3.8 shows a positive
correlation between the model parameters and variance. The HBM shows to have a larger
correlation between the model parameters and variance.
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The total error in the model is the sum of the bias and the variance. The total number
of model parameters is a natural way to compare the total error generated by the RBM and
HBM (i.e. |b|+ |w| for RBM and |S(B)| for HBM). Figure 3.9 shows that for small sample
size, HBM has shown to have produced a lower error in the model. The higher error in the
RBM is generated by the larger variance. For a larger sample size, the error from the bias
is much more dominate. Since the bias in both the RBM and HBM is in a similar order of
magnitude, both models have a total error in the same order of magnitude. RBM has shown
to be much more effective at reducing the variance with a larger sample size, however, this
does not reduce the total error significantly because it is several orders of magnitude smaller
than the bias.

3.5 Summary

In this Chapter, we have first proposed using a combination of Gibbs sampling and impor-
tance sampling to overcome the computational issues in training the information geometric
formulation of the higher-order Boltzmann machine (HBM). The experimental results have
shown that our proposed approach is effective in estimating the probability distribution of
the model. Our proposed approach has been compared with the RBM to compare using
hidden layers and higher-order interactions to model higher-order feature interactions. Our
experimental results have shown that both models have produced a total error with similar
orders of magnitude and using higher-order interactions may be more effective at minimizing
the variance for smaller sample size.

In the following Chapters, we use concepts that have been formulated in this Chapter to
include higher-order feature interactions in Blind Source Separation (BSS) and to estimate
higher-order functions in a multivariate Poisson process.



CHAPTER 4

Including Higher-Order Feature Interactions
in Blind Source Separation

This Chapter presents the details of including higher-order feature interactions for a unsu-
pervised learning problem known as Blind Source Separation (BSS). Our solution is to use
the concepts presented in Chapter 3 to formulate a hierarchical probabilistic model for blind
source separation (BSS) to increase the representational power of the model to capture the
complex interactions. In our model, the source signal, received signal and the mixing signal
are realized as different layers in our hierarchical sample space. The hierarchically structured
sample space uses information geometry to provide theoretical guarantees to uniquely recover
a set of source signals by minimizing the KL divergence from a set of mixed signals.

This Chapter is organized as follows: we first provide an introduction to Blind Source
Separation (BSS), we then we outline our proposed information geometric approach to
include higher-order feature interactions into Blind Source Separation (BSS). We then
demonstrate our models capability with empirical experiments in image and signal separation.

4.1 Introduction to Blind Source Separation

The objective of blind source separation (BSS) is to identify a set of source signals from a
set of multivariate mixed signals1. BSS is widely used for applications which are considered

1Mixed signals and received signals are used exchangeably throughout this Chapter.
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to be the “cocktail party problem”. Examples include image/signal processing [46], artifact
removal in medical imaging [107], and electroencephalogram (EEG) signal separation [24].

Currently, there are a number of solutions for the BSS problem. The most widely used
approaches are variations of principal component analysis (PCA) [81, 72] and indepen-
dent component analysis (ICA) [23, 72]. However, they all have limitations with their
approaches. PCA and its modern variations such as sparse PCA (SPCA) [114], non-linear
PCA (NLPCA) [91], and Robust PCA [108] extract a specified number of components
with the largest variance under an orthogonal constraint, which are composed of a linear
combination of the variables. They create a set of uncorrelated orthogonal basis vectors
that represent the source signal. The basis vectors with the N largest variance are called the
principal components and is the output of the model. PCA has shown to be effective for
many applications such as dimensionality reduction and feature extraction. However, for
BSS, PCA makes the assumption that the source signals are orthogonal, which is often not
the case in most practical applications.

Similarly, ICA also attempts to find the N components with the largest variance, but
relaxes the orthogonality constraint. All variations of ICA such as infomax [12], FastICA [43]
and JADE [21] separate a multivariate signal into additive subcomponents by maximizing
statistical independence of each component. ICA assumes that each component is non-
gaussian and the relationship between the source signal and the mixed signal is an affine
transformation. In addition to these assumptions, ICA is sensitive to the initialization of the
weights as the optimization is non-convex and is likely to converge to a local optimum.

Other potential methods which can perform BSS include non-negative matrix factorization
(NMF) [57, 13], dictionary learning (DL) [79], and reconstruction ICA (RICA) [54]. NMF,
DL and RICA are degenerate approaches to recover the source signal from the mixed signal.
This means that these approaches are unable to restore the original mixed signal from the
recovered signal. These approaches are more typically used for feature extraction. NMF
factorizes a matrix into two matrices with nonnegative elements representing weights and
features. The features extracted by NMF can be used to recover the source signal. More
recently there are more advance techniques that uses Short-time Fourier transform (STFT) to
transform the signal into the frequency domain to construct a spectrogram before applying
NMF [89]. However, NMF does not maximize statistical independence which is required
to completely separate the mixed signal into the source signal, and it is also sensitive
to initialization as the optimization is non-convex. Due to the non-convexity, additional
constraints or heuristics for weight initialization is often applied to NMF to achieve better
results [30, 16]. DL can be thought of as a variation of the ICA approaches which requires
an over-complete basis vector for the mixing matrix. DL may be advantageous because
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additional constraints such as a positive code or a dictionary can be applied to the model.
However, since it requires an over-complete basis vector, information may be lost when
reconstructing the source signal. In addition, like all the other approaches, DL is also
non-convex and it is sensitive to the initialization of the weights.

All previous approaches have limitations such as loss of information or non-convex
optimization and require constraints or assumptions such as orthogonality and an affine
transformation which are not ideal for BSS. In the following we introduce our approach
to BSS by using an information geometric formulation of the log-linear model. Unlike the
previous approaches, our proposed approach does not have the assumptions or limitations
that they require. We provide a flexible solution by introducing a hierarchical structure
between signals into our model, which allows us to treat interactions between signals that
are more complex than an affine transformation. Our experimental results demonstrate that
our hierarchical model leads to better separation of signals including complex interaction
such as higher-order feature interactions [65] than existing methods. Our method solves
a convex optimization problem, hence it always arrives at the globally optimal unique
solution. Moreover, we theoretically show that it always minimizes the Kullback–Leibler
(KL) divergence from a set of mixed signals to a set of source signals.

4.2 Formulation

BSS is mathematically defined as a function f which is able to separate a set of received
signals X into a set of source signals Z, i.e., Z = f (X). However, it is generally considered
to be impossible for the function f to recover the scale and the original order of the source
signal. If we apply this limitation to the BSS problem, the problem is mathematically reduced
to Z ∝ f (X).

4.2.1 Log-Linear Model on Partially Ordered Set and Information
Geometry

First we prepare the information geometric formulation of the log-linear model proposed
by Sugiyama et al. [97, 100], which models a discrete probability distribution. Let Ω be the
sample space of distributions. Sugiyama et al. [100] showed that if interactions between
variables is represented as partial orders between elements in Ω; that is, if Ω is a partially
ordered set (poset) [28], such interactions can be naturally treated by the log-linear model.
The minimum requirement is that Ω is finite and the least element ⊥ exists such that ⊥≤ ω
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for all ω ∈Ω, in which the partition function of the log-linear model is associated with ⊥.
We denote by Ω+ = Ω\{⊥}

The log-linear model gives probability p(ω) ∈ (0,1) to each element ω ∈Ω by

log p(ω;θ) = ∑
s∈S,s≤ω

θ(s)−ψ(θ), (4.1)

where S⊆Ω is a predetermined parameter domain, and a parameter θ(s) is associated with
each element s ∈ S. The term −ψ(θ) = θ(⊥) is the partition function which is uniquely
determined from the parameters (θ(s))s∈S,

ψ (θ) = log∑ω∈Ω ∏s∈S, s≤ω
exp(θ (s)) =−θ (⊥) . (4.2)

It is known that Boltzmann machines is a special case of this log-linear model [101, 65]
and also known that it belongs to the exponential family, where θ corresponds to natural
parameters. The information geometric structure of the set of distributions, S = {p | 0 <

p(ω) < 1 for all ω ∈ Ω and ∑ω∈Ω p(ω) = 1}, arises when we additionally introduce the
expectation parameter given as

η(ω) = ∑
s∈Ω,s≥ω

p(s;θ), (4.3)

Then the pair (θ ,η) always becomes a pair of coordinate systems of the statistical manifold
S, and they are orthogonal with each other as it is connected via Legendre transformation [6].
This orthogonality will be used in optimization of the model, where θ and η are jointly used
to achieve minimization of the KL divergence [5].

4.2.2 Information Geometric Formulation of Blind Source Separation

Here we introduce our key technical contribution of this Chapter, a hierarchical structure for
the sample space Ω of the log-linear model, to achieve BSS. We call this model information
geometric BSS (IGBSS). Our idea is to construct the hierarchical structure of the three layers
of BSS, the mixing layer, the source layer, and the received layer, into the sample space Ω

and learn the joint representation on it using the log-linear model. The received layer and
the source layer represent the input received signal and the output source signal of BSS,
respectively, and the mixing layer encodes information of how to mix the source signal.

First, we treat a received (mixed) signal X ∈ RL×M with the number L of received
signals and the sample size M, which is an input to BSS, as an empirical distribution.
To treat X as a probability mass function, we normalize it beforehand by dividing each
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element by the sum of all elements; that is, an (input) empirical distribution p̂ is obtained
as p̂(xlm) = xlm/∑l,m xlm

2. If the original input X contains negative values, an exponential
kernel or min-max normalization can be used to obtain nonnegative values; that is, for
the exponential kernel exp(xlm)/∑l,m exp(xlm) and for min-max normalization (xlm + ε−
min(X))/(max(X) + ε −min(X)), where ε is some arbitrary small value to avoid zero
probability.

Next we implement three layers in the sample space Ω. We define Ω = {⊥}∪A∪Z∪X
with A= {a11, . . . ,aLN}, Z= {z11, . . . ,zMN}, and X= {x11, . . . ,xLM}, where N denotes the
number of source signals. These sets A, Z, and X correspond to the mixing, source, and
received layers, respectively. We always assume that the parameter domain S = A∪Z,
meaning that mixing and source layers are used as parameters to represent distributions
in our model. Here we introduce a partial order ≤ into our sample space Ω to construct a
hierarchical structure of layers. Define

{
ai j ≤ zkl if j = k for all ai j ∈A and zkl ∈ Z,

zi j ≤ xkl if j = l for all zi j ∈ Z and xkl ∈ X.
(4.4)

The first condition encodes the structure such that the source layer is higher than the mixing
layer, and the second condition encodes that the received layer is higher than the source layer.
An example of our sample space with L = M = N = 2 is illustrated in Figure 4.1.

The log-linear model on our sample space Ω is given in Equation (4.1), and if we learn
the joint distribution on Ω from a received signal X, we will obtain probabilities on the
source layer p(z11), . . . , p(zMN), which represents normalized source signals. The rational of
our approach is given as follows: The connections between each layer is structured so that
the log-linear model performs a similar computation as a matrix multiplication between the
mixing layer A and the source layer Z in the form of X = AZ, which is a typical approach
employed by ICA. ICA models BSS as the matrix multiplication in which X, Z, and A
correspond to the received signal, the source signal, and the mixing matrix, respectively,
and assume that each xlm is determined by xlm = ∑

N
n=1 alnznm, which means that Z is the

affine transformed into X. Similarly to ICA, our structure also ensures that each p(xlm) is
determined by θ(aln) and θ(aln), n ∈ {1, . . . ,N}, as we always have aln ≤ xlm and znm ≤ xlm.
Moreover, this formulation allows us to model more complex interaction, such as higher-
order interactions, between signals if we additionally include partial order structure into Z

and/or A, which cannot be treated by a simple matrix multiplication.
According to the definition of the log-linear model in Equation (4.1), we can obtain each

probability of the joint distribution P on Ω as follows.

2We abuse an entry xlm of X and its corresponding state in Ω to avoid complicated notations.
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Received Layer (Input Layer)

The received layer represents the input to the model. Probability p(x) on the received layer
x ∈ X is obtained as

log p(x;θ) = ∑
z′∈Z,z′≤x

θ(z′)+∑
a′∈A,a′≤x

θ(a′)−ψ(θ), (4.5)

η (x;θ) = ∑
x′∈X, x′≥x

p
(
x′;θ

)
= p(x;θ) . (4.6)

Source Layer (Output Layer)

The next layer after the received layer is the source layer. This layer represents the model
output. Probability p(z) on the source layer for each z ∈ Z is given as

log p(z;θ) = ∑
z′∈Z,z′≤z

θ(z′)+∑
a′∈A,a′≤z

θ(a′)−ψ(θ) = θ(z)+∑
a′∈A,a′≤z

θ(a′)−ψ(θ), (4.7)

η (z;θ) = ∑
x′∈X, x′≥z

p
(
x′;θ

)
+∑

z′∈Z, z′≥z

p
(
z′;θ

)
= ∑

x′∈X, x′≥z

p
(
x′;θ

)
+ p(z;θ) . (4.8)

Mixing Layer

The mixing layer is the first layer in the model. The mixing layer is the base layer to provide
the connection between received signals and source signals. Probability p(a) on this layer
for each a ∈A is given as

log p(a;θ) = ∑
a′∈A,a′≤a

θ(a′)−ψ(θ) = θ(a)−ψ(θ), (4.9)

η (a;θ) = ∑
x′∈X, x′≥a

p
(
x′;θ

)
+∑

z′∈Z, z′≥a

p
(
z′;θ

)
+∑

a′∈A, a′≥a

p
(
a′;θ

)
= ∑

x′∈X, x′≥a

p
(
x′;θ

)
+∑

z′∈Z, z′≥a

p
(
z′;θ

)
+ p(a;θ) .

(4.10)

The parameter values θ(a) in the mixing layer represents the degree of mixing between
source signals. Hence they can be used to perform feature selection and feature extraction.
For example, if θ(a) = 0 in the extreme case, this means that this node a does not have any
contribution to the source mixing.

Bottom Node

The bottom node⊥ provides the connections for all the elements in the node. The value θ(⊥)
coincides with the negative of the partition function, i.e., ψ(θ) = −θ(⊥). The partition
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Fig. 4.1 An example of our sample space. The dashed line shows removed partial orders to
allow for learning.

function ensures that the joint probability distribution on the entire space Ω sums to 1; that is,

∑ω∈Ω p(ω) = 1. Note that the partition function is not necessary when the model is applied
to perform BSS, while we include it to theoretically provide the optimality of our model.

4.2.3 Optimization

We optimize the log-linear model by minimizing the KL divergence from an empirical
distribution p̂, which is determined by the received signal X, to the model joint distribution p
given by Equations (4.5), (4.7), and (4.9). Given a received signal X as an input dataset. In
our empirical distribution, we only have observations on the received signal p̂(x) and do not
have any observations for the values of the mixing and the source layers. Therefore we set
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the empirical distribution p̂ is defined as p̂(xlm) = xlm/∑l,m xlm for all xlm ∈ X, p̂(z) = 0 for
all z ∈ Z, and p̂(a) = 0 for all a ∈A.

Our model is trained by minimizing the KL (Kullback-Leibler) divergence to
approximate the given empirical distribution p̂ given as: argminp∈SDKL (p̂∥p) =

argminp∈S∑ω∈Ω p̂(ω) log p̂(ω)
p(ω) . Let us introduce two submanifolds of the set of dis-

tributions S of our log-linear model. They are given as Sθ = {p ∈ S | θ(ω) =

0,∀ω ̸∈ S∪ {⊥}} with linear constraints on θ , called an e-flat submanifold, and Sη =

{p ∈S | η(ω) = η̂(ω),∀ω ∈ S} with linear constraints on η , called an m-flat submanifold.
Remember that the parameter domain S = A∪Z. The intersection Sθ ∩ Sη is always a
singleton and it always minimizes the KL divergence [5, Theorem 3], that is, it is the globally
optimal solution of our model.

