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In this thesis, we propose to develop novel deep learning algorithms
for the video localization tasks including spatio-temporal action local-
ization, temporal action localization, spatio-temporal visual grounding,
which require to localize the spatio-temporal or temporal locations of
targets from videos.

First, we propose a new Progressive Cross-stream Cooperation (PCSC)
framework for the spatio-temporal action localization task. The basic
idea is to utilize both spatial region (resp., temporal segment proposals)
and features from one stream (i.e., the Flow/RGB stream) to help an-
other stream (i.e., the RGB/Flow stream) to iteratively generate better
bounding boxes in the spatial domain (resp., temporal segments in the
temporal domain). By first using our newly proposed PCSC framework
for spatial localization and then applying our temporal PCSC framework
for temporal localization, the action localization results are progressively
improved.

Second, we propose a progressive cross-granularity cooperation (PCG-
TAL) framework to effectively take advantage of complementarity be-
tween the anchor-based and frame-based paradigms, as well as between
two-view clues (i.e., appearance and motion) for the temporal action



localization task. The whole framework can be learned in an end-to-
end fashion, whilst the temporal action localization performance can be
gradually boosted in a progressive manner.

Finally, we propose a two-step visual-linguistic transformer based
framework called STVGBert for the spatio-temporal visual grounding
task, which consists of a Spatial Visual Grounding network (SVG-net)
and a Temporal Boundary Refinement network (TBR-net). Different from
the existing works for the video grounding tasks, our proposed frame-
work does not rely on any pre-trained object detector. For all our pro-
posed approaches, we conduct extensive experiments on publicly avail-
able datasets to demonstrate their effectiveness.
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Chapter 1

Introduction

With the massive use of digital cameras, smart phones, and webcams, a
large amount of videos data are available on the Internet, which brings
the increasing demands of an intelligent system to help users analyze the
contents of the videos. In this context, video localization, as one of the
most discussed video analysis problems, has attracted more and more
attentions from both academics and industries in recent decades.

In this thesis, we mainly investigate video localization in three tasks:
(1) spatio-temporal action localization; (2) temporal action localization;
(3) and spatio-temporal visual grounding. Specifically, given an untrimmed
video, the spatio-temporal action localization task requires to find out
the spatial coordinates (bounding boxes) of action instances in every ac-
tion frames (frames that contain action instances), which are then associ-
ated into action tubes in order to indicate the spatio-temporal locations
for action instances. For the temporal action localization task, it aims to
only capture the starting and the ending time points of action instances
within the untrimmed videos without caring about the spatial locations
of the action instances. Given an untrimmed video with textual queries
describing objects appearing within the video, the goal of the spatio-
temporal visual grounding task is to localize the queried target objects
from the given video by outputting the corresponding spatial coordi-
nates (bounding boxes). We develop novel algorithms by using a deep
neural network to solve the aforementioned tasks, and conduct extensive
experiments to evaluate our proposed methods. A brief introduction for
our contributions to these three tasks are provided as follows.
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Spatio-temporal 
Action Localization 

Framework

Input Videos

Action Tubes

Figure 1.1: Illustration of the spatio-temporal action localization task.
The spaito-temporal action localization framework takes untrimmed
videos as input and generates the required action tubes

1.1 Spatial-temporal Action Localization

Recently, deep neural networks have significantly improved performance
in various computer vision tasks [20, 53, 51, 52, 73, 43, 100] including hu-
man action detection. Human action detection, also known as the spatio-
temporal action localization, aims to recognize the actions of interest pre-
sented in videos and localize them in space and time. As shown in Fig-
ure 1.1, for the spatio-temporal action localization task, the input is the
untrimmed videos while the output is the corresponding action tubes
(i.e., a set of bounding boxes). Due to its wide spectrum of applications,
it has attracted increasing research interests. The cluttered background,
occlusion and large intra-class variance make spatio-temporal action lo-
calization a very challenging task.

Existing works [64, 60, 54] have demonstrated the complementarity
between appearance and motion information at the feature level in rec-
ognizing and localizing human actions. We further observe that these
two types of information are also complementary to each other at the re-
gion proposal level. That is, either appearance or motion clues alone may
succeed or fail to detect region proposals in different scenarios. How-
ever, they can help each other by providing region proposals to each
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other.

For example, the region proposal detectors based on appearance in-
formation may fail when certain human actions exhibit extreme poses
(e.g., toothbrushing, where only the movement of the hand changes while
the whole scene remains the same), but motion information from hu-
man movements could help capture human actions. In another exam-
ple, when the motion clue is noisy because of subtle movement or clut-
tered background, it is hard to detect positive region proposals based on
motion information while the appearance clue may still provide enough
information to successfully find candidate action regions and remove a
large amount of background or non-action regions. Therefore, we can
use the bounding boxes detected from the motion information as the
region proposals to improve action detection results based on the ap-
pearance information, and vice versa. This underpins our work in this
paper to fully exploit the interactions between appearance and motion
information at both region proposal and feature levels to improve spa-
tial action localization, which is our first motivation.

On the other hand, to generate spatio-temporal action localization
results, we need to form action tubes by linking the detected bounding
boxes for actions in individual frames and temporally segment them out
from the entire video clip. Data association methods based on the spatial
overlap and action class scores are mainly used in the current works [18,
54, 60, 67]. However, it is difficult for such methods to precisely identify
the temporal boundaries of actions. For some cases, due to the subtle
difference between the frames near temporal boundaries, it remains an
extremely hard challenge to precisely decide the temporal boundary. As
a result, it produces a large room for further improvement of the existing
temporal refinement methods, which is our second motivation.

Based on the first motivation, in this paper, we propose a progres-
sive framework called Progressive Cross-stream Cooperation (PCSC) to
iteratively use both region proposals and features from one stream to
progressively help learn better action detection models for another stream.
To exploit the information from both streams at the region proposal level,
we collect a larger set of training samples by combining the latest region
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proposals from both streams. At the feature level, we propose a new
message passing module to pass information from one stream to another
stream in order to learn better representations by capturing both the mo-
tion and the appearance information at the same time. By exploiting the
complementality information between appearance and motion clues in
this way, we can progressively learn better action detection models and
improve action localization results at the frame-level.

Based on the second motivation, we propose a new temporal bound-
ary refinement method consisting of an actionness detector and an action
segment detector, in which we can extend our PCSC framework to tem-
poral localization. For the actionness detector, we train a set of class-
specific binary classifiers (actionness detectors) to detect the happening
of a certain type of actions. These actionness detectors are trained by
focusing on “confusing" samples from the action tube of the same class,
and therefore can learn critical features that are good at discriminating
the subtle changes across the action boundaries. Our approach works
better when compared with an alternative approach that learns a general
actionness detector for all actions. For the action segment detector, we
propose a segment proposal based two-stream detector using a multi-
branch architecture to address the large temporal scale variation prob-
lem. Our PCSC framework can be readily applied to the action segment
detector to take advantage of the complementary information between
appearance and motion clues to detect accurate temporal boundaries
and further improve spatio-temporal localization results at the video-
level.

Our contributions are briefly summarized as follows:

• For spatial localization, we propose the Progressive Cross-stream
Cooperation (PCSC) framework to iteratively use both features and
region proposals from one stream to help learn better action de-
tection models for another stream, which includes a new message
passing approach and a simple region proposal combination strat-
egy.

• We also propose a temporal boundary refinement method to learn
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class-specific actionness detectors and an action segment detector
that applies the newly proposead PCSC framework from the spa-
tial domain to the temporal domain to improve the temporal local-
ization results.

• Comprehensive experiments on two benchmark datasets UCF-101-
24 and J-HMDB demonstrate that our approach outperforms the
state-of-the-art methods for localizing human actions both spatially
and temporally in realistic scenarios.

1.2 Temporal Action Localization

Temporal action localization aims at simultaneously classifying the ac-
tions of interest and localizing the starting and ending frames of ev-
ery action instance in untrimmed videos. Many real-world applications,
such as abnormal event detection, only require to localize the actions of
interest in the temporal domain. Unlike the spatio-temporal action local-
ization task, as the temporal action localization task dose not localize the
actors in each frame, it can only detect the temporal starting and ending
frames based on the whole input image from each frame. As a result, the
input is less discriminative, which makes the temporal action localiza-
tion task more challenging.

Similar as the object detection methods like [58], the prior meth-
ods [9, 15, 85, 5] have been proposed to handle this task through a two-
stage pipeline, which at first generates a set of 1D temporal segment pro-
posals and then performs classification and temporal boundary regres-
sion on each individual proposal. However, this task is still challenging
and we are confronted with two major issues: (1) how to generate the
proposals with high recall rates and accurate boundaries, and (2) how to
effectively make complementary clues cooperate with each other across
the whole video localization framework.

For the first issue, as shown in Figure 1.2, we observe that the pro-
posal generation methods with different granularities (i.e., the anchor-
based and frame-based methods) are often complementary to each other.
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Figure 1.2: Illustration of the temporal action localization task. The start-
ing and the ending frames of the actions within the input videos can be
localized by the anchor-based or the frame-based temporal action local-
ization methods.

Specifically, the anchor-based methods generate segment proposals by
regressing boundaries for the pre-defined anchors, which generally pro-
duce coarse proposals with a high recall rate. Meanwhile, the frame-
based methods predict per-frame actionness scores to generate segment
proposals, which often detect accurate boundaries but suffer from low
recall rates. The prior works [37, 13, 46] have attempted to make these
two lines of schemes cooperate with each other by using either bottom-
up module stacking strategy or guided proposal filtering. But we ar-
gue that the features from the anchor-based methods and the frame-
based methods represent different information of the input videos as
they are learned based on different proposal generation mechanisms.
Consequently, the features and segment proposals from the two lines of
proposal generation schemes are considered as complementary to each
other for the temporal action localization task, and it is possible to lever-
age this cross-granularity-level complementary information to generate
better action segments with high recall rates and accurate temporal bound-
aries.

