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ABSTRACT

This thesis develops a numerical technique to predict the

acoustic reflection from an arbitrary sound speed microstructure

in the ocean (or a temperature microstructure in the fresh

water). This numerical technique is able to reproduce the

theoretical formulas for calculating the reflection coefficients

of two analytically defined transition layers.

The 50 kHz acoustic reflection coefficients from the temperature

microstructure measured in a fresh-water reservoir was predicted

to be less than -90 dB and was found to be much weaker than the

observed volume scattering which was due to the biological

activities.
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l.INTRODUCTION

For the convenience of studying the propagation of underwater

sound, the ocean has often been assumed to be horizontally

layered and homogeneous. But as a matter of fact, the real ocean

is far from that ideal. In the ocean, especially in the upper

layer, there are various kinds of acoustic scatterers, such as

marine organism, bubbles (both generated by breaking waves and

ship activities), suspended particles and sea water temperature

microstructure. When a sound wave is travelling in this

inhomogeneous media, its energy will be scattered and absorbed.

Different scatterers have different reflectivities and the same

scatterer has a different scattering strength at different sound

frequencies.

The above-mentioned scatterers are often found in the water media

between sonars and the targets. They cause reverberation and~

attenuation of a sound wave. Thus understanding the acoustic

properties of all these scatterers is important for designing and

operating a sonar.

0n the other hand, if we understand the acoustic properties of

scatterers well, we can study the other properties of these

scatterers by using acoustic equipment.

Before the 1970's nearly all the information on atmospheric

microstructure came from scattering observations, and very little

from direct sounding, whereas in the ocean all came from direct

sounding and none from scattering experiments (Munk & Garrett,

1973).



By the end of the 1960's radar backseattering from clear air had

been well understood (Hans Ottersten, 1969). The theory on the

radar returns as backscattering from refractive index

perturbations due to isotropic fine-scale turbulence had been

well developed and was supported by experimental data.

Scientists adopted the similar theory on studying acoustic

backseattering from oceanic microstructure.

Tatarski (1961) was the first to calculate the acoustic

scattering cross section from isotropic refractive index

fluctuations in the ocean.

Munk & Garrett (1973) presented the acoustic cross section from

horizontally layered refractive index fluctuations as a function

of the one-dimensional spectrum of the deviation from the mean of

the refractive index, and the sonar wave length.

Attempts at measuring the acoustic scattering from temperature

microstructure, especially from internal waves, have been made

since the 1970's.

Proni & Apel (1975) reviewed the calculations of Tatarski (1961)

and Munk & Garrett (1973) and pointed out that there should be a

higher acoustic scattering cross section from layered

fluctuations than from nonlayered fluctuations. They used a high-

frequency (5- to 25-kHz) acoustic echosounder to observe internal

waves and compared the acoustic data with simultaneous

temperature data (using a towed thermistor). A high degree of

correspondence between them has been found. However, the question



concerning which type of scatterer was contributing which part of

the acoustic return remained.

Kaye (1978) found a correlation between acoustic scattering

intensity at 87.5 kHz and small scale vertical temperature

gradients. He suggested that the measured scatterers should not

be considered as passive scalars of the temperature profile, even

though they may serve as tracers of internal wave activity.

High-frequency (wave length x 400m), near-surface internal wave

groups in the deep ocean were said to be observed by Proni et al.

(1978). The acoustic return was observed from a depth of 25m to a

depth of about 70m, which was received by a ZOkHz echosounder

towed a few metres below the surface. The scattering strength of

the internal wave groups observed was not mentioned. Since

plankton tend to stay in a thermocline, it may be plankton that

was scattering high frequency sound. It is uncertain that whether

backscatter from the change of a thermocline alone is detectable

(Clay & Medwin 1977).

Microstructure reflection at 8kHz was reported to be observed by

Kaye & Anderson (1979). A large-aperture planar hydrophone array

was used, which was able to discriminate against biological

scatterers on the basis of wave front curvature. The reflections

were highly directional, with response dropping in excess of 15

dB as the beam steering direction varied from normal incidence to

2° off normal. With an 87.5 kHz echosounder, microstructure

reflections were not seen and most of the reverberation was found

due to discrete point scatterers.



Since acoustic reflection from naturally occurring temperature

microstructure was difficult to detect, attempts were made to

measure scatter from artificially generated turbulence by some

people. Thorpe and Brubaker (1983) discussed sound reflection

from the wake of towed objects, which were two 25kg weights,

tied together, hanging 12m below the ship. The acoustic returns

from such weights were observed with a 102 kHz narrow-beam

fisheries research transceiver sonar in a fresh water lake in

western Australia.

Brekhovskikh (1980) determined the acoustic reflection

coefficient of some particular velocity structure layers, e.g.

the transition layer, symmetric layer and linear layer. But in

nature there is no velocity microstructure shaped precisely like

those mentioned above. Techniques for dealing with more realistic

cases are needed.

Compared with the reflection from oceanic microstructure, the

acoustic scattering from air bubbles in the water and marine

organisms has been more often reported in the literature,

probably because they are stronger scatterers.

Bubble clouds generated by breaking-waves near the sea surface

cause a strong reverberation of mm-wave-length underwater sound.

Detecting and studying bubble clouds by means of acoustics has

been attempted by some people. Thorpe (1986) used an upward-

looking, bottom-mounted sonar, a telesounder, and a dual-beam

side-scan sonar to detect bubbles. He found that bubbles

penetrate deeper as the wind speed increases, the probability

distribution of Mv, the acoustic scattering cross section per



unit volume at constant depth, are close to logarithmic normal,

and the value of My at same depth and same wind speed are greater

in the sea than in the fresh-water loch. Fetch also appears to be

an important variable.

Multichannel false colour echograms were sometimes used as a

tool for biological interpretation in the ocean (Cochrane &

Sameoto, 1986). 50 kHz and 200 kHz acoustic backscattering

profiles were obtained and compared with direct multilevel net

sampling data in the central Scotian Shelf. The results showed

that strong 200 kHz scattering layers below 100 m depth were

compatible with "Rayleigh" scattering from copepods, layers in

the upper 60 m scattering with nearly equal strengths at 51 kHz

and 200 kHz were ascribed to comparatively large fish scattering

in "geometric" regime. (A "Rayleigh" scatterer is an object whose

dimensions are much smaller than the wave-length of the incident

sound. Its acoustic cross section increases as the fourth power

of the sound frequency. A "geometric" scatterer is one whose

dimensions are much larger than the wave-length of sound and its

acoustic cross section is invariant with the sound frequency.)

Volume backscattering from plankton both in the ocean and lakes,

which varies with sound frequency, time of day, and depth, has

been investigated by many people. See Beamish (1971), Hall

(1973), and Clay & Medwin (1977).

Suspended particles are considered to be very weak scatterers due

to their small size and non-resonant behaviour, unless their

density is very high, Proni et 31., (1976).