Optimization is achieved by e-projection, which projects a probability distribution in
Sθ onto Sη . The e-projection is always convex optimization as the e-flat submanifold Sθ is
convex with respect to θ [6]. We can therefore use the standard gradient descent strategy to
optimize the log-linear model. The derivative of the KL divergence with respect to θ(s) is
known to be the difference between expectation parameters η [100, Theorem 2]:

∂

∂θ(s)
DKL(p̂∥ p) = η(s)− η̂(s) = ∆η(s), (4.11)

where η is defined in Equation (4.3), and the KL divergence DKL(p̂∥p) is minimized if and
only if η(s) = η̂(s), ∀s ∈ S. In our case of the structured sample space Ω, the gradient of the
mixing layer is given as

∂

∂θ(a)
DKL(p̂∥p) = η(a)− η̂(a) =

[
∑

x∈X,x≥a
p(x)+∑

z∈Z,z≥a
p(z)+ p(a)

]
−∑
x∈X,x≥z

p̂(x). (4.12)

Likewise, the gradient of the source layer is given as

∂

∂θ(z)
DKL(p̂∥p) = η(z)− η̂(z) =

[
∑

x∈X, x≥z
p(x)+ p(z)

]
−∑
x∈X, x≥z

p̂(x). (4.13)

From our definition (Equation (4.4)) of Ω, we have η(zkl) = η(zk′l) for all zkl,zk′l ∈ Z.
Therefore all elements in the source layer will learn the same value. This problem can
be avoided by removing some of partial orders between source and received layers. We
propose to systematically remove the partial order zi j ≤ xi j for all zi j ∈ Z and xi j ∈ X to
ensure η(zkl) ̸= η(zk′l) (see Figure 4.1), while other strategies are possible as long as a node
does not become fully disconnected, for example, random deletion of such orders. Using the
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Algorithm 1 Information Geometric BSS

1: Function IGBSS(P̂, S):
2: Initialize (θ(s))s∈S (randomly or θ(s) = 0)
3: repeat
4: Compute P using the current parameter (θ(s))s∈S
5: Compute (η(ω))s∈S from P
6: (∆η(ω))ω∈Z← (η(ω))ω∈Z− (η̂(ω))ω∈Z
7: (∆η(ω))ω∈A← (η(ω))ω∈A− (η̂(ω))ω∈A
8: Compute the Fisher information matrix for source layer GZ and the mixing layer GA
9: (θ(ω))ω∈Z← (θ(ω))ω∈Z−G−1

Z (∆η(ω))ω∈Z
10: (θ(ω))ω∈A← (θ(ω))ω∈A−G−1

A (∆η(ω))ω∈A
11: until convergence of (θ(s))s∈S
12: End Function

above results, gradient descent can be directly applied for the convex optimization problem
and can solve our e-projection. However, this may need a large number of iterations to reach
convergence. To reduce the number of iterations, we propose to use natural gradient [7]
which is a second-order optimization approach. The natural gradient is an instance of the
Bregman algorithm applied to convex regions and is well known that it is able to converge
to the global optimal solution [22]. In our optimization problem, we are also able to find
the global optimal solution using natural gradient because the KL divergence is convex with
respect to θ . Let S= {s1,s2, . . . ,s|S|}. We formulate the natural gradient by vectorize θ and
η such that θ = [θ(s1), . . . ,θ(s|S|)]T and η = [η(s1), . . . ,η(s|S|)]T. In each step, the current
θ is updated to θ next by the formula ,

θ next = θ −G−1
∆η ,

where G = (gi j) ∈ R|S|×|S| is the Fisher information matrix such that

gi j =
∂η(si)

∂θ(s j)
= E

[
∂ log p(ω)

∂θ(si)

∂ log p(ω)

∂θ(s j)

]
= ∑

ω∈Ω, ω≥si, ω≥s j

p(ω)−η(s j)η(s j) (4.14)

This is obtained from Theorem 3 in [100].
Although the natural gradient requires much less iterations compared to the gradient

descent, inverting a matrix is computationally expensive and has a complexity of O(|S|3). In
IGBSS, the entries for the cross-layer interaction between the mixing layer and the source
layer are always gaz = gza = 0 for all a ∈ A and z ∈ Z. Hence they can be ignored in
optimization. Therefore, to improve the efficiency of optimization, we can separate the
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Table 4.1 Signal-to-Noise Ratio of the reconstructed data. (∗) Experimental results for
Figure 4.2. (†) Experimental results for Figure 4.3. The ± shows the standard deviation after
40 runs. Each run contains a different set of images and a new randomly generated mixing
matrix.

Root Mean Squared Error (RMSE) Signal-to-noise ratio (SNR) (units in dB)
Exp. Order IGBSS FastICA DL NMF IGBSS FastICA DL NMF

1
First∗ 0.252 ± 0.000 0.300 ± 0.089 0.394 ± 0.041 0.622 ± 0.000 12.588 ± 0.000 11.688 ± 4.829 6.810 ± 0.008 1.704 ± 0.000

Second 0.260 ± 0.000 0.285 ± 0.096 0.441 ± 0.080 0.662 ± 0.000 10.729 ± 0.000 12.353 ± 4.255 0.526 ± 0.448 -3.426 ± 0.000
Third† 0.252 ± 0.000 0.260 ± 0.111 0.362 ± 0.030 0.612 ± 0.000 12.588 ± 0.000 12.922 ± 5.590 1.471 ± 0.358 0.039 ± 0.000

2
First 0.133 ± 0.000 0.284 ± 0.064 0.474 ± 0.067 0.591 ± 0.000 14.215 ± 0.000 11.218 ± 1.964 2.098 ± 2.140 -0.940 ± 0.000

Second 0.256 ± 0.000 0.263 ± 0.066 0.576 ± 0.008 0.684 ± 0.000 10.612 ± 0.000 11.986 ± 2.157 -1.589 ± 0.269 -3.675 ± 0.000
Third 0.282 ± 0.000 0.239 ± 0.056 0.593 ± 0.007 0.665 ± 0.000 9.346 ± 0.000 11.475 ± 2.145 -2.274 ± 0.227 -4.073 ± 0.000

3
First 0.155 ± 0.000 0.699 ± 0.047 0.478 ± 0.121 0.628 ± 0.000 11.285 ± 0.000 10.785 ± 2.176 1.448 ± 4.249 0.628 ± 0.000

Second 0.200 ± 0.000 0.280 ± 0.049 0.515 ± 0.007 0.709 ± 0.000 10.862 ± 0.000 10.171 ± 2.353 0.529 ± 0.228 -5.579 ± 0.000
Third 0.203 ± 0.000 0.239 ± 0.056 0.536 ± 0.006 0.682 ± 0.000 11.075 ± 0.000 11.041 ± 2.708 -0.244 ± 0.185 -4.961 ± 0.000

update steps in the source layer and the mixing layer:

(θnext(ω))ω∈Z = (θ(ω))ω∈Z−G−1
Z (∆η(ω))ω∈Z, (4.15)

(θnext(ω))ω∈A = (θ(ω))ω∈A−G−1
A (∆η(ω))ω∈A, (4.16)

where G−1
Z and G−1

A are the Fisher information matrix for the source layer and mixing layer,
respectively. They are constructed by assuming all other parameters are fixed. This approach
reduces the complexity of the model to O(|Z|3+|A|3). In most practical cases, the size
of |Z| is much greater than |A|. This implies that the complexity of the model does not
increase significantly if we include higher-order feature interactions. The full Algorithm
using natural gradient is given in Algorithm 1. The complexity to compute Q in Algorithm 1
Line 4 is O(|Ω||S|). The complexity to compute ∆η in Algorithm 1 Line 6 and Line 7 is
O(|Z|)+O(A) = O(|S|). Therefore the total complexity of the model for each iteration is
O(|Z|3+|A|3+|Ω||S|).

4.3 Experiments

We empirically examine the effectiveness of IGBSS to perform BSS using real-world datasets
for an affine transformation and higher-order interactions between signals. All experiments
were run on CentOS Linux 7 with Intel Xeon CPU E5-2623 v4 and Nvidia QuadroGP100.

4.3.1 Blind Source Separation for Affine Transformations on Images

We demonstrate the effectiveness of our model. In our experiments, we use three benchmark
images widely used in computer vision from the University of Southern California’s Signal



4.3 Experiments 45

(a) Source (b) Received (c) IGBSS (d) FastICA (e) NMF (f) DL

Fig. 4.2 First-order interaction experiment. Number of source signal: 3, order of interaction:
1, Number of mixed signal: 3.

(a) Source (b) Received (c) IGBSS (d) FastICA (e) NMF (f) DL

Fig. 4.3 Higher-order interaction experiment. Number of source signal: 3, order of interaction:
3, Number of mixed signal: 3.
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and Image Processing Institute (USC-SIPI)3, which include “airplane (F-16)”, “lake” and
“peppers”. Each image is standardized to have 32x32 pixels with red, green and blue color
channels with integer values between 0 and 255 to represent the intensity of each pixel. These
images shown in Figure 4.2a are the source signal Z which are unknown to the model. They
are only used as ground truth to evaluate the model output. The equation X = AZ is used to
generate the received signal X by randomly generating values for a mixing matrix A using
the uniform distribution which generates real numbers between 1 and 6. The images are then
rescaled to integer values within the range between 0 and 255. The received signal X, which
is the input to the model, is the three images shown in Figure 4.2b. The three images for
the mixed signal may look visually similar, however, they are actually superposition of the
source signal with different intensity. The objective of our model is to reconstruct the source
signal Z without knowing the mixing matrix A.

We compare our approach to FastICA with the logcosh function as the signal prior, DL
with constraint for positive dictionary and positive code, and NMF with the coordinate descent
solver and non-negative double singular value decomposition (NNDSVD) initialization [16]
with zero values replaced with the mean of the input.

Since BSS is an unsupervised learning problem, the order of the signal is not recovered.
We identify the corresponding signal by taking all permutations of the output and calculate
the minimum euclidean distance with the ground truth. The permutation which returns the
minimum error is considered the correct order of the image. The scale of the output is also
not recovered, we have used min-max normalize the output of each model using

znorm =
zout−min(zout)

max(zout)−min(zout)
.

We visually inspect each of the model output and compare it to the ground truth. Our
proposed approach IGBSS is able to recover majority of the “shape” of the source signal,
while the intensity of each image appears to larger than the ground truth for all images.
Small residuals of each image can be seen on the other images. For instance, in the airplane
(F-16) image, there residuals from the lake image can be clearly seen. Compared to the
reconstruction of IGBSS with FastICA, DL and NMF, IGBSS performs significantly better
as all other approaches are unable to clearly separate the mixed signal. FastICA was unable
to provide a reasonable reconstruction with 3 mixed signal. To overcome this limitation of
FastICA, we randomly generated another column of the mixing matrix and append it to the
current mixing matrix to create 4 mixed signals as an input to FastICA to recover a more
reasonable signal.

3http://sipi.usc.edu/database/
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The root mean square error (RMSE) of the Euclidean distance and the signal-to-noise
ratio (SNR) between the reconstruction and the ground truth is calculated to quantify results
of each method. The SNR is computed by

SNRdB = 20log10
znorm

|(z− znorm)|
.

The full results are shown in Table 4.1 (top row for each experiment). In the table, we present
three experiments with different RGB images from USC-SIPI dataset, for each experiment
we generate a new mixing matrix, where the second and the third experiments uses images of
“mandrill”, “splash”, “jelly beans” and “mandrill”, “lake”, “peppers”, respectively. Ground
truth and resulting images for second and third experiments are presented in Supplement. Our
results clearly show that IGBSS is superior to other methods, that is, IGBSS has consistently
produced the lowest RMSE error for every experiment. When looking at the SNR ratio, our
model has produce the highest SNR for majority of the cases and is always able to recover
the same result after each run.

4.3.2 Blind Source Separation with Higher-Order Feature Interactions

We demonstrate the ability of BSS for our model to include higher-order feature interactions
in BSS. We use the same benchmark images in the standard BSS as the source signal Z for
our experiment. We generate the higher-order feature interactions of the received signal by
using the multiplicative product of the source signal. That is,

xlm =
N

∑
n=1

alnznm+
N

∑
n=1

alnznmznm′+
N

∑
n=1

alnznmznm′znm′′+· · ·+
N

∑
n=1

alnznmznm′ . . .znm′···′.

All the other known approaches take into account only first order interactions (that is,
affine transformation) between features. Differently, our model can directly incorporate
the higher-order features as we do not have any assumption of the affine transformation.
Figure 4.3 shows experimental results for the higher-order feature experiment. Our approach
IGBSS shows superior reconstruction of the source signal to other approaches. All the other
approaches except for NMF is able to achieve reasonable reconstruction. NMF is able to
recover the “shape” of the image, however, unlike IBSS, NMF is a degenerate approach, so it
is unable to recover all color channels in the correct proportion, creating discoloring for the
image which is clearly shown in the SNR values. Since the proportion of the intensity of the
pixel is not recovered. In terms of the RMSE shown in Table 4.1, IGBSS again shows the
best results for both second- and third-order interactions of signals across three experiments.
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(a) Source signal (ground truth)
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(b) Received signal (input)
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(c) Recovery for sinusoidal function
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(d) Recovery for sign function
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(e) Recovery for sawtooth function

Fig. 4.4 Time Series Signal Experiment. First column represents first-order experiments,
second column represents second-order experiments and third column represents third-order
experiments.
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Table 4.2 Quantitative results for time-series separation experiment. The ± shows the
standard deviation after 40 runs.

(a) Root Mean Squared Error (RMSE)

Order IGBSS (min-max) IGBSS (exp) FastICA

First 0.702 ± 0.000 0.703 ± 0.000 0.414 ± 0.286
Second 0.921 ± 0.000 0.921 ± 0.000 1.700 ± 0.167
Third 0.967 ± 0.000 0.961 ± 0.000 1.388 ± 0.178

(b) Signal-to-noise (SNR) (units in dB)

Order IGBSS (min-max) IGBSS (exp) FastICA

First 3.596 ± 0.000 3.600 ± 0.000 15.391 ± 3.813
Second 0.291 ± 0.000 0.042 ± 0.000 -5.803 ± 1.124
Third 0.340 ± 0.000 0.128 ± 0.000 -3.427 ± 1.249

4.3.3 Higher-Order Interactions in Time Series Data Analysis

We demonstrate the effective of our model on time series data. In our experiments, we create
three signals with 500 observations each using the sinusoidal function, sign function, and
the sawtooth function. The synthetic data simulates typical signals from a wide range of
applications including audio, medical and sensors. We randomly generate a mixing matrix
by drawing from a uniform distribution with values between 0.5 and 2. In our experiment,
we provide comparison of using both min-max normalization and exponential kernel as a
pre-processing step and compare our approach with FastICA.

Experimental results are illustrated in Figure 4.4. These results show that IGBSS is
superior to all the ICA approaches because it is able to recover both the shape of the signal
and the sign of the signal, while all the other ICA approaches are only able to recover the
shape of the signal and are unable to recover the sign of the signal. This means that ICA
could recover a flipped signal. We have paired the recovered signal of ICA with the ground
truth by finding the signal and sign with the lowest RMSE error. In any practical application,
this is not possible for ICA because the latent signal is unknown. Through visual inspection,
IGBSS is able to recover all visual signals with high accuracy, while FastICA is only able
to recover the first-order interaction and it is unable to produce a reasonable recovery for
second- and third-order interactions. In addition to our visual comparison, we have also
performed a quantitative analysis on the experimental results using RMSE error with the
ground truth. Results are shown in Table 4.2. FastICA has shown to have better performance
for First-Order interactions. However, for second- and third-order SNR results for FastICA
is unable to recover a reasonable signal because the noise is more dominant. IGBSS has
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Fig. 4.5 Experimental analysis of the scalability of number of parameters and higher-order
features in the model for both natural gradient approach and gradient descent

shown superior performance and is able to recover the signal for second- and third-order
interactions with better scores for both RMSE and SNR.