For the second issue, the aforementioned two lines of proposal gen-
eration methods can cooperate with each other at both the feature and
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segment levels. To be more specific, the feature-level cooperation strat-
egy will improve the frame-based features and filter out false starting/ending
point pairs with invalid durations, and thus enhance the frame-based
methods to generate better proposals having higher overlapping areas
with the ground-truth action segments. Meanwhile, the proposal-level
cooperation strategy will collect complete and accurate proposals with
the aid of the frame-based approaches, which can help the subsequent
action classification and boundary regression process. In order to effec-
tively integrate complementary information between the anchor-based
and frame-based methods, one straightforward approach is to progres-
sively leverage the cross-granularity complementarity to improve the
temporal action localization performance, and eventually fully exploit
the complementary information. However, it is suboptimal by trivially
repeating the aforementioned cross-granularity cooperation process as
it can easily lead to performance saturation. Building upon the well-
known observation that appearance and motion clues are also comple-
mentary to each other, our work augments the cross-granularity collab-
oration process with the cross-stream cooperation strategy, which en-
hances the representations for the anchor-based methods and better ex-
ploits the complementarity between the two-granularity approaches at
the feature level by iteratively using the features from one stream (i.e.,
RGB/flow) to improve the features from another stream (i.e., flow/RGB)
for the anchor-based method.

To this end, building upon two-granularity and two-stream pipeline,
we propose a unified temporal action localization framework named
as PCG-TAL, which enables progressive cross-granularity cooperation.
More specifically, our PCG-TAL includes a new Anchor-Frame Coop-
eration (AFC) module to improve the frame-based features by using a
message passing operation to pass complementary information from the
anchor-based features and also update the segment proposal set by com-
bining the RGB and flow segment proposals generated from the anchor-
based scheme and the improved segment proposals from the frame-based
approach based on the updated frame-based features. Moreover, our
AFC module incorporates the aforementioned message passing and seg-
ment proposal combination strategies into the two-stream anchor-based
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segment proposal generation pipeline, in which the RGB-stream AFC
module and the flow-stream AFC modules are stacked sequentially in
order to exchange cross-stream and cross-granularity information at the
feature and segment proposal levels over multiple stages, respectively.
Specifically, we iteratively update the RGB-stream AFC module by us-
ing the updated features and proposals from the flow-stream AFC mod-
ule, and vice versa. As a result, our framework can progressively im-
prove the temporal action localization performance by leveraging the
cross-granularity and cross-stream complementary information. The en-
tire framework is learned in an end-to-end fashion. Our contributions
are three-fold:

(1) We propose an AFC module to exploit the cross-granularity and
cross-stream complementarity at both feature and segment pro-
posal levels.

(2) We introduce a new multi-stage framework to effectively integrate
the cross-granularity and cross-stream information from the two-
stream anchor-based and frame-based methods in a progressive
manner.

(3) Comprehensive experiments on three benchmark datasets, such as
THUMOS14, ActivityNet v1.3 and UCF-101-24, demonstrate that
our approach outperforms the state-of-the-art methods for both
temporal and spatial-temporal action localization.

1.3 Spatio-temporal Visual Grounding

Vision and language play important roles for human to understand the
world. In recent years, with the remarkable progress of deep neural net-
works, various vision-language tasks (e.g., image captioning and visual
grounding) have attracted increasing attention from researchers.

Spatial-Temporal Video Grounding (STVG), which was introduced
in the recent work [102], is a novel and challenging vision-language task.
Given an untrimmed video and a textual description of an object, the
STVG task aims to produce a spatio-temporal tube (i.e., a sequence of
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bounding boxes) for the target object described by the given text descrip-
tion. Different from the existing grounding tasks in images, both spatial
and temporal localizations are required in the STVG task. Besides, how
to effectively align visual and textual information through cross-modal
feature learning in both spatial and temporal domains is also a key issue
for accurately localizing the target object, especially in the challenging
scenarios where different persons often perform similar actions within
one scene.

Spatial localization in images/videos is a related visual grounding
task, and spatial localization results have been improved in recent works [42,
96, 45, 82, 87, 88, 41, 86, 7]. In most existing works, a pre-trained object
detector is often required to pre-generate object proposals. However,
these approaches suffer from two limitations: (1) The localization perfor-
mance heavily rely on the quality of the pre-generated object proposals.
(2) It is difficult for a pre-trained object detector to be well generalized to
any new datasets with unseen classes. Although the recent works [92, 34,
48, 91] have attempted to remove the dependency of the pre-generation
process in the image grounding tasks, such efforts have not been made
for the video grounding tasks.

Beyond spatial localization, temporal localization also plays an im-
portant role for the STVG task, in which significant progress has been
made in recent years. The existing methods can be mainly divided into
anchor-based and frame-based approaches. In the anchor-based approaches [14,
1], the output segments often have relatively high overlap with the ground-
truth ones but the temporal boundaries are less accurate because they
regress the ground-truth boundaries by using the features extracted from
the anchors (i.e., the candidate segments). The frame-based approaches [6]
directly determine the temporal boundaries based on the frame-level
prediction scores, which often produce more accurate temporal bound-
aries, but may falsely detect the temporal segments. Intuitively, it is de-
sirable to explore the complementarity of the two lines of methods in
order to improve the temporal localization performance.

Motivated by the above observations, in this work, we propose a
visual-linguistic transformer based framework called STVGBert for the
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STVG task, which includs a Spatial Visual Grounding network (SVG-
net) and a Temporal Boundary Refinement network (TBR-net). The SVG-
net first takes a pair of video clip and textual query as the input and
produces an initial spatio-temporal tube. The initial tube is then fed into
the TBR-net, where its temporal boundaries are further refined. Both
SVG-net and TBR-net employ a visual-linguistic transformer for cross-
modal feature learning given its promising results achieved for various
vision-language tasks [47, 70, 33].

Furthermore, both SVG-net and the TBR-net have their special de-
signs. Specifically, the key component of the SVG-net is an improved
version of ViLBERT [47], named ST-ViLBERT. In addition to encoding
temporal information as in the original ViLBERT, our ST-ViLBERT also
preserves spatial information in the visual input feature. As a result, our
SVG-net can effectively learn the cross-modal representation and pro-
duce the initial spatio-temporal tubes with reasonable quality without
requiring any pre-trained object detectors. Besides, we also propose a
novel ViLBERT-based temporal localization network referred to as TBR-
net, to take advantage of the complementarity between an anchor-based
branch and a frame-based branch. Our TBR-net iteratively refines the
temporal boundaries by using the output from the frame/anchor-based
branch as the input for the anchor/frame-based branch. This multi-
stage two-branch design turns out to be effective for progressively re-
fining the temporal boundaries of the initial tube produced by the SVG-
net. We evaluate our proposed framework STVGBert on two benchmark
datasets, VidSTG [102] and HC-STVG [76], and our framework outper-
forms the state-of-the-art methods.

Our contributions can be summarized as follows:

(1) We propose a novel two-step visual-linguistic transformer based
framework STVGBert for the spatio-temporal video grounding task.
To the best of our knowledge, this is the first STVG framework that
does not require any pre-trained object detectors.

(2) We introduce a spatial visual grounding network (SVG-net) with a
newly proposed cross-modal feature learning module. Moreover,
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we propose a temporal boundary refinement network (TBR-net),
which progressively refines the temporal boundaries of the object
tubes by exploiting the complementarity of the frame-based and
anchor-based methods.

(3) Comprehensive experiments conducted on two benchmark datasets,
VidSTG and HC-STVG, demonstrat the effectiveness of our frame-
work for the STVG task.

1.4 Thesis Outline

The rest of this thesis is organized into five chapters. We summarize the
main content of each chapter as follows:

Chapter 2. Literature Review. In this chapter, we give a comprehensive
review on the background and the three video localization tasks to help
readers better understand the studies in the following chapters.

Chapter 3. Progressive Cross-stream Cooperation in Spatial and Tem-
poral Domain for Action Localization. In this chapter, we propose
a Progressive Cross-stream Cooperation framework in both spatial and
temporal domains to solve the spatio-temporal action localization task
by leveraging the complementary information between appearance and
motion clues at the proposal and feature levels. We also evaluate the
effectiveness of our proposed method on two benchmarks, UCF-101-
24 [68] and J-HMDB [24].

Chapter 4. PCG-TAL: Progressive Cross-granularity Cooperation for
Temporal Action Localization. In this chapter, in order to solve the tem-
poral action localization task, we integrate two lines of previous work
(i.e., anchor-based and frame-based methods) and propose a new Anchor-
Frame Cooperation (AFC) module to exchange cross-granularity infor-
mation along with a two-stream cooperation strategy to encourage col-
laboration between the complementary appearance and motion clues.
The effectiveness of our proposed method is validated on three bench-
marks, THUMOS14 [25], ActivityNet v1.3 [3] and UCF-101-24 [68].
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Chapter 5. STVGBert: A Visual-linguistic Transformer based Frame-
work for Spatio-temporal Video Grounding. In this chapter, we de-
velop a spatio-temporal visual grounding framework based on a visual-
linguistic transformer to learn cross-modality representation in order to
better align the visual and textual information. we also propose a tem-
poral boundary refinement network to progressively refine the temporal
boundaries of the generated results by leveraging the complementarity
of the frame-based and the anchor-based methods. Two benchmarks,
VidSTG [102] and HC-STVG [76], are used to evaluate our proposed
method.

Chapter 6. Conclusions and Future Work. In this chapter, we conclude
the contributions of this work and point out the potential directions of
video localization in the future.
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Chapter 2

Literature Review

In this chapter, we review the related work on the deep neural network
and three tasks studied in this thesis. We first introduce the background
of the deep neural network, and then summarized related work on the
spatio-temporal action localization, temporal action localization and spatio-
temporal visual grounding tasks.

2.1 Background

2.1.1 Image Classification

Recently, deep neural network has been widely used in the computer vi-
sion task. Krizhevsky et al. [27] used a set of convolutional layers with
nonlinear functions as activation functions inbetween each layer to build
a convolutional neural network named AlexNet for the image classifica-
tion task. Each convolutional layer contains a set of weights, and the
number of weights in each layer is depended on the kernel size used
in the convolutional filters. The convolutional neural network can be
trained to classify the categories for images by using a set of training
samples. Specifically, the loss of ground truth and prediction for each
training sample is calculated, and the weights of the convolutional neu-
ral network are updated by using back-propagation and gradient de-
scent to minimize the loss. Additionally, due to the gradient vanishing
issue cause by sigmoid function, a new nonlinear function named Rec-
tified Linear Units (Relu) is introduced and used as the activation func-
tions to address this issue. However, the large number of parameters
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(weights) used in the convolutional neural network can easily lead the
network overfit the training samples. In order to ensure the generaliza-
tion for the network, strategies such as data augmentation and dropout
are introduced to avoid the overfitting problem. This network achieved
a winning top-5 test error rate of 15.3% in the lagest image classification
competition (ILSVRC-2012) at that time, which was a huge improvement
from the second best (26.2%). This work has activated the research inter-
est of using deep learning method to solve computer vision problem.