This thesis reviews the previous research and results on acoustic

scattering in the upper ocean, and presents some results on

studying acoustic reflection from natural temperature

microstructure and biological scatterers. A newly developed

numerical technique for calculating reflection coefficient of

temperature microstructure of any shape is described in Chapter

3. Then comparison is made between acoustic scattering from

temperature structure and other scatterers in the upper ocean.



2. EXPERIMENTAL METHODS

 

2.1 Echosounder

An echosounder with a 50 kHz transducer, 9° of beam width and

1.632 ms of pulse duration, was used for measuring the acoustic

backscattering in the upper layer of the water. It has a colour

video display which presents the echo level as one of the eight

colours each 5 dB apart in acoustic intensity.

The echosounder was calibrated with a standard hydrophone in

order to determine the relation between the colours shown on the

video display and the the echo level at the transducer.

The calibration of the echosounder is shown in Appendix A.

The echosounder was set to have constant gain with time where it

had maximum detecting ability.



2.2 Measurement of Temperature Microstructure

PORPUS (Probe for Repeated Profiling of Upper*0cean

Stratification) was used to measure temperature microstructure in

Woronora Dam, a fresh water reservoir in the south of Sydney on

which DSTO (the Defence Science and Technology Organization)

maintains a small pontoon. It was designed to resolve temperature

fluctuations to better than 1 m'C over vertical scales of 0.7 to

3 cm in order to observe gravitationally unstable structures in

the upper layer of oceans or lakes. A schematic of PORPUS is

shown in Fig.2.l. The probe consists a streamlined body, a

thermistor, three primary fins at the rear of the body to provide

rotational inertia and increased drag to reduce the probe's

terminal velocity. The fall rate was checked by means of tracking

with an echosounder.

Data was sent to the surface via a teflon-coated co-axial cable

which, with the thermistor, formed an arm of a bridge circuit.

The output voltage from the bridge was digitised by an HP-34783

multimeter, then recorded via HP-IB interface onto an HP-SSB

microcomputer.

This device is described in more detail in Padman & Jones (1987).

An example of temperature microstructure measured by PORPUS and

plotted out by an HP-85B microcomputer is shown in Fig.2.2. The

data are then used to calculate the reflection coefficient of the

temperature structure. This will be described in Chapter 3.



3. ACOUSTIC REFLECTION FROM A TEMPERATURE MICROSTRUCTURE

3.1. Introduction

Formulas of the reflection coefficient for a few simple forms of

sound velocity structure have been reported previously, such as

the 3 formulas presented in Brekhovskikh (1980). These are

reproduced below.

Eq.3.11 is for the reflection coefficient of a transition layer

(curve 1 in Fig.3.l). Eq.3.13 and Eq.3.14 are for a linear layer

(curve 2 in Fig.3.l).

sinh[nS/2(1‘(1-N)*]R z ____________________ (3.11)
sinh[ns/2(1+(1-N)*]

where N is a constant defined by the maximum sound

velocity difference of a transitional layer.

S E 2ko/m is the relative thickness of the layer.

m is a constant related to the thickness of the

layer. I

k0 is the wave number in the medium from which the

sound is incident.

sinh(u lnn1)
R = ----------------- (3.13)

[sinh2(u lnn1)+4u2]i

for koLA < 1/2,
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where n1 E k/ko is the index of refraction for zzL/2.

k is the wave number in the medium considered.

u = [l/4-(koLA)2]§, L is the thickness of the

layer. A = n1/(l - n1).

sinh(w lnni)
R = ———————————————————— (3.14)

[sin2(w lnn1)+4w2]§

for koLa > 1/2,

where w = [(koLA)2-l/4]*.

The two sound velocity structures in Fig.3.l are not likely to

be found in nature. The naturally measured ones are completely

irregular, see Fig.2.2, and their reflection coefficient can not

be expressed with formulas like those mentioned above.

A numerical calculation technique has been developed to calculate

the reflection coefficient from temperature microstructure of

general form. The main idea is dividing a region of temperature

gradient into a large number of thin layers such that each layer

is thinner than the wave length of incident sound and adding both

the amplitude and the phase of the reflection coefficient at each

thin layer together, ignoring the multiple reflections (these

will be discussed in Appendix B). The reflection coefficient

becomes

2
3 II

"
M
:

1Rjexp(—i2kjd) (3.15)



11

where R, is the amplitude of the reflection coefficient

of Number j layer.

k is the wave number.

d is the thickness of each thin layer.

Eq.3.15 can be only calculated with the aid of computer because

reflections from thousands of thin layers are involved. Full

details of this technique is described in the following three

sections.
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3.2 Numerical Calculation of The Reflection Coefficient for a

Linear Layer

Consider a free plane wave, normal incident on a sound velocity

structure in water (Fig.3.2). For the convenience of calculation,

we make the following simplification: 1. water is an idea medium

in which no energy loss will occur when a sound wave is

travelling. 2. the water is a Newtonian fluid. 3. the water is

macroscopically static. 4. the sound velocity structure in water

is horizontally homogeneous.

The linear layer in Fig.3.2 is divided into a large number of

thin layers with equal thickness 62 such that each layer is much

smaller than the wave length of incident sound. i.e. 62 << x.

Since the multiple reflections have been ignored, the reflection

coefficient for sound pressure at the single step in position 2

is identical with the one when this step exists alone. i.e.

5V = (BiCi- Bi-lCi-1)/(Bici+ Bi-lCi-l)

....(3.20)

where B is the density of the water.

C is the sound velocity.

Since there is no impurity in water, the assumption Biz 81-1 is

reasonable.

If G is the gradient of the linear layer, we have

Ci = Ci—1+GGZ
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Ci—1 = Co+Gz

where Co is the sound velocity at z = 0.

Co ‘Co

G = ----- is the gradient of sound speed, in 1/5.

D

D is the thickness of the linear layer.

Co is the sound speed at z=D.

Then we get

6V = (Ci- Ci-1)/(Ci+ Ci-l)

Géz/(2Co+2Gz+G62)

Considering the phase, which equals 0 at z = O, the complex

reflection coefficient is

6R Gézexp(-i2kz)/(ZCo+ZGz+Géz)

G62exp(-i4an/C)

2Co+ZGz+G62

Gexp[-i4an/(z+Co/G)/G]
= ------------------------ 62 (3.21)

2[Co+z(Cn-Co)/D+Géz/2]

where F is the sound frequency.

