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Abstract

Throughout this thesis, I investigate two long-standing yet rarely explored se-
quence learning challenges under the Probabilistic Graphical Models (PGMs)
framework: learning multi-timescale representations on a single sequence and
learning higher-order dynamics between multi-sequences. The first challenge
is tackled with Hidden Markov Models (HMMs), a type of directed PGMs, un-
der the reinforcement learning framework. I prove that the Semi-Markov Deci-
sion Problem (SMDP) formulated option framework [Sutton et al., 1999, Bacon
et al., 2017, Zhang and Whiteson, 2019], one of the most promising Hierarchi-
cal Reinforcement Learning (HRL) frameworks, has a Markov Decision Prob-
lem (MDP) equivalence. Based on this equivalence, a simple yet effective Skill-
Action (SA) architecture is proposed. Our empirical studies on challenging
robot simulation environments demonstrate that SA significantly outperforms
all baselines on both infinite horizon and transfer learning environments. Be-
cause of its exceptional scalability, SA gives rise to a large scale pre-training
architecture in reinforcement learning. The second challenge is tackled with
Markov Random Fields (MRFs), also known as undirected PGMs, under the
supervised learning framework. I employ binary MRFs with weighted Lower
Linear Envelope Potentials (LLEPs) to capture higher-order dependencies. I
propose an exact inference algorithm under the graph-cuts framework and an
efficient learning algorithm under the Latent Structural Support Vector Ma-
chines (LSSVMs) framework. In order to learn higher-order latent dynamics
on time series, we layer multi-task recurrent neural networks (RNNs) on top
of Markov random fields (MRFs). A sub-gradient algorithm is employed to
perform end-to-end training. We conduct thorough empirical studies on three
popular Chinese stock market indexes and the proposed method outperforms
all baselines. To our best knowledge, the proposed technique is the first to
investigate higher-order dynamics between stocks.
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Chapter 1

Introduction

Probabilities play a central role in sequence learning. Probabilistic Graphical
Models (PGMs) [Koller and Friedman, 2009] provides a unified framework for
diagrammatically representing complex probability distributions in formally
defined graphs. In graph theory, a graph consists of nodes connected by links.
In PGMs, each node represents a random variable, and the links represent
probability dependencies properties among these variables. By representing
the structure of a probability distribution in a formal graph, important prop-
erties, such as conditional independence properties, can be obtained by in-
spection of the graph. Moreover, since PGMs establish a formal connection
between probability theory and the graph theory, computationally expensive
tasks, such as inference and learning in sophisticated models, can be solved ef-
ficiently by employing efficient graph algorithms [Ladicky et al., 2010, Rother
et al., 2009, Kohli et al., 2008].

As graphs, PGMs can also be categorized into directed PGMs, undirected
PGMs and a hybrid of both (such as chain graphs [Lauritzen and Wermuth,
1989, Frydenberg, 1990], it contains both undirected PGMs and directed PGMs).
We illustrate PGMs of the Hidden Markov Models [Eddy, 1996] (HMMs) which
is a type of directed model, as well as Markov Random Fields [Hammersley
and Clifford, 1971] (MRFs) which is also known as undirected PGMs [Bishop,
2006b] in Figure 1.1. Figure 1.1 (a) denotes an HMM, in which S nodes denote
random variables of environment states, namely the observed information. Y
nodes are random variables for latent information. Directions of the proba-
bility dependencies are represented by connecting links’ directions. In this
graph, S nodes are sequentially dependent on parent nodes. Y nodes only de-
pend on corresponding S nodes at the same time step. Figure 1.1 (b) denotes a
MRF, each node in this graph represents a random variable of an entity (such

1



2 Introduction

as a city). Directions of probability dependencies in this model is unspecified:
directions of information flows are complex and keep changing over time.

(a) HMMs: Directed PGMs (b) MRFs: Undirected PGMs

Figure 1.1: Illustration of PGMs. Figure (a) is the PGM of Hidden Markov Models
(HMMs), a type of directed graph. Directed links between nodes represent conditional
independences in the probability distribution. Figure (b) is the PGM of Markov Ran-
dom Fields (MRFs), a type of undirected graph. Each node denotes a random variable.
Nodes are connected to each other with arbitrarily many undirected connections.

In this thesis, we demonstrate rarely discussed sequence learning chal-
lenges by exploiting both directed and undirected PGMs’ advantages. The
probabilistic description of sequences (such as time series, DNA sequences
etc.) has been a long standing problem. Initially, researchers made strong
assumptions, such as sequences are independent and have identical (follow-
ing the same) probability distributions [Bachelier, 1900, Friedman, 1953]. As-
sumptions like these have effectively simplified the complexity of modeling
sequences’ dynamics and quickly became the foundation of many predomi-
nant machine learning, engineering and finance theories [Jegadeesh and Tit-
man, 1993, Shiller, 1980, Sharpe, 1964, Carhart, 1997, Sargent et al., 1993]. De-
spite the significant successfulness of previous researches, researchers have
found many major discrepancies between those strong assumptions and real
world problems [Lux, 2008, Mandelbrot, 1963, Lux and Kaizoji, 2007, Abry
et al., 2019, Li et al., 2019, Mandelbrot et al., 1997]. These long standing chal-
lenges mainly fall into three categories:

1. Heterogeneous (Non-stationary) distributions (of a single sequence). De-
pendency relationships (e.g., transition probability distributions of a Markov
chain etc.) keep changing over time [Ross et al., 1996].
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2. Multi-timescale (Multi-scale) information dependency (of a single se-
quence). Even for a single sequence, information encoded in long and
short time scale are inter-dependent. Information extracted from a sin-
gle time scale is incomplete [Mandelbrot et al., 1997].

3. Higher-order (greater than or equal to 3) dynamics (of multi-sequences).
Most sequences not only have dependencies on themselves. They are
also strongly affected by other correlated sequences and have complex
dynamics (e.g., directions of information flow keep changing over time)
dependencies with them [Lo and MacKinlay, 1990, Badrinath et al., 1995,
McQueen et al., 1996].

In this thesis, we relax conventional assumptions, such as the i.i.d (indepen-
dent and identically distributed) assumption, on sequences and demonstrate
challenges above under the Probabilistic Graphical Models (PGMs) frame-
work. Among three challenges, the first heterogeneous assumption is the most
general assumption, and has to be treated differently while addressing the
second and third challenges. Therefore, we split this thesis into two parts.
Part I addresses the multi-timescale challenge by using directed PGMs under
the Reinforcement Learning paradigm. Part II addresses the higher-order dy-
namics challenge by using undirected PGMs under the Supervised Learning
paradigm. Both parts are under the heterogeneous assumption. The arrange-
ment of this thesis is shown in Figure 1.2.

Figure 1.2: Thesis Arrangement. Part I focuses on learning one single sequence.
Multi-timescale information is abstracted by Hidden Markov Models (HMMs) un-
der the Reinforcement Learning paradigm. Part II focuses on learning dynamics be-
tween groups of sequences. Dynamics among higher-order groups (any group con-
tains greater or equal to three entities) of sequences is captured by Markov Random
Fields (MRFs) under the Supervised Learning paradigm.

Part I focuses on demonstrating the multi-timescale challenge [Mandel-
brot et al., 1997] on a single sequence. The multi-timescale, or more generally,
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multi-scale problem presents a common phenomenon that information on dif-
ferent scales of the same entity are inter-dependent: they are interwoven in
both micro and macro scales. In order to understand the sequence, informa-
tion encoded in different scales must be considered simultaneously: details are
lost when the attention is only paid to the macro scale, while the big picture is
overlooked when only the micro scale is paid attention to. This phenomenon
does not only restrict to temporal sequences, it also applies to other sequences
such as natural languages and even images. We illustrate this idea in Figure
1.4. However, in this thesis we mainly use temporal sequences for experiments
and use the term “multi-timescale” over “multi-scale” for explicitness.

(a) Mandelbrot Set (b) Stock Price

Figure 1.3: Illustration of the multi-scale assumption. Figure (a) is the famous Man-
delbrot fractal. It is grown by starting from the smallest basic shape and keep repeat-
ing itself at larger scales. The information encoded in micro scale can not be over-
looked since it determines the macro scale. On the contrary, Figure (b) is the stock
price of the Apple company. It is misleading if only the downside micro scale (up-left
zoomed-in period) is paid attention to, because at a macro scale the Apple stock is
at a long-term upside. Therefore, even on a single sequence, information encoded in
multi-scale must be paid attention to simultaneously.

To address the multi-timescale challenge, Mandelbrot et al. [1997] made a
ground-breaking contribution by introducing multi-fractal probability distri-
butions into sequence learning. A multi-fractal distribution is proposed to ap-
proximate multi-timescale sequences with ground-truth labels under the Su-
pervised Learning paradigm. However, the self-similarity constraint (different
time scales follow the same distribution) made by the multi-fractal distribution
is a strong assumption and only applies to a small subset of multi-timescale se-
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quences. Also, the problem of multi-timescale dependencies goes beyond the
Supervised Learning paradigm. In Supervised Learning, the term of ground-
truth labels are fixed: most existing methods choose yt+N as a regression target
for inputs Xt at time step t where N is a constant. Such assumption no longer
holds under the multi-timescale dependence assumption because N becomes
a variable rather than a constant. Xt can be responsible for generating yt+?

any time earlier or later than the fixed-term N. This makes Reinforcement
Learning [Sutton and Barto, 2018] (RL), a framework which does not require
ground-truth labels and learns from interactions with the environment, the
perfect paradigm for modeling multi-timescale sequences.

Reinforcement Learning (RL) is a paradigm for imitating humans’ trial-
and-error learning process. In RL, there is no “correct answers” (labels) as in
Supervised Learning. RL trains an agent to maximise the expectation of all
incoming future rewards by taking actions in and receiving feedback from an
environment. Therefore, the RL paradigm does not suffer from the fixed-term
labeling problem as the Supervised Learning does. RL has achieved human-
level performance in playing video and board games [Mnih et al., 2015, Sil-
ver et al., 2016]. However, conventional RL agents have limited abilities to
solve complex tasks [Daniel et al., 2016]: they only learn the most primitive
actions and make decisions at the smallest time scale. Hierarchical Reinforce-
ment Learning (HRL) attempts to resolve this gap between humans and RL
by decomposing complex tasks into a hierarchy of abstracted actions at mul-
tiple time scales. An HRL agent typically learns abstractions of actions on
two levels: skills and primitive actions. Skills are higher-level abstracted ac-
tions. Their executions are temporally extended to a variable amount of time.
Primitive actions are lower-level actions defined by the environment. They are
executed at every time step. For example, for a humanoid robot, walking and
jumping are two abstract skills, while movements of each joint are primitive
actions. The main contribution of Part I focuses on solving the first two chal-
lenges together by employing the option framework [Sutton et al., 1999], one
of the most promising HRL frameworks.

The option framework is developed based on the Semi-Markov Decision
Problem (SMDP). There are, however, four inherent problems: the option frame-
work 1) has low sample efficiency, 2) cannot employ more stable Markov Deci-
sion Problem (MDP) based learning algorithms, 3) represents abstract actions
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implicitly, and 4) is expensive to scale. To overcome these shortcomings, in
Chapter 2, we propose a simple yet effective MDP implementation of the op-
tion framework: the Skill-Action (SA) architecture. Derived from our novel
discovery that the SMDP option framework has an MDP equivalence, SA hi-
erarchically extracts skills (abstract actions) from primitive actions and explic-
itly encodes this knowledge into skill context vectors (embedding vectors).
Although SA is MDP formulated, skills can still be temporally extended by
applying the attention mechanism to skill context vectors. Under this formu-
lation, SA can be optimized with any MDP-based policy gradient algorithm, it
is also sample efficient, inexpensive to scale, and theoretically proven to have
lower variance than other frameworks. Our empirical studies in Chapter 3 on
challenging infinite horizon robot simulation environments demonstrate that
SA not only significantly outperforms all baselines, but also exhibits smaller
variance, faster convergence, and high interpretability. SA also outperforms
the other models on transfer learning tasks and demonstrates its advantage in
knowledge reuse tasks. SA has the potential to pave the way for a large scale
pre-training architecture in reinforcement learning.

Part II addresses the higher-order dynamics between multiple sequences
by using undirected PGMs under the Supervised Learning paradigm. Most
existing sequence learning literatures [Sargent et al., 1993, Jegadeesh and Tit-
man, 1993, Shiller, 1980, Carhart, 1997, Lux and Kaizoji, 2007, Lux, 2008, Abry
et al., 2019] only consider how to model a single sequences’ dynamic. Rare
literatures investigate how correlated sequences evolve together and the com-
plex dynamics between them. Modeling dynamics between higher-order (greater
than or equal to three) sequences is very challenging. This is because directions
of information flow between sequences (entities) are usually unobserved and
keep changing over time.

The most well known example is how the economy grows. As shown in
Figure 1.4, the gross economy is constituted of many sectors, such as real es-
tate, industrials, utilities, materials, and energy. All these sectors are closely
correlated and evolve together. If the gross economy is a graph, these sec-
tors are the nodes and are all linked together. However, the dependence re-
lationships between these sectors are too complex to be expressed as directed
PGMs: as shown in Figure 1.4 (b), their dependences keep changing over time
[Lo and MacKinlay, 1990, Mech, 1993, Brennan et al., 1993]. Using the energy
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(a) Sector Rotation (b) Sector Price

Figure 1.4: Illustration of the higher-order dynamics in the economy. Figure (a) il-
lustrates several important sectors in the economy, such as real estate, industrials,
utilities, materials, and energy. These sectors are building blocks of the economy and
each sector’s growth not only depends on itself but other sectors. Figure (b) shows
the actual U.S. Sectors Indices in year 2017. As shown in the Figure, most sectors are
positively correlated at a macro scale while have many exceptions at a micro scale.
These kind of dependences are too complex to be represented as directed PGMs and
can only be learned from data by undirected PGMs.

and telecommunications sectors as an example, during most of the time in
2017 these two sectors are positively correlated. However, between Septem-
ber and November, these two sectors evolve in opposite directions. Therefore,
dynamics between higher-order sequences are too complex to be expressed
as directed PGMs and have to be learned from data by exploiting undirected
PGMs.

Markov Random Fields (MRFs), also known as undirected Probabilistic
Graphical Models (PGMs) [Bishop, 2006b], are as simple as regularized joint
probability distributions. One specialty of MRFs is that they are factorized
over (conditional independent on) maximal cliques (such as sectors, more de-
tails in Section 4.1.1) of random variables defined on the undirected graph.
In many applications, structural information, such as sub-objects to the whole
object relationships and relationships between sub-objects, can be well rep-
resented in maximal cliques. By defining each maximal clique’s probability
distribution and optimizing over them, MRFs provide a powerful framework
for modeling complex higher-order dynamics between entities. However, the
advantages of MRFs are limited by its computational complexity. Many liter-
atures [Kohli et al., 2008, Pletscher and Kohli, 2012, Ladicky et al., 2010, Szum-



8 Introduction

mer et al., 2008] found that although MRFs are able to represent a rich class of
higher-order dynamics, only a small set of them are computationally feasible
[Gould, 2015, Park and Gould, 2012].

To exploit MRFs advantages on encoding higher-order dynamics and ad-
dress the computational efficiency problem, in Chapter 4, we propose a novel
and powerful MRF-LSSVMs framework. We first prove that binary MRFs with
Lower Linear Envelope Potentials (LLEPs), a type of higher-order potentials,
have an equivalent pseudo-boolean [Boros and Hammer, 2002] formulation.
Based on this equivalence, we prove the sub-modular property of LLEPs. The
sub-modular property enables us to develop an efficient inference algorithm
based on the graph-cuts algorithm [Kolmogorov and Zabih, 2004]. As for the
learning algorithm, we prove that MRFs with LLEPs can also be written in
a novel formulation which is a linear combination of parameters and feature
vectors with latent variables. Therefore, this novel formulation establishes a
connection between higher-order MRFs and the Latent Structural Support Vec-
tor Machines (LSSVMs) [Yu and Joachims, 2009]. By employing the LSSVMs,
we can solve the learning problem efficiently under LSSVMs’ large margin
framework [Tsochantaridis et al., 2005]. In Chapter 5, we continue our exper-
iment on the real financial market stock price data set and show how MRF-
LSSVMs can be used to model dependency dynamics between time series. In
order to do that, we first employ Recurrent Neural Networks (RNNs) as unary
energy functions. Each stock is treated as a unary node in MRFs and RNNs are
used to extract feature from each stock’s historical market price time series. We
then layer MRFs on top of RNNs extractor and optimize the entire framework
with the LSSVMs algorithm proposed in Section 4.3.

The objective of this thesis is to address the three challenges. The thesis
consists of two parts. Part I addresses the multi-timescale challenge by using
directed PGMs under the Reinforcement Learning paradigm. In Chapter 2,
we propose a simple yet effective the Skill-Action (SA) architecture, to model
multi-timescale sequences based on Markov Decision Problems (MDPs). We
also develop the optimization framework for SA under the Hierarchical Rein-
forcement Learning (HRL) paradigm. In Chapter 3, we conduct experiments of
SA on challenging robots simulation environments and demonstrate the effec-
tiveness of SA. Part II addresses the higher-order dynamics challenge by using
undirected PGMs under the Supervised Learning paradigm. In Chapter 4, we
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propose the novel MRF-LSSVMs to model higher-order dynamics. We pro-
pose an exact inference algorithm based on the graph-cuts algorithm for bi-
nary Markov Random Fields (MRFs) and solve the learning problem under
the efficient Latent Structural Support Vector Machines (LSSVMs) framework.
In Chapter 5, we adapt MRF-LSSVMs on the financial time series by employ-
ing Recurrent Neural Networks (RNNs) as feature extractors and demonstrate
the effectiveness of our framework on the challenging China Securities Index
(CSI) 300 data set.
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Part I

Directed Probabilistic Graphical
Models: Hidden Markov Models
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Chapter 2

The Skill-Action (SA) Architecture:
Multi-timescale Sequence Learning
under Hierarchical Reinforcement
Learning Framework

Reinforcement Learning (RL) is a paradigm for imitating humans trial-and-
error learning process: RL trains an agent to maximise rewards by taking
actions in and receiving feedback from an environment. RL has achieved
human-level performance in playing video and board games [Mnih et al., 2015,
Silver et al., 2016]. However, while humans can abstract the hierarchical com-
plexity of actions through interactions with the environment and make deci-
sions at both macro and micro time scales, conventional RL agents have lim-
ited abilities to solve complex tasks [Daniel et al., 2016]: they only learn the
most primitive actions and make decisions at the smallest time scale. Hier-
archical Reinforcement Learning (HRL) attempts to resolve this gap between
humans and RL by decomposing complex tasks into a hierarchy of abstracted
actions at multiple time scales.

An HRL agent typically learns abstractions of actions on two levels: skills
and primary actions. Skills are higher-level abstracted actions. Their execu-
tions are temporally extended to a variable amount of time. Primary actions
are lower-level actions defined by the environment. They are executed at every
time step. For example, for a humanoid robot, walking and jumping are two
abstract skills, while movements of each joint are primary actions. One of the
most promising HRL frameworks is the option framework [Sutton et al., 1999].

13
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The option framework has achieved great success in representing actions at
different time scales [Bacon et al., 2017], speeding and scaling up learning [Ba-
con, 2018], improving exploration [Harb et al., 2018], and facilitating transfer
learning [Zhang and Whiteson, 2019].

In the option framework, an option is a primary action level sub-policy
consisting of an action policy, a termination probability, and an initiation set.
A master policy [Zhang and Whiteson, 2019] (aka policy-over-options [Sutton
et al., 1999]) is used to compose those options and thus is a skill-level pol-
icy. The option framework is formulated as a Semi-Markov Decision Problem
(SMDP) [Puterman, 1994]: an option sampled from a master policy is executed
through a variable amount of time (until its termination function determines
to stop). As highlighted in the literature, the SMDP formulation has the fol-
lowing limitations:

1. Sample inefficiency [Zhang and Whiteson, 2019]: a) For policy gradient
based algorithms, the master policy cannot be updated until stop. As a
result, one update consumes various time steps of samples. b) At each
time step, only one (the executed) option’s policies can be updated.

2. Large variance [Zhang and Whiteson, 2019, Haarnoja et al., 2018]: SMDP
algorithms are notoriously sensitive to hyperparameters . Due to the
SMDP formulation, more stable Markov Decision Process (MDP) policy
gradient algorithms cannot be used.

3. Expensive to scale up [Riemer et al., 2018]: for M options, there are 2M
action and termination policies. Each policy is a neural network that
could have millions of parameters to train.