Later, Simonyan and Zisserman [65] proposed a deeper convolu-
tional neural network named VGG-Net to further improve the image
classification performance. They observed that convolutional layers with
large kernel size were used in AlexNet, which can be replaced by a stack
of several convolutional layers with low kernel size. For example, a stack
of two 3× 3 convolutional layers can achieve the same effective recep-
tive field of a 5× 5 convolutional layer and the effective receptive field of
a 7× 7 convolutional layer can be achieved by stacking three 3× 3 con-
volutional layers. By decomposing the convolutional layers with large
kernel size into several 3× 3 convolutional layers with activation func-
tions inbetween, the nonlinearity of the convolutional neural network
increases and the number of parameters used in the network decreases
without losing the effective receptive field of the network. VGG-Net
achieved 7.32% top-5 error rate in the ILSVRC-2014 competition.

Similarly, Szegedy et al. [74] proposed a deep convolutional neu-
ral network named Inception for the image classification task, which
achieved 6.67% top-5 error rate and defeated VGG-Net in the ILSVRC-
2014 competition. In stead of decomposing convolutional layers with
large kernel size into several convolutional layers with low kernel size,
Inception employs multiple kernel sizes in each convolutional layer in
order to take advantage of the complementary information brought by
multiple resolutions. Specifically, they introduced an inception module
which takes the output of previous incpeption module as the input of a
set of parallel convolutional layers with different kernel sizes followed
by pooling layers, and the output of these layers are concatenated to
form the final output for the inception module. The deep convolutional
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neural network is built by stacking such inception modules to achieve
high image classification performance.

VGG-Net and Inception have shown that performance on the im-
age classification problem can be improved by making the convolutional
neural network deeper. However, when simply increasing the number
of the convolutional layers and stacking them to build the network, the
image classification performance easily gets saturated and then degrades
rapidly. This is because as the convolutional neural network goes deeper,
the error gradients accumulate to a very large value. This results in large
update during training process, and leads to an unstable network. In
order to address the gradient explosion issue, He et al. [20] proposed a
shortcut connection architecture to allow the gradients to be easily back-
propageted from the deep layers to the shallow layers without gradient
accumulation. By using the shortcut connection architecture, the convo-
lutional neural network can be built with extremely high depth to im-
prove the image classification performance.

Instead of increasing the depth of the convolutional neural network,
Huang et al. [22] introduced another shortcut connection architecture to
enlarge the width of the convolutional neural network. The proposed
network is built by stacking a set of dense blocks, with each dense block
has shortcut connections with other blocks. Specifically, for each dense
block, it takes the combination of the output from all the previous dense
blocks as the input so that the features from each layers are able to be
reused in the following layers. Note that the network becomes wider as
it goes deeper.

2.1.2 Object Detection

The object detection task aims to detect the locations and the categories
of the objects appearing in the given image. With the promising image
classification performance achieved by using deep convolutional neural
network, recently, researchers have investigate how to use deep learning
methods to solve the object detection problem.
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Girshick et al. [17] proposed a convolutioal neural network based
object detection method called RCNN. They used selective search to gen-
erate a set of region proposals, which were then used to crop the given
image to obtain the corresponding patches of the input image. All the
cropped patches were the candidates, which potentially contains objects.
Each of these patches was fed into a convolutional neural network fol-
lowed by a detection head, which contains a classification head and a re-
gression head to predict the category of the patch and regress the offsets
to the coordinates of the corresponding region proposal, respectively.
However, one of the drawback of RCNN is that all the generated patches
have to be fed into the convolutional neural network, which leads to high
computational cost and large training and inference time.

To make the convolutional neural network based object detection
frameworks more efficient, Girshick et al. [16] proposed Fast RCNN to
improve the time cost for detecting objects in a given image. Specifi-
cally, similar to RCNN, they first used selective search to generate region
proposal set. However, instead of generating patch candidates from the
original image to be fed into the convolutional neural network, they only
fed the entire image to the network to generate a feature map, and then
applied a newly proposed Region-of-Interest (ROI) pooling operation on
top of the generated feature map to obtain fixed size feature maps for
the corresponding region proposals so that they can be passed to a fully
connected layer followed by a detection head to produce the category
prediction and the offsets. By doing so, the training and inference time
have been largely reduced.

Both RCNN and Fast RCNN use selective search to generating re-
gion proposals, which is very time-consuming and affects the object de-
tection performance. As a result, in order to further improve the ef-
ficiency of the object detection frameworks, Ren et al. [58] introduced
a new Region Proposal Network (RPN) that can learn to generate re-
gion proposals, and proposed a new object detection framework Faster
RCNN. Similar to Fast RCNN, the entire image was fed into a convolu-
tional neural network to generate a feature map. A set of pre-defined
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anchors were used at each location of the generated feature map to gen-
erate region proposals by a separate network. The final detection results
were obtained from a detection head by using the pooled features based
on the ROI pooling operation on the generated feature map.

Faster RCNN is considered as a two-stage objected detection frame-
work where a RPN is first used to generate region proposals and then
ROI pooling operation and detection head are applied to obtain the final
results. Redmon et al. [57] proposed a one-stage real-time object detec-
tion framework called Yolo. They split the entire image into an S × S
grid, with each location in the gird contained several pre-defined an-
chors. For each anchor, the network predicted the class probability and
the offsets to the anchor. Yolo is faster than Faster RCNN as it does not
require region feature extraction by using ROI pooling operation, which
is time-consuming.

Similarly, Liu et al. [44] proposed a single shot multi-box detector
(SSD) to generate bounding boxes in one stage. In [44], a set of boxes
with different sizes and aspect ratios are predefined at each locations of
feature maps. These predefined boxes were used to directly regress the
coordinates of the target objects based on the features at the correspond-
ing locations on the feature maps.

All the aforementioned object detection frameworks are anchor-based
methods, which requires pre-defined anchors or generated region pro-
posals. Zhou et al. [104] proposed CenterNet for object detection with-
out using any pre-defined anchors, which predicted the locations of the
center points of the objects. Specifically, a dense heat map was predicted
by the convolutional neural network to represent the probability of each
point in the heat map being the center point of an object. Additionally,
the network also predicted the bounding box size (height and width) for
each point in the heat map.
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2.1.3 Action Recognition

Convolutional neural network has been used to solve image computer
vision problems such as classification, object detection. Recently, the re-
search interest of using convolutional neural network to address com-
puter vision problems on videos has been also raised. Simonyan and
Zisserman [64] introduced Two-Stream Convolutional Networks for the
action recognition task in video. To classify the action categories for
videos, they designed a spatial network based on the convolutional neu-
ral network, which took the RGB frames from the given videos as in-
put and outputted the action class predictions. In addition to the ap-
pearance information, they also found that a stack of multi-frame dense
optical flow can represent motion information, which also helped the
action recognition performance. Specifically, a separate temporal net-
work was designed to take the optical flow maps as input to prediction
action classes, which can also achieve good action recognition perfor-
mance. Moreover, combining spatial and temporal networks can have
further improvement on the performance of the action recognition task,
which demonstrated that appearance and motion information is comple-
mentary to each other.

For the work in [12], Feichtenhofer et al. further discussed the effects
of several different strategies for combining the spatial and the tempo-
ral networks proposed in [64] on the action recognition performance. By
setting up experiments, they concluded that among the proposed strate-
gies, by using convolutional layer to fuse the features from the last con-
volutional layer of the spatial and the temporal networks, the combined
network can achieve the best action recognition performance, which pro-
vided the insights of how to effectively combine information from differ-
ent complementary modalities.

Based on the two-stream architecture in [64], Wang et al. [81] pro-
posed Temporal Segment Networks to improve the performance for ac-
tion recognition. They claimed that temporal information is important
but consecutive frames from a video are redundant because of their high
similarity. As a result of that, they divided a video into segments and
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randomly chose a frame from each segment to represent the whole seg-
ment. The chosen frames and corresponding optical flow maps were
used as input to the two-stream network and then consensus was ap-
plied on output for each stream. Finally, the output from each stream
were combined to consider the complementary information between two
modalities. Additionally, they also took advantage of features extracted
from warped flow and RGB difference, which can further benefits the ac-
tion recognition performance. Besides, it can help the framework from
overfitting the training samples by using pretrained model as initializa-
tion and applying partial batch normalization.

2D convolutional neural networks has proven its effective usage on
the action recognition task. Tran et al. [77] also investigated the effect
of 3D convolution on feature extraction for videos. They claimed that
while 2D convolution only consider spatial information, 3D convolution
is able to take advantage of temporal information of the input, which is
also important in a video. They proved that 3D convolution with ker-
nel size of 3x3x3 is a reasonable setting among several proposed settings
and designed a 3D convolutional network with such convolutional lay-
ers named C3D. Compared to the two-stream framework, 3D convolu-
tional neural network can model the spatio-temporal information simul-
taneously, which is more time-efficient.

Similar to C3D, Carreira et al. [4] proposed a deeper 3D convolu-
tional neural network called I3D for the action recognition task. I3D was
built by inflating every 2D convolutional layers in Inception [74] to 3D
convolutional layers to learn spatio-temporal representations for videos.
They trained the proposed network on a large action recognition dataset
named Kinetics and demonstrated that it can help significantly improve
the action recognition performance on other relatively small dataset such
as UCF-101. I3D is widely used to extract spatio-temporal features for
videos.



20 Chapter 2. Literature Review

2.2 Spatio-temporal Action Localization

Spatio-temporal action localization aims to localize action instances within
untrimmed videos. The input of this task is an untrimmed video while
the output is a set of bounding boxes representing the spatial locations
in each frame within the temporal durations of the corresponding action
instances. Recently, deep convolutional neural network has been widely
used to solve this computer vision task.

Weinzaepfel et al. [83] proposed a spatio-temporal action localiza-
tion framework built upon two-stream (RGB and optical flow) features.
They used object detection methods to detect action locations for each
frame and then tracked the proposals with high scores by using tracking-
be-detection methods. A multi-scale slide-window approach was then
used as the temporal anchors to detect the temporal segments to per-
form the temporal localization.

