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1. Introduction 
Petroleum fuels have played a vital role in the contemporary business world, supporting 
many economic activities such as manufacturing, agriculture and trade. To date, such fuels 
remain the primary energy source for realising mobility and accessibility through transport 
systems, in particular the automobile sector, although we recognise the growing 
commitment to electric vehicles. While it might be expected that prices of all fuel sources 
would adjust to reflect supply and demand, there is an expectation that fossil fuels will 
remain the predominant source of energy for passenger cars over the next few decades as 
societies prepare the ground for substitution into clean or cleaner fuels. Energy demand 
forecasting is pivotal to planning, decision making and formulating energy policies, which 
relies on econometric/statistical methods (e.g., Ediger and Akar 2007; Li et al. 2010) and, 
more recently, machine learning (ML) methods (e.g., Forouzanfaret al. 2012; Beyca et al. 
2019). The former explicitly establish the relationship between energy consumption and 
its influencing factors, which requires certain pre-specified assumptions (e.g., the 
functional form and statistical distribution of parameters).  
 
Machine learning replicates human learning through algorithms and forecasts the outcome 
variables (y) given some other variables, x, which are features in the language of ML or 
independent variables in the language of econometrics. A major limitation of the current 
literature on the application machine learning to energy is that some papers emphasize the 
computer science perspective optimizing computational parameters such as the accuracy 
rate while the economic or finance intuition might be ignored (Mullainathan and Spiess 
2017; Ghoddusi et al. 2019). For example, data that diminishes the accuracy rate would be 
treated as noise, and the potential economic implications are often ignored. Meanwhile, 
other papers concentrate on the economic or financial perspective without fully exploring 
the capacity of the algorithms to solve or explain the problem under study (Ghoddusi et al. 
2019, p. 720), which has low calculation efficiency. A recent assessment by Allen (2019) 
promotes the view that machine learning may accelerate a crisis in science given that 
machine learning algorithms have been developed specifically to find interesting things in 
datasets, and so when they search through huge amounts of data, they will inevitably find 
a pattern.  
 
In this paper, we systematically investigate the role of ML techniques, model features and 
training periods in forecasting Australia’s automobile gasoline demand, and present 
evidence on the forecasting power of a model framework driven by machine learning in 
the case of a small sample. In this situation, we paygreater attention to the selection of 
training sets when using machine learning methods in order to minimise the estimation 
error caused by the unique characteristics of the small sample. Our empirical findings 
below suggest that when the forecasts are systematically influenced by one subset of 
training data (covering the period of 1992-1997), the impact on forecast errors is 
significant. We have found that these time points coincide enabling us to interpret the 
identified systematic variation in ML performance and its economic intuition, which is 
typically absent in the literature. We also assess the out-of-sample forecasts of the selected 
optimal model, its external validity can be demonstrated under stable conditions; However, 
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its forecasting performance is somewhat unsatisfactory under event-driven uncertainty 
(i.e., Corona Virus Disease 2019 (COVID-19) in this study), which calls on future research 
to develop new models to anticipate the characteristics of extreme events.    

2. Forecasting Transport Energy Demand Using ML Techniques 
Machine learning, proposed by Samuel (1959), has been widely used in the fields of energy 
and economics with diverse applications, for example, the optimization of energy inputs 
(Nabavi-Pelesaraei et al., 2014; Abdelaziz et al., 2016; Nabavi-Pelesaraei et al., 2017; Ali 
& Abd Elazim, 2018; Khanali et al., 2021), the investigation of energy efficiency (Nabavi-
Pelesaraei et al., 2014), forecasting energy commodity prices (Ding, 2018; Yu et al., 2017; 
Zhang et al., 2015), forecasting energy demand (Yang et al., 2014; Panapakidis and 
Dagoumas, 2017; Ou et al., 2020; Haque et al., 2021). Popular ML techniques in the 
relevant literature include applied artificial neural networks (ANN) (Olanrewaju et al., 
2013; Kunwar et al., 2013); deep learning (Lago et al., 2018; Peng et al., 2018), support 
vector machine (SVM) (Papadimitriou et al., 2014; Zhu et al., 2016; Jiang et al., 2018), 
decision trees (Bastardie et al., 2013; Zhao and Nie, 2020) and ensemble methods 
(Ghasemi et al., 2016; Mirakyan et al., 2017). 
 
Given our research focus, only studies that have used ML to forecast transport energy 
demand are reviewed, as summarised in Table 1 (For a broader review on ML applications 
in forecasting various energy types such as crude oil, natural gas and power and for 
different purposes such as price forecasting and data management, please refer to Ghoddusi 
et al. (2019). Earlier-published papers adopted one type of ML technique per study to 
forecast transport energy demand. Haldenbilen and Ceylan (2005) used a genetic algorithm 
(GA) for Turkey’s annual transport energy demand forecasting; while Murat and Ceylan 
(2006) and Kazemi et al. (2010) and Limanond et al. (2011) applied artificial neural 
networks for Turkey, Iran and Thailand respectively. More recent work has developed 
multiple energy demand forecasting models with various ML techniques, and there is 
mixed evidence on the optimal machine learning method, which may be data specific. For 
example, Forouzanfar et al. (2012) proposed the multi-level genetic programming (MLGP) 
approach to forecast transport energy demand in Iran, and found that its forecasting 
accuracy is similar to that of neural network. Teng et al. (2017) forecasted China’s total 
transport energy demand, using ANN, the group method of data handling (GMDH) and the 
support vector machine. Their empirical results show that GMDH delivered more accurate 
forecasts than other ML techniques. Azadeh et al. (2015) predicted Iran’s weekly gasoline 
demand, and found that the support vector regression (SVR) approach outperformed ANN.   
 
