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Long-term monitoring of respiratory metrics using wearable devices

by Joseph Barry Yoo Sik PRINABLE

Recently, there has been an increased interest in monitoring health using wearable
sensors technologies however, few have focused on breathing. The utility of constant
monitoring of breathing is currently not well understood, both for general health as
well as respiratory conditions such as asthma and chronic obstructive pulmonary
disease (COPD) that have significant prevalence in society. Having a wearable de-
vice that could measure respiratory metrics continuously and non-invasively with
high adherence would allow us to investigate the significance of ambulatory breath-
ing monitoring in health and disease management.

The purpose of this thesis was to determine if it was feasible to continuously
monitor respiratory metrics. To do this, we identified pulse oximetry to provide the
best balance between use of mature signal processing methods, commercial avail-
ability, power efficiency, monitoring site and perceived wearability. Through a sur-
vey, it was found users would monitor their breathing, irrespective of their health
status using a smart watch. Then it was found that reducing the duty cycle and
power consumption adversely affected the reliability to capture accurate respiratory
rate measurements through pulse oximetry. To account for the decreased accuracy
of PPG derived respiratory rate at higher rates, a long short-term memory (LSTM)
network and a U-Net were proposed, characterised and implemented. In addition
to respiratory rate, inspiration time, expiration time, inter-breath intervals and the
Inspiration:Expiration ratio were also predicted. Finally, the accuracy of these pre-
dictions was validated using pilot data from 11 healthy participants and 11 asthma
participants. While percentage bias was low, the 95% limits of agreement was high.

While there is likely going to be enthusiastic uptake in wearable device use, it
remains unseen whether clinical utility can be achieved, in particular the ability to
forecast respiratory status. Further, the issues of sensor noise and algorithm per-
formance during activity was not calculated. However, this body of work has in-
vestigated and developed the use of pulse oximetry, classical signal processing and
machine learning methodologies to extract respiratory metrics to lay a foundation
for both the hardware and software requirements in future clinical research.
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Chapter 1

Introduction

1.1 Introduction

Recently, there has been an increased interest in monitoring health using wearable
sensors technologies however, few have focused on breathing. The utility of constant
monitoring of breathing is currently not well understood, both for general health
as well as respiratory conditions such as asthma and COPD that have significant
prevalence in society. Once- to twice-daily measurements of peak flow are used
for diagnosis and monitoring in asthma, whereas changes in respiratory rate show
promise in detecting onset of exacerbations in COPD. In this thesis, “wearables”
refer to devices which can be worn about the user’s person/body, and “wearable
technology” refers to the technology involved in making such a device possible.
Having a wearable device that could measure respiratory metrics continuously and
non-invasively with high adherence would allow us to investigate the significance
of ambulatory breathing monitoring in health and disease management.

1.2 Aims and Research Questions

The aims of this thesis are to:

1. Identify potential wearable technology to continuously monitor respiratory
metrics.

2. Investigate signal processing methods to allow extraction of breathing metrics.

3. Present use of a machine learning framework that that overcomes the limita-
tions of classical signal processing methods.

The research questions are as follows:

• Research Question 1: What wearable sensor technologies are available for ac-
quiring respiratory signals and what signal processing methods exist to extract
respiratory signals from sensor technologies?

• Research Question 2: What is the rationale for potential users, both with and
without respiratory disease, to adopt new technologies that continuously mon-
itor breathing over time?

• Research Question 3: What are device-specific attributes that would meet the
expectation of users, both with and without respiratory disease?

• Research Question 4: What are computing hardware limitations of using a
pulse oximeter to derived a breathing signal?
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• Research Question 5: Is it feasible to use machine learning (recurrent neural
network) to predict tidal volume traces from a pulse oximeter?

• Research Question 6: What are the optimum parameters for using single recur-
rent neural network to predict respiratory metrics in a larger group of healthy
individuals?

• Research Question 7: How do two machine learning approaches (recurrent
neural networks vs U-Net) perform in predicting respiratory metrics in health
and asthma?

1.3 Thesis Overview

This thesis consists of seven chapters as follows:

• Chapter 1 presents the Introduction of this thesis. The Aim, Objectives and
Research Questions are presented, followed by the Thesis Overview and List
of Publications.

• Chapter 2 (A review paper under consideration by npj digital medicine) presents
a review of literature, covering concepts (cost, size, location etc.) of wearable
sensors for the continuous measurement of breathing. The relative strengths
and limitations of various signal processing methods are compared, particu-
larly those relevant to the derivation of breathing parameters from a photo-
plethysmograph (Research Question 1).

• Chapter 3 (Prinable et al. a published journal in JMIR Biomedical Engineer-
ing [2]) presents an electronic survey of 134 participants used to determine the
rationale for adopting new technologies (in asthma and health groups) to con-
tinuously monitor breathing over time and evaluate device-specific attributes
that would meet their expectations (Research Questions 2 and 3).

• Chapter 4 (Prinable et al. 3 published conference paper IEEE EMBC [3], IEEE
LSC [6] and AAPM) presents feasibility and hardware challenges for capturing
photoplethsmograph signals, the results of these experiments and discussion
[3] (Research Question 4).

Furthermore, for the first time a LSTM machine learning methodology is pre-
sented to extract a relative tidal volume waveform from a pulse signal [6]. A
U-Net method was also implemented to investigate the capability to predict
a tidal volume waveform up to 5 seconds in the future (AAPM abstract) (Re-
search Question 5).

• Chapter 5 (Prinable et al. a published journal in JMIR uHealth mHealth [7])
presents measurements captured in a respiratory laboratory from healthy par-
ticipants, a machine learning framework (LSTM) for extracting breathing sig-
nals and indices, the results of these experiments and discussion (Research
Question 6).

• Chapter 6 (Prinable et al. a published letter in Biosensors [?]) presents clinical
measurements on both healthy and asthma participants and compares the per-
formance of LSTM and U-Net machine learning methodologies, the results of
these experiments and discussion (Research Question 7).
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• Finally, Chapter 7 concludes overall studies from chapter 1 to chapter 6. The
answers to the research questions are summarised, the study limitations are
explained, the impact of the thesis is discussed, and recommendations of fu-
ture work are provided. A future research plan to conduct further longitudinal
studies is also presented.

1.4 External Publications

During this work I collaborated on several different projects accumulating in several
publications. The summary of external collaborations and papers during this thesis
is listed below:

• Cochlear (2 months): Investigate a novel mixing formula for permittivity and
conductivity of cortical bone IOP BPEX (Prinable et al. [6])

• Dolby Digital (6 months): Investigate hardware failures in microspeakers, gen-
erated an internal document that influenced future R&D.

• ACRF Image X (1 year): Investigate long range prediction of respiration for
gating radiotherapy devices (Accepted abstract for AAPM 2020). Created novel
carotid artery hardware in support of new radiotherapy methodologies [7].

• USYD Physics: Designed of a blood pressure wearable using novel fibre optics
[8].

• USYD Biomedical Engineering: Provided guidance on methodology and anal-
ysis for two conference papers [9, 10].

• COVID19 workgroup (USYD engineering): Provided advice on how a respi-
ratory related wearable could support COVID19 identification (Paper under
review in Nature Biotechnology).
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Chapter 2

Background

2.1 Introduction

This chapter formally introduces the clinical rationale for measuring respiratory re-
lated metrics for asthma and health, the respiratory metrics that can be captured
and explores different sensor technologies, monitoring sites and signal processing
techniques to monitor respiratory metrics. This chapter presents a literature review
designed to answer the following research question:

• Research Question 1: What wearable sensor technologies are available for ac-
quiring respiratory signals and what signal processing methods exist to extract
respiratory signals from sensor technologies?

Chapter 2 consists of a submitted journal manuscript and is undergoing formal peer
review at nature partner journal digital medicine.

Statement of Contributions of Joint Authorship:

• Joseph Prinable (Candidate): corresponding author, providing the main idea,
writing, reviewing and editing of the manuscript.

• Peter Jones (Alternate Supervisor): proof reading, reviewing and editing the
manuscript.

• David Boland: reviewing the manuscript.

• Alistair McEwan (Principle Supervisor): reviewing the manuscript.

• Paul Young: reviewing the manuscript.

• Euan Tovey: reviewing the manuscript.

• Cindy Thamrin (Alternate Supervisor and lead author): proof reading, review-
ing and editing the manuscript.

2.2 Clinical Rationale

Monitoring respiratory signals, especially breathing rate, is an important indicator
of health status in the intensive care or sleep setting, providing an opportunity for
lifesaving interventions or aiding in the diagnosis of sleep disorders. The breathing
pattern may be useful for a clinician’s evaluation of a respiratory patient, but breath-
ing metrics are not commonly used, hampered by the availability of technologies for
continuous, non-obtrusive monitoring of breathing. Long-term monitoring of lung
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health using the "Gold standard" of spirometry/peak flow is possible at home, and
even has the potential to assess and predict acute exacerbations and treatment re-
sponse [1, 2, 3, 4]. However, these measures are usually only performed a couple
of times a day, rather than being a continuous, unobtrusive method of monitoring
disease. In COPD, respiratory rate and pulse rate are sensitive predictors of up-
coming exacerbations, thus enabling early intervention to reduce rate and length
of hospitalisation. However again, these studies are based on once- or twice-daily
measurements [5, 6, 7, 8]. Developing a wearable device that is capable of continu-
ously monitoring (or monitoring at fixed moments in time) a variety of lung function
metrics would enable the investigation of clinical utility in ambulatory monitoring
in asthma and/or in younger populations including children. These issues are ex-
panded and analysed in depth in the submitted manuscript to npj digital health,
"Continuous respiratory monitoring using wearable technologies: a review".

2.3 Breathing Metrics

Outside the clinical setting it is only possible to continuously record relative mea-
sures of many respiratory metrics since specialised equipment required for absolute
measures are not suitable for day-to-day use due to their non-passive and obtru-
sive nature. There are a wide variety of tidal breathing indices/ratios that could be
captured. These include respiratory rate (RR), the amount of breaths per minute,
inspiratory time (Tinsp), expiratory time (Texp), inter-breath interval (IBI), respi-
ration ratio (Tinsp/Texp), duty cycle (Tinsp/IBI), and relative tidal volume (RTV).
From these metrics it may also be possible to determine relative airflow, relative tidal
breathing flow-volume loops, and relative end-expiratory lung volume.

2.4 Sensors and Signal Processing Methods for Respiration
Monitoring

Out of the modalities examined, respiratory bands and pulse oximetry may offer
the best combination of merits in terms of their ability to capture multiple accurate
respiratory metrics using mature signal processing methods, commercial availabil-
ity, power efficiency and monitoring site / perceived wearability. Modalities such
as microphones, bone conduction or bio-impedance may be less commercially avail-
able or wearable, and all except for bio-impedance offer good to excellent power
efficiency, but these technologies may evolve to address these issues. In the next
chapter the motivations and key features of a wearable to monitor respiratory met-
rics of potential users to see if the current technologies are feasible for long term
studies are explored.

In 2016, Charlton et al. [1] compared the performance of a combination of sev-
eral algorithms (using both PPG and ECG signals) including Fast Fourier Transforms
(FFT), wavelet transforms, multistage band-pass filters, and adaptive frequency es-
timators. Extracting respiratory signals based on baseline wander, amplitude mod-
ulation and frequency modulation, each coupled with ’Count-orig’ breath detection
[10] and joined together with Smart fusion [11] yielded 95% LOAs of -5.1 to 7.2 bpm
and bias of 1.0 bpm. One explanation for these results is that the underlying mech-
anism which superimposes respiratory motion on the cardiac waveform tends to
decouple at higher respiratory rates [12]. The accuracy of deriving respiratory rate
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can further be increased by accurately identifying peaks and troughs [13] and im-
plementing a respiratory signal quality index [14, 15] to select only high fidelity data
points for reporting.

In Chapter 4 a machine learning method to help mitigate against this mechanism
is proposed. Charlton et al. suggests that ECG rather than PPG is a better method to
extract respiratory rate with 95% LOAs of -4.7 to 4.7 bpm and bias of 0 bpm. In the
next chapter the user requirements for a wearable device to determine feasibility of
PPG vs ECG based wearables are explored.

2.5 Concluding Remarks

In this chapter the clinical rationale for monitoring breathing was formally intro-
duced and breathing metrics that could be continuously monitored were identified.
Further, sensors and signal processing techniques available to continuously moni-
tor breathing in a ambulatory setting were critiqued. Work within this chapter ad-
dressed Research Question 1 through a literature review paper. In the next chapter,
the motivations of users and key feature preferences of a wearable that can contin-
uously monitoring respiration was identified and linked back to the findings of this
chapter.
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Abstract—Continuous tracking of physical activity and 

other physiological signals is rapidly attracting interest; 
however, monitoring respiratory metrics is still not 
common. Improved technology now has the potential to 
continuously monitor respiratory related conditions in 
day-to-day activity and may be useful for general health 
monitoring and in an ambulatory setting for both healthy 
and disease populations 

Out of the modalities examined, respiratory bands and 
pulse oximetry, may offer the best combination of merits 
in terms of their ability to capture multiple accurate 
respiratory metrics using mature signal processing 
methods, commercial availability, power efficiency and 
monitoring site / perceived wearability. 

Modalities such as microphones, bone conduction or 
bio-impedance may be less commercially available or 
wearable. However, all except for bio-impedance offer 
good to excellent power efficiency such that these 
technologies may evolve to address these issues. 

Future work should seek to investigate longitudinal 
trends in data obtained from these modalities to identify 
potential utility in long-term monitoring, and/or the ability 
to detect detrimental changes to patient health and allow 
timely intervention. 

 
150-250 words 

 
Index Terms—respiration monitoring, asthma, COPD  

I. INTRODUCTION 
ONTINOUS tracking of physical activity and other 

physiological signals is rapidly attracting interest. 
However, real time monitoring of breathing is still not 
common in either fitness applications in health or day-to-day 
management of respiratory patients; instead, it is restricted to 
specialized laboratory or clinical settings. This reflects the fact 
that currently there are very few established means to monitor 
breathing signals directly in a continuous, ambulatory manner. 
The lack of available monitoring technologies in turn restricts 
the ability to determine the clinical utility of continuous 
monitoring of breathing, explaining the paucity of research 
demonstrating such utility. Nevertheless, there is  suggestion 
from retrospective analyses of clinical trial data  that 
monitoring of lung function measures over weeks and months 
can yield insights into pathology [3-5], and that monitoring of 

 
 

breathing metrics could detect upcoming exacerbations [7]. 
There is a growing body of work focused on wearable 

technology and signal processing, with the potential to 
continuously monitor respiratory related conditions in day-to-
day activity. Thus, the purpose of this review is to summarise 
the development of new wearable sensors and signal 
processing methods. This review focuses on five types of 
wearable devices and analyses their potential based on 
commercial availability, wearability, and the feasibility of 
signal processing to extract respiratory metrics.  

II. RATIONALE FOR MONITORING BREATHING 
Monitoring respiratory signals, especially breathing, is an 

important indicator of general health status in the clinical 
setting. Within the intensive care unit (ICU), monitoring of 
oxygenation, ventilation and mechanical lung function has the 
potential for predicting catastrophes; this provides an 
opportunity for interventional lifesaving measures. The 
analysis of continuous measures of airflow and respiratory 
effort is also used to inform diagnosis of a sleep related 
disease within sleep studies. 

The utility of monitoring respiration in the ambulatory 
setting (i.e. outside of clinical setting) is less established. 
Emerging evidence suggests that respiration monitoring can 
indicate the degree of perceived physical exertion [10-13] and 
is linked to a variety of physiological, psychological and 
environmental stressors [14-16]. This has led to a growing 
interest in monitoring respiration driven by performance in 
sports, wellness [18, 19], and for indications of general health 
status [22]. However, there is still a lack of mainstream 
monitoring in part due to the lack of commercially available 
devices. 

In respiratory disease, the status of the airways is assessed 
using the “gold standard” of spirometry. Spirometry measures 
the volume a subject is able to forcibly expel from the lungs 
within 1 second (FEV1), the maximum volume of air expelled 
(forced vital capacity, FVC), and the peak expiratory flow 
(PEF) [24]. These measures allow the assessment of airway 
obstruction or lung restriction (via the ratio FEV1/FVC), 
airway hyperresponsiveness, and diagnosis of diseases such as 
asthma and chronic obstructive pulmonary disease (COPD) 
[7]. Long-term monitoring of lung health using 
spirometry/peak flow is possible at home, and even has the 
potential to assess and predict treatment response [3, 26-28]. 
However, there are several limitations: due to the forced 
manoeuvres involved, not everyone can perform 
spirometry/peak flow easily, especially patients with severe 

Continuous respiratory monitoring using 
wearable technologies: A review 

Joseph Prinable, Peter Jones, David Boland, Alistair McEwan, Euan Tovey, Paul M Young 
and Cindy Thamrin 

C 
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obstructive lung disease or contra-indications such as recent 
surgery or pre-existing conditions; some people can 
experience faintness or dizziness during testing. The test relies 
on the ability to follow instructions and is effort-dependent, 
making it unsuitable for e.g. young children. By its nature it 
can only be performed a couple of times a day, rather than 
being a continuous, inobtrusive method of monitoring disease. 

A passive, non-obtrusive and continuous measure of lung 
function, especially respiratory rate, would be highly desirable 
for ambulatory monitoring of those with a known respiratory 
disease. Some of the most promising evidence for this comes 
from COPD, where unlike in asthma, the utility of home 
monitoring of peak expiratory flow or spirometry is not well 
demonstrated. Respiratory rate, along with pulse rate, has been 
shown in several studies to be a sensitive predictor of 
upcoming exacerbations [7, 31-33], thus enabling early 
intervention to reduce rate and length of hospitalisation. 
However, these studies are based on once- or twice-daily 
measurements from either a stationary pulse oximeter or a 
home oxygen supply line, hence why utility of breathing 
metrics is more feasibly demonstrated in COPD patients, who 
are typically older and less mobile. Creating or modifying 
devices capable of continuously monitoring a variety of lung 
function metrics would enable the investigation of clinical 
utility in ambulatory monitoring in asthma and/or in younger 
populations including children. 

III. BREATHING METRICS 
In the ICU, respiratory rate, volume and pressure are critical 

to determine and titrate ventilation settings [36]. In sleep 
studies, excursions in the airflow trace are used to determine 
partial and total pauses in breathing, for the diagnosis of e.g. 
obstructive sleep apnea [38, 39]. Relative tidal volume 
excursions of the thorax and abdomen can provide information 
on breathing asynchrony. In asthma, short-term breathing 
metrics have not proven useful in clinical monitoring during 
an acute exacerbation [40]. In COPD, increased respiratory 
rate showed high sensitivity and specificity in predicting 
hospitalization within 48 hours [7].  Tidal breathing flow-
volume loops (TBFVL) have been used to classify disease 
state in infants, and relative measures could be derived from 
the captured signals aforementioned [7, 42-44]. For infants 
and neonates, end-expiratory lung volume is highly dynamic, 
providing us with an indication of health or disease. Advanced 
analyses of tidal volume and inter-breath intervals show 
specific patterns [47] which change with maturation [48] and 
show evidence of system “resetting” during sighs [56]. 

Outside the clinical setting it is only possible to 
continuously record relative measures of many respiratory 
metrics since specialised equipment required for absolute 
measures are not suitable for day to day use due to their non-
passive and obtrusive nature. There are a wide variety of tidal 
breathing indices/ratios that could be captured. These include 
respiratory rate (RR), the amount of breaths per minute, 
inspiratory time (Tinsp), expiratory time (Texp), inter-breath 
interval (IBI), respiration ratio (Tinsp/Texp), duty cycle 
(Tinsp/IBI), and relative tidal volume (RTV). From these 
metrics it may also is possible to determine relative airflow, 
relative tidal breathing flow-volume loops, and relative end-

expiratory lung volume. 

IV. MEASUREMENT MODALITY 
 Here we present five modalities that could be used for 

long-term monitoring of respiratory metrics: microphones, 
bone conduction, bio impedance, pulse oximetry as well as 
respiratory bands. We directly compare these modalities to 
illuminate their potential for adoption. 

A. Contact Microphones 
A variety of contact microphones have been used to capture 

respiratory related sounds [59, 60] from which relative 
measures of airflow can be derived [34, 61, 62]. In addition to 
measures of flow, both the inspiration and expiration period 
can be derived [63-65]. 

It has been suggested that the right thorax region in the 
seventh intercostal space and the trachea are optimal 
monitoring sites [66]. However, other sites have also been 
proposed such as either side of the spinal cord 3 cm below the 
bottom tip of the shoulder blades [67]. 

Breathing sounds typically occur in the frequency band 
from 200 Hz to 800 Hz [68] with sound intensity being flow 
rate dependent [69], microphone type and recording site [35, 
70]. Respiratory signals are typically recorded at 44.1 kHz 
down sampled to 16 kHz, which is standard practice to reduce 
the computational requirements of a signal processing unit 
without loss of core information [67].  

Current signal processing related challenges lie with 
filtering unwanted noise since thoracic lung sounds fall within 
the same frequency range as human voice (200 Hz - 450 Hz 
[71]) and heart sounds (150 Hz superimposed on breathing [1, 
72]). A variety of signal processing techniques have been used 
to remove noise including; wavelets, adaptive filtering with a 
recursive least squares algorithm, time/frequency filtering, 
reconstruction, autoregressive / mobile average estimation 
(ARMA) in time/frequency domain of wavelet coefficients, 
independent component analysis and the entropy-based 
method [73]. Of these methods, the best results were obtained 
with adaptive filtering, time/frequency filtering, and ARMA 
estimation [74]. Martin et al. used a denoising method to 
reduce external industrial noise [75] 

Reported accuracy for deriving respiratory metrics with 
microphones is generally high. Larson et al used a microphone 
from a mobile phone compared to an ATS certified clinical 
spirometer and found the root mean squared error (RMSE) to 
be 5.2%, 4.8%, 6.3%, and 4.0% for FVC, FEV1, PEF, and 
FEV1/FVC, respectively [76]. Yadollahi et al reported that 
respiratory flow measured from the trachea was within 5% of 
the flow obtained using a pneumotachograph [34]. However, it 
should be noted that these studies were conducted on subjects 
either during sleep or at rest.  