Similar to action recognition, both appearance and motion clues are
important for spatio-temporal action localization. Peng et al. [54] pro-
posed a multi-region two-stream RCNN framework for spatio-temporal
action localization. In addition to a RCNN framework that takes RGB
images as input to generate region proposals, they also developed an
optical flow based RCNN framework and proved that it can generate
high quality proposals by using motion information. Moreover, instead
of detecting the human body as a whole, they introduced a multi-region
scheme in the RCNN framework to generate proposals for different re-
gions of human body so that complementary information can be added
on human body parts. The proposed framework generated frame-level
detections and Viterbi algorithm was used to link these detections for
temporal localization.

Saha et al. [60] proposed a three-stage framework for detecting the
spatio-temporal locations of action instance. They first took advantage
of both appearance (RGB) and motion (optical flow) information to lo-
calize and predict action scores. Then the appearance and motion scores
were combined to leverage the complementary information from these
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two modalities. Finally, action tubes were constructed by linking the de-
tections generated from the previous stages. The detections were first
linked based on their action class scores and spatial overlap, and then
the linked action tubes were temporally trimmed via ensuring label con-
sistency.

As computing optical flow from consecutive RGB images is very
time-consuming, it is hard to achieve real-time performance for the two-
stream based spatio-temporal action localization methods. To address
this issue, Singh et al. [67] used a real-time one-stage object detection
method to replace the RCNN framework used in [54] and [60] in order
to reduce the additional time consumption brought by the two-stage ob-
ject detection framework. Additionally, they also introduced an efficient
online algorithm to incrementally link the generated frame-level detec-
tions and construct action tubes. By doing so, the proposed method is
capable of performing real-time spatio-temporal action localization.

The aforementioned spatio-temporal action localization methods rely
on frame-level detections. Kalogeiton et al. [26] proposed an ACT-detector
to consider the temporal information of videos. Instead of handling one
frame at a time, ACT-detector took a sequence of RGB frames as input
and outputted a set of bounding boxes to form a tubelet. Specifically,
convoulutional neural network was used to extract features for each of
these RGB frames, which were stacked to form representation for the
whole segment. The representation was then used to regress the coordi-
nates of the output tubelet. The generated tubelets were more robust
than the linked action tube from frame-level detections because they
were produced by leveraging the temporal continuity of videos.

A progressive learning framework for spatio-temporal action local-
ization named STEP [89] was proposed by Yang et al.. They first used
several hand-designed coarse anchors to search for action of interests
and then progressively refined the coordinates of the anchors through
iterations in a coarse-to-fine manner. In each iteration, the anchors were
temporally extended to gradually include more temporal context in or-
der to generate high quality proposals. Moreover, by doing so, STEP was
able to naturally handle the spatial displacement within action tubes.
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2.3 Temporal Action Localization

Unlike spatio-temporal action localization, which requires to obtain the
spatial locations of the action instances, temporal action localization fo-
cuses on accurately detecting when the action instances start and end
in the time domain of the untrimmed videos. Early works used sliding
windows to generate segment proposals and then apply the classifiers
to classify actions for each proposal. Yuan et al. [97] captured motion
information at multiple resolutions by using sliding windows to obtain
a Pyramid of Score Distribution Feature. They then considered the in-
ter frame consistency by incorporating the pyramid of score distribu-
tion feature, which effectively boosted the temporal action localization
performance. Shou et al. [63] used sliding window and C3D [77] as a
binary classification task to generate background and action proposals.
All these proposals were fed to a classification network based on C3D
to predict labels. Then, they used the trained classification model to ini-
tialize a C3D model as a localization model, and took proposals and its
overlap score as inputs of this localization model and proposed a new
loss function to reduce the classification error.

Most recent temporal action localization methods can be roughly
categorized into two types. The first set of works used [49, 10, 29, 98,
103] convolutional neural networks to extract frame-level or snippet-
level features for the given videos, which were then used to predict
frame-wise or snippet-wise actionness scores. By simply thresholding
the actionness scores, the action starting or ending time can be selected,
which were then used to determine the temporal boundaries of actions
for proposal generation.

Shou et al. [62] developed a new 3D convolutional architecture named
CDC to predict the actionness scores for each frame in order to deter-
mine the temporal boundaries of action instances. CDC consisted of two
parts. In the first part 3D convolution layers were used to reduce the
spatial and the temporal resolutions simultaneously. In the second part,
2D convolutional layers were applied in the spatial domain to reduce
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the resolution while deconvolutional layers were employed in the tem-
poral domain to restore the resolution. As a result, the output of CDC
can have the same length as the input in the temporal domain, so that the
proposed framework was able to model the spatio-temporal information
and predict action label for each frame.

Zhao et al. [103] introduced a new effective proposal generation method
called temporal actionness grouping to address the temporal action lo-
calization problem. The input videos were first divided into snippets
and an actionness classifier was used to predict the binary actionness
scores for each snippets. Consecutive snippets with high actionness score
were grouped to form proposals, which were used to build a feature
pyramid to evaluate the action completeness for them. Their method
has improvement on the performance on temporal action localization
task compared to other state of the art methods.

In the first type of methods, the generated proposals often have rel-
atively accurate temporal boundaries as they are determined based on
frame-wise or snippet-wise labels at a finer level with larger aperture of
temporal details. However, it is easy for them to wrongly predict low
actionness scores for frames within the action instances, which results in
low recall rates.

Another set of works [9, 15, 85, 5] applied anchor-based object de-
tection framework, which first generated as set of temporal segment an-
chors, and then detection heads consisting of boundary regressors and
action classifiers were used to refine the locations and predict action
classes for the anchors.

Lin et al. [36] introduced a single shot detection network to predict
the temporal locations of action instances in videos. The idea came from
the Single Shot Detection [44] framework used for the object detection
task. They first used convolutional neural networks to extract appear-
ance and motion features, which were then used to build a base layer
and three anchor layers to generate prediction anchor instances. Offset
regression and action class prediction were then performed based on the
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prediction anchor instances. Their method can achieve comparable re-
sults to those of the state of the art methods, but the temporal boundaries
of the detected action segments were less precise.

Gao et al. [15] proposed a temporal action localization network named
TRUN, which decomposed long videos into short clip units and built an-
chor pyramid to predict offsets and action class labels for these clip units
in order to generate temporal action proposals. By doing so, the time cost
of the proposal generation process was significantly reduced and TURN
can achieve run time of 880 frames per second on a TITAN X GPU.

Inspired by Faster RCNN [58] object detection framework, Chao et
al. [5] proposed an improved approach for temporal action localization
named TAL-Net. They applied the two-stage Faster RCNN framework
on the temporal domain to detect the starting and ending points of ac-
tion instances. In addition to this, in order to address the reception field
alignment issue brought by the temporal localization problem, they used
a multi-scale architecture so that extreme variation of action duration can
be accommodated. Moreover, they also considered the temporal context
of action instances for better proposals generation and action class pre-
diction.

In the second category, as the proposals are generated by the pre-
defined anchors with various time intervals over the untrimmed videos,
they are able to cover most ground-truth instances. Unfortunately, they
usually has lower performances in terms of temporal boundary accuracy.

Either line of the aforementioned works can take advantage of in-
herent merits of the methods in the other line, resulting in the trade-off
between the boundary accuracy and recall rate. Some recent attempts,
such as CTAP [13] and MGG [46], were proposed to take the comple-
mentary merits of both lines of works into consideration. They either
used several isolated components with the stage-wise training scheme,
such as CTAP [13], or simply employed frame-wise or snippet-wise la-
bels to filter the boundaries of anchor-based segment proposals [46] but
without fully exploring the complementarity in a more systematic way.
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2.4 Spatio-temporal Visual Grounding

Spatio-temporal visual grounding is a newly proposed vision and lan-
guage task. The goal of spatio-temporal visual grounding is to localize
the target objects from the given videos by using the textual queries that
describe the target objects.

Zhang et al. [102] proposed STGRN to address the spatio-temporal
visual grounding task. They first used a pre-trained object detector to
detect object proposals from each frame of the input videos. These ob-
ject proposals were then used to extract region features to build a spatio-
temporal graph for relationship modelling. The spatio-temporal graph
consisted of the implicit and explicit spatial subgraphs to reason the spa-
tial relationship within each frame and the dynamic temporal subgraph
to exploit the temporal relationship across consecutive frames. The pro-
posed graph was used to produce cross-modality spatio-temporal rep-
resentations, which were used to generate spatio-temporal tubes by a
spatial localizer and a temporal localizer.

In [101], Zhang et al. proposed a spatial-temporal video grounding
framework to model the relationship between the target objects and the
related objects while suppressing the relations of unnecessary objects.
Specifically, multi-branch architecture was used to handle different types
of relations, with each branch focused on its corresponding objects.

Similar to the work in [102], Tang et al. [76] also used a pre-trained
object detector to generate human proposals. Instead of using these pro-
posals to model the relationship within each frame, they used linking al-
gorithm to link proposals across frames to generate human tubes. Each
human tube was then used to extract features, which were then fed into a
visual-linguistic transformer to learn cross-modality representations and
model temporal information. The cross-modality representation were
then used to select target human tubes from a set of human tube pro-
posals. Additionally, temporal trimming process was used to refine the
temporal boundaries of the selected human tubes.

One of the drawbacks for the aforementioned spatio-temporal vi-
sual grounding methods is that they rely on pre-trained object detectors
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to generate a set of object proposals, which require additional training
data. Also, when the categories of the target objects do not appeared in
the training data of the pre-trained object detectors, it is hard for them
to generate proposals with these categories, which degrades the spatio-
temporal visual grounding performance.

2.5 Summary

In this chapter, we have summarized the related works on the back-
ground vision tasks and three vision problems that are studied in this
thesis. Specifically, we first briefly introduce the existing methods on
the image classification problem. Then, we review the one-stage, two-
stage and anchor-free convlutional neural network based object detec-
tion framework. We then summarize the two-stream framework and 3D
convolutional neural networks for spatio-temporal representation learn-
ing. Besides, we also review the existing spatio-temporal action localiza-
tion methods. Additionally, we also review the related works on differ-
ent types of temporal action localization methods including frame-based
methods and anchor-based methods. The recent works on combining
these two types of works to leverage the complementary information are
also discussed. Finally, we give a review on the new vision and language
task spatio-temporal visual grounding.

In this thesis, we develop new deep learning approaches on spatio-
temporal action localization, temporal action localization, and spatio-
temporal visual grounding. Although there are many works related to
these vision problems in the literature as summarized above, in this the-
sis, we propose new frameworks to address these tasks by using deep
neural networks and correspondingly design effective algorithms.