We will show that since the change in speed of sound is small

through the whole layer, i2kz z i2koz

Since I(Cp - Co)/Co| (< 1, z 5 D and 62 << D, we have

---------- 5 (CD - Co)/2 << CO

and G62/2 .<. GD/2 = Cp - Co << Co

and z 5 D << Co/G
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Eq.3.21 becomes

G exp(-i4nz/K°)
6R z ————————————————— 62 (3-22)

where ho is the wave length at z = 0.

when 62 is approaching zero, we have

G exp(-i4n2/K°)
dR : ----------------- dz (3'23)

taking the integral of Eq.3.23, we get the reflection coefficient

of the linear layer,

J» G 2RD
0 dR : -—- sin(—i-)exp(-i2Nd/Ko) (3'24)

AIF °

where F is the sound frequency.

Eq.3.24 shows the reflection coefficient for sound pressure.

The square of R'is the reflection coefficient for sound

intensity,

G 2nD
R2: R R" = ( ————— sin -i—)2 (3.25)

4nF °

Fig.3.3 shows the changes of the reflection coefficient R2 as a

function of the thickness of the layer.
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3.3. The Reflection Coefficient of Arbitrary Profiles

Consider a sound velocity microstructure layer such as that in

Fig.2.2. Firstly we divide the layer into n small thin layers

with equal thickness d (hereunder we refer to d as " the

numerical step size' or "sampling separation"). n must be large

enough that the numerical step size d meets the following two

requirements (The reason will be given in Appendix C. See also

Section 3.6):

(l). d S ko/4, where Kois the incident sound wave

length.

(2). d << h, where h is the thickness of the

fluctuation with the smallest vertical

scale in the sound velocity microstructure

such that the change of sound velocity in each

thin layer is approximately linear.

Now we have

Gj = constant

where Gj is the sound velocity gradient of Number

j small layer, which is defined as

(Cj-Cj—1)/d,

where Cj is the sound velocity at the top side

of Number j layer, C3—1 is the sound velocity

at the bottom side of Number j layer, d is the

thickness of Number j layer.



by using Eq.3.23,

thin layer J, we 0

Number j layer

R5

where P

k0

13

d

2:

or Rj =

or R5 =

G

where -

16

the expression for a small region within the

an get the reflection coefficient of

8nCo 25-1

G5
---[(sin2kon - sin2k023-1) + i(cosZkon
8nF

- cosZkOZj—1)] (3.31)

= Co/l° is the frequency of the incident

sound.

2n/Ko is the wave number at z = 0.

jd is the depth of Number j layer, where

is the thickness of Number j layer.

'-1 = (3‘1)d.

Gs
----- {sin2kojd - sin2ko(j-l)d + i[c052kojd
8uF

- cosZko(j-l)d]}

sinko d
______ Gj[coskod(2j—1) — isinkod(2j-1)] (3.32)
4nF

stinkod
-------- exp[-iko(2j-1)d]

4nP

jsinkod
------- is the modulus of the reflection
4nF

coefficient in Number j layer, while

e xp[-iko(2j-1)] is the phase.
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By adding up the reflection coefficient, including the moduluses

and the phases, of all n layers (because the acoustic pressure of

the reflections can be added), we can get the reflection

coefficient of the whole sound velocity microstructure (see

Appendix B):

l
n n . u

R = £1R5 = --- £1GjSln(kOd)[COSk0(23'l)d
— 4nF —

r i sinko(2j-l)d] (3.33)
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3.4. The Reflection Coefficient of Two Transitional Layers and

the Comparison with Theoretical Results

3.4.1. A Linear Lager

We wish to compare the numerical technique with the known

analytical solution for particular profiles.

The sound velocity profile to be considered is shown in Curve 2,

Fig.3.l.

Fig.3.3 shows the reflection coefficient of the linear layer

calculated with numerical technique, Eq3.33, which is compared

with the theoretical result from Eq.3.14. They match closely.

As a matter of fact, under some conditions Eq.3.14, the

theoretical formula of the reflection coefficient at a linear

layer, can be simplified as Eq.3.25, the limit of the numerical

formula for calculating the reflection coefficient of a linear

layer. This will be proved in the following.

There are two formulas, Eq.3.l3 and Eq.3.14, for the linear layer

under two different cases, (1) koLA < 1/2; (2) KoLA > 1/2. We

will choose Eq.3.14 to discuss because, in the water of oceans or

lakes, case 2 is always appropriate when sound of not very low

frequency is considered. This is described bellow:

Because the index of refraction for 2 z L/2

m = kl/ko = Co/C1



we get

and the gradient of sound velocity

G = (C1'Co)/L

so we have

2nFLCo

koLA = ---------

Co (Cl ‘00)

2nF

G

then for koLA >> 1, G << 2xF.

Since G is never larger than 100 (1/5) in the water, if the

frequency of sound used is much higher than G/2n, koLA >> 1 is

tenable. Then we can make the following simplification,

[(koLA)2-1/4]92 I

Eq.3.l4 becomes



sin(w lnn1)

[sin2(w 1nn1)+4w2]*

sin(koLA lnn1)

[Sin2 (k0 LA lnn1)+4(koLA)2]i

sin(koLA lnn1)

2koLA

koLCo 1n(Co/Cl)
sin[ -------------- ]

C1-C0

4nF/G

1n(1+6C/Co)
sin[-koLCo ----------- ]

as

where 6C = Cl-Co.

If lac/col (( 1 is satisfied, we have,

ln(l+6C/Co) 2 GC/Co

then the reflection coefficient

sin(-koL)
R = ---------

4nF/G

-Gsin(koL)

4KF

and

Gsin(koL)
R R' = [ ----------- ]2

th

20

which is the same as Eq.3.25, where L = D is the thickness of the

layer.
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3.4.2. A Transitional Layer

Curve 1 in Fig.3.1 shows the sound velocity profile of a

transitional layer.

Fig.3.4 is a set of comparisons between numerical results and

theoretical results when the thickness of the transitional layer

increases. We can see that, when the the numerical step size d is

not much smaller than the wave length A., i.e.

K./d < 4

there is a large error in all 6 cases in Fig.3.4.

When Ao/d > 4

we observe good match between the numerical and theoretical

results in (c), (d) and (f) in Fig.3.4 (See also Appendix C).

Errors occuring in (a) and (b) are due to the limit of the

precision of the computation while that in (f) is because the

thickness of the transitional layer is too small (compared with

the acoustic wave length) i.e.

koh < 1

The second requirement is not satisfied (Here the thickness of

the transitional layer, h, is "the smallest vertical scale of

sound velocity fluctuation")

Details will be discussed in Section 3.6.
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3.5. Acoustic Reflection Coefficient of Measured

Temperature Microstructure

3.51. Measured Temperature Microstructure

In fresh water the sound velocity is a function of temperature

and water pressure (Clay & Medwin 1977):

C = 1402.3+4.95T-0.055T2+0.00029T3+0.016z (3.51)

where C is the sound velocity, m/s.

T is the water temperature, °C.

2 is the depth of water, m.

With the aid of Eq.3.51 we can transfer the data of temperature

microstructure, measured with PORPUS probe which is described in

Chapter 2, into sound velocity. Then we can use Eq.3.33 to

calculate the reflection coefficient of such a structure.

