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Abstract

Wireless networked control systems (WNCS) consist of spatially distributed sensors,

actuators, and controllers communicating through wireless networks. WNCS has re-

cently emerged as a fundamental infrastructure technology to enable reliable control

for mission-critical Industrial Internet of Things (IIoT) applications such as factory

automation, intelligent transportation systems, tele-medicine and smart grids. The

design of WNCS requires the joint design of communications, computing and control.

For a large scale deployment, WNCS faces challenges such as unreliable transmission

and latency in transmitting control and sensing information due to channel impair-

ment in wireless communications. This can have a significant impact on the stability

and performance of WNCS. Most existing works have mainly focused on the design of

WNCS from a control perspective rather than communications, or have considered an

ideal or simplified wireless model. How to reliably control WNCS in practical wireless

channels and design wireless communication scheduling policy to optimize the control

performance is a challenging task. This thesis presents the design of practical com-

munication protocols of a general discrete linear time-invariant (LTI) dynamic system

in WNCS. We address the transmission scheduling problems in WNCS in three sce-

narios, which require the development of different strategies. Firstly, to minimize the

long-term average remote estimation mean-squared-error (MSE), a hybrid automatic

repeat request (HAQR)-based real time estimation framework is proposed. Secondly,

a downlink-uplink transmission scheduling policy is developed for half-duplex (FD)

controller to optimize the system performance. Finally, a novel controller with adap-

tive packet length is studied and a variable-length packet-transmission policy is pro-

posed to optimally balance the delay-reliablity tradeoff in WNCS. Numerical results

show that our dynamic scheduling policies can significant improve the performance

of WNCS in terms of estimation and control costs while maintaining the stability of

the system.
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Chapter 1

Introduction

In this section, we first introduce the background of our research and describe the

foundations of wireless networked control system (WNCS). Then we present a review

of existing literature. Finally, we describe our motivations and highlight the main

contributions of the thesis.

1.1 Background

Wireless networked control systems (WNCSs) have attracted significant attention

from both academia and industry in the past two decades. The rapid development of

WNCS has benefited from the rise of wireless networks [1–3], advanced control and

cloud computing, mainly driven by emerging Industrial Internet of Things (IIoT)

applications in intelligent transportation [4], smart grids [5], building automation [6]

and industrial automation [7]. Essentially, a WNCS is a spatially distributed control

system consisting of a set of sensors, actuators and a remote controller communicating

through wireless networks. The networked sensors measure and report the physical

process states of interest; the remote controller collects the sensors’ measurements

and generates control signals; and the wireless actuators receive the control signals

1



Foundations of WNCS 2

and control the processes.

Low cost and high flexibility of wireless network implementation make WNCS a

promising infrastructure technology for industrial monitoring applications. However,

due to the unreliable nature of wireless transmission, existing WNCS technologies face

significant challenges in supporting mission-critical industrial control systems. Con-

ventional control system design is based on extremely high reliability and low latency

of data transmission, while the use of wireless networks will inevitably introduce mes-

sage loss and delay at all times. Failed or outdated control commands would degrade

the system performance, even resulting in the risk of catastrophe. Robust control al-

gorithms and efficient transmission protocol need to be designed jointly to ensure the

reliable, stable and timely control of WNCS. Several industrial standard organizations

such as ISA [8], HART [9], WINA [10] and ZigBee [11] have been actively pushing

the application of wireless technologies in industrial automation and manufacturing.

However, it is challenging to meet the stringent latency and reliability requirements

of feedback control in WSANs for the existing wireless protocol. The design of data

transmission should guarantee deterministic latency and ultra reliability to ensure the

reliable operation of control systems. Furthermore, communications-control co-design

is required in WNCSs to address the interaction between communications and control

systems, which is based on the optimization of control-centric communications rather

than conventional rate-centric ones.

1.2 Foundations of WNCS

In this section, we will introduce some basic concepts and elements of WNCS in

detail.
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1.2.1 Separation Principle

In WNCS, a separation principle states that under some assumptions, the problem

of designing an optimal feedback controller for a stochastic system can be broken

into two separate ones, designing an optimal observer and an optimal deterministic

controller. In a networked control system, if the communication protocol supports

the acknowledgement of the packet transmission, it is proved that the separation

principle holds, i.e. the optimal estimator and controller can be designed separately.

In contrast, the separation principle does not hold if the acknowledgement is not

supported [12].

1.2.2 Kalman Filter

The Kalman filter is one of the most popular approaches to estimate the plant

state in WNCS [13], also known as linear quadratic estimator. It uses a series of

measurements observed over time, containing statistical noise and other inaccuracies,

and produces the estimates of unknown variables based on their joint probability

distribution for each timeframe. The Kalman filter has numerous applications in

autopilot, navigation system, objects tracking and so on. It has been proved to

be the optimal linear estimator in minimum mean-square-error (MMSE) sense with

known process and measurement covariances [14]. Some modified Kalman filters have

also been proposed to address different models of network loss and delay [12, 15].

1.2.3 Stability

Stability is the fundamental requirement for WNCS. There are two conceptional

stability types, called input-output stability and internal stability [16]. Input-output

stability describes the ability of the system to generate a bounded output for any
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bounded input, while internal stability describes the system’s ability to return to

equilibrium after a perturbation. Internal stability is usually measured by the mag-

nitude of system state, i.e. the system is said to be stable if the system’s steady state

is bounded and vice versa. The analysis of stability condition in this thesis refers to

internal stability.

1.2.4 Controllability and Observability

Controllability and observability are dual aspects and important properties of a

control system. Roughly, the concept of controllability denotes the ability to move a

system around in its entire configuration space using only certain admissible manip-

ulations, while observability is a measure of how well the internal states of a system

can be inferred from knowledge of its external outputs. The detailed definition is

given in our subsequent research.

1.2.5 Representative Controllers

The controller is designed to ensure that WNCS has desirable steady state dy-

namics and response characteristics. Here we briefly describe three representative

controllers: Deadbeat controller [17], Linear Quadratic Regulator (LQR) [18] control

and Model Predictive Control (MPC) [19].

A deadbeat controller is also known as time-optimal controller that constructs

a control sequence to drive the discrete system state to the origin with a minimum

number of time steps. It is often used in process control due to its good dynamic

properties, including zero steady-state error, minimum rise time and minimum set-

tling time.

LQR control aims to minimize a quadratic cost function subject to plant state
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and control effort. The LQR algorithm is essentially an automated way of finding

an appropriate state-feedback controller. It serves as a solution to Linear Quadratic

Gaussian (LQG) problems, which deal with uncertain linear systems disturbed by

additive Gaussian noise.

MPC is an advanced method of process control that optimizes a linear quadratic

control problem over a finite horizon. It optimizes the performance of the current

time slot while taking into account the performance of future ones, and it thus has

the ability to anticipate future events.

1.2.6 Performance Evaluation

Different from conventional rate-centric performance evaluation, the general per-

formance metric in WNCS is usually quantified by the quadratic cost of plant state

and control cost. A general regulation control goal is to reset plant state derivations

to zero with minimum effort of control actions. LQR and MPC are typical controller

design approaches using the quadratic cost function, defined as the sum of quadratic

functions of state derivations and control effort. On the other hand, from the per-

spective of remote state estimation, the average mean square error (MSE) is normally

adopted as the estimation performance criterion. Bounded average MSE serves as the

estimation stability condition in most of the existing literature [12, 13, 20–25].

1.2.7 General System Diagram

The general system model of WNCS considered in this thesis is illustrated in Fig

1.1, where the plant and controller are communicating via wireless channel with a

scheduler to regulate the transmission between them. Our objective aims to opti-

mize the overall control system performance by properly designing the transmission
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Figure 1.1: General system diagram.

scheduler. We classify the scheduling problems in WNCS into three aspects including

sensor’s transmission scheduling, downlink-uplink transmission scheduling and con-

troller’s transmission scheduling. The comprehensive studies of above three topics

are given in Chapter 2-4 respectively.

1.3 Literature Review

In this section, a literature review of related works in WNCS is presented. These

works are classified into three categories: communications and control tradeoffs, con-

strained wireless control, and transmission scheduling and medium access control.
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1.3.1 Communications and Control Tradeoffs

The communications and control are highly coupled in WNCS, motivating a code-

sign approach that integrates wireless networks and control design. The interactions

between WNCS communications and control systems include sampling rate, trans-

mission latency and reliability, and power consumption.

Sampling Rate Tradeoff: A low sampling rate usually degrades control perfor-

mance [26] while high sampling rate may increase transmission traffic in bandwidth-

constrained WNCSs, which eventually results in lower system performance [27]. In

order to balance such tradeoff, an event-triggered schedule [28] and an event-based

control scheme [29] were proposed to reduce the transmission congestion with minor

degradation of estimation MSE and system performance. The transmissions were

triggered only when the pre-defined state-dependent function exceeded the thresh-

old. More advanced triggered control schemes, such as self-triggered control [29] and

the combination of event-triggered and self-triggered control [30] were investigated to

schedule transmissions based on frequent monitoring and occasional transmitting.

Lantency vs Sampling Rate Tradeoff: The tradeoff between time-varying sampling

period and message delays has been dicussed in [31]. By denoting the Maximum

Allowable Transfer Interval (MATI) and the Maximally Allowable Delay (MAD),

the tradeoff curves between MATI and MAD were derived to guarantee the control

stability of NCS. Such curves provided quantitative information to select network

requirements for the given desired control performance.

Transmission Latency vs Reliablity Tradeoff: Latency and reliability are the fun-

damental parameters in conventional wireless communications. The tradeoffs between

them have been examined for dynamic state estimation over wireless communication
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channels [32], where a cross-layer design methodology was developed–i.e., the code

length was selected depending on the plant dynamics to optimize estimation perfor-

mance. The stability region of a WNCS in terms of the channel-coding blocklength

(latency-dependent) and data rate (reliability-dependent) was derived in [24]. The

study concluded that the plant can be stabilized with an arbitrarily large blocklength

as long as the SNR of the wireless channel is greater than a system-dependent thresh-

old.

Power Consumption Tradeoff: Motivated by the removal of power supply, lim-

ited power consumption has been considered in designing a WNCS, which brings

new challenges to balance control performance and power consumption [33–35]. High

transmitted power would help increase the receiving SNR and thus improve the per-

formance of the control system, which apparently introduces the tradeoff between

plant performance and power consumption. A dynamic power control policy was

proposed in [36] to minimize the combination of power expenses and control cost by

adapting the transmission power to channel and plant states.

1.3.2 Constrained Wireless Control

Apart from achieving dynamic balance between communication and control cost,

many scholars focus on the problems in WNCS from controller’s perspective, i.e.

constrained wireless control. To overcome the communication constraints, numerous

studies have been conducted to design a proper control algorithm.

The modified LQG controller over lossy network under TCP-like protocol was

given in [12], which was computed from a Modified Riccati Algebraic Equation

(MRAE). A MPC-based controllers were proved to be able to handle wireless message
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missing to some extent, by computing the control based on the system’s predictive fu-

ture states [37, 38]. A data-based predictive controller was proposed in [39] to actively

compensate for the random round-trip time delay. The controller lumped a sequence

of predicted control into one packet together with the timestamp and transmitted

it to the actuator, where a network delay compensator was designed and allocated

on the plant side. Similarly, a packetized predictive control (PPC) was proposed to

increase WNCS robustness with the aid of a buffer attached to the actuator [40]. A

sequence of predicted control commands were packed into a long packet and trans-

mitted to the actuator buffer, where old data was overwritten by new arrived data.

Quantized PPC was studied in [41] with a proposed vector quantizer to reduce the im-

pact over error-prone digital channel. A more general fading channel was considered

in [23], where the coding-free control method was investigated to achieve ultralow

latency communications in WNCS. Besides, computation constraints were considered

in [42, 43], where an anytime-control algorithm was proposed for a multi-input linear

system with time-varying processor availability.

1.3.3 Transmission Scheduling and Medium Access Control

In addition to communications and control tradeoffs (focus on single system),

the transsmion in multiple sensors/plants scenarios will introduce extra schuduling

problems.

Multiple sensors attached to a single plant may independently transmit their mea-

surements to the controller, which introduces transmission scheduling problems [44].

A multi-sensor event-based scheduler was proposed in [45] to reduce the traffic while

keeping remote estimation error covariance bounded to a certain level. In [46], an

optimal transmission scheduling policy over shared channels was obtained as a result
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of a Markov decision process (MDP). In addition, the power consumption was consid-

ered in the sensor’s scheduling in [47] and a dynamic sensor’s transmission scheduler

was proposed based on current state of local covariance. The multi-sensors stability

condition for remote estimation with intermittent measurements was derived in [48].

A more effective stability condition over Markov fading channels was derived in [22].

The transmission scheduling over multiple plants in WNCS has also been inves-

tigated. [49] proposed an explicit optimal periodic transmission schedule for simple

two-multidimensional systems over an infinite horizon. A transmission scheduling pol-

icy of multiple systems was designed in [50], which aimed to minimize overall power

consumption while guaranteeing a desired expected decreasing rates for Lyapunov

stability. The generally internal stability condition of multiple remote estimators for

any transmission scheduling over Markov fading channels was given in [25].

Apart from transmission scheduling, various medium access control (MAC) poli-

cies were proposed for multiple plants to reduce or avoid transmission collision, such

as different waiting time [51], error dependent measure priority [52] and tunable queue

parameter [53]. Random access policies were also developed in [54], where the total

transmit power of the sensors was minimized while the desired control performance

was guaranteed for each involved control loop.

1.4 Motivation

Although numerous works on WNCS have been reported in the literature to ad-

dress the interaction between control and wireless system for maximum overall system

performance and efficiency, the real-time transmission scheduling problem in practical

communication protocols is rarely discussed in WNCS. The characteristics of wireless
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network such as retransmission mechanism, half-duplex (HD) communication con-

straints and variable-length packet transmission have not been fully utilized in the

design of WNCS. In this thesis, we aim to design a practical communication trans-

mission scheduling in WNCS to achieve optimal control performance. We describe

our research motivations according to the subsequent chapters.

Our first research problem (Chapter 2) is how to schedule sensor’s transmission

scheduling based on HARQ protocol to minimize the remote estimation MSE. Re-

transmission is always required by conventional communication systems with non-

real-time backlogged data to the receivers. Energy-constrained remote estimation

systems and systems with a low sampling rate can also benefit from retransmission;

see e.g. [55] and [56]. However, it was shown in [57] that retransmissions may not

be an effective strategy for a mission-critical real-time remote estimation system as

it is a waste of a transmission opportunity, transmitting an out-of-date measurement

instead of the current one. Nevertheless, this is true only when a retransmission has

the same success probability as a new transmission, e.g., with the standard automatic

repeat request (ARQ) protocol. Note that a hybrid ARQ (HARQ) protocol, e.g., with

a chase combining (CC) or incremental redundancy (IR) scheme, is able to effectively

increase the successful detection probability of a retransmission by combining multi-

ple copies from previously failed transmissions [58]. Therefore, a HARQ protocol has

the potential to improve the performance of real-time remote estimation. Although

HARQ has been widely investigated in general wireless communication systems for

enhancing transmission reliabilities (see [15] and references therein), it has rarely

been considered in the literature of real-time remote estimation of time-correlated
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dynamic process. Based on HARQ protocol, we naturally ask: does a sensor need re-

transmission or not for remote estimation in WNCS for IIoT? Therefore, we propose

a HARQ-based real-time remote estimation framework.

Our second research problem (Chapter 3) is how to schedule downlink and up-

link transmission in terms of HD controller in WNCS. We notice that most existing

estimation and control co-design problems in WCNS always ideally assume that the

controller works in a full-duplex (FD) mode, where the controller is able to receive

sensor’s packet and transmit its own control packet at the same time slot. From a

wireless communication perspective, although an FD system can improve the spec-

trum efficiency, it brings other challenges such as self-interference, high device cost

and excessive power consumption[59]. Moreover, the conventional half-duplex, time

division duplexing (TDD), has been considered as a more attractive duplexing scheme

than FDD in 5G dense deployment environment for higher spectrum flexibility, lower

device cost, lower spectrum cost and less overhead in channel estimation [60]. Con-

sidering an HD controller, the scheduling of sensor’s and controller’s transmissions

has to be optimized in WNCS for Industrial IoT. A frequent schedule of the sensor’s

transmission results in a better estimation of plant states and thus a higher quality

of the control command. On the other side, a frequent schedule of controller’s trans-

mission leads to a more timely plant control. Thus, considering the overall control

performance of plant’s states, e.g., the average cost function of the plant, there ex-

ists a fundamental tradeoff between the sensor’s and the controller’s transmission.

Therefore, we proposed an optimal downlink-uplink scheduling policy in terms of HD

controller in WNCS.

Our last research problem (Chapter 4) is how to optimally and dynamically design
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the packet length for transmission in WNCS. In most of the existing work on WNCSs,

the packet length for transmission is fixed. However, from the channel-encoding

theory, if a message is encoded into a longer codeword, its reliability is improved at

the expense of a longer delay. There exists a fundamental delay-reliability tradeoff

since both delay and reliability have a great impact on the control performance. This

raises the question of how to balance the tradeoff between reliability and latency of

control, and whether variable packet length feedback control will give a better system

performance. Therefore, we developed an optimal variable-length packet-transmission

policy to minimize the long-term average control cost of WNCS.

1.5 Contributions

We proposed three novel WNCSs where the sensor/controller makes online trans-

mission or schedule decision based on remote estimations and/ or plant states. These

optimal transmission scheduling problems are all formulated into MDP-based prob-

lems and corresponding system stability conditions are derived in terms of transmis-

sion reliability and system plant characters. The main contributions of the thesis are

summarized below.

� Firstly, we propose a novel HARQ-based real-time remote estimation system

of time-correlated random processes, where the sensor makes online decision

on whether to send a new measurement or retransmit the previously failed one

depending on both current estimation quality of the receiver and the current

number of retransmissions of the sensor. We formulate the problem to opti-

mize the sensor’s transmission control policy so as to maximize the long-term

performance of the receiver in terms of the average MSE for both the static



Contributions 14

and Markov fading channels. Since it is not clear whether the long-term aver-

age MSE can be bounded or not, we derive an elegant sufficient condition in

terms of the transmission reliability provided by the HARQ protocol and pa-

rameters of the process of interest to ensure that an optimal policy exists and

stabilizes the remote estimation system. We derive a structural property of the

optimal policy (i.e., the optimal policy is a switching-type policy) and give an

easy-to-compute suboptimal policy.

� Secondly, we propose a WNCS with an HD controller, where the controller

schedules the sensor’s measurement transmission and its own control-command

transmission depending on both the estimation quality of current plant states

and the current cost function of the plant. We formulate a problem to opti-

mally design the transmission-scheduling policy to optimize the long-term con-

trol performance of the WNCS in terms of the average cost function for both the

one-step and v-step controllable plants. As the long-term average cost of the

plant may not be bounded with high transmission-error probabilities leading

to an unstable situation in the static channel scenario, we derive a necessary

and sufficient condition in terms of the transmission reliabilities of the sensor-

controller and controller-actuator channels and the plant parameters to ensure

the existence of an optimal policy that stabilizes the plant. In the fading chan-

nel scenario, we derive a necessary condition and a sufficient condition in terms

of the uplink and downlink channel qualities under which the optimal trans-

mission scheduling policy exits. We also derive a suboptimal policy with a low

computation complexity.

� Finally, We propose another WNCS, where the controller is able to adaptively
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change the packet length for control based on the current status of the physical

process. We formulate the optimal design problem of variable-length packet

transmission policy into a semi-Markov decision process (MDP) problem, which

minimizes the long-term average cost function of the WNCS. For the variable-

length policy, we derived the stability condition of the WNCS, i.e., the necessary

and sufficient condition on the existence of an optimal policy that can stabilize

the WNCS (i.e., make the cost function-bounded) in terms of transmission

reliabilities with different packet lengths and the control system parameter.

The analysis is not trivial, since neither the optimal policy nor its long-term

average cost function of the WNCS has a closed-form formula. We prove the

necessity by constructing a tractable virtual policy that can achieve a better

performance than the optimal policy. The sufficiency is proved by analyzing

fixed-length policies that achieve a worse performance than the optimal variable-

length policy. We investigate the fixed-length packet transmission policies of the

WNCS with different packet lengths, and derive a closed-form stability condition

in terms of packet length, transmission reliability and control system parameter.

Such result has not been obtained before in the literature, and will provide an

important design guideline for the fixed-length policy in WNCS.



Chapter 2

Real-Time Remote Estimation
with Hybrid ARQ in Wireless
Networked Control

2.1 Introduction

Real-time remote estimation is critical for networked control applications such

as industrial automation, smart grid, vehicle platooning, drone swarming, immersive

virtual reality (VR) and the tactile Internet [61]. For such real-time applications, high

quality remote estimation of the states of dynamic processes over unreliable links is

a major challenge. The sensor’s sampling policy, the estimation scheme at a remote

receiver, and the communication protocol for state-information delivery between the

sensor and the receiver should be designed jointly.

To enable the optimal design of wireless remote estimation, the performance met-

ric for the remote estimation system needs to be selected properly. For some ap-

plications, the model of the dynamic process being monitored is unknown and the

receiver is not able to estimate the current state of the process based on the pre-

viously received states, i.e., a state-monitoring-only scenario [62]. In this scenario,

16
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the performance metric is the age-of-information (AoI), which reflects how old the

freshest received sensor measurement is, since the moment that measurement was

generated at the sensor [62]. However, in practice, most of the dynamic processes are

time-correlated, and the state-changing rules can be known by the receiver to some

extent. Therefore, the receiver can estimate the current state of the process based

on the previously received measurements and the model of the dynamic process (see

e.g., [63, 64]), especially when the transmission of the packet that carries the current

sensor measurement fails or is delayed. In this sense, the estimation mean squared

error (MSE) is the appropriate performance metric.

A HARQ protocol is considered in the design of wireless transmission in remote es-

timation, where a retransmission has a more successful detection probability. There

exists a fundamental tradeoff between the reliability and freshness of the sensor’s

measurement transmission. When a failed transmission occurs, the sensor can either

retransmit the previous measurement, such that the receiver can obtain a more re-

liable old measurement, or transmit a new, but less reliable measurement. In this

chapter, we propose a HARQ-based real-time remote estimation framework and op-

timally design the sensor’s transmission policy to minimize the estimation MSE.