B. Bone Conduction Microphones 
Bone Conduction Microphones (BCM) capture acoustician 

transmitted through bone vibrations within the body. 
Historically, these microphones have been used to acquire 
speech signals with application to military police and rescue 
situations [77] for communication  in high noise environments 
[78, 79]. Recently, they have been used to capture respiratory 
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related signals [80].  
Several locations have been suggested including the 

mandibular condyle and the mastoid process [81, 82], the 
manubrium of the sternum [83], and the external ear canal 
[71]. However, the throat was found to give the maximum 
power (dB) for all types of non-vocal body sounds, except 
eating [2].  

Bone Conduction Microphones in conjunction with other 
modalities have been shown to improve the accuracy of RR 
derived from respiratory sounds. The fusion of both electret 
and bone conduction microphones led to a 94.7% accuracy 
rate as opposed to without the BCM (78.9%), no details were 
provided for BCM alone [83]. Given the limited scope of the 
previous studies it is unclear whether tidal volume or any 
other respiratory metrics can be extracted.  

Unlike contact microphones discussed in the previous 
section, a wavelet transform of sound captured using a bone 
conduction microphone reveals that breathing sounds are 
detected in the 700-1400 Hz frequency range. However, other 
low frequency noises also can also be observed, indicating that 
the bone conduction microphone reduces but does not 
eliminate all background noise [84]. In fact, a constraint in 
adapting a BCM to a wearable platform is the ability to extract 
the breathing signal as the amplitude of the recorded time 
domain signal alone is not sufficient to evaluate breathing 
since it is within the noise floor. Further signal processing 
power is required to probe the frequency spectrum identifying 
spectral power centered near 1 kHz, as the absolute value of 
the signal intensity fluctuates with breathing. To date, all bone 
conduction data has been captured and post processed [71, 
83],  with the exception of work by Rahman et al. who 
implemented a real-time solution on an embedded device [2]. 

C. Bio-Impedance 
Bio impedance (also known as electrical impedance 

tomography) refers to the measurement of impedance (Z) 
presented by a biological medium to the flow of an applied 
alternating current. An AC current propagates between outer 
electrodes while a voltage differential is measured across the 
middle electrodes. Breathing effort can be measured as the 
lungs expand and contract causing a changing impedance 
depending on the respiratory phase determined [85]. While the 
primary focus of this modality has been to measure heart rate 
variability and pulse wave velocity, a linear correlation was 
found between bio-impedance and spirometry measurements 
as early as the 1970s  [86]. More recent work has highlighted 
the feasibility of using this modality to derive respiration rate 
and tidal volume [9, 87, 88]. 

Krueger-Ziolek et al examined several electrode placement 
locations and found that the caudal (6th and 7th intercostal 
space) may be a better monitoring location than the cranial 
(3rd and 4th intercostal space). This is due to the close 
proximity to the diaphragm giving rise to a greater measurable 
lung tissue shift [6].  

The accuracy of a four terminal system bio impedance 
system was found to have a high respiratory rate correlation (r 
= 0.944 ± 0.999) to a pneumotach. Pulse rate was also found 

to have high correlation (r = 0.971 ± 0.998) to a clinical ECG 
system [89]. Additionally, systolic and diastolic blood 
pressure has been captured at the wrist with good accuracy 
[90]. 

The signal processing chain for a bio impedance device is 
relatively simple, generally only involving an amplification 
stage and a band pass filter stage to remove unwanted noise 
[89]. With the advent of artificial neural networks, there was 
an improvement over linear models with a mean absolute 
percentage error improving from 9.08% to 8.74% [91]. 

D. Pulse Oximetry 
Pulse oximeters are provided as a standard of care in most 

clinical settings to allow clinicians to obtain accurate heart rate 
and SpO2 readings [92, 93]. In pulse oximetry, a light source at 
both red (660nm) and infrared (940nm) wavelengths 
propagate through tissue and a photoplethysmogram (PPG) 
signal is captured via a light dependent resistor [50]. The PPG 
signal’s amplitude, frequency, and baseline are modulated by 
breathing periodicity [25, 53, 94] and effort [95]. This allows 
respiratory metrics to be derived [17, 20, 50-55, 57, 58, 94, 
96-98]. 

Several locations have been investigated to determine 
optimum locations to derive heart rate and SpO2 [99]. In 
adults the left fingertip [99] showed the strongest strength and 
for neonates the anterior fontanelle may be the best site [100]. 
The ear may also be suitable locations for a wearable sensor 
[101]. However, site suitability for respiratory metrics suggest 
the forearm and ear region rather than the finger may result in 
more accurate estimations [102, 103].  

Respiratory rate can be extracted with bias of one and with 
two standard deviations of -5.1 to 7.2 (breaths per minute) 
[25].  

There is a wide body of research detailing how to derive 
respiratory rate from a PPG. Many studies use a Fast Fourier 
Transform (FFT) [50-52], wavelet transforms [53-55],  
multistage band-pass filters [57], correntropy spectral density 
[20], adaptive frequency estimators digital [58] as well as 
filtering methods to find respiration rate. These methods have 
been compared extensively by Charlton et al. and an open 
source Matlab toolbox is available [25]. Karlen et al “fused” 
several methods together to yield higher respiratory rate 
estimates [94, 97]. The same group then ported this fusion to a 
smart phone, where a camera was able record the pulse and 
respiration rate was derived [98]. To date, these algorithms 
have not looked at other respiratory related metrics such as 
IBI, Tinsp and Texp. 

E. Respiratory Belts 
Respiratory inductive plethysmography (RIP) uses two belts 

to determine spontaneous tidal breathing by measuring ribcage 
and abdomen deformation due to inspiration and expiration 
phases. RIP offers a benefit over the gold standard of 
spirometry by reducing the bias associated with breathing 
through a mask or mouthpiece [104]. 



First Author et al.: Title 9 

Respiratory inductive plethysmography uses two belts, one 
thoracic and one abdominal. Konno and Mead propose that the 
chest is a system containing two compartments with one 
degree of freedom each. As such any volume change in the 
abdomen must be equal and opposite to the rib cage [105]. 

Retory et al found the bias to be low at 0.04 L for tidal 
volume, 0.02 s for inspiration period and acceptable at <0.1 s 
for expiration period [106]. For inspiratory volumes, RIP 
generally underestimates volume at the start of inspiration and 
overestimates volume at the end of inspiration [107]. 
Additionally, the accuracy of RIP decreases up to 30% from 
supine to sitting for abdominal breathing [107]. Heyde et al 
demonstrated that after RIP was calibrated to a flow meter 
96% of all breathes were detected within +/-10% of limits of 
equivalence [108]. 

Signals can be captured at 200 Hz [29, 30] and passed 
through a FIR filter 0.2Hz-0.4Hz [41]. On occasion it’s noted 
that a wavelet filter with a 0.5 s sliding window is also used to 
remove noise [45]. 

F. Other modalities 
Other technologies have been used for monitoring of 

respiratory rate, for e.g. smart T-shirts have used a number of 
different novel modalities such as flex sensors [109-111], 
near-field coherent sensing [Wearable radio-frequency sensing 
of respiratory volume, and heart rate] and carbon black 
elastomers [112]. An example is Hexoskin that has been 
shown to valid and reliable with 1-6% error for respiratory 
rate in a small elite cyclist cohort [110]. These are emerging 
technologies and as such are not included for comparison; 
larger studies cohorts are required to determine the optimum 
flex sensor design, long term smart T-shirt durability and 
compliance. 

V. FEATURES RELEVANT TO WEARABLE 
MONITORING OF BREATHING 

As with any technology, there are trade-offs associated with 
each modality listed. Here various factors are relevant to 
continuous monitoring of breathing; the ability to capture a 
wide range of metrics will enable researchers to study and 
determine which breathing features have the highest 
sensitivity or specificity for a particular disease or application 
(however, this may increase signal processing complexity). 
Increasing the complexity of the signal processing toolchain 
may represent a drain on finite battery or computational 
resources. Selection of a specific measurement site that allows 
more difficult metrics to be captured may also reduce user 
compliance due to discomfort. Decreasing the cost of the 
modality means reducing the quality and features available.  

Our analysis was split into several themes which are shown 
in Table I. In the Table of Merit, a score of 1-3 was 
subjectively assigned for low, medium and high respectively 
with the analysis of each theme discussed in more depth. Note 
that this represents the current state of the art of each 
technology, which may evolve over time,  

A. Ability to capture multiple respiratory metrics 
All the modalities explored can obtain continuous measures 

of respiratory rate. Microphones can capture relative measures 

of airflow and direct measures of inspiration and expiration 
period. From these metrics’ derivation of relative measures of 
tidal volume, TBFVL, and IBI are achievable. It is unclear if 
bone conduction microphones can sufficiently extract other 
respiratory metrics. Bio-impedance, pulse oximeters and 
respiratory bands all capture relative measures of tidal volume. 
From this signal, all other metrics are able to be ascertained. 

B. Accuracy to derive respiratory metrics 
In general, all modalities show promising feasibility in 

terms of accuracy when the signals are captured under ideal, 
stationary conditions. Respiratory belts which directly 
measure thoracic movement have the highest accuracy for 
capturing respiratory metrics and are clinically established as 
the gold standard in sleep studies. 

It is critical to highlight however that accuracy reduces 
when motion is not constrained, which is the case with usual 
human behaviour. While it is possible to reduce power 
consumption and acquire repeated measures during periods of 
no motion, further investigation is required to determine if this 
achieves satisfactory outcomes.  Noise can be reduced by 
either an accelerometer and adaptive FIR filters or through 
quadrature-based methods [113]. The former requires many 
filter weights to be continuously updated, while the later 
requires only two per frequency. Both methods require 
additional hardware. 

Another issue pertaining to these systems is the trade-off 
between accuracy and wearability. A bioimpedance system 
with 16 electrodes will yield a higher accuracy than a four-
electrode system, however, setup complexity and associated 

TABLE I 
TABLE OF MERIT 

Modality Microphones Bone 
conduction 

Bio 
impedance 

Pulse 
oximetry 

Respiratory 
bands 

Ability to capture 
multiple 

respiratory 
metrics 

High Low Medium High High 

Accuracy to 
derive 

respiratory 
metrics 

Medium Medium Medium Medium High 

Maturity of 
signal processing 

methods 

High 
 Low Medium High High 

Commercial 
availability Low Low Medium High High 

Power efficiency High High Low Medium High 

Monitoring site/ 
perceived 

wearability 
Low Low Medium High Medium 

Total score 72% (13/18) 50% 
(9/18) 62% (11/18) 89% 

(16/18) 94% (17/18) 

Each modality in all categories was scored either high (3 points), 
medium (2 points) or low (1 point). 
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cable interference may inhibit uptake. 

C. Maturity of signal processing methods 
A direct comparison between modalities show comparable 

accuracy, however the sample size of participants used in the 
various studies was very different. This could be an indicator 
of the maturity within the research area. For example, only a 
handful of studies have been undertaken with bone 
conduction. Perhaps this is due to difficulty of extracting 
respiratory metrics combined with the limited and high cost of 
hardware. In contrast, the accuracy of readily available, and 
cheaper, microphones have been validated in larger cohorts 
consisting of over 200 participants, as has pulse oximetry. 

Long term monitoring of physiological signals presents a 
variety of challenges throughout the signal processing 
pipeline. A typical signal processing pipeline for each of the 
modalities is presented in Table II. 

Audio captured with air conducting or bone conduction 
microphones are typically sampled at high rates and issues 
arise with the ability to capture and process the corresponding 
quantity of data at speed with energy efficient devices. To 
date, small wearable technologies do not have the necessary 
compute power to support this modality in real-time, though 
this may become feasible with advances in FPGA technology. 
In comparison, bio impedance with a significantly lower 
sample rate can use Bluetooth technology to offload 
processing to a smart phone [114]. On the other hand, smart 
watches with embedded pulse oximeters have sufficient 
compute power to both capture and process the PPG-derived 
respiratory signals. 

In most cases pre-process filtering is used to remove 
baseline wander and other unwanted signals. As a 
consequence, there is an added delay, however, it is unclear if 
this will have a material influence when determining 

correlation between respiratory metrics and health outcomes. 
Typically, a pulse oximeter is used to derive Sp02 and both a 
low pass filter and automatic gain control (AGC) is 
implemented in specialised hardware, however, using this 
hardware does not facilitate the accurate extraction of 
respiratory metrics.  

Extraction of respiratory metrics using microphone, bone 
conduction and bioimpedance require FFT and DFT, and can 
be implemented with a low cost system on a chip (SOC) as 
well as highly optimised software implementations. 
Conversely, there has been significant effort to develop 
algorithms that extract respiratory metrics from a PPG. 
Perhaps one area of concern is that the underlying mechanism 
that superimposes respiratory motion on the cardiac waveform 
tends to decouple at higher respiratory rates, and this would 
need to be addressed in future work, potentially using machine 
learning. However, similar to FFT and DFT implementations, 
these algorithms can be run in real time on low cost wearable 
hardware to facilitate long terms studies using this modality. 

D. Power efficiency 
All five modalities require power to operate and it is 

important to be aware of the power requirements in a wearable 
context, since battery life is finite. Perhaps the most power 
efficient modality is an off-the-shelf MEMS microphone 
requiring only 16 µW at 1V [115] due to its passive nature. 
Respiratory belts offer similar efficiency with a power 
consumption of 75 µA [116]. Other modalities such as a 
bioimpedance system captures respiratory response in 
response to a known input signal [8]. While such devices 
initially required 1.3 mA to inject 100-350 mA [117], there 
have been improvements which have reduced this to 
consuming 270 µA to inject 250 µA [118]. Similarly, a pulse 
oximeter also relies on a non-passive sensor. In order to meet 
the low energy requirements of a long-term monitoring 
wearable, the LED current pulses can be reduced, while still 
retaining sufficient quality of PPG signal [119-121]. With 
improvements to microelectronics, it is likely that power 
efficiency will continue to improve. One area that facilitate 
wearables is battery technology and it is likely that this too 
will continue to improve in the future. 

E. Monitoring site 
The monitoring site that yields the highest quality 

respiratory signal should not be the single motivating factor. It 
is also important that the location should be selected such that 
it is not stigmatising, doesn’t affect normal daily behaviour 
and has a minimal risk of detaching, to increase user 
compliance [122]. There is evidence of compliance with 
patch-based devices on the chest [123] which gives rise to the 
potential implementation of microphones, bioimpedance 
systems and respiratory belts. Conversely, smart watches have 
also high compliance rates for long term monitoring, with the 
majority of missed data capture due to times where the devices 
were removed for charging [124]. Prinable et al., report that 
that wrist worn devices are more desirable than other methods 
[22]. Locations such as the neck and ear, that yield high 
quality signals for microphones and bone conduction, are 
potentially unfeasible due to their conspicuous nature, though 
this may change over time as the technology matures to take 

TABLE II 
SIGNAL PROCESSING PIPELINE FOR DIFFERENT MODALITIES 

Modality Microphones Bone 
conduction 

Bio 
impedance 

Pulse 
oximetry 

Respiratory 
bands 

Sampling 

3.675 kHz [1] 8 kHz [2] 40 Hz [6], 
256 Hz [8], 
300 Hz [9] 
 

 

75.7 Hz [17], 
100 Hz [20, 
21], 125 Hz 
[23], 500 Hz 

[25] 

200 Hz [29, 
30] 

Down sampling 

N/A N/A 32 Hz 25 Hz N/A 

Pre-process 
filtering 

0.5Hz – 5 kHz 
[34], 75-2 kHz 
[35], low pass 
@ 100 Hz [37] 

N/A  0.006 Hz- 10 
Hz [25], HP 

@0.03Hz[23], 
LP @5.5Hz 

[17] 

0.2Hz-0.4Hz 
[41], 

0.5 s sliding 
wavelet filter 

[45] 

Extraction of 
respiratory 

metrics 

FFT based [1, 
35, 37, 46] 

Linear 
Discrimina

nt 
Classifier 

[2] 

DFT [49] Fast Fourier 
Transform 

(FFT) [50-52], 
wavelet 

transforms 
[53-55], 

multistage 
band-pass 
filters [57], 

Correntropy 
spectral 

density [20], 
adaptive 

frequency 
estimators 
digital [58] 

N/A 
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advantage of formats such as wireless in-ear devices (e.g. 
Apple Airpods) which are gaining popularity. 

F. Commercially available modalities 
While there are a variety of modalities that show potential 

to provide long term monitoring of respiratory metrics, many 
are still in their infancy in terms of commercial availability. 
To date, several commercial devices exist with larger 
technology companies such as Fitbit, Apple, Garmin, 
Withings and Samsung, adding pulse oximeters to smart 
watches in attempt to capture an emerging target market 
segment of health and fitness enthusiasts. Of these products 
only Garmin provides continuous measures of respiration rate. 
To date, there are no commercially available bone conduction 
modalities on the market that monitor physiological signals. 
Meanwhile, Microsoft backed BodyScope technology based 
on microphone technology for respiratory rate capture, but 
unfortunately the product failed to come to market. EKO 
health has released an FDA approved microphone-based 
product for COVID19 patient monitoring, but it is only 
suitable for repeat measures. Furthermore, it requires user 
intervention for respiratory sound capture, as opposed to 
continuous monitoring. TomTom and Jawbone released 
commercial watches that make use of bio impedance 
technologies, though they only measure pulse and not 
respiration metrics. There are several companies that make CE 
approved respiratory straps including Phillips and Polar. 
Additionally, in the recreation and sport space Vernier Go 
Direct and BIOPAC have also developed commercial 
products.  

G. Implications of current wearable technology to 
ambulatory monitoring 

Both respiration bands and wrist worn pulse oximeters 
show promise for ambulatory monitoring. There are several 
implications for wearable technology in an ambulatory setting. 

Firstly, these devices may be useful for those with sleep 
related disorders to determine partial and total pauses in 
breathing and may provide feedback on how interventions 
effect quality of sleep. 

In asthma cohorts where repeat measures of peak expiratory 
flow were found to be an indicator for deterioration of lung 
function, these bands provide the capability to explore other 
metrics that may require less user interaction than a home 
monitoring setup and still provide indicators of health. 

In health, monitoring respiration metrics may yield further 
insight into performance gains in sports, wellness, and for 
indications of general health status.  

In particular, the high compliance in smart watch users is 
allowing general population trends to be uncovered. Data from 
200,000 fitbit users linked season flu patterns to increased 
resting heart rate and increased sleep levels [125]. Of note, 
changes to respiratory rate measured during the night may be 
an early predictor of COVID19 [126]. Another area that smart 
watch technology could be implemented is in children where 
continuous measures are difficult. Respiratory is a more 
accurate predictor of clinical deterioration in children than 
other vital signs. 

CONCLUSION 
There are multiple promising technologies currently 

available for continuous monitoring of respiratory metrics, 
each with its own trade-offs in terms of accuracy, signal 
processing and power considerations, commercial availability 
and wearability. In parallel with the continual development of 
these technologies, the key motivations and user preferences 
of both the clinician and the device wearer need to be 
established. In the latter case, factors around device size, 
weight, location, and cost need to be identified so that high 
user compliance rates can be achieved; for example, previous 
work suggest users prefer smart watch technology, the ability 
to synchronize breathing data with a mobile phone or tablet, 
overnight power charging, and a cost of ≤Aus $100 [22].  

From a clinical perspective such a study would help 
motivate longitudinal experimental studies that could further 
elucidate the efficacy of these modalities [127]. Additionally, 
and more importantly, future work should seek to identify the 
benefits of these modalities over repeated clinical measures 
where a higher degree of accuracy could be attained.  
Potentially, any reduction in the accuracy of specific measures 
such as respiratory rate obtained from a wearable platform 
could be accepted, to a degree, if the underlying longitudinal 
trends in data obtained from such a platform could flag 
potential detrimental changes to patient health and allow 
adequate time to intervene prior to hospitalisation. 

There have been considerable advances in technology that 
can allow the continuous monitoring of respiratory metrics. 
Overall respiratory bands and to a slightly lesser degree smart 
watch technology with embedded pulse oximeters seem to 
offer the best compromise between capturing multiple 
accurate respiratory metrics using mature signal processing 
methods, commercial availability, power efficiency and 
monitoring site/ perceived wearability. 
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Chapter 3

User Motivations and Device
Preferences for Monitoring
Breathing with Wearable
Technologies

3.1 Introduction

In the previous chapter it was identified that a plethora of sensors could be utilised
for respiratory rate monitoring dependent on potential monitoring sites, power con-
straints, and size. This chapter explores the willingness of people to adopt new
wearable technologies for the express purpose of monitoring breathing. In addition
we highlight the device features that are important to the user. This chapter presents
a user survey designed to answer the following research questions:

• Research Question 2: What is the rationale for potential users, both with and
without respiratory disease, to adopt new technologies that continuously mon-
itor breathing over time?

• Research Question 3: What are device-specific attributes that would meet the
expectation of users, both with and without respiratory disease?
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3.2 User Survey

A survey was completed by 134 participants (males: 39%, median age group: 50-59
years, asthma: 57%). Of those who completed the Asthma Control Test, 61% (47/77)
had suboptimal asthma control. Of the 134 participants, 61.9% (83/134) would be
willing to wear a device to monitor their breathing, in contrast to 6.7% (9/134) who
would not. The remaining 31.3% (42/134) stated that their willingness depended
on specific factors. Regardless of whether or not they were willing to use a wear-
able, participants were asked to indicate one or more factors that would make them
consider using a wearable. Out of all participants, more people who did not have
asthma indicated “curiosity” (23%, 13/57 vs 10%,7/77; P=.028) or “I would like to
track my performance during exercise” (30%, 17/57 vs 10%, 8/77; P=.004) as a mo-
tivating factor to wear the device than those with asthma. Participants with asthma
most commonly cited their asthma as motivation for using a wearable; the most
common motivation for use in those without asthma was curiosity. More than 90%
of total participants would use the device during the day, night, or both day and
night.

Design preferences among all users included a wrist watch (nominated by 92.5%
[124/134] for both day and night use, out of four body sites), the ability to synchro-
nize breathing data with a mobile phone or tablet (81.3%, 109/134), overnight power
charging (33.6%, 45/134), and a cost of ≤ Aus$100 (53.7%, 72/134). Of the explored
modalities in the previous chapter, pulse oximetry, ECG, and bio impedance may
be suitable as a sensor within a wrist worn device. Interestingly, the more accurate
respiratory band was not desired by the user population. Given the prevalence of
pulse oximeter sensors embedded in smart watches used to monitor heart rate, it
would be useful to leverage off this technology.