Firstly we should examine if the data collected with the PORPUS

probe meet the two requirements when using Eq.3.33. i.e.

(1). the numerical step size must not be larger than

the 4th of the acoustic wave length.

(2). the numerical step size must be much smaller

than the smallest vertical scale of the step in

the sound velocity microstructure.
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The fall speed of the PORPUS probe is adjustable, ranging from

22cm/s to 40cm/s while the sampling separation d (this means over

every d cm in the vertical scale a temperature value is recorded)

changes from 0.7097cm to 3cm.

If we choose sampling density of d = 0.7097cm, we have better

depth resolution.

Fig.2.2 is a temperature microstructure measured with PORPUS

probe in Woronora Dam in 25/5/1989. The fall speed of the probe

was 0.22m/s. The vertical interval was 0.7097cm. If acoustic

reflection for SOkHz is required, the acoustic wave length X0:

C/F, where C is the sound velocity of water, which is around

1480m/s, F is the frequency. Then X0: 2.96cm. Thus the

requirement d s Ko/4 is satisfied.

We also have to find out whether the second requirement d << h is

met.

A temperature microstructure can be seperated into two parts: the

smooth mean profile and the fluctuating part whose distribution

of energy is determined with the so-call temperature-gradient

spectrum. Kolmogorov (1941) proposed that all turbulent velocity

spectra are reducible to a single universal curve for the highest

wave-numbers and that, under certain conditions, dimensional

analysis may be used to predict spectral shapes. Identical

arguments predict that the fine structure of conserved

dynamically passive scalar fields mixed by turbulence will also

be universal similar (See Gibson & Schwarz, 1963). Batchelor

(1959) determined the form of the temperature spectrum for
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higher wave numbers where viscous and diffusive effects are

important (See Newberger & Caldwell, 1981).

According to Batchelor's temperature spectrum (Gibson & Schwarz,

1963), the perturbation of temperature approaches to zero rapidly

when the wave length of its Fourier component is very small. If

we can prove that when the vertical scale is smaller than the

depth resolution of PORPUS, the temperature fluctuations are so

little that they can be ignored, then we can say the second

requirement of the numerical technique is fully satisfied.

The one dimensional Batchelor spectrum for temperature gradient

can be written as (Newberger & Caldwell, 1981)

S(k) = (Kg)*X(knD)’1f[(ZQ)*k/kn] (3-52)

where q is a universal constant,

k5 is the Batchelor wave number, k3=(ev'1D‘2)*,

e is the dissipation rate for kinetic energy,

v is the kinematic viscosity,

D is the thermal diffusivity,

X is the dissipation rate for temperature

variance satisfying

dT

X = 6DioS(k)dk = 6D(----)2

dz

the universal function is given by

(2n)'*y[exp(-%y2)-yiyeXP(-%t2)dt]

(2x)'*yeXP(-%y2) - éyzerfc(Y/T2) (3-53)

f(y)
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The spectrum is shown in Fig.3.5.

When the wave length K">0. or Y">m. f(y)-->O.

The average of square root of the gradient of temperature

fluctuation (hereunder we refer to it as "average fluctuation

gradient") for those short wave-length components, k z k., can be

calculated from

 

dT J'

(--)2 = 1:3(k)dk
dz

= X(6D)‘1[(7r/2)*y3erfc(y/f2)
+(1-y2)exp(-%y2)] (3.54)

where y = 2n(2q)’/K./k3

We assume that a temperature fluctuation component with a wave

length K is equivalent to a temperature step whose vertical scale

is equal to K/4 in the temperature microstructure. See Fig.3.6.

To calculate the average fluctuation gradient for those

perturbations whose vertical scales are smaller than 0.7097cm, we

just calculate that for those components whose wave length

KS4*0.7097cm=2.84cm.

We choose the values of the relevant factors as below ( High

values of e and X and low value of q are chosen to enable that

S(k) reaches its high value extreme for a given high wave number,

or small wave length, in the range when y>l, for the following

discussion is within this range. Thus if the following conclusion



under this high value extreme is correct, it will be also valid

when the average or low values of e and X, and the average or

high value of q are chosen.):

5:10'2cm2/s3,

D=0.l9cm2/s,

v=0.l4cm2/s,

q=2.4,

X=1o-4'c2/s.

Applying Eq.3.54, we get the average fluctuation gradient for

A52.84cm

= 5.86"10'5 oC/cm
122.81”:-[SET  

while the average fluctuation gradient for all wave length is

= (X/6/D)’ = 9.4*10'3 °C/cm
02A:-[ET  

and

 

From Eq.3.33 we know that the reflection coefficient is
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proportional to the gradient of the sound speed which is

proportional to the temperature gradient in the fresh water. So

the reflection coefficient is

dC dT dT

R e lOlog(---)2 E lOlog(--)2= 20log(--)

dz dz dz

then the difference between the reflection coefficient of

the average fluctuation gradient for those wave length

0 s A s w and for those A s 2.84 is

6R = Rogxsa'RA52.84 = 20103(l60) = 44dB

The above analysis suggests that the depth resolution of PORPUS

is sufficient for measuring the significant fluctuations in the

temperature microstructure. The second requirement for

calculating the reflection coefficient of a temperature

microstructure can be satisfied.
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3.52. The Acoustic Reflection from a Measured Temperature

Microstructure

We wish to predict the reflction from the temperature depth

measurements with a sound pulse length of r (ms) at 50 kHz in

Woronora Dam.

When a PORPUS probe is falling vertically through the water,

a temperature value is read every d unit in depth. See Fig.3.8.

We divide this structure into n layers with equal thickness d. At

number j layer the temperature difference is Tj'Tj-l. According to

Eq.3.51 we get

dC 3C dT 3C

d2 2-“! 3T d2 32 z=Jd

dT
= (4.95-0.11T5+0.00087sz)‘~ + 0.016

dz z=jd

dT
Because temperature gradient -- is (Tj-Tj—1)/d, so

dz 1 = j d

65 = (4.95—0.11Tj+0.00087T52)(Tj-T5—1)/d

+ 0.016 (3.55)

Using Eq.3.33 and substituting Eq.3.55, we get the reflection

coefficient from part of this temperature structure ("part of

it" means n thin layers of the total structure, the thickness of

each thin layer is d.)
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1
R = -_— g1sin(kod)[(4.95-0.11T,+0.00087T32)

47:1? "

(Tj-lj—1)/d+0.016][cosko(2j~l)d —isinko(2j-1)d]

...... (3.56)

where ko is the wave number in the medium where sound

is incident.

d is sampling separation, m,

P is the sound frequency, Hz,

T3 is the water temperature at the bottom side

of Number j layer, °C,

n, the total number of thin layers, is determined by the pulse

length of the echosounder L and d,

I
" ll 0 d

where C is the sound velocity, m/s,

t is the pulse duration, 5.