Several studies have assessed the role of feature selection; for example, with five candidate 
features (Gross domestic product (GDP), population, oil price, the number of vehicles, and 
passenger transport volumes), Geem (2011) considered four different feature combinations 
when forecasting transport energy consumption in South Korea. They found that the 
approach that accounted for the number of vehicles and the oil price resulted in the optimal 
solution and best forecasting performance. Teng et al. (2017) found that the urbanisation 
rate is an important feature for forecasting China’s transport energy demand. In each 
reviewed study, a fixed dataset was used for training their machine learning models, 
without training data selection. An examination of Table 1 also suggests that the most 
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common features used in the ML models for forecasting transport energy are national 
income, population, the number of vehicles, and fuel price. 

 
Table 1: Transport energy demand forecasting studies using ML techniques 

Reference Location Data period 
 

ML techniques Model features as predictors ML 
technique 
selection 

Feature 
selection   

Training 
set section 

Haldenbilen and 
Ceylan (2005) 

Turkey 
 

1970-2000 
(annual) 

Genetic 
algorithm  

GDP, vehicle kilometers traveled, 
the number of vehicles 

No Yes No 

Murat and 
Ceylan (2006) 

Turkey 
 

1970-2001 
(annual) 

ANN Gross national product (GNP), 
population and vehicle kilometers  

No No No 

Kazemi et al. 
(2010) 

Iran 
 

1968-2007 
(annual) 

ANN GDP, population, and the number 
of vehicles 

No Yes No 

Limanond et al. 
(2011) 

Thailand  
 

1989-2008 
(annual) 

ANN GDP, population, and the number 
of vehicles 

No Yes No 

Teng et al. 
(2017) 

China 1980-2011 
(annual)  

ANN, SVM, 
GMDH 

Disposable income, population, 
vehicle registrations, fuel price 
index, and urbanisation rate   

Yes Yes No 

Azadeh et al. 
(2015) 

Iran 
 

Aug. 2009 to 
Dec. 2011 
(weekly) 

ANN, SVR Transported freight per kilometre, 
transported passengers per 
kilometre, and the number of 
holidays per week 

Yes No No 

Geem (2011) South 
Korea 
 

1990-2007 
(annual) 

ANN, Multiple 
linear 
regression(ML
R) 

GDP, population, oil price, the 
number of vehicle registrations, 
passenger transport amount 

Yes Yes No 

Forouzanfar et 
al. (2012) 

Iran 
 

1968-2005 
(annual) 
 

Genetic 
programming, 
ANN 

GDP, population, and the number 
of vehicles  

Yes No No 

 

3. Forecasting Methods 
For a training data set 𝐷 = {𝒙, 𝑦}, we define 𝒙 as a vector of independent variables or 
features, and 𝑦 as the outcome variable. A linear regression function designed to identify a 
hyperplane is given in equation (1), estimated by minimising a loss function: min||𝑦 −
𝑓(𝑥)||!, usually referred to as the empirical risk minimisation function (Vapnik 1998). 
 
𝑦 = 𝑓(𝒙) = 𝒘"𝑥 + 𝑏                                                                                                        (1)                                                                                                      
 
By adding a 𝑙# -norm regularisation term, we obtain the least absolute shrinkage and 
selection operator (LASSO) regression model proposed by (Tibshirani 1996): 
 
min||𝑦 − 𝑓(𝒙)||! + 𝜆||𝒘||#                               (2)                                                                                 
 

where  𝜆 ≥ 0 is a tuning parameter, and for 𝜆=0 it reduces to an ordinary least square (OLS) 
regression. For details on LASSO and its applications in the field of energy demand, see 
Besagni and Borgarello (2018), Mashhadi and Behdad (2018) and Guo et al. (2018). 
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The support vector regression (SVR) algorithm, developed by Vapnik et al. (1992) and 
Cortes and Vapnik (1995), is an extension of the support vector machine and has gained 
popularity in the field of energy economics (see Ghoddusi et al. 2019 for a survey). The 
major advantage of SVR over other ML techniques is that it results in a convex 
minimisation problem with a unique global minimum, which avoids local minima 
(Plakandaras et al. 2017). SVR adopts the structural risk minimisation (SRM) principle by 
seeking to minimise an upper bound of the generalisation error rather than the training 
error, which results in improved generalisation performance, the absence of a local 
minimum and the sparse representation of a solution. The SVR model defines a margin 𝜖 
for the hyperplane, and the loss function of a SVR model can be written as: 
 

min
$,&

#
!
||𝑤||! + 𝐶 ∑ 𝑙'(

)*# (𝑓(𝑥)) − 𝑦))					s.t. 𝑙'(𝑧) = ; 0, if |𝑧| ≤ 𝜖
|𝑧| − 𝜖, otherwise              (3) 

 
 
ML techniques have been primarily used to pursue the quality of predictions (Yu et al. 
2012; Georges and Pereira 2020). With respect to the application of machine learning, a 
critical challenge is that it should be guided by some sensible quantum of economic and 
behavioural theory (Mullainathan and Spiess 2017). This current paper attempts to shed 
some light on the identified systematic variations in ML performance from an economics 
perspective, using Australia’s automobile gasoline demand as the empirical application, 
introduced in the following section.   