To address these problems, we propose a simple yet effective MDP im-
plementation of the option framework, the Skill-Action (SA) architecture. The
idea behind SA originates from our new discovery that the SMDP option frame-
work has an MDP equivalence, which is achieved by adding extra dependen-
cies into the master policy. However, those extra dependencies still prevent
the master policy from being updated at every time step. Based on this equiva-
lence, a “skill policy” which marginalizes those dependencies away is derived
and hence can be updated at each time step.
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In SA, knowledge of a skill is explicitly represented as a skill context vector
(similar to an embedding vector [Vaswani et al., 2017] in Natural Language
Processing (NLP) or capsule [Sabour et al., 2017] in Computer Vision (CV)):
each dimension encodes a particular property of the skill1. The skill policy is
similar to a compatibility function: it is used to replace the master policy and
termination function while improving their functionalities by employing the
attention mechanism [Vaswani et al., 2017]. At each time step, the skill pol-
icy measures the compatibility (suitability) of all skills with the current state
and the executed skill from the last step. If the previous skill still fits the cur-
rent situation, then the skill policy tends to continue with it; otherwise, a new
skill with better compatibility will be sampled. Unlike the option framework,
which requires M action policies for M skills, SA’s action policy only needs
one decoder to decode any skill context vector into primary actions. With
this formulation, the entire framework is MDP-based while the skill can still
be temporally extended, and its scalability, as well as stability, are significantly
improved. All of these design choices have precursors in the existing literature
(HRL [Sutton et al., 1999, Bacon, 2018, Zhang and Whiteson, 2019]; CV [Ko-
siorek et al., 2019]; NLP [Vaswani et al., 2017]). Our contribution is establishing
them in reinforcement learning settings.

Compared to the SMDP option framework, SA has following advantages:

1. SA is more sample efficient, because a) SA is MDP formulated, thus sam-
ple at each time step can be used to update the skill policy; and b) Only
one action policy decoder is needed. It learns to decode each dimension
of the skill context vector at each time step whichever skill is activated;

2. SA has smaller variance, because a) The skill value upon arrival func-
tion (Eq. (2.28)) is theoretically and empirically proven to have smaller
variance than the conventional value function; and b) SA only needs to
train two (skill and action) policy networks; and c) SA can employ more
stable MDP based policy gradient algorithms (e.g. PPO [Schulman et al.,
2017]);

1For example, the first dimension may encode the orientation of a primary action. A jump
skill context vector may have a large first dimension value which instructs the robot to emit
primary actions vertically. A walk skill may have a small value and emit actions horizontally.
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3. SA has better scalability, because a) Regardless of the number of skills,
only two policies need to be trained; and b) Adding one more skill is as
cheap as adding a context vector;

4. SA is more effective, because a) On infinite-horizon environments, SA
significantly outperforms the other models; and b) On transfer learning
environments, SA ranks the first in 5 out of 6 environments and shows
its advantages in knowledge reuse tasks;

5. SA has better interpretability. Unlike the option framework encoding
abstract knowledge implicitly in action policies, knowledge of a skill is
explicitly encoded in each dimension of the skill context vector.

2.1 Related Works

To discover options automatically, Sutton et al. [1999] proposed Intra-option
Q-learning to update the master Q value function at every time step. How-
ever, all policies under this formulation are approximated implicitly using the
Q-learning method. Levy and Shimkin [2011] proposed to unify the Semi-
Markov process into an augmented Markov process and explicitly learn an
“overall policy” by applying MDP-based policy gradient algorithms. How-
ever, their method for updating the master policy is still SMDP-style thus
sample inefficient. Bacon et al. [2017] proposed a policy gradient based Op-
tion Critic (OC) framework for explicitly learning intra-option policies and
termination functions in an intra-option manner. However, for the master
policy’s policy gradients learning, OC still remains SMDP-style. Klissarov
et al. [2017] attempted to combine OC with PPO in an intra-option learning
manner (PPOC). However, as we show in Section 2.2.2, due to the SMDP
formulation, gradients they use for updating master policy are inconsistent.
Zhang and Whiteson [2019] reformulated the option framework into two aug-
mented MDPs. Under this formulation all policies can be modeled explicitly
and learned in MDP-style. However, their model is still expensive to scale up.
In single task environments, DAC has no significant advantages over other
baselines.

We must appreciate that Bacon ([Bacon, 2018]; Chapter 3.6) conceptually
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discussed a vectorized option representation and directly approximated the
marginalized master policy. However, no concrete formulations and policy
gradients theorems were developed in their work. Daniel et al. [2016] pro-
posed an MDP-formulated PGM similar to ours in Section 2.2. However, they
did not prove the equivalence between the MDP-formulation and SMDP by
employing conditional independencies. Furthermore, their learning algorithm
is EM based while ours is policy gradient based. Our work is motivated by
capsule networks Kosiorek et al. [2019] (more details in Section 3.4) and is de-
veloped independently from above literature.

With respect to optimization, Zhang and Whiteson [2019] pointed out that
a large margin of performance boost of DAC comes from Proximal Policy Op-
timization [Schulman et al., 2017] (PPO). Since SA is MDP-based, it can be
optimized directly with the PPO. Recent works show that the option frame-
work trained under off-policy [Haarnoja et al., 2018] algorithms outperforms
on-policy methods. For instance, HO2 [Wulfmeier et al., 2020] employs a
trust-region constrained off-policy algorithm and shows that it exhibits signifi-
cant advantages over on-policy methods on both sample efficiency and perfor-
mance. In this thesis, we propose SA as a general HRL framework which can
be trained by both on-policy and off-policy algorithms. Our main contribution
focuses on deriving MDPs of SA and its policy gradient theorems. Designing
off-policy algorithms for SA remains open for future work.

Existing RL literature [Hausman et al., 2018, Li et al., 2017, Tirumala et al.,
2019] also uses latent variables to learn skill embeddings. Typically, PEARL
[Rakelly et al., 2019] learns a latent context vector for each task under the meta-
reinforcement learning framework to improve the agent’s sample and transfer
learning efficiency. However, embeddings learned by RL frameworks only en-
code action level abstraction while SA learns abstractions at both action and
temporal levels. It is also worth mentioning that, the novel formulation of SA
establishes a strong connection to causal reinforcement learning. When the
number of skills equals one (M = 1), SA falls back to Generalized Hidden Pa-
rameter MDPs (GHP-MDPs) [Kolobov et al., 2012, Perez et al., 2020]. Causality
properties of SA is a direction worth to be explored in the future work.
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2.2 MDP Equivalence to the SMDP Option Frame-

work

In this section, we prove that the the conventional Semi-Markov Decision
Problem (SMDP) option framework which employs Markovian options actu-
ally has an MDP equivalence. We first follow Bishop [2006a]’s method and for-
mulate the dynamics of the option framework as an Hidden-Markov-Model-
Style (HMM-style) [Bishop, 2006a] in section 2.2.2. With Probability Graphical
Model (PGM) [Bishop, 2006a] and its conditional independence relationships
(Chapter 8.2.1 [Bishop, 2006a]) in hand, we then move on to prove that MDP
formulation has identical value functions (section 2.2.3), bellman equations as
well as intra-option policy and termination policy gradients to SMDP formu-
lation (section 2.2.4). To the best of our knowledge, this is the first work dis-
covering the option framework’s MDP equivalence and deriving the option
framework from a PGM view.

2.2.1 Background: The Option Framework

Sutton et al. [1999] proposed the option framework to demonstrate the tempo-
ral abstraction problem. A scalar o ∈ Z denotes the index of an option where
O ⊆ {1, 2, . . . , M} and M is the number of options. An Markovian option is
a triple (Io, Po(a|s), Po(b|s)) in which Io ⊆ S is an initiation set where the op-
tion o can be initiated. Po(a|s) : S → A is the intra-option policy which maps
environment states s ∈ S to an action vector a ∈ A. Po(b|s) : S → Z2 is a ter-
mination function where b is a binary random variable. It is used to determine
whether to terminate (b = 1) the policy Po(a|s) or not (b = 0). Convention-
ally, βo = Po(b = 1|s). Since an option’s execution may persist over a variable
period of time, a set of options’ execution together with its value functions con-
stitutes a Semi-Markov Decision Problem (SMDP) [Puterman, 1994]. When an
old option is terminated, a new option will be sampled from the master policy
(policy-over-options) o ∼ P(ot+1|st+1) : S → O. Due to the SMDP formula-
tion, an option can only be improved when the option terminates. We refer
this as the SMDP-style learning which is sample inefficient and prevents ap-
plying SOTA MDP based algorithms such as the Proximal Policy Optimization
(PPO) algorithm [Schulman et al., 2017].
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Figure 2.1: An Illustration of the SMDP Option Framework. An option ot−1 is selected
by master policy P(ot−1|st−1) at time step t− 1. At time step t, termination function
βot−1(st) determines to continue option ot−1. So that there is no random variable ot
at time step t compared to there are random variables o at every time step in MDP
formulation (figure 2.2).

2.2.2 HMM dynamics for the Option Framework

We follow Bishop [2006a]’s formulation of mixture distribution and Probabilis-
tic Graphical Models (PGMs). By introducing option variables as latent vari-
ables and adding extra dependencies between them, we show that the con-
ventional SMDP version of the option framework [Bacon et al., 2017, Sutton
and Barto, 2018, Sutton et al., 1999, Harb et al., 2018, Zhang and Whiteson,
2019] has an MDP equivalence. Following Bishop [2006a]’s notation, we use

Figure 2.2: PGM of the MDP Option Framework
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bolded letter s ∈ S to denote a random variable and normal letter s to denote
its realization. Without special clarification, a random vector can have either
a vector of continuous or discrete entries. Vector o ∈ O is an M-dimensional
one-hot vector and each entry o ∈ {0, 1} is a binary random variable. P(ot|st)

denotes the probability distribution over one-hot vector o at time step t con-
ditioned on state st. P(ot = ot|st) denotes a probability entry (a scalar value)
of the random variable ot with a realization at time step t where ot = 1 and
o ∈ ot/ot = 0.

In figure 2.2, s ∈ S, o ∈ OM, b ∈ BM and a ∈ A, denote the state, option,
termination and action random variable respectively. o is an M-dimensional
one-hot vector and b is an M-dimensional binary vector where each entry b ∈
{0, 1}. M is the number of options. Rt+1 is the actual reward received from
the environment after executing action at in state st. Gt = Rt+1 + γRt+2 +

γ2Rt+3 · · · is the discounted expected return where γ ∈ R is a discount factor.

The termination policy distribution P(bt|st, ot−1) : S×O → B can be for-
mulated as a mixture distribution2 conditioned on option vector (the one-hot
vector) ot−1 and state st.

P(bt|st, ot−1) = ∏
i∈ot−1

Pi(bt|st)
i. (2.1)

Because each option has its own termination policy Po(b|s), with a slightly
abuse of notation, in equation (2.1) we use P(bt|st, ot−1) to denote the termi-
nation policy activated at time step t by previous chosen option ot−1. To keep
notation uncluttered, we use βt = P(bt = 1|st, ot−1) to denote the probability
of option ot−1 terminates at time step t and (1− βt) = P(bt = 0|st, ot−1) to
denote the probability of continuation.

Conventionally, master policy [Zhang and Whiteson, 2019] (also called “policy-
over-options” [Sutton et al., 1999, Bacon et al., 2017])) is defined as:

P(ot|st). (2.2)

We further formulate the indicator function 1ot=ot−1 as P(ot|ot−1), i.e., a de-

2Different from conventional formulation which only depends on state st, our termination
function has an extra dependence on ot−1



§2.2 MDP Equivalence to the SMDP Option Framework 21

generated probability distribution [Puterman, 1994]

P(ot|ot−1) =

1 if ot = ot−1,

0 if ot 6= ot−1.
(2.3)

we then propose a novel mixture master policy as a mixture distribution3:

P(ot|st, bt, ot−1) = P(ot|st)
bt P(ot|ot−1)

1−bt , (2.4)

As shown in equation (2.4), the master policy only exists when the option
terminates, i.e., bt = 1. Therefore, PPOC [Klissarov et al., 2017] uses inaccurate
gradients for updating the master policy during an option’s execution.

According to the conditional dependency relationships in PGM (figure 2.2),
the joint probability distribution of ot and bt can be written as:

P(ot, bt|st, ot−1) = P(bt|st, ot−1)P(ot|st, bt, ot−1), (2.5)

and the marginal probability distribution can be written as:

P(ot|st, ot−1) = ∑
bt

P(bt|st, ot−1)P(ot|st, bt, ot−1) (2.6)

= P(bt = 0|st, ot−1)P(ot|ot−1) + P(bt = 1|st, ot−1)P(ot|st)

= (1−βt)P(ot|ot−1) +βtP(ot|st)

= (1−βt)1ot=ot−1 +βtP(ot|st).

The intra-option (action) policy distribution can also be formulated as a
mixture distribution

P(at|st, ot) = ∏
i∈ot

Pi(at|st)
i. (2.7)

3Different from conventional formulation which only depends on state st, our mixture mas-
ter policy has extra dependencies on ot−1 and bt
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Therefore, the dynamics of the PGM in figure 2.2 can be written as:

P(τ) =P(s0)P(o0)P(a0|s0, o0)∞
∏
t=1

P(st|st−1, at−1)P(bt|st, ot−1)P(ot|bt, st, ot−1)P(at|st, ot), (2.8)

where P(τ) = P(s0, o0, a0, s1, b1, o1, a1, . . .) denotes the joint distribution of
the PGM. Notice that under this formulation, P(τ) is actually an HMM with
st, at as observable random variables and bt, ot as latent variables.

It is worth to mention that equation (2.3) is essentially the indicator func-
tion 1ot=ot−1 used in conventional SMDP option framework papers and the
last line in equation (2.6) is identical to transitional probability distribution
in their formulation. However, as we show in this section, by adding latent
variables ot−1 and introducing the dependency between ot and bt, our formu-
lation is essentially an HMM. It opens the door to introduce many well devel-
oped PGM algorithms such as message passing [Forney, 1973] and variational
inference [Hoffman et al., 2013] to the reinforcement learning framework. As
we show below, the nice conditional independence relationships enjoyed by
this model also enable us to prove the equivalence between the option frame-
work’s SMDP and MDP formulation.

2.2.3 MDP formulation for the Option Framework

With PGM in hand, we now prove that the HMM formulated MDP option
framework has identical value functions with the conventional SMDP option
framework[Bacon et al., 2017, Sutton et al., 1999]. In this section, we first show
that all value functions defined on our PGM are identical to the SMDP formu-
lation. We will prove that the gradients are also the same in next section.

We follow Sutton and Barto [2018]’s notation in this section and write value
functions for MDP below:
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V[st] = E[Gt|st] = ∑
Gt

Gt ∑
ot

P(Gt, ot|st)

= ∑
ot

P(ot|st)∑
Gt

GtP(Gt|st, ot)

= ∑
ot

P(ot|st)E[Gt|ot, st]

= ∑
ot

P(ot|st)QO[ot, st], (2.9)

where V[st] is the state value function[Sutton and Barto, 2018] and QO[ot, st]

is the option value function[Bacon et al., 2017, Sutton et al., 1999]. Note that in
deriving equation (2.9) we only use summation rule and production rule, the
conditional dependency relationships in PGM (figure 2.2) are not used. The
option value function QO[ot, st] can be further expanded as:

QO[ot, st] = E[Gt|ot, st] = ∑
at

P(at|st, ot)E[Gt|ot, st, at]

= ∑
at

P(at|st, ot)QU[ot, st, at], (2.10)

where QU[ot, st, at] is the option-action value function.

Proposition 2.2.1. MDP formulation has identical state value function V[st] and
option value function QO[ot, st] to SMDP formulations

Proof. Note that in derivations above we only use summation and production
rules. Both equation (2.9) and (2.10) are identical to the conventional SMDP
option framework.

From now on, we will continue derivations with conditonal independence
relationships encoded in PGM (Chapter 8.2.1 [Bishop, 2006a]). Following Bishop
[2006a]’s notation, we use A, B and C to denote three non-overlapping sets of
arbitrarily many random variables. Sets A and B are conditional independent
on set C if P(A, B|C) = P(A|C)P(B|C), denoted as A ⊥⊥ B | C. We mainly
use head-to-tail conditional independence properties (Chapter 8.2.1 [Bishop,
2006a]) in this section. We have following conditional independence relation-
ships from PGM (figure 2.2):
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{Rt+2, Gt+1} ⊥⊥ {bt+1} | {ot+1}, (2.11)

{Rt+2, Gt+1} ⊥⊥ {st} | {st+1, ot}, (2.12)

{Rt+2, Gt+1} ⊥⊥ {at} | {st+1}, (2.13)

{Rt+2, Gt+1} ⊥⊥ {ot} | {st+1, ot+1}, (2.14)

{Rt+1, Gt, st+1} ⊥⊥ {ot} | {at}. (2.15)

With above conditional independence relationships in hand, we now show
that the MDP formulation has identical value functions to the conventional
SMDP formulation[Sutton et al., 1999, Bacon et al., 2017].

Proposition 2.2.2. MDP formulation has identical option-action value function QU[ot, st, at]

to SMDP formulations

QU[ot, st, at] = r(st, at) + γ ∑
st+1

P(st+1|st, at)U[st+1, ot]. (2.16)

Proof.

QU[ot, st, at] =E[Gt|ot, st, at]

=E[Rt+1 +γGt+1|ot, st, at]

=E[Rt+1|st, at] +γ ∑
Gt+1

Gt+1 ∑
st+1

P(st+1|st, ot, at)P(Gt+1|st+1, ot, st, at)

=r(st, at) + γ ∑
Gt+1

Gt+1 ∑
st+1

P(st+1|st, at)P(Gt+1|st+1, ot)

=r(st, at) + γ ∑
st+1

P(st+1|st, at)E[Gt+1|st+1, ot]

=r(st, at) + γ ∑
st+1

P(st+1|st, at)U[st+1, ot].

Proposition 2.2.3. MDP formulation has identical option-value function upon ar-
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rival U[st+1, ot] to SMDP formulations4

U[st+1, ot] =(1−βt+1)QO[ot+1 = ot, st+1] +βt+1V[st+1] (2.17)

=QO[ot+1 = ot, st+1]−βt+1 A[ot+1 = ot, st+1]. (2.18)

Proof.

U[st+1, ot] =E[Gt+1|st+1, ot]

= ∑
Gt+1

Gt+1

∑
ot+1

∑
bt+1

P(bt+1|ot, st+1)P(ot+1|bt+1, ot, st+1)P(Gt+1|ot+1, bt+1, ot, st+1)

= ∑
ot+1

∑
bt+1

P(bt+1|ot, st+1)P(ot+1|bt+1, ot, st+1) ∑
Gt+1

Gt+1P(Gt+1|ot+1, st+1)

= ∑
ot+1

[
(1−βt+1)1ot+1=ot +βt+1P(ot+1|st+1)

]
QO[ot+1, st+1]

=(1−βt+1)QO[ot+1 = ot, st+1] +βt+1V[st+1]

=QO[ot+1 = ot, st+1]−βt+1 A[ot+1 = ot, st+1].

from line 3 to line 4 use equation (2.11) and (2.14). From line 4 to line 5 use
equation (2.6) and definition of QO. The second last line use equation (2.9).
The last line use the definition of advantage function A.

Under our MDP formulation, we also propose proposition 2.2.4. We derive
our gradient theorems based on equation (2.19) in section 2.2.4. This important
relationship largely simplify derivations than the original paper [Bacon et al.,
2017] as well as give rise to the SA.

Proposition 2.2.4. The option-value function upon arrival U[st+1, ot] is an expec-
tation over option value function QO[ot+1, st+1] conditioned on previous option Ot

U[st+1, ot] = ∑
ot+1

P(ot+1|ot, st+1)QO[ot+1, st+1]. (2.19)

4Both equations (2.17) and (2.18) is largely used in the conventional SMDP papers[Sutton
et al., 1999, Bacon et al., 2017].
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Proof. Following proof of proposition 2.2.3,

U[st+1, ot] = ∑
ot+1

∑
bt+1

P(bt+1|ot, st+1)P(ot+1|bt+1, ot, st+1) ∑
Gt+1

Gt+1P(Gt+1|ot+1, st+1)

= ∑
ot+1

P(ot+1|ot, st+1)QO[ot+1, st+1].