Specifically, in Chapter 3, we propose a new algorithm called pro-
gressive cross-stream cooperation for spatio-temporal action lcoalization,
in which we build a two-stream two-stage object detection framework
and exchange complementary information between these two streams
at the proposal and feature levels. The newly proposed strategy allows
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the information from one stream to help better train another stream and
progressively refine the spatio-temporal action localization results.

In Chapter 4, based on the observation of the existing anchor-based
and frame-based temporal action localization methods, we propose a
novel anchor-frame cooperation module, which can exploit the comple-
mentary between the anchor-based and frame-based temporal action lo-
calization methods. In addition, we also leverage the complementary in-
formation between appearance and motion clues to enhance the anchor-
based features, which can further benefit the information fusion between
two granularities.

In Chapter 5, we build upon the recent proposed visual-linguistic
transformer to learn cross-modality representations for the spatio-temporal
visual grounding task. Additionally, by introducing a simple but effec-
tive spatio-temporal combination and decomposition module, our pro-
posed framework can remove the dependence on the pre-trained object
detectors. We use the anchor-free object detection framework to directly
generate object tubes from frames in the input videos.





29

Chapter 3

Progressive Cross-stream
Cooperation in Spatial and
Temporal Domain for Action
Localization

Spatio-temporal action localization consists of three levels of tasks: spa-
tial localization, action classification, and temporal localization. In this
chapter, we propose a new Progressive Cross-stream Cooperation (PCSC)
framework that improves all three tasks above. The basic idea is to uti-
lize both spatial region (resp., temporal segment proposals) and features
from one stream (i.e., the Flow/RGB stream) to help another stream (i.e.,
the RGB/Flow stream) to iteratively generate better bounding boxes in
the spatial domain (resp., temporal segments in the temporal domain).
In this way, not only the actions could be more accurately localized both
spatially and temporally, but also the action classes could be predicted
more precisely. Specifically, we first combine the latest region propos-
als (for spatial detection) or segment proposals (for temporal localiza-
tion) from both streams to form a larger set of labelled training sam-
ples to help learn better action detection or segment detection models.
Second, to learn better representations, we also propose a new mes-
sage passing approach to pass information from one stream to another
stream, which also leads to better action detection and segment detec-
tion models. By first using our newly proposed PCSC framework for
spatial localization at the frame-level and then applying our temporal
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PCSC framework for temporal localization at the tube-level, the action
localization results are progressively improved at both the frame level
and the video level. Comprehensive experiments on two benchmark
datasets UCF-101-24 and J-HMDB demonstrate the effectiveness of our
newly proposed approaches for spatio-temporal action localization in re-
alistic scenarios.

3.1 Background

3.1.1 Spatial temporal localization methods

Spatio-temporal action localization involves three types of tasks: spa-
tial localization, action classification, and temporal localization. A huge
amount of efforts have been dedicated to improve the three tasks from
different perspectives. First, for spatial localization, the state-of-the-art
human detection methods are utilized to obtain precise object propos-
als, which includes the use of fast and faster R-CNN in [8, 60] as well as
Single Shot Multibox Detector (SSD) in [67, 26].

Second, discriminant features are also employed for both spatial lo-
calization and action classification. For example, some methods [26, 8]
stack neighbouring frames near one key frame to extract more discrimi-
nant features in order to remove the ambiguity of actions in each single
frame and to better represent this key frame. Other methods [66, 55,
8] utilize recurrent neural networks to link individual frames or use 3D
CNNs [4, 77] to exploit temporal information. Several works [31, 93]
detect actions in a single frame and predict action locations in the neigh-
bouring frames to exploit the spatio-temporal consistency. Additionally,
another work [105] uses a Markov chain model to integrate the appear-
ance, motion and pose clues for action classification and spatial-temporal
action localization.

Third, temporal localization is to form action tubes from per-frame
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detection results. The methods for this task are largely based on the as-
sociation of per-frame detection results, such as the overlap, continu-
ity and smoothness of objects, as well as the action class scores. To im-
prove localization accuracies, a variety of temporal refinement methods
have been proposed, e.g., the traditional temporal sliding windows [54],
dynamic programming [67, 60], tubelets linking [26], and thresholding-
based refinement [8], etc.

Finally, several methods were also proposed to improve action de-
tection efficiency. For example, without requiring time-consuming multi-
stage training process, the works in [60, 54] proposed to train a sin-
gle CNN model by simultaneously performing action classification and
bounding box regression. More recently, an online real-time spatio-temporal
localization method is also proposed in [67].

3.1.2 Two-stream R-CNN

Based on the observation that appearance and motion clues are often
complementary to each other, several state-of-the-art action detection
methods [60, 26, 54, 8] followed the standard two-stream R-CNN ap-
proach. The features extracted from the two streams are fused to im-
prove action detection performance. For example, in [60], the softmax
score from each motion bounding box is used to help the appearance
bounding boxes with largest overlap. In [8], three types of fusion strate-
gies are discussed: i) simply averaging the softmax outputs of the two
streams, ii) learning per-class weights to weigh the original pre-softmax
outputs and applying softmax on the weighted sum, and iii) training
a fully connected layer on top of the concatenated output from each
stream. It is reported in [8] that the third fusion strategy achieves the
best performance. In [94], the final detection results are generated by
integrating the results from an early-fusion method, which concatenates
the appearance and motion clues as the input to generate detection re-
sults, and a late-fusion method, which combines the outputs from the
two streams.

Please note that most appearance and motion fusion approaches in
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the existing works as discussed above are based on the late fusion strat-
egy. They are only trained (if there is any training process) on top of
the detection networks of the two streams. In contrast, in this work
we iteratively use both types of features and bounding boxes from one
stream to progressively help learn better action detection models for
another stream, which is intrinsically different with these existing ap-
proaches [67, 26] that fuse two-stream information only at the feature
level in a late fusion fashion.

3.2 Action Detection Model in Spatial Domain

Building upon the two-stream framework [54], we propose a Progres-
sive Cross-stream Cooperation (PCSC) method for action detection at
the frame level. In this method, the RGB (appearance) stream and the
flow (motion) stream iteratively help each other at both feature level and
region proposal level in order to achieve better localization results.

3.2.1 PCSC Overview

The overview of our PCSC method (i.e., the frame-level detection method)
is provided in Fig. 3.1. As shown in Fig. 3.1 (a), our PCSC is composed of
a set of “stages". Each stage refers to one round of cross-stream coopera-
tion process, in which the features and region proposals from one stream
will help improve action localization performance for another stream.
Specifically, each stage comprises of two cooperation modules and a de-
tection head module. Our detection head module is a standard one,
which consists of several layers for region classification and regression.

The two cooperation modules include region-proposal-level coop-
eration and feature-level cooperation, which are introduced in details in
Section 3.2.2 and Section 3.2.3, respectively. For region-proposal-level
cooperation, the detection results from one stream (e.g, the RGB stream)
are used as the additional region proposals, which are combined with the
region proposals from the other stream (e.g, the flow stream) to refine the
region proposals and improve the action localization results. Based on
the refined region proposals, we also perform feature-level cooperation
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by first extracting RGB/flow features from these ROIs and then refin-
ing these RGB/flow features via a message-passing module shown in
Fig. 3.1 (b), and Fig. 3.1 (c), which will be introduced in Section 3.2.3.
The refined ROI features in turn lead to better region classification and
regression results in the detection head module, which benefits the sub-
sequent action localization process in the next stage. By performing the
aforementioned processes for multiple rounds, we can progressively im-
prove the action detection results. The whole network is trained in an
end-to-end fashion by minimizing the overall loss, which is the summa-
tion of the losses from all stages.

After performing frame-level action detection, our approach links
the per-frame detection results to form action tubes, in which the tempo-
ral boundary is further refined by using our proposed temporal bound-
ary refinement module. The details are provides in Section 3.3.

3.2.2 Cross-stream Region Proposal Cooperation

We employ the two-stream Faster R-CNN method [58] for frame-level
action localization. Each stream has its own Region Proposal Network
(RPN) [58] to generate the candidate action regions, and these candidates
are then used as the training samples to train a bounding box regression
network for action localization. Based on our observation, the region
proposals generated by each stream can only partially cover the true ac-
tion regions, which degrades the detection performance. Therefore, in
our method, we use the region proposals from one stream to help an-
other stream.

In this paper, the bounding boxes from RPN are called region pro-
posals, while the bounding boxes from the detection head are called de-
tection boxes.

The region proposals from the RPNs of the two streams are first
used to train their own detection head separately in order to obtain their
own corresponding detection boxes. The set of region proposals for each
stream is then refined by combining two subsets. The first subset is from
the detection boxes of its own stream (e.g, RGB) at the previous stage.



3.2. Action Detection Model in Spatial Domain 35

The second subset is from the detection boxes of another stream (e.g,
flow) at the current stage. To remove more redundant boxes, a lower
NMS threshold is used when the detection boxes in another stream (e.g.
flow) are used for the current stream (e.g. RGB).

Mathematically, let P (i)
t and B(i)t denote the set of region propos-

als and the set of the detection boxes, respectively, where i indicates
the ith stream, t denotes the tth stage. The region proposal P (i)

t is up-
dated as P (i)

t = B(i)t−2 ∪ B
(j)
t−1, and the detection box B(j)

t is updated as

B(j)
t = G(P (j)

t ), where G(·) denotes the mapping function from the de-
tection head module. Initially, when t = 0, P (i)

0 is the region proposal
from RPN for the ith stream. This process is repeated between the two
streams for several stages, which will progressively improve the detec-
tion performance of both streams.

With our approach, the diversity of region proposals from one stream
will be enhanced by using the complementary boxes from another stream.
This could help reduce the missing bounding boxes. Moreover, only
the bounding boxes with high confidence are utilized in our approach,
which increases the chances to add more precisely detected bounding
boxes and thus further help improve the detection performance. These
aforementioned strategies, together with the cross-modality feature co-
operation strategy that will be described in Section 3.2.3, effectively im-
prove the frame-level action detection results.

Our cross-stream cooperation strategy at the region proposal level
shares similar high-level ideas with the two-view learning method co-
training [2], as both methods make use of predictions from one stream/view
to generate more training samples (i.e., the additional region proposals in
our approach) to improve the prediction results for another stream/view.
However, our approach is intrinsically different with co-training in the
following two aspects. As a semi-supervised learning method, the co-
training approach [2] selects unlabelled testing samples and assigns
pseudo-labels to those selected samples to enlarge the training set. In
contrast, the additional region proposals in our work still come from the
training videos instead of testing videos, so we know the labels of the
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new training samples by simply comparing these additional region pro-
posals with the ground-truth bounding boxes. Also, in co-training [2],
the learnt classifiers will be directly used for predicting the labels of test-
ing data in the testing stage so the complementary information from the
two views for the testing data is not exploited. In contrast, in our work,
the same pipeline used in the training stage will also be adopted for the
testing samples in the testing stage, and thus we can further exploit the
complementary information from the two streams for the testing data.