2.2 System Model

We consider a basic system setting where a smart sensor 1 periodically samples,

pre-estimates and sends its local estimation of a dynamic process to a remote receiver

through a wireless link with packet dropouts, as illustrated in Fig. 2.1.

1Unlike a traditional sensor that sends raw measurement data to the receiver, a smart sensor
with a better computing capacity is able to pre-process the measurement data before transmission
which can improve the quality of remote estimation [46, 47, 65, 66].
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Figure 2.1: Proposed remote estimation system with HARQ, where xk , [xk,1, xk,2]T

is the two-dimensional state vector of the dynamic process, and x̂s ,
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2.2.1 Dynamic Process Modeling

We consider a general discrete LTI model for the dynamic process as (see e.g.,

[63, 65, 66])

xk+1 = Axk + wk,

yk = Cxk + vk,
(2.2.1)

where the discrete time steps are determined by the sensor’s sampling period Ts,

xk ∈ Rn is the process state vector, A ∈ Rn×n is the state transition matrix, yk ∈

Rm is the measurement vector of the smart sensor attached to the process, C ∈

Rm×n is the measurement matrix, and wk ∈ Rn and vk ∈ Rm are the process and

measurement noise vectors, respectively. We assume wk and vk are independent and

are identically distributed (i.i.d.) zero-mean Gaussian processes with corresponding

covariance matrices Qw and Qv, respectively. The initial state x0 is a zero-mean

Gaussian with covariance matrix Σ0. To avoid trivial problems, we assume that

ρ2(A) > 1, where ρ2(A) is the maximum squared eigenvalue of A [49].
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2.2.2 State Estimation at the Smart Sensor

Since the sensor’s measurements are noisy, a smart sensor with sufficient com-

putation and storage capacity is required to estimate the state of the process, xk,

using a Kalman filter [65, 66], which gives the minimum estimation MSE based on

the current and previous raw measurements:

xsk|k−1 = Axsk−1|k−1 (2.2.2a)

Ps
k|k−1 = APs

k−1|k−1A
T + Qw (2.2.2b)

Kk = Ps
k|k−1C

T (CPs
k|k−1C

T + Qv)
−1 (2.2.2c)

xsk|k = xsk|k−1 + Kk(yk −Cxsk|k−1) (2.2.2d)

Ps
k|k = (I−KkC)Ps

k|k−1 (2.2.2e)

where I is the n × n identity matrix, xsk|k−1 is the priori state estimation, xsk|k is

the posteriori state estimation at time k, Kk is the Kalman gain, Ps
k|k−1 and Ps

k|k

represent the priori and posteriori error covariance at time k, respectively. The first

two equations present the prediction steps while the last three equations present the

updating steps [67]. Note that xsk|k is the output of the Kalman filter at time k, i.e.,

the pre-filtered measurement of yk, with the estimation error covariance Ps
k|k.

As the performance of remote estimation system depends on both the qualities

of the local state estimation and the imperfect communication link, the quality of

remote estimation is worse than that of the local estimation. Thus, the remote esti-

mation system cannot be stabilized without stabilizing the local estimation system.

In this work, we focus on the effect of communication protocols on the stability and

quality of the remote estimation system. Thus, we assume that the local estimation

of the Kalman filter is stable, i.e., the local estimation error covariance converges to



System Model 20

a bounded matrix [46, 47, 63, 65, 66].

Assumption 2.1. The LTI system (2.2.1) has the properties that (A,C) is observ-

able and (A,
√

Qw) is reachable, where
√

Qw is the square root of the positive definite

matrix Qw.2 Thus, the local Kalman filter of the system in (2.2.2) is stable, i.e., the

error covariance matrix Ps
k|k converges to a finite matrix P̄0 when k is sufficiently

large [68].

Although the convergence rate of the Kalman filter cannot be derived directly, our

simulation results show that the local Kalman filter usually converges to the steady

state in less then 10 steps. Therefore, in the rest of the chapter, we assume that the

local Kalman filter operates in the steady state [46, 47, 63, 65, 66], i.e., Ps
k|k = P̄0.

To simplify the notation, we use x̂sk to denote the sensor’s estimation, xsk|k.

2.2.3 Wireless Channel

We consider both a static channel and a finite-state time-homogeneous Markov

fading channel. In general, the channel input output equation is given as

z = h̃ϑ+ ω, (2.2.3)

where ϑ and z are the input and the output symbols of the channel, h̃ is the channel

coefficient and ω is the additive white Gaussian noise (AWGN) [69].

For the static channel, the channel power gain hk does not change with time, i.e.,

hk = h > 0, ∀k. For the Markov channel, the channel power gain hk remains constant

during the kth time slot and changes slot by slot, where hk > 0,∀k. We assume that

the Markov channel has B states, i.e, U , {u1, ..., uB}, and hk ∈ U . The probability

2(A,C) is observable iff the matrix concatenation
[
CT ,ATCT , · · · , (An)TCT

]
is of full rank;

(A,
√
Qw) is reachable iff the matrix concatenation

[√
Qw,A

√
Qw, · · · ,An

√
Qw

]
is of full rank [68].
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of transition from state i to state j is pi,j, and the matrix of channel state transition

probability is given as

Π ,


p1,1 · · · pB,1

...
. . .

...

p1,B · · · pB,B

 . (2.2.4)

We assume that the channel state information (CSI) is available at both the sensor

and the receiver [70–72]. In general, the receiver-side CSI is obtained by letting the

sensor send a known sequence at the beginning of each time slot (called a training

sequence) and estimating the channel using symbols detected earlier [69]. Then,

the CSI needs to be quantized and sent to the sensor over a limited-rate feedback

channel [73]. In practice, the CSI estimation and feedback may not be perfect, and

their qualities depend on the length of the training sequence and the rate of the

feedback channel. In this work, we focus on the maximum achievable performance of

the remote estimation system when the sensor and the receiver have the perfect CSI.

The impact of imperfect CSI and delays induced by CSI estimation and feedback will

be considered in our future work.

2.2.4 HARQ-Based Communication

The sensor’s estimation is quantized into (L×R) bits and then coded into a packet

with L symbols, where the symbol duration is T ′s and R is the coding rate. We assume

that the packet length is equal to the sampling period, i.e., LT ′s = Ts. In other words,

the sensors perform the next sampling once the current measurement-carrying packet

has been delivered to the receiver. Thus, there exists a unit packet-transmission delay

between the sensor and the receiver. For example, the sensor’s measurement at the

beginning of time slot k, yk, is filtered and sent to the receiver before time slot (k+1).
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It is assumed that the sensor and the receiver are perfectly synchronized.

The acknowledgment/negative-acknowledgment (ACK/NACK) message is fed back

from the receiver to the sensor perfectly without any delay when the packet detection

succeeds/fails. If an ACK is received by the sensor, it will send a new (pre-filtered)

measurement in the next time slot. If a NACK is received, the sensor can decide

whether to retransmit the unsuccessfully transmitted measurement using its ARQ

protocol or to send a new measurement. We introduce the binary variable γk ∈ {1, 0}

to indicate the successful and failed packet detection in time slot k, respectively. Note

that the sensor discards the old measurement once the decision of a new transmission

is made.

For the standard ARQ protocol, the receiver discards the failed packets, and the

sensor simply resends the previously failed packet if a retransmission is required.

Thus, the successful packet detection probability at each time is independent of the

current number of retransmissions.

For a HARQ protocol, the receiver buffers the incorrectly received packets and the

detection of the retransmitted packet will utilize all the buffered related packets. In

the CC-HARQ case, the sensor resends the previously failed packet if a retransmission

is required, and the receiver optimally combines (i.e., the maximal ratio combining

method) all the previously received replicas of the packet of the same message and

make a detection. In the IR-HARQ case, each retransmitted packet is an incremental

redundancy of the same message, and the receiver treats the sequence of all the

buffered replicas as a long codeword to detect the transmitted massage.

Given the channel power gains, the probability that the message cannot be de-

tected within r transmission attempts started from time slot k−(r−1) is given as [74]



System Model 23

and [75]

P [γk = 0|r transmission attampts]

≈


Q

(
L

1
2 (log2(1+

∑r−1
i=0 hk−iSNR)+

log2 L
L
−R)√

1− 1

(1+
∑r−1
i=0

hk−iSNR)2
log2 e

)
,CC-HARQ

Q

(
L

1
2 (

∑r−1
i=0 log2(1+hk−iSNR)+

log2 rL
L
−R)√∑r−1

i=0 (1− 1
(1+hk−iSNR)2

) log2 e

)
, IR-HARQ

(2.2.5)

where SNR is the signal-to-noise ratio at the receiver with unit channel power gain,

and the approximation in (2.2.5) is based on the results of the finite-blocklength

information theory for AWGN channel; see e.g. [74] and Eq. (9) in [75].

2.2.5 State Estimation at the Receiver

Although the sensor sends a packet to the receiver in every time slot, the receiver

is not able to always detect the packet successfully due to the noise. Therefore, the

receiver can only estimate the current process state from the most recently received

sensor’s estimation when a failed packet detection occurs.

We assume that the latest sensor’s estimation that is available at the receiver at

the beginning of time slot k, i.e., x̂stk , was generated at the beginning of time slot tk.

Therefore, the receiver-side AoI at the beginning of time slot k can be defined as [62]

qk , k − tk,∀k, (2.2.6)

and qk ≥ 1.

As the latest available sensor’s estimation was generated qk-step earlier, the re-

ceiver needs to estimate the current state based on the dynamic process model (2.2.1).

The receiver’s MSE optimal estimator at the beginning of time slot k is given as [63]

x̂k = Ak−tk x̂stk = Aqk x̂stk , (2.2.7)
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and the corresponding estimation error covariance is [46, 47, 63, 65, 66]

Pk , E
[
(xk − x̂k)(xk − x̂k)

T
]

(2.2.8)

= f qk(P̄0), (2.2.9)

where (2.2.9) is obtained by substituting (2.2.7) and (2.2.1) into (2.2.8), f(X) ,

AXAT + Qw, fn+1(·) , f(fn(·)) when n ≥ 1, and f 1(·) , f(·). Note that Pk takes

value from a countable infinity set [49], i.e., Pk ∈ {f(P̄0), f 2(P̄0), · · · }.

The receiver’s estimation MSE at the beginning of time slot k is Tr (Pk). Note

that the operator Tr (fn(·)) is monotonically increasing with respect to (w.r.t.) n,

i.e., Tr
(
fn1(P̄0)

)
≤ Tr

(
fn2(P̄0)

)
if ρ2(A) > 1 and 1 ≤ n1 ≤ n2 (see Lemma 3.1 in

[49]).

Remark 2.1. From (2.2.9), the estimation MSE is a non-linear function of the AoI,

and thus, qk can also be treated as the estimation quality indicator.

2.2.6 Performance Metric

The long-term average MSE of the dynamic process is defined as

lim sup
K→∞

1

K

K∑
k=1

E [Tr (Pk)] , (2.2.10)

where lim supK→∞ is the limit superior operator.

2.3 Optimal Transmission Control: Analysis and

Problem Formulation

For the standard ARQ, as the chance of the successful detection of a new trans-

mission and that of a retransmission are the same, the optimal policy is to always
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transmit the current sensor’s estimation, i.e., a non-retransmission policy [57]. For a

HARQ protocol, the probability of successful packet detection in time slot k depends

on the number of consecutive transmission attempts of the original message and the

experienced channel conditions. Since a new transmission is less reliable than a re-

transmission, there exists an inherent trade-off between retransmitting a previously

failed local state estimation with a higher success probability, and sending the current

state estimation with a lower success probability. Therefore, when a packet detection

error occurs, the sensor needs to optimally make a decision on whether to retransmit

it or to start a new transmission.

2.3.1 Transmission-Control Policy

Let ak ∈ {0, 1} be the sensor’s decision variable at time k as illustrated in

Fig. 2.2.1. If ak = 0, the sensor sends the new measurement to the receiver in

time slot k; otherwise, it retransmits the unsuccessfully transmitted measurement. It

is clear that ak = 0 if the the packet transmitted in time slot (k − 1) was successful.

Let rk denote the number of consecutive transmission attempts before time slot

k. As rk only depends on the sensor’s transmission-control policy, it has the updating

rule as

rk =

1, if ak−1 = 0

rk−1 + 1, otherwise,
(2.3.1)

where rk ≥ 1,∀k. From the definition of the estimation quality indicator (2.2.6), the

updating rule of qk is given as

qk =

rk, γk−1 = 1

qk−1 + 1, γk−1 = 0,
(2.3.2)

where qk ≥ 1,∀k. As the estimation quality indicator depends on the current number
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of transmission attempts and also the control policy, plugging (2.3.1) into (2.3.2), we

further have

qk =


1, ak−1 = 0, γk−1 = 1

rk−1 + 1, ak−1 = 1, γk−1 = 1

qk−1 + 1, γk−1 = 0.

(2.3.3)

2.3.2 Packet Error Probability with Online Transmission Con-

trol

If the sensor decides to transmit a new measurement in time slot k, i.e., ak = 0,

the packet error probability in time slot k is obtained directly from (2.2.5) as

P [γk = 0|ak = 0] = P [γk = 0|r = 1] . (2.3.4)

If a transmission is failed and a retransmission decision has been made, i.e., ak = 1,

the packet error probability based on (2.2.5) can be obtained as

P [γk = 0|ak = 1] = P [γk = 0|γk−1, ..., γk−rk = 0]

=
P [γk = 0|r = rk + 1]

P [γk−1 = 0|r = rk]
. (2.3.5)

In the Markov channel scenario, we assume that the packet error probability in (2.3.5)

is a function of the current channel power gain hk, and the state indicator Ωk is a

function of the previously experienced rk channel states, which does not rely on their

order 3. To be specific, we define Ωk , [rk(1), rk(2), ..., rk(B)], where rk(i) is the

occurrence number of the channel state with channel power gain ui during time slots

k − rk to k − 1. Thus,
∑B

j=1 rk(j) = rk. In other words, Ωk is a sorted counter of

the relevant historical channel states, and Ωk ∈ NB
0 \0. By introducing the current

3This assumption is in line with the approximation in (2.2.5).
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channel state index Ξk ∈ {1, · · · , B}, i.e., hk = uΞk ∈ U , Ωk is updated as

Ωk =

1Ξk−1
, if ak−1 = 0

Ωk−1 + 1Ξk−1
, if ak−1 = 1

(2.3.6)

where 1i , [

i︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

B

].

Therefore, using (2.2.5), the detection error probabilities of a new transmission

and (rk + 1) transmission attempts can be rewritten as functions of Ξk and {Ωk,Ξk},

respectively, as

P [γk = 0|r = 1]

≈


Q

(
L

1
2 (log2(1+(uΞk)SNR)+

log2 L
L
−R)√

1− 1

(1+(uΞk)SNR)2
log2 e

)
,CC-HARQ

Q

(
L

1
2 (log2(1+uΞk

SNR)+
log2 rL
L
−R)√

(1− 1
(1+uΞk

SNR)2
) log2 e

)
, IR-HARQ

(2.3.7)

and
P [γk = 0|r = rk + 1]

≈


Q

(
L

1
2 (log2(1+(

∑B
j=1 rk(j)uj+uΞk)SNR)+

log2 L
L
−R)√

1− 1

(1+(∑B
j=1

rk(j)uj+uΞk)SNR)2
log2 e

)
,CC

Q

(
L

1
2 (

∑B
j=1 rk(j) log2(1+ujSNR)+log2(1+uΞk

SNR)+
log2 rL
L
−R)√∑B

j=1 rk(j)(1− 1
(1+ujSNR)2

)+(1− 1
(1+uΞk

SNR)2
) log2 e

)
,IR

(2.3.8)

Thus, by taking (2.3.7) and (2.3.8) into (2.3.4) and (2.3.5), the packet error probability

can be uniformly written as

P [γk = 0] =


P [γk = 0|r = 1] , g̃(0,Ξk), ak = 0,

P [γk = 0|r = rk + 1]

P [γk−1 = 0|r = rk]
, g̃(Ωk,Ξk), ak = 1.

(2.3.9)

where 0 , [0, 0, ..., 0︸ ︷︷ ︸
B

], and P [γk−1 = 0|r = rk] can be obtained by (2.3.7) and (2.3.8),

respectively, for the cases rk = 1 and rk = rk−1 + 1 > 1.

In the static channel scenario, i.e., a special case of the Markov channel scenario,

as the channel power gains are identical to each other the packet error probability in
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(2.3.9) can be rewritten as a function of the current number of transmission attempts

based on (2.3.7) and (2.3.8) as

P [γk = 0] =


P [γk = 0|r = 1] , g(1), ak = 0,

P [γk = 0|r = rk + 1]

P [γk−1 = 0|r = rk]
, g(rk + 1), ak = 1.

(2.3.10)

As the packet error probability of a retransmission is smaller than a new trans-

mission under the same channel conditions, we have the following inequalities for the

Markov and static channel scenarios, respectively:

Λ′i , g̃(0, i) > g̃(Ωk, i), ∀k, (2.3.11)

and

Λ′0 , g(1) > g(rk + 1),∀k, (2.3.12)

where Λ′i is the packet error probability of a new transmission with the channel power

gain ui in the Markov channel scenario, and Λ′0 is the packet error probability of a

new transmission in the static channel scenario.

For the Markov channel, the largest packet error rate of a retransmission with

channel power gain ui is defined as

Λi , max
Ωk∈NB0 \0

g̃(Ωk, i), i = 1, 2, ..., B. (2.3.13)

For the static channel, the largest packet error rate of a retransmission is defined as

Λ0 , max
r>1

g(r). (2.3.14)

2.3.3 Problem Formulation

The sensor’s transmission control policy is defined as the sequence {a1, a2, ..., ak, · · · },

where ak is the control action in time slot k. In what follows we optimize the sensor’s
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policy such that the long-term estimation error is minimized, i.e.,

min
a1,a2,...,ak,···

lim sup
K→∞

1

K

K∑
k=1

E [Tr (Pk)] . (2.3.15)

It is possible that the long-term estimation error may never be bounded no mat-

ter how we choose the policy, if the channel quality is always bad or the dynamic

process (2.2.1) changes rapidly. Therefore, it is also important to investigate the

condition in terms of the transmission reliability and the dynamic process parame-

ters under which the remote estimation system can be stabilized, i.e., the long-term

estimation MSE can be bounded.

To shed light on the stability condition and the optimal policy structure, we first

consider the simplified case, i.e., the static channel scenario, in Sec. 2.4. The insights

are leveraged to investigate the general Markov channel scenario in Sec. 2.5.

2.4 Optimal Policy: Static Channel

In this section, we investigate the optimal transmission control policy in static

channel.

2.4.1 MDP Formulation

From (2.2.9), (2.3.1) and (2.3.3), the estimation MSE Tr (Pk) and states rk and

qk only depend on the previous action and states, i.e., ak−1, rk−1 and qk−1. Therefore,

the online decision problem (2.3.15) can be formulated as a discrete time Markov

decision process (MDP) as follows.

1) The state space is defined as S , {(r, q) : r ≤ q, (r, q) ∈ N × N}, where the

number of transmission attempts, r, should be no larger than the estimation quality
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indicator (i.e., the AoI), q, from the definition. The state of the MDP at time k is

sk , (rk, qk) ∈ S.

2) The action space is defined as A , {0, 1}. A policy is a mapping from states

to actions, i.e., π : S→ A. Recall that the action at time k, ak , π(sk) ∈ A indicates

a new transmission (ak = 0) or a retransmission (ak = 1).

3) The state transition function P (s′|s, a) characterizes the probability that the

state transits from s at time (k − 1) to s′ at time k, with action a at time k − 1. As

the transition is time-homogeneous, we can drop the time index k here. Let s = (r, q)

and s′ = (r′, q′) denote the current and next state, respectively. Based on the packet

error probability (2.3.10) and the state updating rules (2.3.1) and (2.3.3), we have

the state transition function as

P (s′|s, a) =



1− g(1), if a = 0, s′ = (1, 1)

g(1), if a = 0, s′ = (1, q + 1)

1− g(r + 1), if a = 1, s′ = (r + 1, r + 1)

g(r + 1), if a = 1, s′ = (r + 1, q + 1)

0, otherwise.

(2.4.1)

4) The one-stage (instantaneous) cost, i.e., the estimation MSE based on (2.2.9),

is a function of the current state of q:

c(s, a) , Tr
(
f q(P̄0)

)
, (2.4.2)

which is independent of the action.

Therefore, the problem (2.3.15) is equivalent to solving the classical average cost

optimization problem of the MDP. Assuming the existence of a stationary and de-

terministic optimal policy, we can effectively solve the MDP problem using standard
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methods such as the relative value iteration algorithm [76, Chapter 8].

2.4.2 Optimal Policy: Condition of Existence

Since the cost function grows exponentially with the state q, it is possible that

the long-term average cost with a HARQ-based transmission control policy, π, in the

state space S cannot be bounded, i.e., the remote estimation system is unstable. We

give the following sufficient condition of the existence of an optimal policy that has

a bounded long-term estimation MSE.

Theorem 2.1. For the static channel, there exists a stationary and deterministic

optimal policy π∗ of problem (2.3.15), if the following condition holds:

Λ0ρ
2(A) < 1, (2.4.3)

where Λ0 is the largest packet error probability of a retransmission defined in (2.3.14).

Proof. See Appendix A.

Remark 2.2. From Theorem 2.1, it is clear that the optimal policy exists if we have a

good channel condition and a good HARQ scheme that guarantees high retransmission

reliability (i.e., a small g(r) and hence a small Λ0), or if the dynamic process does

not change quickly, which is easy to estimate (i.e., a small ρ2(A)).

2.4.3 Optimal Policy: The Structure

We show that the optimal policy has a switching structure as follows.

Theorem 2.2. The optimal policy π∗ of problem (2.3.15) is a switching-type policy,

i.e., (i) if π∗(r, q) = 0, then π∗(r + z, q) = 0; (ii) if π∗(r, q) = 1, then π∗(r, q + z) = 1,

where z is any positive integer.
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Figure 2.2: The switching structure of the
optimal policy in the state space S.
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Figure 2.3: Illustration of the state
space and state transitions in the high
SNR scenario, where θ = 4.