4. Data   
In Australia, around 85.5% of passenger cars use gasoline as the source of combustion; 
while 12.8% use diesel and 1.7% consume other types of fuel such as Liquefied Petroleum 
Gas (LPG) and electricity (ABS 2020). This study concentrates on gasoline demand, given 
its dominant role in Australia’s automobile sector. To forecast Australia’s total automobile 
gasoline consumption (TAGC) in million litres, we compiled a quarterly time series 
database spanning the period from Quarter 1 of 1974 (1974Q1) to Quarter 2 of 2019, from 
various sources, mainly the Australian Bureau of Statistics, Department of Industry, 
Tourism and Resources (Australia) and the Department of the Environment and Energy 
(Australia). The variables serving as predictors include: real gasoline price (RGP) in 
Australian dollars (Au$), Australia’s real household gross disposable income (RHGDI), 
population in millions (POP), expenditures on hotels, cafes and restaurants (HCR) in 
million Au$, final consumption expenditure (FCE) in million Au$, and purchase of 
vehicles (POV) in million Au$. Table 2 summarises the descriptive statistics of the time 
series  with Australian automobile gasoline consumption shown in Figure 1 from 1974Q1 
to 2019Q2 .  
 

Table 2: Descriptive statistics 

 TAGC POP RHGDI RGP  FCE POV HCR 

Mean 4201 18.37 228508 1.34 138175.74 2875 10635 
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Median 4382 18.04 193284 1.33 117867.0 2107 9265 
Standard deviation 581 3.48 94624 0.22 62818.90 1593 3613 
Minimum 2596 13.01 93942 0.85 54004.0 1033 5665 
Maximum 5243 25.41 410253 1.92 272594.0 6288 18647 

 

 
Figure 1: Australian automobile gasoline consumption from 1974Q1 to 2019Q2 

 
The full sample size of our data is 182. We divided the data into two parts. The first section 
(1974Q1-2017Q2) is used for training models. To investigate the role of training set 
selection, we varied the starting point of the training set from 1974Q1 to 2015Q1. The full 
training dataset has the maximum number of observations of 174 (i.e., 1974Q1-2017Q2); 
while the smallest size is 10 (i.e., 2015Q1-2017Q2). To avoid overfitting (see Barutcuoglu 
et al. 2006), a three-fold cross-validation is applied to determine the optimal parameter 
combination of the ML model. The training data is divided into three subsets. For each 
parameter combination, two subsets of the data are used to train the model and the rest for 
validating the model performance. This process is repeated three times for each 
combination, and the average performance measures across all parameter settings (see 
Table 3 below) are calculated. The parameter combination with the best average 
performance measure is selected as the optimal model. The remaining observations, from 
2017Q3 to 2019Q2, are used as a hold-out sample to examine the forecasting performance 
of ML models with different training periods and features. This flexible treatment allows 
us to identify the key influences on forecasting accuracy: the type of ML model, the length 
of training period or the combination of model features.  
 
It is typically assumed that transport gasoline consumption increases with income (Dahl 
and Sterner 1991). We plotted the relationship between income and gasoline demand in 
Figure 2, which shows clear nonlinearity. For RHGDI less than Au$ 200,000 million, 
gasoline consumption increased with income. When RHGDI is between $Au200,000m and 
$Au300,000m, this increasing trend weakened, and then gasoline consumption tended to 
slightly decrease with income when RHGDI surpassed $Au300,000m (i.e., after the real 
gasoline price peaked in the year of 2008). Can these figures imply that Australians have 
travelled less over the recent period? In 2018, Australia’s passenger cars travelled 179,761 
million kilometres (ABS 2019), more than the total distance of 157,935 million kilometres 
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in 2007 (ABS 2008). The improvement of fuel economy may play a role in this transition 
(i.e., longer while more fuel-efficient travel), according to the Bureau of Infrastructure, 
Transport and Regional Economics (BIRE 2017). 
 

  
Figure 2: Nonlinear relation between gasoline consumption and income 

5. Model Specification 
Having introduced the time-series data, the general model specification for the empirical 
simulations is given in equation (4).  
 

           (4)            

y is the outcome variable TAGC; 𝑚 represents the number of lags for the system; ℎ is the 
forecasting horizon in quarters with three alternative horizons (h) considered:1, 2, and 4 
quarters ahead. National income, population, the number of vehicles, and fuel price were 
frequently used as predictors in existing ML models for transport energy demand. Given 
that the number of Australian motor vehicles is not fully available during all of the sample 
period, this feature has not been included in the forecasting models. Therefore, national 
income, population and gasoline price are the Basic features for the ML models. In total, 
the model features consist of three parts: the autoregressive (AR) component (𝑦+,-), the 
Basic features consisting of RHGDI, POP & RGP, and three additional features: HCR, 
POV, & FCE. For time-series demand forecasting, there is no need to pre-process the raw 
data, given that seasonality, unit-root or other characteristics are treated as additional 
features, which are incorporated into the final ML algorithm for forecasting (Ghoddusi et 
al. 2019). 
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The forecasting performance of alternative model forms is evaluated using the mean 
absolute percentage error (MAPE) criterion (see equation 15). There are various error 
measures such as the mean square error (MSE) and the mean absolute error (MAE). By 
expressing it as a percentage error (normalised by actual demand), the MAPE allows for a 
meaningful comparison across datasets and/or across studies; however, other absolute 
indicators without such a normalisation can be associated with different magnitudes. The 
value of MAPE provides intuitive information on how accurate the forecast is; for example, 
MAPE≤0.1 indicates a percentage error of no more than 10%, suggesting a high level of 
accuracy (Lewis 1986).  