As shown in Fig.3.9, the thickness D, which contains n thin

layers of reflector, is such that, with a pulsed echosounder, the

reflection produced by all n layers arrives back at the receiver

at the same time. When a sound pulse is incident on these n

layers, the reflection wave of the front end of the pulse by

Number n layer at r2 will arrive back at the receiver at the same

instant as the reflection wave of the rear end of the pulse by

Number 1 layer at r1. D must accordingly be L/2 = Cr/2.
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So we have

n = D/d = Cr/2/d

where d is the numerical step size or the sampling

separation.

The pulse duration of the echosounder used in Woronora Dam was

1.632 ms. So D=L/2=1480x1.632X0.001/2=1.20768 m. If the sampling

separation d = 0.007097m, then

n = D/d = 170

The calculation of Eq.3.56 was completed with an HP-85

microcomputer, which plotted the reflection coefficient against

depth from the temperature structure shown in Fig.2.2 when the

sound pulse was travelling through it. The accuracy of the

computer is 10(‘11).

Each point at a depth of z in Fig.3.7 represents the reflection

coefficient from the temperature structure at a depth of from 2

to z + Ct/2 that contains n layers. Since the sampling separation

for measuring temperature microstructure on the three dates shown

in Fig.3.7, d=0.7097 cm, the two requirements for the calculation

of 50 kHz acoustic reflection from those three microstructure are

satisfied (see discussion on Section 3.51).
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3.6. The Error of the Numerical Calculation Technique

When using Eq.3.56 to calculate the reflection coefficient from a

temperature microstructure, if the two requirements of Section

3.3 are not met, or the temperature probe for measuring

temperature microstructure has not enough resolution, or the

computer precision is not high enough, errors will occur.

The following analysis is based on a series of plots of

reflection coefficient from a transitional layer versus

differentXm/d, where Kois the sound wave length and d is the

numerical step size (Fig.3.4). These figures reveal three causes

of the errors.

3.6.1. Error Occuring When Ao/d < 4

Let us consider a case where the acoustic wave length is not

small compared with the numerical step size.

Consider a transitional layer with small change of sound

velocity, which is expressed as

 

1+exp(mz)
C = C1 ------------------ (3.61)

l+exp(mz)-Nexp(mz)
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where m — 3.52/h, is a constant. h is the thickness of

the layer,

N = (C12—C22)/Cz2

N determines the total change of sound velocity in the layer. we

choose N = 0.001.

dC ClmNeu 1
—- = ------------------------- (3.62)
dz 2(l+e'l) Ne"

(1- ———————— M
l-en

Nell

because N << 1, ------ << 1
l+eu

we can approximate Eq.3.62 by a series,

dC C1mNe"
__ z _________ (3.63)
dz 2(1+e-=)*

substituting Eq.3.63 as the gradient at depth of z in Eq.3.33, we

get the reflection coefficient of the transitional layer,

R = ------ ‘g ------- sin(kod)[coskod(Zj-1)
8nF P (1+e")

- isinkod(2j-l)] (3.64)

If d > Ko/4, there will be less than two samples per cycle in a

sine (and cosine) component. See Appendix C. Error will occur, as

illustrated in Fig.3.10.
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3.6.2. Error Occuring When d > h

If the numerical step size d is larger than that of the

transitional layer h, in other words, to replace a transitional

layer with a linear layer whose thickness is larger (than that

of the transitional layer, see Fig.3.1l), one can not expect the

reflection of the two layers will be close to each other because

the two different profiles are not close at all. Here is an

example when the thickness of the transitional layer, h, is

smaller than the sampling separation, d, the numerically

calculated reflection coefficient of the transitional layer will

match the analytically calculated one (see Fig.3.12).

The thickness of the transitional layer is

h = 3.52/m = 0.07cm

and for a SOkHz sound wave, the wave length

A0: 2.96cm

We will discuss how the error of the numerically calculated

reflection coefficient of the transitional layer changes from the

case when d >> h to that when d << h: In Fig.3.12 we can see when

d > h (or ko/d < 41), there is a big error of the numerical

result in this Ko/d range. Even when 1 S h/d < 1.4 (or

41 S ko/d < 58), there is still a small error. Only when d << h

(or Ko/d > 58), do the numerical result matches the theoretical

result well. See also 2 in Appendix C.

If we take this transitional layer to be the the fluctuation with

the smallest vertical scale in the sound velocity microstructure,
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we can see why the second requirement in Section 3.3 is essential

to the numerical technique for calculating the reflection

coefficient of a sound velocity microstructure.



35

3.6.3. Error Caused by the Computer

The precision of computer may limit the accuracy of the numerical

technique because the acoustic reflection coefficient is usually

very small and that it might be beyond the precision of the

computer.

Fig.3.l3 is a plot of reflection coefficient when the thickness

of the transitional layer h, is 9.8cm and the acoustic wave-

length K0 is 2.96cm (we assume that the speed of sound of the

medium where z = -m, Co = 1480 m/s and the frequency of incident

sound F = 50 kHz). The change of sound speed of the transitional

layer is 0.726 m/s. Such a layer has a reflection coefficient of

-362.8dB, or 7.08 8'19, which is beyond the precision of the

computer used for the numerical calculation. This does not happen

when the reflection coefficient of the layer is not so small, see

(c), (d), and (e) in Fig.3.4.

When Ao/d > 4, d ( 0.74cm. The requirements

d << h

and d S Ko/‘F

are satisfied. But there is still a large error between the

numerical and the theoretical results. The reflection coefficient

which was numerically calculated stays around -290 dB. This is

because of the limit of the precision of HP-85 which was used for

doing the numerical calculation.
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The computer has a precision with a mantissa of 12 digits.

-:

When |mz| s 2, the value of --E---- in Eq.3.64, the reflection
(“en )2

coefficient of a transitional layer, ranges from 0.1 to 0.25, see

Fig.3.14, and the computing error is

E = 10'12

The error of the reflection coefficient is approximately (See

also Eq.3.64)

C1Nmsin(kod)
5R : ———————————— E (3.65)

when Ko/d >> 1, sin(kod) z kod 2nd/Xo. Eq.3.55. becomes

Since there are n thin layers involved, if we do not consider the

phase component, [coskod(2j-1) - i sinkod(2j-l)], the total error

of the reflection ceofficient is estimated as

2010g(26R) 20103(ndx10'15)

ZOlog(hx10‘1‘)

I? -300 (dB)

Using double precision will double the accuracy. An example is

shown in Table 4 of the reflection coefficient of a transitional

layer (when N=0.001, m=0.36) calculated by the numerical

technique.
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Precision of computer Reflection coefficient

32 bits (real*4) -220dB

64 bits (double -362.5dB
precision)     

* The theoretical result is ~362.8dB.

Table 4.Double precision makes the result of the

numerical calculation more accurate.