2.2.4 Gradients for the MDP Option Framework

In above sections, we formulate dynamics of the option framework using HMM
and prove the MDP build on it has identical value functions to SMDP for-
mulation. In this section we will prove that both MDP and SMDP formula-
tions [Bacon et al., 2017] share the same intra-option and termination gradi-
ents. Our derivations are largely simplified by equation (2.19) compared to
previous work.

Let θa denote parameter vector for intra-option policies P(at|st, ot;θa) and
θb denote parameter vector for termination policies P(bt|st, ot−1;θb). To keep
notation uncluttered, we drop the dependency on parameter vectorθ in deriva-
tions below.

Proposition 2.2.5. MDP formulation has identical Intra-Option Policy Gradient
with SMDP formulation in [Bacon et al., 2017].

∂QO[st, ot]

∂θa
=

∞
∑

k=0
∑

st+k ,ot+k

P(k)
γ (st+k, ot+k|st, ot)

∑
at+k

∂P(at+k|st+k, ot+k)

∂θa
QU(st+k, ot+k, at+k). (2.20)

Proof. This is a direct result by taking gradient of θa with respect to equa-
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tion (2.10) by using equation (2.16) and (2.19):

∂QO[st, ot]

∂θa
=∑

at

∂P(at|st, ot)

∂θa
QU[ot, st, at] +γ∑

at

P(at|st, ot)
∂QU[ot, st, at]

∂θa

=∑
at

∂P(at|st, ot)

∂θa
QU[ot, st, at]

+γ∑
at

P(at|st, ot) ∑
st+1

P(st+1|st, at)
∂U[ot, st+1]

∂θa

=∑
at

∂P(at|st, ot)

∂θa
QU[ot, st, at]

+γ ∑
st+1

P(st+1|st, ot) ∑
ot+1

P(ot+1|st+1, ot)
∂QO[ot+1, st+1]

∂θa

=∑
at

∂P(at|st, ot)

∂θa
QU[ot, st, at] +γ ∑

ot+1 ,st+1

P(st+1, ot+1|st, ot)
∂QO[ot+1, st+1]

∂θa

=
∞
∑

k=0
∑

st+k ,ot+k

P(k)
γ (st+k, ot+k|st, ot)

∑
at+k

∂P(at+k|st+k, ot+k)

∂θa
QU(st+k, ot+k, at+k).

Proposition 2.2.6. MDP formulation has identical Termination Policy Gradient with
SMDP formulation in [Bacon et al., 2017].

∂U[st+1, ot]

∂θb
= −

∞
∑

k=0
∑

st+1+k ,ot+k

P(k)
γ (st+1+k, ot+k|st+1, ot)

∂βt+1+k
∂θb

A[st+k+1, ot+k+1 = ot+k].

(2.21)

Proof. We first show the gradient of θb with respect to equation (2.6) and (2.10)
separately:
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∂P(ot+1|st+1, ot)

∂θb
=
[
P(ot+1|st+1)− 1ot=ot−1

]∂βt+1

∂θb
(2.22)

∂QO[ot+1, st+1]

∂θb
= ∑

at+1

P(at+1|st+1, ot+1) ∑
st+2

P(st+2|st+1, at+1)
∂U[st+2, ot+1]

∂θb

= ∑
st+2

P(st+2|st+1, ot+1)
∂U[st+2, ot+1]

∂θb
. (2.23)

The equation (2.21) is a direct result by taking gradient of θb with respect
to equation (2.19) and using above results:

∂U[st+1, ot]

∂θb
= ∑

ot+1

∂P(ot+1|ot, st+1)

∂θb
QO[ot+1, st+1] + ∑

ot+1

P(ot+1|ot, st+1)
∂QO[ot+1, st+1]

∂θb

= ∑
ot+1

[
P(ot+1|st+1)− 1ot=ot−1

]
QO[ot+1, st+1]

∂βt+1

∂θb

+ ∑
ot+1

P(ot+1|ot, st+1)γ ∑
st+2

P(st+2|st+1, ot+1)
∂U[st+2, ot+1]

∂θb

=
[
V[st+1]−QO[ot+1 = ot, st+1]

]∂βt+1

∂θb

+γ ∑
ot+1 ,st+2

P(st+2, ot+1|st+1, ot)
∂U[st+2, ot+1]

∂θb

=− A[ot+1 = ot, st+1]
∂βt+1

∂θb
+γ ∑

ot+1 ,st+2

P(st+2, ot+1|st+1, ot)
∂U[st+2, ot+1]

∂θb

=−
∞
∑

k=0
∑

st+1+k ,ot+k

P(k)
γ (st+1+k, ot+k|st+1, ot)

∂βt+1+k
∂θb

A[st+k+1, ot+k+1 = ot+k].

2.2.5 Summary

In this previous sections, we prove that an MDP equivalence to the SMDP.
Briefly, we propose a novel MDP “mixture master policy” (Section 2.2.2). Un-
like the conventional SMDP master policy that only depends on the current
state, the mixture master policy has extra dependencies on the termination
function and the previously activated option. We then prove that the MDP has
identical optimal properties with the SMDP option framework [Sutton et al.,
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1999] and identical policy gradients with the option-critic architecture [Bacon
et al., 2017]. We summarize our results as the following theorem:

Theorem 2.2.7. The SMDP formulated option framework, which employs Markovian
options, has an underlying MDP equivalence.

Proposition 2.2.8. The MDP formulation has identical optimality (value functions)
with the SMDP option framework [Sutton et al., 1999].

Proposition 2.2.9. The MDP formulation has identical policy gradients with the
option-critic architecture [Bacon et al., 2017].

2.3 The Skill-Action Architecture

In this section, we propose a simple MDP [Puterman, 1994] implementation of
the option framework: the Skill-Action (SA) architecture. Although the mix-
ture master policy (Eq. 2.4) is MDP formulated, the master policy’s (Eq. 2.2)
gradients are still blocked by its dependency on the termination function. To
overcome this, we present a marginalized derivation of the equivalence: the
Skill-Action (SA) architecture. SA marginalizes the termination function away
and models the marginalized policy (Eq. 2.6) directly with a “skill policy”
(Eq. 2.25), which is used to replace both the master policy and termination
function while implements their functionalities with the attention mechanism [Vaswani
et al., 2017]. Section 2.3.1 describes the dynamics (Markov process) of SA.
Section 2.3.2 defines value functions on top of the dynamics, thus formulat-
ing the MDP. Policy gradient theorems are then derived. Section 2.3.3 imple-
ments SA by employing neural networks and the Multi-Head Attention mech-
anism [Vaswani et al., 2017], which enables SA to temporally extend skills in
the absence of the termination function.

2.3.1 Dynamics of the Skill-Action Architecture

In this section, we define the dynamics (Markov process) of SA. We first intro-
duce MDP notations. A Markov decision process M = {S,A, r, P,γ} consists
of a state space S, an action space A, a state transition function P(st+1|st) :
S → S, a reward function r(s, a) : S× A → R, and a discount factor γ ∈ R.
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(a) PGM of SA (b) Network Architecture of SA

Figure 2.3: The Skill-Action (SA) Architecture

A policy π = P(a|s) : S → A is a probability distribution defined over ac-
tions conditioning on states. An expected discounted return is defined as
Gt = ∑

N
k γ

kRt+k+1, where R ∈ R is the actual reward received from the envi-
ronment. The value function V[st] = Eπ [Gt|st] is the expected return starting
at state st and following policy π thereafter. The action-value function is de-
fined as Q[st, at] = Eτπ [Gt|st, at]. An Markov decision process together with
value functions defined on it are referred to as an MDP [Puterman, 1994].

Having defined notations of MDP, we propose the dynamics of SA. Specif-
ically, a skill index vector o ∈ ZM

2 is an M-dimensional one-hot vector, where
M denotes the total number of skills to learn. Each entry o ∈ {0, 1} is a binary
random variable. oi = 1 means that the i-th skill is activated. A skill context
matrix [Kosiorek et al., 2019] WS ∈ RM×E is a learnable parameter containing
M rows of E dimensional real vectors, the i-th row of WS corresponds to the
i-th skill oi, and different columns encode different properties of a skill. A skill
context vector ôt is defined as:

ôt = W T
S · ot, ôt ∈ RE. (2.24)

The skill policy is defined as:

P(ôt|st, ôt−1; Ws) : S×RE → RE, (2.25)

which is a probability distribution over skill context vector ôt conditioned on
state st and previous sampled skill context vector ôt−1, with WS as its learnable
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parameters.

The action policy is defined as:

P(at|st, ôt) : S×RE → A, (2.26)

which is a probability distribution over the action random variable at ∈ A
conditioned on the skill context vector ôt and state st, and decodes them into
primary actions.

With both skill and action policies in hand, the dynamics of the SA are
defined as a Probabilistic Graphical Model (PGM) [Koller and Friedman, 2009]
(Figure 2.3 (a)):

P(τ) =P(s0)P(ô0)P(a0|s0, ô0)∞
∏
t=1

P(st|st−1, at−1)P(ôt|st, ôt−1)P(at|st, ôt), (2.27)

where P(τ) = P(s0, ô0, a0, s1, ô1, a1, . . .) denotes the joint distribution of the
PGM. Note that under this formulation, P(τ) is actually an Hidden Markov
Model (HMM) with st, at as observable random variables and ôt as latent vari-
ables.

2.3.2 MDP of the Skill-Action Architecture

With SA’s dynamics in hand, in this section, we first propose a novel “skill
value upon arrival function” and theoretically prove that it has a smaller vari-
ance than the conventional value function. This property is empirically justi-
fied in Section 3.1 and further discussed in Section 3.4. Then, we derive the
recursive formulation of value functions and formulate the MDP. Based on the
MDP, skill and action policies’ gradients theorems are finally derived.

Rather than use the conventional value function V[st], we define the skill
value upon arrival function V[st, ôt−1] as:

V[st, ôt−1] = E[Gt|st, ôt−1] = ∑
ôt

P(ôt|st, ôt−1)QO[st, ôt]. (2.28)
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Proof. Derivations of Eq. (2.28):

V[st, ôt−1] =E[Gt|st, ôt−1]

=∑
ôt

P(ôt|st, ôt−1)E(Gt|st, ôt, ôt−1)

=∑
ôt

P(ôt|st, ôt−1)E[Gt|st, ôt]

=∑
ôt

P(ôt|st, ôt−1)QO[ôt, st],

where from line 2 to line 3 we use the conditional independence property in
PGM that Gt ⊥⊥ ôt−1|{st, ôt}.

Proposition 2.3.1. V[st, ôt−1] is an unbiased estimation of V[st].

Proof. By law of total expectation:

Eôt−1 [V[st, ôt−1]] = Eôt−1 [E[Gt|st, ôt−1]] = E[Gt|st] = V[st]

thus V[st, ôt−1] is an unbiased estimator of V[st].

Proposition 2.3.2. The variance of V[st, ôt−1] is less than or equal to V[st].

Proof. By law of total conditional variance:

Var(V[st]) = Var([E[Gt|st]]) = E[Var(E[Gt|st, ôt−1])|st] + Var(E[E[Gt|st, ôt−1]]|st)

= E[Var(V[st, ôt−1])|st] + Var(E[V[st, ôt−1]]|st)

≥ Var(E[V[st, ôt−1]]|st).

Eq. (2.28) states that the skill value function upon arrival is an expectation
over skill value function QO[st, ôt] conditioned on previous skill ôt−1. The
skill value function QO[st, ôt] is defined as:

QO[st, ôt] = E[Gt|st, ôt] = ∑
at

P(at|st, ôt)QA[st, ôt, at], (2.29)



§2.3 The Skill-Action Architecture 33

and the skill-action value function QA[st, ôt, at] is defined as:

QA[st, ôt, at] = E[Gt|st, ôt, at]

= r(s, a) + γ ∑
st+1

P(st+1|st, at)V[st+1, ôt], (2.30)

where γ ∈ R is a discounting factor.

Proof.

QA[st, ôt, at] =E[Gt|st, ôt, at] = E[Rt+1 +γGt+1|st, ôt, at]

=r(s, o, a) + γ ∑
st+1

P(st+1|st, ôt, at)E[Gt+1|st+1, st, ôt, at]

=r(s, a) + γ ∑
st+1

P(st+1|st, at)E[Gt+1|st+1, ôt]

=r(s, a) + γ ∑
st+1

P(st+1|st, at)V[st+1, ôt],

where from line 2 to line 3 we use the conditional independence property in
PGM that Rt+1 ⊥⊥ ôt|at, Gt+1 ⊥⊥ st|{st+1, ôt} and Gt+1 ⊥⊥ at|st+1. γ ∈ R is a
discounting factor.

Expanding (Eq. 2.30) with (Eq. 2.28) gives us a recursion formulation from
which Bellman equations and policy gradient theorems are derived. To keep
notations uncluttered, we use θo to denote skill policy’s parameters (Eq. 2.25)
and θa to denote action policy’s parameters (Eq. 2.26). The skill and action
policies’ gradient theorems are:

Theorem 2.3.3. Skill Policy Gradient Theorem: Given a stochastic skill policy
differentiable in its parameter vectorθo, the gradient of the expected discounted return
with respect to θo is:

∂V[st, ôt−1]

∂θo
= E[ ∂P(ô′|s′, ô)

∂θo
QO[s′, ô′] | st, ôt−1], (2.31)

where ô′ is one time step later than ô.
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Proof.

∂QO[st, ôt]

∂θo
=∑

at

P(at|st, ôt)
[
r(s, a) + γ ∑

st+1

P(st+1|st, at)
∂V[st+1, ôt]

∂θo

]
= ∑

st+1

γP(st+1|st, ôt)
∂V[st+1, ôt]

∂θo

∂V[st, ôt−1]

∂θo
=∑

ôt

∂P(ôt|st, ôt−1)

∂θo
QO[st, ôt] +γ∑

ôt

P(ôt|st, ôt−1)
QO[st, ôt]

∂θo

=∑
ôt

∂P(ôt|st, ôt−1)

∂θo
QO[st, ôt] +γ ∑

st+1 ,ôt

P(st+1, ôt|st, ôt−1)
∂V[st+1, ôt]

∂θo

=−
∞
∑

k=0
∑

st+k ,ôt+k−1

P(k)
γ (st+k, ôt+k−1|st, ôt−1) ∑

ôt+k

∂P(ôt+k|st+k, ôt+k−1)

∂θo
QO[st+k, ôt+k]

=E[ ∂P(o′|s′, o)
∂θo

QO[s′, o′] | st, ôt−1].

Theorem 2.3.4. Action Policy Gradient Theorem: Given a stochastic action
policy differentiable in its parameter vector θa, the gradient of the expected discounted
return with respect to θa is:

∂QO[st, ôt]

∂θa
= E[ ∂P(a|s, ô)

∂θa
QA[s, ô, a] | st, ôt]. (2.32)

Proof. Similar to the first equation above, continue expanding gradients of ∂QO
∂θa
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by equations (2.28) (2.29) and (2.30):

∂QO[st, ôt]

∂θa
=∑

at

∂P(at|st, ôt)

∂θa
QA[st, ôt, at] +γ ∑

st+1

P(st+1|st, ôt)
∂V[st+1, ôt]

∂θa

=∑
at

∂P(at|st, ôt)

∂θa
QA[st, ôt, at] +γ ∑

st+1 ,ôt+1

P(st+1, ôt+1|st, ôt)
∂QO[st+1, ôt+1]

∂θa

=−
∞
∑

k=0
∑

st+k ,ôt+k

P(k)
γ (st+k, ôt+k|st, ôt) ∑

at+k

∂P(at+k|st+k, ôt+k)

∂θa
QA[st+k, ôt+k, at+k]

=E[ ∂P(at+k|st+k, ôt+k)

∂θa
QA[st+k, ôt+k, at+k] | st, ôt].

Compared to MDP formulated algorithms, SMDP option frameworks are
sample inefficient and notoriously unstable to hyperparameters [Zhang and
Whiteson, 2019]. The skill and action policies’ gradient theorems enable SA to
be compatible with both MDP on-policy and off-policy algorithms, and thus
has much better stability and convergence. This work is focused on deriv-
ing MDPs of SA and its policy gradient theorems. To be comparable with
previous work [Zhang and Whiteson, 2019], in this thesis we directly apply
PPO [Schulman et al., 2017] to our learning algorithm (Algorithm 1). Recent
work [Wulfmeier et al., 2020] shows that the off-policy algorithm gives a per-
formance boost to option variants. Designing off-policy algorithms for SA re-
mains open for future work.

2.3.3 Networks Architecture

After deriving the MDP of SA, we present a simple neural network imple-
mentation of the Skill-Action Architecture (Figure 2.3). Unlike the conven-
tional SMDP option framework, which employs a termination function and an
SMDP master policy to temporally extend the execution of an option, SA im-
plements the temporal extension functionality by employing the Multi-Head
Attention (MHA) mechanism [Vaswani et al., 2017].

Specifically, an attention mechanism is described as the mapping from a
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query q ∈ RE and a set of key-value pairs, i.e., K ∈ RM×E and V ∈ RM×E

(M and E are total number of skills and embedding dimensions defined in
section 2.3.1), to an output:

Attention(q, K, V) = softmax(
qKT
√

E
)V (2.33)

A Multi-Head Attention MHA(q, K, V) is a linear projection of h (number of
heads) concatenated linearly projected Attention outputs:

MHA(q, K, V) = Concat[head1, . . . , headh]W H (2.34)

where headi = Attention(qWq
i , KWK

i , VWV
i )

where projections are parameter matrices Wq
i ∈ RE×E, WK

i ∈ RE×E, WV
i ∈

RE×E, WO
i ∈ RhE×E. In this thesis we use MHA as one building block as

illustrated in Figure 2.3.

SA employs MHA as the skill policy. At each time step, the skill policy
P(ôt|st, ôt−1; Ws) attends to (measures the compatibility of) all skill context
vectors in Ws according to st and ôt−1. If ôt−1 still fits st, then the skill policy
assigns a larger attention weight to ôt−1, thus has a tendency to continue with
it. Otherwise, a new skill with better compatibility will be sampled. The action
policy is as simple as one decoder to decode ôt and st into primary actions
at. The attention mechanism together with skill context vectors enable SA to
temporally extend skills even in the absence of termination functions.

Specifically, a skill policy (Eq. (2.25)) uses a concatenation of current state
st and previous skill context vector ôt−1 as the query for MHA. Both key and
value matrices are the skill context matrix WS. In this way, we have:

ŝt−1 = linear(Concat[st, ôt−1]), (2.35)

dO
t = MHA(ŝt−1, WS, WS), (2.36)

ot ∼ Categorical(ot|dO
t ), (2.37)

where the linear layer simply projects the concatenated vector to E dimension.
MHA is employed to attend to (measures the compatibility of) all skills in Ws

according to st and ôt−1. The skill density vector dO
t is then used as densi-
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ties for a Categorical distribution P(ot|dO
t ), from which the new one-hot skill

index vector ot is sampled from. We can retrieve the skill context vector by
ôt = W T

S · ot. With the skill context vector ôt in hand, the action policy can be
designed as simple as a multi-layer Feed-Forward Networks (FFN) decoder:

dA
t = FFN(st, ôt), (2.38)

at ∼ P(at|dA
t ), (2.39)

where dA
t is a density vector and P is an arbitrary probability distribution

(works for both discrete and continuous situations).
Similar to Zhang and Whiteson [2019], because of the skill value upon ar-

rival function V(st, ôt−1), (Eq. 2.28) is an expectation of the skill value func-
tion QO[st, ôt] (Eq. 2.29). It is sufficient for us to model only one critic function:

QO = FFN(st, ôt), (2.40)

where QO is implemented as a multi-layer FFN. We summarize the detailed
learning procedures in Algorithm 1.