4.3.4 Runtime Analysis

In our experiment, we used a learning rate of 1.0 for gradient descent. Although the time
complexity for each iteration of natural gradient is O(|Z|3+|A|3+|Ω||S|), which is larger
than O(|Ω||S|2) for gradient descent, natural gradient is able to reach convergence faster
because it is quadratic convergence and requires significantly less iterations compared to
gradient descent, which linearly converges. Increasing the size of the input will increase
the size of |Ω| only, while the number of parameters |Z|, |A| remain this same. Since the
complexity of natural gradient is linear with respect to the size |Ω| of the input, increasing the
size of the input is unlikely to increase the runtime significantly. Our experimental analysis
in Figure 4.5 supports this analysis: our model scales linearly for both natural gradient and
gradient descent when increasing the order of interactions in our model. This is because
for practical application it is unlikely that |A|> |Z|. The different between the runtime for
natural gradient and gradient descent becomes larger as the order of interactions increased.
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4.4 Summary

We have proposed a novel blind source separation (BSS) method, called Information Ge-
ometric Blind Source Separation (IGBSS). We have formulated our approach using the
information geometric formulation of the log-linear model, which enables us to introduce a
hierarchical structure into its sample space to achieve BSS. We have theoretically shown that
IGBSS has desirable properties for BSS such as unique recover of source signals. It solves
the convex optimization problem by minimizing the KL divergence from mixed signals to
source signals to find the global optimal solution.

We have then experimentally shown that IGBSS recovers images and signals closer
to the ground truth than independent component analysis (ICA), dictionary learning (DL)
and non-negative matrix factorization (NMF). Thanks to the flexibility of the hierarchical
structure, IGBSS is able to separate signals with complex interactions such as higher-order
interactions. Our model is superior to all the other approach because it is a non-degenerate
approach and is also able to recover the sign of the signal.

Our work has provided a new and novel formulation for BSS, which is supported by
strong theoretical guarantees and experimental results to provide a better recovery of the
source signal. Our approach is flexible and requires less assumptions than all alternative
approaches, hence it can be applied to various real world applications such as medical
imaging, signal processing, and image processing.





CHAPTER 5

Estimating Higher-Order Functions in Poisson Process

This chapter investigates using information geometric projects to formulate an efficient
approach to estimating the higher-order intensity function in a multivariate Poisson process.
A Poisson Process is a unsupervised machine learning model that is used for a series of
discrete event where the average time between events is known, but the exact timing of events
is random. This Chapter is to use concepts presented in Chapter 3 to estimate higher-order
intensity functions in a multivariate Poisson processes by projecting observations into lower
dimensional space.

This Chapter is organized as follows: we first provide an introduction to multivariate
Poisson processes, we then outline the connection between Poisson processes and Generalized
Additive Models (GAMs). This is then followed by our information geometric approach to
estimate higher-order functions by using observations projected into lower dimensions. We
then empirically demonstrate our models capability to estimate the higher-order intensity
function.

5.1 Introduction

The Poisson process is a counting process used in a wide range of disciplines such as spatial-
temporal sequential data in transportation [111, 112], finance [45], ecology [105], and the
study of violent crimes [102] to model the arrival rate by learning an intensity function. For
a given time interval, the integral of the intensity function represents the average number of
events occurring in that interval.



54 Estimating Higher-Order Functions in Poisson Process

The intensity function can be generalized to multiple dimensions. However, for most
practical applications, learning the multi-dimensional intensity function becomes a chal-
lenge because of the sparse observations. Despite the recent advances of Poisson processes,
most current Poisson process models are unable to learn the intensity function of a multi-
dimensional Poisson process. Our research question is, “Are there any good ways of approxi-
mating the high dimensional intensity function?” Our proposed model, the Additive Poisson
Process (APP), provides a novel solution to this problem.

Throughout this paper, we will use a running example in a spatial-temporal setting. Say
we want to learn the intensity function for a taxi to pick up customers at a given time and
location. For this setting, each event is multi-dimensional; that is, (xi,yi,Wi, ti)N

i=1, where a
pair of x and y represents two spatial coordinates, W represents the day of the week, and t
represents the time of the event. For any given location or time, we can expect at most a
few pick-up events, which makes it difficult for any model to learn the low-valued intensity
function. Figure 5.2b visualizes this problem. In this problem setup, if we would like to learn
the intensity function at a given location (x,y) and day of the week W , the naïve approach
would be to learn directly from the observation at (x,y,W ). This would be extremely difficult
because there could be very few events for a given location and day.

However, there is useful information in lower-dimensional space; for example, the
marginalized observations at the location (x,y) across all days of the week, or on the day W
at all locations. This information can be included into the model to improve the estimation of
the joint intensity function. Using the information in lower-dimensional space provides a
structured approach to include prior information based on the location or day of the week to
improve the estimation of the joint intensity function. For example, a given location could
be a shopping center or a hotel, where it is common for taxis to pick up passengers, and
therefore we expect more passengers at this location. There could also be additional patterns
that could be uncovered based on the day of the week. We can then use the observations of
events to update our prior knowledge of the intensity function.

Previous approaches, such as kernel density estimation (KDE) [84], are able to learn the
joint intensity function by using information in lower dimensions. However, KDE suffers
from the curse of dimensionality, which means that it requires a large size of samples to
build an accurate model. In addition, the complexity of the model expands exponentially
with respect to the number of dimensions, which makes it infeasible to compute. Bayesian
approaches, such as using a mixture of beta distributions with a Dirichlet prior [52] and
Reproducing Kernel Hilbert Space (RKHS) [31], have been proposed to quantify the uncer-
tainty for the intensity function. However, these approaches are often non-convex, making it
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difficult to obtain the globally optimal solution. Besides, if observations are sparse, it is hard
for these approaches to learn a reasonable intensity function.

In this paper, we propose a novel framework to learn the higher-order interaction effects
of intensity functions in Poisson processes. Our model combines the techniques introduced
by Luo and Sugiyama [65] to model higher-order interactions between Poisson processes
and by Friedman and Stuetzle [34] in generalized additive models to learn the joint intensity
function using samples in a lower dimensional space. Our proposed approach is to decompose
a multi-dimensional Poisson process into lower-dimensional representations. For example,
we have points (xi)

N
i=1 in the x-dimension, (yi)

N
i=1 in the y-dimension, and (ti)N

i=1 in the time
dimension. Such data in the lower-dimensional space can be used to improve the estimation
of the joint intensity function. This is different from the traditional approaches where only
the joint occurrence of events is used to learn the joint intensity.

We first show the connection between generalized additive models and Poisson processes,
and then provide the connection between generalized additive models and the log-linear
model [3], which has a well-established theoretical background in information geometry [6].
We draw parallels between the formulation of the generalized additive models and the
binary log-linear model on a partially ordered set (poset) [100]. The learning process in our
model is formulated as a convex optimization problem to arrive at a unique optimal solution
using natural gradient, which minimizes the Kullback-Leibler (KL) divergence from the
sample distribution in a lower-dimensional space to the distribution modeled by the learned
intensity function. This connection provides remarkable properties to our model: the ability
to learn higher-order intensity functions using lower-dimensional projections, thanks to the
Kolmogorov-Arnold representation theorem. This property makes it advantageous to use our
proposed approach for cases where there are no observations, missing samples, or low event
rates. Our model is flexible because it can capture the interaction effects between events in
a Poisson process as a partial order structure in the log-linear model and the parameters of
the model are fully customizable to meet the requirements of the application. Our empirical
results show that our model effectively uses samples projected onto a lower dimensional
space to estimate the higher-order intensity function. More importantly, our model is also
robust to various sample sizes.

5.2 Formulation

We start this section by introducing the technical background in the Poisson process and
its extension to a multi-dimensional Poisson process. We then introduce the Generalized
Additive Model (GAM) and its connection to the Poisson process. This is followed by



56 Estimating Higher-Order Functions in Poisson Process

presenting our novel framework, called Additive Poisson Process (APP), which is our main
technical contribution and has a tight link to the Poisson process modeled by GAMs. We
show that the learning of APP can be achieved via convex optimization using natural gradient.

5.2.1 Poisson Process

The Poisson process is characterized by an intensity function λ :RD→ R, where we assume
D processes. An inhomogeneous Poisson process is an extension of a homogeneous Poisson
process, where the arrival rate changes with time. The process with time-changing intensity
λ (t) is defined as a counting process N(t), which has an independent increment property.
For any time t ≥ 0 and infinitesimal interval δ ≥ 0, the probability of events count is

p(N(t +δ )−N(t) = 0) = 1−δλ (t)+o(δ )

p(N(t +δ )−N(t) = 1) = δλ (t)+o(δ )

p(N(t +δ )−N(t)≥ 2) = o(δ )

where o(·) denotes little-o notation [27]. Given a realization of timestamps t1, t2, . . . , tN with
ti ∈ [0,T ]D from an inhomogeneous (multi-dimensional) a Poisson process can be used to
learn the intensity function λ (t) of the events. Each ti is the time of occurrence for the i-th
event across D dimensions and T is the observation duration. The likelihood for the Poisson
process [27] is given by

p
(
{ti}N

i=1 | λ (t)
)
= exp

(
−
∫

λ (t)dt
) N

∏
i=1

λ (ti) , (5.1)

where t = [t(1), . . . , t(D)] ∈ RD. We define the functional prior on λ (t) as

λ (t) := g( f (t)) = exp( f (t)) . (5.2)

The function g(·) is a positive function to guarantee the non-negativity of the intensity which
we choose to be the exponential function, and our objective is to learn the function f (·). The
log-likelihood of the multi-dimensional Poisson process with the functional prior is described
as

log p
(
{ti}N

i=1 |λ (t)
)
=

N

∑
i=1

f (ti)−
∫

exp( f (t))dt. (5.3)
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In the following sections, we introduce the generalized additive models and propose to model
it by the log-linear model to learn f (t) and the normalizing term (

∫
exp( f (t))dt).

5.2.2 Generalized Additive Model

In this section, we present the connection between Poisson processes with the Generalized
Additive Model (GAM) proposed by Friedman and Stuetzle [34]. The GAM projects higher-
dimensional features into lower-dimensional space to apply smoothing functions to build
a restricted class of non-parametric regression models. GAM is less affected by the curse
of dimensionality compared to directly using smoothing in a higher-dimensional space. For
a given set of processes J ⊆ [D] = {1, . . . ,D}, the traditional GAM using one-dimensional
projections is defined as

logλJ(t) = ∑
j∈J

f j(t( j))−βJ.

with some smoothing function f j.
In this paper, we extend it to include higher-order interactions between features in GAM

by introducing terms that represent the multiplicative product between events. The k-th order
GAM is defined as

logλJ(t) = ∑
j∈J

f{ j}(t
( j))+∑

j1, j2∈J
f{ j1, j2}(t

( j1), t( j2))+ · · ·+∑
j1,..., jk∈J

f{ j1,..., jk}(t
( j1), . . . , t( jk))−βJ

= ∑
I⊆J, |I|≤k

fI(t(I))−βJ, (5.4)

where t(I) denotes the subvector (t( j)) j∈I of t with respect to I ⊆ [D].
The definition of the additive model is in the same form as Equation (5.3). In particular,

if we compare Equation (5.3) and (5.4), we can see that the smoothing function f in (5.3)
corresponds to the right-hand side of (5.4).

Learning of a continuous function using lower-dimensional projections is well known
because of the Kolmogorov-Arnold representation theorem, which states that:

Theorem 5 (Kolmogorov–Arnold Representation Theorem [18, 51]). Any multivariate
continuous function can be represented as a superposition of one–dimensional smooth
functions; that is, f (t1, . . . , tn) = ∑

2n+1
q=1 fq

(
∑

n
p=1 gq,p (tp)

)
.

Braun [17] showed that the GAM is an approximation to the general form presented
in Kolmogorov-Arnold representation theorem by replacing the range q ∈ {1, . . . ,2n+1}
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with I ⊆ J and the inner function gq,p by the identity if q = p and zero otherwise, yielding
f (t) = ∑I⊆J fI(t(I)).

Interestingly, the canonical form for additive models in Equation (5.4) can be rearranged
to be in the same form as Kolmogorov-Arnold representation theorem. By letting f (t) =
∑I⊆J fI(t(I)) = g−1(λ (t)) and g(·) = exp(·), we have

λJ(t) =
1

exp(βJ)
exp
(
∑I⊆J fI

(
t(I)
))

∝ exp
(
∑I⊆J fI

(
t(I)
))

, (5.5)

where we assume fI(t(I)) = 0 if |I|> k for the k-th order model and 1/exp(βJ) is the nor-
malization term for the intensity function. Based on the Kolmogorov-Arnold representation
theorem, generalized additive models are able to learn the intensity of the higher-order inter-
action between Poisson processes by using projections into lower dimensional spaces. The
log-likelihood function for a kth-order model is obtained by substituting the Equation (5.4)
into Equation (5.1),

log p
(
{t}N

i=1|λ (t)
)
=

N

∑
i=1

exp

(
∑

I⊆J, |I|≤k
fI

(
t(I)
))
−β

′, (5.6)

where β ′ is a constant given by β ′ =
∫

λ (t)dt+∑I⊆J βJ . In the following section we will
detail a log-linear formulation that efficiently maximizes this log-likelihood equation. In the
following section we will propose a graph structure that arises from a partial order structure
to estimate the parameters in equation 5.6.

5.2.3 Additive Poisson Process

We introduce our key technical contribution in this section. We introduce a log-linear
formulation called the additive Poisson process to estimate the parameters for the higher-order
interactions in equation 5.6. We begin by discretizing the time window [0,T ] into M bins and
treat each bin as a natural number τ ∈ [M] = {1,2, . . . ,M} for each process. We assume that M
is predetermined by the user. First we introduce a structured space for the Poisson process to
incorporate interactions between processes. Let Ω = {(J,τ)|J ∈ 2[D] \ /0,τ ∈ [M]}∪{(⊥,0)}.
We define the partial order ≼ [28] on Ω as

(J,τ)≼ (J′,τ ′) ⇐⇒ J ⊆ J′ and τ ≤ τ
′, for each ω = (J,τ),ω ′ = (J′,τ ′) ∈Ω, (5.7)

and (⊥,0)≼ (J,τ) for all (J,τ) ∈Ω, which is illustrated in Figure 5.1. The relation J ⊆ J′

is used to model any-order interactions between Poisson processes [65] [6, Section 6.8.4]
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Fig. 5.1 Partial order structured sam-
ple space (Ω,≼) with D = 3. Each
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tion of the partial ordering.
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Fig. 5.2 (a) A visualisation of the truncated parameter
space to approximate the joint intensity function with
D = 4 and k = 2. (b) A visualization of the input
datasets, where the blue points represent events with
two spatial dimensions and one time dimension.

Algorithm 2 Additive Poisson Process (APP)

1: Function APP({ti}N
i=1, S, M, h):

2: Initialize Ω with the number M of bins
3: Apply Gaussian Kernel with bandwidth h on {ti}N

i=1 to compute p̂
4: Compute η̂ = (η̂s)s∈S from p̂
5: Initialize θ = (θs)s∈S (randomly or θs = 0)
6: repeat
7: Compute p using the current θ = (θs)s∈S
8: Compute η = (ηs)s∈S from p
9: ∆η ← η− η̂

10: Compute the Fisher information matrix G using Equation (5.11)
11: θ ← θ −G−1∆η

12: until convergence of θ = (θs)s∈S
13: End Function

and each τ in (J,τ) represents the auto-regressive component (“time”) in our model with
⊥ denoting the least element in the partial order structure. Each node ω in the poset graph
structure1 represents the state of the sample space and the arrows represent the partial order
relationship between two nodes2; that is, if ω → ω ′, then ω ≼ ω ′.

Intuitively, the greatest node in J (in Figure 5.1 it is ({1,2,3},τ) for all τ ∈ [M]) represents
the multivariate Poisson process. Other nodes represent projections into lower-dimensional

1In information geometry, this is a hypergraph which has a simplicial complex structure Ay et al. [10,
Section 2.9].