3.2.3 Cross-stream Feature Cooperation

To extract spatio-temporal features for action detection, similar to [19],
we use the I3D network as the backbone network for each stream. More-
over, we follow Feature Pyramid Network (FPN) [38] to build feature
pyramid with high-level semantics, which has been demonstrated to be
useful to improve bounding box proposals and object detection. This in-
volves a bottom-up pathway and a top-down pathway and lateral con-
nections. The bottom-up pathway uses the feed-forward computation
along the backbone I3D network, which produces a feature hierarchy
with increasing semantic levels but decreasing spatial resolutions. Then
these features are upsampled by using the top-down pathway, which
are merged with the corresponding features in the bottom-up pathway
through lateral connections.

Following [38], we use the feature maps at the layers of Conv2c,
Mixed3d, Mixed4f, Mixed5c in I3D to construct the feature hierarchy in
the bottom-up pathway, and denote these feature maps as {Ci

2, Ci
3, Ci

4,
Ci

5}, where i ∈ {RGB, Flow} indicates the RGB and the flow streams,
respectively. Accordingly, the corresponding feature maps in the top-
down pathway are denoted as {Ui

2, Ui
3, Ui

4, Ui
5}.

Most two-stream action detection frameworks [67, 54, 26] only ex-
ploit the complementary RGB and flow information by fusing softmax
scores or concatenating the features before the final classifiers, which are
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insufficient for the features from the two streams to exchange informa-
tion from one stream to another and benefit from such information ex-
change. Based on this observation, we develop a message-passing mod-
ule to bridge these two streams, so that they help each other for feature
refinement.

We pass the messages between the feature maps in the bottom-up
pathway of the two streams. Denote l as the index for the set of feature
maps in {Ci

2, Ci
3, Ci

4, Ci
5}, l ∈ {2, 3, 4, 5}. Let us use the improvement

of the RGB features as an example (the same method is also applicable
to the improvement of the flow features). Our message-passing mod-
ule improves the features CRGB

l with the help of the features CFlow
l as

follows:
CRGB

l = fθ(CFlow
l )⊕ CRGB

l , (3.1)

where ⊕ denotes the element-wise addition of the feature maps, fθ(·)
is the mapping function (parameterized by θ) of our message-passing
module. The function fθ(CFlow

l ) nonlinearly extracts the message from
the feature CFlow

l , and then uses the extracted message for improving
the features CRGB

l .

The output of fθ(·) has to produce the feature maps with the same
number of channels and resolution as CRGB

l and CFlow
l . To this end,

we design our message-passing module by stacking two 1× 1 convolu-
tional layers with relu as the activation function. The first 1× 1 convo-
lutional layer reduces the channel dimension and the second convolu-
tional layer restores the channel dimension back to its original number.
This design saves the number of parameters to be learnt in the module
and exchanges message by using two-layer non-linear transform. Once
the feature maps CRGB

l in the bottom-up pathway are refined, the corre-
sponding features maps URGB

l in the top-down pathway are generated
accordingly.

The above process is for image-level messaging passing only. The
image-level message passing is only performed from the Flow stream to
the RGB stream once. This message passing provides good features to
initialize the message-passing stages.
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Denote the image-level feature map sets for the RGB and flow streams
by IRGB and IFlow respectively. They are used to extract features F̂RGB

t

and F̂Flow
t by ROI pooling at each stage t, as shown in Fig. 3.1. At Stage 1

and Stage 3, the ROI-feature F̂Flow
t of the flow stream is used to help im-

prove the ROI-feature F̂RGB
t of the RGB stream, as illustrated in Fig. 3.1

(b). Specifically, the improved RGB feature FRGB
t is obtained by apply-

ing the same method in Eqn. (3.1). Similarly, at Stage 2 and Stage 4, the
ROI-feature F̂RGB

t of the RGB stream is also used to help improve the
ROI-feature F̂Flow

t of the flow stream, as illustrated in Fig. 3.1 (c). The
message passing process between ROI-features aims to provide better
features for action box detection and regression, which benefits the next
cross-stream cooperation stage.

3.2.4 Training Details

For better spatial localization at the frame-level, we follow [26] to stack
neighbouring frames to exploit temporal context and improve action
detection performance for key frames. A key frame is a frame con-
taining the ground-truth actions. Each training sample, which is used
to train the RPN in our PCSC method, is composed of k neighbouring
frames with the key frame in the middle. The region proposals gener-
ated from the RPN are assigned with positive labels when they have an
intersection-over-union (IoU) overlap higher than 0.5 with any ground-
truth bounding box, or negative labels if their IoU overlap is lower than
0.5 with all ground-truth boxes. This label assignment strategy also ap-
plies to the additional bounding boxes from the assistant stream during
the region proposal-level cooperation process.

3.3 Temporal Boundary Refinement for Action

Tubes

After the frame-level detection results are generated, we then build the
action tubes by linking them. Here we use the same linking strategy as
in [67], except that we do not apply temporal labeling. Although this
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linking strategy is robust to missing detection, it is still difficult to ac-
curately determine the start and the end of each action tube, which is a
key factor that degrades video-level performance of our action detection
framework.

To address this problem, the temporal boundaries of the action tubes
need to be refined. Our temporal boundary refinement method uses the
features extracted from action tubes to refine the temporal boundaries of
the action tubes. It is built upon two-stream framework and consists of
four modules: Pre-processing Module, Initial Segment Generation mod-
ule, Temporal Progressive Cross-stream Cooperation (T-PCSC) module,
and Post-processing Module. An overview of the two major modules,
i.e., the Initial Segment Generation Module and the T-PCSC Module, is
provided in Fig. 3.2. Specifically, in the Pre-processing module, we use
each bounding box in the action tubes to extract the 7× 7 feature maps
for the detected region on each frame by ROI-Pooling and then tempo-
rally stack these feature maps to construct the features for the action
tubes. These features are then used as the input to the Initial Segment
Generation module. As shown in Fig. 3.2, we develop two segment gen-
eration methods in the Initial Segment Generation module: (1) a class-
specific actionness detector to evaluate actionness (i.e. the happening
of an action) for each frame, and (2) an action segment detector based
on two-stream Faster-RCNN framework to detect action segments. The
outputs of the actionness detector and the action segment detector are
combined to generate the initial segments for both the RGB and flow
streams. Our T-PCSC Module extends our PCSC framework from the
spatial domain to the temporal domain for temporal localization, and it
uses features from the action tubes and the initial segments generated
by the Initial Segment Generation module to encourage the two streams
to help each other at both feature level and segment proposal level to
improve action segment detection. After multiple stages of cooperation,
the output action segments from each stage are combined in the Post-
processing module, in which NMS is also applied to remove redundancy
and generate the final action segments.
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3.3.1 Actionness Detector (AD)

We first develop a class-specific actionness detector to detect the action-
ness at each given location (spatially and temporally). Taking advantage
of the predicted action class labels produced by frame-level detection,
we construct our actionness detector by using N binary classifiers, where
N is the number of action classes. Each classifier addresses the action-
ness of a specific class (i.e., whether an action happens or not at a given
location in a frame). This strategy is more robust than learning a gen-
eral actionness classifier for all action classes. Specifically, after frame-
level detection, each bounding box has a class label, based on which, the
bounding boxes from the same class are traced and linked to form action
tubes [67]. To train the binary actionness classifier for each action class
i, the bounding boxes that are within the action tubes and predicted as
class i by the frame-level detector are used as the training samples. Each
bounding box is labeled either as 1 when its overlap with the ground-
truth box is greater than 0.5, or as 0 otherwise. Note that the training
samples may contain bounding boxes falsely detected near the temporal
boundary of the action tubes. Therefore, these samples are the “confus-
ing" samples and are useful for the actionness classifier to learn the subtle
but critical features, which better determine the beginning and the end
of this action. The output of the actionness classifier is a probability of
actionness belonging to class i.

At the testing stage, given an action tube formed by using [67], we
apply the class-specific actionness detector to every frame-level bound-
ing box in this action tube to predict its actionness probability (called ac-
tionness score). Then a median filter over multiple frames is employed
to smooth the actionness scores of all bounding boxes in this tube. If a
bounding box has a smoothed score lower than a predefined threshold,
it will be filtered out from this action tube, and then we can refine the
action tubes so that they have more accurate temporal boundaries. Note
that when a non-action region near a temporal boundary is falsely de-
tected, it is included in the training set to train our class-specific action-
ness detector. Therefore, our approach takes advantage of the confusing
samples across temporal boundary to obtain better action tubes at the
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testing stage.

3.3.2 Action Segment Detector (ASD)

Motivated by the two-stream temporal Faster-RCNN framework [5], we
also build an action segment detector, which directly utilizes segment
proposals to detect action segments. Our action segment detector takes
both RGB and optical flow features from the action tubes as the input,
and follows the fast-RCNN framework [5] to include a Segment Proposal
Network (SPN) for temporal segment proposal generation and detection
heads for segment proposal regression. Specifically, we extract the seg-
ment features by using these two-stream features from each action tube
and the segment proposals produced by SPN. The segment features are
then sent to the corresponding detection head for regression to gener-
ate the initial detection of segments. This process is similar to the ac-
tion detection method described in Section 3.2. A comparison between
the single-stream action detection method and the single-stream action
segment detector is shown in Figure 3.3, in which the modules within
each blue dashed box share similar functions at the spatial domain and
the temporal domain, respectively. Our implementation details for SPN,
feature extraction and detection head are introduced below.