In the first instance, it would be useful to record respiratory metrics at several
time points during the day in an asthma cohort to identify if they are predictors of
hospitalisations or acerbations. However, it is also feasible to extend this to include
other disease states or even healthy participants as a method to identify if these
respiratory metrics correlate to heart arrhythmias.

3.3 Concluding Remarks

One aim of this thesis was to determine the rationale for participants to adopt new
technologies to continuously monitor breathing over time. Work within this chap-
ter addressed the question through a user survey in a group of 134 participants.
While a small sample size may not allow conclusions to be drawn across all de-
mographic groups, statistical evidence linking the rationale for device usage to a
participant’s health condition, age and gender was found. Additionally, participant
preferences towards device attributes were identified. However, these preferences
present both fiscal, time management and technological challenges for a small engi-
neering research group. In the next chapter, some of these technological challenges
are explored.
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Abstract

Background: Analysis of patterns of breathing over time may provide novel information on respiratory function and dysfunction.
Devices that continuously record and analyze breathing rates may provide new options for the management of respiratory diseases.
However, there is a lack of information about design characteristics that would make such devices user-friendly and suitable for
this purpose.

Objective: Our aim was to determine key device attributes and user requirements for a wearable device to be used for long-term
monitoring of breathing.

Methods: An online survey was conducted between June and July 2016. Participants were predominantly recruited via the
Woolcock Institute of Medical Research database of volunteers, as well as staff and students. Information regarding the survey,
a consent form, and a link to a Web-based questionnaire were sent to participants via email. All participants received an identical
survey; those with doctor-diagnosed asthma completed an extra questionnaire on asthma control (Asthma Control Test). Survey
responses were examined as a group using descriptive statistics. Responses were compared between those with and without
asthma using the chi-square test.

Results: The survey was completed by 134 participants (males: 39%, median age group: 50-59 years, asthma: 57%). Of those
who completed the Asthma Control Test, 61% (47/77) had suboptimal asthma control. Of the 134 participants, 61.9% (83/134)
would be willing to wear a device to monitor their breathing, in contrast to 6.7% (9/134) who would not. The remaining 31.3%
(42/134) stated that their willingness depended on specific factors. Participants with asthma most commonly cited their asthma
as motivation for using a wearable; the most common motivation for use in those without asthma was curiosity. More than 90%
of total participants would use the device during the day, night, or both day and night. Design preferences among all users included
a wrist watch (nominated by 92.5% [124/134] for both day and night use, out of four body sites), the ability to synchronize
breathing data with a mobile phone or tablet (81.3%, 109/134), overnight power charging (33.6%, 45/134), and a cost of ≤Aus
$100 (53.7%, 72/134).

Conclusions: We have explored the motivations and likelihood for adopting wearable technologies for the purpose of monitoring
breathing and identified user preferences for key design features. We found participants were motivated to adopt a wearable
breathing monitor irrespective of health status, though rationale for use differed between those with and without asthma. These
findings will help inform the design of a user-acceptable wearable device that will facilitate its eventual uptake in both healthy
and asthma populations.
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Introduction

Asthma is a serious public health problem affecting over 300
million people globally. Management challenges include the
early prediction or warning of asthma attacks and optimizing
the pharmaceutical management of the disease.

Monitoring of lung function over time is a widely accepted
component of the assessment of asthma, both in clinical
management of the disease as well as in research trials [1]. Some
studies suggest it may also yield insights into the pathology of
respiratory diseases and predict future risk of exacerbations
[2-4]. In asthma, monitoring is usually based on standard lung
function testing involving forced breathing maneuvers assessed
periodically in a specialized respiratory laboratory, or by peak
expiratory flow measured in a general practice and then in the
patient’s home either daily or during periods of worsening
symptoms. There is a paucity of research on continuous,
real-time monitoring of breathing for general health or for
management of asthma or other chronic diseases. This may be
due in part to the lack of commercial technology to enable such
monitoring in a manner that would be acceptable to users. One
study has shown that monitoring respiratory rate could help
predict the onset of exacerbations in chronic obstructive
pulmonary disease [5]. However, it is not known whether
monitoring of breathing could aid diagnosis or monitoring of
asthma. Breathing monitoring may also provide rapid feedback
to a patient during physical exertion or breathing exercises
during exacerbation episodes.

Several studies have investigated desirable features for a
wearable device for health monitoring, from both a technical
[6] and human-centered [7-11] perspective. These studies have
provided guidelines on wearable design [7-9] and determined
that user acceptability was dependent on factors such as
fundamental needs/demonstrated benefit, enjoyment, and social
value [10,11]. However, none of these studies sought to
specifically determine the desired features for a wearable device
used for long-term respiratory monitoring. At present, there are
several modalities and locations on the body identified for
respiratory monitoring: the ear, throat region, finger, wrist, and
chest [12-14]. In the design and development of a device for
this purpose, it is important to first identify, understand, and
consider user preferences to increase user acceptance,
satisfaction, and engagement [8,15].

The purpose of this study is to (1) explore the reasons why
participants with or without asthma would potentially adopt
new technologies to monitor breathing over time, and (2)
evaluate device-specific attributes that would meet the
expectation of users within these two groups. We chose to
additionally study healthy individuals, not only as a basis for
comparison with those with asthma to identify those preferences
that are specific to asthma, but also due to the increasing interest
in personal health monitoring in the general population as
evidenced by the uptake of wearable devices that measure
activity and other physiological life signs.

Methods

Study Design and Overview
An online survey was conducted between June and July 2016.
A link to the survey was sent electronically to a subset (n=569)
of the Woolcock Institute of Medical Research Volunteers
Database based on the availability of a valid email address on
record, as well as to staff and students at the Woolcock Institute.
During the recruitment period, two rounds of recruitment emails
were sent to the two lists, followed by a subsequent reminder
email for each round. The Volunteers Database consists of
members of the public who have previously given consent to
be contacted about participation in research. The database
comprises both healthy individuals (n=256) as well as those
with asthma (n=1173). The exact number reached may differ
due to constant additions or withdrawals from the database and
the possibility of family members sharing a common email
address. Inclusion criteria were (1) provision of informed
consent, (2) completion of all responses, (3) no respiratory
illness reported (for the healthy group), and (4) self-reported
doctor’s diagnosis of asthma (for the asthma group). No
incentives were offered for participation. The protocol for this
study was approved by Northern Sydney Local Health District
Human Research Ethics Committee (ethics approval
#LNR/16/HAWKE99).

Survey
After clicking on the link to the survey, participants who
provided informed consent proceeded to fill out an online
questionnaire (see Multimedia Appendix 1) that took
approximately 10-15 minutes to complete. The survey was
designed to assess participant’s current use of technology, to
explore their readiness to use a wearable, and to understand
their attitude toward the potential usefulness of wearable
technologies for monitoring breathing. Specifically, the survey
aimed to identify usage preferences (eg, how long the user
wishes to wear the device during the night/day) and feature
preferences, such as the device form factor (eg, band, sticky
patch, earpiece), body location (eg, wearable for neck, chest,
ear, wrist), display, charge time, and price.

The survey also included demographic questions such as age,
gender, educational and socioeconomic status, and
doctor-diagnosed health conditions. Those who reported having
a doctor diagnosis of asthma completed the Asthma Control
Test (ACT) [16], a well-validated scale [17], which comprises
five questions that assess asthma symptoms, use of medication,
and the effect of asthma on daily functioning to determine
overall asthma control status. The total score ranges from 5
(poor control of asthma) to 25 (complete control of asthma); a
score of ≤19 indicates suboptimal control.

Statistical Analyses
Participant demographics were summarized using descriptive
statistics. Results were compared between participants with
self-reported doctor-diagnosed asthma versus those without
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asthma, using t tests or Wilcoxon signed rank sum test
depending on whether the data were normally distributed.
Participants who were “unsure” of their asthma status were
grouped with those participants without asthma. Questionnaire
responses were compared between asthma and no asthma,
between gender, and between age groups using chi-square tests.
Statistical analyses were performed using SPSS v. 23 (IBM
Corp.), and graphs were generated using Prism v. 7 (GraphPad
Software Inc.).

Results

Demographics
In total, 156 participants responded but 2 did not provide
informed consent and 20 failed to complete more than 50% of
the survey and were omitted from analysis. Of the 134
participants who completed the survey (ie, 85.9% completion
rate), 131 provided demographic information as shown in Table
1. Just under a third (29.1%, 39/134) of participants were male,
and nearly two-thirds (60.0%, 79/134) had a university
education. More than 10 participants were obtained in each age
group. The average time to complete the survey was 13 minutes.

A total of 61.2% (76/134) participants reported doctor-diagnosed
asthma: mean (SD) ACT score was 17.4 (5.2). Nearly two-thirds
(62%, 47/76) of these had suboptimal asthma control based on
the ACT.

Technology and Device Use
Participants demonstrated a high level of technology use: 88.8%
(119/134) used a smart phone, 29.9% (40/134) used health
monitoring devices such as a Fitbit, and a small percentage of
participants used smart watches (5.2%, 7/134). Nearly two-thirds
(59.7%, 80/134) used only one form of technology, 26.9%
(36/134) used two forms of technology, and 3.0% (4/134) used
three or more forms of technology. Examples of other specific
technology or gadgets used were fitness trackers (11.9%,
16/134), tablet computers (11.9%, 16/134), music players (3.0%,
4/134), conventional mobile telephones (1.4%, 2/134), and
electronic books (1.4%, 2/134). Only 8 participants (5.9%,
8/134) used no “other forms of technology or electronic
gadgets”. Levels of technology use were similar in those with
and without asthma.

Motivation for Wearable Use
Nearly two-thirds (61.9%, 83/134) of the total participants
indicated that they would be willing to wear a device to monitor
their breathing, 7.4% (10/134) would not, and the remaining
30.5% (41/134) stated that their willingness depended on
specific factors, described later in this section. There were no
significant differences in willingness to adopt a wearable device
for monitoring breathing between the 40 participants who
currently used health monitoring devices and the 94 who did
not (P=.265). Participants with asthma were more willing to
wear a device to monitor their breathing, compared to those
without asthma: 70% (54/77) versus 51% (29/57), P=.071.

Regardless of whether or not they were willing to use a
wearable, participants were asked to indicate one or more factors
that would make them consider using a wearable. These are
detailed in Figure 1. Out of all participants, more people who
did not have asthma indicated “curiosity” (23%, 13/57 vs 10%,
7/77; P=.028) or “I would like to track my performance during
exercise” (30%, 17/57 vs 10%, 8/77; P=.004) as a motivating
factor to wear the device than those with asthma.

Females were more likely to use the device to track breathing
patterns during stress and meditation compared to men (16%,
15/92 vs 3%, 1/39; P=.003). Females were also more likely to
use the device when they get breathless (9%, 8/92 vs 5%, 2/39;
P=.002) or if they had a known respiratory disease other than
asthma compared to men (8%, 7/92 vs 0%, 0/39; P=.031).

The ability to track breathing patterns during stress and
meditation was a more common rationale for device use in
younger than older age groups: 18-39 (37%, 7/19), 30-39, (4%,
1/27), 40-49 (13%, 2/15), 50-59 (19%, 5/26), 60-69 (3%, 1/31),
older than 70 (0%, 0/13); P=.003. Curiosity was also a more
common rationale for use in younger people: 18-39 (42%, 8/19),
30-39 (22%, 6/27), 40-49 (7%, 1/15), 50-59 (4%, 1/26), 60-69
(6%, 2/31), older than 70 (8%, 1/13); P=.003.

A larger proportion of the 40 participants who already used a
health monitoring device would wear one to monitor their
breathing for their asthma or to track patterns during stress
(48%, 19/40 for both), compared to those out of the 94 who did
not currently use a device (29%, 27/94 for both; P=.036).

Participants were asked to indicate whether any respiratory
illnesses other than asthma were part of their motivation to wear
a wearable. Only 8 reported that this was a motivating factor.
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Table 1. Participant demographic information for the wearable survey study, stratified by health status.

Asthma, n (%) (n=76)cNo asthma, n (%) (n=55)bTotal, n (%) (n=131)aCharacteristic

17 (22)22 (40)39 (29)Gender: Male

Age

5 (7)14 (25)19 (15)18-29

14 (18)13 (23)27 (20)30-39

7 (9)8 (15)15 (11)40-49

20 (26)6 (11)26 (20)50-59

25 (33)6 (11)31 (24)60-69

5 (7)8 (15)13 (10)70+

17.4 (5.2)——ACT, mean (SD)d

Highest level of educatione

15 (20)6 (11)21 (16)Secondary school

21 (28)9 (16)30 (23)Higher certificate or diploma

40 (52)39 (71)79 (60)Bachelor degree or higher

0 (0)1 (2)1 (1)Prefer not to say

16 (32)9 (16)25 (19)Socioeconomic status: Low SESf

Employment statusg

44 (61)36 (65)80 (63)Employment, full or part time

5 (7)7 (13)12 (10)Employment, casual

23 (32)11 (20)34 (27)Currently unemployed

Household income (Aus $)h

8 (11)4 (7)12 (9) $26,000

12 (16)8 (15)20 (15)$26,000-$51,999

10 (13)9 (16)19 (14)$52,000-$72,799

15 (20)6 (11)21 (16)$72,800-$103,999

6 (8)3 (5)9 (7)$104,000-$155,999

8 (11)15 (27)23 (18)≥$156,000

17 (21)10 (18)27 (21)Prefer not to say

8 (11)11 (20)19 (15)Language other than English spoken at home

a131/134 participants who completed a survey provided demographic data.
b55/57 participants who did not have doctor-diagnosed asthma provided demographic data.
c76/77 participants who had doctor-diagnosed asthma provided demographic data.
dA score of ≤19 indicates suboptimal asthma control.
e1/131 participants who provided demographic data did not report their education status.
fSocially disadvantaged at patient’s home address: “Disadvantaged” Socio-Economic Indexes For Area (SEIFA) quintile <3, “Advantaged” SEIFA
quintile: 4-5 [18].
g2/131 participants who provided demographic data did not provide employment information; “Currently unemployed” includes unpaid or volunteer
work, engagement in home duties, or not being in the labor force.
h27/131 participants who provided demographic data did not provide household income information.
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Figure 1. User motivation for those willing to use a wearable device, stratified by self-reported, doctor-diagnosed asthma status.

Those Willing to Use a Wearable Device
When we restricted our analyses to the subgroup of those willing
to use a wearable device only (61.9%, 83/134), the most
common motivating factor to wear a device for those without
asthma was “curiosity” (59%, 17/29; P=.026). The most
common motivating factor for people with asthma was “I have
asthma” (83%, 45/54; P<.001). No significant differences were
observed between those with and without asthma in the other
provided reasons. Figure 1 shows user motivation across this
subgroup, stratified by self-reported, doctor-diagnosed asthma
status, with participants able to select multiple responses.

Those Who Would Not Use a Device
In this subgroup (6.7%, 9/134), those without asthma stated
they would not wear a device because they did not understand
why monitoring breathing was important (eg, “I can’t see a
reason why I would want to monitor my breathing”).

The reasons for not using the device in the four participants
with asthma were that they felt their asthma was under control
(eg, “Asthma is under control,” “I don’t get bad asthma attacks,
just slight, not worth the bother”), or due to travel or cost (“I
am overseas at this time,” “Such devices are too expensive”).

Those Whose Willingness Depended on Specific Factors
In this subgroup (31.3%, 42/134), 19 had asthma and 23 did
not. The most common motivating factor for wearing a device

in people with asthma was “I have asthma” (83%, 14/19;
P<.001). No significant factors were found for those without
asthma in this subgroup.

Factors Affecting Wearable Use
The factors affecting wearability mentioned across all
participants included design issues and user perception issues.
In terms of design, the physical size, location, weight, and bulk
of the device were common concerns. Related to these were
user perception issues, such as comfort and inhibition of
movement, discreetness, and how the device would be fitted to
the body. Example of factors provided were “how comfortable
and discrete the device is,” “how it’s worn,” “size   would it
inhibit normal movements and is it 24/7?”

Unappealing Factors
All participants were asked to select which factors would cause
them to consider a wearable device unappealing (Figure 2). Of
note, 26% (15/57) of participants without asthma did not see
the usefulness of the device, compared to 9% (7/77) of those
with asthma (P=.008). More participants without asthma would
use a device to monitor breathing only if they were told to by
a medical professional compared to those with asthma (39%,
20/49 vs 17%, 13/77; P=.005).

Figure 2. Unappealing factors for wearing a device, stratified by self-reported, doctor-diagnosed asthma.
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Device-Specific Features
The device-specific features were themed into five different
categories: wearability, cost, power features, display, and data
synchronization. All 134 survey participants completed this
section. In general, there were no differences between those
who were current users of health monitoring devices and those
who were not, in preference for form factor, length of usage,
cost, display or data storage time preferences, unless otherwise
indicated below.

Wearability
A majority (94.0%, 126/134) of respondents (with or without
asthma) would use a wearable device during the day, night, or
both day and night. Most users preferred to wear the device 5
nights/days a week or more (Figure 3). However, more out of
those who already used a health monitoring device indicated
they would use the device for 5 days or more a week (83%,
33/40), compared to those who did not already use a monitoring
device (60%, 56/94; P=.01).

Furthermore, those with asthma said they would wear the device
more often than those without asthma during both the night and
day: 82% (63/77) with asthma versus 46% (26/57) without

asthma would wear the device 5 days or more a week; P<.001.
Those without asthma were also more likely to wear the device
only during training: 26% (15/57) versus 5% (4/77); P=.001.
No significance differences were found between health status
and form factor for daytime use.

Frequency of daytime and nighttime use was higher in older
people. For example, older participants predicted they were
more likely to wear the device 5 days a week or more during
the night: 18-39 (37%, 7/19), 30-39, (59%, 16/27), 40-49 (53%,
8/15), 50-59 (81%, 21/26), 60-69 (74%, 23/31), older than 70
(77%, 10/13); P=.026. Younger age groups were more likely
to use the device during exercise than older age groups: 18-39
(47%, 9/19), 30-39 (15%, 4/27), 40-49 (7%, 1/15), 50-59 (4%,
1/26), 60-69 (10%, 3/31), older than 70 (8%, 1/13); P=.001.

There was a clear preference for a wrist band over other formats
such as earbuds, and preferences were similar for day versus
nighttime use (Figure 4). Men were more likely to wear a chest
band during the day (38%, 15/39 vs 20%, 18/92; P=.043)
compared to women. At night, men were also more likely to
wear an ear bud in the ear (28%, 11/39 vs 16%, 15/92; P=.044)
but less likely to wear a wrist band (90%, 35/39 vs 97%, 89/92;
P=.039) compared to women.

Figure 3. Total participant preference for how often the device is to be worn, separated by day and night use.

Figure 4. Total participant preference for the form of the device to be worn, separated by day and night use.
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Cost
Over half (53.7%, 72/134) of the total participants would be
happy to pay up to Aus $100 for a wearable respiratory monitor,
20.8% (28/134) would pay over Aus $100, and the remaining
25.3% (34/134) would use it only “if it were free.” No
statistically significant differences were observed in responses
by health status, different household income, age, or gender.

Power Features
The most popular waiting time for the device to charge was
overnight (45/134, 33.6%) as opposed to within 2 hours (22.3%,
30/134), 1 hour (23.1%, 31/134), 30 minutes (11.1%, 15/134),
or other (10.4%, 14/134). Charging time did not appear to be a
critical factor in user preferences, with other responses provided
as: “As long as it takes. Good if the recharging was no more
than 2 hours” or “However long it took to charge.” No
differences were observed between those with or without
asthma.

Display
Participants selected between the three different displays shown
in Figure 5, representing different formats to display current
and past breathing data. No preference was found between
display type (numerical information, 48/134; bar graph, 39/134;

line graph, 47/134). There was no difference in display
preference between those with asthma and without asthma, or
between different age or gender groups.

Participants indicated that they would like to receive alerts when
their breathing was problematic. Alerts were more popular in
those with asthma than those without asthma: 79% (61/77)
versus 63% (36/57); P=.048.

Syncing and Data Storage
The majority of participants (79.8%, 107/134) reported wanting
to sync the device to their phone/tablet. The proportion was
higher among those who already use a monitoring device (93%,
37/40). Less than half (45.5%, 61/134) wanted to sync the device
with their computer. Those who selected “other” responded
with “remote analysis and syncing with my GPs office,” “sync
with sleep study,” or “cloud service.” Younger participants were
more likely to report wanting to sync their breathing data
(number of breaths per minute) with a phone or tablet than older
participants: 18-39 (100%, 19/19), 30-39 (100%, 27/27), 40-49
(87%, 13/15), 50-59 (77%, 20/26), 60-69 (68%, 21/31), older
than 70 (54%, 7/13); P=.001.

The majority of participants reported wanting to save their data
for at least 1 week (58.9%, 79/134).

Figure 5. A display of breathing data by numerical information (left), bar graph (middle), and line graph (right).

Discussion

Principal Findings
In this survey, we identified a number of reasons to adopt new
technologies to monitor breathing in participants with or without
asthma. In participants without asthma, the main factor that
influenced motivation for using a wearable was curiosity. The
ability to track breathing patterns during stress or meditation
and fitness tracking were motivational factors for younger
participants. In asthma, the main motivations for use were
“having asthma” and the ability to track breathing patterns
during periods of breathlessness. We found that most users were
willing to wear the device continuously both day and night and
that the most preferred device format was a wrist band,
regardless of health status. Other desired features were alerts
when breathing is problematic (for both asthma and non-asthma
groups), the ability to synchronize data with a phone or tablet,
a recharging period of every 24 hours, and cost of≤Aus $100.

Motivation for Wearable Use
Previous studies have found that perceived value has a
significant influence on both potential and actual customers,
with perceived value as an important factor influencing the

consumer’s decision to adopt new products or services [7,11].
One of the most influential factors for people without asthma
was curiosity, a factor that in previous research has been thought
to increase initial interest and subsequent user engagement [19].