2This graph structure should not be confused with the graph structure studied in graphical models, where the
nodes typically represent a random variable and the arrows represent the relationship between the two random
variables.
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space that correspond to the marginalized observations; for example, {{1},{2},{3}} and
{{1,2},{1,3},{2,3}} represent the first- and second-order processes. Using our example in
the introduction, where we wanted to estimate the intensity function of a pick-up event of
a taxi, {1},{2},{3} represents (x,y), the two spatial dimensions, and the day of the week
W and τ could represent the time dimension in each day. We can then update our prior
knowledge to model the second-order intensity function by using observations of the second
order events. For example, {1,2},{1,3},{2,3} represents an event occurring at {x,y},
{x,W}, and {y,W}. We can then continue this process to an arbitrary order of interactions.
Later on in this section we introduce the mathematics to estimate the higher-order function
using a restricted number of lower-dimensional projections.

The domain of τ can be generalized from [M] to [M]D to take different time stamps into
account, while in the following we assume that observed time stamps are always the same
across processes for simplicity. Our experiments in the next section demonstrate that we
can still accurately estimate the density of processes. Our model can be applied not only to
time-series data, but to any sequential data.

On any set equipped with a partial order, we can introduce a log-linear model [100]. Let
us assume that a parameter domain S⊆Ω is given. For a partially ordered set (Ω,≼), the
log-linear model with parameters (θs)s∈S is introduced as,

log p(ω;θ) = ∑s∈S 1[s≼ω]θs−ψ(θ), (5.8)

for each ω ∈Ω, where 1[·] = 1 if the statement in [·] is true and 0 otherwise, and ψ(θ) ∈ R
is the partition function uniquely obtained as,

ψ(θ) = log∑ω∈Ω
exp(∑s∈S 1[s≼ω]θs ) =−θ(⊥,0).

A special case of this formulation coincides with the density function of the Boltzmann
machines [101, 65].

Here there is a clear correspondence between the log-linear formulation and that in
the form of Kolmogorov-Arnold representation theorem in Equation (5.5) if we rewrite
Equation (5.8) as

p(ω;θ) =
1

expψ(θ)
exp
(
∑s∈S 1[s≼ω]θs

)
∝ exp

(
∑s∈S 1[s≼ω]θs

)
. (5.9)

We call this model with (Ω,≼) defined in Equation (5.7) the additive Poisson process, which
represents the intensity λ as the joint distribution across all possible states. The intensity
λ of the multi-dimensional Poisson process given via the GAM in Equation (5.5) is fully
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modeled (parameterized) by Equation (5.8) and each intensity fI(·) is obtained as θ(I,·). To
consider the k-th order model, we consistently use the parameter domain S, given as,

S= {(J,τ) ∈Ω | |J|≤ k} ,

where k is an input parameter to the model that specifies the upper bound of the order of
interactions. This means that θs = 0 for all s /∈ S. Note that our model is well-defined for any
subset S⊆Ω and the user can use an arbitrary domain in applications. A visualization of the
truncated parameter space is shown in Figure 5.2a.

For a given J and each bin τ with ω = (J,τ), the empirical probability p̂(ω), which
corresponds to the input observation, is given as

p̂(ω) =
1
Z ∑

I⊆J
σI(τ), Z = ∑

ω∈Ω

p̂(ω), σI(τ) :=
1

NhI

N

∑
i=1

K

(
τ(I)− t(I)i

hI

)
(5.10)

for each discretized state ω = (J,τ), where τ = (τ, . . . ,τ) ∈ RD. The function σI performs
smoothing on time stamps t1, . . . , tN , which is the kernel smoother proposed by Buja et al.
[19]. The function K is a kernel and hI is the bandwidth for each projection I ⊆ [D]. We
use the Gaussian kernel as K to ensure that probability is always nonzero, meaning that the
definition of the kernel smoother coincides with the kernel estimator of the intensity function
proposed by Schäbe [90].

5.2.4 Optimization

Given an empirical distribution p̂ defined in Equation (5.10), the task is to learn the parameter
(θs)s∈S such that the distribution via the log-linear model in Equation (5.8) is as close to p̂ as
much as possible. Let us define SS = {p | θs = 0 if s ̸∈ S}, which is the set of distributions
that can be represented by the log-linear model using the parameter domain S. Then the
objective function is given as minp∈SS

DKL(p̂, p), where DKL(p̂, p) = ∑ω∈Ω p̂ log(p̂/p) is
the KL divergence from p̂ to p. In this optimization, let p∗ be the learned distribution from
the sample with infinitely large sample size and let p be the learned distribution for each
sample. Then we can lower bound the uncertainty (variance) E[DKL(p∗, p)] by |S|/2N [11].

Thanks to the well-developed theory of information geometry [6] for the log-linear
model [8], it is known that this problem can be solved by e-projection, which coincides with
the maximum likelihood estimation and is always convex optimization [6, Chapter 2.8.3].
The gradient with respect to each parameter θs is obtained by (∂/∂θs)DKL(p̂, p) = ηs− η̂s,
where ηs = ∑ω∈Ω 1[ω≽s]p(ω). The value ηs is known as the expectation parameter [100]
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and η̂s is obtained by replacing p with p̂ in the above equation. If η̂s = 0 for some s ∈ S, we
remove s from S to ensure that the model is well-defined.

Let S= {s1, . . . ,s|S|} and θ = [θs1, . . . ,θs|S|]
T , η = [ηs1, . . . ,ηs|S|]

T . We can always use
the natural gradient [7] as the closed form solution of the Fisher information matrix is always
available [100]. The update step is θ next = θ −G−1(η− η̂), where the Fisher information
matrix G is obtained as

gi j =
∂

∂θsi∂θs j

DKL(p̂, p) = ∑
ω∈Ω

1[ω≽si]1[ω≽s j]p(ω)−ηsiηs j . (5.11)

Theoretically the Fisher information matrix is numerically stable to perform a matrix in-
version. However, computationally, floating point errors may cause the matrix to become
indefinite. To overcome this issue, a small positive value is added along the main diagonal of
the matrix. This technique is known as jitter and it is used in areas like Gaussian processes to
ensure that the covariance matrix is computationally positive semi-definite [75].

The pseudocode for APP is shown in Algorithm 2. The time complexity of computing line
7 is O(|Ω||S|). This means when implementing the model using gradient descent, the time
complexity of the model is O(|Ω||S|2) to update the parameters in S for each iteration. For
natural gradient, the cost of inverting the Fisher information matrix G is O(|S|3); therefore,
the time complexity to update the parameters in S is O(|S|3+|Ω||S|) for each iteration. The
time complexity for natural gradient is significantly higher higher because of the requirement
to invert the fisher information matrix; if the number of parameters is small, it is more
efficient to use natural gradient because it requires significantly fewer iterations. However, if
the number of parameters is large, it is more efficient to use gradient descent.

5.3 Experiments

We perform experiments using two-dimensional synthetic data, higher-dimensional synthetic
data, and real-world data to evaluate the performance of our proposed approach.

5.3.1 Experimental Setup

Our code is implemented in Python 3.7.5 with NumPy version 1.8.2 and the experiments are
run on Ubuntu 18.04 LTS with an Intel i7-8700 6c/12t with 16GB of memory. In experiments
with synthetic data, we simulate random events using Equation (5.1). We generate an intensity
function using a mixture of Gaussians, where the mean is drawn from a uniform distribution
and the covariance is drawn from an inverted Wishart distribution. The intensity function
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is then the density function multiplied by the sample size. The synthetic data is generated
by directly drawing a sample from the probability density function. An arbitrary number of
samples is drawn from the mixture of Gaussians. We then run our models and compare with
Kernel Density Estimation (KDE) [84], an inhomogeneous Poisson process whose intensity
is estimated by a reproducing kernel Hilbert space formulation (RKHS) [31], and a Dirichlet
process mixture of Beta distributions (DP-beta) [52]. The hyper-parameters M and h in our
proposed model are selected using grid search and cross-validation. For situations where a
validation set is not available, then h could be selected using a rule of thumb approach such
as Scott’s Rule [93] and M could be selected empirically from the input data by computing
the time interval of the joint observation.

5.3.2 Bandwidth Sensitivity Analysis

Our first experiment is to demonstrate the ability for our proposed model to learn an intensity
function from samples. We generate a Bernoulli process with probably of p = 0.1 to generate
samples for every 1 seconds for 100 seconds to create a toy problem for our model. This
experiment is to observe the behaviour of varying the bandwidth in our model. In Figure 5.3a,
we observe that applying no kernel, we learn the deltas of each individual observation. When
we apply a Gaussian kernel, the output of the model for the intensity function is much more
smooth. Increasing the bandwidth of the kernel will provide a wider and much smoother
function. Between the 60 seconds and 80 seconds mark, it can be seen when two observations
have overlapping kernels, the intensity function becomes larger in magnitude.

5.3.3 One Dimensional Poisson Process

A one dimensional experiment is simulated using Ogata’s thinning algorithm [78]. We
generate two experiments use the standard sinusoidal benchmark intensity function with
a frequency of 20π . The dense experiment has troughs with 0 intensity and peaks at 201
and the sparse experiment has troughs with 0 intensity and peaks at 2. Figure 5.3d shows
the experimental results of the dense case, our model has no problem learning the intensity
function. We compare our results using KL divergence between the underlying intensity
function used to generate the samples to the intensity function generated by the model.
Figure 5.3b shows that the optimal bandwidth is h = 1.
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Algorithm 3 Thinning Algorithm for non-homogenous Poisson Process

1: Function Thinning Algorithm (λ (t), T ):
2: n = m = 0, t0 = s0 = 0, λ̄ = sup0≤t≤T λ (t)
3: repeat
4: u∼ uniform(0,1)
5: w =− 1

λ̄
lnu {w∼ exponential(λ̄ )}

6: sm+1 = sm +w
7: D∼ uniform(0,1)
8: if D≤ λ (sm+1)

λ̄
then

9: tn+1 = sm+1
10: n = n+1
11: else
12: m = m+1
13: end if
14: if tn ≤ T then
15: return {tk}k=1,2,...,n
16: else
17: return {tk}k=1,2,...,n−1
18: end if
19: until sm ≤ T
20: End Function

5.3.4 Experiments on Two-Dimensional Processes

For our experiment, we use 20 Gaussian components and simulate a dense case with 100,000
observations and a sparse case with 1,000 observations within the time frame of 10 seconds.
We consider that a joint event occurs if the two events occur 0.1 seconds apart. Figure 5.4a
and Figure 5.4b compare the KL divergence between the first- and second-order models and
plots in Figure 5.5 are the corresponding intensity functions. In the first-order processes,
both first- and second-order models have the same performance. This is expected, as both
of the models can treat first-order interactions and are able to learn the empirical intensity
function exactly, which is the superposition of the one-dimensional projection of the Gaussian
kernels on each observation. For the second-order process, the second-order model performs
better than the first-order model because it is able to directly learn the intensity function
from the projection onto the two-dimensional space. In contrast, the first-order model must
approximate the second-order process using the observations from the first-order processes.
In the sparse case, the second-order model performs better when the correct bandwidth is
selected.

Table 5.1 compares our approach APP with other state-of-the-art approaches. APP
performs the best for first-order processes in both the sparse and dense experiments. Exper-
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Fig. 5.3 One dimensional experiments

iments for RKHS and DP-beta were unable to complete running within two days for the
dense experiment. In the second-order process, our approach was outperformed by KDE,
while the second-order APP was able to outperform both RKHS and DP-beta process for
both sparse and dense experiments. Figures 5.4a and 5.4b show that KDE is sensitive to
changes in bandwidth, which means that, for any practical implementation of the model,
second-order APP with a less sensitive bandwidth is more likely to learn a more accurate
intensity function when the ground truth is unknown.

5.3.5 Experiments on Higher-Dimensional Processes

We generate a fourth-order process to simulate the behavior of the model in higher dimensions.
The model is generalizable to higher dimensions, but it is difficult to demonstrate results for
processes higher than fourth order. For our experiment, we generate an intensity function
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Table 5.1 The lowest KL divergence from the ground truth distribution to the obtained
distribution on two types of single processes ([1] and [2]) and joint process of them ([1,2]).
APP-# represents the order of the Additive Poisson Process. Missing values mean that the
computation did not finish within two days.

Process APP-1 APP-2 KDE RKHS DP-beta

Dense
[1] 4.98e-5 4.98e-5 2.81e-4 - -
[2] 2.83e-5 2.83e-5 1.17e-4 - -

[1,2] 2.98e-2 1.27e-3 6.33e-4 4.09e-2 4.54e-2

Sparse
[1] 7.26e-4 7.26e-4 8.83e-4 1.96e-2 2.62e-3
[2] 2.28e-4 2.28e-4 2.76e-4 2.35e-3 2.49e-3

[1,2] 2.88e-2 1.77e-2 3.67e-3 1.84e-2 3.68e-2

Table 5.2 Negative test log-likelihood for the New York Taxi data. Single processes ([T] and
[W]) and joint process of them ([T,W]). APP-# represents the order of the Additive Poisson
Process.

Process APP-1 APP-2 KDE RKHS DP-beta

Jan
[T] 714.07 714.07 713.77 728.13 731.01
[W] 745.60 745.60 745.23 853.42 790.04

[T,W] 249.60 246.05 380.22 259.29 260.30

Feb
[T] 713.43 713.43 755.71 795.61 765.76
[W] 738.66 738.66 773.65 811.34 792.10

[T,W] 328.84 244.21 307.86 334.31 326.52

Mar
[T] 716.72 716.72 733.74 755.48 741.28
[W] 738.06 738.06 816.99 853.33 832.43

[T,W] 291.20 246.19 289.69 328.47 300.36

using 50 Gaussian components and draw a sample with the size of 107 for the dense case and
that with the size of 105 for the sparse case. We consider the joint event to be the time frame
of 0.1 seconds.

We were not able to run comparison experiments with other models because they are
unable to learn when there are no or few joint observations in third- and fourth-order processes.
In addition, the time complexity is too high to learn from joint observations in first- and
second-order processes because all the other models have their time complexity proportional
to the number of observations. The time complexity for KDE is O(ND) for the dimensionality
with D, while DP-beta is O(N2K), where K is the number of clusters, and RKHS is O(N2)

for each iteration with respect to the sample size N, where DP-beta and RKHS are applied
directly on the joint observation as they cannot use the projections in lower-dimensional
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(a) Dense observations N = 100,000.

(b) Sparse observations, N = 1000.

Fig. 5.4 KL Divergence for second-order Poisson process. The order of the model (color of
the line) represents the k-th order model, i.e., k = 1 (blue) and k = 2 (orange).

space. KDE is able to make an estimation of the intensity function using projections in
lower-dimensional space, but it was too computationally expensive to complete running
the experiment. By contrast, our model is more efficient because the time complexity is
proportional to the number of bins in our model. The time complexity of APP for each
iteration is O(|Ω||S|), where |Ω|= MD and |S|= ∑

k
c=1
(D

c

)
. Our model scales combinatorially

with respect to the number of dimensions. However, this is unavoidable for any model that
directly takes into account the high-order interactions. For practical applications, the number
of dimensions D and the order of the model k is often small, making it feasible to compute.

In Figure 5.6a, we observe similar behavior in the model, where the first-order processes
fit precisely to the empirical distribution generated by the Gaussian kernels. The third-order
model is able to period better on the fourth-order process. This is because the observation
shown in Figure 5.7a is largely sparse and learning from the observations directly may
overfit. A lower-dimensional approximation is able to provide a better result in the third-
order model. Similar trends can be seen in the sparse case, as shown in Figure 5.6b, where a
second-order model is able to produce better estimation in third- and fourth-order processes.
The observations are extremely sparse, as seen in Figure 5.7b, where there are only a few
observations or no observations at all to learn the intensity function.

5.3.6 Uncovering Common Patterns in the New York Taxi Dataset

We demonstrate the capability of our model on the 2016 Green Taxi Trip dataset3, which is a
open source dataset with a CC0: Public Domain licences. We are interested in finding the
common pick-up patterns across Tuesdays and Wednesdays. We define a common pick-up

3https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb
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(a) Dense observations, N = 1000, h = 0.4.