In examples such as those in Fig.3.7 the calculated reflection is

much greater than ~220 dB. Thus not only the two requirements for

using this numerical technique but the precision of the computer

used were satisfied.
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4. THE TYPICAL ACOUSTIC SCATTERING IN THE UPPER WATER

4.1 Introduction

50 kHz acoustic scattering in the upper layer of the oceans and

lakes has seldom been reported in the literature. However, the

few references all suggest that the biological scattering

dominates over the upper ocean scattering.

Cochrane & Sameoto (1986) compared 51 kHz and 200 kHz acoustic

backscattering profiles with direct multilevel net sampling data,

showing that the scattering above 60 m was from fish and the

scattering at a depth between 100 m and 250 m was from copepods.

The scattering strength ranged from -60 dB to -90 dB.

To the best of our knowledge, no 50 kHz reflection from

temperature microstructure has been reported.

At other frequencies, acoustic scattering from internal waves and

microstructure was reported to be observed by some authors (Proni

& Apel 1975, Kaye 1978, Proni et. al. 1978). But the cause of the

scattering remained uncertain because of the biological masking.

A successful measurement that has been reported, of the acoustic

reflection from natural microstructure alone, was made by Kaye &

Anderson (1979) at 8 kHz. Their unique technique enabled the

discrimination between reflectors and discrete point
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scatterers. The high directivity of the microstructure reflection

they have observed might suggest that layered microstructure is

composed of sheet reflectors. And the fact that the

microstructure had not been seen with a 87.5 kHz echosounder

might suggest that the microstructure reflection was inversely

proportional to the incident sound frequency (at least within

this particular frequency range).

For the last two years, we have been trying to measure the

acoustic reflection from the temperature microstructure with a

50 kHz echosounder in Woronora Dam. However, we found that the

acoustic returns were dominated by volume scattering with a

scattering strength of more than -85 dB, which did not correlate

with the simultaneous temperature profile and was non-

directional. The volume scattering was considered to be from

biological organisms. The reflection from temperature structure

predicted was much weaker.
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4.2. Woronora Experiments

Over 20 measurements of acoustic backscattering at 50 kHz have

been made in Woronora Dam since 1986. The water depth in the

centre of this freshwater reservoir is about 56 m.

Twelve scattering experiments representing 4 different seasons

(see Table 5) were averaged and the typical acoustic scattering

profile in Woronora Dam is shown in Fig. 4.1. The acoustic

backscattering strength is defined as

Is

s = 1og(—-——)
Ii

where I. is the scattering intensity of a unit volume

measured one metre from the equivalent acoustic

centre of the scatterer,

Ii is the incident intensity also measured at the

same place.

The two summer profiles were averaged and the variance of the

results is shown as bars in Fig.4.2.

 

Spring Summer Autumn Winter

30/10/87 4/11/87 9/4/86 13/7/87
8/8/88 6/12/88 10/2/88 13/5/88

26/2/88 13/7/88
14/4/88
14/4/88

Table 5. Dates when acoustic data were collected
in Woronora Dam.
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Three temperature microstructure profiles were obtained with

PORPUS probe on 8/8/88, 6/12/88 and 25/5/89. The temperature

gradient in summer is normally larger than in winter. The average

acoustic scattering is compared with temperature gradient,

however, no correlation has been found (see Fig.4.2).

Simultaneously measured acoustic scattering is then compared with

temperature microstructure both in summer and winter (see

Fig.4.3). The scattering profile does not follow the rhythm of

the microstructure. No visual correlation is evident between

them. It is clear that the acoustic scattering measured in

Woronora Dam was not from temperature microstructure.

On two occasions, net sampling was taken in Woronora Dam. The

results showed that the average concentration of copepods was up

to several hundreds per cubic metre in the layers of top 20 m.

This suggested that biological activities are the cause of the

dominant 50 kHz acoustic volume scattering in this freshwater

reservoir.

Compared with biological scatterers, the acoustic reflection from

temperature microstructure is a weak reflector. The predicted

reflection coefficient from microstructure is less than -90 dB

both in summer and in winter while measured acoustic scattering

exceeded -60 dB (see Fig.3.7, Fig.4.1, Fig.4.2 and Fig.4.3).

The acoustic returns from temperature microstructure would be

certainly "drowned out" by the biological scattering.
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4.3 Discussion

The backseatter calculation assumes the vertical gradient of

temperature is much larger than the horizontal. As this is a very

reasonable assumption we must conclude that since our calculated

levels of back-reflection are much less than that observed, the

dominant scatter in this fresh water reservoir is not

microstructure. It is difficult to imagine that sediments in

suspension play an important role in acoustic backseatter from

the upper water when there has not been recent significant

runoff. The difference between the measured reflections and those

calculated was large on all occasions investigated. We conclude

that the dominant scatter must be biological in character.

It is suggested that further experiments to apply this numerical

technique be carried out (1). in the "clean water" without volume

scatterers but with high value of X (the dissipation rate for

temperature variance) so that large microstructure reflection can

be delected alone; (2). using very low threshold echosounder that

is able to measure weak reflection from temperature structure;

(3). with lower frequency of sound to obtain stronger reflection.
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5. CONCLUSION

This thesis develops a numerical technique to predict the

acoustic reflection from an arbitrary sound speed microstructure

in the ocean (or a temperature microstructure in the fresh

water).

The ocean is often considered to be horizontally homogeneous.

When any part of the vertical sound speed structure of interest

is divided into a large number of thin layers and the thickness

of each thin layer d satisfies 2 requirements: (1). d5 Xo/lo, K0 is

the wave length of the sound used for detecting, (2), d<<A_.‘,

Ana; is the wave length of the most energetic Fourier component

of the sound speed structure, each of these thin layers can be

treated as a linear sound speed layer. By adding up the

reflection coefficient of each thin layer, we can get the total

reflection coefficient of that part of sound speed structure.

This numerical technique is able to reproduce the theoretical

formulas for calculating the reflection coefficient of two

analytically described transitional layers.

An attempt to verify this numerical technique by experiments were

made. The temperature microstructure was measured with PORPUS

Woronora Dam. The numerical technique was used to predict the

acoustic reflection from those temperature structure. But the

results showed that the reflection was too weak to explain the

observations. Even the strongest reflection at 50 kHz (with a
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reflection coefficient of ~90 dB) from the temperature

thermocline was below the threshold of the echosounder.

Conversely the scattering from the volume scatterers either

biological ones or air bubbles in the upper layer of the water

was much stronger (the scattering strength measured was ranging

from -40 dB to -80 dB).
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APPENDIX A

Calibration of Echosounder - CS-108

1. Source Level (SL):

The calibration of the 50 kHz echosounder was carried out in

Woronora Dam. The arrangement of devices for calibration is shown

in Fig.Al. The settings of the echosounder was:

10
Range = 60 m

Threshold = 0

Pulse Length = 1.632 ms (at max.)