 

                                                                                                     (5) 

 
 𝑦+  is the observed gasoline consumption in time period t and 𝑦+?  is the corresponding 
forecast; 𝑛 is the total number of the hold-out-sample observations (n=8 in this current 
study). All experiments are coded using the Python language and implemented by a server. 
The parameter domains of the LASSO and SVR models are given in Table 3.  
 

Table 3: Parameter domains 
Parameter Description Domain 

𝜆 Weight of LASSO {0.1, 0.3, 0.5, 0.7, 0.9}*{1e-2, 1e-1, 1e0, 1e1, 1e2} 
𝐶 Penalty of SVR {0.1, 0.2, 0.5}*{1e-2, 1e-1, 1e0, 1e1, 1e2} 
𝜆 Width of RBF kernel {0.1, 0.2, 0.5}*{1e-2, 1e-1, 1e0, 1e1, 1e2} 

 

6. Results and Discussion 

6.1: Experiment 1 - Choosing the preferred ML Model using the full training data  
Existing energy demand forecasting studies used their full training data to train their ML 
models, and the one with the best forecasting accuracy is chosen as the preferred 
forecasting model (see e.g., Forouzanfar et al. 2012; Tang et al. 2017). In this experiment, 
we followed this standard practice to determine the overall best model for the empirical 
application. Table 3 summarises the MAPE values across different models and feature 
combinations, trained by using the full training set: 1974Q1-2017Q2. 

 
Table 3:  Forecasting performance under different methods and feature combinations 

(Total training data: 1974Q1-2017Q2) 

Model Feature 
Forecasting horizon (quarters) 

1 2 4 

OLS AR+Basic 0.0258 0.0349 0.0441 
AR+Basic+HCR 0.0275 0.0377 0.0415 

1

ˆ

MAPE

n
t t

t t

y y
y
n

=

-

=
å
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AR+Basic+POV 0.0231 0.0338 0.0462 
AR+Basic+FCE 0.0258 0.0366 0.0439 
AR+All 0.0251 0.0339 0.0397 

LASSO 

AR+Basic 0.0241 0.0298 0.0371 
AR+Basic+HCR 0.0289 0.0334 0.0356 
AR+Basic+POV 0.0214 0.0292 0.0348 
AR+Basic+FCE 0.0270 0.0348 0.0371 
AR+All  0.0201 0.0293 0.0347 

SVR-Linear 

AR+Basic 0.0267 0.0364 0.0453 
AR+Basic+HCR 0.0238 0.0375 0.0517 
AR+Basic+POV 0.0241 0.0351 0.0529 
AR+Basic+FCE 0.0256 0.0357 0.0467 
AR+ALL 0.0205 0.0338 0.0521 

SVR-RBF 

AR+Basic 0.0201 0.0231 0.0268 
AR+Basic+HCR 0.0194 0.0222 0.0262 
AR+Basic+POV 0.0183 0.0215 0.0272 
AR+Basic+FCE 0.0187 0.0218 0.0254 
AR+ALL 0.0173 0.0215 0.0263 

 
In Table 4, we report the hold-out-sample MAPE results for one-, two- and four-step-ahead 
forecasts respectively, using the full training set from 1974Q1 to 2017Q2. The overall 
performance is acceptable, with the lowest/highest percentage error being 1.73%/5.29%. 
Three linear methods (linear regression with OLS as the benchmark, LASSO and SVR 
with linear kernel) and one nonlinear method (SVR with radial basis function (RBF) 
kernel) are compared in terms of forecasting accuracy, and the results show that (1) except 
for the linear SVR, ML methods outperform the statsitical method; (2) overall, the 
nonlinear SVR-RBF delivers the best forecasting performance, with the greater 
improvement in accuracy for longer horizons. Table 4 also shows that, relative to the Basic 
specification with the autoregressive component only, RHGDI, POP and RGP, each 
additional feature has improved the performance of SVR-RBF, in which the role of FCE 
is the greatest among three additional features. Adding all of them simultaneously would 
lead to the best forecast for Horizon=1&2; while the inclusion of FCE is optimal for 
Horizon=4. Considering its overall performance and capability to address nonlinearity in 
the data, the SVR-RBF model is selected as the empirical model in this paper.   