Since ôt encodes all context of a skill, SA only needs one action policy de-
coder to decode the activated skill context vectors ôt and current state st into
primary actions at. This design choice largely improves the scalability of SA:
adding one more skill is as cheap as adding a skill context vector. Moreover,
unlike the option framework, in which only the activated option’s action pol-
icy gets updated, the action policy learns to decode each dimension of skill
context vectors at every time step. This design choice largely improves sam-
ple efficiency and enables SA to converge faster than the conventional option
framework.
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Algorithm 1 Learning Algorithm for the Skill-Action architecture
Initialize the skill embedding matrix WS Assign Initial State: st ← s0 Assign
Initial Skill: ôt−1 ← ô0
while Converge do

# Rollout trajectories and store in replay buffer repeat
Retrieve the skill context vector ôt−1 = W T

S · ôt−1 Sample ôt ∼
P(ôt|st, ôt−1) Retrieve the skill context vector ôt = W T

S · ôt Sample
at ∼ P(at|st, ôt) Compute QO[st, ôt] and V[st, ôt−1] Take action at in
st, observe new state st+1 and reward Rt+1

until Rollout Length Reached;

# Compute Advantages for skill & action policies Assign t reversely, from
RolloutLength− 1 to 1 repeat

Compute skill Advantage AO
t = Rt+1 + γ(V[st+1, ôt] − V[st, ôt−1]) +

γλAO
t+1 Compute action Advantage AA

t = Rt+1 + γ(QO[st+1, ôt+1]−
QO[st, ôt]) +γλAA

t+1
until Rollout Length Reached;

# λ is the GAE coefficient used in PPO.
# Optimize PPO Obj while i < PPO Optimization Epochs do
θo ← PPO( ∂P(o′|s′ ,o)

∂θo
, AO) θa ← PPO( ∂P(a|s,o)

∂θa
, AA)

end
end



Chapter 3

Application: Multi-timescale
Sequence Learning on Robots
Simulation Environments

In this section, we design experiments to answer four questions: 1) Can SA
outperform other baselines (regarding episodic returns1, stability, and scala-
bility)? 2) Can SA temporally extend skills without the termination function?
3) Can skill context vectors be easily interpreted? 4) Does skill embeddings
learned by SA have a performance boost over other option variants in transfer
learning settings?

For single task learning, experiments are conducted on all OpenAI Gym
MuJoCo environments (10 environments) [Brockman et al., 2016]. We follow
DAC [Zhang and Whiteson, 2019] and compare our algorithm with five base-
lines, four of which are option implementations, i.e., DAC+PPO [Zhang and
Whiteson, 2019], AHP+PPO [Levy and Shimkin, 2011], PPOC [Klissarov et al.,
2017] and OC [Bacon et al., 2017]. The last baseline is PPO [Schulman et al.,
2017]. All baselines’ parameters used in DAC remain unchanged other than
the maximum number of training steps: SA only needs 1 million steps to con-
verge rather than the 2 million used in DAC. For transfer learning, we follow
Zhang and Whiteson [2019] and run 6 pairs of transfer learning tasks con-
structed in DAC based on DeepMind Control Suite [Tassa et al., 2020]. For a
fair comparison, we use four skills for SA and four options for other option
implementations. All experiments are run on an Intel® Core™ i9-9900X CPU
@ 3.50GHz with a single thread and process. Our implementation details are

1Episodic return refers to how much reward an agent receives at the end of the environ-
ment.
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summarized in Section 3.5.

3.1 Single Task Learning

3.1.1 Performance

In Figure 3.1, we report episodic returns on infinite horizon (i.e., HalfChee-
tah, Swimmer, HumanoidStandup and Reacher) and finite horizon (the other
tasks) 2 environments separately. For a fair comparison, we use exactly the
same plotting script as used in DAC: curves are averaged over 10 independent
runs and smoothed by a sliding window of size 20. Shaded regions indicate
standard deviations.

2We refer to environments with the game-over condition as finite horizon environments,
and infinite vice versa.
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Figure 3.1: Performance of Ten OpenAI Gym MuJoCo Environments.
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Table 3.1: Performance of Infinite Horizon Environments

HalfCheetah Swimmer HumanoidStandup Reacher
PPO 2143.6 59.9 62262.2 -7.5
DAC+PPO 1830.1 85.0 38954.9 -8.1
AHP+PPO 1701.7 86.7 38684.9 -7.3
PPOC 1441.2 43.6 39841.7 -9.4
OC 832.3 33.0 52352.7 -15.3
SA+PPO 3446.7 107.8 91654.5 -4.6

Table 3.2: Performance of Finite Horizon Environments

Walker2d Hopper InvertedPendulum InvertedDoublePendulum Ant Humanoid
PPO 1512.5 1489.9 939.9 7112.6 1049.6 562.1
DAC+PPO 1968.0 1702.2 943.7 5804.5 985.8 487.6
AHP+PPO 1520.6 1993.6 940.0 7120.7 1359.3 569.3
PPOC 756.1 1308.1 936.2 7117.6 429.4 483.9
OC 391.9 487.6 207.1 2369.4 433.4 475.1
SA+PPO 1856.9 1955.3 906.5 6884.1 907.4 528.7

It is extremely interesting that SA shows two completely different kinds
of behaviors on infinite and finite horizon environments. According to pre-
vious option framework implementations [Klissarov et al., 2017, Smith et al.,
2018, Harb et al., 2018, Zhang and Whiteson, 2019], on single task environ-
ments, option-based algorithms do not have a distinguishable performance
boost over hierarchy-free algorithms. SA also has similar behavior and achieves
comparable performance to the best baseline algorithm on most finite horizon
environments (Figure 3.1). In Section 3.4 we conceptually explain that con-
ventional value functions are insufficient to approximate models which have
temporal latent variables dependencies. A concrete deep wide skill-action ar-
chitecture remains open for the future work.

On infinite horizon environments as shown in Figure 3.1, SA’s performance
significantly outperforms all baselines by a large margin in various aspects.
For episodic return, e.g., HumanoidStandup, all option implementations barely
converge, while SA is 240% better than DAC and AHP3. For convergence, SA
has the fastest convergence speed. On the first two environments, which are

3Even on Reacher, a simple environment on which most algorithms converge to a similar
performance, SA is still 38% better than the second best (AHP).
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also reported in DAC, SA only takes 40% of time steps of DAC and AHP to
reach similar episodic returns. This acceleration is because: 1) SA is MDP
formulated, the skill policy is updated at each time step; 2) SA only has one
action policy decoder; 3) the action decoder learns to decode skill context vec-
tors whichever skill is activated. For stability, all 10 runs of SA converge to
a similar level while the other have much larger standard deviations. This
property is theoretically justified by Proposition 2.3.2 and further discussed in
Section 3.4.

3.1.2 Temporal Extension

It is logical to ask whether SA is capable of temporal extension without the
termination function. To illustrate this, we plot the average duration of each
skill during training episodes of the HalfCheetah environment in Figure 3.2
(a) and 4 runs of skill activation sequences in Figure 3.3. In Figure 3.2, we plot
the average duration of each skill during 430 training episodes (each episode
contains a trajectory of 512 time steps) of the HalfCheetah environment. In
this environment, the agent learns to run half of a Cheetah by controlling 6
joints: back thigh, back shin, back foot, front thigh, front shin, and front foot.
The faster the Cheetah runs forward, the higher return it gets from the envi-
ronment.

At the start of training, all skills’ durations are short. After the 100-th
episode, Skill 2’s duration quickly grows and dominates the entire episode.
This growth of duration proves that SA can still temporally extend a skill.

The dominant skill phenomenon is also reported in other option imple-
mentations such as DAC. One explanation for this domination phenomenon
is that for some single task environments, primitive actions might be enough
to express the optimal policy, in which case extra levels of abstraction (skills)
become overhead. However, towards the end of the training, the dominant
skill’s duration starts to decrease while the duration of a secondary skill (Skill
1) starts to increase. These facts indicate that SA has a better capability of
automatically discovering abstract actions from primary actions as well as co-
ordinating between them. The dominant skill phenomenon is also reported in
other option implementations such as DAC. However, as shown in the video4,

4https://www.youtube.com/watch?v=QiLVZvI6NJU
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SA still learns distinguishable skills. Skill 2 is the running forward skill thus
it dominates the whole episode. Skill 1 is only used to recover from falling
down thus it has much shorter duration. As discussed in Section 3.4, solution
to the dominant skill is actually learning skills at much finer granularity. The
SA-style wide value function (Eq. (2.28)) provides an elegant solution to this
problem.

Figure 3.2: Duration of 4 options during 430 training episodes of HalfCheetah.

To illustrate how SA coordinates skills, we take the HalfCheetah model
trained after 1 million steps and independently run it 4 times (4 episodes. each
episode contains 512 time steps). Skill activation sequences of 4 runs are then
plotted in Figure 3.3. As we can see that there are some common patterns

Figure 3.3: Activated option sequences of 4 independent HalfCheetah runs.
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between all 4 independent runs. For example, all runs start with Skill 0 and
use Skill 1 at the early stage. After executing Skill 1 for a short period, they
all switch to Skill 2 which has longest durations in all 4 runs. From time to
time they will fall back to Skill 1 for short periods and quickly switch to Skill
2 again. This pattern of coordination indicates that Skill 1 and Skill 2 have
completely different functionality and SA has the capability of automatically
discovering as well as leveraging those skills.

3.1.3 Interpretation of Skill Context Vectors

In this section we continue with the HalfCheetah model used in Section 3.1.2
and demonstrate how to interpret skill context vectors as well as skill activa-
tion sequences (Figure 3.3). In HalfCheetah, the agent learns to run half of a
Cheetah by controlling 6 joints: back thigh, back shin, back foot, front thigh,
front shin, and front foot. The faster the Cheetah runs forward, the higher
return it gets from the environment. We interpret skill context vectors and
activation patterns by first inspecting what property each dimension of the
skill context vector encodes (Figure 3.5). Once each dimension is understood,
skills (Figure 3.4) become straight forward to interpret by simply inspecting
on which dimension (property) they have the most significant weights (Fig-
ure 3.6). These interpretations can further be taken to explain skill activation
patterns in Figure 3.3.

Figure 3.4: Heatmap of all 4 skill context vectors

As the first step, we follow Sabour et al. [2017] to interpret what property
each dimension of the skill context vector in Figure 3.4 encodes by perturb-
ing each dimension and decode perturbed skill context vectors into primary
actions. Specifically, we perturb one dimension by adding a range of pertur-
bations [−0.1, 0.09] by intervals of 0.01 onto it while keeping the other di-
mensions fixed. After perturbation, each skill context vector dimension has 20
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perturbed vectors. We then use the action policy decoder to decode all those
vectors into primary actions and see how the perturbation affects the primary
action. As an illustration, we plot Dimension 0’s all 20 perturbed results in
Figure 3.5.

Figure 3.5: Perturbation on the Dim 0

With visualization of perturbation results in hand, we can interpret what
property each dimension encode by inspecting relationships between pertur-
bations and primary actions. In Figure 3.5, as an example, it is clear that
changes on Dim 0 has opposite effect on the back leg and front leg: a larger
value on Dim 0 will assign the back leg a larger torque while the front leg a
smaller one, and vice versa. This means Dim 0 is has a focus point property: it
focuses torque on only one leg.

Once we know how to interpret one dimension, we can move on to in-
terpret the whole skill context vector. Since Skill 1 and Skill 2 are two main
skills employed in Figure 3.3, here we provide an example of how to interpret
them. Figure 3.4 shows that Skill 1 has significant values on dimension 11, 15
and 22. Skill 2 is significant on dimension 2, 5 and 36. We demonstrate these
dimensions in the same manner as Figure 3.5 below:

Subfigures in Figure 3.6 can be interpreted in the same manner as Fig-
ure 3.5. As an example, from Figure 3.4 we can see that Skill 1 has a signif-
icant small value on Dim 11. In Figure 3.6, it shows that a smaller Dim 11 will
twist the front leg forward and back foot forward while twist back thigh, back
shin backward. Composition of these movements is a back leg landing prop-
erty. Similarly, we can interpret that Dim 15 is a front leg landing property and
Dim 22 is a balancing property. Therefore, Skill 1 is focusing on landing from
all positions.
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Figure 3.6: Interpretation of Skill 1 and Skill 2

Unlike other skill context vectors which have apparent focusing dimen-
sions, Skill 2 has a rather balanced skill context vector. It has no apparently
dominant dimension. It only has slightly more significant values on Dim 2, 5,
36, which are focusing on jumping and running properties. Therefore, Skill 2
is more like an “all-weather” skill: it is a skill having very balanced properties
with a slightly demonstration on running and jumping.

Interpretations of Skill 1 and 2 above can then be taken to understand skill
activation patterns in Figure 3.3: as an all-weather skill, Skill 2 is the most fre-
quently executed one and has the longest duration. From time to time, when
the Cheetah needs to land and balance itself, Skill 1 will be executed. However,
since landing skill does not provide power of moving forward and thus has
lower returns to continue, once the body is balanced the Cheetah will quickly
stop Skill 1’s execution and keep running with Skill 2.

3.2 Transfer Learning

We follow Zhang and Whiteson [2019] and run 6 pairs of transfer learning
tasks constructed in DAC based on DeepMind Control Suite [Tassa et al., 2020].
Each pair contains two different tasks. To keep consistent with DAC, we train
all models one million steps on the first task and switch to the second (SA’s
skill context matrix is subsequently frozen) to run another one million steps.
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Results are reported in Figure 3.7 (Table 3.3). On the first task, SA’s perfor-
mance is among the best algorithms in all environments. This further vali-
dates SA’s advantages on single task as observed in section 3.1. On the trans-
fer learning (the second) task, SA’s performance ranks the first in 5 out of 6
environments. This shows SA’s advantages in knowledge reuse tasks.

Figure 3.7: Performance on DAC transfer learning tasks

Table 3.3: Performance of Deepmind Control Suite Transfer Learning Environments

CartPole Reacher Cheetah Fish Walker1 Walker2
PPO 829.7 327.6 73.0 287.9 231.8 72.2
DAC+PPO 970.8 517.2 211.2 505.4 590.3 360.5
AHP+PPO 966.5 395.2 167.4 357.9 362.1 143.2
PPOC 942.1 400.1 72.7 336.7 236.6 80.9
OC 106.1 19.4 100.6 286.6 356.3 238.7
SA+PPO 974.1 675.3 233.8 562.1 473.8 403.0

3.3 Conclusions

In this thesis, we presented a novel MDP equivalence of the SMDP formulated
option framework, from which an MDP implementation of the option frame-
work, i.e., the Skill-Action architecture, was derived. We theoretically proved
that SA has lower variance than conventional RL models and provided policy
gradient theorems for updating SA. Our empirical studies on challenging in-
finite horizon robot simulation environments demonstrated that SA not only
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outperforms all baselines by a large margin, but also exhibits smaller variance,
faster convergence, and good interpretability. On transfer learning, SA also
outperforms the other models in 5 out of 6 environments and shows its ad-
vantages in knowledge reuse tasks.

The final and most important contribution of SA is hierarchically learn-
ing explicit abstract actions’ representations with “skill context vectors”. This
design significantly improves the scalability and interpretability of SA. It is
straightforward to extend SA to deeper and wider (Section 3.4) architectures,
which gives rise to a large-scale pre-training and transfer learning architecture
in the reinforcement learning area.

Experiments also show that SA shares two innate limitations with the con-
ventional option framework [Levy and Shimkin, 2011, Klissarov et al., 2017,
Smith et al., 2018, Harb et al., 2018, Zhang and Whiteson, 2019]: (1) failure to
improve the performance and the sample efficiency on finite horizon environ-
ments (section 3.1); (2) “the dominant skill problem” [Zhang and Whiteson,
2019] (section 3.1.2). In Section 3.4 we conceptually discuss that SA-style wide
(higher-order dependencies) value functions could be a solution to both limi-
tations. This is mainly because these limitations are caused by the insufficiency
of the conventional value functions in approximating values that have tempo-
ral latent variables dependencies (discussed in Section 3.4).

3.4 Discussion: Learning Skills at Multi-levels of

Granularity

Implementations of the option framework share some common limitations.
When proposing the option framework, Sutton et al. [1999] expected that learn-
ing at multi-level of temporal abstraction should be in favor of faster conver-
gence and better exploration. On the contrary, significant improvements on
single task environments have not been witnessed in most option implemen-
tations [Klissarov et al., 2017, Smith et al., 2018, Harb et al., 2018, Zhang and
Whiteson, 2019]. To the best of our knowledge, SA is the first option imple-
mentation in which these properties are significantly witnessed but only on
infinite horizon environments. In this section, we address this problem by first
giving a theoretical explanation of why the value function is the main reason
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for this deficiency in section 3.4.1 and how deep wide value functions could
solve this problem. We then thoroughly explain the motivations of SA, and
why it is a promising candidate for a deep wide framework, in section 3.4.2.
We also give a further explanation of how SA is connected to causality rein-
forcement learning literature and how a temporal causal reward can be used
in objective to further solve this problem in section 3.4.3.

3.4.1 Problem Statement and Evidences

The expectation of improvements of the option framework on single task en-
vironment builds on an assumption that, by exploiting hierarchical action and
state space, an agent’s searching space can be greatly reduced thus accelerates
learning and improving exploration. However, as reported in section 3.1.2,
most option frameworks including SA suffer from “the dominant skill prob-
lem” [Zhang and Whiteson, 2019] which prevents option frameworks from
effectively learning hierarchy in action and state space as well as coordinating
between skills.

One root reason for this problem is that conventional value functions V[St]

and Q[St, Ot, At] make values depend on temporal latent variables indistin-
guishable (i.e. Although different skills o1 and o2 results to different values,
such as V[St, Ot−1 = o1] = 10 and V[St, Ot−1 = o2] = −10. Because they ar-
rive at the same state St, they have identical values under conventional value
function V[St] = 0). This deficiency makes option frameworks can only learn
skills at very coarse level thus fail to exploit hierarchical information. The
solution is to use a deep wide value function: enabling the framework to
learn fine-grained skills at mutli-levels of granularity (deep) and making value
functions depend on latent variables with longer (wide) dependencies (e.g.
V[St, Ot−1] and Q[St, Ot, At, Ot−1]).

To have a better understanding the importance of the deep wide value
function, let us consider a simple environment which can be easily solved by
Q[st, at, at−1] but not Q[st, at].

Suppose we are training a robot which only has a camera sensor to cook
thanksgiving turkey. In this setting there are only two states:

S = {Raw Turkey Image, Cooked Turkey Image}
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The robot’s action space only consists of two actions:

A = {Stuff turkey, Roast turkey}

As for reward, if the robot roasted a stuffed turkey, then the reward is 10.
However, if the robot roasted an un-stuffed turkey, then the reward is −10.
The stuff turkey action receives 0 reward.

The difficulty in this environment is, since the robot only has a camera to
capture an image of the turkey, it can only observes either {Raw Turkey Image}
or {Cooked Turkey Image}. There is no way to look inside the turkey and see
if the turkey is stuffed. Under this setting, a robot can never learn to first
stuff a turkey and then roast it because Q[Raw Turkey Image, Stuff Turkey] =
Q[Raw Turkey Image, Roast Turkey] = 0. Therefore, the robot can only ran-
domly cook a turkey. However, this problem can be easily solved by using a
deep wide value function Q[St, At, At−1].

The core problem in this setting is, action has no effect on states, it only
affects rewards. At the first glance this is a Partially Observed MDP (POMDP)
problem since the state of whether the turkey is stuffed is un-observed. This
is true in all reinforcement learning settings without dependencies on latent
variables. However, it goes much deeper in HRL settings.

In HRL, a common formulation is to estimate a latent variable O to en-
code hierarchical information and makes the policy depends on it P(At|St, Ot).
Since O is a latent variable, it is highly likely that at state St, different la-
tent variable P(At|St, Ot = ox) and P(At|St, Ot = oy) emits the same action
At = A1, and thus makes the conventional value function indistinguishable
between ox and oy.

This phenomenon is especially common around the switching time step
of two skills: around switching point, states are usually compatible with both
old and new skills. Conventional value functions will be especially confused at
those moments. This is exactly what we observed in Section 3.1.2: overall, skill
2 is executed consistently. However, there are some random switches to skill 1.
And the randomization is increased between around switching time steps. To
explicitly show this, we visualized “Run4” into a video 5. The skill selection is
very random at the beginning of the episode as well as around the switching

5https://www.youtube.com/watch?v=QiLVZvI6NJU
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point (the 16th second). These are exactly the most confusing moments of con-
ventional value functions. This is not a cherry-pick result but a common prob-
lem. Similar patterns can also be observed here https://youtu.be/xrfxbI3duBM?t=4
in a HumanoidStandUp environment.

Due to the insufficiency of conventional value functions, compatible states
have to be different enough to cause distinguishable values of value func-
tions. Therefore, with conventional value functions, SA is only able to learn
very coarse skills. For example, as shown in Section 3.1.3 and the video, the
HalfCheetah agent is only able learn two skills: one is to run forward, one is
to stand up when fall. However it is not able to learn more fine-grained skills
such as jump forward and landing. This problem is not limited to SA, but is a
common problem in HRL. The solution is to use deep wide value functions.