Proof. See Appendix A.

In other words, for the optimal policy, the two-dimensional state space S is divided

into two regions by a curve, and the decision actions of the states within each region

are the same, as illustrated in Fig. 2.2.

Remark 2.3. Note that the switching structure can help save storage space for online

implementation, since the smart sensor only needs to store switching-boundary states

rather than the actions on the entire state space. At each time, the sensor simply needs

to compare the current state with the boundary states to make the optimal decision.

2.4.4 Optimal Policy: A Special Case (Ultra-Low Retrans-

mission Packet Error Probabilities)

We consider the high SNR scenario where retransmissions have ultra-low packet

error probabilities that are much smaller than a new transmission. Therefore, in the
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high SNR scenario, we assume that a retransmission is always successful while a new

transmission is not, and the optimal policy always exists from Theorem 2.1.

Due to the successful retransmissions, it can be noted from (2.4.1) that the states

in S with r > 1 and r 6= q are transient states. Also, since a successful retransmission

must be followed by a new transmission, the states in S with r = q and r > 1 are

transient, and the state (2, 2) has the action of new transmission. Furthermore, due

to the switching structure of the optimal policy in Theorem 2.2, we set a policy-

switching threshold θ ∈ N for the states with r = 1, where the states q > θ, r = 1

choose the action of retransmission while the states with q ≤ θ, r = 1 choose the

action of new transmission. Then, it is easy to see that the states with r = 1 and

q > θ+ 1 are transient states. Finally, the countably infinite state space S is reduced

to a finite state space S′ = {(2, 2), (1, q),∀q ∈ {1, ..., θ + 1} as illustrated in Fig. 2.3.

Only the state (1, θ + 1) has the action a = 1, and the other states have the action

a = 0. Note that the next state will be (2, 2) if the current state is (1, θ + 1).

Therefore, θ is the key design parameter to be optimally designed. The policy

optimization problem in the state space S is transformed to the one-dimensional

problem. By calculating the stationary distribution of the states in S′ with a given

θ, the average cost of the Markov chain (i.e., the average MSE) denoted by ζ can be

obtained, and we have the following result.

Proposition 2.1. In the high SNR scenario, the minimum long-term average MSE

of the static channel is given as

ζ?=


(1−Λ′0)Trf(P̄0)+(2Λ′0−(Λ′0)2)Trf2(P̄0)+(Λ′0)2Trf3(P̄0)

1+Λ′0
, θ?=1

(1−Λ′0)

(∑θ?+1
i=1 Tr(f i(P̄0))(Λ′0)i−1−Tr(f(P̄0))(Λ′0)θ

?−1

)
1−(Λ′0)θ?−1+(Λ′0)θ?+(Λ′0)θ?+1 , θ?>1

(2.4.4)
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where θ? is the optimal policy-switching threshold.

In Proposition 2.1, the optimal θ can be numerically obtained by linear search

methods, yielding the minimum estimation MSE. The optimal policy structure in the

high SNR scenario shows that if the current estimation quality is bad, i.e., a large q,

a retransmission is required; otherwise, a new transmission is a better choice. This is

mainly because although a retransmission is more reliable than a new transmission,

a successful new transmission leads to a better estimation quality. When the current

estimation quality is pretty good, it is reasonable to take the risk of a new transmission

to achieve a better estimation, since the estimation quality will not be too bad even

if it is failed. However, when the current estimation quality is bad, it is not wise to

take the risk since the estimation quality will be even worse if it is failed.

2.4.5 Suboptimal Policy

The optimal policy of the MDP problem in Sec. 2.4.1 does not have a closed-

form expression for low-complexity computation. Besides, since the MDP problem

has infinitely many states, it has to be approximated by a truncated MDP problem

with finite states for numerical evaluation and solved offline. Therefore, we propose

a easy-to-compute suboptimal policy, which is a myopic policy that makes decisions

simply to maximize the expected instantaneous cost.

Based on (2.4.1) and (2.4.2), the expected next step cost c′((r, q), a) given the

current state (r, q) and action a can be derived as

c′((r, q), a)

=

g(1)Tr
(
f q+1(P̄0)

)
+ (1− g(1))Tr

(
f(P̄0)

)
, a=0,

g(r+1)Tr
(
f q+1(P̄0)

)
+(1−g(r+1))Tr

(
f r+1(P̄0)

)
,a=1.

(2.4.5)
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Then, we have

c′((r, q), 1)− c′((r, q), 0)

=(g(r+1)−g(1))Tr
(
f q+1(P̄0)

)
+(1−g(r+1))Tr

(
f r+1(P̄0)

)
− (1− g(1))Tr

(
f(P̄0)

)
.

(2.4.6)

Using the inequality (2.3.12), c′((r, q), 1)− c′((r, q), 0) ≥ 0 if and only if (r, q) satisfies

Tr
(
f q+1(P̄0)

)
≤ (1− g(r + 1))Tr

(
f r+1(P̄0)

)
− (1− g(1))Tr

(
f(P̄0)

)
g(1)− g(r + 1)

.
(2.4.7)

Thus, we have the following result.

Proposition 2.2. The myopic policy of problem (2.3.15) is

a =


0 if the condition (2.4.7) is satisfied,

1 otherwise.

(2.4.8)

It can be proved that the suboptimal policy in Proposition 2.2 is also a switching-

type policy. Due to its simplicity, the suboptimal policy–which, unlike the optimal

policy, does not need any iteration for policy calculation–can be applied as an online

decision algorithm. In Sec. 2.6, we will show that the performance of the suboptimal

policy is close to the optimal one for practical system parameters. The detailed

computation-complexity analysis will be given in Sec. 2.6 as well.

2.5 Optimal Policy: Markov Channel

In this section, we investigate the sensor’s optimal transmission control policy in

the Markov channel.
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2.5.1 MDP Formulation

We also formulate the problem as a MDP.

1) The state space is defined as S , {(Ω, q,Ξ) : Ω ∈ NB
0 \0, q ∈ N,Ξ ∈ {1, 2, · · · , B}}.

2) The action space is defined as A , {0, 1}.

3) Let s = (Ω, q,Ξ) and s′ = (Ω′, q′,Ξ′) denote the current and next state, respec-

tively. The transition probability can be written as

P (s′|s, a)

=



pΞ,Ξ′(1− g̃(0,Ξ)) if a=0, s′=(1Ξ, 1,Ξ
′),

pΞ,Ξ′ g̃(0,Ξ) if a=0, s′=(1Ξ, q + 1,Ξ′),

pΞ,Ξ′ (1− g̃(Ω,Ξ)) if a=1, s′=(Ω+1Ξ, ‖Ω‖1 + 1,Ξ′),

pΞ,Ξ′ g̃(Ω,Ξ) if a=1, s′=(Ω + 1Ξ, q + 1,Ξ′),

0 otherwise.

(2.5.1)

where ‖Ω‖1 ,
∑B

i=1 ri.

4) The one-stage cost is given in (2.4.2).

2.5.2 Optimal Policy: Condition of Existence

Inspired by the static channel scenario, we derive the following condition under

which the long term average MSE can be bounded.

Theorem 2.3. For a Markov channel, there exists a stationary and deterministic

optimal policy π∗ of problem (2.3.15), if the following condition holds:

ρ (ΠΛ) ρ2(A) < 1, (2.5.2)

where Π is defined in (2.2.4), and

Λ , diag {Λ1, ...,ΛB} , (2.5.3)
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and Λi is the largest packet error probability of a retransmission when the channel

power gain is ui defined in (2.3.13).4

Proof. See Appendix A.

Remark 2.4. It is interesting to see that when retransmissions have very high relia-

bility, i.e., Λi → 0 ∀i = 1, · · · , B, the eigenvalues of the matrix ΠΛ approach zero,

and thus the left-hand side of (2.5.2) is much less than one and the remote estimation

system can be stabilized.

The stability regions of a two-state Markov channel in terms of Λ1 and Λ2 with

different ρ2(A) are illustrated in Fig. 2.4, where Π =

[
0.8 0.5

0.2 0.5

]
. We see that a larger

ρ2(A) results in a smaller stability region.

2.5.3 Optimal Policy: The Structure

The optimal policy in the Markov channel also has a switching structure in the

state space.

Theorem 2.4. (i) if π∗(Ω, q,Ξ) = 0, then π∗(Ω + z1i, q,Ξ) = 0,∀1 ≤ i ≤ B;

(ii) if π∗(Ω, q,Ξ) = 1, then π∗(Ω, q + z,Ξ) = 1, where z is any positive integer.

Proof. The proof is similar to that of Theorem 2.2 and is omitted here.

4Note that Theorem 2.3 only works for a Markov channel with finite state and cannot be ex-
tended to Markov channels with infinite countable states. The analysis of the latter case involves
multiplication and eigenvalue of infinite matrices, which need a general theory concerning operator
on Hilbert spaces in functional analysis and is beyond the scope of our work.
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Figure 2.5: Illustration of the state
space and state transitions of the opti-
mal transmission control policy in the
high SNR scenario, where the channel
is a 2-state Markov channel, θ1 = 4
and θ2 = 3.

2.5.4 Optimal Policy: A Special Case

For the high SNR scenario, we assume that a retransmission is always successful.

Thus, the state transition probability (2.5.1) does not depend on all the individual

elements of the historical channel-state vector Ω, and we can simply combine the

states in S by ‖Ω‖1 as s = (‖Ω‖1, q,Ξ) to reduce the state space.

Similar to the static channel scenario, the state space of the optimal policy can

be further reduced as S′ = {(2, 2,Ξ), (1, q,Ξ),∀q = 1, 2, ..., θmax + 1,Ξ = 1, 2, ..., B},

and the optimal policy for states (1, q,Ξ),∀q ∈ {θΞ + 1, · · · , θmax + 1} is a = 1, where

θmax , max θΞ, and the other states have the action a = 0, as illustrated in Fig. 2.5.

Different from the static channel scenario, the optimal policy for the B-state Markov

channel has a set of parameters, i.e., {θ1, · · · , θB}, to be optimally designed.
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We can reorder the three dimensional states as a B × (θmax + 2) state (column)

vector, b, and the states (2, 2,Ξ) and (1, q,Ξ) are the (1 + (Ξ− 1)(θmax + 2))th and

(1 + q + (Ξ− 1)(θmax + 2))th elements of b, respectively. Using the state transition

probability (2.5.1) and the transition rule of the special case as illustrated in Fig. 2.5,

the matrix of the state transition probability can be written as

M =
[

p1 ⊗M1 p2 ⊗M2 · · · pB ⊗MB

]
, (2.5.4)

where the ⊗ is the Kronecker product operator, pi is the ith column of Π defined in

(2.2.4), and Mi is the

Mi =

 Ei Fi

[0](θmax−θi)×(θi+2) [0](θmax−θi)×(θmax−θi)

 , (2.5.5)

Ei=



0 0 0 · · · 0 1

1− Λ′i 1− Λ′i 1− Λ′i · · · 1− Λ′i 0

0 Λ′i 0 0 · · · 0

Λ′i 0 Λ′i · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Λ′i 0


(θi+2)×(θi+2)

Fi =


1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0


(θi+2)×(θmax−θi)

.

(2.5.6)

Based on the stochastic matrix (2.5.4), we can calculate the steady state distri-

bution with a given set of policy-switching parameters. By numerically optimizing

{θ1, · · · , θB}, we have the following result.

Proposition 2.3. In the high SNR scenario, the minimum long-term average MSE
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of the Markov channel is given as

ζ? =
cTe

‖e‖1

, (2.5.7)

where

c = [1, · · · , 1]T︸ ︷︷ ︸
B

⊗ [Trf 2(P̄0),Trf(P̄0),Trf 2(P̄0), · · · ,Trf θ
?
max+1(P̄0)]T ,

and e is a null-space vector of (M? − I) with non-negative values, and here I is the

B(θ?max + 2) by B(θ?max + 2) identity matrix.

2.6 Numerical Results

2.6.1 Delay-Optimal Policy: A Benchmark

We also consider a delay-optimal policy based on the HARQ protocol in [77], as

the benchmark of the proposed optimal policy. We use the average AoI to measure

the delay of the system. Therefore, similar to the MSE-optimization problem (2.3.15),

the delay optimization problem is formulated as

min
π

lim sup
K→∞

1

K

K∑
k=1

E [qk] . (2.6.1)

This problem can also be converted to a MDP problem with the same state space,

action space and state transition function as presented in Sec. 2.4.1. The one-stage

cost in terms of delay is

c((r, q), a) = q. (2.6.2)

Comparing (2.6.2) with (2.4.2), we see that the cost function of the delay-optimal

policy is a linear function of q, while it grows exponentially fast with q in the optimal

policy. Thus, these two policies should be very different and their performance will
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be compared in the following section.

2.6.2 Simulation and Policy Comparison

In the remainder of the section, we present the numerical results of the optimal

policies for static and Markov channels in Sec. 2.4 and Sec. 2.5, respectively, and

their performance. Also, we numerically compare these optimal policies with the

benchmark policy in Sec. 2.6.1. Unless otherwise stated, we consider CC-HARQ, and

we set SNR = 10 dB, L = 100, R = 4, A =

[
2.4 0.2

0.2 0.8

]
, C =

[
1 1

]
, Qw = I, Qv = 1,

and thus ρ2(A) = 1.83852, P̄0 =

[
2.5548 −1.6233

−1.6233 1.6179

]
.

The packet error probabilities for a new transmission and a retransmission of the

CC/IR-HARQ protocol are based on taking the approximation (2.2.5) into (2.3.4)

and (2.3.5), respectively. We use the relative value iteration algorithm in a MDP

toolbox in MATLAB [78] to solve the MDP problems in Sections 2.4, 2.5 and 2.6.1.

Static Channel

Policy Comparison. To solve the MDP problem with an infinite state space, the un-

bounded state space S is truncated as {(r, q) : 1 ≤ r ≤ q ≤ 20} to enable the

evaluation. We set the channel power gain h = 2. Using Theorem 2.1, we can verify

that the CC/IR-HARQ based optimal policy exists. Fig. 2.6 shows different policies

within the truncated state space. In Fig. 2.6(a), we see that in line with Theorem 2.2,

the optimal policy of CC-HARQ protocol is a switching-type one, where the actions

of the states close to the states with r = q are equal to zero; i.e., new transmissions
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are required. Also, we see that the myopic policy plotted in Fig. 2.6(d) is a good

approximation of the optimal one within the truncated state space. However, the

delay-optimal policy plotted in Fig. 2.6(c) is very different from the previous ones,

where more states have the action of new transmission. Therefore, HARQ-based

retransmissions are more important to reduce the estimation MSE than the delay.

Fig. 2.6(b) presents the optimal policy of the IR-HARQ protocol, which is identical

with that of CC-HARQ in Fig. 2.6(a). This is because when the channel power gain is

high, e.g., h = 2, both IR- and CC-HARQ can provide sufficiently high retransmission

reliability and the transmission control policy are the same.

Moreover, in Figs. 2.7(a)-(b), we calculate the optimal policies of different state

transition matrices A. We see that the optimal policy with a larger ρ(A) has more

states in the state space S with the action of new transmission. This is consistent

with the intuition that if the system changes strongly per step, it would be preferable

to use fresh information, whereas if the change is mild, more retransmissions can be

allowed.

Inspired by Theorem 2.2, we investigate other suboptimal policies with switching

structures within the state space. To be specific, we consider a type of suboptimal

policy named α policy. For an α policy, the state space S is divided by a straight line

passing through the origin with the slope α, where α ≥ 1. Thus, the actions of an α

policy in the state space are given as

a =

1, if q > αr, and (q, r) ∈ S,

0, if r ≤ q ≤ αr, and (q, r) ∈ S,

Figs. 2.7(c)-(d) show α policies with different parameters, where A = [2.4, 0.2; 0.2, 0.8].

It is clear that the policy with α = 1 is similar to the myopic policy in Fig. 2.6(d).

Performance Comparison. Based on the above numerically obtained policies and
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Figure 2.6: Different transmission con-
trol policies, where ‘o’ and ‘·’ denote
a = 0 and a = 1, respectively.
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Figure 2.7: Optimal policies with different
A and suboptimal polices with different α.

the policy with the standard ARQ, i.e., the one without retransmission (see Sec. 2.3),

we further evaluate their performances in terms of the long-term average MSE using

(2.2.10). We run the remote estimation process with 104 time slots and set the initial

value of Pk as P0 = f(P̄0) =

[
14.2218 −1.6966

−1.6966 1.6179

]
. Also, we set Tr(P0) = 15.8 as

the performance baseline, as Tr(P0) ≤ Tr(Pk), ∀k.

Fig. 2.8 plots the average MSE versus the simulation time K, using different trans-

mission control policies. Our simulation shows that the conventional non-retransmission

policy has an unbounded average MSE, which is not shown in the figure due to the ultra

fast growth rate. However, we show that the average MSEs of different HARQ-based

policies quickly converge to bounded steady state values. Therefore, the proposed

HARQ-based policy can significantly improve the estimation quality against the con-

ventional policy. Also, we see that the performance of the myopic policy is very

close to the optimal one. Given the performance baseline, the optimal policy gives

a 10% MSE reduction of the delay-optimal policy, which demonstrates the superior
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performance of the proposed optimal policy.

In Fig. 2.9, we compare α policies with the myopic policy with CC-HARQ. Specif-

ically, to measure the relative performance gain provided by the suboptimal policies,

we use the ratio of the average MSE gap between the suboptimal and the optimal

policies to the gap between the myopic and the optimal policies. Thus, a ratio less

than one indicates a better performance achieved by the suboptimal policy. From

Fig. 2.9, we see that some α policies with α ∈ (1, 1.8) are able to achieve better

performances than the myopic policy, and the policies with α ≥ 2 induce much larger

average MSEs than the myopic one. Therefore, the α policy with a small parameter

can be a better choice than the myopic policy.

Markov Channel

We consider a two state Markov channel with the channel power gains u1 = 2 and

u2 = 1. The matrix of channel state transition probability Π =

[
0.8 0.2

0.2 0.8

]
. Using

Theorem 2.3, we can verify that the CC/IR-HARQ based optimal policy exists. To
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Table 2.1: Computation complexity of the policies in the static and Markov channels.

Computation complexity [79] The number of convergence steps, K
M N Optimal Myopic Delay-optimal Optimal Myopic Delay-optimal

Static channel 2 210 O(MN2K) O(MN) O(MN2K) 58 1 41
Markov channel 2 328 O(MN2K) O(MN) O(MN2K) 90 1 30

solve the MDP problem in the Markov channel scenario with an infinite state space,

the unbounded state space S is truncated as {(r1, r2, q,Ξ) : 0 ≤ r1 ≤ 4, 0 ≤ r2 ≤

4, 1 ≤ (r1 + r2) ≤ q ≤ 10,Ξ = 1, 2} to enable the evaluation, where (r1, r2) , Ω is the

state vector of the historical channel states. Figs. 2.10 and 2.11 show the optimal

transmission control policy under channel 1 (h = 2) and 2 (h = 1), respectively.

We can see the switching structure of the optimal policy. Also, we see that new

transmission occurs more often in the good channel than in the bad channel.

We also calculate the myopic policy and delay-optimal policy of the Markov chan-

nel, and the computation complexity of these policies together with the ones of the

static channel are listed in Table 2.1. Note that the myopic policy of the Markov

channel case is similar to that of the static channel case in Sec. 2.4.5, which makes

simply the decision to maximize the expected instantaneous cost. The details are

omitted due to space limitations. We see that the numbers of convergence steps for

calculating these policies are less than 100, and the optimal policy has a larger number

of convergence steps than the delay-optimal policy and hence a higher computation

complexity.

Performance Comparison. We evaluate the non-retransmission policy, the CC/IR-

HARQ based optimal policy, the CC-HARQ based myopic policy and the delay-

optimal policy in terms of the long-term average MSE using (2.2.10). We run the
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Figure 2.10: Optimal transmission
control policy at channel 1, where ‘o’
and ‘·’ denote a = 0 and a = 1, respec-
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Figure 2.11: Optimal transmission
control policy at channel 2, where ‘o’
and ‘·’ denote a = 0 and a = 1, respec-
tively.

remote estimation process with 104 time slots and set the initial value of Pk as P0.

Fig. 2.12 plots the average MSE versus the simulation time K, using different

transmission control policies. Our simulation shows that the non-retransmission pol-

icy has an unbounded average MSE. We show that the average MSEs of different

policies quickly converge to bounded steady state values. Therefore, the proposed

HARQ-based policy can also significantly improve the estimation quality against the

conventional policy in the Markov channel scenario. We see that the performance of

the myopic policy is very close to the optimal one. Given the performance baseline,

the optimal policy reduces MSE by 33% for the delay-optimal policy. Also, unlike the

static channel scenario, we see that the IR-HARQ based optimal policy significantly

reduces the average MSE by 87% compared to the CC-HARQ based optimal policy.

This is because IR-HARQ can provide much better retransmission reliability than

CC-HARQ, especially when the channel quality is bad.
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Figure 2.13: Two of the possible first
passage paths from (i, i) to (1, 1), i.e.,
(i, i)→ (1, 1) and (i, i)→ (1, i+ 1)→
(2, i+2)→ (3, i+3)→ (i−1, i−1)→
(1, 1), where i = 5.

2.7 Conclusions

We have proposed and optimized a HARQ-based remote estimation protocol for

real-time applications. We derived a sufficient condition of the existence of a sta-

tionary and deterministic optimal policy that stabilizes the remote estimation system

and minimizes the MSE. Also, we proved that the optimal policy has a switching

structure, and accordingly derived a low-complexity suboptimal policy. Our results

have shown that the optimal policy can significantly reduce the estimation MSE for

some practical settings.