(a) SPN In Faster-RCNN, the anchors of different object sizes are pre-
defined. Similary, in our SPN, K types of action anchors with different
duration (time lengths) are pre-defined. The boundaries of the action an-
chors are regressed by two layers of temporal convolution (called Con-
vNet in [5]) using RGB or flow features from the action tube [5]. Note
that the object sizes in an image only vary in a relatively small range,
but the temporal span of an action can dramatically change in a range
from less than one second to more than one minute. Consequently, it
is inappropriate for anchors with different scales to share the temporal
features from the same receptive field. To address this issue, we use the
multi-branch architecture and dilated temporal convolutions in [5] for
each anchor prediction based on the anchor-specific features. Specifi-
cally, for each scale of anchors, a sub-network with the same architecture
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Figure 3.3: Comparison of the single-stream frameworks of the action
detection method (see Section 3) and our action segment detector (see
Section 4.2). The modules within each blue dashed box share similar
functions at the spatial domain and the temporal domain, respectively.

but different dilation rate is employed to generate features with different
receptive fields and decide the temporal boundary. In this way, our SPN
consists of K sub-networks targeting at different time lengths. In order
to consider the context information, for each anchor with the scale s, we
require the receptive field to cover the context information with tempo-
ral span s/2 before and after the start and the end of the anchor. We then
regress temporal boundaries and predict actionness probabilities for the
anchors by applying two parallel temporal convolutional layers with the
kernel size of 1. The output segment proposals are ranked according to
their proposal actionness probabilities and NMS is applied to remove the
redundant proposals. Please refer to [5] for more details.

(b) Segment feature extraction After generating segment proposals, we
construct segment features to refine the temporal boundaries and predict
the segment actionness probabilities. For each segment proposal with
the length ls, the start point tstart and the end point tend, we extract three
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types of features, Fcenter, Fstart, and Fend. We use temporal ROI-Pooling
on top of the segment proposal regions to pool action tube features and
obtain the features Fcenter ∈ RD×lt , where lt is the temporal length and D
is the dimension of the features at each temporal location. As the con-
text information immediately before and after the segment proposal is
helpful to decide the temporal boundaries of an action, this information
should be represented by our segment features. Therefore, we addition-
ally use temporal ROI-Pooling to pool features Fstart (resp., Fend), from the
segments centered at tstart (resp., tend) with the length of 2ls/5 to repre-
sent the starting (reps., ending) information. We then concatenate Fstart,
Fcenter and Fend to construct the segment features Fseg.

(c) Detection head The extracted segment features are passed to the
detection head to obtain the refined segment boundaries and the seg-
ment actionness probabilities. As the temporal length of the extracted
temporal features is not fixed, similar to SPN, the detection head mod-
ule consists of M sub-networks corresponding to the M groups of the
temporal length of the segment proposals resulting from SPN. For each
sub-network, a spatial fully-connected layer is first used to reduce the
spatial resolution, and then two temporal convolution layers with the
kernel size of 3 are applied to non-linearly combine temporal informa-
tion. The output features are used to predict the actionness probabilities
and regress the segment boundaries. For actionness classification, in ad-
dition to minimize the segment-level actionness loss, we also minimize
the frame-level actionness loss. We observe that it is beneficial to extract
discriminative features by predicting actionness for each frame, which
will eventually help refine the boundaries of segments.

3.3.3 Temporal PCSC (T-PCSC)

Our PCSC framework can leverage the complementary information at
the feature level and the region proposal level to iteratively improve ac-
tion detection performance at the spatial domain. Similarly, we propose
a Temporal PCSC (T-PCSC) module that extends our PCSC framework
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from the spatial domain to the temporal domain for temporal localiza-
tion. Specifically, we combine the outputs generated by the actionness
detector and the action segment detector to obtain the initial segments
for each stream. These initial segments are then used by our T-PCSC
module as the initial segment proposals to generate action segments.

Similar to our PCSC method described in Section 3.2, our T-PCSC
method consists of the feature cooperation module and proposal coop-
eration module, as shown in Fig. 3.2. Note that for the message-passing
block in the feature cooperation module, the two 1× 1 convolution lay-
ers are replaced by two temporal convolution layers with the kernel size
of 1. We only apply T-PCSC for two stages in our action segment de-
tector method due to memory constraints and the observation that we
already achieve good results after using two stages. Similar to our PCSC
framework shown in Figure 3.1, in the first stage of our T-PCSC frame-
work, the initial segments from the RGB stream are combined with those
from the flow stream to form a new segment proposal set by using the
proposal cooperation module. This new segment proposal set is used to
construct the segment features as described in Section 3.3.2 (b) for both
the RGB and the flow streams, and then the feature cooperation module
passes the messages from the flow features to the RGB features to refine
the RGB features. The refined RGB features are then used to generate the
output segments by the detection head described in Section 3.3.2 (c). A
similar process takes place in the second stage. But this time, the output
segments from the flow stream and the first stage are used to form the
segment proposal set and the message passing process is conducted from
the RGB features to the flow features to help refine the flow features. We
then generate the final action segments by combining the output action
segments of each stage and applying NMS to remove redundancy and
obtain the final results.



46
Chapter 3. Progressive Cross-stream Cooperation in Spatial and

Temporal Domain for Action Localization

3.4 Experimental results

We introduce our experimental setup and datasets in Section 3.4.1, and
then compare our method with the state-of-the-art methods in Section 3.4.2,
and conduct ablation study in Section 3.4.3.

3.4.1 Experimental Setup

Datasets. We evaluate our PCSC method on two benchmarks: UCF-
101-24 [68] and J-HMDB-21 [24]. UCF-101-24 contains 3207 untrimmed
videos from 24 sports classes, which is a subset of the UCF-101 dataset,
with spatio-temporal annotations provided by [67]. Following the com-
mon practice, we use the predefined “split 1" protocol to split the train-
ing and test sets, and report the results based on this split. J-HMDB-21
contains 928 videos from 21 action classes. All the videos are trimmed
to contain the actions only. We perform the experiments on three prede-
fined training-test splits, and report the average results on this dataset.

Metrics. We evaluate the action detection performance at both frame-
level and video-level by mean Average precision (mAP). To calculate
mAP, a detection box is considered as a correct one when its overlap
with a ground-truth box or tube is greater than a threshold δ. The over-
lap between our detection results and the ground truth is measured by
the intersection-over-union (IoU) score at the frame-level and the spatio-
temporal tube overlap at the video-level, respectively. In addition, we
also report the results based on the COCO evaluation metric [40], which
averages the mAPs over 10 different IoU thresholds from 0.5 to 0.95 with
the interval of 0.05.

To evaluate the localization accuracy of our method, we also calcu-
late Mean Average Best Overlap (MABO). We compute the IoU scores
between the bounding boxes from our method and the ground-truth
boxes, and then average the IoU scores from the bounding boxes with
largest overlap to the ground-truth boxes for each class. The MABO is
calculated by averaging the averaged IoU scores over all classes.
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To evaluate the classification performance of our method, we report
the average confident score over different IoU threshold θ. The aver-
age confident score is computed by averaging the confident scores of the
bounding boxes from our method that have an IoU with the ground-
truth boxes greater than θ.

Implementation Details. We use the I3D features [4] for both streams,
and the I3D model is pretrained with Kinetics. The optical flow images
are extracted by using FlowNet v2 [23]. The mini-batch size used to
train the RPN and the detection heads in our action detection method
is 256 and 512, respectively. Our PCSC based action detection method
is trained for 6 epochs by using three 1080Ti GPUs. The initial learning
rate is set as 0.01, which drops 10% at the 5th epoch and another 10%
at the 6th epoch. For our actionness detector, we set the window size
as 17 when using median filter to smooth the actionness scores. we also
use a predefined threshold to decide the starting and ending locations
for action tubes, which is empirically set as 0.01. For segment genera-
tion, we apply the anchors with the following K scales (K = 11 in this
work): {6, 12, 24, 42, 48, 60, 84, 92, 144, 180, 228}. The length ranges
R, which are used to group the segment proposals, are set as follows:
{[20, 80], [80, 160], [160, 320], [320, ∞]}, i.e., we have M = 4, and the corre-
sponding feature lengths lt for the length ranges are set to {15, 30, 60, 120}.
The numbers of the scales and the lengths are empirically decided based
on the frame numbers. In this work, we apply NMS to remove redun-
dancy and combine the detection results from different stages with an
overlap threshold of 0.5. The mini-batch sizes used to train the SPN and
the detection heads in our temporal refinement method are set as 128
and 32, respectively. Our PCSC based temporal refinement method is
trained for 5 epochs and the initial learning rate is set as 0.001, which
drops 10% at the 4th epoch and another 10% at the 5th epoch.

3.4.2 Comparison with the State-of-the-art methods

We compare our PCSC method with the state-of-the-art methods. The
results of the existing methods are quoted directly from their original pa-
pers. In addition, we also evaluate the object detection method (denoted



48
Chapter 3. Progressive Cross-stream Cooperation in Spatial and

Temporal Domain for Action Localization

as “Faster R-CNN + FPN") in [38] with the I3D network as its backbone
network, in which we report the results by only using the single stream
(i.e., RGB or Flow) features as well as the result by applying NMS to the
union set of the two stream bounding boxes. Specifically, the only differ-
ence between the method in [38] and our PCSC is that our PCSC method
has the cross-stream cooperation modules while the work in [38] does
not have them. Therefore, the comparison between the two approaches
can better demonstrate the benefit of our cross-stream cooperation strat-
egy.

Results on the UCF-101-24 Dataset

The results on the UCF-101-24 dataset are reported in Table 3.1 and Ta-
ble 3.2.

Table 3.1: Comparison (mAPs % at the frame level) of different methods
on the UCF-101-24 dataset when using the IoU threshold δ at 0.5.

Streams mAPs
Weinzaepfel, Harchaoui, and Schmid [83] RGB+Flow 35.8
Peng and Schmid [54] RGB+Flow 65.7
Ye, Yang, and Tian [94] RGB+Flow 67.0
Kalogeiton et al. [26] RGB+Flow 69.5
Gu et al. [19] RGB+Flow 76.3
Faster R-CNN + FPN (RGB) [38] RGB 73.2
Faster R-CNN + FPN (Flow) [38] Flow 64.7
Faster R-CNN + FPN [38] RGB+Flow 75.5
PCSC (Ours) RGB+Flow 79.2

Table 3.1 shows the mAPs from different methods at the frame-level
on the UCF-101-24 dataset. All mAPs are calculated based on the IoU
threshold δ = 0.5. From Table 3.1, we observe that our PCSC method
achieves an mAP of 79.2%, outperforming all the existing methods by a
large margin. Especially, our PCSC performs better than Faster R-CNN
+ FPN [38] by an improvement of 3.7%. This improvement is fully due
to the proposed cross-stream cooperation framework, which is the only
difference between [38] and our PCSC. It is interesting to observe that
both methods [26] and [19] additionally utilize the temporal context for
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Table 3.2: Comparison (mAPs % at the video level) of different methods
on the UCF-101-24 dataset when using different IoU thresholds. Here
“AD" is for actionness detector, and “ASD" is for action segment detector.