As might be anticipated, motivation for using a wearable device
in asthma was different to those without asthma. In people with
asthma, there appeared to be a desire to use breathing monitoring
to gain greater control over the management of their asthma,
particularly during episodes of breathlessness. An episode of
extreme breathlessness during a respiratory exacerbation is often
extremely frightening to both patients and their family members
[20]. Provided that there has been sufficient testing and
development of safe and reliable markers, detailed self-tracking
breathing metrics could potentially help provide patients with
an objective identifier or predictor of such episodes. This is
especially important given that self-perception of airway
narrowing is known to be poorer during an asthma exacerbation
than at other times [20]. For family members, real-time
monitoring may allow them to assist in supporting their relative
with asthma in identifying symptom worsening and deciding
when to seek emergency care, alongside traditional indicators.
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Patients are known to employ a number of strategies to cope
with breathlessness episodes, including breathing techniques
and reduction of physical exertion [21]. A simple wearable
device to measure breathing may provide objective monitoring
and feedback during use of breathing techniques, and with the
guidance of a health professional, has the potential to support
patients to increase their physical activity in a safe manner. A
monitor that directly and continuously measures breathing might
provide a unique capability for immediate feedback that may
not be achieved with currently available devices, such as those
measuring wheezing sounds, peak flow, or lung mechanics.
There are precedents for monitoring and feedback in asthma,
for example, monitoring and feedback of medication use is
acceptable and has been shown to increase medication use in
adults and children [22,23].

The observed difference in the rationales for using a breathing
monitoring device between participants with and without asthma
indicates the need to collect separate data on the motivation for
use and the utility and feasibility of wearables (for breathing or
other purposes), in people with and without (different) health
conditions. Conversely, the rationale for choosing not to adopt
a wearable device for breathing monitoring was similar between
those with and without asthma. The main reason given was a
lack of perceived purpose or need for such a device, for example,
because asthma was already “under control.” Indeed, there is a
lack of direct evidence showing that the ambulatory monitoring
of breathing patterns over time is useful for asthma. This is
despite the disease being characterized by shortness of breath.
However, indirect support comes from measurements made
using breathing-based lung function tests [24], recent
developments in the monitoring of wheeze [25], and data
showing breathing patterns predictive of chronic obstructive
pulmonary disease exacerbations [5]. The availability of a
suitable wearable will enable further work showing utility in
asthma management.

User Preference for Device Features
To the best of our knowledge, this is the first time user
preferences for a wearable device aimed at respiratory health
monitoring have been investigated. This is important as desired
design features often come at a technical cost. The results of
this study inform us which features are of high value and which
features could be compromised in exchange for technical
tradeoffs. Furthermore, acceptance of a new technology may
be affected by the perceived risk or inconvenience posed by the
device. Previous research suggests that factors such as
wearability design, physical size, location, weight, and bulk
may negatively impact perceived device value. Costly and
complicated recording devices may result in low compliance
[10].

There are little data available to suggest what constitutes
acceptable levels for these features and for human factors in a
breathing monitor wearable. In this study, we found significant
user perception issues around comfort and inhibition of
movement, discreetness, and where the device fits on the body.
Our study also revealed that more than 90% of participants
would wear the device both day and night, and more than 90%
preferred a wrist-worn device. Comfort and frequency of use

are likely to interact, with more comfortable devices used for
longer.

Most users preferred a wrist band over other formats for site of
monitoring; however, this may have been influenced by the
type of devices most commonly available on the market at the
time. We note that chest bands and ear buds were also identified
as next preferred formats for monitoring and may have been
selected by participants with existing exposure. Device design
choice needs to be made in terms of both user acceptability as
well as signal quality. Further study is required to determine
the relative feasibility and accuracy in obtaining the breathing
signal from these various sites. We did not find significant
differences between health groups and their device form
preferences.

We found that young participants were more likely to use the
device for exercise, but we do not know the reasons why older
people were less likely to use such technology for exercise. This
could be due to overall lower exercise rates in older people or
to less engagement or familiarity with exercise tracking.

Cost can be a barrier to the uptake of monitoring devices, but
more than half of our participants would be happy to pay up to
Aus $100 (approximately US $80) for a wearable that tracks
breathing rate. At this price point, such a breathing wearable
would be comparable to lower end activity trackers currently
on the market and would require a simple design. While creation
of a wearable is feasible at this price point, sacrifices in both
reliability and comfort may arise. One area of cost reduction
could be eliminating a display from the wearable. Any display
could be viewed on an external screen such as a mobile phone,
while alerts could be processed locally on the device.

Another consideration is device battery life, that is, power
consumption must be carefully managed as a small form factor
places constraints on battery life [26]. We found device charge
time was negotiable, while device use time should be maintained
at a minimum of 24 hours. With the size constraint of a
wearable, providing this power may be difficult [6]. However,
given that the majority of younger participants would like to
synchronize data to their mobile phones or tablet, designers
may be able to shift data processing functionality to the phone.
Furthermore, since participants would like at least a week’s
worth of data capacity on the device, the requirement for
continuous data transmission may also be reduced.

Given the user requirement for data synchronization and data
storage, it is recommended that any wearable device should
primarily capture and store data. Data transmission to a mobile
phone or tablet can take place secondarily by participant demand
or when local device storage is full. Any advanced data
processing should also take place post transmission.

User security or privacy could potentially be compromised by
continuous monitoring [27,28]. We investigated privacy as an
unappealing factor in this study but found no observable
difference between those willing or unwilling to adopt a
breathing monitor. A sample size of 10 for those who would
not adopt the device prevented our analyzing a statistically
significant difference between the “willingness” groups.
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Limitations
There are factors limiting the applicability of our findings. The
first relates to whether the sample was representative of the
population in general. There was a relatively high level of
technology use over the population sampled, though only a third
of participants were specifically current users of health
monitoring devices. Also, 60% had a university education, a
high percentage of respondents were female, and the ages of
the study sample were not normally distributed. Although we
measured educational level, we did not measure the health
literacy of the participants, which may have impacted their
responses to the survey. These demographics may not be
representative of the general population, and there may have
been a selection bias in those who chose to complete the survey
(eg, 24% of those invited from the volunteers database agreed
to participate). While we acknowledge there is a potentially
high selection bias in those who chose to complete the survey
towards those who were already motivated to adopt a wearable,
the primary aims of the survey included determining specific
user motivation and their preferences for usage and features
they wish to have in such a wearable. The population captured
was arguably the most appropriate to answer those questions.

Second, while we were able to show differences in the survey
responses of those with and without asthma, people without
asthma were younger than those with asthma, making it difficult
to disentangle the effects of age and disease status. There is
some suggestion that older users are more ready to adopt
health-related technologies, but the reasons for this require
further investigation [29]. More than half of participants with
asthma also had suboptimal asthma control.

Third, display preferences were examined in a rudimentary
manner in this survey, to determine whether graphical displays
were preferred over text. Furthermore, we did not assess in
detail whether participants understood how the information was
presented, for example, by asking whether they thought the
display indicated that their breathing was stable. Once wearable
technology is established to measure breathing over time,
another study to determine a suitable display of information
from the participant’s perspective should be explored.

Finally, we did not collect data on whether those who used other
health monitoring devices were current or former users, or the
reasons for discontinuation of use. Information on how long
and why people stay engaged beyond curiosity would have
provided major insight into user psychology as well as device
development.

Conclusions
We have explored the motivations for, and the likelihood of,
adopting wearable technology for the purpose of breathing
monitoring and identified user preferences for key design
features. We found participants were motivated to adopt a
wearable breathing monitor regardless of health status, yet there
were distinctly different rationales for use between those with
and without asthma. There is a clear need to identify the benefits
of monitoring breathing in health and asthma. Next steps will
require the development and testing of reliable breathing metrics
or indicators that can be safely used by people with asthma for
monitoring breathing over time or that assist in the identification
of symptom worsening and asthma exacerbations. These
findings will help inform the design of a user-acceptable
wearable device that will facilitate its eventual uptake in both
healthy and asthma populations.
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Chapter 4

Hardware and Software
Methodology

4.1 Introduction

In the previous chapter it was found that participants, irrespective of health con-
dition would prefer a watch form factor to measure breathing. It is clear that user
requirements present certain technological challenges including power constraints,
the size of the monitoring device and cost.

In this chapter an investigation of how reducing the power consumption of a
pulse oximeter impacts derived accuracy is performed before turning focus to how
machine learning methods that could be useful in deriving measures of respiration.
The pulse oximeter was selected as hardware technology existed to rapidly imple-
ment a prototype. Additionally, this was backed up by the literature review and
survey findings. This chapter explores hardware and software methodologies to
answer the following research questions:

• Research Question 4: What are computing hardware limitations of using a
pulse oximeter to derived a breathing signal?

• Research Question 5: Is it feasible to use machine learning (recurrent neural
network) to predict tidal volume traces from a pulse oximeter?

This section consists of two published peer-reviewed conference papers:

Prinable, J., Jones, P., Thamrin, C., & McEwan, A. (2017, July). A novel hardware
implementation for detecting respiration rate using photoplethysmography. In En-
gineering in Medicine and Biology Society (EMBC), 2017 39th Annual International
Conference of the IEEE (pp. 726-729). IEEE.

Prinable, J. B., Jones, P. W., Thamrin, C., & McEwan, A. (2017, December). Using
a recurrent neural network to derive tidal volume from a photoplethsmograph. In
2017 IEEE Life Sciences Conference (LSC) (pp. 218-221). IEEE.
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• Alistair McEwan (Principle Supervisor): proof reading, reviewing and editing
the manuscript.

• Cindy Thamrin (Alternate Supervisor): proof reading, reviewing and editing
the manuscript.

4.2 Hardware Methodology

Novel hardware was created for the capture and storage of a PPG signal. The Light
Emitting Diode (LED) duty cycle was altered to determine the effect on respiratory
rate accuracy. The duty cycle of a pulse oximeter was changed between 5%, 10%
and 25% at a sample rate of 500 Hz. Where duty cycle refers to the sampling time
as a percentage of total time. A PPG signal and reference signal was captured for
each duty cycle. At a 25% duty cycle the Root Mean Squared Error (RMSE) was <2
breaths per minute for the top performing algorithm. The RMSE increased to over 5
breaths per minute when the duty cycle was reduced to 5%. The power consumed
by the hardware for a 5%, 10% and 25% duty cycle was 5.4mW, 7.8 mW, and 15 mW
respectively. For clinical assessment of respiratory rate, a RSME of <2 breaths per
minute is recommended. Further work is required to determine utility in asthma
management. However for non-clinical applications such as fitness tracking, lower
accuracy may be sufficient to allow a reduced duty cycle setting.

4.3 Rationale for Changing to Software Based Research

In Chapter 2, it was identified that manufacturers such as Apple, Fitbit and Garmin
make wrist worn devices with embedded pulse oximeters. To have a bigger impact
in the field it was prudent to turn away from hardware development and investi-
gate how software could be developed to advance the field of long term respiratory
monitoring.

4.4 Software Methodology

For the first time a Long Short-Term Memory (LSTM) architecture was used to pre-
dict normalised relative tidal volume from a PPG signal. The RMSE between actual
and derived normalised tidal volume traces over the test set was 0.202. The RMSE
between peak to peak intervals was 0.7 s. This suggests the LSTM was capable of
predicting time-based breathing measures to a higher degree than the amplitude of
the normalised tidal volume signal, though these findings are limited due to only
having data from a single participant collected over a one month period. In the next
chapter the model is extended with more training data and look to other respiratory
metrics that could have clinical significance.

The feasibility to predict future measures of relative tidal volume from a past
respiratory signal history in a cohort of 10 cancer patients undergoing radiotherapy
treatment was investigated. Pearson correlation between the reference and the de-
rived metric was above 0.8 for t = 0s and fell below 0.6 at t = 1.5s. These findings fall
in line with previous studies [1]. This provides insight into the difficulty to create
an early warning system based on a minute by minute predictive model where high
degrees of accuracy is required. This model was trained on a substantial amount of
data (2.3 million examples or 28 hours worth of respiratory traces) and while longi-
tudinal studies are still required to determine the how respiratory metrics correlate
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to asthma acerbations or COPD flareups, it is unlikely, at this stage, that an accurate
model based on past relative tidal volume would be sufficient. In the next chapter,
other metrics that could be derived from a pulse oximeter are explored.

4.5 Concluding Remarks

An important part of this thesis was to determine how hardware characteristics in-
fluence breathing parameters derived from a pulse oximetry. Power should not be
saved by reducing the duty cycle rate of a pulse oximeter as it led to unacceptable
reduction in respiration rate accuracy. This means that there will be a trade off be-
tween monitoring time, battery size and usability. For the first time it was shown
that machine learning techniques could predict relative tidal volume from a pulse
oximeter. Additionally, predictions of relative tidal volume past 1.5 seconds into
the future may be unsuitable for clinical use. The next chapter seeks to build on
these preliminary finding in larger cohorts and expand further investigation poten-
tial methodology.



A novel hardware implementation for detecting respiration rate using
photoplethysmography

Joseph Prinable1, Peter Jones1, Cindy Thamrin2, and Alistair McEwan1

Abstract— Asthma is a serious public health problem. Con-
tinuous monitoring of breathing may offer an alternative way to
assess disease status. In this paper we present a novel hardware
implementation for the capture and storage of a PPG signal.
The LED duty cycle was altered to determine the effect on
respiratory rate accuracy. The oximeter was mounted to the
left index finger of ten healthy volunteers. The breathing rate
derived from the oximeter was validated against a nasal airflow
sensor. The duty cycle of a pulse oximeter was changed between
5%, 10% and 25% at a sample rate of 500 Hz. A PPG signal
and reference signal was captured for each duty cycle. The PPG
signals were post processed in Matlab to derive a respiration
rate using toolbox by Charlton et al. [4]. At a 25% duty cycle
the RMSE was <2 breaths per minute for the top performing
algorithm. The RMSE increased to over 5 breaths per minute
when the duty cycle was reduced to 5%. The power consumed
by the hardware for a 5%, 10% and 25% duty cycle was 5.4
mW, 7.8 mW, and 15 mW respectively. For clinical assessment
of respiratory rate, a RSME of <2 breaths per minute is
recommended. Further work is required to determine utility
in asthma management. However for non-clinical applications
such as fitness tracking, lower accuracy may be sufficient to
allow a reduced duty cycle setting.

I. INTRODUCTION

Asthma is a serious public health problem affecting over
300 million people globally [1]. Management challenges
include the early prediction or warning of asthma attacks and
optimising the pharmaceutical management of the disease.
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Fig. 1. Power consumption comparison

Monitoring of lung function over time is a widely accepted
component of the assessment of asthma, both in clinical
management of the disease as well as in research trials [1].
However, there is a paucity of research on continuous, real-
time monitoring of respiratory rate for general health or for
management of asthma or other chronic diseases. This may
be due in part, to the lack of commercial technology to enable
such monitoring in a manner that would be acceptable to the
clinical community in terms of both accuracy and long term
continuous monitoring capabilities.

There is no published data on the accuracy requirements
of devices to assess breathing in human adults. However,
international device standards for infant lung function testing
have been recommended for flow based sensors [2].

In addition to flowmeters, respiratory rate ( fR) may be
determined from a photoplethsmogram (PPG) acquired using
a pulse oximeter [3]. Charlton et al. analysed the accuracy
of several algorithms against an oral nasal pressure sensor
and provided a test suite to analyse datasets [4].

Minimum device sampling rates are determined by Shan-
non’s theorem. Frey et al. recommend devices used to
measure fR should be able to measure between 10-80
breaths per minute for an infant [2]. Bates et al. suggest
a sample rate of 200 Hz for the accurate determination of
inspiratory/expiratory times for infants and children using a
flowmeter [5]. Algorithms such as an Incremental Merge Sort
(IMS) algorithm [6], identify pulse peaks creating ’windows’
for further processing steps used to derive fR from a PPG.
Therefore, fR derived from a PPG require higher sampling
rates compared to a flowmeter in order to meet Shannon’s
theorem.

The long term operation of wearable devices for fR
detection using a pulse oximeter is constrained by battery ca-
pacity making power optimisation critical. Figure 1 shows a
percentage power consumption comparison between a Texas
Instruments CC2540 MCU with BLE capability (11.5mW),
pulse oximeter (15mW) and SD card (300mW) with reported
power consumption sourced from Dieffenderfer et al [7] and
the manufacturer datasheet for the SD card used in this
study (SanDisk microSD OEM Product Manual Revision 2.0
Document No.80-36-03335 March 2010). While the SD card
power consumption is the highest of three components, future
development will likely introduce BLE and discrete SPI flash
memory functionality to mitigate against this issue.

This paper seeks to determine how changing the duty cycle
at a fixed sample frequency (500 Hz) of a pulse oximeter
affects the accuracy of fR detection.



II. METHOD

A. Reference Signal

A reference E-Health Platform V1 Airflow Sensor (Li-
belium Comunicaciones Distribuidas S.L., Zaragoza, Spain)
was used to detect actual respiratory rate. This sensor inter-
faced to an Arduino Uno and the captured signal was saved to
a DELL Optiplex 9010 (DELL, Round Rock, Texas, USA).

B. Sensor Technology

A transmission based pulse oximeter (B-M-310715-0126
Texas Instruments, Dallas, TX) was controlled by an
AFE4490 (Texas Instruments, Dallas, TX). The duty cycle
was set at 1%, 5%, 10%, and 25%, where the maximum
allowable duty cycle was 25% as set by the manufacturer.
The LED current was fixed at 5.88 mA, with a reference
voltage of 0.75 V. The IR LED was disabled and no IR PPG
signal was captured and saved. The AFE4490 sampled the
PPG signal at 500 Hz, 22 bit resolution (stored as 32 bit
unsigned number) and was transmitted via a SPI interface to
the Main Control Unit (MCU). The AFE4490 did not high
pass filter (either in hardware or software) the PPG signal as
is common with many commercial pulse oximeter circuits.
If required, the raw PPG could be filtered in software.

C. MCU

For this study, a SmartRF06 Evaluation Board for the
CC2650 (Texas Instruments, Dallas, TX, USA) was used.
The CC2650 is an amalgamation of an ARM Cortex -M3
running at 2.4 GHz, an ARM Cortex -M0 running an RF core
for Bluetooth functionality, Sensor controller, and several
GPIO modules such as 2 x SSI, I2S, UART, and I2C. The
MCU runs a TI-RTOS environment. The CC2650 is the
successor of the CC2540 used by Dieffenderfer et al. [7].

D. Participant Data Collection

Ethics was approved under HREC reference:
LNR/16/HAWKE/99. Data was acquired from 10 healthy
volunteers, ages 20 - 48. The volunteers were seated with
both hand resting palm down on the desk in front of them.
A pulse oximeter was placed on the left index finger and
the participant was instructed to breathe at a constant tidal
breathing rate 20 breathes per minute (BPM) for 2 minutes.
Twenty BPM is within the normal fR for a resting adult.
The subjects were shown a “loop timer” visualisation on
a laptop for cadence. Further, volunteers were also asked
not to talk, cough, swallow, sneeze, and any other activity
that could interrupt their breathing pattern. Several correct
breathing cycles were observed before recording began.

E. Data Storage

The SD card was formatted prior to each data capture.
Then, the raw PPG signal data was buffered from the
AFE4490 (AFE) into a “Ping Pong” style FIFO on the MCU
and sent via a secondary SPI to a SD card (SanDisk Ultra
64 GB Class 10). The use of dual FIFO and SPI channels
was used to mitigate against potential long delays (up to
350 ms) between page writes often found with most SD

cards. The SD card implements a FAT32 file system based
on Chan’s FatFs ANSI C library (Available at: http://elm-
chan.org/fsw/ff/00index e.html) which limits file sizes to 4
GB allowing a theoretical maximum of approximately 25
days of PPG data per file to be stored.

F. Signal Processing

Data was processed in MATLAB R2016a using a tool-
box ”RRest” created by Charlton et al. [4] (Available at:
http://peterhcharlton.github.io/RRest).

1) Preprocessing: The reference signal was preprocessed
into a vector containing the time (seconds) of each breath
peak. Both PPG and reference data were formatted to con-
form with the RRest toolbox. Raw PPG signals were inverted
for convention.

2) Filtering and Signal Processing Algorithms: For more
in depth explanation of the signal processing algorithms and
filters used please refer to to Charlton et al. [4].

3) Statistical analysis: The toolbox ranks the performance
of different algorithms based on limits of agreement (LOA).
The top two performing algorithms (lowest 2SD) at a 25Hz
duty cycle were selected to determine if accuracy changes
with duty cycle.

G. Power consumption

The AFE4490 and the MCU are powered from two
separate USB cables connected to a 5V, 2A rated source. DC
current was measured using a HP 34401A Digital multimeter
(Hewlett Packard, Palo Alto, USA). Power consumption
was tested as shown by Table I to determine the power
consumption at different duty cycles of the AFE. The power
consumption of the MCU and SD card was also tested.

III. RESULTS

A. Participant Data Collection

Data was acquired from 10 subjects. The median
(lower,upper quartiles) ages of the analysed subjects was 25.5
(23.7, 32.25) years. One participant was female.

Fig. 2. Hardware Block Diagram



TABLE I
POWER CONSUMPTION TEST PROTOCOL

Test State Duty Cycle (%)
1 AFE capture 25
2 AFE capture 10
3 AFE capture 5
4 AFE capture 1
5 AFE idle N/A

TABLE II
RESPIRATION RATE RMSE VERSUS DUTY CYCLE

Duty Cycle Al1 Al2
25 2.0 3.5
10 4.4 7.5
5 5.1 7.9

B. Signal Processing

The raw PPG signals at the different pulse oximeter duty
cycles for a typical participant is shown in Figure 3. Figure
4 shows the PPG signals for a participant that have been
normalised between 0 and 1.

C. Respiration Rate Accuracy

At a 1% duty cycle the measured PPG signal was not large
enough to be observed over the systems’ noise. Consequently
this data was omitted from further analyses. Two algorithms
were chosen for analysis as they had the lowest 2SD at the
25Hz duty cycle. The first algorithm (AL1 or ET 4FM1), was
a combination of breath detection using ”count-orig” Schäfer
et al. [10] and ”Smart Fusion” by Karlen et al. [11] and had
2SD of 3.42. The second algorithm (AL2 or ET 5FM1) was
a combination of breath detection by ”peak detection” [10]
and Smart Fusion by Karlen et al. [6] and had a 2SD of
5.43. The root mean square error (RMSE) of derived fR was
compared between 5%, 10%, and 25% is shown in Table II.
It can be seen RMSE increases as duty cycle decreases.