3.4.2 Motivations behind SA’s Architecture

SA is carefully designed to make the most out of deep wide value functions.
Compared to other HRL frameworks, SA has following advantages:

1. Stable and unbiased estimation: Thanks to proposition 2.3.1 and 2.3.2,
the higher the order of the MDPs, the smaller the variance will be. The
deep wide value functions stays unbiased estimations of conventional
value functions no matter how many dependencies introduced. The cur-
rent solution in option framework is a biased estimation [Harb et al.,
2018] and adding hyper-parameters to the framework.

2. Easy to incorporate wide value functions: Incorporating a deep wide
value function is straightforward, SA’s skill value upon arrival function
is already a wide function. The skill value function and the skill-action
value function can be easily extended to wide function by adding a first-
order dependency on Ôt−1.

3. Easy to incorporate deep value functions: SA is MDP formulated, ex-
tending SA to multiple hierarchies is straightforward.

4. Scalability to long time dependencies: SA is MDP formulated, adding
more time dependencies is simply to change the 1st-order MDP to higher-
order MDPs while both value functions and gradient theorems stay un-
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changed; SA is attention based, SA can easily attends to thousand time
steps without adding any extra complexity to neither skill policy nor ac-
tion policy.

5. Scalability to multiple hierarchies of skills: SA is attention based and
embedding based. Adding skills is as simple as adding skill context ma-
trix. In traditional option frameworks [Riemer et al., 2018], the number
of option (note that each option is a neural network) grows at O(NL)

complexity of levels (N is the number of options and L is the number of
levels).

6. Interpretability. As shown in section 3.1.3, skill context vectors learned
under SA-based architectures are straightforward to visualize and inter-
pret. This property is especially useful for investigating multi-level gran-
ularity skills.

3.4.3 Causality Discovery Rewards

Although theoretically a DWSA can learn multi-level granularity skills, on-
policy optimization algorithm is often insufficient for learning such models
especially in sparse reward environments. However, SA has a natural connec-
tion with causal reinforcement learning thus can exploits causality as a reward
in objective function to further facilitate fine grained skill discovery. In this
section we explain how skill embedding vectors learned by SA encodes tem-
poral causality relationships and how to use them to devise causal rewards.

In causal reinforcement learning area, Doshi-Velez and Konidaris [2016]
proposed Hidden Parameters MDP (Hi-MDP) in which a skill vector like hid-
den parameter vector is introduced to learn abstract properties from environ-
ments. PEARL [Rakelly et al., 2019] utilizes meta-learning framework to learn
a skill representation that encodes abstract properties of a task and updates
the framework in an off-policy manner to improve sample efficiency in trans-
fer learning. Killian et al. [2017] extended Hi-MDP by including the hidden
parameter vector into transition probability function. Perez et al. [2020] fur-
ther extended their work by proposing Generalized Hidden Parameter MDPs
(GHP-MDPs), a causality discovery framework by including hidden parame-
ter vector into both transition function and value function.



54 Application: SA on Robots Environments

GHP-MDPs is a special case of SA with number of skills M = 1. When
M > 1, SA not only encodes causality relationships between environments
and actions but also temporal causality between skills. Since the latent vari-
able is modeled as a skill vector, the distance between different trajectories is
straightforward to be calculated and thus can be used as a causal reward to
encourage fine-grained and disentangled skills’ discovery. To the best of our
knowledge, SA is the first RL framework concerns causality in temporal ab-
straction sequences. If trained under a model-based setting, OptionEmbed is a
minimal causal feature set (Theorem 3 [Zhang et al., 2020]) on both temporal
and state dimensions. We will investigate the causal properties of SA in our
future works.

Another interesting understanding of SA is that, rather than an implemen-
tation of the option framework, SA can also be seen as a novel capsule net-
work Kosiorek et al. [2019] trained by policy gradient theorems. In Stacked
Capsule Auto-Encoders (SCAE) [Kosiorek et al., 2019], a “capsule” vector en-
codes a different property (scale, orientation, etc.) of the visual object in each
dimension. Kosiorek et al. [2019] proposed to delegate the complexity of part
objects detection and part-to-whole objects aggregation by employing the at-
tention mechanism [Lee et al., 2019] on which a generative model is then built
to further decode the whole-part relationships. This design choice abstracts
the complexity of inference away from the decoder and largely simplified the
designation of the generative model.

In this thesis, we follow their motivations of learning better representa-
tions and utilizing the attention mechanism to simplify the inference problem
(sampling new skill without termination function). Moreover, the skill context
vector is analogously to a capsule and the skill-action relationship is analo-
gously to the whole-part relationship in the SCAE. Similar to SCAE utilizing
the equi-variance property of the whole-part relationship to achieve comput-
ing efficiency and better performance, it will be very exciting to investigate
potentially “equi-variance” or “invariance” properties existed in skill-action
relationships, which might give rise to a novel causal inference architecture in
the reinforcement learning area.
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3.5 Implementation Details

In this section we summarize our implementation details. For a fair compar-
ison, all baselines: DAC+PPO [Zhang and Whiteson, 2019], AHP+PPO [Levy
and Shimkin, 2011], PPOC [Klissarov et al., 2017], OC [Bacon et al., 2017]
and PPO [Schulman et al., 2017] are from DAC’s open source Github repo:
https://github.com/ShangtongZhang/DeepRL/tree/DAC. Hyper-parameters
used in DAC [Zhang and Whiteson, 2019] for all these baselines are kept un-
changed.

SA Architecture: For all experiments, our implementation of SA is exactly
the same as Figure 2.3 (b). We use Pytorch to build neural networks. Specifi-
cally, for skill policy module, we use a skill context matrix WS ∈ R4×40 which
has 4 skills (4 rows) and an embedding size of 40 (40 columns). For Multi-
Head Attention, we use Pytorch’s built-in MultiheadAttention function6 with
num heads = 1 and embed dim = 40. For layer normalization we use Pytorch’s
built-in function LayerNorm 7. For Feed Forward Networks (FNN), we use a 2
layer FNN with ReLu function as activation function with input size of 40, hid-
den size of 64, and output size of 64 neurons. For Linear layer, we use built-in
Linear function8 to map FFN’s outputs to 4 dimension. Each dimension acts
like a logit for each skill and is used as density in Categorical distribution9.
For both action policy and critic module, FFNs are of the same size as the one
used in the skill policy.

Preprocessing: States are normalized by a running estimation of mean and
std.

Hyperparameters of PPO: For a fair comparison, we use exactly the same
parameters of PPO as DAC. Specifically:

• Optimizer: Adam with ε = 10−5 and an initial learning rate 3× 10−4

• Discount ratio γ: 0.99

• GAE coefficient: 0.95

• Gradient clip by norm: 0.5

6https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
7https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
8https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
9https://github.com/pytorch/pytorch/blob/master/torch/distributions/categorical.py
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• Rollout length: 2048 environment steps

• Optimization epochs: 10

• Optimization batch size: 64

• Action probability ratio clip: 0.2

Computing Infrastructure: We conducted our experiments on an Intel®
Core™ i9-9900X CPU @ 3.50GHz with a single thread and process with Py-
Torch.
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Chapter 4

Modeling Higer-order Structural
Dependencies with Markov
Random Fields (MRFs)

One challenging task in machine learning is recognizing and labeling over
complex and structured objects. Many applications, such as image segmenta-
tion, motif finding and noun-phrase parsing, involves representing jointly cor-
related sub-objects and exploiting structural dependencies to identify higher
level objects. These objects usually have structural dependencies on sub-objects
(smaller components), e.g., the human face has a strong structural dependency
on five sensory organs. The Markov Random Fields (MRFs, are also called
undirected Probabilistic Graphical Models [Bishop, 2006b]), is one of the most
popular framework in modeling structural dependencies. In this Chapter, we
propose novel exact inference and learning algorithms, the MRF-LSSVMs (La-
tent Structural Support Vector Machine) framework, to exploit MRFs’ capabil-
ities in modeling higher-order (more than three entities) structural dependen-
cies. The application of MRF-LSSVMs to capture higher-order dynamics on
time series is discussed in Chapter 5.

Markov Random Fields (MRFs) are undirected Probabilistic Graphical Mod-
els (PGMs). The formulation of MRFs is simply a regularized joint probability
distribution. One specialty of MRFs is that they are factorized (conditional
independent) over maximal cliques (more details in Section 4.1.1) of random
variables defined on the undirected graph [Bishop, 2006b]. In many appli-
cations, structural information, such as sub-objects to the whole object rela-
tionships and relationships between sub-objects, can be well represented in
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maximal cliques. By defining each maximal clique’s probability distribution
and optimizing over them, MRFs provide a powerful framework for model-
ing complex higher-order dependencies between entities.

Utilizing MRFs usually involves three steps: 1) designing energy functions
(un-normalized probability distribution) according to the actual problem, 2)
solving inference problem (MAP or energy minimization), and 3) learning pa-
rameters from data set. With respect to energy functions, our work focuses
on Lower Linear Envelope Potentials (LLEP), a class of higher-order poten-
tials defined as a concave piecewise linear function over a clique of random
variables. LLEP has been raising much interest in the image segmentation
area, in which the raw image input is used as PGM’s graph and pixels are
treated as random variables. Maximal cliques of the input image are usually
detected at preprocessing stage by using clustering algorithms such as super-
pixel [Achanta et al., 2012]. Success of LLEP on encoding consistent constraints
over large subsets of pixels in image segmentation tasks has been witnessed in
many literatures [Kohli et al., 2007, Nowozin and Lampert, 2011, Song et al.,
2015]. In this chapter we focus on proposing a novel exact inference algo-
rithm for LLEP and design a learning algorithm under the LLSVM framework.
In Chapter 5, we will generalize the MRF-LLSVMs framework into encoding
consistent constraints among time-series’ entities.

In the second step, in order to solve the inference problem of LLEP, Kohli
et al. [2009] proposed a method to represent a class of higher order potentials
with lower (upper) linear envelope potentials. By introducing auxiliary vari-
ables [Kohli and Kumar, 2010], they reduced the linear representation to a pair-
wise form and proposed an approximate algorithm with standard linear pro-
gramming methods. However, they only show an exact inference algorithm
on at most three terms. Following their approach, Gould [2015] extended
their method to a weighted lower linear envelope with arbitrarily many terms
solved with an efficient algorithm. They showed that by introducing auxiliary
variables into LLEP, a quadratic pseudo-Boolean form [Boros and Hammer,
2002] can be developed. This psuedo-Boolean form is submodular and can
be inferred efficiently and exactly through graph-cuts like algorithms [Boykov
and Jolly, 2001]. However, in order to employ Structural Support Vector Ma-
chine (SSVM) to solve the learning problem of LLEP, Gould [2015] have to
sample the LLEP using a set of fixed space points. Althought this formula-
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tion can be globally optimized by using the SSVM framework, it lost a rich
class of representations of energy function due to the fixed space sampling.
In this chapter, we propose an alternative formulation to learn LLEP exactly.
We introduce auxiliary variables back to LLEP and propose a graph-cuts al-
gorithm to infer observed variables and auxiliary variables simultaneously.
Experiments in Section 4.4 also show that LLEP under this formulation the al-
gorithm can be learned exactly from various different probability distribution
configurations.

The third and last difficulty is to design a learning algorithm for our LLEP
formulation. In previous work, Gould [2015] sampled the LLEP with fixed
space points and solved the learning problem under the Structural Support
Vector Machine (SSVM) framework [Tsochantaridis et al., 2005]. However,
since we add auxiliary variables back, SSVM does not fit our case anymore.
One of our main contributions is that we prove that auxiliary variables intro-
duced in LLEP can be formulated as latent variables in SSVM. With additional
convex constraints added to the SSVM objective function, our formulation re-
sults to the Latent SSVM (LSSVM) framework [Yu and Joachims, 2009]. The
LSSVM was developed by Felzenszwalb et al. [2008] and Yu and Joachims
[2009] independently in different ways. The main idea is introducing a latent
variable to extend the feature vector, which results in an arbitrary loss func-
tion, e.g. Hinge Loss, with an upper bound. Then the optimization was done
by using Concave-Convex Procedure (CCCP) algorithm, which is guaranteed
to decrease the objective function to a local minimum. In this thesis, we pro-
pose a variant formulation of [Gould, 2015] by rewriting the lower linear en-
velope function directly into a linear combination with latent feature vectors
and developing the learning algorithm using the LSSVM.

The rest of the thesis is structured as follows: Section 4.1 introduces back-
ground and related works of MRFs and LSSVM. Section 4.2 proposes our first
contribution, the exact inference method of LLEP with auxiliary variables.
In Section 4.3.1, we reformulate the LLEP into a linear combination and de-
velop the learning algorithm under the LSSVM framework. Section 4.4 con-
duct experiments on a synthetic checkerboard image to show the effectiveness
of our novel MRF-LLSVMs framework. Application of MRF-LLSVMs on real
financial time-series data set is discussed in Chapter 5.
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4.1 Background & Related Works

4.1.1 Markov Random Fields

From a PGMs view (figure 4.1) [Bishop, 2007], MRFs’ joint probability distri-
bution can be represented as an undirected graph and each random variable
can be represented as a node in the graph. A clique is a fully connected sub-
set of nodes: there exists a path between any pair of nodes in it. A maximal
clique is a clique such that it is not possible to include any other nodes from
the graph in the set without it ceasing to be a clique. Let C denotes a maximal

Figure 4.1: An example PGM of MRFs. Each node in this graph corresponds to a
random variable in this PGM’s joint probability distribution. A clique is outlined in
green circle and a maximal clique is outlined in blue circle.

clique in one graph and yC denotes the set of variables in that clique. Then the
joint distribution can be written as:

p(y) =
1
Z ∏

C
ΨC(yC) (4.1)

where Ψ is called potential functions which can be defined as any non-negative
functions and Z = ∑y ∏C ΨC(yC) which is a normalization constant. To infer
labels which best explain input data set, we can find the maximum a posteriori
(MAP) labels by solving y∗ = arg maxy p(y). However, potential functions
are restricted to be non-negative to ensure it is a probability distribution.

In order to have more flexible representations of probability distributions,
by taking exponential of potential terms, MRFs can be represented as a reg-
ularized joint log-probability distribution of arbitrary non-negative functions
over a set of maximal cliques on the PGM graph [Bishop, 2006b]. Thus the
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joint distribution becomes:

p(y) =
1
Z

exp(−∑
C

EC(yC)) (4.2)

where E is called energy functions which can be arbitrary functions. There-
fore, maximum a posteriori problem is equivalent to energy minimization prob-
lem, which is also known as the inference problem:

y∗ = arg max
y

p(y) = arg min
y

(∑
C

EC(yC)) (4.3)

The inference problem is computationally expensive. There has been many
sub-optimal algorithms such as max-product algorithm [Globerson and Jaakkola,
2007] been proposed to solve the general MRFs’ inference problem. However,
Boros and Hammer [2002] proved that for submodular energy functions, there
exist efficient algorithms based on graph cuts [Ishikawa, 2009, Kohli et al.,
2008] and are guaranteed to converge to the global optimum. In Section 4.2 we
formulate the MRFs with Lower Linear Envelope Potentials (LLEP) as psuedo-
boolean functions and devise a graph cut algorithm for exact inference.

As for the learning problem, conventionally, energy functions can be de-
composed into three weighted parts: nodes N , edges E and higher order
cliques (any group which has more than 3 fully connected nodes in it) C [Szum-
mer et al., 2008]. Each term has its own weights. Let w be the vector of param-
eters and φ be arbitrary feature function, then the energy can be decomposed
as a set linear combinations of weights and feature vectors:

E(y; w) = ∑
i∈N

wU
i φ

U(yi) + ∑
(i, j)∈E

wP
i jφ

P(yi, y j) + ∑
yC∈C

wH
Cφ

H(yC) (4.4)

where U denotes unary terms, P denotes pairwise terms and H denotes higher
order terms (when |C| > 2 namely each clique contains more than two vari-
ables).

A weight vector w is more preferable if it gives the ground-truth assign-
ments yt less than or equal to energy value than any other assignments y:
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E(yt, w) ≤ E(y, w) , ∀y 6= yt, y ∈ Y (4.5)

Thus the goal of learning MRFs is to learn the parameter vector w∗ which
returns the lowest energy value for the ground-truth labels yt relative to any
other assignments y [Szummer et al., 2008]:

w∗ = argminw(E(yt, w)− E(y, w)) , ∀y 6= yt, y ∈ Y (4.6)

Solving the learning problem of MRFs is also computationally expensive.
In this thesis, we employ the efficient Latent Structural Support Vector Ma-
chines (LSSVMs) algorithm to solve our MRFs.

4.1.2 Latent Structural SVMs

The Structural Support Vector Machines (SSVMs) (also called max-margin frame-
work) [Taskar et al., 2005, Tsochantaridis et al., 2005] is a principled approach
to learn weights of pairwise MRFs Szummer et al. [2008], Gould [2011]. Gould
[2015] extended this framework with additional linear constraints to enforce
concavity on the weights, thus allowing them to be used to learn MRFs with
lower linear envelope potentials. However, because SSVM does not include
latent variables in its feature vector, such methods only approximately learn
higher-order functions. In this thesis, we propose an algorithm to optimize the
energy function exactly by introducing auxiliary variables back into the fea-
ture vector and solving the learning problem using the Latent Structural SVMs
(LSSVMs) framework [Yu and Joachims, 2009]. To include unobserved infor-
mation, Yu and Joachims [2009] extended the joint feature function in struc-
tural SVM with latent variables and re-wrote the objective function of SSVM
into a difference of two convex functions. This formulation can be solved us-
ing the Concave-Convex Procedure (CCCP)[Yuille et al., 2002] which is a two-
stages algorithm that guarantee to convergence to a local minimum.

Specifically, given an a linear combination of features vector φ(x, y) ∈ Rm

and weights θ ∈ Rm, and a set of n training examples {yi}n
i=1 max-margin

framework can be used to solve optimized solutionθ∗. To include unobserved
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information in the model, Yu[Yu and Joachims, 2009] extended the joint feature
function[Tsochantaridis et al., 2005] φ(x, y) with a latent variable h ∈ H to
φ(x, y, h). So the inference problem becomes

fθ(x) = arg max
(y×h)∈Y×H

θ ·φ(x, y, h) (4.7)

Accordingly, the loss function can be extended as

∆((yi, h∗i (θ)), (ŷi(θ), ĥi(θ)))

where

(ŷi(θ), ĥi(θ)) = arg max
(y×h)∈Y×H

θ ·φ(xi, y, h) (4.8)

h∗i (θ) = arg max
h∈H

θ ·φ(xi, yi, h) (4.9)

The loss function under this formulation measures difference between the
inferred result pair (ŷi(θ), ĥi(θ)) and the pair (yi(θ), h∗i (θ)) which best ex-
plain the training data. However, under this formulation the “loss augmented
inference” used in structural SVMs[Tsochantaridis et al., 2005] to remove the
complexity cannot be performed due to the dependence of loss function ∆

on hidden variables h∗i (θ). Yu and Joachims [2009] argued that in real world
applications hidden variables are usually intermediate results and are not re-
quired as an output[Yu and Joachims, 2009]. Therefore, the loss function can
only focus on the inferenced hidden variables ĥi(θ) which leads to:

∆((yi, h∗i (θ)), (ŷi(θ), ĥi(θ))) = ∆(yi, ŷi(θ), ĥi(θ))

Thus the upper bound used in standard structural SVMs[Tsochantaridis
et al., 2005] can be extended to:
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∆((yi, h∗i (θ)), (ŷi(θ), ĥi(θ))) ≤
(

max
(ŷ×ĥ)∈Y×H

[θ · Ψ(xi, ŷ, ĥ) + ∆(yi, ŷ, ĥ)]
)

−max
h∈H

θ · Ψ(xi, yi, h) (4.10)

Hence the optimization problem for Structural SVMs with latent variables
becomes

min
θ

(
1
2
‖θ‖2 + C

n

∑
i=1

(
max

(ŷ×ĥ)∈Y×H
[θ · Ψ(xi, ŷ, ĥ) + ∆(yi, ŷ, ĥ)]

))
(4.11)

−C
n

∑
i=1

(
max
h∈H

θ · Ψ(xi, yi, h)
)

which is a difference of two convex functions. Problem of this formulation
can be solved using the Concave-Convex Procedure (CCCP)[Yuille et al., 2002]
which is guaranteed to converge to a local minimum. Yu and Joachims [2009]
proposed a two stages algorithm. In the first step the latent variable h∗i which
best explain training pair (xi, yi) is found by solving equation 4.9. This step is
also called the “latent variable completion” problem. In the second step h∗i is
used as completely observed to substitute h in equation 4.11. Therefore, solv-
ing equation 4.11 is equivalent to solve the standard structural SVM problem.