6.2 Experiment 2 - Identifying the role of training set selection and explaining its 
economic implications 
This experiment investigates the stability of the preferred model (SVR-RBF) by varying 
the size of the training set from 10 (i.e., 2015Q1-2017Q2) to 174 (i.e., 1974Q1-2017Q2). 
The hold-out-sample forecasting performances of SVR-RBF with different feature 
combinations are shown in Figures 3-5 for Horizon=1, 2 & 4 respectively. Though having 
some fluctuations, their MAPE values (all below 0.0045) would suggest high levels of 
forecasting accuracy. 
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Figure 3: SVR-RBF MAPE values (y-axis) over different starting quarters (x-axis) and 
model features for Horizon=1 
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Figure 4: SVR-RBF MAPE values (y-axis) over different starting quarters (x-axis) and 
model features for Horizon=2 

 

Figure 5: SVR-RBF MAPE values (y-axis) over different starting quarters (x-axis) and 
model features for Horizon=4 

Given that the SVR-RBF model with all features delivered a slightly better overall forecast 
than other feature combinations, it is used as the descriptive example for demonstrating the 
role of training data selection. Training sets starting with 1974Q3, 1978Q1 & 1979Q1 are 
associated with the lowest percentage errors, namely 1.72%, 1.93%, and 2.22% for 
Horizon=1, 2 & 4 respectively, better than forecast by using the full training set (see Table 
4). For the starting point between 1992 and 1997, there is a clear ‘M’ shape with double 
tops, with its key points summarised in Table 5.  For those training sets which start within 
the left-right boundaries of ‘M’, their MAPE values are significantly greater than those of 
other sets, where the starting points being 1995Q3 and 1995Q1 have produced the least 
accurate forecasts for Horizon=1 and Horizon=2&4 respectively. Relative to the direct 
interpretation using the values in Table 5, a more informative approach is to use their 
relative differences, which demonstrate stronger inconsistency in forecasts. For example, 
holding all other factors constant, by shifting the starting point of the training set from the 
left peak to the left boundary of ‘M’, this reduction in training size would significantly 
reduce errors (e.g., from 3.22% to 2.26% for Horizon=1). Given the average error across 
all training sets of 2.31%, 2.57% and 3.09% for one-, two- and four-step-ahead forecasts 
respectively, Figures 3-5 show that varying starting points for training, particularly within 
these identified boundaries (Table 4), has resulted in significant changes in forecasting 
power.  
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Table 4: M-shaped patterns of SVR-RBF (AR+ALL) forecasts, extracted from Figures 3-
5 

 Left boundary 
of “M” 

Left peak Neckline Right peak Right boundary 
of “M” 

Horizon 
=1 

Training set starts 1997Q1 1995Q3 1994Q3 1994Q1 1992Q3 
MAPE 0.0226 0.0322 0.0270 0.0319 0.0212 

Horizon 
=2 

Training set starts 1997Q1 1995Q1 1994Q3 1993Q3 1992Q3 
MAPE 0.0276 0.0375 0.0293 0.0349 0.0256 

Horizon 
=4 

Training set starts 1997Q1 1995Q1 1994Q3 1993Q1 1992Q1 
MAPE 0.0326 0.0405 0.0311 0.0389 0.0318 

 
These empirical results suggest some interesting findings. Overall, longer training sets are 
more likely to produce better forecasts, despite some exceptions. Moreover, a small change 
in training sizes within the identified ‘M’ shape could lead to dramatic variations in forecast 
errors. Our evidence signals that the identified boundaries should be avoided as the starting 
point for training models, and then coupled with larger training sizes, lower errors and 
more consistent results can be obtained for forecasting Australia’s gasoline consumption 
(see Figures 3-5). From a data science perspective, these patterns would be merely regarded 
to be ‘abnormal’. However, they are also associated with some systematic influence. From 
an economics perspective, it is tempting to dig deeper and do more with the identified 
patterns. Can we characterise them and what can we learn from them? Are these systematic 
variations associated with or shaped by some economic events?  
 
Figures 3-5 illustrate deteriorated forecasts for training sets starting between 1992 and 
1997. Just before this period, Australia had entered its last recession, namely the early 
1990s recession. According to the Reserve Bank of Australia, the 1991-92 recession mainly 
resulted from Australia’s efforts to address excess domestic demand, to reduce inflation, 
and to control speculative behaviour in commercial property markets. One painful 
consequence is that Australia’s unemployment rate reached a recorded high by the end of 
1992 (over 11 percent), and it took several years to return to pre-recession levels. We 
plotted the pre-and post-recession relationship between Australia’s inflation rate and 
aggregate economic activity1 in Figure 6, which starts from 1978Q1 as the starting point 
of the most recent consistent data on Labour Force, Australia. After the early 1990s 
recession, there is a clear flattening of the Phillips curve in Australia. In addition to the role 
of recession, this shift may be attributed, in part, to globalisation which leads to diminishing 
price sensitivity to domestic demand pressure (see Kabukçuoğlu and Martínez-García 2018 
for evidence from other economies).  