(b) Sparse observations, N = 100,000, h = 0.2.

Fig. 5.5 Intensity function of two dimensional processes. Dots represent observations. Left:
Represents marginalized observation of the first dimension. Middle: Represents marginalized
observation of the second dimension. Right: The joint observation of dimension 1 and 2.
The order of the model (color of the line) represents the k-th order model, i.e., k = 1 (blue)
and k = 2 (orange).

time to be within 1-minute intervals of each other between the two days. We have chosen to
learn an intensity function using the Poisson process for Tuesday and Wednesday and a joint
process for both of them. The joint process uncovers the common pick-up patterns between
the two days. We have selected to use the first two Tuesdays and Wednesdays in January
2016 as our training and validation sets and the Tuesday and Wednesday of the third week of
January 2016 as our testing set. We repeat the same experiment for February and March.

We show our results in Table 5.2, where we use the negative test log-likelihood as an
evaluation measure. APP-2 has consistently outperformed all the other approaches for the
joint process between Tuesday and Wednesday. In addition, for the individual process, APP-1
and -2 also showed the best result for February and March. These results demonstrate the
effectiveness of our model in capturing higher-order interactions between processes, which
is difficult for the other existing approaches.

5.4 Summary

We have proposed a novel framework, called Additive Poisson Process (APP), to learn the
intensity function of the higher-order interaction between Poisson processes using observa-
tions projected into lower-dimensional spaces. We formulated our proposed model using the
log-linear model and optimize it using information geometric structure of the distribution
space. We drew parallels between our proposed model and generalized additive model and
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(a) Dense observations, N = 107.

(b) Sparse observations, N = 105.

Fig. 5.6 KL Divergence for fourth-order Poisson process. We selected four representative
examples for our experimental results, full results available in the appendix. The line color
signifies the order of the model, i.e., k = 1 (blue), k = 2 (orange), k = 3 (green) and k = 4
(red).

showed the ability to learn from lower dimensional projections via the Kolmogorov-Arnold
representation theorem.

Our empirical results show the superiority of our method when learning the higher-order
interactions between Poisson processes and when there are no or extremely sparse joint
observations. Our model is also robust to varying sample sizes. Our approach provides a
novel formulation to learn the joint intensity function which typically has extremely low
intensity. There is enormous potential to apply APP to real-world applications, where higher
order interaction effects need to be modeled such as transportation, finance, ecology, and
violent crimes.
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(a) Dense observations, N = 107.

(b) Sparse observations, N = 105.

Fig. 5.7 Intensity function of higher dimensional processes. Dots represent observations. We
have selected four representative examples for our experimental results, full results available
in the appendix. The order of the model (color of the line) represents the k-th order model,
i.e., k = 1 (blue), k = 2 (orange), k = 3 (green) and k = 4 (red).



CHAPTER 6

Automatically Selecting Higher-Order Features
Using Dirichlet Process Priors

Chapter 3 explored the bias-variance trade-off when increasing the representational power
of machine models by introducing hidden nodes and higher-order feature interactions. In
this Chapter, we address the issue of model selection by exploring the feasibility to auto-
matically select the number of parameters in the model by using techniques in Bayesian
non-parametrics. We then demonstrate our proposed techniques to automatically select the
number of parameters in the model on infrastructure failure prediction to demonstrate the
capability of our approach in a real-world application.

In this Chapter, we first introduce the challenges faced in our application in infrastructure
failure prediction. We then present the related work and the preliminary models found in
literature. This is then followed by our proposed approach Hierarchical Dirichlet Process
Mixture of Hierarchical Beta process which is used as automatic feature selection for complex
real-world problems. We then demonstrate the capability of our proposed approach in real-
world applications to make failure predictions in a water supply network.

6.1 Introduction to Infrastructure Failure Prediction

Sparsity and noisy labels are undesirable characters which occur in many real-world datasets.
They are known to degrade the prediction performance of machine learning models. Sparsity
may arise intrinsically and/or extrinsically. For instance, high dimensionality of the feature
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space or label space, and a small number of observations are their respective examples. It
is easy to say that we can improve a model by providing more training data, but there are
many situations in which it is infeasible to do so. For example, there is not much historical
data of infrastructure failure available. Previously, clustering technique were used to gain
additional information from data points with similar characteristics. However, sparsity
and noisy labels degrade the quality of clusters which in turn also degrades the quality of
predictions [60]. Indeed, sparse prediction and noisy label problems are difficult to overcome
with a single dataset because there are simply not enough data to build a reliable model.
Previous solutions have been relying on the assistance from domain experts and using strong
assumptions in model construction [59]. Differently, we propose a multi-task learning
solution to automatically learn the model parameters for a group of tasks from multiple
domains. They can then be applied to a failure prediction model, such as hierarchical beta
process (HBP) [104].

HBP is a Bayesian non-parametric model (BNP) which is well suited to make sparse
predictions by using information obtained from identified clusters. However, HBP model
itself in its vanilla form is unable to assign data points to a cluster. In recent time, there
have been proposals to apply Dirichlet prior to create a generalised hierarchical beta process
(G-HBP) [38, 60] to automatically learn the model parameters. However, this method does
not overcome the sparsity issue because it is difficult to produce low variance clusters in
a sparse dataset. Moreover, it is also difficult to select the model parameters for each task.
Distinguishably, we propose a solution which uses a BNP approach to automatically select
the model parameters, which were previously selected by domain experts manually, by
learning the task for a subset of data. Specifically, we adapt hierarchical Dirichlet process
(HDP) [103] to form a multi-task learning framework to simultaneously learn the model
parameters and prediction tasks. Our proposed model is highly flexible which can be used
as a stand-alone transfer learning model for clustering sparse datasets. Alternatively, it
can be connected to HBP to form our proposed hierarchical Dirichlet process mixture of
hierarchical beta process (HDP-HBP) to learn the model parameters for a group of tasks to
make sparse predictions.

The data sparsity commonly occurs in infrastructure failure predictions [59]. The ro-
bustness of an infrastructure heavily depends on its components and there are many factors
which could contribute to the stability of the components. Some of the factors also exhibit
complex feature interactions. To account for all these factors, datasets for infrastructure
failure prediction tend to have a large feature space. Combined with a low failure rate in
critical infrastructure, it is often very difficult to obtain sufficient samples to use traditional
machine learning approaches for failure predictions.
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In our experiments, we applied our proposed model to make water pipe failure predictions
to demonstrate the capability of our proposed model in performing multi-task learning to
improve sparse predictions. Any improvement to prediction accuracy in infrastructure
preventive maintenance can have a material financial impact. Notably, American Society
for Civil Engineers estimated that the United States needs to invest $3.6 trillion by 2020 to
maintain its infrastructure [53]. Infrastructure failures could lead to significant social and
economic cost in a city, where a single failure could cost more than 10 times the maintenance
cost. Prioritising the correct water pipes to repair with a limited budget could have huge
financial savings by preventing financial loss from water pipe failure. Nevertheless, the
datasets which are available to make water pipe failure predictions are extremely sparse
because the feature space is large. Moreover, there is only a very short observation period
available and critical water main (CWM) have a low failure rate of about 0.5%. However,
despite the low failure rate, the failure of a single CWM could lead to major disruptions and
heavy financial losses in a society.

Predicting failure of CWM is very difficult to do because CWM components only makes
up 10% of a water pipe network. Due to low failure event rate and the small number of such
components in each network, it is very difficult to train a model with a single dataset without
taking any strong assumptions. Currently, most of these critical infrastructures are repaired
reactively. Our proposed multi-task learning method provides a solution by using additional
datasets supplied by other utility companies with different feature spaces to automatically
learn model parameters and tasks to make predictions for critical components. Note that a
task in our context of study is defined to be a group of pipes with the same subset of features
(i.e., a cluster). This subset of features is created by a Dirichlet Process (DP) to cluster on
features with similar failure rates. It is defined to be a task because they will have the same
model-parameters and hyper-parameters, but different observations when making the failure
prediction.

In this paper, we extend the theoretical analysis and provide additional empirical verifica-
tions to our recent work on multi-task learning for sparse failure prediction [62]. We organise
the rest of the paper as follows, Section 6.2 discusses related work in infrastructure failure
prediction and multi-task learning in hierarchical models. Section 6.4.1 outlines our proposed
model hierarchical Dirichlet process mixture model (HDPMM) for multi-task learning. We
combine HDPMM with our failure prediction model hierarchical beta process (HBP) to form
our sparse failure prediction model hierarchical Dirichlet process mixture of hierarchical
beta process (HDP-HBP). Section 6.5 provides the analysis for our experimental results.
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6.2 Related Work

This section provides an overview of the related work in infrastructure failure prediction and
in multi-task learning models using Bayesian non-parametric approach. Below is a summary
of some real-world implementations of failure predictions applying in different applications.

6.2.1 Empirical Bayes Method

A Bayesian approach to better handle sparsity and noisy label problems allows us to incorpo-
rate prior knowledge that have been obtained elsewhere to improve our model. The model
can also be constructed in hierarchical form and to approximate a fully Bayesian model
by placing prior distributions on the unknown parameters which required to be tuned. In
the traditional Bayesian approach, these parameters are often selected by domain experts
or tuned by machine learning experts via cross validation. However, with highly complex
interactions, sparse samples, noisy labels and sampling bias, parameter selection through
domain experts are no longer viable options. Empirical Bayes method provides a solution
to approximate the parameters of a fully Bayesian model in Bayesian hierarchical models
by using cross validation [14]. We propose an empirical Bayesian solution using multi-task
learning by incorporating data obtained from other domains to assist in parameter selection
for the model.

6.2.2 Multi-Task Learning in Hierarchical BNP Models

Multi-task learning is a special case of transfer learning, where the goal is to improve the
prediction accuracy by solving multiple learning tasks at the same time. The improvement
in performance is made by finding and exploiting commonalities across different tasks by
relaxing the independent and identically distributed (iid) assumption [80]. This can be
achieved through regularization or learning a common parameter in the model [110].

Hierarchical models are a natural way to formulate a multi-task learning framework.
Hierarchical models are able to apply a constraint to ensure that the distribution between the
domains learns a marginal probability distribution from a common parameter or prior [92].
For example, multi-task learning in Gaussian process (GP) a common kernel is learned to
share information between domains [15]. Dirichlet Process (DP) and Beta Process (BP)
have also been explored in multi-task learning by using it as a prior in hierarchical Bayesian
models [38, 109].

DPs and BPs are Bayesian non-parametric (BNP) models. DPs have been explored in a
number of areas such as Bayesian non-parametric mixture models, document analysis [103]
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and DNA sequence analysis [42]. While BPs have been explored extensively in survival
analysis [41] and factor analysis. They have shown to be highly flexible models which allow
the number of parameters to be driven by the structure of the dataset. Combining BNP
models with hierarchical models allow a model to have the flexibility to learn extremely
complex datasets.

Multi-task learning in DP and BP attempts to learn the parameters for a group of common
tasks. The parameters learnt by the DP and BP can then be applied to the prediction model to
perform each task. We use the multi-task learning techniques previously used in BNP and
apply it to HBP to formulate a solution which is able to simultaneously learn a group of tasks
along with the model parameters for failure prediction.

6.3 Learning Parameters via Bayesian Non-Parametrics

In this section we introduce two Bayesian non-parametric approaches, the beta process and
the Dirichlet process which we use to formulate a flexible solutions to learn the number
of parameters in the model based on a given dataset. We first introduce the stick breaking
process for both the Dirichlet process and the beta process, we then introduce the Chinese
restaurant process (CRP), which provides a more efficient realization of the Dirichlet process.

6.3.1 Stick-Breaking Process

The stick breaking process are realizations of the Dirichlet Process (DP) and Beta Process
(BP) so that it can be practically implemented. The stick-breaking process uses an analogy
where a unit length stick is broken in a way that it resembles a DP or a BP.

Dirichlet Process

The stick-breaking process can represent a DP, G∼ DP(α,H), where H is the base measure
and α is the concentration parameter [95]. The stick is broken using a beta distribution and
is assigned to an atom from the base distribution. The remaining part of the stick is used to
continue the process. The algebraic expression for this process is given by

π
′
k|α0,G0 ∼ Beta(1,α0) , φk|α0,G0 ∼ G0,

πk = π
′
k

k−1

∏
l=1

(
1−π

′
l
)
, G =

∞

∑
k=1

πkδφk ,
(6.1)



76
Automatically Selecting Higher-Order Features

Using Dirichlet Process Priors

where δ is the indicator function, φ represents the location, π are independent random
variables and k represents each cluster assignment. Often in literature, the notation π ∼
GEM(α0) is used to denote the stick-breaking realization of the DP. However, the stick-
breaking realization of DP is not computationally tractable because it is an infinite process
and requires to be truncated to be implemented. Later in Section 6.3.2, we introduce the
Chinese Restaurant Process (CRP) which is a more efficient realization of the DP.

Beta Process

The BP, H ∼ BP(c,B0) is defined as a Lévy process over a general space Ω with a random
measure B0. The BP can also be derived from the stick-breaking process. BP uses the part of
the stick which has been broken off to continue the process. This process is complementary
to the stick-breaking realization of the DP. This process can be represented as

H (ω) = ∑
i

πiδωi (ω) ,

πi ∼ Beta(cqi,c(1−qi)) ,

ωi ∼ B0,

(6.2)

where c is the concentration parameter, qi ∈ [0,1] is the mean parameter and B0 is the
discrete form of the base measure defined by B0 = ∑i qiδωi . The beta process can be used as
a natural prior to the Bernoulli process to make prediction on binary data.

6.3.2 Chinese Restaurant Process

The Chinese restaurant process (CRP) is a perspective on DP which uses the Pólya urn
scheme representation. The name CRP comes from the analogy used to explain the model.
Imagine a restaurant which has tables that can support an infinite number of customers. When
a customer (i.e., a new data point) enters the restaurant (i.e., the domain), the probability for
the new customer to be assigned to a table (i.e., the cluster) is proportional to the number
of customers sitting on that particular table. Since each table attracts a new customer
proportional to the number of customers on the table. The equation for CRP is given by

P(zi = a|z1, . . . ,zi−1) = CRP(γ)

=





na
N−1+γ

If k ≤ K
γ

N−1+γ
Otherwise,

(6.3)
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where na is the number of data points in each table, k is the cluster index in K, N is the total
number of customers in the restaurant and γ is the hyper-parameter controlling the probability
of the new customer sitting on a new table.

The CRP can be constructed in hierarchy of each other to create hierarchical Dirichlet
process (HDP) from a CRP perspective, this is a Chinese restaurant franchise (CRF) [103].
Explaining HDP with the same analogy as CRP, each customer enters restaurant franchise
with a shared menu (i.e., a list of dishes). At each table, one dish (i.e., model parameter)
is ordered from the menu and is shared among all customers who sit at that table. Each
restaurant can serve the same dish at different table, the same dish can be served at different
restaurants.

Both CRP and CRF are often used as priors for clustering and mixture models because
the exchangeability property provides a computational efficient method to solve DP.

6.4 Our Proposed Model for Sparse Predictions

This section presents our proposed model Hierarchical Dirichlet Process Mixture Model
(HDPMM) for model-parameter transfer. We then combine HDPMM with our failure
prediction model HDP to formulate our infrastructure failure prediction model Hierarchical
Dirichlet Process Mixture of Hierarchical Beta Process (HDP-HBP).

6.4.1 A Flexible Transfer Learning Framework

We propose to use hierarchical Dirichlet process mixture model (HDPMM) to perform the
clustering to group across domains. The aim of the HDPMM framework is to perform
cross domain clustering to find a better representation of the structure of the failure patterns
in a given network. This framework allows more data to learn the failure characteristics
of each cluster, to reduce the variance in learning the clusters. When using the clustering
information for prediction, the empirical expectation of each cluster should be closer to the
true expectation. This means that data points with low number of failure counts and low
number of observations are able to leverage on clusters with high number of failure counts
and high number of observations.