In contrast to SVM, the latent structural SVM only provides an optimiza-
tion framework and cannot be directly applied. In order to use it, the inference
algorithm, as well as the MRF feature function, loss function, and latent vari-
able completion problem [Yu and Joachims, 2009] must first be specified. Our
implementation of these terms are described in section 4.3.

4.2 Markov Random Fields (MRFs) with Lower Lin-

ear Envelope Potentials (LLEPs)

Energy functions can be decomposed over nodesN , edges E and higher order
cliques C [Szummer et al., 2008]. Let w be vector of parameters and ψ be
arbitrary feature function, then the energy can be decomposed as a set of linear
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combinations of weights and feature vectors:

E(y; w) = ∑
i∈N

wU
i ψ

U(yi)+

∑
(i, j)∈E

wP
i jψ

P(yi, y j) + ∑
yC∈C

wH
Cψ

H(yC) (4.12)

where U denotes unary terms, P denotes pairwise terms, H denotes higher order
terms. In this section we mainly focus on one class of higher-order potentials
ψH defined as a concave piecewise linear function which is known as Lower
Linear Envelope Potentials (LLEP).

LLEP has been studied extensively in Markov Random Fields area for en-
couraging consistency over large cliques [Kohli et al., 2007, Nowozin and Lam-
pert, 2011, Gould, 2011]. In Section 4.2.1, we begin with developing standard
Markov Random Fields (MRFs) (equation 4.12) with the LLEP as energy func-
tions. We then show how to perform exact inference under this formulation
in Section 4.2.2. The optimization algorithm for our formulation will be dis-
cussed in Section 4.3.1.

4.2.1 Higher-order Energy Functions: Weighted Lower Linear

Envelope Potentials (LLEP)

Let C denotes the set of all maximal cliques and yc = {yi| for i ∈ C j} denotes
set of binary random variables where yi ∈ {0, 1} in clique C j, a weighted
lower linear envelope potential over yc is defined as the minimum over a set
of K linear functions as:

ψH
c (yc) = min

k=1,...,K
{akWc(yc) + bk} . (4.13)

where Wc(yc) = ∑i∈c wc
i yi with wc

i ≥ 0 and ∑i∈c wc
i = 1 which are weights for

each clique. (ak, bk) ∈ R2 are the linear function parameters. We illustrate an
example with four linear functions in figure 4.2.

Inference on energy function contains lower linear potentials is the same as
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Figure 4.2: Example piecewise-linear concave function of Wc(yc) = ∑i∈c wc
i yi. As-

sume the second linear function is active namely zc = (1, 1, 0, 0) (equation 4.20).
The result of linear combination of parameter vector and feature vector is same as
quadratic pseudo-Boolean function.

the standard equation 4.12 and is given by:

y∗ = arg min E(y) (4.14)

Suppose that parameters {(ak, bk)}K
k=1 are sorted in decreasing order of ak.

From Definition 3.1 [Gould, 2015] we know that the k-th linear function is said
to be active if there exists x ∈ (0, 1) such that the following two inequalities
hold

ak−1x + bk−1 > akx + bk

ak+1x + bk+1 > akx + bk (4.15)

The k-th linear function is said to be redundant (Definition 3.2 [Gould, 2015]) if
it is not active for any assignment to yc in any clique c ∈ C or is only active
whenever another linear function is also active. Figure 4.4 depicts such condi-
tions. As a result, removing redundant functions from the potential does not
chang the energy function.

From section 4.1.1 we have already introduced that an energy function may
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contain unary, pairwise and higher-order potentials (see equation 4.12). In this
section we mainly focus on one class of higher-order potentials φH defined
as a concave piecewise linear function which is known as lower linear envelope
potentials. This has been studied extensively in Markov Random Fields area
for encouraging consistency over large cliques [Kohli et al., 2007, Nowozin
and Lampert, 2011, Gould, 2011].

Let C denotes the set of all maximal cliques in an image and yc = {yi| for i ∈
c} denotes set of random variables in the clique c, a weighted lower linear en-
velope potential [Gould, 2015] over yc is defined as the minimum over a set of
K linear functions as:

ψH
c (yc) = min

k=1,...,K
{akWc(yc) + bk} . (4.16)

where Wc(yc) = ∑i∈c wi yi with wc
i ≥ 0 and ∑i∈c wc

i = 1 which are weights for
each clique. (ak, bk) ∈ R2 are the linear function parameters. We illustrate an
example [Gould, 2015] with three linear functions in figure 4.3.

Figure 4.3: Example lower linear envelope ψH
c (yc) (shown solid) with three terms

(dashed). When Wc(yc) ≤ W1 the first linear function is active, when W1 < Wc(yc) ≤
W2 the second linear function is active, otherwise the third linear function is active.

Suppose that parameters {(ak, bk)}K
k=1 are sorted in decreasing order of ak.

Gould [2015] (Definition 3.1) defines that the k-th linear function is said to be
active if there exists x ∈ (0, 1) such that the following two inequalities hold

ak−1x + bk−1 > akx + bk

ak+1x + bk+1 > akx + bk (4.17)
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The k-th linear function is said to be redundant (Definition 3.2 [Gould, 2015]) if
it is not active for any assignment to yc in any clique c ∈ C or is only active
whenever another linear function is also active. Figure 4.4 depicts such condi-
tions. As a result, removing redundant functions from the potential does not
chang the energy function.

Figure 4.4: Example lower linear envelope with redundant linear functions. On the
left figure, the solid yellow line is always inactive. On the right figure, the solid purple
line intersects line 1 and line 2 at the red point. It’s only active when line 1 and line 2
are both active. Both solid lines are redundant linear functions hence can be removed
without changing their energy function.

To ensure potentials do not contain redundant linear functions (functions
that would never be active), Gould [2015] proposed a constraint on parameters
of the envelope. The k-th linear function is not redundant if the following
condition is satisfied:

0 <
bk − bk−1

ak−1 − ak
<

bk+1 − bk
ak − ak+1

< 1. (4.18)

Another important property of equation 4.14 is shift invariant (vertically). We
write ψ̃H

c (yc) by shift equation 4.16 vertically with an arbitrary amount bconst ∈
R

ψ̃H
c (yc) = min

k=1,...,K

{
akWc(yc) + bk + bconst}

Then we have

arg min
yc

ψH
c (yc) = arg min

yc

ψ̃H
c (yc). (4.19)

Therefore, in the following discussion without loss of generality we assume
b1 = 0 thus bk ≥ 0 for k = 1, . . . , n.
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4.2.2 Exact Inference

Exact inference on MRFs has been extensively studied in past years. Researchers
found that, energy functions which can be transformed into quadratic pseudo-
Boolean functions [Ishikawa, 2003, 2009, Rother et al., 2009] are able to be
minimized exactly using graph-cuts like algorithms [Freedman and Drineas,
2005, Hammer, 1965] when they satisfy submodularity condition [Boros and
Hammer, 2002]. Kohli et al. [2008] and Gould [2011] adapted those results
to perform exact inference on lower linear envelope potentials. In this sec-
tion we mainly focus on describing the minimum st-cut graph constructed
by Gould [Gould, 2011, 2015] for exact inference of energy function (equation
4.14) containing lower linear envelope potentials.

Following the approach of Kohli and Kumar [2010], Gould [2011, 2015]
transformed the weighted lower linear envelope potential in equation 4.16 into
a quadratic pseudo-Boolean function by introducing K− 1 auxiliary variables
z = (z1, . . . , zK−1) with zk ∈ {0, 1}:

Ec(yc, z) = a1Wc(yc) + b1

+
K−1

∑
k=1

zk ((ak+1 − ak)Wc(yc) + bk+1 − bk) (4.20)

for a single clique c ∈ C. Under this formulation, minimizing the pseudo-
Boolean function over z is equivalent to selecting (one of) the active func-
tions(s) from equation 4.16. Another important property of optimized z under
this formulation is that it automatically satisfies the constraint

zk+1 ≤ zk

This property give rise to further development of parameter vector and feature
vector (equation 4.24 and 4.25) which are used in latent structural SVM. By
introducing latent variables within the energy function, we can learn richer
energy representations than previous study [Gould, 2015] and solve inference
problem exactly within polynomial number of iterations.

In order to construct the minimum st-cut graph, we rewrite equation 4.20
into posiform [Boros and Hammer, 2002]:
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(a) (b)

Figure 4.5: st-graph construction for equation 4.21, unary and pairwise terms. Every
cut corresponds to an assignment to the random variables, where variables associated
with nodes in the S set take the value one, and those associated with nodes in the T
set take the value zero. With slight abuse of notation, we use the variables to denote
nodes in our graph.

Ec(yc, z) = b1 − (a1 − aK) + ∑
i∈c

a1wc
i yi

+
K−1

∑
k=1

(bk+1 − bk) zk +
K−1

∑
k=1

(ak − ak+1) z̄k

+
K−1

∑
k=1

∑
i∈c

(ak − ak+1)wc
i ȳizk (4.21)

where z̄k = 1− zk and ȳi = 1− yi. a1 is assumed to be greater than 0 so that
all coefficients are positive (recall we assume b1 = 0 in section 4.2.1 and we
have ak > ak+1 and bk < bk+1). Since the energy function equation 4.21 is
submodular, the st-min-cut graph can be constructed based on equation 4.21.

The construction (including unary and pairwise) is explained in Figure 4.5.
Figure (a) denotes construction for equation 4.21. For each lower linear enve-
lope potential edges are added as follows: for each i ∈ c, add an edge from yi

to t with weight a1wc
i ; for each i ∈ c and k = 1, . . . , K− 1, add an edge from zk

to yi with weight (ak − ak+1)wc
i ; and for k = 1, . . . , K − 1, add an edge from s
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to zk with weight ak− ak+1 and edge from zk to t with weight bk+1− bk. Figure
(b) denotes construction for unary and pairwise terms (see [Kolmogorov and
Zabih, 2004]). For unary edges (4 edges on both sides), weights on each edge
are corresponding to values in input unary terms accordingly. For pairwise
edges (2 edges in the middle), both edges share the same weight which equals
to the input pairwise term.

4.3 Solving MRFs under the Latent Structrual SVMs

(LSSVM) Framework

With the inference algorithm in hand, we now can develop the learning algo-
rithm for weighted lower linear envelope potentials using the Latent Struc-
tural SVMs (LSSVMs) framework. In Section 4.3.1, we begin by transforming
the equation 4.20 into a linear combination of parameter vector and feature
vector. A two-step algorithm was developed to solve the latent structural SVM
in Section 4.3.2.

4.3.1 Transforming Between Representations

The latent structural SVM formulation requires that the energy function be for-
mulated into a linear combination of features and weights while our higher-
order potential is represented as the minimum over a set of linear functions.
However, in 4.2.2 we reformulated the piecewise linear functions into a quadratic
pseudo-Boolean function in equation 4.20 by introducing auxiliary variables.
Now we show equation 4.20 itself is an inner product of parameter vector and
feature vector with latent information. Note that the function can be expanded
as a summation of 2K− 1 terms:

Ec(yc, z) =a1Wc(yc) +
K−1

∑
k=1

(ak+1 − ak)zkWc(yc)

+
K−1

∑
k=1

(bk+1 − bk)zk (4.22)

Here we use the fact of equation 4.19 and let b1 = 0. Now we can reparam-
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eterize the energy function as

Ec(yc, z;θH) = θHT
ψH(yc, z) (4.23)

where:

θH
k =


a1 for k = 1

ak − ak−1 for 1 < k ≤ K

bk+1−K − bk−K for K < k ≤ 2K− 1

(4.24)

ψH
k =


Wc(yc) for k = 1

Wc(yc)zk for 1 < k ≤ K

zk for K < k ≤ 2K− 1

(4.25)

Under this formulation, similar to [Yu and Joachims, 2009], the inference
problem can be given by:

(y∗k(θ
H), z∗k(θ

H)) = arg min
(y×z)∈Y×Z

θHT ·ψH(yk, zk) (4.26)

and

z∗k(θ) = arg min
z∈Z

θHT ·ψH(yk, zk) (4.27)

There are two facts worth to mention. The first fact is that in our previ-
ous construction of minimum st − cut graph the latent variable z is already
included. Therefore, we can apply our inference algorithm directly on our two
new formulations. The second fact is that for equation 4.27, there exists a more
efficient algorithm. At training stage, the ground-truth labels yi is an input and
is completely observed. Therefore, the term ((ak+1− ak)Wc(yc) + bk+1− bk) in
equation 4.22 becomes constant. So we can infer latent variable z explicitly by:

zc
k =

0 if ((ak+1 − ak)Wc(yc) + bk+1 − bk) ≥ 0

1 otherwise.
(4.28)

To show the equivalence between equation 4.20 and equation 4.23 we con-
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sider the example illustrated in figure 4.2. Assume the inferred latent vector
zc = (1, 1, 0, 0). Plug it into equation 4.25 the energy function can be written
as:

Ec(yc, z;θ) =



a1

a2 − a1

a3 − a2

a4 − a3

b2

b3 − b2

b4 − b3



T 

Wc(yc)

Wc(yc)

0
0
1
0
0


= a1Wc(yc) + (a2 − a1)Wc(yc) + b2

= a2Wc(yc) + b2

Therefore, assignments inferred by graph-cut algorithm can be directly en-
coded into a linear combination by using our latent structural SVM formula-
tion for learning purpose. The remaining task is to ensure the concavity of θ.
We do this by adding following constraint:

Aθ ≥ ε, A =

1 0 0
0 −1 0
0 0 P

 ∈ R(2K−1)×(2K−1) (4.29)

where −1 is a matrix of size (K − 1)× (K − 1) and P is an identity matrix of
size (K − 1)× (K − 1). One subtle problem we found during experiments is
that the algorithm can be stuck with small numerical value. To avoid this we
add small slack variables ε = 1−15 on those constraints.

Aθ ≥ ε, A =

1 0 0
0 −1 0
0 0 P

 ∈ R(2K−1)×(2K−1) (4.30)
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4.3.2 Latent Structural SVM Learning

With the inner product formulation (equation 4.23) of higher order energy
function, we are able to derive our latent structural SVM learning algorithm.
The energy function (higher order function together with unary and pairwise
functions) can be written as:

Eall(y, z) =

 θH

θunary

θpairwise


T

·

 ψH

ψunary

ψpairwise

 = θT
all ·ψall (4.31)

whereθH ∈ R2K−1 is the parameter vector in higher order equation 4.23 of size
2K− 1. θunary and θpairwise are both scalars. ψunary = ∑iψ

U
i (yi) andψpairwise =

∑i jψ
P
i j(yi, y j). Therefore, the size of θall is 2K + 1.

Plug equation 4.26 and equation 4.27 into object function in [Yu and Joachims,
2009], the latent structural SVM object function for our problem can be derived
as a difference of two convex functions:

min
θ

(
1
2
‖θ‖2 + C

n

∑
i=1

(
max

(ŷ×ẑ)∈Y×Z
[θ ·ψ(ŷ, ẑ) + ∆(yi, ŷ, ẑ)]

))
(4.32)

−C
n

∑
i=1

(
max
z∈Z

θ ·ψ(yi, z)
)

Following Yu and Joachims [2009], we use the two stages Concave-Convex
Procedure (CCCP) [Yuille et al., 2002] to solve the optimization problem. We
first imputes the latent variables z explicitly by equation 4.27. Namely solving
the “latent variable completion” problem [Yu and Joachims, 2009]:

z∗i = arg max
z∈Z

θ ·ψ(yi, z) (4.33)

The inference result z∗i for i = 1, . . . , n is used as completely observed for
later stage. With the latent variable z∗i which best explain the ground-truth
data yi in hand, updating the parameter vectorθ reduces to solve the standard
structural SVM problem:
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min
θ

(
1
2
‖θ‖2 + C

n

∑
i=1

(
max

(ŷ×ẑ)∈Y×Z
[θ ·ψ(ŷ, ẑ) + ∆(yi, ŷ, ẑ)]

))
(4.34)

−C
n

∑
i=1

(
θ ·ψ(yi, z∗i )

)
The last problem remaining is the initialization method. Because our ob-

jective function equation 4.34 is not convex and the CCCP algorithm is only
guaranteed to converge to a local minimum or saddle point[Yuille et al., 2002],
initialization of θ might affect the performance of our algorithm. Since there
are no theoretical solution for this problem, we propose an empirical initial-
ization algorithm in Algorithm 5.

Algorithm 2 Empirical initialization algorithm forθ

1: gap = 1
K , a1 = U(0, 1e6), b1 = 0, sp1 = (0, 0), w0 = 0, counter = 2

2: for each clique c ∈ C do
3: Compute weighted clique value wc = Wc(yC)
4: if wc − wc−1 > gap then
5: upbound = acounterwc + bcounter

spcounter = (wc,U(upbound− 0.5, upbound))
Calculate acounter and bcounter using spcounter−1 and spcounter
counter = counter + 1

6: end if
7: end for
8: If counter < K, remaining as and bs are all set to be acounter and bcounter
9: Calculateθ using {ak, bk}K

k=1

We assume that the more evenly distributed of Wc(Yc) where c ∈ C on x
axis, the more rich representation (number of linear functions) the energy func-
tion should have. In order to initializeθ, we first determine the x-coordinate of
sampled points sp. Then we sample its y-coordinate from a uniform distribu-
tion U(upbound, upbound− 0.5) to add some randomness in our initialization
as well as maintain concavity. Linear parameters ak and bk are later calculated
using those sampled points spk and spk−1. At last we encode {ak, bk}K

k=1 into
θ using equation 4.24.

Our optimization algorithm is summarized in algorithm 3.
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4.4 Experiments

Since the main contribution of our work is extending our previous approx-
imate formulation of lower linear envelope potentials to an exact formula-
tion, it is necessary to compare the performance of MRF-LLSVMs to previous
work [Gould, 2015]. In this section, we examine our method’s effectiveness by
comparing our results with [Gould, 2015, 2011] on a synthetic checkerboard.
In order to demonstrate that our formulation has the capability to learn a
much richer class of energy function’s representation, we experiment with our
method on three different problem instances: checkerboard with squares con-
taining monotonous color 4.4.2, checkerboard with squares containing more
pixels of one color over another 4.4.3 and checkerboard with uniformly col-
ored squares containing unbalanced color 4.4.4.

4.4.1 Experiment Settings

An image of synthetic checkerboard contains 8× 8 pixel squares. Each square
(clique) contains 16× 16 (256) pixels. The color of each pixel is either black 0
or white 1. Given a ground-truth checkerboard image y∗ = y∗1 , . . . , y∗16384, the
observed unary terms y = y1, . . . , y16384 are generated as followings. Let η0

and η1 be the signal-to-noise ratios for the black and white squares, the unary
terms are generated by destroying groud-truth label to noisy input

yi = η0[[y?i = 0]]− η1[[y?i = 1]] + δi (4.35)

where δi ∼ U(−1, 1) is additive i.i.d. uniform noise. [[x]] is an indicator func-
tion which equals 1 when x is true and 0 otherwise. The task is to recover the
ground-truth checkerboard from the noisy input.

Our MRF is constructed on this image by associating each node in the MRF
to each pixel in the image. Thus our MRF contains 8 × 8 × 256 = 16, 384
variables. The energy function used in this experiment follows equation 4.12
without pairwise terms.

E(y;θ) = θU
∑

i∈N
φU(yi) + ∑

yc∈C
φH(yc, zc;θH) (4.36)
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whereφU(yi) = yi andθU is a scalar weight for unary terms. φH(yc, zc;θH) =

θH Tφ(yc, zc) is equivalent to equation 4.23 and added for each square (clique
c) in the checkerboard. The number of linear equations K in equation 4.24 is
set to be 10. The parameters θU and θH are learned using algorithm 3 with
MaxIter = 100.

4.4.2 Monotonous Colored Squares

(a) (b)

Figure 4.6: Example for monotonous colored squares. figure (a) is the ground-truth
checkerboard. Figure (b) is the noisy input (unary terms) generated by employing
equation 4.35

We first repeat our previous black and white checkerboard experiment [Gould,
2011, 2015] in order to examine the correctness of our new formulation. Each
clique (square) c ∈ C in the checkerboard contains either all white pixels
yi = 1, ∀i ∈ c or all black pixels yi = 0, ∀i ∈ c. Figure 4.6 illustrates the
ground-truth checkerboard and the noisy input destroyed by equation 4.35
with η0 = η1 = 0.1. Figure 4.7 shows the results of our new method (on the
bottom) together with our previous method [Gould, 2015] (on the top).