 
1 “The New Keynesian model postulates that nominal rigidities lead to the non-neutrality of monetary policy 
in the short run and to an exploitable trade-off between inflation and aggregate economic activity” 
(Kabukçuoğlu and Martínez-García, E. 2018, p.46). In the Phillips curve literature (see Rafiq 2014), 
economic activity is commonly measured by the quarterly unemployment rate.  
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Figure 6: Flattening of the Phillips Curve in Australia 

After Australia’s last recession, a sub-period is rather difficult to be explained by the 
Phillips curve, during which there was the absence of the short-run trade-off between 
inflation and unemployment. From 1995Q3 (inflation=5.1% & unemployment=8.4%) to 
1997Q3 (inflation=-0.4% & unemployment=8.4%), the inflation rate dropped significantly 
while the unemployment rate remained steady and high, and their relationship almost 
formed a straight line vertically (see Figure 6). This was, in part, attributed to the sharp fall 
in inflationary expectations after the recession. Following the 1991-92 recession, some 
structural changes occurred, for example, shrinking full-time employment and growing 
part-time/casual opportunities in the labour market, and a move to a more open economy 
accompanied by deregulation of the financial system and the transport sector. It takes time 
to completely adapt radical changes. For example, it was until 1997 that the falling 
inflationary expectations in the bond market fully reflected the lower trend rate of inflation 
(Gruen et al. 1999). The identified ‘M’ shape covers this ‘weird’ period with the 1991-92 
recession and associated structural changes in Australia’s economy. The nonlinear model 
is rather sensitive to changing rules of the data. For training sets starting within the ‘M’ 
shape covering 1992-1997 (i.e., a shifting/adapting period for Australia’s economy), the 
number of observations is insufficient to capture such drastic fluctuations, which may 
contribute to greater forecast errors and less consistent performance of nonlinear SVR.  

In light of the evidence, a certain connection between ‘noise’ in the data and structural 
changes in the economy can be established. Despite that, we can draw on studies using 
econometrics approaches to better inform the outputs of machine learning. For example, 
Mensi et al. (2015) found that their identified structural breaks in oil price volatility are 
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linked to extreme economic and political events. Clark et al. (2020) concluded that 
“structural changes such as the Great Moderation or unusual periods such as the recent 
Great Recession can lead to significant shifts in the sizes of forecast errors and, in turn, 
forecast uncertainty” (p.17).  Figure 6 illustrates a much clearer inflation-unemployment 
dynamics after the year of 1997 or before the recession. Coincidently, the models with 
training starting points outside of the ‘M’ shape tend to deliver more accurate forecasts 
than those falling within it, even with smaller training sizes but under more stable economic 
conditions (i.e., after 1997).  

6.3 Experiment 3 - Selecting the optimal model specification for demand forecasting  
Given our earlier discussion on the significance of training set selection, we trained the 
SVR-RBF models with different feature combinations using all training sets. The MAPE 
results for each feature combination along with the corresponding optimal training period 
are summarised in Table 5 (Horizon=1), Table 6 (Horizon=2) and Table 7 (Horizon=4). 
When Horizon=1, the model with all features, trained over the period of 1974Q3-2017Q2, 
produced the best hold-out-sample forecast among all model specifications 
(features*training sets). For Horizon=2&4, the best forecasting model is the all-feature 
specification trained by 1978Q1-2017Q and 1979Q1-2017Q respectively. In addition to 
highlighting the role of training set selection, this experiment allows us to choose the 
optimal model for demand forecasting. Tables 6-8 illustrate accurate hold-out-sample 
forecasts, with the sign of percentage errors suggesting overprediction (+)/underprediction 
(-).   

Table 5: Hold-out-sample forecasts of SVR-RBF models with different features 
(Horizon=1) 

Hold-
out 

sample 
Real 

demand 

AR+Basic 
(1976Q3-2017Q2) 

AR+Basic+HCR 
(1979Q1-2017Q2) 

AR+Basic+POV 
(1974Q3-2017Q2) 

AR+Basic+FCE 
(1976Q1-2017Q2) 

AR+ALL 
(1974Q3-2017Q2) 

Forecast Error% Forecast Error% Forecast Error% Forecast Error% Forecast Error% 

17Q3 4703.10 4674.79 -0.60% 4663.87 -0.83% -0.95% -0.95% -0.95% -0.95% -0.95% -0.95% 

17Q4 4804.60 4789.87 -0.31% 4789.29 -0.32% -1.01% -1.01% -1.01% -1.01% -1.01% -1.01% 
18Q1 4476.80 4585.3 2.42% 4589.31 2.51% 2.25% 2.25% 2.25% 2.25% 2.25% 2.25% 

18Q2 4385.30 4439.44 1.23% 4431.68 1.06% 0.68% 0.68% 0.68% 0.68% 0.68% 0.68% 

18Q3 4416.10 4636.63 4.99% 4638.17 5.03% 4.09% 4.09% 4.09% 4.09% 4.09% 4.09% 

18Q4 4592.40 4662.32 1.52% 4663.53 1.55% 0.82% 0.82% 0.82% 0.82% 0.82% 0.82% 

19Q1 4283.10 4478.8 4.57% 4447.19 3.83% 3.91% 3.91% 3.91% 3.91% 3.91% 3.91% 

19Q2 4278.80 4270.29 -0.20% 4283.72 0.11% -0.04% -0.04% -0.04% -0.04% -0.04% -0.04% 

MAPE 0.0198 (1.98%) 0.0191 (1.91%) 0.0183 (1.83%) 0.0177 (1.77%) 0.0172 (1.72%) 
Note: Error in percentages = (Forecast - Real demand)/Real demand, +: Overprediction; -: Underprediction 

 
Table 6: Hold-out-sample forecasts of SVR-RBF models with different features 

(Horizon=2) 