D. Power Consumption

The power consumption of the AFE4490 was tested and
the results are shown in Table III. The measured power in

Fig. 3. Typical participant signals at 5%, 10%, and 25% duty cycle

Fig. 4. Normalised participant PPG signals at 5%, 10%, and 25% duty
cycle

TABLE III
POWER CONSUMPTION RESULTS

Test Duty Cycle (%) Current (mA) Power (mW)
1 25 5 15
2 10 2.6 7.8
3 5 1.8 5.4
4 1 1.2 3.6
5 0 1.1 3.3

the idle state was 3.3 mW and falls within a reasonable range
given the manufacturer claims < 2.3 mW at 3.0-V supply.
The CC2650 drew 20 uA current while the SD card current
ranged between 119 mA to 121.3 mA.

Using MATLAB R2016Bs curve fitting toolbox, the duty
cycle (%) to power (mW) can be shown to be linear (R2 =
0.99), given by Equation 1.

Power = 0.47∗dutycycle+3.1 (1)

IV. DISCUSSION AND FUTURE WORK

In this paper we sought to determine if reducing the
duty cycle of pulse oximeter would affect the accuracy of
derived fR in order to minimise power consumption. For both
algorithms (Al1 and Al2) it was observed that the RMSE
decreased as the duty cycle increased from 5% to 25%.
Additionally, the top performing algorithm at both 5% and
10% duty cycles was breath detection by ”peak detection”
[12] coupled with ”Smart Fusion.” [6].These findings support
Charlton et al. [4] findings that smart fusion and time-
domain breath detection estimations techniques performed
well against spectral based algorithms.

In figure 4 the dicrotic notch is readily identifiable at a
10% duty cycle but not at either 5% or 25%. The absence
of such dicrotic notches are also seen in the MIMIC and
Controlled Breathing databases [12]. These databases contain
reference respiratory information and PPG signals used in
several studies [4],[6],[11]. The systolic peaks are identifiable
at all duty cycles and were used within the IMS algorithm
to create windows [11]. We saw PPG shape variability at



different duty cycles for a most participants though with such
a small participant size it is unclear what may cause these
factors.

To date, there are no clinical guidelines on the minimum
accuracy required to measure fR in adults, particularly on
devices that do not directly measure flow. We have assessed
the accuracy of our device against a nasal flow sensor, the
accuracy of which is unspecified. A nasal flow sensor is
standard for assessment of breathing during clinical sleep
studies, but further validation should include comparisons
against other standard measures of flow of higher accuracy,
e.g. a pneumotachograph or respiratory inductance plethys-
mography.

The observed RMSE at a 25% duty cycle may be sufficient
for non-clinical applications such as fitness tracking where
coarser granularity of respiratory rate is more acceptable.
For example, a device that informs the user of increased,
decreased, stationary, sedentary respiratory information.

A. Power consumption

The power consumption of 15 mW was observed at the
duty cycle of 25%. During this study only one sample was
taken per duty cycle. It is possible to average several samples
over a given duty cycle however at no extra power cost.
However, given the shape of a PPG and a heart rate of 200
beats per minute, 500 samples per second allows the key
features to be derived so we did not average during this
study.

We recommend that the use of a SD card is limited
to storing only critical information for data redundancy.
Discrete SPI flash memory could be used that would offer
the advantages over an SD card in terms of device real estate
reduction, power and speed advances. This type of memory
is constrained by storage size and would have to be used
primarily as a buffer before being wirelessly transmitted over
a protocol such as BLE. The effect of lost data due to a
BLE link disconnecting must be examined to determine if
the resultant data is clinically acceptable.

V. CONCLUSIONS

In this paper we presented a novel hardware implementa-
tion for the capture and storage of a PPG signal. The LED
duty cycle was altered to determine the effect on respiratory
rate accuracy. A PPG signal and reference breathing signal
was captured for each duty cycle. The PPG signals were
post processed in Matlab to derive are respiration rate using
toolbox by Charlton et al. [4]. For clinical assessment of
respiratory rate, a RSME of <2 breaths per minute is
recommended. Further work is required to determine utility
in asthma management, e.g. in predicting onset of an asthma
attack, assessing disease status, and providing feedback for
breathing exercises. However for non-clinical applications
such as fitness tracking, lower accuracy may be sufficient
to allow a reduced duty cycle setting. This would in turn
save power and reduce the overall weight and size of the
device.
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Using a recurrent neural network to derive tidal volume from a
photoplethsmograph

Joseph B. Prinable1,2, Peter W. Jones1, Cindy Thamrin2, and Alistair McEwan1

Abstract— There is increasing interest in monitoring health
using wearable sensors, however very few technologies have
focussed on breathing. The ability to monitor breathing indices
may have indications both for general health as well as respi-
ratory conditions such as asthma, where long-term monitoring
of lung function has shown promising utility.

In this paper we designed hardware to capture photoplethys-
mograph (PPG) signals, and a Long Short-Term Memory
(LSTM) architecture was trained to predict normalised tidal
volume from a PPG signal. A pulse oximeter was mounted
to the left index finger of a healthy subject who breathed at
a comfortable rate through a pneumotachograph for fifteen
minutes. The test was repeated once a week for four weeks.
The RMSE between actual and derived normalised tidal volume
traces over the test set was 0.202. The RMSE between peak to
peak intervals was 0.7 s. This suggests the LSTM was capable
of predicting time-based breathing measures to a higher degree
than the amplitude of the normalised tidal volume signal. For
clinical assessment of breathing pattern, a trained LSTM model
may be acceptable if validated on a larger population. With
access to a larger dataset, there is potential that a LSTM can be
trained to provide reliable predictions of changes in breathing
patterns over time.

I. INTRODUCTION

There has been increasing interest in monitoring health
using wearable sensors. However, very few technologies have
focused on obtaining breathing metrics. While the ability to
measure breathing metrics may be beneficial for assessing
general health, it would be especially beneficial for real-time
monitoring of asthma, which is a health condition that affects
over 300 million people globally [1]. Monitoring of lung
function using specialised metrics such as peak expiratory
flow, have been shown to be useful for predicting risk of an
asthma episode [2]; however this can be difficult to perform
for patients as it involves forced manoeuvres. It remains to
be seen whether metrics derived from simple breathing might
provide similar utility in asthma.

The availability of a sensor which can measure breathing
continuously and in an ambulatory manner would facilitate
studies to establish clinical utility. One potential sensor is a
pulse oximeter which obtains a photoplethsmogram (PPG).
The PPG signal’s amplitude, frequency, and baseline is
modulated by breathing periodicity [6], [7], [8] and effort
[5], allowing respiration rate to be continuously monitored
in an ambulatory setting. In addition to respiratory rate, other
breathing metrics such as tidal volume or even the shape of
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2Woolcock Institute of Medical Research, University of Sydney, Sydney,
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the volume profile may be of interest and provide further
information of changes in the breathing pattern over time.

Extraction of breathing metrics from the underlying PPG
waveform can be achieved using a recurrent neural network
(RNN). A form of RNN which is well-suited to processing
time series having varying duration between key features
is the Long Short-Term Memory architecture (LSTM) [12].
The LSTM approach has been applied to other biomedical
field’s time series problems such as predicting blood pressure
[9] and respiration monitoring using a video system [10]
and may allow a continuous tidal volume waveform to be
predicted from a PPG.

This is a preliminary study to determine the feasibility
of extracting tidal volume from a PPG using a LSTM and
may inform future studies that seek to determine breathing
patterns over in an ambulatory manner.

II. METHOD

A. Participant Data Collection

Test measurements were conducted on a single healthy
participant, as pilot data to inform a future larger study
in healthy volunteers and patients with lung disease. The
protocol for this study was approved by Northern Sydney
Local Health District Human Research Ethics Committee
(#LNR/16/HAWKE99 ethics approval).

At each session, the participant was seated and instructed
to breathe at a comfortable rate for 15 minutes through the
experimental setup. A pulse oximeter was placed on the left
index finger and the PPG was obtained. Each session was
repeated once a week for four weeks.

B. Standard Measure of Flow

The pneumotachograph was used to obtain reference
breathing tidal volume data for comparison. The experi-
mental setup comprised a 32-mm diameter breathing tube
connected to a 0-400 L min−1 pneumotachograph (Series
R4830B, Hans Rudolph Inc., Kansas City, MO, USA) and
bacterial filter mouthpiece (SureGard RJVKB2, Bird Health-
care, Port Melbourne, VIC, Australia). Flow across the pneu-
motachograph was measured using a ±2.5 cm H2O solid-
state pressure transducer (Sursense DC001NDC4, Honeywell
Sensing and Control, Golden Valley, MN, USA). The setup
description, calibration and validation have been previously
described [11]; for this study only the flow signal was used.
While the flow signal was sampled at 300 Hz, data was
down-sampled for recording at 6 Hz, which is considered
to be sufficient resolution for the purposes of breathing rate
and tidal volume extraction.



C. Hardware

In this section we describe the hardware used to capture
a PPG in this study. The hardware consists of the following
modules; four sensor modules, a data aggregation module,
and a PC . To note, only one of the four channels was used
in this study. 3D printed cases allowed the hardware to be
mounted in the 3.5 inch bays of a computer case.

The sensor module comprised an AFE4490 pulse oximeter
shield for Arduino -V2 (Protocentral, Bangalore, India) used
to control a commercial reusable transmission-based pulse
oximeter (Nellcor, Minneapolis, MN) and an Arduino Uno
(Arduino, NY, USA). On a shield-generated interrupt, the
pulse signal was captured at 500 Hz, 24 bit resolution via
SPI by an Arduino Uno (Uno). The SPI channel operated at
1 MHz. The signal was stored on the Uno as a unsigned
32 bit number. Once the signal was saved on the Uno,
an interrupt was generated. The interrupt alerts the data
aggregation module that a signal was ready to be sent via
an I2C transmission. This interrupt occurs irrespective if the
last I2C sample was successfully transmitted.

The data aggregation module comprises an Arduino Mega
(Mega). The Mega is hardware interrupt driven by each
sensor module. On interrupt, the Mega samples from the
corresponding Uno (sensor module) via I2C. The I2C bus
operated at 400 KHz. The sample was stored in a 10 element
circular FIFO register. The data aggregation module com-
municates to a laptop (Macbook Pro, Apple Inc., Cupertino,
California, USA) via a UART channel operating at 320,400
bits/s.

The laptop initiates a handshake protocol with the data
aggregation module. The protocol consists of a request to
begin test, followed by the length of the test in seconds, and
a start command. The computer buffers streaming data and
then saves the data in a .csv file format.

The average time elapsed between sampling the pulse
signal and storing it on the Uno was measured.

D. Signal Processing using a Long Short Term Memory
Model

1) Feature Generation: In this study we generated thirty
features from the raw PPG signal as shown in Figure 1. The
features were generated as follows:

• Features 1-10: The captured PPG signal was passed
through ten parallel 2nd order Butterworth band-pass fil-
ters ranging from 0.1 Hz to 1 Hz, in 0.1 Hz increments.
This resulted in 10 signals that were named feature 1-
to-10. The low pass cutoff frequency for all filters was
2 Hz.

• Features 11-20 were the upper envelope of the filtered
signals 1-10.

• Features 21-30 are the lower envelope of the filtered
signals 1-10.

The first four minutes of data was discarded to allow the
effect of the filter to be eliminated. The signal was then down
sampled to 6 Hz in line with the pneumotachograph. Each
feature was then normalised between -1 and 1.

Fig. 1. The raw PPG signal is passed through 10 parallel band-pass filters
and features 1-10 are extracted. The upper and lower envelopes of features
1-10 form features 11-20 and 21-30 respectively. The features are joined
and the first four minutes of data are removed. The feature set is then
normalised and downsampled. This results in a dataset matrix of 30 x (n -
trunc). Where n is the length of the raw PPG signal. trunc is the amount
of data samples that were removed in the first four minutes

2) Datasets: Two dataset were created during this study.
The first dataset combines data from all four weeks in the
study and should result in the most accurate model, while
the second dataset is used to determine how generalisable
a trained model will perform over time. The datasets were
created as follow:

• Data Set 1: A random 5% window of each session’s
data were combined together to form the test set. The
remaining data was randomised with 80% used for the
training set and 20% for validation.

• Data Set 2: Week one through three’s data was ran-
domised and split 80% / 20%, for training and validation
respectively. Week four’s data was used as the test set.

For both datasets, training and validation sets were then
duplicated 7 times, each with varying Gaussian noise added
with a mean of zero and a standard deviation ranging from
0.1 to 0.7 in 0.1 deviation steps to reduce overfitting.

The target set for both datasets consisted of a tidal volume
trace from the pneumotachograph, which was normalised
between -1 and 1 resulting in a relative tidal volume.

3) Long Short Term Memory (LSTM) Model Parameters:
A LSTM architecture is a type of recurrent neural network
with specialised internal states. These states allow for long-
term dependencies (memory) to be incorporated when mak-
ing a prediction.

An open source Python 3.5 library called TensorFlow
r1.3 was used to create and train the LSTM model [12].
Each LSTM cell consists 1550 units. Cells were layered
sequentially five times with a dropout layer after each. The
dropout rate was set to 0.5 between layers to reduce over
fitting. There was a dense fully connected layer at the end.
AdamOptimizer was used to train the LSTM using the
default learning rate of 0.001. A batch size of 128 was used
during training, 256 for validation, and 756 for testing. The
sequence length was 70 and chosen as this is the approximate
size of one breath cycle. The model was trained for 50 epochs
on a Dell Optiplex D810 having an i7 processor, 30 GB



RAM, and two NVIDIA Titan Xp graphics cards. An epoch
is one run over the entire training and validation dataset.

E. Model Validation

The training weights and biases were saved after every
epoch resulting in 50 models being generated. Validation data
was applied to each model with the model resulting in the
lowest RMSE between real and derived tidal volume being
chosen for testing.

F. Model Testing

The test set was applied to the best model found in the
model validation stage and the RMSE between the actual
and derived relative tidal volume signals was recorded.

G. Peak to Peak Intervals of the Tidal Volume Waveform

The time difference in seconds between two consecutive
peaks within the relative tidal volume signal was calculated.
This was done using a library ’find peaks’ in Matlab (The
MathWorks, Natick, Massachusetts, U.S.A) which was vi-
sually inspected for correctness. The RMSE between actual
and derived peak-to-peak intervals was recorded.

III. RESULTS

1) Sensor Module: The mean (standard deviation) of time
elapsed between sampling the pulse signal and storing it on
the Uno was 2.005 ms ± 0.004 ms.

2) Model Training: The training set consisted of 124,524
examples. Figure 2 shows the training RMSE over 50 epochs
that decreased and reached a plateau assessed visually of
0.02. Each epoch took 18 minutes to train.

Fig. 2. Training cost function over 500 epochs

3) Model Validation: The validation set consisted of
31,125 examples. Figure 2 shows the validation cost function
over 50 epochs. The lowest RMSE of 0.01 occurred at epoch
46.

4) Model Testing: The test set consisted of 756 examples.
For clarity, the four set of test data were merged into
one image. Figure 3 shows the predicted (dashed) versus
actual (solid) relative tidal volume. The test set RMSE was
0.202. Pearson’s correlation coefficient between the two tidal
volume waveforms was 0.84.

Fig. 3. A normalised window of 756 predicted (orange) vs actual (blue)
points of a relative tidal volume signal

5) Peak to Peak Intervals of the Tidal Volume Waveform:
There were 12 peak-to-peak intervals over the 756 sample
test window as shown in Figure 3. The RMSE was 0.7 s.

A. Model Generalisability Over Time

The test set consisted of 3024 samples shown in Figure 4.
The RMSE was 0.2904. The whole test is presented to show
overall trends.

Fig. 4. A normalised window of 3024 predicted (orange) vs actual (blue)
points of a relative tidal volume signal

IV. DISCUSSION AND FUTURE WORK

This was a preliminary study to determine the feasibility of
extracting a relative tidal volume from a PPG using a LSTM.
A four sensor device was created to measure the PPG signal.
During this study only sensor 1 was used to capture a PPG
from a single participant once a week for four consecutive
weeks. We measured the variation of sample time for this
sensor and found that there is a potential to miss between
0.45 to 4 seconds of data over a 15-minute period. This can
be explained by the tolerance of the clocking oscillator to the
AFE4490. This was deemed acceptable given that the data
was eventually down sampled to 6 Hz. Further use with this
equipment, especially when comparing one sensor to another,
should be done at a lower frequency rate to mitigate against
mismatched sample periods. Future work with this equipment



will enable the investigation on how multiple measurement
sites effect the accuracy of a derived relative tidal volume
waveform.

In this study we used a LSTM architecture to predict
relative tidal volume amplitude from a PPG. There was
a Pearson correlation of 0.84 between the derived and
actual tidal volume waveforms which compares favourably
to existing amplitude measures [10]. Upadhya et al. report
respiration rates derived from the tidal volume waveform
have less than ± 3 breaths per minute error and a RMSE of
<3.3 BPM for more than 95% of their test cases. A trained
LSTM model with dataset 1 was shown to predict a relative
tidal volume signal from a PPG signal with a RMSE of
0.202 in a controlled environment. The test error was higher
than the validation error over the 50 epochs which may be
a consequence of the dropout layers in the LSTM which are
activated during training and deactivated when validating.

Figure 3 shows high frequency noise which makes ac-
curate quantification of tidal volume attributes difficult. We
found the RMSE between peak-to-peak intervals of the
relative tidal volume signal to be 0.7 s and while we
did not implicitly derive respiration rate from the relative
tidal volume waveform, we expect this breathing parameter
would compare favourably to the state-of-art [8]. While
the periodicity of the derived relative tidal volume may be
acceptable, Figure 3 shows that there is a subtle differences
in peak heights. It may be possible to determine breathing
metrics such as flow (differential of tidal volume) or shape
and variability of the flow signal if accurate peak heights can
be derived in the future.

We investigated how generalisable a trained model will
perform over time to predict tidal volumes using dataset 2
and report a RMSE of 0.2904. During this study we did
not use k-fold validation and it is possible the model using
dataset 1 results in an over estimation of true accuracy. This
is supported by the difference of a 0.08 RMSE between
the two datasets models. Figure 4 shows that the periodicity
between the relative tidal volume signals are similar however,
the difference in amplitude is large. It is therefore posited that
breathing parameters such as inspiration period, expiration
period, inter-breath-intervals and respiratory rate which rely
primarily on the periodicity of the relative tidal volume signal
may be predicted over time and could help inform future
studies consisting of different health groups.

Previously we found that participants would prefer a
wearable to have a watch form factor [3]. In this paper we did
not look at the feasibility of implementing a LSTM in this
type of form factor. The model required a powerful machine
with GPU capability for training however, it is expected that
an embedded platform could perform the required processing
to obtain real-time predictions using a trained model. Future
work should determine the feasibility of implementing a
trained LSTM in a watch in terms of power consumption,
bill of material (BOM) costs, and size.

We have presented pilot work using LSTM to predict
a breathing trace - future work will examine optimising
the model parameters for speed and accuracy. One further

limitation of this study was that the target set was normalised
between 1 and -1 which results in a derivation of a relative
tidal volume. This means that we can only quantify changes
in an individual’s breathing pattern relative to their own
baselines, which is adequate for personal monitoring. If an
accurate LSTM model was trained on a non-normalised
target set, direct comparisons between individuals based on
their health condition could be examined in the future. In this
study we collected data from a single participant at a resting
breathing rate and future studies should test the efficacy of
a LSTM model at a range of breathing rates over multiple
individuals.

V. CONCLUSIONS

In this paper we presented a novel hardware implementa-
tion for the simultaneous capture and storage of four PPG
signals. We applied a LSTM to a single PPG channel and
were able to predict a relative tidal volume signal with a
minimum RMSE of 0.202. We additionally derived peak-to-
peak intervals and found the error to be 0.7 s. For clinical
assessment of inter-breath-intervals a trained LSTM model
may be acceptable. However, with a larger dataset a LSTM
model may be able to predict other breathing metrics which
could provide further information on changes in the breathing
pattern over time.
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Chapter 5

Extracting breathing indices in
healthy populations

5.1 Introduction

In the previous chapter the technological challenges faced when developing hard-
ware to continuously monitor breathing was explored. Then a potential machine
learning approach to measure respiratory rate was introduced. Chapter 5 presents
a machine learning framework leveraging off the model presented in Chapter 4 that
can be applied to extract breathing indices in healthy populations to answer the fol-
lowing research question:

• Research Question 6: What are the optimum parameters for using single recur-
rent neural network to predict respiratory metrics in a larger group of healthy
individuals?

Chapter 5 consists of a published peer-reviewed journal paper which is reproduced
under the terms of Creative Commons Attribution 4.0 licence:

Prinable, J., Jones, P., Boland, D., Thamrin, C., & McEwan, A. Derivation of
breathing metrics from a photoplethysmograph at rest.

Statement of Contributions of Joint Authorship:

• Joseph Barry Yoo Sik Prinable (Candidate): corresponding author, providing
the main idea, writing, reviewing and editing of the manuscript.

• Peter Jones (Alternate Supervisor): proof reading, reviewing and editing the
manuscript.

• David Boland: proof reading, reviewing and editing the manuscript.

• Alistair McEwan (Principle Supervisor): proof reading, reviewing and editing
the manuscript.

• Cindy Thamrin (Alternate Supervisor): proof reading, reviewing and editing
the manuscript.

5.2 LSTM Methodology

In this chapter it was found that a recurrent neural network could predict tidal vol-
ume from a pulse oximiter. The model presented in Chapter 4 was extended to
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include ten healthy participants. A single recurrent network could predict a variety
of breathing metrics that hadn’t been derived previously in literature. Over a 40 sec-
ond window the LSTM model predicted breathing metrics with a bias and Limits of
Agreement for inspiration time 0.03 s(-1.14, 1.20), expiration time 0.05 s (-1.07, 0.96),
respiratory rate 0.12 (-1.5,1.75), inter-breath intervals -0.06 s (-1.29, 1.16) and the I:E
ratio 0.00 (-.45, 0.46) A constraint of using machine learning in this context was the
small datasets used to generate a model. However, these findings especially respi-
ratory rate outperform all classical signal processing methods to date. In terms of
respiratory rate, the new approach outperforms the ECG derived approach that had
a bias of 0 bpm and Limits of Agreement of -4.7 to 4.7 bpm presented by Charlton
et al. [1]. Large biomedical technology companies are better positioned to capture
large quantities of data across many demographic groups and potentially improve
the accuracy of derived breathing metrics using the methodology described in this
chapter.