Chapter 3

Optimal Downlink–Uplink
Scheduling of Wireless Networked
Control for Industrial IoT

3.1 Introduction

Driven by recent development of mission-critical Industrial Internet of Things

(IIoT) applications [80–82] and significant advances in wireless communications, net-

working, computing, sensing and control [83–86], wireless networked control systems

(WNCSs) have recently emerged as a promising technology to enable reliable and

remote control of industrial control systems. They have a wide range of applications

in factory automation, process automation, smart grid, tactile Internet and intelli-

gent transportation systems [87–91]. Essentially, a WNCS is a spatially distributed

control system consisting of a plant with dynamic states, a set of sensors, a remote

controller, and a set of actuators.

A WNCS has two types of wireless transmissions, i.e., the sensor’s measurement

transmission to the controller and the controller’s command transmission to the ac-

tuator. The packets carrying plant-state information and control commands can

48
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be lost, delayed or corrupted during their transmissions. Most existing research in

WNCS adopted a separate design approach, i.e., either focusing on remote plant-state

estimation or remote plant-state control through wireless channels. In [63] and [92],

the optimal policies of remote plant-state estimation with a single and multiple sen-

sors’ measurements were proposed, respectively. Some advanced remote plant-state

control methods were investigated to overcome the effects of transmission delay [93]

and detection errors [94, 95].

The fundamental co-design problem of a WNCS in terms of the optimal remote

estimation and control were tackled in [12]. Specifically, the controller was ideally

assumed to work in a full-duplex (FD) mode that can simultaneously receive the sen-

sor’s packet and transmit its control packet by default. The scheduling of the sensor’s

and controller’s transmissions has rarely been considered in the area of WNCSs, al-

though transmission scheduling is actually an important issue for practical wireless

communication systems [96–98]. Moreover, although an FD system can improve the

spectrum efficiency, it faces challenges such as balancing between the performance of

self-interference cancellation, device cost and power consumption, and may not be

feasible in practical systems [59].

In this chapter, we focus on the design of a WNCS using a practical HD controller

and optimze the uplink-downlink transmission scheduling of WNCS. The remainder

of the chapter is organized as follows: In Section 3.2, we introduce a WNCS with

an HD controller. In Section 3.3, we analyze the estimation-error covariance and the

plant-state covariance of the WNCS and formulate an uplink-downlink transmission-

scheduling problem. In Sections 3.4 and 3.5, we analyze and solve the transmission-

scheduling problem for one-step and multi-step controllable WNCSs, respectively, in
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the static channel scenario. In Section 3.6, we extend the design to the fading channel

scenario. Section 3.7 numerically evaluates the performance of WNCSs with different

transmission-scheduling policies. Finally, Section 3.8 concludes the work.

3.2 System Model

We consider a discrete-time WNCS consisting of a dynamic plant with multiple

states, a wireless sensor, an actuator, and a remote controller, as illustrated in Fig. 3.1.

In general, the sensor measures the states of the plant and sends the measurements

to the remote controller through a wireless uplink (i.e., sensor-controller) channel.

The controller generates control commands based on the sensor’s feedback and sends

the commands to the actuator through a wireless downlink (i.e., controller-actuator)

channel. The actuator controls the plant using the received control commands.

3.2.1 Dynamic Plant

The plant is a linear time invariant (LTI) discrete-time system modeled as [36,

94, 95]

xk+1 = Axk + Buk + wk,∀k (3.2.1)
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where xk ∈ Rn is the plant-state vector at time k, uk ∈ Rm is the control input

applied by the actuator, and wk ∈ Rn is the plant disturbance independent of xk,

and is a discrete-time zero-mean Gaussian white noise process with the covariance

matrix R ∈ Rn×n. A ∈ Rn×n and B ∈ Rn×m are the system-transition matrix and

the control-input matrix, respectively, which are constant. The discrete time step of

the system (3.2.1) is T0, i.e., the plant states keep constant during a time slot of T0

and change slot-by-slot.

We assume that the plant is an unstable system [63, 94], i.e., the spectral radius of

A, ρ(A), is larger than 1. In other words, the plant-state vector xk grows unbounded

without the control input, i.e., uk = 0, ∀k.

We consider the long-term average (quadratic) cost of the dynamic plant defined

as (see e.g. [12, 94])

J = lim
K→∞

1

K

K−1∑
k=0

E
[
x>k Qxk

]
= lim

K→∞

1

K

K−1∑
k=0

Tr (QPk) , (3.2.2)

where Q is a symmetric positive semidefinite matrix, and Pk is the plant-state co-

variance, defined as

Pk , E
[
xkx

>
k

]
. (3.2.3)

Definition 3.1 (Closed-loop Stability [12, 94]). The plant (3.2.1) is stabilized by the

sequence {uk} if the average cost function (3.2.2) is bounded.

3.2.2 HD Operation of the Controller

We assume that the controller is an HD device, and thus it can either receive the

sensor’s measurement or transmit its control command to the actuator at a time. Let

ak ∈ {1, 2} be the controller’s transmission-scheduling variable in time slot k. The
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sensor’s or the controller’s transmission is scheduled in time slot k if ak = 1 or 2,

respectively.

The sensor measures the plant states at the beginning of each time slot. The

measurement is assumed to be perfect [36, 94, 95]. We use δk to indicate the success

of the sensor’s transmission in time slot k. Thus, δk = 1 if the sensor is scheduled to

send a packet carrying its measurement to the controller in time slot k (i.e., ak = 1)

and the transmission is successful, and δk = 0 otherwise.

The controller generates a control-command-carrying packet at the beginning of

each time slot. Similarly, we use γk to indicate the success of the controller’s trans-

mission in time slot k. Thus, γk = 1 if the controller is scheduled to send the control

packet to the actuator in time slot k (i.e., ak = 2) and the transmission is successful,

and γk = 0 otherwise. We also assume that the controller has a perfect feedback

from the actuator indicating successful packet detection [12]. Thus, the controller

knows whether its control command will be applied or not. We assume that the pack-

ets in both the sensor-to-controller and controller-to-actuator channels have the same

packet length and that this is less than T0 [12, 63].

3.2.3 Wireless Channel

We consider both the static channel and the fading channel scenarios of the WNCS.

The static channel scenario is for IIoT applications with low mobilities, e.g., process

control of chemical and oil-refinery plants, while the fading channel scenario is for

high mobility applications, e.g., motion control of automated guided vehicles in ware-

houses.

For the static channel scenario, we assume that the packet-error probabilities of
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the uplink (sensor-controller) and downlink (controller-actuator) channels are ps and

pc, respectively, which do not change with time, where ps, pc ∈ (0, 1).

For the fading channel scenario, we adopt a practical finite-state Markov channel

model, which captures the inherent property of practical fading channels for which

the channel states change with memories [99]. It is assumed that the uplink channel

and the downlink channel have Bs and Bc states, respectively, and the packet loss

probability of the ith channel state of the uplink channel and the jth channel state of

the downlink channel are ωi and ξj, respectively. The matrices of the channel state

transition probabilities of the uplink and downlink channels are given as

Ds ,


ds1,1 · · · dsBs,1

...
. . .

...

ds1,Bs · · · dsBs,Bs

 , (3.2.4)

and

Dc ,


dc1,1 · · · dcBc,1

...
. . .

...

dc1,Bc · · · dcBc,Bc

 , (3.2.5)

respectively. The packet-error probabilities of the uplink and downlink channels

at time k are ps,k and pc,k, respectively, where ps,k ∈ {ω1, · · · , ωBs} and pc,k ∈

{ξ1, · · · , ξBc}.

3.2.4 Optimal Plant-State Estimation

At the beginning of time slot (k + 1), before generating a proper control com-

mand, the controller needs to estimate the current states of the plant, xk+1, using

the previously received sensor’s measurement and also the implemented control input

based on the dynamic plant model (3.2.1). The optimal plant-state estimator is given
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as [63]

x̂k+1 =

Axk + Buk, ak = 1, δk = 1,

Ax̂k + Buk, otherwise.
(3.2.6)

3.2.5 v-Step Predictive Plant-State Control

As the transmission between the controller and the actuator is unreliable, the

actuator may not successfully receive the controller’s packet containing the current

control command. To provide robustness against packet failures, we consider a pre-

dictive control approach [100]. In general, the controller sends both the current

command and the predicted future commands to the actuator at each time. If the

current command-carrying packet is lost, the actuator will apply the previously re-

ceived command that was predicted for the current time slot. The details of the

predictive control method are given below.

The controller adopts a conventional linear predictive control law [94], which gen-

erates a sequence of v control commands including one current command and (v− 1)

predicted future commands in each time slot k as

Ck =
[
Kx̂k,K(A + BK)x̂k, · · · ,K(A + BK)v−1x̂k︸ ︷︷ ︸

(v−1) predicted control commands

]
, (3.2.7)

where the constant v is the length of predictive control, and the constant K ∈ Rm×n

is the controller gain, which satisfies the condition that1

ρ(A + BK) < 1. (3.2.8)

Such predicitve control law comes from the intuiative combination of linear feedback

law (uk = Kx̂k) and predictive estimation process (x̂k+1 = (A + BK)x̂k).

If time slot k is scheduled for the controller’s transmission, the controller sends

1If (3.2.8) is not satisfied, the plant (3.2.1) can never be stabilized even if the uplink and downlink
transmissions are always perfect see e.g., [12, 50].
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a packet containing v control commands Ck to the actuator. Note that in most

communication protocols, the minimum packet length is longer than the time duration

required for transmitting a single control command [100], and thus it is wise to send

multiple commands in the one packet without increasing the packet length.

The actuator maintains a command buffer of length v, Uk ,
[
u0
k,u

1
k, · · · ,uv−1

k

]
. If

the current controller’s packet is successfully received, the actuator resets the buffer

with the received command sequence; otherwise, the buffer shifts one step forward,

i.e.,

Uk =

Ck, ak = 2, γk = 1,[
u1
k−1,u

2
k−1, · · · ,uv−1

k−1,0
]
, otherwise.

(3.2.9)

The actuator always applies the first command in the buffer to the plant. Thus, the

actuator’s control input in time slot k is

uk , u0
k. (3.2.10)

To indicate the number of passed time slots from the last successfully received

control packet, we define the control-quality indicator of the plant in time slot k as

ηk =

1, ak = 2, γk = 1,

ηk−1 + 1, otherwise.
(3.2.11)

Specifically, ηk−1 is the number of the time slots passed from the most recent con-

troller’s successful transmission to the current time slot k.

From (3.2.7), (3.2.9), (3.2.10) and (3.2.11), the control input can be rewritten as

uk =

K(A + BK)ηk−1x̂k+1−ηk , if ηk ≤ v,

0, if ηk > v.
(3.2.12)

To better explain the intuition behind the predictive control method (3.2.7),

(3.2.9) and (3.2.10), we give an example below.

Example 3.1. Assume that a sequence of the controller’s commands is successfully
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received in time slot k and the actuator will not receive any further commands in the

following v − 1 time slots. Consider an ideal case that the estimation is accurate in

time slot k, i.e., x̂k = xk, and the plant disturbance wk = 0, ∀k. Taking (3.2.12) into

(3.2.1), the plant-state vector at (k + j), ∀j ≤ v can be derived as

xk+j = (A + BK)jxk. (3.2.13)

Therefore, if the controller gain K is chosen properly and makes the spectral radius

of (A + BK) less than 1, each state in xk can approach zero gradually within the v

steps even without receiving any new control packets.

In this work, we mainly focus on two types of plants applying the predictive control

method as follows.

Case 1: The controller gain K satisfies the condition that

A + BK = 0. (3.2.14)

This case is named as the one-step controllable case [17], since once a control packet is

received successfully, the plant-state vector xk can be driven to zero in one step in the

above mentioned ideal setting, i.e., xk+1 = 0xk = 0 in (3.2.13). By taking (3.2.14)

into (3.2.7), the (v− 1) predicted commands are all 0, thus the controller only needs

to send the current control command to the actuator without any prediction, and the

length of U and C, v, is equal to 1.

Case 2: The controller gain K satisfies the condition that [17]

(A + BK)v = 0, v > 1. (3.2.15)

This case is named as the v-step controllable case [17], since the plant state xk can be

driven to zero in v steps after a successful reception of a control packet in the ideal

setting2, i.e., xk+v = 0 in (3.2.13).

2Note that the ideal setting here is only for the explanation of the term of ”one-step controllable”,
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The other cases not satisfying the conditions (3.2.14) or (3.2.15) will also be dis-

cussed in the following section.

3.3 Analysis of the Downlink-Uplink Scheduling

As the controller estimates the current plant states and utilizes this estimation to

control future ones, we analyze the estimation-error covariance and the plant-state

covariance below.

3.3.1 Estimation-Error Covariance

Using (3.2.1) and (3.2.6), the estimation error in time slot (k + 1) is obtained as

ek+1 , xk+1 − x̂k+1 =

wk, ak = 1, δk = 1,

Aek + wk, otherwise.
(3.3.1)

Thus, we have the updating rule of the estimation-error covariance, Uk , E[eke
>
k ],

as

Uk+1 , E[ek+1e
>
k+1] =

R ak = 1, δk = 1,

AUkA
> + R otherwise.

(3.3.2)

We define the estimation-quality indicator of the plant in time slot k, τk, as the

number of passed time slots from the last successfully received sensor packet. Then,

the state-updating rule of τk is obtained as

τk+1 =

1, ak = 1, δk = 1,

τk + 1, otherwise.
(3.3.3)

Once a successful sensor transmission occurs (e.g., there exists k′ such that Uk′ =

R), from (3.3.2) and (3.3.3), it can be shown that the estimation-error covariance

while we only consider practical settings in the rest of the chapter.
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Uk,∀k ≥ k′ is simply a function of the estimation-quality indicator τk, i.e.,

Uk = F(τk), (3.3.4)

where the function F(·) is defined as

F(τ) ,
τ∑
i=1

Ai−1R(A>)i−1, τ ∈ N. (3.3.5)

As we focus on the long-term performance of the system, without loss of generality,

we assume that Uk ∈ {F(1),F(2),F(3), · · · } for all k. From (3.3.3) and (3.3.4), the

updating rule of Uk is obtained as

Uk+1 = F(τk+1) =

F(1) ak = 1, δk = 1,

F(τk + 1) otherwise.
(3.3.6)

3.3.2 Plant-State Covariance of One-Step Controllable Case

Taking (3.2.11) and (3.2.14) into (3.2.12), the control input of the one-step con-

trollable case can be simplified as

uk =

Kx̂k, ak = 2, γk = 1,

0, otherwise.
(3.3.7)

Substituting (3.3.7) into (3.2.1) and using (3.2.14), the plant-state vector can be

rewritten as

xk+1 =

Axk + BKx̂k + wk=Aek + wk, ak = 2, γk = 1,

Axk + wk, otherwise.
(3.3.8)

Thus, the plant-state covariance, Pk, has the updating rule as

Pk+1 , E[xk+1x
>
k+1] =

AUkA
> + R ak = 2, γk = 1,

APkA
> + R otherwise.

(3.3.9)

From (3.3.5), (3.3.6) and (3.3.9), we see that the plant-state covariance Pk will only

take value from the countable infinity set {F(2),F(3), · · · } after a successful con-

troller’s transmission. Again, as we focus on the long-term performance of the system,
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we assume that Pk ∈ {F(2),F(3), · · · } for all k, without loss of generality.

By introducing the variable φk ∈ {2, 3, · · · }, the plant-state covariance in time

slot k can be written as

Pk = F(φk), (3.3.10)

where φk is the state-quality indicator of the plant in time slot k. Note that the state

covariance only depends on the state parameter φk.

From (3.3.9) and (3.3.4), the updating rules of Pk and φk in (3.3.10) are given by,

respectively, as

Pk+1 = F(φk+1) =

F(τk + 1) ak = 2, γk = 1,

F(φk + 1) otherwise,
(3.3.11)

φk+1 =

τk + 1, ak = 2, γk = 1,

φk + 1, otherwise.
(3.3.12)

From (3.3.3) and (3.3.12), it is easy to prove that φk ≥ τk,∀k.

3.3.3 Plant-State Covariance of v-Step Controllable Case

Taking (3.2.12) into (3.2.1), the plant-state vector is rewritten as

xk+1 =

Axk+BK(A + BK)ηk−1x̂k+1−ηk+wk, if ηk≤ v,

Axk + wk, if ηk> v.
(3.3.13)

Using the property (3.2.15), we have the state-updating rule as

xk = Axk−1 + BK(A + BK)ηk−1−1x̂k−ηk−1
+ wk−1. (3.3.14)

Unlike the one-step controllable case in (3.3.8), where the current state vector relies

on the previous-step estimation, current plant state vector in the v-step controllable

case depends on the state estimation ηk−1 steps ago.
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Figure 3.2: Illustration of the state parameters, where red vertical bars denote success-
ful controller transmissions and blue vertical bars denote the most recent successful
sensor transmissions prior to the successful controller transmissions.

Inspired by the one-step controllable case (3.3.10), we aim at deriving the plant-

state covariance in terms of a set of state parameters. First, we define a sequence of

variables, tik, i = 1, · · · , v, where tik is the time-slot index of the ith latest successful

controller’s transmission prior to the current time slot k, as illustrated in Fig. 3.2.

Then, we define the following state parameters

τ ik ,

τk, i = 0,

τtik , i = 1, 2, · · · v,
(3.3.15)

ηik ,

ηk−1 = k − t1k, i = 0,

tik − ti+1
k , i = 1, 2, · · · v − 1.

(3.3.16)

Specifically, ηik measures the delay between two consecutive controller’s successful

transmissions; τ ik is the estimation-quality indicator of time slot tik. Last, we define

the state parameters φik as

φik , ηik + τ i+1
k , i = 0, · · · , v − 1. (3.3.17)

Using the state-transition rules of ηk and τk in (3.2.11) and (3.3.3), and the defi-

nitions (3.3.15), (3.3.16) and (3.3.17), the state-transition rules of τ ik, η
i
k and φik can
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be obtained, respectively, as

τ ik+1 =



1, i = 0, ak = 1, δk = 1,

τ 0
k + 1, i = 0, otherwise,

τ i−1
k , i = 1, · · · , v − 1, ak = 2, γk = 1,

τ ik, i = 1, · · · , v − 1, otherwise,

(3.3.18)

ηik+1 =



1, i = 0, ak = 2, γk = 1,

η0
k + 1, i = 0, otherwise,

ηi−1
k , i = 1, · · · , v − 1, ak = 2, γk = 1,

ηik, i = 1, · · · , v − 1, otherwise,

(3.3.19)

φik+1 =



τ 0
k + 1, i = 0, ak = 2, γk = 1,

φik + 1, i = 0, otherwise,

φi−1
k , i = 1, · · · , v − 1, ak = 2, γk = 1,

φik, i = 1, · · · , v − 1, otherwise.

(3.3.20)

Then, we can derive the plant-state covariance in a closed form in terms of the

state parameters as follows.

Proposition 3.1. The plant-state covariance Pk in time slot k is

Pk = F(φ0
k) +

v−2∑
i=0

G

(
i∑

j=0

φjk −
i∑

j=0

τ j+1
k ,

1(φi+1
k > τ i+1

k )
(
F(φi+1

k )− F(τ i+1
k )

))
,

(3.3.21)

where the summation operator has the property that
∑b

i=a(·) = 0 if a > b, F(·) is

defined in (3.3.5), and

G (x,Y) , (A + BK)xY((A + BK)x)>. (3.3.22)

Proof. See Appendix A.
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Remark 3.1. Proposition 3.1 states that the state covariance Pk of a v-step control-

lable plant is determined by (2v − 1) state parameters, i.e., τ ik, i = 1, · · · , v − 1 and

φik, i = 0, · · · , v − 1.

Remark 3.2. In practice, it is possible that the plant (3.2.1) is v̄-step controllable,

i.e., (A + BK)v̄ = 0, where v̄ > v; it is also possible that when the controller gain

K is predetermined and fixed, one cannot find v̄ ∈ N such that (A + BK)v̄ = 0.

Moreover, the plant may not be finite-step controllable, i.e., one cannot find a set of

K and v̄ ∈ N such that (A + BK)v̄ = 0. In these cases, where conditions (3.2.14)

and (3.2.15) are not satisfied, we can show that the covariance Pk has incountably

infinite values and cannot be expressed by a finite number of state parameters as in

Proposition 3.1. Furthermore, the process {Pk} is not stationary, making the long-

term average cost function (3.2.2) difficult to evaluate. However, when v is sufficiently

large, (A + BK)v approaches 0 as ρ(A + BK) < 1. Thus, the plant-state vector in

(B.1.4) of the proof of Proposition 3.1, obtained by letting (A + BK)v = 0, is still a

good approximation of xk for these cases, and hence Proposition 3.1 can be treated as

a countable-state-space approximation of the plant-state covariance.

3.3.4 Problem Formulation

The uplink-downlink transmission-scheduling policy is defined as the sequence

{a1, a2, · · · , ak, · · · }, where ak is the transmission-scheduling action in time slot k. In

the following, we optimize the transmission-scheduling policy for both the one-step

and multi-step controllable plants such that the average cost of the plant in (3.2.2) is
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minimized3, i.e.,

min
a1,a2,··· ,ak,···

J = lim
K→∞

1

K

K−1∑
k=0

Tr (QPk) . (3.3.23)

3.4 One-Step Controllable Case: Optimal Transmission-

Scheduling Policy

We first investigate the optimal transmission scheduling policy for the one-step

controllable case, as it will also shed some light onto the optimal policy design of

general multi-step controllable cases. Note that in this section and the following, we

focus on the static channel scenario, and the design method of the optimal scheduling

policies can be extended to the fading channel scenario, which will be discussed in

Section 3.6.

3.4.1 MDP Formulation

From (3.3.11), (3.3.3) and (3.3.12), the next state cost Pk+1, and the next states

τk+1 and φk+1 only depend on the current transmission-scheduling action ak and the

current states τk and φk. Therefore, we can reformulate the problem (3.3.23) into a

Markov Decision Process (MDP) as follows.

1) The state space is defined as S , {(τ, φ) : φ ≥ τ, φ 6= τ + 1, τ ∈ N, φ ∈

{2, 3, · · · }} as illustrated in Fig. 3.3. Note that the states with φ = τ+1 are transient

states (which can be verified using (3.3.3) and (3.3.12)) and are not included in S,

since we only focus on the long-term performance of the system. The state of the

3In this work, we only focus on the design of the scheduling policy {ak}, when the controller gain
K and the length of predictive control v are given and fixed. In our future work, the controller gain,
the length of predictive control and the scheduling sequence will be jointly optimized.
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(1, 1) τ

φ

Figure 3.3: The state space S (shaded dots) of the MDP.