From figure 4.7 we conclude that both formulations can recover checker-
board perfectly so our new formulation’s accuracy is as good as previous one.
However, there are significant differences between structural SVM formula-
tion (previous method) and latent structural SVM formulation. There are 10
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(a) (b)

(c) (d)

Figure 4.7: Results comparison for monotonous colored squares. Figure (a) and Fig-
ure (c) are inferred checkerboard from our previous and current formulation sepa-
rately. Figure (b) and Figure (d) are lower linear envelopes learned by each formula-
tion.

active linear functions in figure 4.7 (b) while there are only 2 active linear func-
tions in figure 4.7 (d). Shapes learned by each formulation are also significantly
different.

In general, the second result is more preferable than the first one. The rea-
son is despite the image contains 64 cliques, there are only two kinds of squares
in the image: completely black and completely white. Accordingly, our model
only see two kinds of cliques: completely 0s (black) and completely 1s (white).
In this case, a lower linear envelope contains two linear functions is enough
for encoding consistency information. This is reflected in figure 4.7 (d) which
gives least penalty (0) when the clique value WC(yc) equals either 0 or 1. It
gives the highest penalty when WC(yc) is in the middle because our model
has least probability seen that in training data. The results certificates that
our latent structural SVM formulation can learn lower linear envelope exactly.
Therefore, we say that our new method learns more preferable lower linear
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envelope.
In terms of computational performance, because our initial point are gener-

ated randomly using algorithm 5, the performance various between runnings.
On average it takes 2 outer loops and 47 inner loops to converge. Which means
the latent structural SVM formulation spends 3.5 times iterations to converge
than previous one (27 iterations). Each inner loop took under 1s with inference
taking about 120ms on a 2.7GHz dual-core Intel CPU, which is the same as our
previous method.

4.4.3 Unbalanced Colored Squares

Experiment in section 4.4.2 proves that our latent structural SVM formulation
can learn the lower linear envelope exactly. In this section we conduct fur-
ther experiment to investigate its capability of representing unbalanced input.
The desirable result of this experiment should be the shape of the lower linear
envelope shifting along with the changing of input data.

We design our checkerboards contain unbalanced colored squares as shown
in figure 4.8.

(a) (b)

Figure 4.8: Example for unbalanced colored squares. In figure (a) 75% cliques contain
more than 85% black pixels while 25% cliques contain more than 85% white pixels.
Figure (b) is the opposite of figure (a)

As before, figure 4.9 shows results learned by structural SVM (top row) and



82 MRF-LSSVMs

latent structural SVM (bottom row). The accuracy performance of both meth-
ods are almost the same. Both methods are able to recover 45%− 50% pixels.
The shape of each formulations’ results are both preferable and very similar
when compared to each other. The most significant difference is the number
of linear functions (10 active linear functions v.s. 2). In terms of computational
performance, our previous method only takes 10 iterations to converge while
the latent structural SVM formulation takes 89 iterations. Our new method is
much more computational expensive than our previous method.

(a) (b)

(c) (d)

Figure 4.9: Results comparison for unbalanced colored squares. Figure (a) and Figure
(b) are lower linear (more black and more white) envelopes learned by structural SVM.
Figure (c) and Figure (d) are learned by latent structural SVM.
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Figure 4.10: Uniformly colored squares example. Wc(yc) = ∑i∈c wc
i yi is uniformly

distributed from 0 to 1.

4.4.4 Uniformly Colored Squares

All of the above experiments show that our new method can significantly sim-
plify the shape of the lower linear envelope function while maintaining the
inference performance at the same level. However, one significant cost is the
computational performance. It still remains obscure if there exists any other
advantages. In this section we design a much harder problem. Wc(yc) is uni-
formly distributed from 0 to 1. Figure 4.10 shows the result. The preferable
shape of the lower linear envelope should contain a line which is parallel to
the x-axis.

Results are shown in figure 4.11. As we can see that shapes are very differ-
ent between two formulations. Our latent structural formulation (figure 4.11
(b)) learned a very flat representation of the lower linear envelope function,
which is much preferable, while the structural SVM formulation preserves
much concavity in the shape. This might because in previous work [Gould,
2015, 2011] we imposed strict concave constraints on parameter vectorθ.

The performance of accuracy also various significantly. Under this formu-
lation our new method is still able to recover 45% − 50% pixels while our
previous can only recover 25%− 30% pixels on average. Therefore, our new
formulation finally outperforms previous one. In terms of computational per-
formance, the new formulation takes 129 inner loops in total (2 outer loops) while
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our previous formulation takes 75 iterations to converge. Although the new
formulation is still more computational expensive than previous one, the gap
decreases significantly.

We consider all of those improvements are due to our new method is able
to learn the lower linear envelope exactly.

One subtle thing is that the linear function on the right side in figure 4.11
(b) decreases sharply which seems abnormally at first glance. The reason is
that we assume b1 = 0 in section 4.2.1 which fixes the y-intercept of the first
linear function to be zero. Therefore the last linear function can be arbitrarily
deep while the first linear function is fixed at the original point.

(a) (b)

Figure 4.11: Results of uniformly colored squares experiment. Figure (a) is the re-
sult learned by structural SVM formulation. Figure (b) is the result learned by latent
structural SVM formulation.

4.4.5 Conclusions

From above experiments we conclude our findings as followings:

• All of those experiments verified that our latent structural formulation is
able learn the lower linear envelope exactly.

• In general (see section 4.4.2 and section 4.4.3), our new method have
equivalent accuracy performance to our old method (structural SVM for-
mulation[Gould, 2011, 2015]).

• In terms of computational performance, the new formulation
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during training. However, it is more efficient during testing due to it
simplicity for the lower linear envelope potentials.

• For harder problem (see section 4.4.4), the new method outperforms the
previous one significantly. The gap of computational performance also
decreases a significant amount.
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Algorithm 3 Learning lower linear envelope MRFs with latent variables.
1: Set MaxIter = 100
2: input training set {yi}n

i=1, regularization constant C > 0, and tolerance
ε ≥ 0

3: Initializeθ using algorithm 5
4: repeat
5: Set iter = 0
6: for each training example, i = 1, . . . , n do
7: compute z∗i = arg maxz∈Z θ ·φ(yi, z)
8: end for
9: initialize active constraints set Ci = {} for all i

10: repeat
11: solve the quadratic programming problem in equation 4.34 with re-

spect to active constraints set Ci for all i and concavity constraints
Aθ ≥ ε to get θ̂ and x̂i

12: for each training example, i = 1, . . . , n do
13: compute ŷi, ẑi = arg miny E(y, z; θ̂)− ∆(y, z, yi)

14: if ξ̂i +ε<∆(ŷi, ẑi, yi)− E(ŷi, ẑi; θ̂) + E(yi, z∗i ; θ̂) then
15: Ci ← Ci ∪ {y?

i }
16: end if
17: end for
18: until no more violated constraints
19: return parameters θ̂
20: Set iter = iter + 1
21: until iter ≥ MaxIter
22: return parameters θ̂



Chapter 5

Application: Learning
Higher-Order Dynamics on China
Securities Index (CSI) 300

In Chapter 4 we proposed a novel framework, the MRF-LSSVMs, to optimize
Markov Random Fields with higher-order Lower Linear Envelope Potentials
under the Latent Structural Support Vector Machine framework. On synthetic
checkerboard experiments, MRF-LSSVMs has shown its efficiency in repre-
senting higher-order dependencies and encouraging consistency among large
group of random variables. In this Chapter, we continue our experiment on
the real financial market stock price data set and show how MRF-LSSVMs
can be used to model dependency dynamics between time series. In order to
do that, we first employ Recurrent Neural Networks (RNNs) as unary energy
functions. Each stock is treated as a unary node in MRFs and RNNs are used
to extract feature from each stock’s historical market price time series. We then
layer MRFs on top of RNNs extractor and optimize the entire framework with
the LSSVMs algorithm proposed in Section 4.3.

Specifically, it is well known that single price movement of an individ-
ual stock not only depends on historical records but also highly correlated
to other stocks [Lo and MacKinlay, 1990, Mech, 1993] and may change in a
non-synchronous manner [Lo and MacKinlay, 1990, Brennan et al., 1993]. This
correlated yet asynchronous price movement is sometimes referred to as the
lead-lag relationship [Hou, 2007] between a group of stocks and is thought
to arise from the different speed of information diffusion[Lo and MacKinlay,
1990, Badrinath et al., 1995, McQueen et al., 1996]. When new information

87
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hits the market, some stocks react faster than others and identification of these
leading stocks and their lead-lag relationships to other lagging stocks provides
strong predictive evidence to the latter's price movement.

However, there are three key challenges in utilizing the lead-lag relation-
ship: (1) discovering which stock will be affected by newly arriving informa-
tion (such as news); (2) identifying the group (e.g., industry, supply chain,
etc.) it belongs to along with the leading and lagging stocks in this group and
modeling their relationships; (3) predicting the price movement of each stock
by jointly considering knowledge in the correlated group and an individual
stock'price movement at that moment.

The first challenge is extremely difficult, not only because it requires an ex-
pert level of understanding of the finance system and market dynamics and
the stock price, but also due to a lack of training data. However, according
to the efficient market hypothesis [Malkiel and Fama, 1970], stock price re-
flects all available market information. Economists hitherto used patterns hid-
den inside historical trading prices and volume to predict future price move-
ments [Fama and Blume, 1966, Jensen, 1967]. As a result, hundreds of hand-
crafted features, known as technical analysis indicators [Kirkpatrick II and
Dahlquist, 2010], have been designed. However, most of these models have
stopped generating profitable signals since the early 1990s [Park and Irwin,
2007].

To overcome these problems and address the first challenge, here we em-
ploy an end-to-end hierarchical multi-task [Caruana, 1993] RNN to extract in-
formative changes from raw market prices without using hand-crafted fea-
tures such as technical analysis indicators. Good price prediction relies on rich
representations and a multi-task framework that can leverage complementary
aspects from diverse tasks [Søgaard and Goldberg, 2016]. Specifically, given
raw market price data, which only contains six features (opening price, low
price, high price, closing price, volume, and amount) at each time interval, we
leverage a hierarchical multi-task network to first extract features on different
tasks and then concatenate those complementary feature vectors to make the
final prediction.

The MRF-LSSVMs framework can be employed to solve the other chal-
lenges. In our implementation, we treat each stock as a node in MRFs and
each stock's group with lead-lag relationships as a maximum clique in MRFs.
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The complexity of modeling dynamics between leading and lagging stocks be-
comes encouraging consistency over large cliques under weighted lower lin-
ear envelope potentials. Logits from hierarchical RNN networks are used as
unary features in MRFs. By minimizing the energy function which contains
both unary and higher order features, we can predict each stock's future price
movement by jointly considering individual market price trends together with
lead-lag relationships.

Unlike the first challenge trying to avoid prior knowledge, we consider be-
ing able to embed prior knowledge as an advantage. Definitions of sectors
as well as leading and lagging stocks in each sector require solid financial in-
dustry research. Statistical evidences learned automatically from market price
data are usually insufficient for determining such relationships.

We demonstrate the effectiveness of the proposed technique using three
popular Chinese stock market indexes, and the proposed method outperforms
baseline approaches. To our best knowledge, the proposed technique is the
first one to investigate intra-clique relationships with higher-order MRFs on
stock price movement prediction.

To summarize, the main contributions of this Chapter are:

• We propose a hierarchical multi-task RNN architecture to learn stock
price patterns without hand-crafted features. To our best knowledge,
this is the first work proposing a multi-task neural networks for stock
price movement prediction.

• We propose the first model that encode lead-lag relationships between
stocks using higher-order MRFs.

5.1 Related Works

Lead-lag relationships: Lead-lag relationships have long been recognized in
the stock market. They can arise for many reasons such as information diffu-
sion, sector (industry) rotation, investment style rotation, event-driven trad-
ing, and asynchronous trading [Lo and MacKinlay, 1990, Chordia and Swami-
nathan, 2000, Conrad and Kaul, 1988, Hameed, 1997]. It is generally believed
that lead-lag relationships are more prevalent in firms in the same industry
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[Hou, 2007], justifying our use of pre-defined industry classification list [ths]
as prior domain knowledge of each stock's maximum clique. Several studies
[Brennan et al., 1993, Hou, 2007, Badrinath et al., 1995, McQueen et al., 1996]
have shown that stocks with larger capital size and higher liquidity tend to be
leading stocks and vice versa. To replicate potential lead-lag relationships, we
assign each stock a different weight from its corresponding indexes created by
the China Securities Index Company, Ltd. More complicated dynamics hidden
behind a clique of stocks are learned by higher-order MRFs.

Multi-task learning: Caruana [1993] showed that inductive knowledge
learned from multiple tasks can transfer between tasks and help improving
generalization of all tasks. Many Natural Language Processing (NLP) tasks
take advantage of multi-task frameworks and achieve state-of-the-art perfor-
mance while using simple models for each of these tasks [Søgaard and Gold-
berg, 2016, Hashimoto et al., 2016]. However, as noted elsewhere [Caruana,
1993, Ruder, 2017], there is a lack of theory on underpinning a diverse set
of tasks and the hierarchical architecture of the chosen tasks. Recent works
[Søgaard and Goldberg, 2016, Hashimoto et al., 2016] apply the principle that
the task complexity should increase according to hierarchical level, and we do
likewise. Because technical analysis indicators can be categorized into trend,
momentum, volatility and volume [Kirkpatrick II and Dahlquist, 2010], and
volume is included in market price data, we propose an architecture that uses
trend and volatility tasks as lower level tasks and price movement prediction
(upward or downward) as a higher level task. Other task selection and hierar-
chical designations remain open for further research.

5.2 Methods

In this section, we first introduce the multi-task RNN-MRFs architecture which
is constructed with two parts. The detailed architecture is shown in Figure 5.1.

The first part is a “Multi-task Market Price Learner”, which consists of three
dual stage attention based recurrent neural network (DARNN) [Qin et al.,
2017] modules. The goal of the first part is to tackle the first challenge, i.e., au-
tomatically extracting informative representations of the raw market price with-
out considering any hand-crafted feature and technical indicator.
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The second part is an “Intra-clique Predictor” which is the adaption of
MRF-LSSVMs on stock market. In Intra-clique Predictor, higher order func-
tions are applied to sector lists (used as maximum cliques) defined by financial
index companies. The domain knowledge about leading stocks and lagging
stocks are assigned as higher and lower weights in energy function accord-
ingly. The goal of this part is to tackle the second and third challenges. Unary
features learned by DARNN modules are jointly employed to maintain higher
order consistency among stocks belonging to the same sector.

5.2.1 Multi-task Market Price Learner

Stock price movement can be interpreted from many aspects such as investor’s
sentiment, temporal patterns and cycles, flow of funds and market strength,
etc. Ideal features should incorporate as many aspects as possible. Multi-task
learning has shown its effectiveness to learn inductive knowledge among tasks
and improve performance as well as generalization capability [Caruana, 1993].
Therefore, we propose a multi-task RNN framework entitled “Multi-task Mar-
ket Price Learner (MMPL)” to tackle the first challenge: extracting informa-
tional representations from raw market price.

However, as noted elsewhere [Caruana, 1993, Ruder, 2017], there is a lack
of theory on underpinning a diverse set of tasks and the hierarchical architec-
ture of the chosen tasks. We follow this intuition to construct our model. Most
technical indicators fall into four categories: trend, momentum, volatility and
volume [Kirkpatrick II and Dahlquist, 2010]. Since volume is included in in-
put for all low-level tasks and we assume that momentum information can be
learned by a high-level task, we propose an architecture that using trend and
volatility tasks as our low-level tasks and price movement prediction (upward
or downward) as the high-level task.

Multi-task Market Price Learner(MMPL) contains two levels, three mod-
ules of DARNNs. DARNNs [Qin et al., 2017] are used as our basic module not
only because of its capability of selecting relevant deriving series as well as
temporal features, but also due to its superior performance for time series pre-
diction compared to LSTM [Hochreiter and Schmidhuber, 1997] and attention
based LSTM [Bahdanau et al., 2014]. Specifically, the bottom level contains two
separate DARNN modules. They are supervised by low-level tasks which aim
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Figure 5.1: Multi-task RNN-MRFs architecture. Note that the output of DARNNmulti
only corresponds to one node’s unary feature in MRFs.

to predict future price as well as volatility based upon the raw market price
data. The key difference among those modules is the loss function. At the top
level, it is supervised by a high-level task that learns to use representations
extracted by two low-level modules as well as raw market price data to pre-
dict positive / negative price movement of stocks. Logits of the last layer are
passed to Intra-clique Predictor described in section 5.2.2 as unary features.

All three DARNN modules share the same raw market price data. Here,
we denote the time-series dataset as X where X = (x1, x2, . . . , xT) ∈ RN×T.
We use xn = (xn

1 , xn
2 , . . . , xn

T) ∈ RT to denote a driving series of T time-steps
and xt = (x1

t , x2
t , . . . , xN

t ) ∈ RN to denote a snapshot at time-step t of all N
features.

For both DARNN modules at the low level, the input is X ∈ R5×T which
contains 5 exogenous driving series, i.e., opening price, low price, high price,
volume, amount and 1 target series y = (y1, y2, . . . , yT) ∈ RT. These two
modules aim to predict target series yt+p in the next p time steps:

ŷt+p = DARNN(y1, . . . , yt, x1, . . . , xt)

The target series ytrend of DARNNtrend is the closing price. The target series
yvolat of DARNNvolat is the standard deviation of closing price over M constant
time-steps. In our implementation we set M = 10. We use Mean Squared Error
(MSE) as the loss function to train those two modules separately.
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To construct the high level DARNN module, which aims to predict the
price movement, we concatenate context vectors cT from each of low level
DARNN module’s encoder and raw market price matrix as the input. The tar-
get series ybinary is constructed by the sign function ybinary

t = sign(yt+p − yt)

where yt denotes closing price at time-step t. We use cross-entropy as loss
function to train the final DARNNmulti. Logits (outputs before going through
softmax) of DARNNmulti are then passed to Intra-clique Predictor as unary fea-
tures.

In order to train MMPL together with MRFs in an end-to-end manner, we
follow the subgradient method proposed by Witoonchart and Chongstitvatana
[2017]. Since our inner loop proposed in section 4.3.2 is actually a latent struc-
tural SVM. Only gradients of parameters and feature functions need to be up-
dated. In our framework, outputs of MMPL (Logits of DARNNmulti) are only
used as unary features in MRFs’ energy functions, our back-propagation rules
can be defined by taking derivative of the objective function w.r.t wU defined
in equation 4.34:

∂L
∂wU = ψU(y)−ψU(y∗) (5.1)

where y is the ground-truth label and y∗ is inferenced label. ψU is unary fea-
ture function described in section 4.2.1, here it denotes logits calculated from
DARNNmulti. wU is unary parameter defined in energy function equation 4.12.
Equations equation 5.1 can be directly plugged into sub-gradient algorithm
proposed in [Witoonchart and Chongstitvatana, 2017]. Other configurations
stay the same with their algorithm.

5.2.2 Intra-clique Predictor

In this section, we show how to construct an “Intra-clique Predictor” with
MRF-LSSVMs to model lead-lag relationships and address the other two chal-
lenges as mentioned in the introduction. Specifically, each stock is treated as
a node in MRFs and each stock’s group with lead-lag relationships is treated
as a maximum clique in MRFs. We use a pre-defined industry classification
list [ths] as the prior domain knowledge of each maximum clique for each
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stock. By using a weighted version of higher order functions, stocks have
higher weights in the above list can be seen as leading stocks, and vice versa.
However, in our implementation, we use logits from MMPL as unary func-
tion and weighted lower linear envelopes as higher order function to encode
lead-lag relationships. Pairwise features are excluded. Finally, the complexity
of modeling dynamics between leading and lagging stocks becomes encour-
aging consistency over large cliques under weighted lower linear envelope
potentials. Log- its from hierarchical RNN networks are used as unary fea-
tures in MRFs. By minimizing the energy function which contains both unary
and higher order features, we can predict each stock’s future price movement
by jointly considering individual market price trends together with lead-lag
relationships.

The detail of the optimization algorithm is summarized in algorithm 4. As
we mentioned in Appendix 5.6, although we proposed an end-to-end sub-
gradient algorithm is section 5.2.1, MRFs updated by such algorithm take too
many iterations to converge. Therefore, we propose a two-stage training pro-
cedure. At first stage, MMPL and MRFs are trained separately. Therefore,
MRFs can take advantage of the efficient latent structural SVM and converge
in a polynomial number of iterations. After all those models are converged,
we then combine them together to conduct end-to-end training. Note that the
CCCP Inner Loop in algorithm 4 is actually solving standard structural SVM
problem. Therefore, at the second stage, we use subgradient algorithm pro-
posed in section 5.2.1 to replace the CCCP Inner Loop. Other settings remain
the same.