HDPMM is constructed from Dirichlet process (DP), where an explicit representation of
a draw is represented by G = ∑

∞
k=1 βkδφk , where φk is an independent random variable, δφk

is an atom located at φk and βk is the weight. This representation of DP becomes a flexible
transfer learning framework which is constructed by a HDPMM. The equations are given as



78
Automatically Selecting Higher-Order Features

Using Dirichlet Process Priors

follows
G0|α0,H ∼ DP(α0,H) ,

GD|γD,G0 ∼ DP(γD,G0) ,

zDi|Gd ∼ GD,

xDi|zDi ∼ F(xDi,zDi) ,

(6.4)

where D represents domain and z is an integer representing the cluster assignment. In
these equations, F is a likelihood function and G0 is the global base measure and GD is the
base measure for each domain. By inspecting the equation, H is a continuous base measure
for the hyper layer, so that G0 can draw discrete samples. The samples of G0 can be used as
a guide to set the same φk for GD. A plate diagram of the model is shown in Figure 6.1b.

6.4.2 Problem Definition Based on HBP Model

We formulate our model based on infrastructure failure prediction. Our example is based on
the water supply network infrastructure which is critical for any city. We start with a given
water pipe dataset, X =

{
xℓ j ∈ {0,1}

}
represents a sparse and noisy dataset with recorded

failure history for all water pipe ℓ in year j. When a failure occurs, only a small section
where the failure has occurred of the water pipe is repaired. The entire water pipe is not
replaced with a new asset (i.e., newly repaired pipe does not mean that it has a lower chance
of failure).

For CWM, the failure rate of these water pipes is extremely low (on average less than 0.5%
per year). Therefore an assumption has been made that the failures are independent from
each other, where the event of a failure is drawn from a Bernoulli process xℓ j ∼ BerP

(
πℓ j
)
.

πℓ j represents the predicted failure rate on a beta process which is a natural prior to the
Bernoulli process. The plate notation of the Hierarchical Beta Process (HBP) is shown in
Figure 6.1a and the algebraic formulation is given as follows

qk j ∼ Beta(c0q0,c0 (1−q0)) ,

πℓ j ∼ Beta
(
ck jqk j,ck j

(
1−qk j

))
,

xℓ j ∼ Ber
(
πℓ j
)
,

(6.5)

where c0 (concentration) and q0 (mean) are the hyper-parameters of the upper-layer of the
beta process. ck j and qk j are the latent parameters for the middle layer beta process. Each k
represents a cluster of features, where each feature combination represents a group of pipes
with the same features.
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Making a prediction directly from the beta-Bernoulli process P
(
πℓ j
∣∣xℓ j
)

will have a
high bias for sparse observations. HBP overcomes this issue by making a prediction for
πℓ j using the clustering information and the individual observation to reduce the bias in the
prediction, i.e., P

(
πℓ j
∣∣qk jX ,c0,q0

)
. However, HBP does not provide a method to learn qk j.

Previous approaches such as self-taught clustering [26], flexible grouping approach [64] and
stochastic block models [48] are all prone to learning a bias in the model parameter qk j in
sparse datasets.

Our proposed approach attempts to reduce the bias using multi-task learning by learn-
ing qk j from P

(
qk j
∣∣XT,{XS} ,c0,q0

)
, where T represents the target (sparse) domain and S

represents the source domain. An assumption used in multi-task learning is applied to the
marginal probability distribution to enforce that the source and target domains are equal.
Each task learnt in the model share a common parameter qk j. The next section will discuss
how we learn qk j using a multi-task learning framework to reduce the bias in the model by
learning the model parameters for a group of tasks.
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Fig. 6.1 Plate diagrams: (a) Hierarchical beta process (HBP), (b) Hierarchical Dirichlet
process mixture model constructed using Chinese restaurant process (CRP), and (c) Our
proposed hierarchical Dirichlet process mixture of hierarchical beta process (HDP-HBP).

6.4.3 Sharing Parameter Estimation with HDP-HBP model

We propose to use hierarchical Dirichlet process mixture model (HDPMM) to perform the
clustering to group across domains and use the HBP as the mixture component to make the
failure prediction. The aim of HDPMM framework is to perform cross domain clustering to
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find a better representation of the structure of the failure patterns in a given network, where

Θ∼ Beta(c0q0,c0 (1−q0)) , Θ = {θ1...∞} ;

Φ∼ DP(α0) , Φ = {φ1...∞}
t ∼Mul(Φ) ;

Ψd ∼ DP(γd) , Ψd ∼
{

ψd,1...∞
}

;

zdℓ ∼Mul(ψd) ;

qzdl = θt ,

πdℓ ∼ Beta(czdℓqzdℓ,czdℓ (1−qzdℓ)) ,

Xdℓ j ∼ Ber(πdℓ) .

(6.6)

Formulating the problem in this way allows HDP-HBP to have the ability to learn different
tasks from domains with different feature space X. In this formulation, each table in the CRP
represents a task. Each task to learn its own model parameter qk for its prediction function.
The dishes from the global menu provides a constraint for sparse data to prevent assignment
to new tables. Each domain has a parameter ck which controls contribution between the
beta-Bernoulli process and the group level from qk. This allows parameter ck to be used to
control the variance of the clustering.

We will use the analogy being used to explain the CRP’s representation of HDP (discussed
in section 6.3.2) to explain how the information is transferred as follows. Our approach treats
the denser domain as a restaurant which can assign new tables and add new dishes to the
global menu shared amongst the restaurants. Both the dense and sparse domains are able
to assign new dishes into the global menu. This gives the opportunity for both sparse and
dense domains to create new clusters. The amount of clusters created by each domain is
controlled by the concentration parameter. For this approach it is not required to know in
advance which domain is sparse and which domain is dense.

6.4.4 Inference Algorithm

The objective of the inference algorithm is a combination of both clustering and estimating
the latent feature rate in the target dataset. This can be seen as a maximum a posteriori (MAP)
estimation problem, i.e., P(z,q|XT,{XS} ,c0,q0,α0,ck, f (·)). Gibbs sampling is used to
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update the upper layer of the Dirichlet process (dish level), i.e.,

P(qk = θt |XT,{XS} ,α0,−qk,Θ) = CRP(α0)
P
(
xdl,xd,−l

∣∣qt ,ct
)

P(x−l|qt ,ct)

= CRP(α0)∏
ℓ∈l

P(xdl|qt ,ct)
(6.7)

where l are a set of data points belonging to the same cluster. The mean of each cluster qk is
then determined by

P(zdl = k|qzk ,XT,{XS} ,flk,−zdl) = CRP(γk) ∏
l:zdl=k

P(xdl|qk,ck) . (6.8)

The likelihood functions P(xl|qk,ck) and P(xl|θ ,ck) are easily solved because beta-
Bernoulli are conjugate priors.

f
(
Xdℓ,1...m

)
=
∫

P
(
Xdℓ,1...m|πℓ

)
P(πℓ|qzdℓ,czdℓ,zdℓ)dπℓ

=
∫ m

∏
j=1

P(Xdℓ j|πℓ)P(πℓ|qzdℓ,czdℓ,zdℓ)dπℓ

=
Γ(czdℓ)Γ

(
czdℓqzdℓ +∑

m
j=1 Xdℓ j

)
Γ

(
czdℓ (1−qzdℓ)+m−∑

m
j=1 xdℓ j

)

Γ(czdl qzdℓ)Γ(czdℓ (1−qzdℓ))Γ(czdℓ +m)

(6.9)

The value of qk can be approximated by

P
(
qk
∣∣ck,δzdℓ=k ,Xdℓ,1...m

)
∼ Beta

(
c0q0 +∑

ℓ

sdℓ,c0 (1−q0)+∑
ℓ

m−sdℓ−1

∑
t

ck

ck + t

)
. (6.10)

An approximated Gibbs sampling technique outlined in Li et al. [59] is used to improve
computational efficiency. The method uses a Taylor series expansion to approximate the
posterior distribution

P
(
qk
∣∣ck,δzdℓ=k ,Xd,ℓ,1...m

)

∝ P
(
qk,δzdℓ=k,Xd,ℓ,1...m

∣∣ck
)

= P(qk)P
({

Xd,ℓ,1...m
}

θdℓ=k

∣∣∣qk,ck,{θdℓ}= k
)

≈ Γ(c0)qc0q0−1
k (1−qk)

c0(1−q0)−1

Γ(c0q0)Γ(c0 (1−q0))
∏

d,ℓ,θdl=k

[
(ckqk)

sdl
∏

m−sdℓ−1
t=0 (ck (1−qk)+ t)

∏
m−1
t=0 (ck + t)

]
.

(6.11)
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It is based on the sparse nature of the dataset, where sdℓ = ∑d, j Xd,ℓ, j and m is the number of
observations.

P
(
qk
∣∣ck,δzdℓ=k ,Xdℓ,1...m

)

∝ qc0q0−1
k (1−qk)

c0(1−q0)−1
∏

d,ℓ,θdℓ=k

[(
ckqk

ck +m−1

)sdℓ

(1−qk)
∑

m−sdℓ−1
t=0

ck
ck+t

]
.

(6.12)

By inspecting the results in Equation (6.12), the posterior distribution of qk is a beta distribu-
tion, i.e.,

P
(
qk
∣∣ck,δzdℓ=k ,Xdℓ,1...m

)
∼ Beta

(
c0q0 +∑

ℓ

sdℓ,c0 (1−q0)+∑
ℓ

m−sdℓ−1

∑
t

ck

ck + t

)
. (6.13)

Finally π can be sampled directly from its conditional distribution by using the group index
generated by θdℓ as follows

P
(
πdℓ
∣∣qzdℓ,zdℓ,czdℓ,Xdℓ,1...m

)
∼ Beta(czdℓqzdℓ + sdℓ,czdℓ (1−qzdℓ)+m− sdℓ) . (6.14)

All of the updating steps outlined above are repeated iteratively until convergence has been
reached. The inference algorithm above does not outline a method to select the parameters
for ck.

From Equation (6.14), the variance of the beta distribution is given by

α̃ = czdℓqzdℓ + sdℓ > 0,

β̃ = czdℓ (1−qzdℓ)+m− sdℓ = czdℓ +m−α > 0,
(6.15)

where, czdℓ > 0, 0 < qzdℓ < 1, sdℓ ≥ 0, m > 0 and m≥ s. The variance of the beta distribution
is given by

var [π] =
α̃β̃

(
α̃ + β̃

)2(
α̃ + β̃ +1

) (6.16)

Taking the first derivative to find the gradient of the variance with respect to β ,

d (var [π])
dβ̃

=
α̃

(
α̃ (α̃ +1)− β̃

(
α̃ +2β̃ +1

))

(
α̃ + β̃

)3(
α̃ + β̃ +1

)2

∝ α̃ (α̃ +1)− β̃

(
α̃ +2β̃ +1

)
.

(6.17)
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Since dα̃

dm = 0, and dβ̃

dm = 1, therefore

d (var [π])
dm

=
d (var [π])

dα̃

dα̃

dm
+

d (var [π])
dβ̃

dβ̃

dm

=
d (var [π])

dβ̃
.

(6.18)

Substituting α̃ and β̃ and finding the maximum of d(var[π])
dm with respect to m,

max
m

[
d (var [π])

dm

]
=

1
4
(qzdℓ + s− czdℓ−1) . (6.19)

By inspecting Equation (6.19), if czdℓ ≥ s, then the variance is monotonically decreasing as
the number of data points increases because 0 < qzdℓ < 1.

From this result a reasonable choice for the concentration parameter should be czdℓ ≥ m.
The value to select for czdℓ is non-trivial and is subjected to further research in future work.
For our experiment, the value of czdℓ is fixed to m as s≤m to ensure that there is a decreasing
variance with an increasing number of observations.

6.5 Experiments

This section presents the results of the experiments for our proposed model HDPMM. Our
experimental results is comprised of three sections. We first design a synthetic experiment
to observe the sensitivity of the parameters in our model. We then demonstrate that our
proposed approach outperforms all other heuristics previously used for HBP. Then finally,
we demonstrate the capability of our proposed HDP-HBP model by comparing it with other
state-of-the-art techniques in failure prediction, transfer learning and survival analysis.

6.5.1 Synthetic Data

For our synthetic data experiment, we attempt to create a typical dataset from a utility
company to make infrastructure failure prediction. We create a synthetic infrastructure
dataset with categorical features that has 512 unique features combinations and assign a
true failure rate Ptrue_fr to each of these features using a beta distribution. Another beta
distribution to assign the true distribution on unique features Ptrue_f. Samples are then from
Ptrue_f and then draw the samples for the observations for each feature sample from Ptrue_fr. A
dense domain with sample size N = 106 is also created using the same marginal probability
distribution.
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6.5.2 Real-world Implementations of Failure Prediction

There have been many implementations to improve water pipe maintenance in the past 40
years. The first known implementation is in Calgary, Alberta in Canada, where they have used
a Poisson point process to assist in scheduling maintenance [96]. However, survival analysis
is not an effective long-term solution to the scheduling maintenance problem because once a
component has been replaced, it is no longer considered in the model. After that, a number
of physical based models have been used across Canada and in Adelaide, Australia [70].
They have been attempted to model the physical interactions between the soil pressure, traffic
loading, frost loads, operational pressure and third party inferences. These approaches have
proven to be effective; however, it is often that the needed data are either unavailable or they
are very costly to acquire [50].

More recently, statistical approaches have been implemented by a research group in
Sydney, NSW, Australia [58]. While, the city of Syracuse, New York, United States of
America, has proposed some solutions to use machine learning models to proactively repair
the critical components [53]. The machine learning solutions are able to effectively find
failure patterns with limited amount of data. However, tuning the parameters for these
machine learning models are challenging. Our study also aims to address this issue.

6.5.3 Failure Predictions for Sparse Data

In the past, there have been a number of physical models [49, 68] developed to assist in
preventative maintenance. These models work by modelling the physical interactions to
prioritise water pipes with a higher probability of failure for manual inspection. Some
examples of the physical interactions are the interaction between the soil and the material,
the age of the pipe, effects from the weather such as frost loading, soil pressure and the water
supply demand. Building physical models to model real world-interactions have shown to
be a very effective method to accurately predict component failure. However, it requires
a lot of data which is often infeasible or extremely costly to collect. For more details, a
comprehensive review of methods to model structural deterioration of water mains can be
found in [50, 70].

A variety of statistical models have also been explored to make failure prediction. Statis-
tical models aim to make the best possible prediction using the available data. The earliest
work using statistical models found in literature uses a Poisson point process to schedule
the optimal time for the water main to be repaired or replaced by forecasting the number of
breaks in the existing network [96]. Later on, more advanced survival analysis techniques
have been used to allow multi-variant analysis to assist in scheduling maintenance, such as
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the Cox proportional hazard model [29, 60] and Weibull models [44]. Survival analysis is
often used to assist in scheduling maintenance for components with a higher risk of failure.
However, survival analysis may not be well suited for this task because, in practice, only a
small section of the component is repaired instead of replacing the entire asset. Since the
majority of the component has not changed, a survival analysis approach may not be the best
option because parts of the original characteristics still remains for the repaired component.

Traditional machine learning techniques such as gradient boosted decision trees [33]
have shown to be effective when there is availability to high-quality data [53]. Traditional
machine learning approaches use features from historical studies such as pipe material, pipe
age, soil type, toxicity level of the soil, geological composition, and topography as potential
factors that affect the lifespan of water mains [47, 55, 67, 71, 82, 96]. However, currently, it
is often difficult to obtain a high-quality dataset to make predictions. Oftentimes, the dataset
will contain missing data, noisy labels, few training examples and have a short observation
period making it difficult to apply the traditional machine learning approaches.