MDP at time k is sk , (τk, φk) ∈ S.

2) The action space of the MDP is defined as A , {1, 2}. The action at time

k, ak , π(sk) ∈ A, indicates the sensor’s transmission (ak = 1) or the controller’s

transmission (ak = 2) in time slot k.

3) The state-transition probability P (s′|s, a) is the probability that the state s

at time (k − 1) transits to s′ at time k with action a at time (k − 1). We drop

the time index k here since the transition is time-homogeneous. Let s = (τ, φ) and

s′ = (τ ′, φ′) denote the current and next state, respectively. From (3.3.3) and (3.3.12),

the state-transition probability can be obtained as

P (s′|s, a) =



ps, if a = 1, s′ = (τ + 1, φ+ 1)

1− ps, if a = 1, s′ = (1, φ+ 1)

pc, if a = 2, s′ = (τ + 1, φ+ 1)

1− pc, if a = 2, s′ = (τ + 1, τ + 1)

0, otherwise.

(3.4.1)

4) The one-stage cost of the MDP, i.e., the one-step quadratic-cost of the plant in

(3.2.2), is a function of the current state φ as

c(s) = c(φ) , Tr (QP) = Tr (QF(φ)) , (3.4.2)
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which is independent of the state τ and the action a. The function c(·) has the

following property:

Lemma 3.1. The one-stage cost function c(φ) in (3.4.2) is a strictly monotonically

increasing function of φ, where φ ∈ {2, 3, · · · }.

Proof. Since R is a positive definite matrix, MRM> is positive definite for any n-by-

n non-zero matrix M. Also, we have Ai 6= 0,∀i ∈ N, as it is assumed that ρ(A) > 1

in Section 3.2.1. Due to the fact that the product of positive-definite matrices has

positive trace and Q is positive definite, Tr
(
QAiR(Ai)>

)
is positive, ∀i ∈ N. From

the definition of F(·) in (3.3.5), we have

c(φ+ z)− c(φ) = Tr(QF(φ+ z))− Tr(QF(φ))

=

φ+z∑
i=φ+1

Tr
(
QAiR(Ai)>

)
> 0,∀z ∈ N.

(3.4.3)

This completes the proof.

Therefore, the problem (3.3.23) is equivalent to finding the optimal policy π(ss),∀s ∈

S by solving the classical average cost minimization problem of the MDP [76]. If a

stationary and deterministic optimal policy of the MDP exists, we can effectively find

the optimal policy by using standard methods such as the relative value iteration

algorithm see e.g., [76, Chapter 8].

3.4.2 Existence of the Optimal Scheduling Policy

If the uplink and downlink channels have high packet-error probabilities, the aver-

age cost in (3.3.23) may never be bounded no matter what policy we choose. There-

fore, we need to study the condition in terms of the transmission reliability of the
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uplink and downlink channels under which the dynamic plant can be stabilized, i.e.,

the average cost can be bounded. We derive the following result.

Theorem 3.1. In the static channel scenario, there exists a stationary and deter-

ministic optimal transmission-scheduling policy that can stabilize the one-step con-

trollable plant (3.2.1) iff

max {ps, pc} <
1

ρ2(A)
, (3.4.4)

where we recall that ρ(A) is the spectral radius of A.

Proof. The necessity of the condition can be easily proved as (3.4.4) is the necessary

and sufficient condition that an ideal FD controller with the uplink-downlink packet-

error probabilities {ps, pc} can stabilize the remote plant [12]. Intuitively, if (3.4.4)

does not hold, an FD controller cannot stabilize the plant and thus an HD controller

cannot either, no matter what transmission-scheduling policy it applies.

The sufficiency part of the proof is conducted by proving the existence of a sta-

tionary and deterministic policy π′ that can stabilize the plant if (3.4.4) is satisfied,

where

π′(s) = π′(τ, φ) =


1, τ = φ, (τ, φ) ∈ S

2, otherwise.

(3.4.5)

The details of the proof are given in Appendix B.

Remark 3.3. Theorem 3.1 states that the optimal policy, which stabilizes the plant,

exists if both the channel conditions of the uplink and downlink channels are good (i.e.,

small ps and pc) and the dynamic process does not change rapidly (i.e., a small ρ2(A)).

Also, it is interesting to see that the HD controller has exactly the same condition

as the FD controller [12] to stabilize the plant. However, since the HD operation
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naturally introduces longer delays in both transmissions of the sensor measurement

and the control command than the FD operation, the bounded average cost of the HD

controller should be higher than the FD one, which will be illustrated in Section 3.7.

Assuming that the condition (3.4.4) is satisfied, we have the following property of

the optimal policy.

Proposition 3.2. The stationary and deterministic optimal policy of the problem

(3.3.23), π∗(τ, φ), is a switching-type policy in terms of τ and φ, i.e., (i) if π∗(τ, φ) = 1,

then π∗(τ+z, φ) = 1, ∀z ∈ N and (τ+z, φ) ∈ S; (ii) if π∗(τ, φ) = 2, then π∗(τ, φ+z) =

2, ∀z ∈ N and (τ, φ+ z) ∈ S.

Proof. The proof follows the same procedure as Theorem 2.2 in chapter 2 and is

omitted here.

Therefore, for the optimal policy, the state space is divided into two parts by a

curve, and the scheduling actions of the states in each part are the same, which will

be illustrated in Section 3.7. Such a switching structure helps save storage space for

on-line transmission scheduling, as the controller only needs to store the states of the

switching boundary instead of the entire state space.

3.4.3 Suboptimal Policy

In practice, to solve the MDP problem in Section 3.4.1 with an infinite num-

ber of states, one needs to approximate it by a truncated MDP problem with finite

states for offline numerical evaluation. The computing complexity of the problem is

O(AB2C) [79], where A and B are the cardinalities of the action space and the state
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space, respectively, and C is the number of convergence steps for solving the prob-

lem. To reduce the computation complexity, we propose a myopic policy ψ(s),∀s ∈ S,

which simply makes the online decision to optimize the expected next stage cost.

From (3.4.1) and (3.4.2), the expected next stage cost E[c(φ′)|s, a = ψ(s)], where

s = (τ, φ), is derived as

E[c(φ′)|s, ψ(s) = 1] = c(φ+ 1),

E[c(φ′)|s, ψ(s) = 2] = pcc(φ+ 1) + (1− pc)c(τ + 1).
(3.4.6)

1) For states {s|(τ, φ) ∈ S, φ > τ}, from (3.4.6), the action ψ(s) = 2 results in a

smaller next stage cost than ψ(s) = 1.

2) For states {s|(τ, φ) ∈ S, φ = τ}, from (3.4.6), since the two actions lead to the

same next stage cost, i.e.,

E[c(φ′)|s, ψ(s) = 1] = E[c(φ′)|s, ψ(s) = 2] = c(φ+ 1), (3.4.7)

we need to compare the second stage cost led by the actions. If ψ(s) = 1, s′ ∈

{(1, φ + 1), (φ + 1, φ + 1)}. If s′ = (1, φ + 1), since φ + 1 > 1, the next stage

myopic action is ψ(1, φ + 1) = 2 as discussed earlier, and the second stage state

s′′ ∈ {(2, φ+ 2), (2, 2)}. If s′ = (φ+ 1, φ+ 1), from (3.4.7), the expected second stage

cost is c(φ+ 2) for both ψ(s′) = 1 and 2. Based on this analysis and (3.4.1), we have

the expected second stage cost with φ(s) = 1 as

E[c(φ′′)|s, ψ(s) = 1] = (1− ps) (pcc(φ+ 2)+(1− pc)c(2))

+ psc(φ+ 2).
(3.4.8)

Similarly, we can obtain the expected second stage cost with φ(s) = 2 as

E[c(φ′′)|s, ψ(s) = 2] = c(φ+ 2). (3.4.9)

Since pc, ps < 1 and c(2) < c(φ + 2) from Lemma 3.1, ψ(s) = 1 results in a smaller

cost than ψ(s) = 2. From the above analysis, the myopic policy ψ(s) is equal to π′(s)
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in (3.4.5), ∀s ∈ S.

Proposition 3.3. The myopic policy of problem (3.3.23) is π′ in (3.4.5).

Remark 3.4. From the myopic policy (3.4.5) and the state-updating rules (3.3.3)

and (3.3.12), we see that the policy π′ is actually a persistent scheduling policy, which

consecutively schedules the uplink transmission until one is successful, and then con-

secutively schedules the downlink transmission until one is successful, and so on.

From the property of the persistent scheduling policy, we can easily obtain the

result below.

Corollary 3.1. For the persistent uplink-downlink scheduling policy π′ in Proposi-

tion 3.3, the chances of scheduling the sensor and the controller transmissions are

1−pc
(1−pc)+(1−ps) and 1−ps

(1−pc)+(1−ps) , respectively.

3.4.4 Naive Policy: A Benchmark

We consider a naive uplink-downlink scheduling policy of the HD controller as

a benchmark of the proposed optimal scheduling policy. The naive policy simply

schedules the sensor and the controller transmissions alternatively, i.e., {· · · , sensing,

control, sensing, control, · · · }, without taking into account the state-estimation qual-

ity of the controller nor the state-quality of the plant. Such a naive policy is also

noted as the round-robin scheduling policy.

Theorem 3.2. In the static channel scenario, the alternative scheduling policy can

stabilize the one-step controllable plant (3.2.1) iff

max {ps, pc} <
1

(ρ2(A))2 . (3.4.10)
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Proof. See Appendix C.

Remark 3.5. Compared with Theorem 3.1, to stabilize the same plant the naive policy

may require smaller packet-error probabilities of the uplink and downlink channels than

the proposed optimal scheduling policy. This also implies that the optimal policy can

result in a notably smaller average cost of the plant than the naive policy, which will

be illustrated in Section 3.7.

3.5 v-Step Controllable Case: Optimal Transmission-

Scheduling Policy

3.5.1 MDP Formulation

Based on Proposition 3.1, the average cost minimization problem (3.3.23) can be

formulated as an MDP similar to the one-step controllable case in Section 3.4 as:

1) The state space is defined as S , {(τ 0
k , τ

1
k , · · · , τ v−1

k , φ0
k, φ

1
k, · · · , φv−1

k ) : φik ≥

τ ik, φ
i
k 6= τ ik + 1, τ ik ∈ N, φik ∈ {2, 3, · · · },∀i = 0, · · · , v − 1}.

2) The action space of the MDP is exactly the same as that of the one-step

controllable plant in Section 3.4.1.

3) Let P (s′|s, a) denote the state-transition probability, where s = (τ 0, · · · , τ v−1, φ0, · · · , φv−1)
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and s′ = ((τ 0)′, · · · , (τ v−1)′, (φ0)′, · · · , (φv−1)′) are the current and next state, re-

spectively, after dropping the time indexes. From (3.3.18) and (3.3.20), the state-

transition probability is obtained as

P (s′|s, a) =

ps, if a=1, s′=(τ 0+1, τ 1, · · · , τ v−1, φ0+1, φ1, · · · , φv−1)

1−ps, if a=1, s′=(1, τ 1, · · · , τ v−1, φ0+1, φ1, · · · , φv−1)

pc, if a=2, s′=(τ 0+1, τ 1, · · · , τ v−1, φ0+1, φ1, · · · , φv−1)

1−pc, if a=2, s′=(τ 0+1, τ 0,· · · ,τ v−2, τ 0+1, φ0,· · · ,φv−2)

0, otherwise.

(3.5.1)

4) The one-stage cost of the MDP is a function of the current state s, and is

obtained from (3.2.2) and Proposition 3.1 as

c(s) = c(τ 1, · · · , τ v−1, φ0, · · · , φv−1)

= Tr

(
Q

[
F(φ0) +

v−2∑
i=0

G

(
i∑

j=0

φj −
i∑

j=0

τ j+1,

1(φi+1 > τ i+1)
(
F(φi+1)− F(τ i+1)

))])
.

(3.5.2)

Remark 3.6. Different from the one-step controllable case, where the one-stage cost

function is a monotonically increasing function of the state parameter φ, the cost func-

tion in (3.5.2) is more complex and does not have this property. Thus, the switching

structure of the optimal policy does not hold in general for the v-step controllable case.

3.5.2 Existence of the Optimal Scheduling Policy

Theorem 3.3. In the static channel scenario, there exists a stationary and determin-

istic optimal transmission-scheduling policy that can stabilize the v-step controllable

plant (3.2.1) using the predictive control method (3.2.7), (3.2.9) and (3.2.10) iff (3.4.4)

holds.



Extension to Fading Channels 72

Proof. See Appendix D.

Remark 3.7. The stability condition of a v-step controllable plant is exactly the same

as that of the one-step controllable plant in Theorem 3.1. Thus, whether a plant can

be stabilized by an HD controller simply depends on the spectral radius of the plant

parameter A and the uplink and downlink transmission reliabilities.

Remark 3.8. Although the stability conditions of a one-step and a v-step plants are

the same, to find the optimal uplink-downlink scheduling policy, the state space and

the computation complexity of the MDP problem increase linearly and exponentially

with v [79], respectively. However, in the following section, we will show that the

persistent scheduling policy in Proposition 3.3 (which can be treated as a policy that

makes decision simply relying on two state parameters, i.e., φ0 and τ 0, instead of the

entire 2v state parameters) can provide a remarkable performance close to the optimal

one.

3.6 Extension to Fading Channels

In this section, we investigate the optimal transmission-scheduling policy for the

general v-step controllable case in the fading channel scenario, where v ≥ 1.

3.6.1 MDP Formulation

Compared with the static channel scenario, the transmission scheduling of the

WNCS in the fading channel scenario should take into account the channel states of

both the uplink and downlink channels, and hence expand the dimension of the state

space. Also, the state-transition probabilities of the MDP problem should also rely on
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the transition probabilities of channel states. Therefore, the detailed MDP problem

for solving the average cost minimization problem (3.3.23) can be formulated as:

1) The state space is defined as S , {(τ 0
k , τ

1
k , · · · , τ v−1

k , φ0
k, φ

1
k, · · · , φv−1

k , hs,k, hc,k) :

φik ≥ τ ik, φ
i
k 6= τ ik+1, τ ik ∈ N, φik ∈ {2, 3, · · · }, hs,k ∈ {1, · · · , Bs}, hc,k ∈ {1, · · · , Bc},∀i =

0, · · · , v−1}, where hs,k and hc,k are channel-state indexes of the uplink and downlink

channels at time k, respectively.

2) The action space is the same as that of the static channel scenario in Sec-

tion 3.5.1.

3) As the state transition is time-homogeneous, we drop the time index k here.

Let h , (hs, hc) and h′ , (h′s, h
′
c) denote the current and the next uplink-downlink

channel states, respectively. As the uplink and downlink channel are action-invariant

and independent of each other, the overall channel state transition probability can be

directly obtained from (3.2.4) and (3.2.5) as

P (h′|h) = dshs,h′sd
c
hc,h′c

. (3.6.1)

Let s , (τ 0, · · · , τ v−1, φ0, · · · , φv−1, h) and s′ , ((τ 0)′, · · · , (τ v−1)′, (φ0)′, · · · , (φv−1)′, h′)
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denote the current and the next states of the WNCS, respectively. The state-

transition probability P (s′|s, a) can be obtained as

P (s′|s, a) =

P (h′|h)ωhs , if a = 1 and

s′ = (τ 0 + 1, · · · , τ v−1, φ0 + 1, · · · , φv−1, h′),

P (h′|h)(1− ωhs), if a = 1 and

s′ = (1, · · · , τ v−1, φ0 + 1, · · · , φv−1, h′),

P (h′|h)ξhc , if a = 2 and

s′ = (τ 0 + 1, · · · , τ v−1, φ0 + 1, · · · , φv−1, h′),

P (h′|h)(1− ξhc), if a = 2 and

s′ = (τ 0 + 1, · · · , τ v−2, τ 0 + 1, · · · , φv−2, h′),

0, otherwise.

(3.6.2)

4) The one-stage cost of the MDP is the same as (3.5.2).

Such an MDP problem with (2v+2) state dimensions and a small action space can

be solved by standard MDP algorithms similar to that of the static channel scenario

discussed earlier.

3.6.2 Existence of the Optimal Scheduling Policy

In the fading channel scenario, since each state of the Markov chain induced by

a scheduling policy has (2v + 2) dimensions, it is difficult to analyze the average

cost of the Markov chain and determine whether it is bounded or not. Therefore,

it is hard to give a necessary and sufficient condition in terms of the properties of
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the Markov channels and the plant, under which the MDP problem has a scheduling-

policy solution leading to a bounded minimum average cost. However, inspired by the

result of the static channel scenario in Section 3.5.2, we can directly give a necessary

condition and a sufficient one by considering the best and the worst Markov channel

conditions of the uplink and downlink channels as below.

Theorem 3.4. In the fading channel scenario, a necessary condition and a sufficient

condition of existing a stationary and deterministic optimal transmission-scheduling

policy that can stabilize the general v-step controllable plant (3.2.1) using the pre-

dictive control method (3.2.7), (3.2.9) and (3.2.10) are given by

max
{
ps, pc

}
<

1

ρ2(A)
, (3.6.3)

and

max {ps, pc} <
1

ρ2(A)
, (3.6.4)

respectively, where ps , min{ω1, · · · , ωBs}, ps , max{ω1, · · · , ωBs}, pc , min{ξ1, · · · , ξBc},

pc , max{ξ1, · · · , ξBc}.

In general, Theorem 3.4 says that the plant can be stabilized by a transmission

scheduling policy as long as the worst achievable channel conditions of the uplink

and downlink Markov channels are good enough, and it cannot be stabilized by any

scheduling policy if the best achievable channel conditions of the uplink and downlink

Markov channels are poor.

In the following section, we will numerically evaluate the performance of the plant

using the optimal transmission scheduling policy, where the sufficient condition of the

existence of an optimal policy (3.6.4) is satisfied.
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Figure 3.4: Temperature and humidity control in grain conservation.

3.7 Numerical Results

The uplink-downlink scheduling policies that we developed can be applied to a

large range of real IIoT applications, including temperature control of hot rolling

process in the iron and steel industry, flight path control of delivery drones, voltage

control in smart grids, and lighting control in smart homes/buildings. Specifically, in

this section, we apply the uplink-downlink scheduling policies to a real application of

smart farms as illustrated in Fig. 3.4. The system contains a grain container, a sensor

measuring the temperature (◦C) and the humidity (%) of the grain pile, an actuator

which has a high pressure fan and/or an air cooler, and an edge controller, which

receives the sensor’s measurements, and then computes and sends the command to

the actuator. Given the present values of temperature and humidity, the state vector

xk in (3.2.1) contains two parameters, i.e., the current temperature and humidity

offsets. Note that since grain absorbs water from the air and generates heat naturally,

the temperature and the humidity levels of the grain pile will automatically increase

without proper control, leading to severe insect and mold development [101]. In

general, by using a high pressure fan for ventilation, both the temperature and the
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humidity can be controlled in a proper range. If an air cooler is also available, the

temperature can be controlled to the preset value faster. Thus, if the actuator has

a high pressure fan only, given a preset fan speed, its control input uk in (3.2.1) has

only one parameter, which is the relative fan speed (measured by the flow volume

[m3/h]). If the actuator has both high pressure fan and air cooler, the control input

uk has two parameters including the fan speed and the cooler temperature (◦C). The

former and the latter cases will be studied in Section 3.7.1, and Sections 3.7.2 and

3.7.3, respectively.

The discrete time step T0 in this example is set to be one second [50]. Unless

otherwise stated, we assume the system parameters as A =

[
1.1 0.2

0.2 0.8

]
, Q = R =[

1 0

0 1

]
, and thus ρ2(A) = 1.44. Since the controller, the sensor and the actuator

have very low mobility in this example, we focus on the static channel scenario and

set the packet error probabilities of the uplink and downlink channels as ps = 0.1 and

pc = 0.1, respectively, and also study the fading channel scenario in Section 3.7.1.

In the following, we present the numerical results of the optimal policies and the

optimal average costs of the plant in Sections 3.4 and 3.5 for one-step and v-step

controllable cases, respectively. Also, we numerically compare the performance of

the optimal scheduling policy with the persistent scheduling policy in Section 3.4.3,

the benchmark (naive) policy in Section 3.4.4, and also the ideal FD policy in [12],

i.e., where the controller works in the FD mode and have the same packet-error

probabilities of the uplink-downlink channels as in the HD mode.

Note that to calculate the optimal policies in Sections 3.4.1, 3.5.1 and 3.6.1 by

solving the MDP problems, the infinite state space S is first truncated by limiting
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the range of the state parameters as 1 ≤ τ i, φi ≤ 20,∀i = 0, · · · , v − 1, to enable

the evaluation. For example, if we consider a two-step controllable case, i.e., v = 2,

there will be 202×v = 160, 000 states in the static channel scenario, and there will be

many more in the fading channel scenario. To solve finite-state MDP problems, in

general, there are two classical methods: policy iteration and value iteration. The

policy iteration method converges faster in solving small-scale MDP problems, but is

more computationally burdensome than the value iteration method when the state

space is large [76]. Since our problems have large state spaces, we adopt the classical

value iteration method for solving MDP problems by using a well recognized Matlab

MDP toolbox [78].

3.7.1 One-Step Controllable Case

In this case, we assume that B = −
[

1 0

0 1

]
, and K = A satisfying A + BK = 0.

Optimal and suboptimal policies. Fig. 3.5 shows the optimal policy and the persis-

tent (suboptimal) policy in Proposition 3.3 within the truncated state space. We see

that although the optimal policy has more states choosing to schedule the sensor’s

transmission than the persistent policy, these two policies look similar. Also, we see

that the optimal policy is a switching-type one, in line with Proposition 3.2.