5.3 Concluding Remarks

In this chapter a machine learning framework was presented that could derive a se-
ries of respiratory metrics from 10 healthy participants. Importantly, this new frame-
work allowed an improvement of accuracy for respiratory rate and potentially over-
comes the physiological decoupling of respiratory motion on the cardiac waveform
at higher respiratory rates. The results of this chapter will be useful for other groups
as a benchmark by which to compare new machine learning approaches (or other
classical signal processing techniques). In the next chapter, the ability to discern be-
tween asthma and health groups by comparing the breathing indices is investigated.
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Abstract

Background: There has been a recent increased interest in monitoring health using wearable sensor technologies; however,
few have focused on breathing. The ability to monitor breathing metrics may have indications both for general health as well as
respiratory conditions such as asthma, where long-term monitoring of lung function has shown promising utility.

Objective: In this paper, we explore a long short-term memory (LSTM) architecture and predict measures of interbreath intervals,
respiratory rate, and the inspiration-expiration ratio from a photoplethysmogram signal. This serves as a proof-of-concept study
of the applicability of a machine learning architecture to the derivation of respiratory metrics.

Methods: A pulse oximeter was mounted to the left index finger of 9 healthy subjects who breathed at controlled respiratory
rates. A respiratory band was used to collect a reference signal as a comparison.

Results: Over a 40-second window, the LSTM model predicted a respiratory waveform through which breathing metrics could
be derived with a bias value and 95% CI. Metrics included inspiration time (–0.16 seconds, –1.64 to 1.31 seconds), expiration
time (0.09 seconds, –1.35 to 1.53 seconds), respiratory rate (0.12 breaths per minute, –2.13 to 2.37 breaths per minute), interbreath
intervals (–0.07 seconds, –1.75 to 1.61 seconds), and the inspiration-expiration ratio (0.09, –0.66 to 0.84).

Conclusions: A trained LSTM model shows acceptable accuracy for deriving breathing metrics and could be useful for long-term
breathing monitoring in health. Its utility in respiratory disease (eg, asthma) warrants further investigation.

(JMIR Mhealth Uhealth 2020;8(7):e13737) doi: 10.2196/13737

KEYWORDS

photoplethysmogram; respiration; asthma monitoring; LSTM

Introduction

There has been increasing interest in monitoring health using
wearable sensors. However, very few technologies have focused
on the breathing signal. The ability to monitor breathing may
be beneficial for general health and particularly for asthma,
which is a health condition that affects over 300 million people
globally [1]. Monitoring of lung function using specialized
metrics such as peak expiratory flow has been shown to be
useful for predicting risk of an asthma episode [2]; however,
this can be difficult to perform for patients as it involves forced

maneuvers. It remains to be seen whether continuous monitoring
of simple breathing metrics such as the interbreath interval (IBI)
and the inspiration-expiration (I:E) ratio could provide further
information on asthma control [3] and disease status [4].

The availability of a noninvasive sensor that measures breathing
continuously and in an ambulatory manner would facilitate
studies to establish clinical utility. One sensor of interest is the
pulse oximeter that is commonly used in a clinical setting to
measure both arterial blood oxygen saturation (SPO2) and heart
rate. A tidal breathing method exists that also shows promise
for clinical prediction [5]; however, these methods are unsuitable
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for continuous monitoring (eg, during walking or exercise). It
was recently shown that a pulse oximeter can also be used to
continuously monitor respiratory rate in a clinical setting [6].
This is possible because breathing periodicity [6,7] and effort
[8] modulate photoplethysmogram (PPG) amplitude, frequency,
and baseline wander [9,10]. Filtering and feature-based signal
processing approaches can be applied to the PPG signal to
extract a surrogate respiratory signal. This in turn can be
processed to derive breathing rate (BR) with varying degrees
of accuracy [7].

Unfortunately, there is poor amplitude correlation between the
surrogate respiratory waveform and a gold standard respiratory
trace. This poor correlation may make the I:E ratio difficult or
impossible to derive using existing methods. In this work, we
sought to address this using machine learning. In a previous
pilot study [11], we demonstrated how a long short-term
memory (LSTM) approach could predict a respiratory waveform
from which BR could be derived. LSTM is a type of a recurrent
neural network that can capture long-term, time-based
dependencies in data [12]. Through the LSTM, we showed that
the Pearson correlation coefficient between the derived
respiratory waveform and a pneumotachograph trace had
similarly high r values (r>0.8) to existing methods. In this paper,
we built on this study by investigating the accuracy to which
IBI, I:E ratio, and BR respiratory metrics can be attained from
a PPG-derived surrogate respiratory waveform using an LSTM.
We show that, in comparison to existing approaches, we can
derive breathing metrics to a higher degree of accuracy from a
pulse oximeter.

Methods

Datasets

Data Collection
Measurements were recorded from a group of 10 healthy
participants who provided informed consent. The protocol for
this study was approved by Northern Sydney Local Health
District Human Research Ethics Committee
(LNR/16/HAWKE/99 ethics approval). Participants conducted
5 randomized breathing serials at a rate of 6, 8, 10, 12, or 14
breaths per minute (BPM). Each serial was conducted for 5
minutes. Each participant was coached to breath one full
inhalation and exhalation in time with a visual prompt.

An Alice PDx (Philips Respironics, Murrysville, PA) portable
sleep diagnostic system was used to measure physiological
signals during this study. The supplied pulse oximeter was
attached to the index finger of the nonmaster hand, allowing
the capture of a raw PPG trace, SPO2, and pulse rate data. The
Alice PDx reported calculated values for SPO2 and pulse rate
3 times per second. PPG signals were sampled at 75 Hz.

Respiratory inductance plethysmography is a method to measure
relative tidal volume (RTV) as a function of the chest and
abdominal wall movement [13]. In this study, inductance bands
were placed around the abdomen and ribcage according to the
manufacturer’s guidelines, allowing RTV to be estimated as
the weighted sum of the chest and abdominal wall inductance
signals. The Alice PDx system reported an RTV signal based
on the contribution of both respiratory bands and was captured
at 100 Hz.

Description of Available Features
The Alice PDx system outputs three independent time series:
PPG, SPO2, and pulse rate. The SPO2, processed PPG, and pulse
rate signals were up-sampled to 25 Hz while the RTV was
down-sampled to 25 Hz before normalizing between ±1. The
sampling rate of 25 Hz was selected to ensure respiratory rate
accuracy [7,14] and so that all time series data had the same
time scale.

In addition to the three time series given by the Alice PDx
system, a bandpassed PPG time series was generated by passing
the original PPG signal through a sixth order Butterworth
bandpass filter with a center frequency corresponding to the
respiratory rate of the signal with a bandwidth of 0.002 Hz. This
additional time series was included because our previous
findings suggested that this feature could improve model
prediction [11].

Altogether, the available features used within our model are as
follows:

• Feature 1: PPG
• Feature 2: bandpassed PPG
• Feature 3: SPO2

• Feature 4: pulse rate

We previously determined experimentally that the inclusion of
SPO2 and pulse rate values helped inform the network when
decoupling between the pulse signal and respiratory signal
occurs [11]. The exact underlying physiological mechanisms
are unclear.

Derivation of a Respiratory Waveform Time Series
For comparison purposes, RRest toolbox [15] was used to
extract respiratory waveforms from a PPG using 10
feature-based and filter-based algorithms as shown in Figure 1.
The resulting respiratory waveforms were temporally aligned
to correspond with the reference respiratory waveform in the
test set for comparison purposes. The techniques used to derive
the respiratory waveforms, as well as our LSTM method, are
described in Table 1.
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Figure 1. Using existing filter-based and feature-based methods, 10 relative respiratory waveforms were derived from a photoplethysmogram (PPG)
signal, and another relative respiratory waveform was derived using a long short-term memory (LSTM) that accepts PPG, arterial blood oxygen saturation
(SPO2), band-passed (BP) PPG, and pulse rate inputs. BR: breathing rate; I:E: inspiration-expiration ratio; IBI: interbreath interval.

Table 1. Techniques for the extraction of respiratory signals from a photoplethysmogram (adapted from Charlton et al [15]).

DescriptionRespiratory signal

Filter-based

Bandpass filter between plausible respiratory frequenciesXA1

Maximum amplitude of the CWTa within plausible cardiac frequencies
(30-220 beats per minute) [16]

XA2

The frequency corresponding to the maximum amplitude of the CWT
within plausible cardiac frequencies [16]

XA3

Feature-based

Mean amplitude of troughs and proceeding peaks [7]XB1

Difference between the amplitudes of troughs and proceeding peaks [17]XB2

Time interval between consecutive troughs [17]XB3

Mean signal value between consecutive troughs [18]XB4

Peak amplitude [17]XB5

Trough amplitude [18]XB6

PPGb pulse width estimation using a wave boundary detection algorithm
[19]

XB10

Machine learning–based

Proposed LSTM methodXLSTM
c

aCWT: continuous wavelet transform.
bPPG: photoplethysmogram.
cLSTM: long short-term memory.

LSTM Architecture and Parameters
We propose the use of an LSTM model as an alternative to the
signal processing methods described in Table 1. In this section,
we discuss our training and validation procedures to determine
an appropriate LSTM architecture to predict a respiratory
waveform.

The core component of an LSTM architecture is a memory cell
whose characteristics allow long-term data dependencies to be
captured. A single LSTM cell uses gate mechanisms to forget

irrelevant parts of a previous state, selectively update the current
cell state, and to output the cell state [12]. Each cell contains a
number of hidden units that define the dimensionality of both
the current and output states. Increasing hidden units within a
model may lead to overfitting. Conversely, reducing hidden
units below a certain threshold will not allow a model to be
trained.
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Hyperparameter Search
We first conducted a structured, though nonexhaustive,
hyperparameter search to determine suitable values for our final
LSTM architecture. We then performed more extensive training
to maximize the performance of our final architecture.

Hyperparameter Exploration
An open-source Python 3.5 library called TensorFlow r1.3 was
used to train the LSTM model on a Dell Optiplex D810 (i7, 32
GB RAM; Dell Inc, Round Rock, TX) and two Titan Xp (Nvidia
Corp, Santa Clara, CA) graphics processing units (GPUs).

The AdamOptimizer class of Tensorflow was used to train the
LSTM using a learning rate of 0.0005 for 100 epochs with a
batch size of 128. We explored the effect of changing the
amount of cells (100, 300, 500), hidden units within a cell (500,
1500, 2500), and layers (1, 2, 3) and compared the results against
a default model containing 100 cells, 500 hidden units, and a
single layer. For this study, cells were layered sequentially two
times to improve model accuracy and robustness [20]. The
dropout layer was placed between each layer with a dropout
rate of 0.5 to reduce overfitting [21]. There was a single dense,
fully connected layer at the end.

To minimize training time for hyperparameter exploration, 4
smaller training datasets were created from the original 45
unique datasets (9 participants, each with 5 breathing serials).
These datasets contained data from 1 participant (7), 3

participants (3, 5, 7), 5 participants (1, 3, 5, 7, 9), or 9 (1, 2, 3,
4, 5, 6, 7, 8, 9) participants. This allowed us to compare model
performance as the number of participants increased for the
various configurations. To further reduce training time, each
dataset was reduced to 1 minute of data, splitting 70%, 15%,
and 15% into training, validation, and test sets, respectively.
To assess the performance of the model, we conducted 5-fold
cross validation. To reduce computational time that typically
results in higher error bias but lower variability, we chose 5
folds over 10 folds [22]. We investigated permutations of the
available features and found that accuracy increased with the
number of features with a minimal cost in terms of execution
time.

Table 2 shows the training time in minutes as a function of
participants and the hyperparameter. The Pearson correlation
coefficients between the derived and reference respiratory
waveforms are plotted as a function of increasing number of
participants for the chosen cell values (Table 2) in Figure 2A,
hidden unit values in Figure 2B, and layer values in Figure 2C.
The highest correlation was achieved with 300 cells and 2 layers
for 9 participants. For hidden units, the correlation was similar
between the quantities, with 2500 hidden units only slightly
better than 500 (0.786 vs 0.788). Due to the minimal difference,
the latter was selected as it required significantly less training
time (211 minutes vs 1213 minutes) for comparable
performance.

Table 2. Training time (minutes) for the hyperparameter search.

9 participants5 participants3 participants1 participantHyperparameters

Cells

2081107524100

50527220054300

93254231384500

Hidden units

2111506924500

482264161521500

12136654021312500

Layers

22011665241

366190125352

470271158483
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Figure 2. Pearson correlation values between derived and reference respiratory waveforms, given a dataset containing n participants, for a long short-term
memory (LSTM) with (A) cells of size 100, 300, and 500; (B) hidden units of size 500, 1500, and 2500; (C) layers of size 1, 2, and 3.

Final Model Training
The final model had around 8257 trainable parameters consisting
of 300 cells, 2 layers, and 16 hidden layers. To train our final
model, we used AdamOptimizer with an initial learning rate of
0.02 and batch size of 256. We conducted 5-fold cross validation
with approximately 223,786 training examples per fold with
early stopping.

Extraction of Breathing Metrics
We defined a valid window when the Pearson correlation
coefficient was >0.6 between the gold standard respiratory
waveform and derived tidal volume waveform (TVW) in the
window. For test sets that contained valid windows, we extracted
peaks and troughs in MATLAB R2016b (MathWorks Inc,
Natick, MA). To find the maximum points, ‘findpeaks’ was
used, and we used a linear search algorithm to find the global
minimum between 2 consecutive peaks. Using the peak and
trough data, we extracted the following: IBI (the period in
seconds between 2 consecutive peaks within the TVW signal),
inspiration time (period in seconds between a trough and peak
within the TVW signal), expiration period (period in seconds
between a peak and trough within the TVW signal), and I:E
(ratio between consecutive inspiration time and expiration
period).

We then evaluated the Bland-Altman agreement [13] between
the derived respiratory metrics to reference metrics.

Additionally, the root mean square error between hypothesized
RTV signal y(t) and the true RTV Y(t) was calculated for each
person and respiratory rate and subsequently averaged across
the 5 folds.

Results

Data Collection
Data were acquired from 10 healthy subjects. One subject was
excluded because of incomplete recordings due to an SD card
save error on the Alice PDx. Therefore, data for 9 subjects were
analyzed. The median (lower, upper quartiles) age of the
analyzed subjects was 28 years (24.5 to 33.0 years). Median

BMI was 23.59 kg/m2 (21.28 to 30.04 kg/m2), and 3 subjects
(3/9, 33%) were female. In total, we recorded 3.75 hours of
data, consisting of 5 minutes * 5 breathing rates * 9 participants.

Model Validation
The weights and biases were saved for each epoch during
training. Training was stopped when the validation error
diverged to avoid overfitting. Early stopping occurred when the
validation cost did not improve for 5 epochs.
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Derivation of Breathing Metrics
In total, 225 unique test sets were created from 9 participants,
at 5 respiratory rates, over 5 folds. Each test set was a window
of 1000 samples (40 seconds) in length. We plotted the number
of valid windows as a function of increasing Pearson correlation
coefficients between derived and reference respiratory
waveforms in 0.2 increments in Figure 3. For a Pearson
correlation coefficient ≥0.6, our approach, XLSTM, was valid for
191/225 (85%) windows, while the next highest performing
algorithm, XA1, was valid for 128/225 (57%) windows, followed
by XA2, which was valid for 119/225 (53%) windows. Other
algorithms were excluded from further analysis due to a small
percentage of valid windows: 21/225 (9%) for XA3, 56/225
(25%) for XB1, 38/225 (17%) for XB2, 36/225 (16%) for XB3,
23/225 (10%) for XB4, 65/225 (29%) for XB5, 52/225 (23%) for
XB6, and 11/225 (5%) for XB10.

Breathing metrics were averaged over each 40-second test set.
The mean (SD) between derived and gold standard metrics and
their associated t test results are shown in Table 3. The
Bland-Altman agreement between derived and gold standard
metrics for all subjects and respiratory rates are reported in
Table 4. In the case of XLSTM, a Savitzky-Golay filter was used
to smooth the derived respiratory waveform prior to extracting
the breathing metrics.

The Bland-Altman plot for the derived breathing metrics of
inspiration time, expiration period, IBI, BR, and I:E across all
participants (1-9) and all respiratory rates (6, 8, 10, 12, 14) using
XLSTM is shown in Figure 4. For comparison purposes, we report
the Bland-Altman plot for derived respiratory rate across all
participants and all respiratory rates using the highest performing
algorithm found by Charlton et al [7] in Figure 5.

Figure 3. Number of valid windows as a function of increasing Pearson correlation coefficients between derived and reference respiratory waveforms
in 0.2 increments. For an explanation of the variables please refer to Table 1.
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Table 3. Breathing metrics for the reference respiratory band, XLSTM, XA1, and XA2 methods, with their associated paired t test results.

XA2XA1XLSTM
aRespiratory band,

mean (SD)
Breathing
metrics

Pt118 testMean (SD)Pt126 testMean (SD)Pt180 testMean
(SD)

0.990.023.40 (1.42)0.1031.653.46 (1.31)0.0042.923.14
(1.15)

3.28 (1.29)Tinspb (sec-
onds)

0.152–1.443.10 (0.95)0.002–3.243.38 (1.09)0.095–1.683.19
(1.05)

3.13 (1.01)Texpc (sec-
onds)

0.649–0.4610.35 (2.95)0.0561.939.69 (2.73)0.167–1.3910.41
(2.74)

10.28 (2.72)BRd (BPMe)

0.086–1.736.50 (2.09)0.031–2.186.84 (2.09)0.2621.126.33
(1.96)

6.40 (1.98)IBIf (seconds)

0.135–1.501.00 (0.29)0.008–2.681.03 (0.40)0.002–3.091.09
(0.43)

1.01 (0.36)I:Eg

aLSTM: long short-term memory.
bTinsp: inspiration time.
cTexp: expiration period.
dBR: breathing rate.
eBPM: breaths per minute.
fIBI: interbreath interval.
gI:E: inspiration:expiration ratio.
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Table 4. Derived breathing metrics using the XLSTM, XA1, and XA2 methods and associated statistical analyses.

RelativeAbsolutePBland-Altman r2Method

95% LoABias (%)95% LoAaBias

Tinsp (seconds) b

–38.44 to 31.05–3.70–1.64 to 1.31–0.16<.0010.70XLSTM
c

–35.65 to 30.95–2.35–1.51 to 1.30–0.11<.0010.74XA1

–33.34 to 32.90–0.22–1.46 to 1.46-0.01<.0010.74XA2

Texp (seconds)d

–31.84 to 36.552.35–1.35 to 1.530.09<.0010.54XLSTM

–32.82 to 45.636.41–1.45 to 1.950.25<.0010.41XA1

–36.34 to 41.732.70–1.39 to 1.590.10<.0010.43XA2

BRe (BPMf)

–23.63 to 26.071.22–2.13 to 2.370.12<.0010.83XLSTM

–18.42 to 15.65–1.38–1.68 to 1.41–0.13<.0010.92XA1

–19.35 to 19.620.14–1.94 to 2.020.04<.0010.88XA2

IBIg (seconds)

–22.62 to 20.66–0.98–1.75 to 1.61–0.07<.0010.82XLSTM

–16.55 to 20.702.08–1.31 to 1.600.14<.0010.88XA1

–16.20 to 18.941.37–1.13 to 1.330.10<.0010.91XA2

I:Eh

–63.89 to 83.709.91–0.66 to 0.840.09<.0010.30XLSTM

–61.43 to 74.736.65–0.68 to 0.870.09<.0010.11XA1

63.89 to 70.723.41–0.62 to 0.710.05<.0010.04XA2

aLoA: limits of agreement.
bTinsp: inspiration time.
cLSTM: long short-term memory.
dTexp: expiration period.
eBR: breathing rate.
fBPM: breaths per minute.
gIBI: interbreath interval.
hI:E: inspiration:expiration ratio.
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Figure 4. Bland-Altman plots for (A) inspiration time (seconds), (B) expiration time (seconds), (C) interbreath interval (seconds), (D) breathing rate
(breaths per minute), and (E) inspiration:expiration ratio using the LSTM method.
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Figure 5. Bland-Altman plot for the highest performing algorithm (XB1,2,3ET4FM1) found by Charlton et al [7].

Our model consistently performed comparably to the other
methods, showing similar agreement (lower bias) and variability
(narrower limits of agreement). The relative bias for our model
was <4% for all breathing metrics examined except for I:E ratio
(at 9.9%), which is within the limits of accuracy of existing
standards on the estimation of breathing metrics using
conventional methods [5], although the limits of variability are
wide.

The differences for inspiration time are bound within the 95%
CIs for average inspiration periods <4 seconds. Distinct
clustering can be seen around an inspiration period of 2 seconds
(Figure 4A). The differences for expiration period are bound
within the 95% CIs for average expiration periods of 2-3 seconds
(Figure 4B). For IBI, 4 distinct clusters occur corresponding to
intervals of 4, 5, 6, and 7 seconds; however, the clustering
weakens above 9 seconds (Figure 4C). For BR, 5 distinct
clusters are formed corresponding to expected BRs of 6, 8, 10,
12, and 14 BPM (Figure 4D). There is noticeable clustering for
I:Es of 0.8-1 (Figure 4E).

To quantify the accuracy of our model and provide a metric for
future comparisons, we report the root mean square error over
all participants and respiratory rates for XLSTM for inspiration
time (0.77 seconds), expiration period (0.74 seconds), IBI
(0.8377 seconds), BR (0.86 BPM), and I:E (1.15).

Discussion

Principal Findings
In this work, we were interested in determining the feasibility
of finding continuous measures of inspiration time, expiration
period, IBI, BR, and I:E metrics from a PPG. We showed how
an LSTM architecture could be used to predict these metrics
for 191/225 (85%) test sets comprised of 9 participants at a
respiratory rate of 6, 8, 10, 12, or 14 BPM. We conducted
Bland-Altman analyses and found the LSTM was able to predict
the average inspiration time of –0.16 seconds (–1.64 to 1.31
seconds) and expiration period of 0.09 seconds (–1.35 to 1.53
seconds) over a 40-second window. The LSTM was able to
predict an I:E ratio of 0.09 (–0.66 to 0.84), although this was
poorly correlated with reference values. However, this is the
first time this metric is being reported in the literature as
measured from a pulse signal.