More recent formulations of infrastructure failure prediction attempt to estimate the latent
failure rate given the historical failure records for each asset. Unlike the approaches used in
survival analysis, this approach does not assume a ‘life’ for each asset. But instead, these
models groups assets using features to estimate the failure rate. An example is the hierarchical
beta process [59, 104], where the failure rates are estimated by using a combination of
individual observations for each pipe and the average group observations. This approach is
a more effective solution for lower data quality such as missing data and short observation
period. However, it requires a heuristic for grouping water pipes with similar characteristics
together.

When the latent failure model was originally proposed, a heuristic provided by domain
experts was used to group water pipes with similar characteristics together based on the
intrinsic pipe failures [59]. There have been some proposals to use Bayesian non-parametric
clustering as a heuristic to automatically group the water pipes for HBP, such as the Dirichlet
Process Mixture Model (DPMM) [103] and the Pitman-Yor process [83]. These methods
adopt a two-step approach which has separate models for clustering and failure prediction.
Subsequently, more advanced techniques have been employed to combine the clustering
heuristic with the failure prediction model by using stochastic block models [64] and DPs [60].
However, none of these methods are able to make accurate predictions for extremely sparse
components, such as a critical water main, where there are only very few components for any
water pipe network. Therefore, applying machine learning models on a single dataset may
not be effective as there is not enough data to make an effective prediction. Our proposed
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approach aims at resolving this issue by automatically selecting the model-parameters by
clustering across domains to learn a common task for the failure prediction model.

We create scenarios using a beta distribution with parameters (α = 0.5, β = 10), (α = 0.5,
β = 5) and (α = 0.5, β = 1) to simulate the failure observations in a water pipe network.
These synthetic datasets correspond with water pipes with a mean failure rate of 4.76%,
9.09% and 33.3%. For each sample size, we create 20 independent datasets and take the
mean value of the mean averaged error (MAE). The result in Figure 6.2b has shown that
multi-task learning is able to produce a lower error prediction compared to DPMHBP for
the single task. As the size of the dataset increases, the error of just using a single domain
reduces to the same order of magnitude as using multi-task learning. This is because for
large sample size, the dataset is no longer considered sparse, therefore there is less of an
improvement when using multi-task learning. However, as we increase the failure rate, the
irreducible error in multi-task learning becomes more dominant, therefore for higher failure
rates, using a single domain may produce better results as observed in Figure 6.2d. The
synthetic results have shown that using the multi-task learning approach is only effective for
the special case of sparse predictions.

A sample size of N = 104 to study the sensitivity of the concentration parameter α0, γk

and ck. For this experiment, we set α0 = γk for simplicity and all values of ck are equal. The
parameters are then normalised by dividing ck by the number of observations and α0 and
γk are normalised by dividing with the number of features. Figure 6.2a is the experimental
results for the sensitivity of the hyper-parameters. We observed that the hyper-parameters
in HDP-HBP are non-convex, with α with values of 0.01 and 0.1 producing results closest
to the global optimal. While α = 100 may be easier to tune the hyper-parameter ck. This is
because when α increases, there are few number of data points in each cluster, therefore the
value of ck becomes less relevant as it controls the contribution between the beta-Bernoulli
process and the group level for each domain. However, for lower values of α the values of ck

is much more critical to make a correct prediction.

Table 6.1 Summary of pipe network and pipe failure data

Region Type No. Pipes No. Failures Avg. Failure Total Length[m]
Per Year

Region A
RWM 23 926 3 782 0.99% 879 050
CWM 2 945 182 0.39% 229 915

Region B
RWM 62 089 10 717 1.08% 3 878 255
CWM 7 119 435 0.38% 671 884

Region C
RWM 45 030 10 719 1.49% 2 593 412
CWM 5 001 606 0.76% 477 094
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Table 6.2 Comparing Area Under Curve (AUC) for heuristic approaches.

Dense-to-Sparse
HDP-HBP DPMHBP HBP(Expert) HBP(DPMM) HBP(HPY)

A
U

C Region A 67.00% 62.45% 62.38% 62.45% 60.90%
Region B 89.46% 84.10% 86.62% 55.02% 54.00%
Region C 87.81% 86.93% 87.24% 86.38% 85.78%

Table 6.3 Comparing Area Under Curve (AUC) for alternative approaches.

Dense-to-Sparse
HDP-HBP DPMHBP HBP Cox SVM Boost

A
U

C Region A 67.00% 62.45% 62.38% 60.94% 61.07% 66.19%
Region B 89.46% 84.10% 86.62% 63.33% 77.91% 63.95%
Region C 87.81% 86.93% 87.24% 75.96% 82.98% 89.92%

6.5.4 Case Study: Water Pipe Failure Prediction

The data collected for each metropolitan area includes the water pipe network data and
water pipe failure data. Three sets of data are used and referred to as Region A (a cen-
tral business district, population:210,000, area:25km2), Region B (a prominent suburb,
population:230,000, area:80km2) and Region C (a large rural city, population:205,000,
area:685km2). The water pipe network data contains all pipe information in the network.
This consists of a unique pipe ID to identify the pipe, pipe attributes and location. The pipe
attributes represent intrinsic features belonging to each pipe. These include the year the pipe
is laid, protective coating, diameter, material and methods to join pipe segments together.
These particular features are factors which may be correlated to the failure rate. Additionally,
there are also external factors such as, tree canopy converge, soil corrosion, water supply
demand and temperature which are also identified as external factors which may be correlated
with the failure rate. The failure data is a time series data which contains the pipe ID, failure
dates and the failure location. A new record is added to the dataset each time a failure has
been observed in the water supply network.

For the dataset collected for the three metropolitan areas, the pipes are laid between
years 1884 - 2011. These pipes are often split into two main categories, reticulation water
main (RWM) and critical water main (CWM). The categories of these pipes are defined by
domain experts according to the impact of each water main, such as the financial cost of
compensation and the social effect during an event of a failure. The ratio of these pipes for
each region is summarized in Table 6.1. As the role of RWM and CWM is different, it is
expected that the failure behaviour of RWM and CWM is also different. Therefore, RWM
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Fig. 6.2 Synthetic experiment results for varying sparsity ratio.
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Fig. 6.3 Comparison of failure prediction results for each region in 2012 for heuristic methods.
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Fig. 6.4 Comparison of failure prediction results for each region in 2012 with other state-of-
the-art approaches.
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and CWM are considered as separate domains. Quite typically, the water supply network
is comprised of approximately 10% CWM and 90% RWM. The average failure rate each
year for the CWM across the entire network is approximately 0.5%. The failure history
recorded has an observation period of 16 years spanning from 1997 to 2012 which is very
short given the failure rate. Due to a combination of these factors the dataset used to make
failure predictions on water pipe is extremely sparse.

Our experiments focus on a dense-to-sparse transfer scenario. The dense-to-sparse
scenario attempts to improve the learning performance by transferring information from
RWM to CWM. RWM is considerably denser compared to CWM as there are fewer pipes
and failures observed, which makes it much more difficult for a model to use a single CWM
dataset to learn the failure patterns as there are fewer training examples. We demonstrate the
ability for HDP-HBP to use the information from RWM and CWM to improve the failure
prediction performance.

In the following sections we first compare our approaches with other potential heuristics
for HBP such as Dirichlet process mixture model (DPMM) and the Hierarchical Pitman-Yor
(HPY) process. We then compare our approach with other failure prediction methods used in
survival analysis, transfer learning and traditional machine learning approach. They are Cox
proportional hazard model, transfer learning transfer adaptive boosting (boost) and support
vector machine (SVM), respectively.

Comparing Heuristic Methods for HBP

In this section we present the experimental results on different heuristics for HBP grouping.
In Figure 6.3, we compare our HDP-HBP approach with Dirichlet Process Mixture of
Hierarchical Beta Process (DPMHBP), heuristics provided by domain experts, and clustering
by Dirichlet Process Mixture Model (DPMM) [103] and Hierarchical Pitman-Yor process
(HPY) process [83]. We quantitatively compare these results in Table 6.2 by calculate the
Area Under Curve (AUC). HDP-HBP clearly outperform all other approaches.

Comparison with Alternative Approaches

This section presents the experimental results to compare our HDP-HBP approach with
alternative approaches for sparse failure prediction. We observe in Figure 6.4 that the
experimental results show that the behavior of HBP based models are similar on the left-hand
side due to the contribution from the beta-Bernoulli process. If there is a high number of
observations of failure for the water pipe, these water pipes are generally ranked with the
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highest probability of failure in each cluster. As a result, on the left-hand side all variants of
HBP model, HBP, DPMHBP and HDP-HBP have very similar failure prediction performance.

For the HBP approach, we have used a heuristic provided by domain experts for grouping.
Our experimental results have shown that the grouping by domain experts have typically
performed better than using two-stage approach for clustering and failure predictions, e.g.
DPMM or HPY process. To avoid clutter on our experimental results, we have only included
the heuristic provided by the domain expert produced the best result.

In Figure 6.4, Region A has shown to have detected very little failure across all HBP
models. Manually inspecting these water pipes in the dataset, these water pipes have
historically had a high failure rate. Towards the right-hand side, these pipes generally have
either no observations or very few observations of failure during its observation period.
In this region, our proposed model is shown to perform much better by providing better
clustering and parameter selection. In Region A and Region B, HDP-HBP has shown that it
is superior in learning the model parameters for each group of tasks. The AUC can be used
to quantify the average model performance. The AUC for each model is shown in Table 6.3.
HDP-HBP clearly outperforms all other models, with the exception of Region C, where
transfer adaptive boosting (Boost) have slightly outperformed our approach. However, in
Region A and Region B, HDP-HBP have outperform Boost by a large margin.

6.6 Summary

We have proposed a novel multi-task learning solution by Bayesian non-parametric formula-
tion. We have constructed a model which can automatically learn the model parameters for a
group of tasks to improve failure prediction accuracy on sparse datasets. Most importantly,
our proposed model achieve the improvement by leveraging the data obtained from other do-
mains with different feature space via empirical Bayes. The cross domain clustering method
learns a common latent structure which is then used as the model parameters for failure pre-
diction for each task. We have demonstrated how cross domain clustering can be obtained by
using hierarchical Dirichlet process mixture model (HDPMM) and then illustrated how it can
be integrated with hierarchical beta process (HBP) by only two separate steps. We have then
shown that this approach can be further improved by combining clustering and prediction
models together to create a new framework, namely hierarchical Dirichlet process mixture of
hierarchical beta process (HDP-HBP). Experimental results confirmed that our proposed
approach is able to outperform other known heuristics which have been used for grouping in
HBP. In additional, our proposed learning and prediction framework has been able to improve
upon previous state-of-the-art methods with higher prediction accuracy. It offers an improved
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capability for utility companies to proactively inspect critical infrastructure components with
sparse failure history instead of repairing failures reactively. Notably, the improvement to
prediction accuracy in infrastructure preventive maintenance can provide significant financial
savings in a city and reduce adverse social impact from unwanted failures.

This Chapter has demonstrated the feasibility of using Bayesian non-parametrics to
automatically select the number of parameters in the model for complex real-world problems.
Currently the models proposed in Chapter 3, Chapter 4 and Chapter 5 is unable to perform
feature selection to reduce the error caused by an increased number of parameters. An inter-
esting direction for future work is to incorporate these Bayesian non-parametric techniques
to the information geometric formulation of the binary log-linear model to automatically
select the useful parameters in the model.



CHAPTER 7

Conclusion

7.1 Contributions

This thesis has made contributions in furthering the understanding of increasing the represen-
tational power in unsupervised learning. In summary, these are:

1. In Chapter 3 we have presented a novel framework to allow higher-order feature
interactions to be included into hierarchical models. The model uses an information
geometric perspective to formulate the binary log-linear model. The binary log-linear
model has been used to formulate the Higher-Order Boltzmann Machine (HBM) as a
representative example to include higher-order features in machine learning models.
The higher-order interaction is formulated using incidence algebra which provides a
provides a mathematical expression for a generative function for combinatorics. The
HBM can be used to include higher-order interactions into the model or to estimate
high dimensional functions.

2. Chapter 3 proposed the information geometric formulation of the HBM for efficient
inference algorithm of discrete structures by projecting it onto a dually flat Riemannian
manifold. This means that the discrete structure can be represented as two continu-
ous convex functions so that gradient descent or natural gradient can be applied for
optimization. This is much more efficient and accurate compared to the previous
approaches such as MCMC, contrastive divergence or variational inference.
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3. Chapter 3 provides the first study on the different characteristics in increasing the
representational power in machine learning models when using hidden nodes and
higher-order feature interactions. Our study is performed by using a bias-variance
decomposition to determine the error in the model. We have found that using higher-
order features have lower model error when fitting sparse data.

4. Chapter 4 uses the concepts shown in Chapter 3 to formulate a novel framework
for blind source separation (BSS) to include higher-order interaction between a set
of source signals. We do this by designing a hierarchical structure by using the
concepts presented in Chapter 3, where the source signal, received signal and the
mixing matric are realized in different layers. We transform our hierarchical structure
by projecting it onto a dually flat Riemannian manifold to take advantage of the
theoretical guarantees found in information geometry. Our proposed framework has
highly desirable properties for BSS such as including more complex interactions
between the set of source signal and formulating it as a convex optimization problem
where our solution always arrives at a unique solution.

5. Chapter 5 uses the concepts shown in Chapter 3 to provide an efficient solution to
estimate higher-order intensity function in Poisson processes. Our solution is design
a hierarchical structure to include the higher-order interaction terms to estimate the
higher-order intensity function in the multivariate Poisson process. Our structure
projections the samples into lower dimensional space to estimate the higher-order
functions. Our results are back by strong theoretical guarantees in information ge-
ometry and the empirical results have demonstrated many advantages over current
state-of-the-art techniques such the ability to estimate the joint intensity function with
extremely low event rate and sparse observations.

6. Chapter 6 explores techniques for automatic select the number of parameters in the
model. The proposed framework Hierarchical Dirichlet Process Mixture of Hierarchi-
cal beta Process (HDP-HBP) demonstrated the ability for Bayesian non-parametrics to
automatically select the higher-order interaction terms to include into the model. The
proposed approach works effectively in real-world application with poor data quality
such as sparsity, noisy labels and missing data. But further work is required to include
automatic parameter selection in our information geometric formulations.
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7.2 Future Work

This thesis has laid out the foundations to understand to increase the representational power
in unsupervised learning. There are still many open ended research questions which can still
be explored for the information geometric formulation of the binary log-linear model. Here
are some interesting future research directions which may be worth exploring.

1. Feature selection and model selection – Our proposed approach is to use a truncated
number of parameters based on the order of interactions to avoid combinatorial explo-
sion. However, not all the models included are important for the model. Reducing the
number of parameters in the model will reduce the noise and variance in the model. We
have demonstrated the ability for Bayesian non-parametric models to automatically se-
lect the number of parameters in the model. Currently, our model does not include any
approach to select the most important features. Combining Bayesian non-parametrics
to automatically select the number of parameters will improve both the performance of
the model and its scalability.

2. Efficient scalable optimization technique – we have proposed to use gradient descent
and natural gradient for optimization. These techniques are extremely efficient, how-
ever do not scale well with respect to the number of parameters. Natural gradient is
able to reach the global optimal in just a few iterations, however, to invert the fisher
information matrix, the model scales cubically. On the other hand, gradient descent is
much more efficient in terms of the run-time complexity as it scales quadratically, but
requires more iterations to converge. For all applications we have applied the log-linear
model, our empirical results have shown that natural gradient is more efficient for
optimization in our applications. However, this may not be the case for applications
which requires a large number of model parameters. Currently, for models with a large
number of parameters the most efficient optimization to use is gradient descent. It
would be desirable to design more efficient optimization techniques similar to natural
gradient which are more scalable to use for large parameter space.