Performance comparison. We further evaluate the performances of the optimal

scheduling policy, the persistent policy, the naive policy and the FD policy in terms

of the K-step average cost of the plant using 1
K

∑K−1
k=0 x>k Qxk. We run 104-step

simulations with the initial value of the plant-state vector x0 = [1,−1]>. The initial

state for the optimal and persistent policies is (τ0, φ0) = (2, 2). The initial scheduling

of the naive policy is the sensor’s transmission.
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Figure 3.5: The uplink-downlink scheduling policies, where where ‘o’ and ‘.’ denote
a = 1 and a = 2, respectively, and ‘x’ denotes a state that does not belong to S.

Fig. 3.6 shows the average cost versus the simulation time, using different policies.

We see that the average costs induced by different policies converge to the steady

state values when K > 3000. Given the baseline of the FD (non-scheduling) policy,

the optimal scheduling policy gives a significant 60% average cost reduction of the

naive policy. Also, we see that the persistent policy provides a performance close to

the optimal one. We note that there is a noticeable performance gap between the

optimal scheduling policy of the HD controller and the FD policy of the FD controller,

since the HD operation introduces extra delays in uplink-downlink transmissions and

deteriorates the performance of the control system.

Performance versus transmission reliabilities. In Fig. 3.7, we show a contour plot

of the average cost of the plant with different uplink-downlink packet-error probabil-

ities (ps, pc) within the rectangular region that can stabilize the plant, i.e., ps, pc <

1/ρ2(A) = 0.7 based on Theorem 3.1. The average cost is calculated by running

a 106-step simulation and then taking the average, and it does not have a steady-

state value if (ps, pc) lies outside the rectangular region. We see that the average

cost increases quickly when ps or pc approaches the boundary 1/ρ2(A). Also, it is

interesting to see that in order to guarantee a certain average cost, e.g., J = 8, the
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Figure 3.6: One-step controllable case: average cost versus time.

required ps is less than pc in general, which implies that the transmission reliability of

the sensor-controller channel is more important than that of the controller-actuator

channel.

Fading channel scenario. Assume that both the uplink and downlink channels

have two Markov channel states with the packet error probabilities 0.1 (i.e., the good

channel state) and 0.4 (i.e., the bad channel state), respectively, i.e., ω1 = ξ1 = 0.1

and ω2 = ξ2 = 0.4. Figs. 3.8 and 3.9 show the average cost versus the simulation time

with different channel state transition probabilities. In Fig. 3.8, we set the matrices

of the channel state transition probabilities of the uplink and downlink channels as

Ds = Dc =

[
0.5 0.5

0.5 0.5

]
. Taking the uplink channel as an example, the transition

probabilities from the bad and the good channel state are the same, and thus the

Markov channel does not have any memory [100]. Since the uplink and downlink

channels have the same Markovian property, both the uplink and downlink channels
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Figure 3.7: One-step controllable case: average cost versus packet-error probabilities,
i.e., ps and pc.

are memoryless. In Fig. 3.9, we set Ds = Dc =

[
0.8 0.2

0.2 0.8

]
, where the probability of

remaining in any given state is higher than jumping to the other state. In this case,

both the uplink and downlink channels have persistent memories.

In Figs. 3.8 and 3.9, we see that the persistent policy always provides a low average

cost, which is close to that of the optimal policy and is much smaller than that of

the naive policy. It is interesting to see that the average cost achieved by the optimal

policy under the memoryless Markov channels in Fig. 3.8 is smaller than that of the

Markov channels with memories in Fig. 3.9. This is because in the Markov channel

with memory, if the current channel state is bad, it is more likely to have a bad

channel state again in the next time slot, which can lead to consecutive packet losses

and deteriorate the control performance of the WNCS.



Numerical Results 82

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

Naive Policy

Persistent Policy

Optimal Policy

FD Policy

Figure 3.8: Markov channel scenario without memory: average cost versus time.

3.7.2 Two-Step Controllable Case

In this case, we assume that B = − [1, 1]>, and K = [2.9,−1] satisfying (A + BK)2 =

0. For fair comparison, all the policies considered in this subsection adopt the same

predictive control method in (3.2.7), (3.2.9) and (3.2.10) with v = 2.

In Fig. 3.10, we plot the average cost function versus the packet-error probability of

the downlink channel with different uplink-downlink transmission-scheduling policies,

where the uplink packet-error probability ps = 0.1. We see that the persistent policy

can still provide a good performance close to the optimal policy. Given the FD policy

as a benchmark, it is clear that the optimal scheduling policy provides at least a 66%

reduction of the average cost than the naive policy when pc ≥ 0.1.
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Figure 3.9: Markov channel scenario with memory: average cost versus time.

3.7.3 Non-Finite-Step-Controllable Case

We now look at the non-finite-step-controllable case as discussed in Remark 3.2,

where B = − [1, 1]>, and K = [0.7, 0.4]. It can be verified that ρ(A + BK) = 0.72 < 1

and (A + BK)v 6= 0 for a practical range of v, e.g. v < 10. We consider two predictive

control protocols in (3.2.7) with v = 2 and v = 3, respectively, i.e., the controller

sends two or three commands to the actuator each time. We have (A + BK)1 =[
0.4 −0.2

−0.5 0.4

]
, (A + BK)2 =

[
0.26 −0.16

−0.4 0.26

]
and (A + BK)3 =

[
0.18 −0.12

−0.29 0.18

]
.

It is clear that (A + BK)v approaches 0 as v increases. By letting (A + BK)v = 0

in the analysis of plant-state vector in (B.1.4), where v = 2 or 3, the plant-state

covariance matrix Pk is approximated by a function of 2v − 1 state parameters as in

Proposition 3.1. Based on this approximation, we can formulate and solve the MDP

problem in Section 3.5.1, resulting an approximated optimal scheduling policy.
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Figure 3.10: Two-step controllable case: average cost versus packet-error probability
pc.

In Fig. 3.11, we plot the average cost function versus the packet-error probability

of the downlink channel with different downlink transmission-scheduling policies. We

see that for both the cases v = 2 and 3, the performances of the approximated optimal

and persistent uplink-downlink scheduling policies are quite close to the benchmark

FD policy when pc < 0.2, while the performance gap between the naive scheduling

policy and the FD policy is large. This also implies that the approximated optimal

policy is near optimal in this practical range of downlink transmission reliability, and

the persistent scheduling policy is also effective, yet low-complexity in this case.

3.8 Conclusions

In this work, we have proposed an important uplink-downlink transmission schedul-

ing problem of a WNCS with an HD controller for practical IIoT applications, which
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Figure 3.11: Non-finite-step-controllable case: average cost versus packet-error prob-
ability pc.

has not been considered in the available literature. We have given a comprehensive

analysis of the estimation-error covariance and the plant-state covariance of the HD-

controller-based WNCS for both one-step and v-step controllable plants. Based on

our analytical results, in both the static and fading channel scenarios, we have for-

mulated the novel problem to optimize the transmission-scheduling policy depending

on both the current estimation quality of the controller and the current cost function

of the plant, so as to minimize the long-term average cost function. Moreover, for the

static channel scenario, we have derived the necessary and sufficient condition of the

existence of a stationary and deterministic optimal policy that results in a bounded

average cost in terms of the transmission reliabilities of the uplink and downlink

channels. For the fading channel scenario, we have derived a necessary condition and

a sufficient condition in terms of the uplink and downlink channel qualities, under

which the optimal transmission-scheduling policy exists. Our problem can be solved
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effectively by the standard MDP algorithms if the optimal scheduling policy exists.

Also, we have derived an easy-to-compute suboptimal policy, which provides a control

performance close to the optimal policy and notably reduces the average cost of the

plant compared to a naive alternative-scheduling policy.



Chapter 4

Wireless Feedback Control With
Variable Packet Length for
Industrial IoT

4.1 Introduction

The Industrial Internet of Things (IIoT) can be treated as an extension of con-

sumer IoT in industrial applications. One of the most important applications for IIoT

is industrial control [83], with user scenarios ranging from building and process au-

tomation to more mission-critical applications, such as factory automation and power

system control [82]. Wireless networked control systems (WNCSs) are composed of

spatially distributed controllers, sensors and actuators communicating through wire-

less channels, and physical processes to be controlled. Due to the enhanced flexibility

and the reduced deployment and maintenance costs, WNCSs are becoming a funda-

mental infrastructure technology for mission-critical control applications [80]. In [12],

the optimal control policy and the stability condition of a WNCS were investigated.

In [50], the optimal transmission scheduling of multiple control systems over shared

communication resources was studied. In [102], the uplink and downlink transmission

87
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scheduling problem of a WNCS with a half-duplex controller was considered. In [94],

an event-triggered WNCS was proposed to reduce the communication cost. In [103]

and [104], WNCSs with low-power and high-performance multi-hop wireless networks

were investigated, respectively.

In most of the existing works on WNCSs [12, 23, 50, 94, 102, 105–107], the status

of the physical process was discretized by periodical sampling, and the transmission

of the controller’s packet was ideally assumed to be fixed and equal to the sampling

period. From the theory of channel encoding, if a message is encoded into a longer

codeword (with a longer packet length), it can be delivered to the receiver with a

higher reliability, but it introduces a longer transmission delay on the other side.

This introduces the fundamental tradeoff in transmission delay and reliability [74].

In a WNCS, the transmission of a short control-information-carrying packet results in

frequent but unreliable control, while the transmission of a long control packet leads

to a less timely but more reliable control. Packet-length design to achieve an optimal

control-system performance has rarely been considered in the existing literature on

WNCSs.

Moreover, a WNCS is a dynamic system, and the state of the physical process un-

der control changes with time. Naturally, different status of the WNCS can require

different levels of reliability and delay of control-packet transmission for achieving

the optimal control performance. For some statuses, reliable transmission is more

important, which needs a longer control packet; while for others a short-delay trans-

mission is more important, which needs a shorter control packet. Variable-length

packet transmission has been proposed and investigated in conventional communica-

tion systems [108, 109], which, however, has not been considered in WNCSs. In this
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chapter, we will tackle the packet-length design problem in WNCSs.

4.2 System Model

Consider a wireless networked control system where the discrete-time dynamic

physical process xt ∈ Rn, t ∈ N is measured by the controller, which generates and

sends control information to the remote actuator to control the process. N is the

set of positive integers. The evolution of the dynamic process is modeled as a linear

time-invariant system [12, 50, 94, 102]:

xt+1 = Axt + But + wt, (4.2.1)

where ut ∈ Rm is the actuator’s control input, wt ∈ Rn is the process disturbance

modelled as a zero-mean Gaussian white noise with the covariance R ∈ Rn×n, and

A ∈ Rn×n and B ∈ Rn×m are the system transition matrix and the input matrix,

respectively. The discrete time slot has a duration of T0 s, which is also the sampling

period of the process. For brevity, we only use the discrete time for analysis in the

rest of the chapter.

4.2.1 Controller-Side Operation

To deliver the control information to the actuator, the controller converts its

control signal into a packet by quantization and channel encoding (i.e., error-control

coding). The communication channel for packet transmission is static for low-mobility

industrial control applications [12, 94, 102]. We assume that the quantization noise

is negligible due to the sufficiently high number of quantization levels, which is com-

monly considered in the literature [12, 23, 50, 94, 102, 105, 106]. Since a longer
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channel-coding blocklength leads to a longer packet with a higher reliability [74], the

packet error probability is a monotonically decreasing function g(l) in terms of the

packet length of l time slots, where l ∈ N.

The transmission of control information introduces delay, so we adopt a predictive

control method for delay compensation [94, 102]. To be specific, given the current

time t and packet length l, since the control information is expected to be delivered

at time (t + l − 1) and there is no control input until then, the controller optimally

predicts the process state xt+l−1 as [102]

x̂t+l−1|t = Al−1xt. (4.2.2)

By adopting a linear control law, the control signal that is generated at time t and

to be applied at time (t+ l − 1) by the actuator is [94, 102]

ût+l−1|t = Kx̂t+l−1|t = KAl−1xt, (4.2.3)

where K ∈ Rm×n is the constant controller gain.

Assumption 4.1. The controller gain has the property that [102]

A + BK = 0. (4.2.4)

This assumes that the control system is one-step controllable1, i.e., it can be

verified by taking (4.2.3) into (4.2.1) so that the state vector xt can be driven to zero

in one time slot in the absence of the process disturbance with packet length l = 1.

1Multi-step controllable cases can also be handled by the following problem formulation and
performance analysis framework, and the stability conditions in Theorems 4.1 and 4.2 remain the
same.
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4.2.2 Actuator-Side Operation

Let γt = 1 denote a successful packet detection at time t and l̃t denote the length

of the successfully received packet. Thus, γt = 0 denotes the packet has not arrived

at t or the detection of the arrived packet at t has failed.

Now, we introduce the age-of-information (AoI) at the actuator, dt, which mea-

sures the time duration between the generation time of the most recently received

control packet and the current time t [62, 105]. Then, it is easy to have the updating

rule of dt as

dt+1 =

l̃t, γt = 1,

dt + 1, otherwise.
(4.2.5)

The actuator adopts a zero-hold strategy: it remains the zero control input until

a control packet is successfully detected [12, 50, 102]. Thus, the actuator’s control

input ut in (4.2.1) is given as

ut =

ût|t−l̃t+1, γt = 1

0, otherwise.
(4.2.6)

Taking (4.2.6) into (4.2.1) and using the property (4.2.4), the state covariance

matrix can be obtained as

Pt , E
[
xtx

>
t

]
= H(dt) ,

dt−1∑
i=0

AiR(Ai)>, (4.2.7)

where E[·] is the expectation operator, and (·)> is the operator of the matrix transpose.

Therefore, the state covariance matrix Pt in (4.2.7) depends on the AoI status dt.
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t1 2 3 4 5 6 7 8 9

Packet 1, l1 = 2 Packet 2, l2 = 4 Packet 3, l3 = 3 · · ·

· · ·

Figure 4.1: Variable-length packet transmission policy.

4.3 Control with Variable-Length Packets

4.3.1 Problem Formulation

The performance of the control system is measured by the quadratic average cost

function as [12, 94, 102]

J = lim
T→∞

1

T

T∑
t=1

E
[
x>t Qxt

]
= lim

T→∞

1

T

T∑
t=1

Tr (QPt) , (4.3.1)

where Q is a symmetric positive semidefinite weighting matrix, and Tr (QPt) is the

cost function at time t.

We define the variable-length packet transmission policy for wireless control: the

policy π = {l1, l2, .., lk, ...} is the sequence of the packet lengths during process control,

where lk ∈ N and k is the packet index, as illustrated in Fig. 4.1. Our problem is to

find the optimal policy π∗ that minimizes the infinite-horizon average cost, i.e.,

π? , argmin
π

lim
T→∞

1

T

T∑
t=1

Tr (QPt) . (4.3.2)

4.3.2 Semi-MDP Solution

From the definition of Pt in (4.2.7) and the updating rule of the AoI status (4.2.5),

the problem (4.3.2) can be treated as an adaptive packet-length decision process

with two properties: 1) if a decision of packet length l is made at the AoI state d,

then each step’s cost Tr(QPt) depends only on the present AoI state d until the
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completion of packet transmission; 2) the sum cost incurred until completion of the

packet transmission depends only on the present AoI state d and the packet length l.

Such an average-cost minimization problem is a typical semi-Markov decision pro-

cess (semi MDP) [110], modelled as:

1) The state space is defined as S , {d : d ∈ N}. The state indicates the AoI at

the beginning of a packet transmission. The state at the beginning of the kth packet

is denoted as dk ∈ S.

2) The action space is defined as A , {l : l ∈ N}. The action lk , π(dk)

represents the length of the kth packet, where, with a slight abuse of notation, π(dk)

is the stationary policy function in terms of the current state dk.

3) The state-transition probability P (d′|d, l) characterizes the probability that

state transits from d at the beginning of the current packet to d′ at the beginning of

the next packet with the current action of l. As the transition is time-homogeneous,

we drop the packet index k here. From the state-updating rule (4.2.5) and the packet

error probability function g(l), the state transition probability is:

P (d′|d, l) =

g(l) if d′ = d+ l

1− g(l) if d′ = l.
(4.3.3)

4) The duration time δ(d, l) characterizes the expected time until the next trans-

mission decision if the action l is chosen at the current state d. It is clear that the

duration time is determined by the decided packet length in our scenario, i.e.,

δ(d, l) = l. (4.3.4)

5) The one-stage cost of the semi MDP problem is the sum cost during the current

packet transmission, which is given as:

c(d, l) ,
d+l−1∑
i=d

Tr (QH(i)) . (4.3.5)
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From the semi-MDP formulation, the average cost J in (4.3.2) can be rewritten

as:

J =

∑
d∈S c(d, π(d))φπ(d)∑
d∈S δ(d, π(d))φπ(d)

, (4.3.6)

where φπ(d) denotes the stationary probability of state d ∈ S under policy π.

Therefore, the optimal policy of problem (4.3.2), π?(·), can be obtained by solving

the above semi-MDP problem with the target function (4.3.6). By using the classical

data-transformation method, the semi-MDP problem can be transformed as an MDP

problem, and thus can be solved effectively by the classical relative value iteration

method [110].

4.3.3 Practical Implementation Issues of Variable-Length Pol-

icy

Since the control packet length of a WNCS changes with time, each packet header

should include the information of the packet length. Thus, compared with a fixed-

length policy, the variable-length policy requires a slightly higher communication

overhead in practice. Moreover, when considering multiple WNCSs sharing the same

wireless resources, it is not applicable to consider a time-division multiple access such

as the medium-access control (MAC) protocol for multi-WNCS scheduling, as each

WNCS requires a dynamic time slot length for transmissions. Therefore, different

WNCSs need to be allocated to different frequency channels/sub-carriers when ap-

plying the variable-length policy. Commonly considered error-control codes, including

polar codes and turbo codes, can be used for variable-length encoding.
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4.4 Stability Condition of the Control System

If the packet transmissions are very unreliable with different packet lengths, the

average cost J in (4.3.6) might be unbounded no matter what packet-transmission

policy we choose and the semi-MDP problem discussed above might not have a feasible

solution, i.e., the control system is unstable.

Now, we study the stability condition of the control system by investigating the

fixed-length and variable-length packet transmission policies in the sequel, where the

latter is a more general case of the former.

4.4.1 Fixed-Length Packet Transmission Policy

Theorem 4.1 (Fixed-length scenario). Consider the control system described by

(4.2.1)-(4.2.6). Let (A,
√

R) be controllable and let (A,
√

Q) be observable.2 As-

suming that the packet length is l and fixed during the process control, the dynamic

process can be stabilized iff

g(l)ρ2l(A) < 1, (4.4.1)

where ρ(A) is the spectral radius of the matrix A.

Proof. Consider the policy with fixed packet length l0 ∈ N, i.e., π(d) = l0,∀d ∈ S.

From (4.2.5), it is easy to see that the state space in Section 4.3.2 is degraded into

S = {l0, 2l0, 3l0, · · · }. Since the packet error probability is fixed, it can be proved that

the process of the AoI, {dk}, has a stationary distribution as

φπ
(
il0
)

= (1− g(l0))g(l0)i−1, i = 1, 2, · · · (4.4.2)

2
√
R and

√
Q are the square roots of the positive definite matrices R and Q, respec-

tively. (A,
√
R) is controllable and (A,

√
Q) is observable if

[√
R,A

√
R, · · · ,An

√
R
]

and[√
Q

>
,A>√Q>

, · · · , (An)>
√
Q

>
]

are of full rank.
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From (4.3.4) and (4.4.2), it is clear that the denominator of (4.3.6) is bounded.

Thus, the average cost J is bounded iff the numerator of (4.3.6) is. Using the in-

equalities below [102, Lemma 1],

Tr (QH(d)) ≤ c(d, l) ≤ lTr (QH(d+ l)) , (4.4.3)

we can obtain
∞∑
i=1

c(il0, l0)φπ
(
il0
)
<
l0(1− g(l0))

g2(l0)

∞∑
i=2

gi(l0)Tr (QH(il0)) , (4.4.4)

∞∑
i=1

c(il0, l0)φπ
(
il0
)
≥ (1− g(l0))

∞∑
i=1

gi(l0)Tr (QH(il0)) . (4.4.5)

From [12], if q > 0 and (A,
√

R) and (A,
√

Q) are controllable and observable,

respectively, the following property holds:
∞∑
i=1

qiTr (QH(i)) <∞ iff qρ2(A) < 1. (4.4.6)

Applying (4.4.6) to (4.4.4) and (4.4.5), it can be obtained that the average cost J is

bounded iff (g(l0))1/l0 ρ2(A) < 1, which completes the proof of Theorem 4.1.

Remark 4.1. Theorem 4.1 says that the stability condition under the fixed-length

policy depends on the packet error probability, the length of the packet and the

control system parameter. The process (4.2.1) can be stabilized if the packet length l

is properly chosen such that both the packet error probability g(l) and the lth power

of ρ2(A) are small.

4.4.2 Variable-Length Packet Transmission Policy

Theorem 4.2 (Variable-length scenario). Consider the same system and conditions

as defined in Theorem 4.1. There exists a stationary and deterministic variable-length
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packet transmission policy that can stabilize the dynamic process iff

min
l∈N

g(l)ρ2l(A) < 1. (4.4.7)

Proof. The sufficiency is easy to prove based on Theorem 4.1, as the optimal variable-

length policy results in an average cost no higher than that of a fixed-length policy.

We use a constructive method to prove the necessity. First, we consider a virtual

updating rule below to replace (4.2.5)

dt+1 =


1, γt = 1

dt + 1, otherwise.

(4.4.8)

It is clear that (4.4.8) is no larger than (4.2.5) for all t ∈ N, and hence the average

cost of the optimal packet-transmission policy by using the updating rule (4.4.8) is

no higher than that of (4.2.5). Then, we will show that (4.4.7) holds if the average

cost induced by a policy is bounded under the condition of (4.4.8).