Empirically, the more evenly distributed of Wc(Yc) where c ∈ C on x axis,
the more rich representation (number of linear functions) the energy function
should have. In order to initialize θ, we first determine the x-coordinate of
sampled points sp. Then we sample its y-coordinate from a uniform distribu-
tion U (upbound, upbound− 0.5) to add some randomness in our initializa-
tion as well as maintain concavity. Linear parameters ak and bk are later calcu-
lated using those sampled points spk and spk−1. At last we encode {ak, bk}K

k=1

into θ using equation equation 4.24. This algorithm is summarized in algo-
rithm 5.
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Algorithm 4 Learning lower linear envelope MRFs with latent variables.
1: Set MaxIter = 100
2: input training set {yi}n

i=1, regularization constant C > 0, and tolerance
ε ≥ 0

3: Initializeθ using algorithm 5
4: repeat
5: CCCP Outer Loop
6: Set iter = 0
7: for each training example, i = 1, . . . , n do
8: compute z∗i = arg maxz∈Z θ ·ψ(yi, z)
9: end for

10: initialize active constraints set Ci = {} for all i
11: repeat
12: CCCP Inner Loop
13: solve the quadratic programming problem in equation 4.34 with re-

spect to active constraints set Ci for all i and concavity constraints
Aθ ≥ ε to get θ̂ and x̂i

14: for each training example, i = 1, . . . , n do
15: compute ŷi, ẑi = arg miny E(y, z; θ̂)− ∆(y, z, yi)

16: if ξ̂i +ε<∆(ŷi, ẑi, yi)− E(ŷi, ẑi; θ̂) + E(yi, z∗i ; θ̂) then
17: Ci ← Ci ∪ {y?

i }
18: end if
19: end for
20: until no more violated constraints
21: return parameters θ̂
22: Set iter = iter + 1
23: until iter ≥ MaxIter
24: return parameters θ̂

5.3 Dataset and Model Settings

In this section, we first introduce 3 stock datasets. Then, we introduce the
parameter settings for our model and training details. Finally, we select four
evaluation metrics and use them to demonstrate the effectiveness of our pro-
posed model by comparing to several baseline approaches.

To demonstrate the effectiveness of higher order consistency, we choose
three exclusive and the most famous stock indexes on Chinese stock market to
build our input datasets. Their index codes are: CSI (China Securities Index)
200, CSI 300 and CSI 500 which contain 200, 500 and 300 constituent stocks
respectively. The CSI 300 index selects most liquid A-share stocks. It aims to
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Algorithm 5 Empirical initialization algorithm forθ

1: gap = 1
K , a1 = U (0, 1e6), b1 = 0, sp1 = (0, 0), w0 = 0, counter = 2

2: for each clique c ∈ C do
3: Compute weighted clique value wc = Wc(yC)
4: if wc − wc−1 > gap then
5: upbound = acounterwc + bcounter

spcounter = (wc,U (upbound− 0.5, upbound))
Calculate acounter and bcounter using spcounter−1 and spcounter
counter = counter + 1

6: end if
7: end for
8: If counter < K, remaining as and bs are all set to be acounter and bcounter
9: Calculateθ using {ak, bk}K

k=1

reflect the overall performance of China A-share market. The CSI 200 and 500
indexes aim to reflect the overall performance of mid-to-large and small-to-
mid capital A-shares respectively.

All these indexes are exclusive and are refined on a yearly basis. In this
paper, we use fixed versions on 30-JAN-2015. We then collect their constituent
stocks’ minute-level data from 05-JAN-2015 to 29-DEC-2017. On Chinese stock
market each trading day has 4 trading hours. So there are 240 samples (min-
utes) for each normally traded stock on each day. Each sample contains 6 fea-
tures: opening price, high price, low price, closing price, volume, and amount.
1 For each stock, the first 80% days are used to construct the training set and
the last 20% days are used as test set. Approximately training set and test
set contain 33.6 million and 4.2 million samples, respectively. 49.5% of them
are positive movements, 0.3% of them stay unchanged and 50.2% of them are
negative movements. For binary classification task, we follow Mitchell and
Pulvino [2001]’s approach and label all positive movement samples 1 and 0
for the other samples. More labeling details are described in 5.6.

1During this period, there are some stocks de-listed (SZ000024, SH600485, SH600832 in CSI
200; SZ000693, SZ000748, SZ000982 in CSI 500; SH600485, SH600832, SZ000024, SH601299 in
CSI 300). Therefore, in total we collect 197, 497 and 296 stocks during this period respectively.
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Table 5.1: Technical Indicators Selection

Category Indicator Name

Momentum Awesome Oscillator, Money Flow Index

Volume
Chaikin Money Flow

On-balance volume mean

Volatility Bollinger Bands (Upper and Lower Bands)

Trend
Average Directional Movement Index

Moving Average Convergence Divergence

To demonstrate the benefits of multi-task RNN over manually designed
technical indicators, we construct technical indicators datasets. We select 8
most popular indicators, 2 from each category [Kirkpatrick II and Dahlquist,
2010] shown in Table 5.1. In implementation, we use open source package
Technical Analysis Library in Python2 to calculate those indicators and all hy-
perparameters are using package’s default settings without any prior expert
knowledge involved with. After technical indicators calculation, these 8 new
features are concatenated to above market price dataset (5 features at each
minute). So the final input dataset for each single task model contains 13 fea-
tures in total. Before feeding into models, we normalize each stock with z-score
function using standard deviation and mean calculated in the training set.

For brevity, we denote market price dataset which only contains 5 features
as Market and the concatenated 13 features dataset as Indicator. As discussed
in section 5.2.1, closing price at time t can be directly used as regression target
for DARNNtrend. Standard deviation of closing price with a window size of 10
is used as regression target for DARNNvolat. The dimensions of hidden state
and cell state are fixed as 32 for DARNNtrend as well as DARNNvolat, and 128
for DARNNmulti. More training details are described in 5.6.

5.4 Results

In order to demonstrate the effectiveness of our framework, we compare 3
baseline methods, i.e., LSTM [Hochreiter and Schmidhuber, 1997], attention
based LSTM Encoder Decoder [Bahdanau et al., 2014], and DARNN [Qin et al.,

2https://github.com/bukosabino/ta
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Figure 5.2: Results: baselines and ablation studies. All models have a window size
(lag steps) of 20 and predict price movement label at the next time step.

2017] on 3 different Chinese Securities Indexes with and without technical
analysis indicators as inputs. Results are summarized in Table 5.2. All results
are reported over the test sets. We select four metrics (Accuracy, Precision,
Recall and F1 Score) as evaluation metrics to justify the effectiveness of the
proposed approach. They are calculated by collecting all predicted labels of
constituent stocks in each CSI index.

5.4.1 Effectiveness of multi-task framework

As mentioned earlier, to demonstrate effectiveness of multi-task framework,
we use Indicator dataset, which contains both market price data and techni-
cal analysis indicators as inputs for baseline approaches and Market dataset
which only contains market price data as inputs for MMPL (multi-task RNN)
as well as baseline methods. For DARNN, we use a hidden size of 128. MMPL’s
configuration is described in section 5.6.1. As we can see in Table 5.2, sin-
gle task models (LSTM, LSTM Encoder Decoder, DARNN) tested on Market
dataset (without technical analysis indicators as inputs) generally have worse
performance with all 4 metrics. In particular, performance of DARNN mod-
els tested on Indicator dataset is consistently better than the ones on Market
dataset. This proves that even with hand-crafted features, deep learning mod-
els can still benefit from diversified and complementary features.

To test the effectiveness of multi-task framework, we conduct ablation study
with only one low-level task ( DARNNtrend or
DARNNvolat) together with the high-level task module DARNNmulti. Results
indicate that these two variants have comparable or slightly worse result than
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DARNN on Market. This may because single task model does not provide di-
versified features while have more parameters than DARNN. Finally, MMPL
outperforms all single task models and baseline methods on Market. This
suggests that diversified and complementary tasks can help MMPL extract ef-
fective features. Specifically, by comparing MMPL and DARNN on Market as
well as Indicator, we can see that MMPL generally outperforms DARNN on
CSI200 and CSI300 indexes and is slightly worse than DARNN on Indicator of
CSI500 index. We can conclude that by using multi-task RNNs, we can extract
better or at least comparable features compared with hand-crafted features.

5.4.2 Effectiveness of higher-order MRFs

In Table 5.2, we can observe that MMPL-MRFs framework consistently out-
performs other baselines on all 3 CSI index constituent stocks. It shows evi-
dence that higher-order energy function can help with encoding clique level
consistency thus improving overall prediction performance. One interesting
point to note is that the recall rate of MMPL-MRFs is constantly lower than
other baselines. This can be seen as a trade off between accuracy and recall
rate. However, it is worth to mention that for stock price movement predic-
tion, high accuracy and precision are much preferred than recall rate. An-
other interesting phenomenon is that MMPL-MRFs gives more improvement
on CSI200 and CSI300 while less improvement over DARNN trained with
technical analysis indicators on CSI500. One possible reason is that CSI200
and CSI300 select most liquid and representative stocks in Chinese stock mar-
ket. Those stocks exhibit much stronger and higher order consistency than
illiquid stocks. CSI500 selects small-mid capital stocks which are less liquid
and contains much more noisy movements.

In the training stage, our algorithm converges in 4 to 19 CCCP outer loops.
The average inference time of graph-cut algorithm is 34 seconds.

5.4.3 Visualization of higher-order consistency

In order to further investigate higher-order MRFs’ effectiveness, we design a
heat-map to visualize CSI300 index intra-clique higher-order relationship in
figure 5.3.
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(a) Ground-truth (b) MMPL

(c) MMPL-MRFs

Figure 5.3: Higher order consistency visualization. (a) is calculated directly from
ground truth labels on test set. (b) is calculated using predicted labels of MMPL with-
out MRFs on the test set. (c), we use predicted labels of MMPL-MRFs on test set as
inputs.

We first select two sectors: nonferrous metal sector, which contains 10 con-
stituent stocks, and infrastructure sector, which contains 35 constituent stocks
from CSI300 index 3. We then measure consistency level between each two of
these constituent stocks. In order to capture their temporal relationship, we
propose a novel consistency measure which is calculated on temporal inter-
vals.

Let yT
i = {y1

i , y2
i , ..., yT

i } denotes time-series for stock i. yt
i ∈ {0, 1} is

3These two sectors are selected only because painting many sectors in one figure would be
too messy to interpret and those two sectors have appropriate clique size (number of stocks)
for visualization. Conclusions from these two sectors also apply to other sectors
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the binary price movement label at time t. We segment time-series yT
i into

N = dT
Pe non-overlapping intervals {yn

i , yn+1
i , ..., yn+P

i } with fixed length P.
For any two stocks i and j, we calculate the difference dn

i j = ∑
n+P
n yn

i −∑
n+P
n yn

j
of how many times positive price movement happen in the n-th time interval
in each stock. Then the consistency level ci j between stocks i and j can be
calculated via a `1norm:

ci j = −‖di j‖1

where di j = {d1
i j, d2

i j, ..., dN
i j }. We normalize ci j into interval [−1, 1]. Each en-

try in figure 5.3 denotes a consistency level measure ci j. The larger the ci j is,
the higher of consistency level between stock i and stock j, the color of corre-
sponding entry is closer to red, and vice versa. As we mentioned, the average
duration of information arrival-conduction-integration-release process is 4.04
minutes [Yan, 2012]. Since which stock is leading at each time interval is elu-
sive, we set P = 9 when calculating consistency measures.

As we can see in Figure 4(a), there is a significant red square area, which
means ground-truth heat-map shows strong intra-clique consistency. This is
an evidence that higher-order relationships do exist within clique of stocks.
However, in Figure 4(b), the red square area is fragmented into many little
pieces. The whole area’s color is closer to blue when compared to ground-
truth heat-map, which means that MMPL captures little higher-order consis-
tency. The reason we still can observe a shape of red square is that the ac-
curacy of MMPL model on CSI300 is 66.6%. However, we can still conclude
that the accuracy of single MMPL model mainly comes from unary features
and it fails to capture higher order consistency of different stocks belonging
to the same clique. On the contrary, even though MMPL-MRFs model’s ac-
curacy on CSI300 index is only 2.35% better than MMPL model, we can ob-
serve that heat-map Figure 4(c) is more close to ground-truth heat-map than
heat-map Figure 4(b). There is a much clear red square and the number of
small fragments in red area is also less than Figure 4(b). We can conclude that
MMPL-MRFs models learn to utilize both unary features from MMPL as well
as higher-order relationships encoded in MRFs.
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5.5 Conclusions

Here we show how to model individual stock price predictions without hand-
crafted features and encode lead-lag relationships between stocks using weighted
higher-order MRFs. A multi-task neural network framework: Multi-task Mar-
ket Price Learner (MMPL), is proposed to automatically extract diversified
and complementary features from individual stock price sequences. Features
learned by MMPL are passed to a binary MRF with a weighted lower linear
envelope energy function to utilize intra-clique higher-order consistency be-
tween stocks. An efficient latent structural SVM algorithm is designed to learn
MRFs in polynomial time. Finally, the MRFs and MMPL are trained end-to-
end using the sub-gradient algorithm. Extensive experiments are conducted
on three major Chinese stock market indexes, and the proposed MMPL-MRFs
achieve the best accuracy on all three indexes.

Our work provides a number of directions for future research. In this work
we proposed a multi-task recurrent neural network for stock price prediction.
While we directly use DARNN as a proof of concept, other, more dedicated
architectures are worthy of exploration. As well as time series tasks, we can
also investigate how the latent SSVM framework performs on computer vision
tasks. Another interesting direction is to investigate the implicit relationship
between the expert-defined index list and graph RNN [You et al., 2018], which
could further help to reduce the domain knowledge required by our frame-
work.

5.6 Training Details

5.6.1 Multi-task training

To improve accuracy and reduce over-fitting, we add a drop out layer between
input layer and LSTM layer with a ratio of 0.2. We also clip and normalize gra-
dients during back-propagation stage with a maximum norm of 5.0 to prevent
gradient exploding issue. As pointed out by Lample et al. [2016], the ques-
tion of “when should the training schedule switch from one task to another
task?” or “should each task be weighted equally?” remains open. In our
implementation, we follow the proportional sampling approach described by
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Søgaard and Goldberg [2016]. After a backward pass completed, we randomly
sample a new task as well as its batch data as the next task to be trained. In
practice, we use a proportion of [0.25, 0.25, 0.5] for three tasks respectively.
This mechanism helps multi-task model to avoid Catastrophic Forgetting phe-
nomenon which means lower level model forgets learned knowledge during
higher level model back-propagation pass.

Even though we propose an end-to-end training algorithm for MMPL and
MRFs in section 5.2.1, MRFs inference stage is still too slow to be trained jointly
with MMPL. To overcome this difficulty, we implement a two stages training
procedure. We first add a softmax layer on top of DARNNclass and train MMPL
separately from MRFs. We use Negative Log-likelihood as the loss function. At
the second stage, after MMPL converge, we remove the softmax layer and re-
train it together with MRFs. One issue we must mention is that, even though
we use binary MRFs which can only predict positive / negative price move-
ment, we find there is a significant amount of time when stock price remains
no change. We find it benefits the performance a lot if we treat the classifi-
cation as a three classes problem rather than a binary classification problem
during the first stage. Therefore, at the first stage, the softmax layer will output
probability for three labels: negative movement, no changes and positive move-
ment. Since binary MRFs still needs a two dimension input as part of unary
energy function, after the softmax layer is removed, we add an additional linear
mapping layer between logits of MMPL and MRFs at the second stage.

5.6.2 End-to-end multi-task RNN-MRFs training

With converged MMPL and MRFs at hand, now we can go forward to train
them in an end-to-end manner. We only include pairwise energy function
through section 5.2.2 and section 4.3 to show a general application of our pro-
posed algorithm. In the case of Chinese stock market, to our best knowledge
there is no public available definition of pairwise relationship between stocks.
Therefore, in our implementation we only use unary and higher order energy
function. Each stock is then treated as a node in MRFs and each stocks group
which has lead-lag relationships is treated as a maximum clique in MRFs. One
benefit of MRFs clique is that we can embed domain expert knowledge about
industry classification as maximum cliques into our model. We choose to use
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Tonghuashun industry classification [ths] in our model. One subtle but cru-
cial detail about modeling lead-lag effect lies in equation (4.16). Recall that
Wc(yc) = ∑i∈c wi yi with wc

i ≥ 0 and ∑i∈c wc
i = 1 which are weights for stocks

in each clique. Therefore, leading stocks should have a higher weights while
lagging stocks should have lower weights. In our implementation, we use
constituents’ weight defined in CSI200, CSI500 and CSI300 as their weights in
equation (4.16) and normalize them to ensure the summation equals 1.
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Chapter 6

Conclusion

This thesis investigates two long-standing yet rarely explored sequence learn-
ing challenges under the Probabilistic Graphical Models (PGMs) framework:
learning multi-timescale representations on a single sequence and learning
higher-order dynamics between multi-sequences.

In Part I we demonstrate the first challenge by exploiting deep Hidden
Markov Models, a type of directed PGMs, under the Reinforcement Learning
(RL) paradigm. We prove that the Semi-Markov Decision Problem (SMDP)
formulated option framework has a Markov Decision Problem (MDP) equiva-
lence, namely the Skill-Action framework. To the best of our knowledge, this
is the first work proving this equivalence and giving the temporal abstrac-
tion problem a Probabilistic Graphical Models (PGMs) description. This is
also the first work introducing the prevalent and powerful Transformer neu-
ral networks into the Reinforcement Learning paradigm. As shown in our
experiments 3, compared to the option framework, SA outperforms all base-
lines on infinite horizon environments and is much simpler yet more effective.
It has shown an exceptional scalability and paves the way for a large scale
pre-training framework in Reinforcement Learning.

One of the most important contribution in Part I is the novel wide value
function proposed in Section 2.3.2. Rather than use the conventional value
function V[st], we define the skill value upon arrival function as a wide value
function V[st, ôt−1]. We also prove that the wide value function is an unbiased
estimation of the conventional value function, and it even has a smaller vari-
ance than the conventional one. The wide value function is the key component
of proving the equivalence between the SMDP formulated option framework
and SA. As discussed in Section 3.4, it is also the solution to learn skills at
multi-level granularities, which is a long standing challenge in Hierarchical
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Reinforcement Learning. To the best of our knowledge, this is the first work
identifying multi-level granularities of skills problem and proposing a solu-
tion to this problem.

For the challenge of higher-order dynamics, in Part II we demonstrate it by
exploiting Markov Random Fields (MRFs), also known as undirected PGMs,
under the supervised learning framework. Our main contribution in Part II
is proposing an exact inference algorithm of binary MRFs with Lower Linear
Envelope Potentials (LLEPs) as higher-order energy functions in Section 4.2.2.
Computational complexity of inference algorithms on MRFs with higher order
potentials grows exponentially with the scale of MRFs. By exploiting MRFs’
graphical nature, we are able to formulate the binary MRFs into pseudo-boolean
functions and solving the inference problem under the efficient graph-cuts al-
gorithm. We also propose an efficient learning algorithm for MRFs with LLEPs
energy functions by employing the Latent Structural Support Vector Machines
(LSSVMs) algorithm in Section 4.3. Experiments in Section 4.4 show that the
MRF-LSSVMs framework can learn LLEPs exactly and outperforms previous
works by a large margin.

We also extend the MRF-LSSVMs framework to time series and apply it to
financial time-series data set in Chapter 5. By designing a multi-task Recurrent
Neural Networks (RNNs) as a unary feature extractor, we are able to treat each
stock as a node in MRFs and represent the unary energy as RNNs extracted
embeddings. One special advantage of financial data set is that higher-order
maximum cliques are explicitly defined by financial index companies as sec-
tor lists, such as energy sectors and consumer sectors. By using these industry
defined sector lists as maximum cliques, we are able to model higher-order
dynamics between stocks by employing the MRF-LSSVMs framework. We
propose a sub-gradient algorithm to perform end-to-end training of the RNN
and the binary MRFs with high-order energy functions. We conduct thorough
empirical studies on three popular Chinese stock market indexes and the pro-
posed method outperforms baseline approaches. To our best knowledge, the
proposed technique is the first work to investigate higher-order dynamics with
MRFs for stock price movement prediction.
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