3. Introducing hidden nodes to the binary log-linear model – Currently our formulation
provides a convenient approach to include higher-order interactions effects into the
model. Our model could be extended to include hidden nodes to incorporate latent
factors into the model. The behaviour of using both hidden nodes and higher-order
interactions effects is still not very well explored in machine learning and could
potential have many highly desirable properties in many applications.
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4. Real-world applications – The models proposed for blind source separation (BSS)
and Poisson processes have only been applied to toy examples to demonstrate its
capabilities from a theoretical perspective. It would be interesting to apply these
models to real-world applications. An example of an application for IGBSS are
electroencephalography (EEG) and magnetoencephalography (MEG). EEG and MEG
use sensors to monitor electrical activity of the brain. However, there are often other
noises which create artefacts in the signal such as blinking, eye muscle movement,
facial muscle and cardiac signals which are mixed into the recorded signal. Multivariate
Poisson processes have many real-world applications which could be explored, such
as infrastructure failure prediction, disease modeling and in transportation. A simple
example for a multivariate Poisson process in infrastructure failure prediction is the
following. There are two safety mechanisms to prevent a failure of a component
in an infrastructure network. The chances of a single safety mechanism failing is
common, however, it is very rare for both failure mechanisms to fail at the same time.
Additive Poisson Process (APP) is able to estimate the intensity function for both
safety mechanisms failing at the same time leading to the failure of the component to
make a more accurate prediction.
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APPENDIX A

Appendix

A.1 Information Geometric Formulation of the Exponen-
tial Family

In this section, we will present the derivation for the information geometric formulation
of the exponential family. We first introduce two coordinate systems ξ = (ξ1, . . . ,ξn) and
ζ = (ζ1, . . . ,ζn) so that there exists a one-to-one correspondence between them and have the
relations,

ξ = f(ζ1, . . . ,ζn)

ζ = f−1(ξ1, . . . ,ξn)
(A.1)

where f and f−1 are coordinate transformations that is invertible and differentiable. The
transformation between ξ and ξ ∗ is one-to-one and differentiable. This transformation is
known as the Legendre transformation and has a dualistic structure for the two coupled
coordinate system ξ and ξ ∗.

Theorem 6 (Legendre Transformation [9]). The gradient

ξ
∗ = ∇ψ (ξ ) , (A.2)

is differentiable and a one-to-one transformation. This means that ξ
∗ is used as another

coordinate system on the manifold M and it is connected to ξ by the Legendre Transformation.
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Proof. The Legendre transformation has a dualistic structure concerning the two coupled
coordinate system ξ and ξ

∗. To show this, a new function ξ
∗ is defined as,

ψ
∗ (

ξ
∗)= ξ ξ

∗−ψ (ξ ) , (A.3)

where,

ξ ξ
∗ = ∑

i
ξiξ
∗
i .

By differentiating Equation A.3 with respect to ξ
∗, we have,

∇ψ
∗ (

ξ
∗)= ξ +

∂ξ

∂ξ
∗ξ
∗−∇ψ (ξ )

The last two terms cancel out because of Equation A.2, then we have,

∇ψ
∗ (

ξ
∗)= ξ .

This is a dualistic structure because we have,

ξ
∗ = ∇ψ (ξ ) , ξ = ∇ψ

(
ξ
∗) .

ψ∗ is called the Legendre dual of ψ . because it satisfies,

ψ
∗ (

ξ
∗)= max

ξ ′

{
ξ
′
ξ
∗−ψ

(
ξ
′)} ,

which is the definition of ψ∗.

Let x be a discrete random variable taking values on X = {0,1, . . . ,n}. We then define a
probability distribution p(x) in a probability vector p = (p0, p1, . . . , pn) with the restriction

∑
n
i=0 pi = 1 and pi > 0. The set of all probability distributions p forms an n-dimensional

manifold. Its coordinate system is given by,

ξ = (p1, . . . , pn),

where, p0 is uniquely determined by,

p0 = 1−∑ξi.
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The manifold is a n-dimensional probability simplex Sn. Then a probability distribution of x
is

p(x,ξ ) =
n

∑
i=1

ξiδi (x)+ p0 (ξ )δ0 (x)

We define another coordinate system θ = {θ1, . . . ,θn } by,

θi = log
pi

p0
for all i = 1, . . . ,n,

which will be a more convenient notation to define our equations in the future. We then
define another coordinate system as,

η = ∇ψ (θ) .

Using this notation the probability distribution for natural exponential family is written
as [9],

p(x;θ) = exp

[
∑

i
θixi−ψ (θ)

]
,

where, exp [ψ (θ)] is the partition which which is uniquely determined by,

ψ (θ) = log
∫

exp
[
∑θixi

]
dx.

The coordinate systems θ becomes the natural parameter and η becomes the expectation
parameter. In the following sections, we introduce incidence algebra to formulate a log-linear
model on a poset which is a class of models in the exponential family.
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A.2 Information Geometric Proofs for the Log-Linear
Model

A.2.1 Proof for Dually Flat Structure

Proof for Legendre Dual

Theorem 7 (Legendre Dual [99]). The gradient

ϕ (η) = ∑
ω∈Ω

p(ω) log p(ω) . (A.4)

is differentiable and a one-to-one transformation. This means ϕ is used as another coordinate
system on the manifold M and it is connected to ψ by a Legendre transformation.

Proof.

θ
′
η = ∑

ω∈Ω+


 ∑

ω ′∈Ω

⊥<ω ′≤ω

µ
(
ω
′,ω
)

log p′
(
ω
′)

∑
ω ′≥ω

p
(
ω
′)

= ∑

ω∈Ω+

p(ω)
(
log p′ (ω)− log p′ (⊥)

)

Thus it holds that

θ
′
η−ψ

(
θ
′)= ∑

ω∈Ω

p(ω) log p′ (ω) .

Hence it is maximized with p(ω) = p′(ω).

Proof for Dual Coordinate System

Theorem 8 (Dual Coordinate System [99]). A dual coordinate system can be defined by

∇ψ (θ) = η , ∇ϕ (η) = θ

where the two coordinate systems are connected by the Legendre transformation.
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Proof.

∂ψ (θ)

∂η (ω)
=

∑ω ′′∈Ω

ω ′′≥ω

exp
[

∑ ω ′∈Ω

⊥<ω ′≤ω ′′
θ (ω ′)

]

∑ω ′′∈Ω exp
[

∑ ω ′∈Ω

⊥<ω ′≤ω ′′
θ (ω ′)

] = ∑
ω ′∈Ω

ω ′≥ω

p
(
ω
′)= η (ω) ,

∂ϕ (η)

∂η (ω)
=

∂

∂η (ω)
[θη−ψ (θ)] = θ (ω) .

orthogonality of θ and η as,

E
[

∂

∂θ (ω)
log p

(
ω
′′) ∂

∂η (ω ′)
log p

(
ω
′′)
]

=∑
ω ′′∈Ω

[
p
(
ω
′′) ∂

∂θ (ω) ∑
ω ′′′∈Ω

ζ
(
ω
′′′,ω ′′

)
θ
(
ω
′′′) ∂

∂η (ω ′)
log

[
∑

ω ′′′∈Ω

µ
(
ω
′′,ω ′′′

)
η
(
ω
′′′)
]]

,

=∑
ω ′′∈Ω

[
p
(
ω
′′)(

ζ
(
ω,ω ′′

))
−η (ω)

µ (ω ′′,ω ′)
p(ω ′′)

]

=∑
ω ′′∈Ω

ζ
(
ω,ω ′′

)
µ
(
ω
′′,ω ′

)
= δωω ′

A.2.2 Proof for Riemannian Structure

Theorem 9 (Riemannian Metric [99]). The manifolid (Ω,G(ξ )) is a Riemannian manifold
with the Riemannian metric G(ξ ) such that for all ω,ω ′,∈Ω+,

Gωω ′ (ξ ) =





∑ω ′′∈Ω ζ (ω,ω ′′)ζ (ω ′,ω ′′) p(ω ′′)−η (ω)η (ω ′) if ξ = θ ,

∑ω ′′∈Ω µ (ω ′′,ω)µ (ω ′′,ω ′) p(ω ′′)−2 if ξ = η .

Proof. Since the Riemannian metric is defined as

G(θ) = ∇∇ψ (θ) , G(η) = ∇∇ϕ (η) ,
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when ξ = θ we have

Gωω ′ (θ) =
∂ 2

∂θ (ω)∂θ (ω ′)
ψ (θ) =

∂

∂θ (ω)
η
(
ω
′)

=
∂

∂θ (ω) ∑
ω ′′∈Ω

ζ
(
ω
′,ω ′′

)
exp


 ∑

ω ′′′∈Ω

⊥<ω ′′′≤ω ′′

θ
(
ω
′′′)−ψ (θ)




= ∑
ω ′′∈Ω

ζ
(
ω,ω ′′

)
ζ
(
ω
′,ω ′′

)
p
(
ω
′′)−η (ω)η

(
ω
′′) .

When ξ = η , it follows that

Gωω ′ (η) =
∂ 2

∂η (ω)∂η (ω ′)
ϕ (η) =

∂

∂η (ω)
θ
(
ω
′)

=
∂

∂η (ω) ∑
ω ′′∈Ω

ω ′′≤ω ′

µ
(
ω
′′,ω ′

)
log p

(
ω
′′)

=
∂

∂η (ω) ∑
ω ′′∈Ω

ω ′′≤ω ′

µ
(
ω
′′,ω ′

)
log


 ∑

ω ′′′∈Ω

ω ′′′≥ω ′′

µ
(
ω
′′,ω ′′′

)
η
(
ω
′′′)

 (A.5)

= ∑
ω ′′∈Ω

µ (ω ′′,ω)µ (ω ′′,ω ′)
∑ ω ′′′∈Ω

ω ′′′≥ω ′′
µ (ω ′′,ω ′′′)η (ω ′′′)

= ∑
ω ′′∈Ω

ω ′′∈Ω

µ
(
ω
′′,ω

)
µ
(
ω
′′,ω ′

)
p
(
ω
′′)−1

Since G(ξ ) coincides with Fisher information matrix

E
[

∂

∂θ (ω)
log p

(
ω
′′) ∂

∂θ (ω ′)
log p

(
ω
′′)
]
= Gωω ′ (θ) ,

E
[

∂

∂η (ω)
log p

(
ω
′′) ∂

∂η (ω ′)
log p

(
ω
′′)
]
= Gωω ′ (η) .

Then the Riemannian (Levi-Chivita) connection Γ(ξ ) with respect to ξ is defined as

Γωω ′ω ′′ (ξ ) =
1
2

[
∂Gω ′ω ′′ (ξ )

∂ξ (ω)
+

∂Gωω ′′ (ξ )

∂ξ (ω ′)
− Gωω ′ (ξ )

∂ξ (ω ′′)

]

for all ω,ω ′,ω ′′ ∈Ω+, can be analytically obtained.
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Theorem 10 (Riemannian Connection [99]). The Riemannian connection Γ(ξ ) on the
manifold (Ω,g(ξ )) is given in the following for all ω,ω ′,ω ′′ ∈Ω+,

Γωω ′ω ′′ (ξ ) =



1
2 ∑
ω ′′′∈Ω

[ζ (ω,ω ′′′)−η (ω))(ζ (ω ′′,ω ′′′)−η (ω ′))(ζ (ω ′′,ω ′′′)−η (ω ′′)] p(ω ′′′) , if ξ = θ ,

−1
2 ∑
ω ′′′∈Ω

µ (ω ′′′,ω)µ (ω ′′′,ω ′)µ (ω ′′′,ω ′′) p(ω ′′′)−2 , if ξ = η .

Proof. for all ω,ω ′,ω ′′ ∈Ω

∂Gω ′ω ′′ (θ)

∂θ (ω)
=

∂

∂θ (ω) ∑
ω ′′′∈Ω

ζ
(
ω
′,ω ′′′

)
ζ
(
ω
′′,ω ′′′

)
p
(
ω
′′′)− ∂

∂θ (ω)
η
(
ω
′)

η
(
ω
′′) ,

where,

∂

∂θ (ω) ∑
ω ′′′∈Ω

ζ
(
ω
′,ω ′′′

)
ζ
(
ω
′′,ω ′′′

)
p
(
ω
′′′)

=
∂

∂θ (ω) ∑
ω ′′′∈Ω

ζ
(
ω,ω ′′′

)
ζ
(
ω
′,ω ′′′

)
ζ
(
ω
′′,ω ′′′

)
exp


 ∑

ω ′′′′∈Ω

⊥<ω ′′′′≤ω ′′′

θ
(
ω
′′′′)−ψ (θ)




=∑
ω ′′′∈Ω

ζ
(
ω,ω ′′′

)
ζ
(
ω
′,ω ′′′

)
ζ
(
ω
′′,ω ′′′

)
p
(
ω
′′′)−η (ω)∑

ω ′′′∈Ω

ζ
(
ω
′,ω ′′′

)
ζ
(
ω
′′,ω ′′′

)
p
(
ω
′′′)

and

∂

∂θ (ω)
η
(
ω
′)

η
(
ω
′′)

=
∂η (ω ′)
∂θ (ω)

η
(
ω
′′)+ ∂η (ω ′′)

∂θ (ω)
η
(
ω
′)

=η
(
ω
′′)

∑
ω ′′′∈Ω

ζ
(
ω,ω ′′′

)
ζ
(
ω
′,ω ′′′

)
p
(
ω
′′′)

+η
(
ω
′)

∑
ω ′′′∈Ω

ζ
(
ω,ω ′′′

)
ζ
(
ω
′′,ω ′′′

)
p
(
ω
′′′)−2η (ω)η

(
ω
′)

It follows that,

∂Gω ′ω ′′ (θ)

∂θ (ω)
= ∑

ω ′′′∈Ω

(
ζ
(
ω,ω ′′′

)
−η (ω)

)(
ζ
(
ω
′,ω ′′′

)
−η

(
ω
′))(

ζ
(
ω
′′,ω ′′′

)
−η

(
ω
′′)) p

(
ω
′′′) .
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On the other hand,

∂Gω ′ω ′′ (θ)

∂η (ω)
=

∂

∂η (ω) ∑
ω ′′′∈Ω

µ
(
ω
′′′,ω ′

)
µ
(
ω
′′′,ω ′′

)
p
(
ω
′′′)−1

=
∂

∂η (ω) ∑
ω ′′′∈Ω

µ
(
ω
′′′,ω ′

)
µ
(
ω
′′′,ω ′′

)

 ∑

ω ′′′′∈Ω

ω ′′′′≥ω ′′′

µ
(
ω
′′′,ω ′′′′

)
η
(
ω
′′′)



=−∑
ω ′′′∈Ω

µ
(
ω
′′′,ω

)
µ
(
ω
′′′,ω ′

)
µ
(
ω
′′′,ω ′′

)

 ∑

ω ′′′′∈Ω

ω ′′′′≥ω ′′′

µ
(
ω
′′′,ω ′′′′

)
η
(
ω
′′′)



−2

=
∂

∂η (ω) ∑
ω ′′′∈Ω

µ
(
ω
′′′,ω ′

)
µ
(
ω
′′′,ω ′

)
µ
(
ω
′′′,ω ′′

)
p
(
ω
′′′)−2

Therefore, from the definition of Γ(ξ ), it follows that,

Γωω ′ω ′′ (θ) =
1
2

[
∂Gω ′ω ′′ (θ)

∂θ (ω)
+

∂Gωω ′′ (θ)

∂θ (ω ′)
− ∂Gωω ′ (θ)

∂θ (ω ′′)

]

=
1
2 ∑

ω ′′′∈Ω

(
ζ
(
ω
′′′,ω

)
−η (ω)

)(
ζ
(
ω
′′′,ω ′

)
−η

(
ω
′))(

ζ
(
ω
′′′,ω ′′

)
−η

(
ω
′′)) p

(
ω
′′′) ,

Γωω ′ω ′′ (η) =
1
2

[
∂Gω ′ω ′′ (η)

∂η (ω)
+

∂Gωω ′′ (η)

∂η (ω ′)
− ∂Gωω ′ (η)

∂η (ω ′′)

]
,

=−1
2 ∑

ω ′′′∈Ω

µ
(
ω
′′′,ω

)
µ
(
ω
′′′,ω ′

)
µ
(
ω
′′′,ω ′

)
p
(
ω
′′′)−2

.
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