Consider a general policy π′(·) that has π′(1) = l′1. The state space can be

rewritten as S = {1, 1+l′1, 1+l′1+l′2, 1+l′1+l′2+l′3, · · · }, where l′k = π′(1+
∑k−1

i=1 l
′
i),∀k ∈

{2, 3, · · · }. The average cost function in (4.3.6) with packet-transmission policy π′(·)

can be rewritten as

J =

∑∞
i=1 c

′
(∑i

j=1 l
′
j

)
φ′π′
(∑i

j=1 l
′
j

)
∑∞

i=1

(∑i
j=1 l

′
j

)
φ′π′
(∑i

j=1 l
′
j

) , (4.4.9)

where

c′(l) = c(1, l) ≥ Tr (QH(l)) , (4.4.10)

φ′π′

(
i∑

j=1

l′j

)
=

i−1∏
j=1

g(l′j) (1− g(l′i))≥(1− g(1))
i∏

j=1

g(l′j). (4.4.11)

Since the function c′(l) grows exponentially fast with l, J in (4.4.9) is bounded iff the

numerator is. Then, by using the inequalities (4.4.10) and (4.4.11), the numerator of
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(4.4.9) is lower bounded by

(1− g(1))
∞∑
i=1

i∏
j=1

g(l′j)Tr(QH

(
i∑

j=1

l′j

)
). (4.4.12)

From (4.4.6), it can be proved that Tr (QH(i)) increases as fast as ρ2i(A) when i→∞.

Thus, Tr
(
QH

(∑i
j=1 l

′
j

))
can be approximated by ηρ2(

∑i
j=1 l

′
j)(A) when i is large,

where η > 0. Thus, if (4.4.12) is bounded, minj∈N g(l′j)ρ
2l′j(A) < 1 holds, which

completes the proof of Theorem 4.2.

Remark 4.2. Theorem 4.2 shows that the stability condition of variable-length

packet transmission policy is looser than that of a fixed-length policy in Theorem 4.1.

The stability condition depends on the function of the packet error probability g(l)

and also the system parameter A.

4.5 Numerical Results

In this section, we numerically evaluate the optimal variable-length packet trans-

mission policy in the WNCS and compare it with the fixed-length packet transmission

policies. In order to find the optimal policy, we need to solve the semi-MDP problem

with finite state and action spaces. Thus, the infinite state space S is truncated as

S = {1, · · · , N}. The action space is A = {1, · · · ,M}. The function of the packet er-

ror probability in terms of packet length is approximated by an exponential function as

g(l) = 0.8× 0.5l−1 [77, 105, 111]. Unless otherwise stated, we set N = 70 and M = 5

for solving the variable-length policy, and consider a scalar system [23, 112, 113],

where A = 1.2, B = 1, R = 1, Q = 1 [112], and thus ρ(A) = 1.2 and K = −1.2.

Fig. 4.2 shows the optimal packet-transmission policy of the semi-MDP problem

with different truncated state-space cardinality N . It is interesting to see that when
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Figure 4.2: The optimal variable-length packet transmission policies within different
truncated state spaces.

the AoI state is small (d ≤ 7), the optimal packet lengths in different truncated

state spaces are almost the same, and the optimal packet length increases with the

increasing AoI state. Also, we see that when the state space is large (i.e., N = 70),

which is closer to the ideal infinite state-space case, the optimal packet length tends to

be invariant when d > 7. Thus, it is reasonable to infer that the optimal policy with

the infinite state space has the property that π?(d) = 3 when d > 7. The structure

of the optimal policy shows that when the current system AoI is pretty good, it is

wise to take the risk of a transmission with a lower reliability to achieve good control

quality, as the latter will not be too bad even if the transmission fails.

Fig. 4.3 plots the average costs of fixed-length packet transmission policies with

different packet lengths and an optimal variable-length policy based on (4.3.1) with

T = 50, 000. From Theorem 4.1, it can be verified that when the fixed packet length

l = 1, which is the conventional transmission policy in most of the existing work [12,
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Figure 4.3: The average cost of fixed-length packet-transmission policy versus packet
length, and the average costs of optimal variable-length policy.

23, 50, 94, 102, 105, 106], the control system is unstable. From Fig. 4.3, the system can

be stabilized with longer transmission packets, and the average cost is minimized when

the fixed packet length is 3. This optimal fixed-length policy is largely in agreement

with the optimal variable-length policy illustrated in Fig. 4.2, where the optimal

packet length is 3 for most of the states in the state space. Also, we see that the

optimal variable-length policy gives a 22% average cost reduction of the optimal fixed-

length policy, which shows the importance of adaptive packet-transmission design in

WNCSs.

4.6 Conclusions

In this chapter, we have proposed and optimized the variable-length packet trans-

mission policy. We have also derived the control-system stability conditions for both
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the fixed-length and variable-length policies. Our numerical results have demon-

strated the superiority of the proposed variable-length packet transmission method

in wireless control systems.



Chapter 5

Conclusions and Future Work

In the thesis, we studied the transmission scheduling problems in terms of remote

estimation, downlink-uplink schedule, and variable packet length control in wireless

networked control for industrial IoT. These problems stem from the tradeoff between

wireless transmission reliability and latency. This thesis answers a question about

how to dynamically and efficiently balance the tradeoff, if it is unavoidable. Under

different WNCS settings, the weighting of reliablity and latency would be various,

which motivates our work. Below, we will summarise our main results and propose

some possible extensions in future work.

5.1 Summary of Results

Firstly, we have proposed and optimized a HARQ-based remote estimation pro-

tocol for real-time applications where the sensor makes online decision on whether to

send a new measurement or retransmit the previously failed one depending on both

current estimation quality of the receiver and the current number of retransmissions

of the sensor. We derive a switching-based structural property of the optimal policy

102
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and give an easy-to-compute suboptimal policy. Our results have shown that the pro-

posed optimal policy can significantly reduce the estimation MSE for some practical

settings.

Secondly, we have proposed an important uplink-downlink transmission scheduling

problem of a WNCS with an HD controller for practical IIoT applications, which has

not been considered in the open literature. We have given a comprehensive analysis

of the HD-controller-based WNCS for both one-step and v-step controllable plants

and derived the necessary and sufficient condition of the existence of a stationary and

deterministic optimal policy. We have also derived an easy-to-compute suboptimal

policy, which provides a control performance close to the optimal policy and notably

reduces the average cost of the plant compared to a naive alternative-scheduling

policy.

Finally, we have proposed and optimized a variable-length packet transmission

policy. The control-system stability conditions for both the fixed-length and variable-

length policies have been derived. Our numerical results have demonstrated the

superiority of the proposed variable-length packet transmission method in wireless

control systems.

5.2 Future Work

We now propose some extensions of our problems and other potential works that

could be investigated in the future.

In future work, the temporal correlations and differential encoding across trans-

missions of different estimates could be explored, rather than assuming each estima-

tion is completely unrelated to any previous ones. Furthermore, a more practical
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setting of remote estimation system should be considered where the exact model of

channel-state transition is unknown to either the sensor or the receiver. To solve

such a decision problem with unknown state-transition probabilities, we can seek a

solution based on reinforcement learning (RL), which is a powerful tool to solve MDP

problems especially when the state-transition model of the MDP is unknown. Be-

sides, control input will also be included in our future work on HARQ-based remote

estimation system.

In addition, the scenario where multiple plants are controlled by an HD controller

for IIoT applications with a large number of devices has not been investigated and

remains as an open challenge. It is also important to investigate the scheduling of

different sensors’ transmissions to the controller, and the controller’s transmissions

to different actuators, and consider different quality of service (QoS) requirements

of different devices in the scheduling and how they affect the control. Moreover, for

scheduling-policy design, it is more practical to take into account the transmission

power constraints of the sensors and controller, which limit the reliability of wireless

communication.

Moreover, a more general system with the combination of HARQ scheme, control

policy and variable-length code design will be investigated. Due to the high com-

plexity of the system model, machine learning based techniques would be prederable

method to solve such problems.



Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1

We adopt a constructive approach to prove the sufficient condition (2.4.3) on the

existence of a stationary and deterministic optimal policy. Specifically, we use the

technical corollary [114, Corollary 7.5.10] for the proof. Corollary 7.5.10 in [114] says

that the optimal policy exists if (CAV*1) and (CAV*2) are both satisfied: (CAV*1)

there exists a standard policy ψ such that the recurrent class Rψ induced by ψ is

equal to the whole state space S; (CAV*2) given U > 0, the set SU = {s|c(s, a) ≤

U for some a} is finite. Thus, in the following, we will prove that both (CAV*1) and

(CAV*2) are satisfied if (2.4.3) holds. As a consequence, it proves that (2.4.3) is a

sufficient condition of the existence of the optimal policy.

Condition (CAV*2) can be easily verified based on (2.4.2). In what follows, we

verify (CAV*1) by first constructing a policy ψ and then proving that it is a standard

policy.

105
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The action of the policy ψ is given as

a =

0, if r = q

1, otherwise.
(A.1.1)

It is easy to prove that any state in S induced by ψ is a recurrent state. We then prove

that ψ is a standard policy by verifying both the expected first passage cost and time

from state (r, q) ∈ S to (0, 0) are bounded [114]. Due to the space limitation, we only

prove that any state with r = q has bounded first passage cost and time. The other

states can be proved similarly. For notational simplicity, the expected first passage

cost of the state (i, i) is denoted as d(i), and the one-stage cost (2.4.2) is rewritten as

c(q) , c((r, q), a) = Tr
(
f q(P̄0)

)
. (A.1.2)

Based on (2.3.10), (A.1.1) and the law of total expectation of the first passage cost

of all the possible first passage paths (as illustrated in Fig. 2.13), the expected first

passage cost d(i) can be obtained as

d(i) = c(i) + (1− g(1))c(1) + g(1)c(i+ 1)

+ g(1)(1− g(2))d(2) + g(1)g(2)c(i+ 2)

+ g(1)g(2)(1− g(3))d(3) + g(1)g(2)g(3)c(i+ 3) + · · ·

= ν(i) + (1− g(1))c(1) +D, ∀i > 0,

(A.1.3)

where g(1) = Λ′0, ν(i) = c(i) +
∑∞

j=1 αjc(i+ j), D =
∑∞

j=2 βjd(j), and αj =
∏j

l=1 g(l)

and βj =
∏j−1

l=1 g(l)(1 − g(j)). Therefore, d(i) is bounded if ν(i) < ∞ and D < ∞.

Using the inequality (2.3.12), we have

αj ≤ Λ′0Λj−1
0 ,∀j ≥ 1, and βj ≤ Λ′0Λj−2

0 ,∀j ≥ 2. (A.1.4)

From [63], we have
∑∞

j=1 Λj
0c(j) < ∞ iff Λ0ρ

2(A) < 1. Thus, it is easy to prove

that ν(i) <∞ if (2.4.3) holds.
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From (A.1.3), D can be further derived after simplifications as

D =
1

1−∑∞i=2 βi

(
∞∑
i=2

βi(1− g(1))c(1) +
∞∑
i=2

βiν(i)

)
. (A.1.5)

As
∑∞

i=2βi < g(1)< 1, D is bounded as long as
∑∞

i=2βiν(i)<∞. Using the inequal-

ities (A.1.4), after some simplifications, we have
∑∞

i=2 βiν(i) ≤ η
∑∞

j=2 Λj−1
0 c(j) +

η2
∑∞

j=3(j−2)Λj−1
0 c(j), where η = Λ′0/Λ0. It can be proved that

∑∞
j=3(j−2)Λj−1

0 c(j)

is bounded if
∑∞

j=1 Λj
0c(j) is bounded. Again, using the result that

∑∞
j=1 Λj

0c(j) <∞

iff Λ0ρ
2(A) < 1 in [63],

∑∞
i=1 βiν(i) < ∞ if Λ0ρ

2(A) < 1, yielding the proof of the

bounded expected first passage cost with condition (2.4.3). Similarly, we can verify

that the expected first passage time is also bounded.

A.2 Proof of Theorem 2.2

The switching property is equivalent to the monotonicity of the optimal policy in

r if q is fixed and in q if r is fixed. The monotonicity can be proved by verifying the

following conditions (see Theorem 8.11.3 in [76]).

(1) c(s, a) is nondecreasing in s for all a ∈ A;

(2) c(s, a) is a superadditive function on S× A;

(3) P̃ (s′|s, a) =
∑∞

i=s′ P (i|s, a) is nondecreasing in s for all s′ ∈ S and a ∈ A;

(4) P̃ (s′|s, a) is a superadditive function on S× A for all s′ ∈ S.

We first prove the monotonicity in r with q fixed. The state s is ordered by

r, i.e., if r− ≤ r+, we define s− ≤ s+ with s− = (r−, q) and s+ = (r+, q). From

the definition of one-stage cost, c(s, a) is increasing in q. Therefore, condition (1)

can be easily verified. For condition (2), the superadditive function is defined in

(4.7.1) of [76]. A function f(x, y) is superadditive for x− ≤ x+ and y− ≤ y+, if
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f(x+, y+) + f(x−, y−) ≥ f(x+, y−) + f(x−, y+). Then, condition (2) can be easily

verified as c(s, a) is independent of a.

Given the current state s = (r, q), from (2.4.1), the next possible states are s0 ,

(0, 0), s1 , (0, q+1), s2 , (r+1, r+1) and s3 , (r+1, q+1). Let s′ , {(r′, q′) : q ∈ N}.

If r′ ≤ r, we define s′ � s with s = (r, q). Based on (2.4.1), P̃ (s′|s, a) with different

actions are given as

P̃ (s′|s, a=0)=

1, if s′ � s0

0, otherwise
, (A.2.1)

and

P̃ (s′|s, a=1)=

1, if s′ � s2

0, otherwise
. (A.2.2)

Therefore, condition (3) can be easily verified.

For condition (4), let s+ = (r+, q), s− = (r−, q), r+ ≥ r− and a+ ≥ a− Then,

we need to verify if P̃ (s′|s+, a+) + P̃ (s′|s−, a−) ≥ P̃ (s′|s+, a−) + P̃ (s′|s−, a+). Based

on the definitions of P̃ (s′|s, a), s′ and si, i = 0, 1, 2, 3, condition (4) can be verified

straightforwardly. As all four conditions hold, the monotonicity of the optimal policy

in r is proved. Similarly, the monotonicity of the optimal policy in q can be proved.

A.3 Proof of Theorem 2.3

The proof of the sufficient condition (2.5.2) follows the same steps of Theorem 2.1:

1) construction of a stationary policy in state space S, 2) providing useful technical

lemmas for problem transformation and 3) deriving a sufficient condition in terms of

the packet error probability such that the long-term average cost of the stationary

policy is bounded, completing the proof of existence condition of Theorem 2.3.
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Step 1. Inspired by the proof of the static channel scenario, where the constructed

stationary policy (A.1.1) is simply the policy that a retransmission is always required

until the a successful transmission occurs, we consider a similar policy in the Markov

channel scenario as

a = ψ(Ω, q,Ξ) =

0, if ‖Ω‖1 = q

1, otherwise,
(A.3.1)

We can prove that ψ is a stationary policy in the state space S. In what follows, we

prove that the long-term average cost induced by policy ψ is bounded if (2.5.2) holds,

completing the proof of existence condition of Theorem 2.3.

As the state s = (Ω, q,Ξ) has B + 2 dimensions, it is not possible to analyze the

average cost directly and thus we have to reduce the dimension of the state space.

Step 2. Some useful lemmas.

Lemma A.1. Given the policy ψ and the packet loss function

P [γk = 0] =


g̃(0,Ξk), ak = 0

g̃′(Ωk,Ξk), ak = 1

(A.3.2)

where g̃(Ωk,Ξk) < g̃′(Ωk,Ξk) < 1, ∀k, the average cost of the MDP with the packet

loss function (2.3.9) is bounded, if that of (A.3.2) is.

The proof is straightforward due to the fact that a larger packet error probability

results in a larger average cost, and thus is omitted here.

In the following, we derive a sufficient condition that can stabilize the average cost

of the MDP with the packet loss function

P [γk = 0] =

Λ′i = g̃(0,Ξk), ak = 0,Ξk = i

Λi ≥ g̃(Ωk,Ξk), ak = 1,Ξk = i.
(A.3.3)

Since the packet error function (A.3.3) does not depends on the individual elements

of the state vector Ωk, the state space S is reduced to a three-dimensional space
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S′ , {(r, q,Ξ) : r ≤ q, (r, q) ∈ N× N,Ξ ∈ {1, 2, ..., B}}, where r , ‖Ω‖1.

Again using [114, Corollary 7.5.10], we only need to proof that both (CAV*1) and

(CAV*2) hold in the new state space S′ under the condition (2.5.2). Similar to the

proof of Theorem 2.1, it can be easily proved that the recurrent class Rψ induced by

ψ is equal to the whole state space S′, and (CAV*2) holds. Thus, in what follows, we

only need to prove that the policy ψ is a standard policy, i.e., both the expected first

passage cost and time from any state in S′ to the state (1, 1, 1) is bounded if (2.5.2)

is satisfied.

Lemma A.2. If the first passage cost from any state s ∈ S′ to the set of states

s , {(1, 1, 1), (1, 1, 2), ..., (1, 1, B)} (A.3.4)

is bounded, the first passage cost from any state s ∈ S′ to state (1, 1, 1) is bounded.

Proof. Let As,s be the expected first passage cost from s to the set s. We have

As,s =
B∑
i=1

%s,iAs,i, (A.3.5)

where As,i is the expected first passage cost from s to the set s with the condition

that the first visited state in s is (1, 1, i), and %s,i is the probability that the first

visited state from s to the set s is (1, 1, i).

As the state transition probabilities pi,j in (2.2.4) are larger than zero, it is clear

that %s,i ∈ (0, 1). Therefore, if As,s is bounded ∀s ∈ s, As,i is bounded ∀s ∈ s, i ∈

{1, ..., B}.
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The average first passage cost from s to the state (1, 1, 1) can be written as

Us,1 = %s,1As,1 +
B∑
i=2

%s,i%i,1 (As,i + Ai,1)

+
B∑
j=2

B∑
i=2

%s,j%j,i%i,1 (As,j + Aj,i + Ai,1)

+
B∑
j=2

B∑
i=2

B∑
k=2

%s,j%j,k%k,i%i,1 (As,j +Aj,k +Ak,i +Ai,1) +· · ·

< %s,1Amax + (1− %s,1)2Amax + (1− %s,1)(1− %min)3Amax

+ (1− %s,1)(1− %min)24Amax · · ·

(A.3.6)

where Ai,j is the expected first passage cost from (1, 1, i) to (1, 1, j), the %j,k is the

probability that the first visited state from (1, 1, j) to the set s is (1, 1, k), Amax =

maxi,j=1,2,...,B{As,i, Ai,j}, and %min = mini=1,2,...,B{%i,1}. Since (1 − %min) < 1 and

Amax < ∞, it is straightforward that the right-hand side of the inequality (A.3.6) is

bounded, completing the proof.

Using Lemma A.2, in the following, we only need to prove that if (2.5.2) holds,

the average first passage cost from any state to the state set s is bounded, which

is also a sufficient condition that guarantees the average first passage cost from any

state to a specific state, say (1, 1, 1), is bounded.

Step 3. We define a length-B row vector ~d(i),∀i ∈ N, where the kth element of

~d(i) is the average first passage cost from state (i, i, k) to the state set s. Analogously
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to the static channel scenario (A.1.3), we have the following equation

~d(i) = ~c(i) + ~c(1)(Π(I−Λ′)) + ~c(i+ 1)ΠΛ′

+ ~d(2)(Π(I−Λ))Π(Λ′) + ~c(i+ 2)(Π(Λ))Π(Λ′)

+ ~d(3)(Π(I−Λ))(Π(Λ))Π(Λ′)

+ ~c(i+ 3)(Π(Λ))(Π(Λ))Π(Λ′) + · · ·

= ~ν(i) + ~c(1)Π(I−Λ′) + ~D, ∀i > 0,

(A.3.7)

where I is the B-by-B identity matrix, Λ′ , diag {Λ′1, ...,Λ′B}, ~c(i) , c(i)~1, ~1 ,

[1, 1, ..., 1]︸ ︷︷ ︸
B

, and

~ν(i) = ~c(i) +
∞∑
j=1

~c(i+ j)α̌j, ~D =
∞∑
j=2

~d(j)β̌j, (A.3.8)

α̌j = (ΠΛ)j−1 ΠΛ′, j ≥ 1 (A.3.9)

β̌j = Π (I−Λ) (ΠΛ)j−2 ΠΛ′, j ≥ 2. (A.3.10)

Therefore, ~d(i) is bounded if ~ν(i) ≺ ∞ and ~D ≺ ∞, where ≺ is the symbol of

element-wise less than.

From the definitions in (A.3.9) and (A.3.10) and the property of Jordan normal

forms of α̌j and β̌j [115], we have the inequalities

α̌j � κ1(j − 1)B
[
ρj−1(ΠΛ)

]
B×B ,∀j≥1, and

β̌j � κ2(j − 2)B
[
ρj−2(ΠΛ)

]
B×B ,∀j≥2,

(A.3.11)

where κ1, κ2 and κ3 are positive constant, and � is the symbol of element-wise less

than or equal to. From [46], we have the inequality of the cost function

c(j) ≤ κρ2j(A), j > 0, (A.3.12)

where κ is a positive constant. Thus, using the inequalities (A.3.11) and (A.3.12), it

is easy to prove that

~ν(i) � κ0~c(i) ≺ ∞, (A.3.13)
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if (2.5.2) holds, where κ0 is a positive constant.

From (A.3.7), we further have

~D

(
I−

∞∑
i=2

β̌i

)
= ~c(1)Π(I−Λ′)

∞∑
i=2

β̌i +
∞∑
i=2

~ν(i)β̌i. (A.3.14)

Using the result of sum of a geometric series of matrices, it can be obtained as
∞∑
i=2

β̌i = Π(I−Λ)(I−ΠΛ)−1ΠΛ′ ≺ ∞. (A.3.15)

From (A.3.10), it is clear that each element in
∑∞

i=2 β̌i is positive. From (A.3.7), it

can be proved that
∑∞

i=2 β̌i is part of a state-transition matrix, i.e., the sum of all the

matrices behind ~ci and ~di, ∀i. Therefore, the sum of each column of
∑∞

i=2 β̌i is less

than one. Using Perron-Frobenius Theorem [116], the spectral radius of
∑∞

i=2 β̌i is

less then one, and hence I−∑∞i=2 β̌i is invertible. Therefore, ~D in (A.3.14) is bounded

if the term
∑∞

i=2 ~ν(i)β̌i on the right-hand side of (A.3.14) is.