The LSTM model was trained to minimize the error between
derived and reference respiratory waveforms and was then able
to generalize the breathing characteristics of 9 subjects and
predict future respiratory waveforms based on PPG data. The
ability to “see and learn” a reference signal presents a distinct
advantage over existing methods. Through this approach, it was
possible to determine the continuous average breathing metrics
of inspiration time, expiration period, IBI, and BR for the
majority of time (85%), exceeding a Pearson correlation
threshold of 0.6. In contrast, these breathing metrics could only
be derived, at best, around half the time (56% in the case of
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XA1) using existing feature-based and filter-based algorithms
that did not rely on any previous reference data. While we
directly compared the performance of XA1 and XA2 to the LSTM
method, other methods were excluded from this analysis due
to the fact that the correlation between the derived respiratory
waveform and the gold standard was <0.6 more than 80% of
the time. Feature-based techniques (XB1-XB6, XB10) have
performed well in previous respiratory rate algorithm
assessments by Charlton et al [7] and would likely have similar
performance on this dataset. In the cases where breathing metrics
could be extracted for XA1and XA2, we found that the metrics
of inspiration time, expiration period, and I:E were poorly
correlated with the reference metrics, as shown in Table 4.

We conducted Bland-Altman analysis on the highest performing
algorithm XB1,2,3ET4FM1 found by Charlton et al [7] in his
comparison of classical signal processing algorithms for PPG.
The bias in our dataset compared to those in the dataset used
by Charlton et al [7] was higher (–1.12 vs 1). However, the 95%
limits of agreement (BPM) was lower (–2.4 to 2.1 vs –5.1 to
7.2). XLSTM compares favorably to XB1,2,3ET4FM1 with similar
bias (0.12 vs –1.10) and a smaller 95% limits of agreement
(BPM; –2.13 to 2.37 vs –2.63 to 2.44). The bias in our model
compares well against existing standards on breathing metric
estimation using conventional methods, which stipulate an
accuracy of at least 2% for respiratory rate. It is worth noting
that the standards are formulated for infant populations who
breath faster. The wide variability seen in our model could be
improved, although it is lower than that obtained from other
methods examined. The high degree of variability could arise
from differences in accuracy with different respiratory rates.
While there is insufficient data from this study to ascertain this,
it justifies use of longer-term data collection for further
investigation.

The hyperparameters for the LSTM model were chosen in a
structured, although non-exhaustive, manner by comparing a
change in the number of cells, hidden units, or layers to a fixed
model. Figures 2-4 show a decreasing trend in the correlation
between the LSTM-derived respiratory waveform and the
reference waveform as the number of participants increased.
This trend occurred irrespective of the number of cells, hidden
units, or layers. This may be accounted for, in part, by the
complexity for which the LSTM model must account as the
participant population increases. In the specific case of 300
cells, the correlation curve decreased quasi-exponentially.
However, in the case of hidden units and layers, the correlation
curve decreased quasi-linearly. It remains to be seen if the

minimum correlation is bound between derived and reference
respiratory waveforms for a given population. The findings of
this paper show that our previous network parameter was much
larger than required [11].

In this work, we used the following 4 features: PPG, filtered
PPG, SPO2, and pulse rate. We did not conduct feature selection,
which may have helped to improve the overall model
performance. It would be useful to see the effect of removing
the filtered PPG signal feature to reduce additional preprocessing
time and computational power.

Due to a limited participant population, we did not conduct
leave-one-out participant cross validation. The shape of each
respiratory waveform varied from person to person, and it is
unlikely that the LSTM model derived in this work would be
able to predict respiratory metrics from an unseen participant.
However, with a larger training population, the LSTM model
may be exposed to enough data to enable the accurate prediction
of respiratory metrics in an unseen participant. Previously, we
found that participants would prefer that a wearable sensor
device have a watch form factor [23]. In this paper, we did not
look at the feasibility of implementing an LSTM in this type of
form factor. Currently, LSTM training requires GPU-grade
computational power. With current low-power Bluetooth low
energy devices [11,24,25], it may be possible to acquire PPG
data and stream real-time data to a cloud-based GPU server to
run online training. Once the weights and biases of the LSTM
architecture are found, it may also be possible for an embedded
platform to perform the required processing to obtain real-time
breathing metric predictions. At present, field-programmable
gate arrays can be used for real-time predictions and benefit
from low latency and low power consumption [26].
Additionally, the field-programmable gate array architecture is
reconfigurable. This would allow any potential device to be
individually tailored to a specific model.

Conclusion
This paper presents the feasibility of monitoring simple
breathing metrics such as the IBI, BR, inspiration time,
expiration period, and I:E for a person at rest. We hope this
proof-of-concept paper will inspire future research to collect
further data and develop more powerful machine learning
algorithms. In the future, it may also be possible to derive these
metrics from a wristworn device that contains a pulse oximeter
and accelerometer for a person at rest and support potential
longitudinal studies to determine if these metrics can provide
further information on asthma type [3] and provide any clinical
utility [4].
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Chapter 6

Proof of Concept in an Asthmatic
Population

6.1 Introduction

In the previous chapter a machine learning framework to extract breathing indices
from a pulse oximeter was presented. This framework is used to compare the differ-
ences in both health (n=10) and asthma groups (n=10 in this chapter). Additionally,
in 2019 a U-Net [1] was used to derive respiratory rate from a pulse oximeter. This
chapter answers the following questions:

• Research Question 7: How do two machine learning approaches (recurrent
neural networks vs U-Net) perform in predicting respiratory metrics in health
and asthma?

Chapter 6 consists of a published letter which is reproduced under the terms of Cre-
ative Commons Attribution 4.0 licence:

Prinable, J., Jones, P., Boland, D., McEwan, A., & Thamrin, C. (2020). Derivation
of Respiratory Metrics in Health and Asthma. Sensors, 20(24), 7134.
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• David Boland: proof reading, reviewing and editing the manuscript.

• Alistair McEwan (Principle Supervisor): proof reading, reviewing and editing
the manuscript.

• Cindy Thamrin (Alternate Supervisor): proof reading, reviewing and editing
the manuscript.

6.2 U-Net and LSTM Methodology Comparison

The LSTM vs. U-Net model provided breathing metrics which were strongly corre-
lated with those from the reference signal (all p<0.001, except for inspiratory: expi-
ratory ratio). We found good bias across all metrics, however variability was high
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and could be attributed to poor detection at low respiratory rates. The following
absolute mean bias (Limits of Agreement) values were observed (in seconds): in-
spiration time 0.01(-2.31, 2.34) vs.-0.02(-2.19, 2.16), expiration time -0.19(-2.35, 1.98)
vs.-0.24(-2.36, 1.89), and inter-breath intervals -0.19(-2.73, 2.35) vs. -0.25(-2.76,2.26).
The inspiratory:expiratory ratios were -0.14(-1.43, 1.16) vs. -0.14(-1.42, 1.13). Res-
piratory rate(breaths per minute) values were 0.22(-2.51, 2.96) vs. 0.29(-2.54, 3.11).
While percentage bias was low, the Limits of Agreement was high (35% for respira-
tory rate).

6.3 Concluding Remarks

In this chapter two state of the art machine learning frameworks were compared
to determine their ability to derive a series of respiratory metrics from 10 healthy
and 10 asthma participants. The results of this chapter will be useful for other
groups as a benchmark by which to compare new machine learning approaches
(or other classical signal processing techniques). The code for both models are ac-
cessible online (https://github.com/josephprinable/PPGtoRESP) and will provide
de-identified data from the study participants upon reasonable request for scientific
purposes and subject to ethics approval. In the next chapter a detailed discussion of
this thesis is presented.
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Abstract: The ability to continuously monitor breathing metrics may have indications for general
health as well as respiratory conditions such as asthma. However, few studies have focused on
breathing due to a lack of available wearable technologies. To examine the performance of two
machine learning algorithms in extracting breathing metrics from a finger-based pulse oximeter,
which is amenable to long-term monitoring. Methods: Pulse oximetry data were collected from
11 healthy and 11 with asthma subjects who breathed at a range of controlled respiratory rates.
U-shaped network (U-Net) and Long Short-Term Memory (LSTM) algorithms were applied to the data,
and results compared against breathing metrics derived from respiratory inductance plethysmography
measured simultaneously as a reference. Results: The LSTM vs. U-Net model provided breathing
metrics which were strongly correlated with those from the reference signal (all p < 0.001, except for
inspiratory: expiratory ratio). The following absolute mean bias (95% confidence interval) values
were observed (in seconds): inspiration time 0.01(−2.31, 2.34) vs. −0.02(−2.19, 2.16), expiration time
−0.19(−2.35, 1.98) vs. −0.24(−2.36, 1.89), and inter-breath intervals −0.19(−2.73, 2.35) vs. −0.25(2.76,
2.26). The inspiratory:expiratory ratios were −0.14(−1.43, 1.16) vs. −0.14(−1.42, 1.13). Respiratory rate
(breaths per minute) values were 0.22(−2.51, 2.96) vs. 0.29(−2.54, 3.11). While percentage bias was low,
the 95% limits of agreement was high (~35% for respiratory rate). Conclusion: Both machine learning
models show strong correlation and good comparability with reference, with low bias though wide
variability for deriving breathing metrics in asthma and health cohorts. Future efforts should focus
on improvement of performance of these models, e.g., by increasing the size of the training dataset at
the lower breathing rates.

Keywords: asthma; respiratory monitoring; machine learning; U-Net; LSTM

1. Introduction

There has been increasing interest in monitoring health using wearable sensors. However,
very few developers have focused on technologies to monitor the breathing signal. While the ability to
monitor breathing daily may be beneficial for tracking general health, it may also be especially relevant
for respiratory-related diseases such as asthma and chronic obstructive pulmonary disease (COPD).
In asthma, monitoring of lung health is often done using standardised lung function tests such as
spirometry and peak expiratory flow; the latter has been shown to be useful for predicting the risk
of an asthma episode [1,2]. However, these tests can be difficult to perform for patients, even with
the availability of digital spirometers and peak flow meters outside the clinical setting, as it involves

Sensors 2020, 20, 7134; doi:10.3390/s20247134 www.mdpi.com/journal/sensors
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forced manoeuvres and training. Although spirometry is important for the diagnosis of COPD, daily
monitoring of spirometry/peak flow is considered to be of limited benefit and not commonly used in
COPD [3]. The tests are also typically only done once or twice a day, and not suitable for continuous
monitoring. In COPD, such tests are of limited benefit and not commonly used [3]. Monitoring
respiratory rate has been shown to be useful in predicting upcoming COPD flare-ups [4], but such
measurement was only possible via an oxygen monitor in patients who happened to be on home
oxygen therapy.

The availability of a non-invasive sensor that measures breathing continuously and in an
ambulatory manner would have potentially significant implications on day-to-day disease monitoring.
One sensor of interest, and of widespread availability, is the pulse oximeter, which is commonly used
in a clinical setting to measure both arterial blood oxygen saturation and heart rate. However, standard
commercial pulse oximeters are not suitable for use outside the clinical setting because they require
tethered/cabled fixture to the finger and their functionalities are limited during everyday activity, e.g.,
for walking or exercising, or during daily activities at home. Commercial wearable technologies from
companies such as Garmin, Apple, and Fitbit, among others [5], contain pulse oximeters that can
continuously monitor respiratory rate, heart rate, and O2 saturation outside a clinical setting, though
their accuracy in extracting respiratory rate has not been clinically tested in a large cohort.

One challenge facing reliable application of pulse oximeter sensors is the accurate extraction of
the breathing signal from the photoplethysmogram (PPG) signal. State-of-the-art machine learning
algorithms have shown early promise in achieving this, in particular the U-shaped network (U-Net) [6]
and Long Short-Term Memory (LSTM) architectures [7,8]. In our previous work [8], we demonstrated
for the first time that detailed respiratory metrics could also be extracted from a volume trace acquired
during normal, tidal breathing using a LSTM network in healthy participants. However, it is unclear
how well the U-Net architecture can extract these metrics, nor how either of these methods perform in
disease populations.

In this proof-of-concept study, we aimed to determine the feasibility of extracting the breathing
signal and respiratory metrics from a PPG signal in both healthy and asthmatic populations, using the
U-Net and LSTM machine learning algorithms, and compared the performance of these approaches
against a gold standard respiratory band.

2. Materials and Methods

2.1. Study Subjects

Measurements were recorded from a group of participants (11 healthy and 11 with asthma) who
provided informed consent. Subjects were volunteers recruited from the Woolcock Institute of Medical
Research database. The protocol for this study was approved by Northern Sydney Local Health District
Human Research Ethics Committee (#LNR/16/HAWKE99 ethics approval).

2.2. Breathing Data Collection

Participants conducted five randomized breathing serials at a rate of 6, 8, 10, 12, or 14 breaths
per minute. Each serial was conducted for five minutes. Each participant was coached to breathe at a
specific rate by following a visual prompt shown on a desktop screen. The prompt contained a window
that was set to the target time for each breath and a marker showing % through the target time.

An Alice PDx (Phillips Respironics, Murrysville, PA, USA) portable diagnostics system was
used to acquire measurements during the day. This provided the reference gold standard volume
signal, based on electrical inductance changes arising out of movement detected by two elastic bands
of winding coils wrapped around the chest and abdomen, sampled at 100 Hz. The Alice PDx also
simultaneously measured the PPG signal sampled at 75 Hz. Both signals were subsequently resampled
to 25 Hz to reduce the computational time required to train models.
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2.3. Principle of Breathing Signal Extraction from the PPG Signal

It is possible to extract the breathing signal from the photoplethysmogram signal (PPG) generated
by the pulse oximeter because breathing periodicity [9–11] and effort [12] modulate the PPG amplitude,
frequency, and baseline wander. This is shown in Figure 1.
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2.4. Machine Learning Models Used

We compared two machine learning architectures to extract the relative volume trace from the
pulse signal: (1) the U-Net architecture, adapted from the original methods described by Rivichandran
et al. [6] and (2) an LSTM network, previously described by Prinable et al [8]. The LSTM network is
an architecture that has gated connections designed to learn patterns in historical data by regulating
information flow, while a U-Net learns patterns by passing information through a series of filters.
Both networks were trained on a Dell Optiplex D810, i7, 32 GB RAM, and two Titan Xp (NVIDIA,
Santa Clara, CA, USA) graphics cards. Both models were programmed in Python using the Keras
open-source library. Each model was trained over multiple epochs with each epoch referring to one run
through the whole training dataset. We stopped model training if the performance did not improve
after 5 epochs. The dataset was split up using 5-fold cross validation to verify the generalisation of
the models.

2.5. Extraction of Key Breathing Metrics from Generated Volume Trace

The output of both the machine learning architectures was a Tidal Volume Waveform (TVW).
A Savitzky–Golay filter was used to smooth the trace for both the LSTM and U-Net. We then extracted
the following breathing metrics: inspiration period, expiration period, breathing rate, and inter-breath
interval. The inspiration to expiration (I:E) ratio was calculated from the inspiration period and
expiration period. These metrics are shown in Figure 2.

In this work, we define the previous terms as follows:

• inspiration period (Tinsp): the period in seconds between a trough and a peak within the
TVW signal.

• expiration period (Texp): the period in seconds between a peak and a trough within the TVW signal.
• I:E ratio: the ratio between consecutive inspiration time and expiration period. Derived values for

Tinsp and Texp are used for this calculation.
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• inter-breath interval (IBI): the period in seconds between two consecutive peaks within the
TVW signal.

• breathing rate (BR): the amount of breaths per minute (derived independently of IBI).
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Since the breathing signal obtained from either the gold standard or the PPG signal is a relative
rather than absolute volume trace, i.e., only showing relative changes in volume, we did not consider
tidal volume as a metric.

2.6. Performance in Extracting Breathing Traces and Metrics

There was a total of 550 windows obtained from 22 participants, 5 breathing rates, and 5 folds of
data. In each window, the reference respiratory metric was extracted and compared to both the LSTM
and U-Net predictions. In our previous paper [8], we post-processed the output data and excluded
windows that did not meet a specific minimum correlation. In this analysis, we used all the available
data as a better representation of the accuracy that could be attained if the system was implemented in
real time.

2.7. Statistical Analysis

The volume trace derived from the pulse oximetry sensor and the gold standard were compared
using Pearson correlation coefficients. Extracted breathing metrics were compared against the gold
standard using paired t-tests and Bland–Altman analyses.

3. Results

3.1. Participant Population

The demographic information of the 22 participants is shown in Table 1. Ten (45%) of the
participants were male. The mean (standard deviation, SD) for participant age was 43.8 (18.0) years.
Eleven participants reported doctor-diagnosed asthma, with optimal asthma control as a group (mean
(SD) 5-point Asthma Control Questionnaire (ACQ5 [13]) score 1.04 (0.94)), though 2 of these had
sub-optimal asthma control based on ACQ5 > 1.5. Table 1 shows that they have mild airflow limitation
and obstruction based on spirometry (%predFEV1 and FEV1/FVC).
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Table 1. Participant information for the study, stratified by health status.

Status

Characteristic No Asthma (n = 11) Asthma (n = 11)

Sex: Male n (%) 6 (55) 4 (36)

Age, mean (SD) years 30.1 (7.3) 55.9 (16.3)

BMI, mean (SD) kg/m2 25.1 (4.8) 26.7 (5.0)

ACQ5, mean (SD) 1.04 (0.94)

%predFEV1, mean (SD) 84.6 (22.1)

%predFVC, mean (SD) 102.8 (15.9)

FEV1/FVC, mean (SD)% 68.3 (15.3)

ACQ5: 5-point Asthma Control Questionnaire; %predFEV1: Forced expiratory volume, percentage of predicted;
%predFVC: Forced vital capacity, percentage of predicted; FEV1/FVC: Forced expired volume/forced vital capacity.

3.2. Datasets

An example window for 6, 8, 10, 12, and 14 breaths per minute is shown for Participant 1 in
Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 12 

 

Table 1. Participant information for the study, stratified by health status. 

 Status 

Characteristic No Asthma 
(n = 11)  Asthma (n = 11) 

Sex: Male n (%) 6 (55) 4 (36) 
Age, mean (SD) years  30.1 (7.3) 55.9 (16.3) 
BMI, mean (SD) kg/m2 25.1 (4.8) 26.7 (5.0) 

ACQ5, mean (SD)   1.04 (0.94) 
%predFEV1, mean (SD)  84.6 (22.1) 
%predFVC, mean (SD)  102.8 (15.9) 

FEV1/FVC, mean (SD)%  68.3 (15.3) 
ACQ5: 5-point Asthma Control Questionnaire; %predFEV1: Forced expiratory volume, percentage of 
predicted; %predFVC: Forced vital capacity, percentage of predicted; FEV1/FVC: Forced expired 
volume/forced vital capacity 

3.2. Datasets 

An example window for 6, 8, 10, 12, and 14 breaths per minute is shown for Participant 1 in 
Figure 3. 

 
Figure 3. Example window for 6, 8, 10, 12, and 14 breaths per minute is shown for Participant 1. 

Training Time 

The LSTM trained slower: 18 (3) minutes vs. 11 (4) mins for the U-Net. Both architectures took 
an input of 320 samples (~13 seconds) and predicted a single sample from the respiratory waveform. 
Approximately 13 seconds of input data were selected based on previous parameter search 

Figure 3. Example window for 6, 8, 10, 12, and 14 breaths per minute is shown for Participant 1.



Sensors 2020, 20, 7134 6 of 11

Training Time

The LSTM trained slower: 18 (3) minutes vs. 11 (4) mins for the U-Net. Both architectures
took an input of 320 samples (~13 seconds) and predicted a single sample from the respiratory
waveform. Approximately 13 seconds of input data were selected based on previous parameter search
optimisation [8]. The results of this comparison led to moderate correlation (r = 0.6) for both networks.
The breakdown of windows that exceeded a certain correlation is shown in Figure 4.
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Figure 4. Percentage of valid windows exceeding corresponding Pearson correlation with the reference
signal for the Long Short-Term Memory (LSTM) and U-shaped network (U-Net.)

The paired t-test between derived and gold standard metrics for all people and respiratory rates
are reported in Table 2.

Table 2. Paired t-test between derived and gold standard metrics for all people and respiratory rates.

Metric Reference LSTM
n = 550

U-Net
n = 550

Mean (SD) Mean (SD) p-Value Mean (SD) p-Value

Tinsp (s) 3.50 (1.47) 3.51 (1.38) p = 0.87 3.48 (1.33) p = 0.83

Texp (s) 3.28 (1.19) 3.09 (0.88) p < 0.05 3.04 (0.83) p = 0.001

I:E ratio
(unitless) 1.11 (0.62) 0.97 (0.20) p < 0.001 0.96 (0.19) p = 2.63

BR (BPM) 9.99 (2.81) 10.21 (2.53) p = 0.17 10.28 (2.52) p = 0.07

IBI (s) 6.77 (2.15) 6.59 (2.05) p = 0.14 6.52 (1.99) p < 0.05

The Pearson correlation and mean bias and 95% limits of agreement (LoA) between derived and
gold standard metrics are shown in Table 3.
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Table 3. Derived breathing metrics using the LSTM and U-Net methods and associated
statistical analyses.