Hold-
out 

sample 
Real 

demand 

AR+Basic 
(1975Q1-2017Q2) 

AR+Basic+HCR 
(1978Q1-2017Q2) 

AR+Basic+POV 
(1978Q3-2017Q2) 

AR+Basic+FCE 
(1979Q1-2017Q2) 

AR+ALL 
(1978Q1-2017Q2) 

Forecast Error% Forecast Error% Forecast Error% Forecast Error% Forecast Error% 

17Q3 4703.10 4659.70 -0.92% 4647.99 -1.17% 4642.59 -1.29% 4799.21 2.04% 4648.57 -1.16% 

17Q4 4804.60 4803.44 -0.02% 4799.64 -0.10% 4798.32 -0.13% 4599.27 -4.27% 4791.43 -0.27% 
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18Q1 4476.80 4614.98 3.09% 4610.69 2.99% 4602.04 2.80% 4472.69 -0.09% 4601.79 2.79% 

18Q2 4385.30 4477.46 2.10% 4448.36 1.44% 4417.51 0.73% 4621.24 5.38% 4440.86 1.27% 

18Q3 4416.10 4641.34 5.10% 4643.91 5.16% 4630.93 4.86% 4707.44 6.60% 4616.73 4.54% 

18Q4 4592.40 4721.33 2.81% 4725.92 2.91% 4715.21 2.67% 4454.47 -3.00% 4643.16 1.11% 
19Q1 4283.10 4463.73 4.22% 4454.59 4.00% 4464.29 4.23% 4282.15 -0.02% 4442.15 3.71% 

19Q2 4278.80 4276.91 -0.04% 4282.32 0.08% 4282.7 0.09% 4652.3 8.73% 4302.52 0.55% 

MAPE 0.0229 (2.29%) 0.0223 (2.23%) 0.0210 (2.10%) 0.0214 (2.14%) 0.0193 (1.93%) 
 
 

Table 7: Hold-out-sample forecasts of SVR-RBF models with different features 
(Horizon=4) 

Hold-
out 

sample 
Real 

demand 

AR+Basic 
(1984Q1-2017Q2) 

AR+Basic+HCR 
(1979Q3-2017Q2) 

AR+Basic+POV 
(1979Q1-2017Q2) 

AR+Basic+FCE 
(1984Q1-2017Q2) 

AR+ALL 
(1979Q1-2017Q2) 

Forecast Error% Forecast Error% Forecast Error% Forecast Error% Forecast Error% 

17Q3 4703.10 4666.66 -0.77% 4687.86 -0.32% 4706.66 0.08% 4816.33 2.41% 4678.36 -0.53% 

17Q4 4804.60 4792.95 -0.24% 4808.09 0.07% 4830.9 0.55% 4599.24 -4.27% 4808.11 0.07% 
18Q1 4476.80 4583.14 2.38% 4595.97 2.66% 4608.33 2.94% 4453.86 -0.51% 4615.08 3.09% 

18Q2 4385.30 4443.74 1.33% 4471.06 1.96% 4429.02 1.00% 4668.92 6.47% 4477.13 2.09% 

18Q3 4416.10 4635.01 4.96% 4661.28 5.55% 4669.87 5.75% 4744.65 7.44% 4555.86 3.16% 

18Q4 4592.40 4759.83 3.65% 4771.13 3.89% 4759.9 3.65% 4491.3 -2.20% 4719.76 2.77% 

19Q1 4283.10 4552.98 6.30% 4482.89 4.66% 4515.24 5.42% 4302.84 0.46% 4484.93 4.71% 

19Q2 4278.80 4379.49 2.35% 4318.69 0.93% 4323.61 1.05% 4679.31 9.36% 4336.92 1.36% 

MAPE 0.0275 (2.75%) 0.0251 (2.51%) 0.0256 (2.56%) 0.0244 (2.44%) 0.0222 (2.22%) 

 
Using the optimal model, we extended the forecast over the period of 2019Q3-2020Q2 to 
assess its out-of-sample performance (see Appendix B). The percentage errors for 2019Q3 
and 2019Q4 are 3.66% and 1.90% respectively. However, the model overvalued 
Australia’s automobile gasoline demand by 6.59% for 2020Q1 and an even much worse 
overprediction for 2020Q2 when the COVID-19 pandemic took hold. During the outbreak 
of COVID-19 pandemic, the Australian government started to implement a series of 
regulations/restrictions from the middle of March 2020. After that, travel activities were 
significantly suppressed. The field survey conducted by Beck and Hensher (2020a) 
suggests a reduction of over 50% in weekly household trips during Australia’s initial 
restrictions, in which the biggest reduction was its automobile sector. Even under easing 
resections after the 8th of May, aggregate travel is still one-third lower than pre-COVID-
19 levels (Beck and Hensher 2020b). Our forecasting error for the second quarter of 2020 
(i.e., an overprediction of 38.66%) appears to be consistent with Australia’s reduced travel 
demand (Beck and Hensher 2020a, 2020b) after the outbreak of COVID-19. Assuming a 
scenario without this pandemic, the forecast might be much closer to what would be 
consumed. Given the strong correlation between travel activities and fuel consumption, 
Beck and Hensher’s findings provide a way to assess the external validity of our ML 
forecasting model under normal and stable situations, with its out-of-sample (pre-COVID-
19) MAPE excluding 2020Q1-Q2 being 0.0278, similar to its hold-out-sample MAPE of 
0.0222. It means that, with a small size sample, our model has excellent forecasting power 
in the absence of special events. However, under event-driven uncertainty, this type of 
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forecasting model, established on identified characteristics in the time series, is unable to 
precisely anticipate the influence of such discrete events. 
   