Using the inequalities (A.3.11), (A.3.12) and (A.3.13), after some simplifications,

we have
∞∑
i=2

~ν(i)β̌i � κ0κκ2

∞∑
i=2

ρ2i(A)(i− 2)B~1
[
ρi−2(ΠΛ)

]
B×B . (A.3.16)

Therefore, it is clear that the right-hand side of (A.3.16) is bounded if ρ(ΠΛ)ρ2(A) <

1, yielding the proof of the bounded expected first passage cost with condition (2.5.2).

Similarly, we can verify that the expected first passage time is also bounded, com-

pleting the proof.



Appendix B

Proofs for Chapter 3

B.1 Proof of Proposition 3.1

Recall that η0
k , ηk−1. From the definition of ηk in (3.2.11), we have

η0
j+1 =

1, j = k − η0
k

η0
j + 1, j = k − η0

k + 1, · · · , k − 1
(B.1.1)

By using the state-updating rule (3.3.14) for xj, j = (k − η0
k + 1), · · · , k, we have

xk−η0
k+1 = Axk−η0

k
+ BK(A + BK)0x̂k−η0

k
+ wk−η0

k

xk−η0
k+2 = Axk−η0

k+1 + BK(A + BK)1x̂k−η0
k

+ wk−η0
k+1

...

xk = Axk−1 + BK(A + BK)η
0
k−1x̂k−η0

k
+ wk−1

(B.1.2)

Substituting xk−η0
k+1 into xk−η0

k+2 and so on, it can be shown that

xk = (A + BK)η
0
kxk−η0

k
+ (Aη0

k − (A + BK)η
0
k)ek−η0

k

+

η0
k∑

i=1

Ai−1wk−i.
(B.1.3)

114
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Using the new state-updating rule (B.1.3), xk can be further rewritten as

xk=(A+BK)η
0
kxt1k+(Aη0

k−(A+BK)η
0
k)et1k+

η0
k∑

i=1

Ai−1wk−i

=(A+BK)η
0
k

(
(A+BK)η

1
kxt2k+(Aη1

k−(A + BK)η
1
k)et2k

+

η1
k∑

i=1

Ai−1wt1k−i
)
+(Aη0

k − (A + BK)η
0
k)et1k+

η0
k∑

i=1

Ai−1wk−i

=(A+BK)η
0
k+η

1
kxt2k+

η0
k∑

i=1

Ai−1wk−i+(A+BK)η
0
k

η1
k∑

i=1

Ai−1wt1k−i

+(Aη0
k−(A+BK)η

0
k)et1k+(A+BK)η

0
k(Aη1

k−(A+BK)η
1
k)et2k

= (A + BK)η
0
k+η1

k+···+ηv−1
k xtvk + w′ + e′

= w′ + e′,

(B.1.4)

where the last step is due to the fact that η0
k + η1

k + · · ·+ ηv−1
k ≥ v as ηik ≥ 1,∀i ≥ 0,

and (A + BK)v = 0, and

w′ =

η0
k∑

i=1

Ai−1wk−i + (A + BK)η
0
k

η1
k∑

i=1

Ai−1wk−i

+ · · ·+ (A + BK)η
0
k+···+ηv−2

k

ηv−1
k∑
i=1

Ai−1wtv−1
k −i,

(B.1.5)

etjk
=

τ jk∑
i=1

Ai−1wtjk−i
, j = 1, · · · , v, (B.1.6)

e′ = (Aη0
k − (A + BK)η

0
k)et1k

+ (A + BK)η
0
k(Aη1

k − (A + BK)η
1
k)et2k + · · ·+

(A + BK)η
0
k+···+ηv−2

k (Aηv−1
k − (A + BK)η

v−1
k )etvk .

(B.1.7)

We see that xk only depends on the noise terms in the time range

S ,
[
k − (η0

k + · · ·+ ηv−1
k )− τv, k − 1

]
. (B.1.8)

To further simplify (B.1.4), we consider three complementary cases: 1) τ ik <
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t2k t1k k

τ1kτ2kτ3k

η1kη2k

time
t3k

t2k t1k k

τ1k
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η1kη2k

time
t3k

(a)

(b)

t2k t1k k

τ1k

τ2k

τ3k

η1kη2k

time
t3k

(a)

(c)

Figure B.1: Illustration of three different cases for analyzing the plant-state covari-
ance, where red vertical bars denote successful controller’s transmissions and blue
vertical bars denote the most recent successful sensor’s transmissions prior to the
successful controller’s transmissions.

ηik,∀i = 1, · · · , v − 1, i.e., a sensor’s successful transmission occurred between two

consecutive controller’s successful transmissions, as illustrated in Fig. B.1(a); 2) there

exists i such that τ ik ≥ ηik and there also exists j such that τ jk < ηjk where i, j ∈

{1, · · · , v−1}, i.e., a sensor’s successful transmission did not always occur between two

consecutive controller’s successful transmissions, as illustrated in Fig. B.1(b). Note

that from the definition of τ jk and ηjk, τ
i
k = ηik + τ i+1

k if τ ik > ηik; 3) τ ik = ηik + τ i+1
k ≥ ηik

for all i ∈ {0, · · · , v − 1}, i.e., a sensor’s successful transmission never occur between

the first and the vth controller’s successful transmissions prior to the current time

slot k, as illustrated in Fig. B.1(c).

For case 1), etik contains the noise terms within time slots tik − τ ik to tik − 1. Since

τ ik < ηik = ti+1
k − tik, etik and etjk

do not contain common noise terms when i 6= j.

Taking (B.1.6) into (B.1.4), after some simple simplifications, xk can be simplified as
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below with v-segment summations

xk =

η0
k+τ1

k∑
i=1

Ai−1wk−i + (A + BK)η
0
k

η1
k+τ2

k∑
i=τ1

k+1

Ai−1wt1k−i

+ · · ·+ (A + BK)η
0
k+···+ηv−2

k

ηv−1
k +τvk∑

i=τv−1
k +1

Ai−1wtv−1
k −i,

(B.1.9)

where ηjk > τ jk ,∀j = 1, · · · , v − 1.

For case 2), the estimation-error terms etik and etjk
in (B.1.4) may contain common

noise terms when i 6= j, and ηjk > τ jk may not hold for j = 1, · · · , v − 1. Inspired by

the result (B.1.9) in the first case, to calculate xk, we divide the time range S by the

time slots tjk − τ jk , j = 1, · · · , v − 1. Since tj
′

k − τ j
′

k may equal to tjk − τ jk when j′ 6= j,

S is divided into v′ segments from left to right, and 1 ≤ v′ ≤ v.

To investigate the noise terms within the first v′ − 1 segments of S, we assume

that sensor’s successful transmissions occurred in the time ranges
[
tj
′+1
k + 1, tj

′

k

]
and[

tj+1
k + 1, tjk

]
and there is no sensor’s successful transmission in the gap between them,

where v ≥ j′ > j ≥ 1. Thus, ηj
′

k > τ j
′

k and ηjk > τ jk . When j′ = j + 1, we

have tj
′

k − τ j
′

k = tj+1
k − τ j+1

k = tjk − ηjk − τ j+1
k and only w′ and the estimation-error

term e
tj
′
k

contains the noise terms within the time segment
[
tj
′

k − τ j
′

k , t
j
k − τ jk − 1

]
=[

tjk − (ηjk + τ j+1
k ), tjk − τ jk − 1

]
, therefore, the noise terms in this segment have exactly

the same expressions as in (B.1.9) of case 1), i.e.,

(A + BK)η
0
k+···+ηj−1

k

ηjk+τ j+1
k∑

i=τ jk+1

Ai−1wtjk−i
. (B.1.10)

When j′ > j + 1, w′ and the estimation-error terms etj+1
k
, etj+2

k
, · · · , e

tj
′
k

contains the

noise terms within the time segment
[
tj
′

k − τ j
′

k , t
j
k − τ jk − 1

]
=
[
tjk − (ηjk + τ j+1

k ), tjk − τ jk − 1
]
.

After combining the noise terms in this range, we also have the expression (B.1.10).

To investigate the noise terms of the v′th (last) segment of S, we assume that
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the most recently successful sensor’s transmission before t1k is within the range of[
tj+1
k + 1, tjk

]
, where j ∈ {1, · · · , v}. We see that w′ and the estimation-error terms

et1k , · · · , etjk contains the noise terms within the time range
[
tjk − τ jk , k − 1

]
= [k − (η0

k + τ 1
k ), k − 1].

After combining the noise terms in this range contributed by et1k , · · · , etjk and w′, we

have exactly the same expressions as in (B.1.9) of case 1), i.e.,
η0
k+τ1

k∑
i=1

Ai−1wk−i. (B.1.11)

To sum up, different from (B.1.9) of case 1), xk of case 2) has v′ segment summa-

tions, i.e.,

xk=

η0
k+τ

1
k∑

i=1

Ai−1wk−i+1(η1
k>τ

1
k )(A+BK)η

0
k

η1
k+τ2

k∑
i=τ1

k+1

Ai−1wt1k−i

+ · · ·+

1(ηv−1
k >τ v−1

k )(A + BK)η
0
k+···+ηv−2

k

ηv−1
k +τvk∑

i=τv−1
k +1

Ai−1wtv−1
k −i,

(B.1.12)

where 1(·) is the indicator function and
∑v−1

j=1 1(ηjk > τ jk) = v′ − 1.

For case 3), the range S has only one segment, which is a special case of case 2)

discussed above (B.1.11), where j = v. Therefore, xk has the expression of (B.1.11).

Therefore, the general expression of xk is given in (B.1.12), and thus the state

covariance Pk = E[xkx
>
k ] is obtained as (3.3.21).

B.2 Proof of Theorem 3.1

We prove that the stationary and deterministic policy π′ in (3.4.5) stabilizes the

plant.

It is easy to verify that the state-transition process induced by π′ is an ergodic
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Markov process, i.e., any state in S is aperiodic and positive recurrent. In the follow-

ing, we prove that the average cost of the plant induced by π′ is bounded.

From (3.4.5), (3.3.3) and (3.3.12), we see that the policy π′ is actually a persis-

tent scheduling policy, which consecutively schedules the uplink transmission until a

transmission is successful and then consecutively schedules the downlink transmission

until a transmission is successful, and so on. The transmission process of (s)ensor’s

measurement and (c)ontroller’s command is illustrated as

{· · · ,
control cycle (t−1)︷ ︸︸ ︷
s · · · s︸ ︷︷ ︸
m′

, c · · · c︸ ︷︷ ︸
n′

,

control cycle t︷ ︸︸ ︷
s · · · s︸ ︷︷ ︸
m

, c · · · c︸ ︷︷ ︸
n

, · · · } (B.2.1)

where m and n are the numbers of consecutively scheduled uplink and downlink

transmission, respectively.

For the ease of analysis, we define the concept of control cycle, which consists

of M consecutive uplink transmissions and the following N consecutive downlink

transmissions. It is clear that M and N follow geometric distributions with success

probabilities (1 − ps) and (1 − pc), respectively. The values of M and N change

in different control cycles independently as illustrated in (B.2.1). Thus, the uplink-

downlink schedule process (B.2.1) can be treated as a sequence of control cycles.

Let S and L ,M +N denote the sum cost of the plant and the number of trans-

missions in a control cycle, respectively. We can prove that S and L of the sequence

of control cycles can be treated as ergodic Markov chains, i.e., {· · · , St, St+1, · · · }

and {· · · , Lt, Lt+1, · · · }, where t is the control-cycle index. We use N ′ to denote the

number of consecutive downlink transmissions before the current control cycle, which

follows the same distribution of N . Due to the ergodicity of {St} and {Lt}, the
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average cost in (3.2.2) can be rewritten as

J = lim
t→∞

S1 + S2 + · · ·+ St
L1 + L2 + · · ·+ Lt

=
E [S]

E [L]
, (B.2.2)

where

E [S] =
∞∑
n′=1

∞∑
m=1

∞∑
n=1

E [S|N ′ = n′,M = m,N = n] (B.2.3)

P[N ′ = n′,M = m,N = n],

E [L] =
∞∑
n′=1

∞∑
m=1

∞∑
n=1

(m+ n)P[N ′ = n′,M = m,N = n]. (B.2.4)

Thus, the average cost J is bounded if E [S] is. From the policy (3.4.5) and the

state-transition rules in (3.3.3) and (3.3.12), we see that φ is equal to N ′ + 1 at the

beginning of the control cycle, and increases one-by-one within the control cycle, and

we have

E [S|N ′ = n′,M = m,N = n] =
m+n∑
i=1

c(n′ + i), (B.2.5)

and
P[N ′ = n′,M = m,N = n] = P[N ′ = n′]P[M = m]P[N = n]

= (1− pc)pn
′−1
c (1− ps)pm−1

s (1− pc)pn−1
c ,

(B.2.6)

as N ′, M , N are independent with each other. Let p0 , max{ps, pc}. We have

E [S] ≤ κ
∞∑
n′=1

∞∑
m=1

∞∑
n=1

m+n∑
i=1

c(n′ + i)pn
′+m+n

0 (B.2.7)

< κ

∞∑
n′=1

∞∑
m=1

∞∑
n=1

(n′ +m+ n)c(n′ +m+ n)pn
′+m+n

0 (B.2.8)

< κ
∞∑
i=1

i4c(i)pi0. (B.2.9)

where κ = (1− pc)p−1
c (1− ps)p−1

s (1− pc)p−1
c , and (B.2.9) is due to the fact that the

number of possible partition of (n′+m+n) into three parts is less than (n′+m+n)3.

Since there always exists p′0 > p0 and n such that i4pi0 < (p′0)i, ∀i > n,
∑∞

i=1 i
4c(i)pi0 <

∞ if
∑∞

i=1 c(i)(p
′
0)i < ∞. Using the result that

∑∞
j=1(p′0)jc(j) < ∞ iff p′0ρ

2(A) < 1
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in [12] and [63],
∑∞

i=1 i
4c(i)pi0 <∞ if p0ρ

2(A) < 1, completing the proof.

B.3 Proof of Theorem 3.2

The necessity and sufficiency are proved as follows.

B.3.1 Sufficiency

Similar to the proof of Theorem 3.1, we need to define the control cycle of the

naive policy and then calculate the average cost.

Different from the Proof of Theorem 3.1, the control cycle is defined as the time

slots after a effective control cycle until the end of the following effective control

cycle. Here, the effective control cycle is the sequence of time slots starting from a

sensor’s successful transmission and ending at a controller’s successful transmission,

where there is no successful transmissions in between. In other words, in an effective

control cycle, the sensor’s measurement at the beginning of the cycle will be utilized

for generating a control command, which will be implemented on the plant by the

end of the cycle. The control cycle and the effective control cycle are illustrated as

{· · · ,
control cycle (t−1)︷ ︸︸ ︷

sčšc · · · sc︸ ︷︷ ︸
m′

, šcsc · · · sč︸ ︷︷ ︸
n′

,︸ ︷︷ ︸
effective control cycle (t−1)

control cycle t︷ ︸︸ ︷
scsč · · · sc︸ ︷︷ ︸

m

, šcsc · · · sč︸ ︷︷ ︸
n

,︸ ︷︷ ︸
effective control cycle t

· · · } (B.3.1)

where n and l = m+ n are the number of time slots of an effective control cycle and

a control cycle, respectively, and š and č denotes a successful sensor’s transmission

and controller’s transmission, respectively. Note that m and n are even numbers.

Similar to the proof of Theorem 3.1, S and L , M + N denote the sum cost of

the plant and the number of transmissions in a control cycle, respectively. Also, S
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and L of the sequence of control cycles can be treated as ergodic Markov chains, i.e.,

{· · · , St, St+1, · · · } and {· · · , Lt, Lt+1, · · · }, where t is the control-cycle index. Due

to the ergodicity of {St} and {Lt}, the average cost in (3.2.2) can be rewritten as

(B.2.2), where

E [S] =
∞∑
n′
2

=1

∞∑
m
2

=0

∞∑
n
2

=1

E [S|N ′ = n′,M = m,N = n] (B.3.2)

P[N ′ = n′,M = m,N = n],

E [L] =
∞∑
n′
2

=1

∞∑
m
2

=0

∞∑
n
2

=1

lP[N ′ = n′,M = m,N = n], (B.3.3)

where M +N and N are the length of the current control cycle and effective control

cycle, respectively, and N ′ is the length of the previous effective control cycle. It is

clear that N ′ is independent with M and N .

Thus, the average cost J is bounded if E [S] is. From the naive policy and the def-

inition of the control cycle and the effective control cycle, we can derive the following

probability density functions as

P[M = m,N = n]

=


(1− ps)(1− pc)pn/2−1

c p
n/2−1
s , m = 0, n = 2, 4, 6

(1− ps)
(
p
m/2
s + (1− ps)

∑m/2
i=1 p

i−1
s p

m/2+1−i
c

)
×(1− pc)pn/2−1

c p
n/2−1
s , m, n = 2, 4, 6, · · ·

(B.3.4)

and thus

P[N ′ = n′] = P[N = n′] =
∞∑
m=0

P[M = m,N = n′]

= (1− pspc)p
n′
2
−1

c p
n′
2
−1

s , n′ = 2, 4, 6, · · ·
(B.3.5)
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Then, it can be proved that

P[N ′ = n′] ≤ κ1p
n′

0 , ∀n′ = 2, 4, 6, · · ·

P[M =m,N =n]≤κ2(1 +m/2)p
m/2
0 pn0 ,∀m=0, 2, 4, · · ·,

n=2, 4, 6,· · ·

(B.3.6)

where p0 = max{ps, pc}, κ1 = (1− pspc)p−1
c p−1

s , and κ2 = (1− ps)(1− pc)p−1
c p−1

s .

Since E [S|N ′ = n′,M = m,N = n] =
∑m+n

i=1 c(n′ + i), we have

E [S] =
∞∑
n′
2

=1

∞∑
m
2

=0

∞∑
n
2

=1

E [S|N ′ = n′,M = m,N = n]

P[N ′ = n′]P[M = m,N = n], (B.3.7)

≤ κ1κ2

∞∑
n′
2

=1

∞∑
m
2

=0

∞∑
n
2

=1

m+n∑
i=1

c(n′ + i)(1 +
m

2
)p
n′+m

2
+n

0 (B.3.8)

< κ1κ2

∞∑
n′
2

=1

∞∑
m
2

=0

∞∑
n
2

=1

(n′ +m+ n)2c(n′ +m+ n)p
n′+m+n

2
0 (B.3.9)

< 4κ1κ2

∞∑
i=2

i5c(2i)pi0. (B.3.10)

Since there always exists p′0 > p0 and n̄ such that i5pi0 < (p′0)i,∀i > n̄,
∑∞

i=2 i
5c(2i)pi0 <

∞ if
∑∞

i=2 c(2i)(p
′
0)i <∞. Also, we have

∑∞
i=2 c(2i)(p

′
0)i <

∑∞
i=1 c(i)

√
p′0
i
. Using the

result that
∑∞

j=1

√
p′0
j
c(j) <∞ iff

√
p′0ρ

2(A) < 1 in [12] and [63],
∑∞

i=2 i
5c(2i)pi0 <∞

if
√
p0ρ

2(A) < 1, completing the proof of sufficiency.

B.3.2 Necessity

To prove the necessity, we consider two ideal cases: the sensor’s transmission is

perfect, i.e., ps = 0, and the controller’s transmission is perfect, i.e., pc = 0. In

these cases, the stability conditions are the necessary condition that the plant can

be stabilized by the naive policy. The proof requires the analysis of average cost
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of control cycles which follows similar steps in the proof of sufficiency. Since the

average cost J = E[S]
E[L]

and E [L] is bounded straightforwardly, we only need to prove

the necessary condition that the average sum cost of a control cycle is bounded, i.e.,

E [S].

In the ideal cases, we have

E [S] =

(1− pc)
∑∞

j=1

∑2j+1
i=2 c(i)pj−1

c , ps = 0

(1− ps)
∑∞

j=1

∑2j+1
i=2 c(i)pj−1

s , pc = 0
(B.3.11)

Therefore, if E [S] is bounded, we have
∞∑
i=1

c(2i)pic <∞,
∞∑
i=1

c(2i+ 1)pic <∞

∞∑
i=1

c(2i)pis <∞,
∞∑
i=1

c(2i+ 1)pis <∞
(B.3.12)

and hence
∞∑
i=1

c(i)
√
pc
i <∞,

∞∑
i=1

c(i)
√
ps
i <∞. (B.3.13)

Using the result that
∑∞

j=1

√
p0
jc(j) < ∞ iff

√
p0ρ

2(A) < 1 in [12] and [63], the

necessary condition that the average cost inducted by the naive policy is bounded, is

√
psρ

2(A) < 1 and
√
pcρ

2(A) < 1, completing the proof of necessity.

B.4 Proof of Theorem 3.3

The necessity and sufficiency are proved as follows.

B.4.1 Sufficiency

We construct a persistent-scheduling-like policy including three phases: 1) the

sensor’s transmission is consecutively scheduled until it is successful, and then 2) the
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controller’s transmission is consecutively scheduled until a successful transmission,

and then 3) none of the sensor nor the controller is scheduled for transmission in the

following v−1 time slots, i.e., all the commands contained in the successfully received

control packet will be implemented by the actuator, and then phase 1) and so on.

Then, following the similar steps of the proof of Theorem 3.1, it can be proved

that the persistent-scheduling-like policy stabilizes the plant if (3.4.4) holds.

B.4.2 Necessity

The proof is conducted by considering two virtual cases: 1) the sensor’s trans-

mission is continuously scheduled, while there is a virtual control input uk at each

time slot that ideally resets xk to 0 if the sensor’s transmission is successful at k, and

is 0 otherwise; 2) the controller’s transmission is continuously scheduled, while the

controller applies a virtual estimator that has perfect estimation of the plant states

in each time slots.

It can be readily proved that the two virtual cases result in lower average costs

than any feasible uplink-downlink scheduling policy. Then, following the similar steps

in the proof of Theorem 3.1 and 3.2, it can be shown that if the average cost of case

1) is bounded, ps < 1/ρ2(A) must be satisfied, and if the average cost of case 2) is

bounded, pc < 1/ρ2(A) must be satisfied, completing the proof of necessity.
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