The standard hydrophone used as a receiver for calibration had a

receiving response at 50 kHz of -207 dB re 1 volt/uPa as stated

in the manufacturer's calibration.

The depth and direction of the transducer was adjusted so that

the hydrophone was at the centre of the the beam of the

transducer.

The voltage of the received signal was:

SO

Vetf = ------ = 0.707 volt
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According to the definition of receiving response M:

V

M = 20103---

P

where P is the acoustic pressure at the

hydrophone, in uPascal.

V is output voltage of the hydrophone,

induced by the acoustic pressure, in volt.

we have

ZOIOgP 2OIOgV - M

-3 + 207

204 dB re 1 uPa

Since the source level is the acoustic pressure (P1) measured one

metre away from the emitting transducer over reference sound

pressure, and

where r is the distance between the transducer

and the hydrophone, and was 3.048 m.

we have 2010gP1 = ZOIOgP + 2010gr

204 + 9.6

213.6 (dB) re 1 uPa

so the source level is

P1

SL = 2010g--—‘ = 213.6 dB re 1 uPa

Po

where P0 is the reference acoustic pressure. In

here, it is 1 uPa.
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2. The Relation Between Echo Level (EL) and the Colours Shown on

the Screen of the Echosounder.

The calibration was also carried out in Woronora Dam. The

arrangement of the devices for calibration is shown in Fig.A2.

The settings of the 50 kHz echosounder is the same as that in

Section 1 in Appendix A.

The standard hydrophone used as transmitter had a transmitting

response at 50 kHz M = 137 dB re 1 pPa/volt.

Since the effective voltage of the transmitting signal

V1 = 28.28 volt, the transmitting sound pressure measured 1 m

away from the hydrophone is

2010gP1 : 2010gV1 + M

= 166 dB re 1 uPa

The acoustic pressure received at the transducer is

2010gP2 = 2010gP1 — ZOlogr

where r is the distance between the hydrophone and

the transducer, is 4 m.

so 2010gP2 = 154 dB re 1 uPa

The voltage induced by this sound pressure P2 at the transducer

V2 = 0.035 volt.
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We can calculate the receiving response of the transducer

» n '= 2010gV2 - 2010gP2

: '38.15 ' 154

= -192.15 dB re 1 volt/uPa

The measurement of the internal circuit of the echosounder

showed that a certain colour on the video display represents a

certain SdB range of the input voltage from the transducer

(induced by the incident sound pressure). The relation between

the colours and the input voltages is shown in Table A1.

 

Colour Input Voltage (dB re lvolt)

red -72
orange -77

yellow -82

dark green -87

light green -92

light blue -97
mid-blue -102

Table A1. Relation between colours and

input voltage.

Consider the receiving response of the transducer M'and Table A1,

we can find out the relation between colours and the echo level

(acoustic pressure). See Table A2.

 

Colour Echo Level (dB re luPa)

red 120.15

orange 115.15

yellow 110.15

dark green 105.15

light green 100.15

light blue 95.15

mid-blue 90.15

Table A2. Relation between colours and echo level.
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3. Calibration for the Volume Backseattering Strength S

Eq.Al is the formula for calculate the reverberation level

(measured at the transducer) RL from volume scatterers

RL = SL + S + 1010gV - 40logr ' 2ar ...Al

where SL is the source level of the echosounder,

in db.

S is the backscattering strength, in dB.

V is the scattering volume which equals to

V = n62r20t/2 (see Fig.3.9).

where 9 is half of beam width, in radius,

r is the range between the equivalent

acoustic centre of volume scatterers

and the transducer, in m,

C is the sound speed of the water, in

m/s.

r is the pulse length, in s.

a is the acoustic absorption coefficient, in

dB/m.

2ar is very small in the near field and can be ignored. So we

have

S = RL - SL - lOlogV + AOlogr ...A2

For the echosounder used, we know
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SL = 213.6 dB

9 = 9°7r/l80°

r = 0.001632 5

and we assume the speed of sound C = 1450 m/s.

By substituting all these into Eq.A2, we get

S = RL + ZOlogr - 203.2 dB ...A3

Now using Eq.A2 and referring to Table A2, we can easily calculate

I

the backseattering strength S when the "colour' of the

reverberation level RL is known and the range r is given. The

result is shown in Fig.A3.
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4. Calculation of Reflection Coefficient of Sheet Reflectors

When a sound wave is normally

reflectors (see Fig.A4), only

reflectors whose thickness is

length can be received at the

incident onto a layer of sheet

the reflections from those sheet

half of the transmitting pulse

same time (see Pg.29).

If we assume that the reflection coefficient of each sheet is

very small and that multiple reflections can be ignored (see

Appendix B), we can calculate

reflectors as

the echo level from the sheet

EL = SL + IOlogR - 2010g(2r) ...A4

where SL is the source level of the echosounder,

R is the reflection coefficient of the layer

of sheet reflectors.

r is the range from the transducer to the

sheet reflector.

Since SL = 213.6 dB, we can change Eq.A4 into

lOlogR = EL + 2010gr - 207.6 ...A5

We can also get the reflection coefficient when the "colour" of

the echo and the range are given. (See Fig.A5)
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APPENDIX B

Procedure of Proving "Multiple Reflections

Can be Ignored" and "R = é1R5exp(-i2kjd)"

1. Multiple Reflections Can Be Ignored

Consider a free plane sound wave, normal incident at a fluid

layer with a constant sound speed gradient G (See Fig.3.2). D is

the thickness of the layer. The linear layer is divided into n

thin layers with equal thickness 62 which is so small that each

thin layer can be treated as a constant sound speed layer.

Fig.Bl shows the first acoustic reflections and second back-

reflections from a layered medium. We give definitions to the

first and second back-reflection as

(1) Back-reflection - the sound reflection ray towards the sound

source.

(2) First reflection - the sound ray induced by the incident

sound that is reflected by the interface of the layers only once.

(3). Second back-reflection - the sound ray induced by the

incident sound that is reflected by the interfaces three times,

travelling in the opposite direction (to the incident sound).

(4). Multiple reflections - the sound reflection rays that have

been reflected by the interfaces of the layers more than once.

Firstly, we prove that the second back-reflections are much

weaker than the first ones that they can be ignored.
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We adopt the 4 simplifications in Section 3.2 in Chapter 3, and

make one assumption: all first and second back reflections from

n interfaces of n thin layer have the same phase at the observing

point z = O. (This is based on the prerequisition: D<<A. See the

first requirement for numerical technique in Section 3.3 in

Chapter 3.)

Normally, the reflection coefficient from sound speed structure

is very small. It can be less than 10“ if 62 is small enough.

So that the refraction coefficient w equals 1 is a reasonable

approximation. Then we can assume that the incident sound

pressure remains constant when the sound wave is propagating

through the layers.