7. Conclusions and Future Research 
With ML algorithms becoming increasingly user-friendly, a rising concern is that they 
might be applied naively or their results might be interpreted improperly (Mullainathan 
and Spiess 2017). Using Australia’s automobile gasoline demand as the empirical setting, 
we discovered some systematic patterns, which could significantly diminish the forecasting 
accuracy rate. Our investigation has uncovered the important role of training set selection 
on ML forecasting accuracy in the case of small samples. The results show that the full 
training set failed to yield the best performance, and hence, we suggest that future 
practitioners should vary their training sizes so as to choose the optimal one. Secondly, 
rather than simply treating them as noise, we added in economic intuition and the 
implications behind the ‘black-box’. An interesting and novel observation is that these 
patterns represent a shifting/adapting period for Australia’s economy. These findings, in 
turn, suggest that economic events (e.g., recession) or structural changes in the economy 
could signal useful information on designing a better ML forecasting model. Our evidence 
reinforces the need for economic inputs into the machine learning environment. Lastly, 
through comparisons among several experiments, we got the best model delivering the 
lowest hold-out-sample error for four-quarter-ahead forecasting. The results of a forecast 
for the gasoline demand over the period of 2019Q3-2020Q2 show good prediction 
performance of our ML model under normal situations. However, ML in general in 
isolation from other informative sources, is not suitable for rare and uncertain events with 
low-probability-of-occurrence but high-impact disruptions, which is not the purpose of this 
current study. This indeed signals an alert that policymakers need to constantly monitor 
dramatic changes in the market, regularly revisit their forecasting models and update 
demand predictions correspondingly.  

In future research, our method will be extended in several ways. On the one hand, we plan 
to develop a risk-exposure model to anticipate the characteristics of extreme events and to 
improve its response to external uncertainty, by embedding alternative machine learning 
techniques (e.g., Hewamalage et al. 2021; Kong et al. 2020) and promising econometrics 
approaches (e.g., Clark et al. 2020; Lyócsa et al. 2020). On the other hand, this typical 
event can be used as a natural experiment to investigate important policy levers such as 
telecommuting, which may be another future research avenue to monitor and understand 
the associated impacts on travel behaviour, energy consumption and productivity. In 
addition to energy security, environmental concerns in the transport sector are growing. 
For example, annual emissions (carbon-dioxide equivalents) from Australia’s transport 
sector increased from 82 million tonnes in 2005 to 101 million tonnes in 2019. The best 
way to promote green transport and sustainable growth is to switch to vehicles using clean 
energy, mainly battery electric vehicles, and according to a recent Grattan Institute Report 
(Wood et al., 2021), Australia must increase its annual electric vehicle sales from 7000 to 
more than a million by 2035. As such, electricity demand forecasting is expected to be a 
major research theme, and the models used in this current study can be a starting point 
while calling on the development of more appearling methods.  
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Appendix A: Best/worst hold-out-sample predictions under SVR-RBF with all 
features   

 

 
Figure A1: Horizon=1 

 
Figure A2: Horizon=2 



21 
 

 
Figure A3: Horizon=4 
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Appendix B: Out-of-sample prediction using the optimal model for Horizon=4    

 
 Out-of-sample Real demand Forecast Error Error% 
19Q3 4317.30 4475.33 158.03 3.66% 
19Q4 4469.30 4554.43 85.13 1.90% 
20Q1 4148.90 4422.55 273.65 6.60% 
20Q2 3135.30 4347.45 1212.15 38.66% 
MAPE   0.127   
MAPE excluding 2020Q2   0.0405   
MAPE excluding 2020Q1-Q2   0.0278   

 
Figure B: Out-of-sample prediction of SVR-RBF with all features and training set being 

1979Q1-2017Q2 
Appendix C: 

Table C: The list of abbreviations 

Abbreviation Full Name 
ABS Australian Bureau of Statistics 
ML machine learning 

COVID-19 Corona Virus Disease 2019 
LPG Liquefied Petroleum Gas 
GA genetic algorithm 

ANN artificial neural networks 
MLGP multi-level genetic programming 
GMDH group method of data handling 
SVM support vector machine 
SVR support vector regression 
MLR Multiple linear regression 
GDP Gross domestic product 
GNP Gross national product 

LASSO least absolute shrinkage and selection operator 
OLS ordinary least square 
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SRM structural risk minimisation 
TAGC total automobile gasoline consumption 
RGP real gasoline price 

RHGDI real household gross disposable income 
POP population in millions 
HCR expenditures on hotels, cafes and restaurants 
FCE final consumption expenditure 
POV purchase of vehicles 
AR autoregressive 

MAPE mean absolute percentage error 
MSE mean square error 
MAE mean absolute error 
RBF Radial Basis Function 
ALL AR+All features 

Basic features national income, population and gasoline price 
AR the autoregressive component 

 

 

 