Method r2 p Absolute
Bias 95% LoA Relative

Bias (%) 95% LoA

Tinsp
(seconds)

LSTM 0.66 p < 0.001 0.01 −2.31 to 2.34 1.89 −52.95 to 56.74
U-Net 0.69 p < 0.001 −0.02 −2.19 to 2.16 1.30 −52.15 to 54.74

Texp
(seconds)

LSTM 0.46 p < 0.001 −0.19 −2.35 to 1.98 −3.70 −55.21 to 47.80
U-Net 0.47 p < 0.001 −0.24 −2.36 to 1.89 −4.97 −56.84 to 46.89

I:E ratio
LSTM −0.04 0.39 −0.14 −1.43 to 1.16 −4.65 −87.18 to 77.88
U-Net 0.01 0.89 −0.14 −1.42 to 1.13 −5.30 −87.07 to 76.47

IBI (seconds)
LSTM 0.81 p < 0.001 −0.19 −2.73 to 2.35 −2.39 −32.76 to 27.97
U-Net 0.81 p < 0.001 −0.25 −2.76 to 2.26 −3.16 −33.69 to 27.36

BR (BPM)
LSTM 0.87 p < 0.001 0.22 −2.51 to 2.96 2.99 −27.04 to 33.02
U-Net 0.86 p < 0.001 0.29 −2.54 to 3.11 3.69 −27.17 to 34.56

The Bland–Altman agreement between derived and gold standard metrics for all people and
respiratory rates are shown for the U-Net in Figure 5 and LSTM in Figure 6.Sensors 2020, 20, x FOR PEER REVIEW 8 of 12 
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4. Discussion

This is the first implementation of machine learning methodologies to extract respiratory metrics
from a PPG in both asthma and health groups in an ambulatory setting. While the Pearson correlation
between the actual and predicted relative tidal waveform was relatively moderate (LSTM r = 0.65,
U-Net r = 0.64), the resultant waveforms still contained sufficient information to adequately extract key
breathing metrics of inspiration period, expiration period, inter-breath interval, and respiratory rate.

The U-Net showed similar performance to the LSTM in terms of extracted respiratory metrics
with the reference signal as shown by the comparable bias for all metrics in Table 2. Both methods
provided strong correlations with the gold standard, particularly for breathing rate and inter-breath
intervals. However, the variability was very high for most metrics, with limits of agreement up to
±56% (with the exception of I:E ratio which had unacceptable performance overall). Best performance
was seen again for the breathing rate and the inter-breath intervals, with limits of agreement up to
~35%.

The Bland–Altman plots (Figures 5 and 6) show evidence of proportional bias, which may be due
to the detection of spurious breaths in the extracted volume traces which do not correspond directly to
a real breath in the reference volume trace. This may have resulted in large apparent deviations in, e.g.,
the breathing rate or inter-breath interval compared to the closest available breath from the reference
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signal; the deviation thus becomes larger with the size of the breathing rate or inter-breath interval
itself. The proportional bias appears centred around each of the breathing rates used to train and test
both models.

In the current work, the U-Net architecture required more computational power than the LSTM
though it took a shorter time to train. If memory requirements are a major consideration in implementing
a machine learning approach in a wearable device, then the LSTM should be selected. Otherwise,
the U-Net is a better option to reduce training time with a large dataset.

To date, it is unclear whether continuous measures of breathing metrics such as Tinsp, Texp,
IBI, and breathing rate are good predictors of an asthma exacerbation. Further, it is unclear as
to how often respiratory measures would need to be captured to have a correlation to asthma
exacerbation. If performance can be improved, then the limitation to achieving long-term, continuous
monitoring of respiratory metrics to evaluate this will no longer be the algorithms themselves but,
rather, the implementation of those algorithms on a wearable device. This will provide us with a tool
to investigate the clinical utility of ambulatory respiratory monitoring. Furthermore, the data could be
made securely accessible to a respiratory patient’s doctor or nurse practitioner in real time for potential
early intervention.

An area of concern for long-term monitoring with wearables is compliance. Previously, we found
that smart watch technologies are likely to have the highest compliance rate compared to a chest strap
or other respiratory monitoring device [14]. It is unlikely that these devices have the processing power
to train models though they do have enough computing power to run them.

In practice, regardless of machine learning model used, patient-specific training would be
necessary. This could be realised by having the individual wear a chest band in addition to a pulse
capture smart watch for an initial “training” period and breathing at a range of respiratory rates,
with the chest strap no longer being required after the model was successfully trained. We previously
demonstrated that a single model was sufficient to predict respiratory rate for a single participant over
the period of a month’s time [6].

Our study has a number of limitations. First, breathing metrics derived with both models showed
comparable bias across all breathing rates, but the variability was high particularly for inspiration
and expiration times, and the respiratory ratio. The causes for this are unknown, but we noted that
variability tended to be higher at the lower breathing rates and may be driven by poor breath detection.
This, in turn, may be due to insufficient breaths available for training at these lower breathing rates,
since fewer breaths are available during a fixed time period. Subsequent efforts should focus on
improving the performance at these lower rates, by increasing the presence of low respiratory rate
breathing cycles in the training dataset. Another approach to reduce variability would be to assess the
quality of the PPG signal and exclude windows with poor quality [10,15], though this would mean loss
of information during, e.g., noisy periods. Nevertheless, the bias and standard deviation presented in
this work fall in line with our previous findings [8] and perform better in terms of bias and 95% LoAs
for respiratory rate in other studies employing larger datasets [10,16–19]. The high variability may
limit applicability in the clinical setting, but the performance may be adequate for general long-term
monitoring of breathing rate for day-to-day use.

Second, the asthma cohort in this study have mild disease based on their lung function (%predFEV1
and FEV1/FVC). Ambulatory breathing patterns in severe asthma have not been well characterised,
highlighting the lack of available tools for such investigations. Studies within clinical research
laboratory settings have shown, e.g., no differences in variability during acute vs. refractory severe
asthma [20], and yet increased variability of inter-breath intervals in some asthma phenotypes [21].
Further work will be needed to determine how the algorithms perform with severity of disease and
irregular breathing, as well as patient factors such as age, BMI, and fitness status. However, we propose
that may be partly mitigated with appropriate training based on the patient’s own breathing pattern.

In conclusion, this work informs the further development of machine learning models for
extracting respiratory metrics from PPG signals, using real-world data from both asthmatic and healthy
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groups. We have demonstrated that such a modality is feasible, but training the data appropriately
may be the key to successful implementation.
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Chapter 7

Discussion

7.1 Introduction

In this thesis, a number of aspects related to breathing monitoring using wearable
technology were explored. A literature search to evaluate available wearable sen-
sors and signal processing schemes suitable for capturing breathing metrics was
conducted. Then an online survey of potential users of wearable technology to mon-
itor breathing, both with and without respiratory disease, to find out rationale and
preferences for such technology, was conducted and analysed. The feasibility and
hardware considerations for acquiring pulse oximetry from a wearable sensor, and a
machine learning framework to extract the breathing signal from the photoplethys-
mograph was explored. Finally, the performances and limitations of two machine
learning approaches in both health and asthma volunteers were evaluated.

In this chapter the key findings, impact, limitations and future work arising out
of this thesis are discussed. These are presented for the Research Questions posed
in the Introduction. Next, framed around the findings of this thesis, areas of impact
for smart watch technology that captures respiratory metrics for asthma and COPD
populations, and how they may reduce burden to global health care facilities are
discussed.

7.2 Key Findings, Impact, Limitations and Future Work

7.2.1 Research Question 1: What wearable sensor technologies are avail-
able for acquiring respiratory signals and what signal processing
methods exist to extract respiratory signals from sensor technolo-
gies?

Overall, respiratory bands and to a lesser degree smart watch technology with em-
bedded pulse oximeters seem to offer the best compromise between capturing mul-
tiple accurate respiratory metrics using mature signal processing methods, commer-
cial availability, power efficiency and monitoring site/ perceived wearability.

To the best of our knowledge, there are few reviews relevant to the use of wear-
able technologies to capture breathing [1]. This review has provided a comprehen-
sive analysis of the state-of-the-art research, and informed subsequent work on this
thesis, allowing us to focus on the use of pulse oximetry to obtain breathing metrics
for continuous respiration monitoring. In a broader context, this work informs sci-
entists, engineers and clinicians as to the present capability of technology and how
they may also facilitate longitudinal studies within and beyond the scope of respira-
tory diseases such as asthma and COPD.
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We aimed to extensively cover all literature pertinent to continuous monitoring
of breathing however, we did not review technologies that were not deemed "wear-
able." For example multi lead ECG. Further, we did not analyse technologies that
were in their infancy, for example flex sensors, near field coherent sensing, and car-
bon black elastomers that are employed in T-shirt-based wearables.

It would be useful to review the current state of implantable sensors, advances
to battery management systems, micro-electric circuits and discuss how these tech-
nologies could disrupt conventional methods of physiological data acquisition when
they mature.

7.2.2 Research Question 2: What is the rationale for potential users, both
with and without respiratory disease, to adopt new technologies
that continuously monitor breathing over time?

A survey was completed by 134 participants (males: 39%, median age group: 50-
59 years) including those who are healthy as well as those with asthma (n=77, 61%
with suboptimal asthma control assessed using the Asthma Control Test). Of the
134 participants, 61.9% (83/134) would be willing to wear a device to monitor their
breathing, in contrast to 6.7% (9/134) who would not. The remaining 31.3% (42/134)
stated that their willingness depended on specific factors. Participants with asthma
most commonly cited their asthma as motivation for using a wearable; the most
common motivation for use in those without asthma was curiosity. More than 90%
of total participants would use the device during the day, night, or both day and
night [2].

The motivations and likelihood for adopting wearable technologies for the pur-
pose of monitoring breathing were identified. It was found participants were mo-
tivated to adopt a wearable breathing monitor irrespective of health status, though
rationale for use differed between those with and without asthma.

There were several limitations to this study. Firstly, the demographics of the
sample group may not be indicative of the population in general across age, gender,
education and health condition. Secondly, there was potentially high selection bias
in those who chose to complete the survey towards those who were already moti-
vated to adopt a wearable. Thirdly, people without asthma were younger than those
with asthma, making it difficult to disentangle the effects of age and disease status.
Finally, we also did not collect data on whether those who used other health mon-
itoring devices were current or former users, or the reasons for discontinuation of
use, which could be used to explore factors affecting adherence.

Frequency of daytime and night-time use was higher in older people. For exam-
ple, older participants predicted they were more likely to wear the device 5 days
a week or more during the night: 18-39 (37%, 7/19), 30-39, (59%, 16/27), 40-49
(53%,8/15), 50-59 (81%, 21/26), 60-69 (74%, 23/31), older than 70(77%, 10/13); P=.026.
There is some suggestion from this work that older users are more ready to adopt
health-related technologies, but the reasons for this require further investigation.
Future studies could gather information on how long and why people stay engaged
beyond curiosity, which would provide major insight into user psychology as well
as device development.”
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7.2.3 Research Question 3: What are device-specific attributes that would
meet the expectation of users, both with and without respiratory dis-
ease?

From the same survey, more than 90% of total participants would use the device
during the day, night, or both day and night. Design preferences among all users
included a wrist watch (nominated by 92.5% [124/134] for both day and night use,
out of four body sites), the ability to synchronize breathing data with a mobile phone
or tablet (81.3%, 109/134), overnight power charging (33.6%, 45/134), and a cost of
≤ AUD $100 (53.7%, 72/134) [2].

The results of this study inform us of which features are of high value and which
features could be compromised in exchange for technical tradeoffs. Furthermore, ac-
ceptance of a new technology maybe affected by the perceived risk or inconvenience
posed by the device.

There are factors limiting the applicability of our findings. First, display prefer-
ences were examined in a rudimentary manner in this survey, to determine whether
graphical displays were preferred over text. Also, there was no assessment to detail
whether participants understood how the information was presented, for example,
by asking whether they thought the display indicated that their breathing was sta-
ble.

Once wearable technology is established to measure breathing over time, a focus
group could be set up to explore more detailed user interaction features, such as use-
ability, information display and feedback, user incentive/gamification to maximise
adherence. These would pave the way towards future longitudinal studies to test
feasibility device useability, and adherence in both health and respiratory disease.

7.2.4 Research Question 4: What are computing hardware limitations of
using a pulse oximeter to derived a breathing signal?

There was a relatively low error (expressed in terms of the root-mean-square error,
RSME) of <2 breathes per minute at 25% duty cycle for the top performing algo-
rithm. However the error increased to over 5 breaths per minute when the duty
cycle was reduced to 5%. However, there was a noticeable drop (3 times) in power
consumption from a 25% duty cycle compared to a 5% duty cycle [3].

This work provides guidance to hardware developers as to the importance of
maintaining higher LED power levels to achieve adequate degrees of accuracy and
therefore suggests power consumption to be optimised in other areas.

There are factors limiting the applicability of our findings:

1. To date, there are no clinical guidelines on the minimum accuracy required to
measure respiratory rate in adults (in contrast to infants) [4, 5], particularly on
devices that do not directly measure flow. Longitudinal studies in adult pop-
ulations, linking clinically captured respiratory metrics to health status over
time would be required to address this issue.

2. Feasibility was assessed in PPG captured from a single participant once a week,
albeit for a long period of time (for four consecutive weeks).

A nasal flow sensor is standard for assessment of breathing during clinical sleep
studies, but further validation should include comparisons against other standard
measures of flow of higher accuracy, e.g. a pneumotachograph (though this is less
suitable for long-term monitoring and involves breathing into a mouthpiece) or res-
piratory inductance plethysmography.
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7.2.5 Research Question 5: Is it feasible to use machine learning (recur-
rent neural network) to predict tidal volume traces from a pulse
oximeter?

We explored the use of a Long Short-Term Memory (LSTM) machine learning ar-
chitecture, and found it could predict normalised/relative tidal volume trace from
a PPG signal in a single participant. The RMSE between actual and derived nor-
malised tidal volume traces over the test set was 0.202 while the RMSE between
peak to peak intervals was 0.7 s. While these findings are limited by a single partici-
pant it shows that with sufficient data it is possible to predict relative tidal volume,
at rest, over differing time points [6].

This work showed it was possible to use neural networks to derive measures
of respiration from a pulse oximiter and has led other groups to explore machine
learning approaches to predict respiratory rate to improve derived respiratory rate
accuracy.

There are factors limiting the applicability of our findings:

1. A sample size of one was used in this study.

2. There is a potential to miss between 0.45 to 4 seconds of data over a 15-minute
period due to hardware limitations. This could be mitigated with hardware
that is appropriately time calibrated.

3. k-fold validation was not implemented and it is possible the results are an over
estimation of true accuracy.

4. The target set was normalised between 1 and -1 which results in a derivation of
a relative tidal volume. This means that it is only possible to quantify changes
in an individual’s breathing pattern relative to their own baselines.

5. A bandpass filter specifically tailored to the frequencies of interest was used,
thus potentially biasing this study towards reporting higher accuracy.

6. We did not directly compare this method to other existing signal processing
methods.

Implementing the model in a larger study cohort is required to draw stronger
evidence towards the use of machine learning as a method to be used to derive
respiratory rate from a pulse oximeter. These studies should include comparison to
existing literature using the same datasets.

7.2.6 Research Question 6: What are the optimum parameters for using
single recurrent neural network to predict respiratory metrics in a
larger group of healthy individuals?

Over a 40-second window, the LSTM model predicted a respiratory waveform through
which breathing metrics could be derived with a bias value and 95% CI. Metrics in-
cluded inspiration time (–0.16 seconds, –1.64 to 1.31 seconds), expiration time (0.09
seconds, –1.35 to 1.53 seconds), respiratory rate (0.12 breaths per minute, –2.13 to
2.37 breaths per minute), inter breath intervals (–0.07 seconds, –1.75 to 1.61 seconds),
and the inspiration-expiration ratio (0.09, –0.66 to 0.84) [7].

This body of work outlines a machine learning framework used to predict a va-
riety of respiratory metrics and sets the basis for other machine learning work to
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benchmark against. In particular, this work presented a framework and optimisa-
tion of model parameters to predict relative tidal volume from a PPG which have
been discussed in detail [7]. Further, through code porting it could be implemented
in all current and commercial pulse oximiter enabled smart watches/bands to enable
long term studies once accuracy is established.

There are factors limiting the applicability of our findings:

1. Due to a limited participant population, we did not conduct leave-one-out par-
ticipant cross validation.

2. The shape of each respiratory waveform varied from person to person, and it
is unlikely that the LSTM model derived in this work would be able to predict
respiratory metrics from an unseen participant.

3. 40 second windows were used in this study and it is unclear of the accuracy if
finer time granulation is required.

A study containing asthma participants would show feasibility to predict respi-
ratory metrics in disease, and motivate long term studies to show how changes to
respiratory metrics are linked to health status.

7.2.7 Research Question 7: How do two machine learning approaches (re-
current neural networks vs U-Net) perform in predicting respiratory
metrics in health and asthma?

The LSTM vs. U-Net model provided breathing metrics which were strongly corre-
lated with those from the reference signal (all p<0.001, except for inspiratory: expi-
ratory ratio). We found good bias across all metrics, however variability was high
and could be attributed to poor detection at low respiratory rates. The following
absolute mean bias (95% confidence interval) values were observed (in seconds): in-
spiration time 0.01(-2.31, 2.34) vs.-0.02(-2.19, 2.16), expiration time -0.19(-2.35, 1.98)
vs.-0.24(-2.36, 1.89), and inter-breath intervals -0.19(-2.73, 2.35) vs. -0.25(-2.76,2.26).
The inspiratory:expiratory ratios were -0.14(-1.43, 1.16) vs. -0.14(-1.42, 1.13). Respira-
tory rate(breaths per minute) values were 0.22(-2.51, 2.96) vs. 0.29(-2.54, 3.11). While
percentage bias was low, the 95% limits of agreement was high (35% for respiratory
rate) [8].

These results are similar to previously reported findings where PPG derived res-
piratory rate was acquired with 95% LOAs of -5.1 to 7.2 bpm and bias of 1.0 bpm and
ECG derived respiratory rate was acquired with 95% LOAs of -4.7 to 4.7 bpm and
bias of 0 bpm. One explanation for these results is that the underlying mechanism
which superimposes respiratory motion on the cardiac waveform tends to decouple
at higher respiratory rates.

This work directly compared the performance of two state of the art machine
learning approaches to predict respiratory metrics. Despite the wide variability, the
performance compares well with the literature (Charlton et al.) and it provides in-
formation on how to approach poor performance. Additionally, this highlights the
key capabilities of each method which importantly informs smart watch companies
that there will be a trade off between accuracy, training speed and memory size.

There are factors limiting the applicability of our findings:

• The asthma cohort in this study can be considered to represent a low risk
asthma group.
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• The original U-Net architecture was modified to have the same amount of
trainable weights as the LSTM so that there would be fair comparison between
the two models.

• This was a proof of concept study and a larger cohort would be required to
draw inference in a general asthma or health population.

• A pneumotachograph trace was not aligned to the predicted respiratory wave-
form. Therefore, it is unclear at what point the inspiration or expiration takes
place.”

The asthma cohort in this study can be considered to represent a low risk asthma
group based on their asthma control score, %predFEV1, %predFVC and FEV1/FVC.
Validation in a larger cohort with a wider spread of asthma control and severity
would be necessary.

We speculate that patient-specific monitoring and prediction would improve
performance, where custom models would be trained on an individual basis. This
might be realised by having the individual wear a chest band in addition to a pulse
capture smart watch for an initial “training” period, with the chest strap no longer
being required after the model was successfully trained.

During this work a relative tidal volume trace was predicted from which res-
piratory metrics were derived. It would be useful determine how accurately these
metrics can be derived directly from the PPG signal through reinforcement learning.
This may potentially increase the accuracy of metrics, in particular the I:E ratio.

Having established feasibility and performance, next steps would be to investi-
gate which continuous measures of breathing metrics such as Tinsp, Texp, IBI and
breathing rate, as well as how often to acquire respiratory measures, that are most
sensitive to disease status changes, e.g. future exacerbations in asthma or COPD.

This work has demonstrated the potential to acquire respiratory metrics with
current technology and machine learning algorithms. It would be clinically useful
to conduct long term studies to address two overarching questions:

7.3 Areas of impact for a smart watch capable of continu-
ously monitoring respiratory metrics

7.3.1 Can smart watches that capture respiratory metrics be clinically use-
ful for asthma and COPD populations?

There are four key areas that could benefit from long term monitoring of respiratory
metrics in asthma and COPD populations.

1) Awareness: In chapter 3 it was found that regardless of health status there was
no clear preference for how respiratory data was presented. Rather than presenting
changes to respiratory metrics it may be more useful to report a risk matrix (i.e safe,
warning, alert) through which the user can understand how their day/night time
activity trends are related to their health status.

2) Reaction: In chapter 7 two machine learning models were presented that de-
rived respiratory metrics. Based on these metrics the early detection of an exacer-
bation may be possible, which would enable the user sufficient time to change their
environment or activity, before requiring an intervention.

3) Remotely testing the response to intervention and/or treatment: It would be
useful to retrospectively investigate causal links between respiratory metrics and
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intervention and/or treatment. If such links can be established clinicians could re-
motely monitor the health status of their patients in more rural and remote areas
areas.

4) Biofeedback / breathing training: It was found in chapter 3 that biofeedback
was important to certain users to track breathing patterns during stress, when they
were breathless as well as during meditation. The metrics explored in this thesis
would allow further breathing training beyond what is currently offered by smart
watch companies with the ability to segment the breathing cycle into an inhale or
exhale.

7.3.2 How can smart watches be used to reduce burden to global health
care facilities?

The COVID19 pandemic has placed a prolonged burden on health care facilities and
in many cases specialised respiratory clinics have been closed. In the future it would
be useful to have alternate methods and devices that offer insight into lung and res-
piratory health without human contact or specialised equipment. While the efficacy
of such methods and devices would need to be tested, clinicians may be able to have
an indication of how well the prescribed interventions or treatment plans are work-
ing without physical visits.

In this current pandemic it is clear that screening methods have been a useful tool
to elucidate how COVID19 has spread. While it is unclear as to the effectiveness of
screening coupled with the COVIDSafe app issued by the Australian Governement,
having additional measures offers further insight that was not previously possible.
Especially in the cases where certain respiratory metrics could show indicators of
immunity.

Finally, if potential correlations between respiratory metrics and disease status
could be established, it may be possible to conduct remote screening across at risk
populations at scale. This would allow heat maps of risk areas to be identified and
appropriate resources allocated depending on population and risk factors. This large
scale approach could yield important information that could inform decisions at a
government level.

7.4 Conclusion

I hope this body of work will inspire future research to collect further data and de-
velop more powerful machine learning algorithms. In the future, it may also be pos-
sible to derive these metrics from a wrist worn device that contains a pulse oximeter
and accelerometer for a person at rest. The availability of this technology would
support potential longitudinal studies to determine if these metrics have significant
utility in fitness monitoring in health and disease monitoring in asthma, COPD and
other respiratory conditions. It may even provide further detailed insight into phe-
notyping of disease based on continuous breathing metrics, that has not been possi-
ble to date.
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