If the incident sound pressure is pi and the reflection

coefficient of each thin layer (sound speed step) is 6R, then the

sound pressure of the first back reflections all n thin layers is

Géz

plnéR — pxn -----

200

GD
: pi —————

2C0

(See also Eq.3.22 in Chapter 3)

The number of second back-reflections is (see Fig.Bl)

N=12+22+32+42+---+(n‘l)2

l/6(n-l)n(2n-l)
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Because n is a big number, we have

N z n3/3

Then the sound pressure of all second back reflections is

PiN(5R)3

The ratio of the sound pressure of the second back reflections to

the first ones becomes

PiN(6R)3 n2

________ : ——- (6R)2

pian 3

1 GD

: —-—- (——-—-—)2

3 2C0

because

GD Co—CD

-—-- = ----- << 1

2C0 2C0

so

PiN(5R)3

-------- << 1

p1n6R

This means the second back-reflections are very weak compared

with the first ones and can be ignored.

On the same principles, we can prove that the third and higher

order back-reflections are much weaker than the second ones. So

the multiple reflections can be ignored.
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2. R = 2 R;exp(‘i2kid)

To prove this, we consider a normal incident sound wave on a

sound velocity structure which is divided into n thin constant

sound speed layers, or steps (see Fig.3.2). The incident sound

pressure can be expressed as

P = P1exp(-ikz)

and the reflection is a composite wave which is the sum of all

reflections from n thin layers, including the first reflections

and multiple reflections. Since we have ignored multiple

reflections, the composite wave is the sum of n first-

reflections from n thin layers. This is

n o

P; = §1Pjexp(-12kz)

where Pj is the amplitute of the sound pressure

reflected from Number j step.

k‘is the wave number.

2 is the depth of Number j step. If the

numerical step size is d, then 2 = jd.

And the reflection coefficient from Number j step R5 is

identical with the one when other steps are absent, which is

illustrated in Eq.3.20. Thus the amplitute of sound pressure

reflected by Number j step is



60

and the total reflection from all n steps is

P3exp(-i2kz)
1

"U n H

"
b
i
:

n . .

j§1RjPiexp(-i2k3d)

Finally we can get the complex reflection coefficient of n thin

layers

Pt
11 . .R = __—— = j§1R3exp(—12de)

Pi _
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APPENDIX C

On The Two Requirements of The Numerical Technique

1. Numerical Step Size Must Be Equal To Or Smaller Than Rd4

The analysis is based on Eq.3.33 which is for calculating the

reflection coefficient of sound velocity microstructure:

l

R = --- i1stin(kod)[cosko(2j—2)d ‘ i Sink0(25'1)d]
47:1? "

The phase consists of two parts:

the real part: cosko(2j-l)d

and the imaginary part: sinko(2j-l)d

We can only discuss one of them because there are the same except

a phase difference of in/Z.

Fig.Cl shows the variation of sinko(2j-l)d versus j, where j is

the ordinal number of thin layers divided. The phase difference

between the reflections from the adjacent layers, e.g. Number j

layer and Number j+1 layer, is

ko[2(j+l)—l] * ko(2j-l)

= 2kod

At least two samples per cycle are required to define a sine (or
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cosine) component (see p229, Bendat & Piersol, 1971). i.e.

2kod S n

or d 5 A0/4

This requirement is technically sufficient for sampling the phase

of the numerical steps.
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2. Numerical Step Size Must Be Much Smaller Than The Thickness of

The Fluctuation With The Smallest Vertical Scale in The Sound

Velocity Microstructure

The numerical technique is a model approaching a true sound

velocity microstructure with a large number of linear layers. If

the size of the linear layer is sufficiently small, the

approaching will fail.

The sampling of a temperature microstructure with PORPUS is

performed at equal vertical intervals (Fig.3.8). The poblem then

is to determine an appropriate sampling separation, d. We assume

there is a fluctuation with the smallest vertical scale, h, as

shown in (a), Fig.C2. When the sampling separation becomes bigger

and bigger, the linear layer approaching model will go apart from

the true temperature profile, as illustrated in (b), (c) and (d)

in Fig.02. This will lead to an increasing error when applying

Eq.3.33 for calculating the acoustic reflection coefficient from

temperature microstructure. Thus

d << h

is a requirement for the numerical technique.



  

 

Co-axial cable

 

 

    

Secondary fin (x4)

PORPUS

I

I Primary fin (x3)

‘I
Bearing I" Hinge

I

I
I

I
I Probe body

I

I

I
Bearing I

I
I Zinc alloy mass

I

|
I _
I Spindle ( brass )

I
I

Thermistor bead V

I
I
|
CL

Fig.2.1 Schematic of PORPUS.
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Fig.3.1 Two transition layers.
Curve 1, a transitional layer.
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Fig.3.2 Sound velocity structure.

A linear layer (a) is replaced
by a number of steps (b).
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Comparison between numerical (+) and
theoretical calculation (solid line)

of a linear layer as a function of

the thickness of the layer.
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of the layer.

where h is the thickness
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The following conditions apply:

d 3 0.

x0: 2.

where d is

A0 is

7097 cm

96 cm

the sampling separation,

the acoustic wave length.
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Fig.3.8 Details of temperature microstructure.
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Fig.3.9 Ct/2 reflection layer.
C is speed of sound.
I is the pulse duration.
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where Rois the acoustic wave length.

d is the numerical step size.
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Fig.3.11 The transitional layer is replaced
by a linear layer whose thickness

is larger.
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Fig.4.1 Averaged acoustic backseatter profile

at 50 kHz in Woronora.

Dotted line shows the threshold of the

echosounder.
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Dotted line shows the threshold of the
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This figure demonstrates that the measured

acoustic scattering does not appear to be
correlated with the temperature gradient.
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Fig.4.3 Comparison of simultaneously measured temperature micro-

structure, observed acoustic scattering and predicted

acoustic reflection from microstructure. The predicted due

to microstructure is much less than the observed while the

observed appears to be independent of the microstructure
level. Dotted line is the threshold of the echosounder.
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Fig.A1 The arrangement of the devices for

calibrating the source level.



V2

 

V1

vawater surface

 P2 P1
F—————— r ———————+0

receiver transmitter

Fig.A2 The arrangement of the devices for

calibrating the receiving response.
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layer of sheet reflectors

Fig.A4 Reflection from a layer of sheet
reflectors.
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Fig.Bl

 
Number of second back-reflections
from three different layers.
Solid lines are reflection rays
before second back-reflections.

Lines of dashes with an arrow at the end
are the second back-reflection rays.

(Sound is normally incident)
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Numerical Step Number

Pig.Cl The imaginary part of the phase of
the reflection coefficient, where j
is the numerical step number.
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Fig.02 When sampling separation is not much

smaller than the thickness of the layer,

error will occur.

 

9O