IoU threshold δ Streams 0.2 0.5 0.75 0.5:0.95
Weinzaepfel et al. [83] RGB+Flow 46.8 - - -

Zolfaghari et al. [105] RGB+Flow
+Pose 47.6 - - -

Peng and Schmid [54] RGB+Flow 73.5 32.1 02.7 07.3
Saha et al. [60] RGB+Flow 66.6 36.4 0.8 14.4
Yang, Gao, and Nevatia [93] RGB+Flow 73.5 37.8 - -
Singh et al. [67] RGB+Flow 73.5 46.3 15.0 20.4
Ye, Yang, and Tian [94] RGB+Flow 76.2 - - -
Kalogeiton et al. [26] RGB+Flow 76.5 49.2 19.7 23.4
Li et al. [31] RGB+Flow 77.9 - - -
Gu et al. [19] RGB+Flow - 59.9 - -
Faster R-CNN
+ FPN (RGB) [38] RGB 77.5 51.3 14.2 21.9

Faster R-CNN
+ FPN (Flow) [38] Flow 72.7 44.2 7.4 17.2

Faster R-CNN
+ FPN [38] RGB+Flow 80.1 53.2 15.9 23.7

PCSC + AD [69] RGB+Flow 84.3 61.0 23.0 27.8
PCSC + ASD+ AD
+ T-PCSC (Ours) RGB+Flow 84.7 63.1 23.6 28.9

per frame-level action detection. However, both methods do not fully ex-
ploit the complementary information between the appearance and mo-
tion clues, and therefore they are worse than our method. Moreover, our
method also outperforms [26] and [19] by 9.7% and 2.9%, respectively, in
terms of frame-level mAPs.

Table 3.2 reports the video-level mAPs at various IoU thresholds
(0.2, 0.5, and 0.75) on the UCF-101-24 dataset. The results based on
the COCO evaluation metrics [40] are reported in the last column of Ta-
ble 3.2. Our method is denoted as “PCSC + ASD + AD + T-PCSC" in
Table 3.2, where the proposed temporal boundary refinement method,
consisting of three modules (i.e., the actionness detector module, the ac-
tion segment detector module, and the Temporal PCSC), is applied to re-
fine the action tubes generated from our PCSC method. Our preliminary
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work [69], which only uses the actionness detector module as the tempo-
ral boundary refinement method, is denoted as ”PCSC + AD". Consis-
tent with the observations at the frame-level, our method outperforms
all the state-of-the-art methods under all evaluation metrics. When us-
ing the IoU threshold δ = 0.5, we achieve an mAP of 63.1% on the UCF-
101-24 dataset. This result beats [26] and [19], which only achieve the
mAPs of 49.2% and 59.9%, respectively. Moreover, as the IoU threshold
increases, the performance of our method drops less when compared
with other state-of-the-art methods. The results demonstrate that our
detection method achieves higher localization accuracy than other com-
petitive methods.

Results on the J-HMDB Dataset

For the J-HMDB dataset, the frame-level mAPs and the video-level mAPs
from different mothods are reported in Table 3.3 and Table 3.4, respec-
tively. Since the videos in the J-HMDB dataset are trimmed to only con-
tain actions, the temporal refinement process is not required, so we do
not apply our temporal boundary refinement module when generating
action tubes on the J-HMDB dataset.

Table 3.3: Comparison (mAPs % at the frame level) of different methods
on the J-HMDB dataset when using the IoU threshold δ at 0.5.

Streams mAPs
Peng and Schmid [54] RGB+Flow 58.5
Ye, Yang, and Tian [94] RGB+Flow 63.2
Kalogeiton et al. [26] RGB+Flow 65.7
Hou, Chen, and Shah [21] RGB 61.3
Gu et al. [19] RGB+Flow 73.3
Sun et al. [72] RGB+Flow 77.9
Faster R-CNN + FPN (RGB) [38] RGB 64.7
Faster R-CNN + FPN (Flow) [38] Flow 68.4
Faster R-CNN + FPN [38] RGB+Flow 70.2
PCSC (Ours) RGB+Flow 74.8

We have similar observations as in the UCF-101-24 dataset. At the
video-level, our method is again the best performer under all evalua-
tion metrics on the J-HMDB dataset (see Table 3.4). When using the IoU
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Table 3.4: Comparison (mAPs % at the video level) of different methods
on the J-HMDB dataset when using different IoU thresholds.

IoU threshold δ Streams 0.2 0.5 0.75 0.5:0.95
Gkioxari and Malik [18] RGB+Flow - 53.3 - -
Wang et al. [79] RGB+Flow - 56.4 - -
Weinzaepfel et al. [83] RGB+Flow 63.1 60.7 - -
Saha et al. [60] RGB+Flow 72.6 71.5 43.3 40.0
Peng and Schmid [54] RGB+Flow 74.1 73.1 - -
Singh et al. [67] RGB+Flow 73.8 72.0 44.5 41.6
Kalogeiton et al. [26] RGB+Flow 74.2 73.7 52.1 44.8
Ye, Yang, and Tian [94] RGB+Flow 75.8 73.8 - -

Zolfaghari et al. [105] RGB+Flow
+Pose 78.2 73.4 - -

Hou, Chen, and Shah [21] RGB 78.4 76.9 - -
Gu et al. [19] RGB+Flow - 78.6 - -
Sun et al. [72] RGB+Flow - 80.1 - -
Faster R-CNN
+ FPN (RGB) [38] RGB 74.5 73.9 54.1 44.2

Faster R-CNN
+ FPN (Flow) [38] Flow 77.9 76.1 56.1 46.3

Faster R-CNN
+ FPN [38] RGB+Flow 79.1 78.5 57.2 47.6

PCSC (Ours) RGB+Flow 82.6 82.2 63.1 52.8

threshold δ = 0.5, our PCSC method outperforms [19] and [72] by 3.6%
and 2.1%, respectively.

At the frame-level (see Table 3.3), our PCSC method performs the
second best, which is only worse than a very recent work [72]. However,
the work in [72] uses S3D-G as the backbone network, which provides
much stronger features when compared with the I3D features used in
our method. In addition, please note that, our method outperforms [72]
in terms of mAPs at the video level (see Table 3.4), which demonstrates
promising performance of our PCSC method. Moreover, as a general
framework, our PCSC method could also take advantage of strong fea-
tures provided by the S3D-G method to further improve the results,
which will be explored in our future work.
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3.4.3 Ablation Study

In this section, we take the UCF-101-24 dataset as an example to investi-
gate the contributions of different components in our proposed method.

Table 3.5: Ablation study for our PCSC method at different training
stages on the UCF-101-24 dataset.

Stage PCSC w/o feature
cooperation PCSC

0 75.5 78.1
1 76.1 78.6
2 76.4 78.8
3 76.7 79.1
4 76.7 79.2

Table 3.6: Ablation study for our temporal boundary refinement method
on the UCF-101-24 dataset. Here “AD" is for the actionness detector
while “ASD" is for the action segment detector.

Video mAP (%)
Faster R-CNN + FPN [38] 53.2
PCSC 56.4
PCSC + AD 61.0
PCSC + ASD (single branch) 58.4
PCSC + ASD 60.7
PCSC + ASD + AD 61.9
PCSC + ASD + AD + T-PCSC 63.1

Table 3.7: Ablation study for our Temporal PCSC (T-PCSC) method at
different training stages on the UCF-101-24 dataset.

Stage Video mAP (%)
0 61.9
1 62.8
2 63.1

Progressive cross-stream cooperation. In Table 3.5, we report the
results of an alternative approach of our PCSC (called PCSC w/o fea-
ture cooperation). In the second column of Table 3.5, we remove the
feature-level cooperation module from Fig. 3.1, and only use the region-
proposal-level cooperation module. As our PCSC is conducted in a pro-
gressive manner, we also report the performance at different stages to
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verify the benefit of this progressive strategy. It is worth mentioning that
the output at each stage is obtained by combining the detected bound-
ing boxes from both the current stage and all previous stages, and then
we apply non-maximum suppression (NMS) to obtain the final bound-
ing boxes. For example, the output at Stage 4 is obtained by applying
NMS to the union set of the detected bounding boxes from Stages 0,
1, 2, 3 and 4. At Stage 0, the detection results from both RGB and the
Flow streams are simply combined. From Table 3.5, we observe that the
detection performance of our PCSC method with or without the feature-
level cooperation module is improved as the number of stages increases.
However, such improvement seems to become saturated when reaching
Stage 4, as indicated by the marginal performance gain from Stage 3 to
Stage 4. Meanwhile, when comparing our PCSC with the alternative ap-
proach PCSC w/o feature cooperation at every stage, we observe that
both region-proposal-level and feature-level cooperation contributes to
performance improvement.

Action tubes refinement. In Table 3.6, we investigate the effective-
ness of our temporal boundary refinement method by switching on and
off the key components in our temporal boundary refinement module,
in which video-level mAPs at the IoU threshold δ = 0.5 are reported.
In Table 3.6, we investigate five configurations for temporal boundary
refinement. Specifically, in ‘PCSC + AD", we use the PCSC method for
spatial localization together with the actionness detector (AD) for tempo-
ral localization. In “PCSC + ASD", we use the PCSC method for spatial
localization, while we use the action segment detection method for tem-
poral localization. In “PCSC + ASD (single branch)", we use the “PCSC
+ ASD" configuration, but replace the multi-branch architecture in the
action segment detection method with the single-branch architecture. In
“PCSC + ASD + AD", the PCSC method is used for spatial localization
together with both AD and ASD for temporal localization. In “PCSC +
ASD + AD + T-PCSC", the PCSC method is used for spatial localization
and both actionness detector and action segment detector are used to
generate the initial segments, and our T-PCSC is finally used for tempo-
ral localization. By generating higher quality detection results at each
frame, our PCSC method in the spatial domain outperforms the work
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Table 3.8: The large overlap ratio (LoR) of the region proposals from the
latest RGB stream with respective to the region proposals from the latest
flow stream at each stage in our PCSC action detector method on the
UCF-101-24 dataset.

Stage LoR(%)
1 61.1
2 71.9
3 95.2
4 95.4

in [38] that does not use the two-stream cooperation strategy in the spa-
tial domain by 3.2%. After applying our actionness detector module to
further boost the video-level performance, we arrive at the video-level
mAP of 61.0%. Meanwhile, our action segment detector without using
T-PCSC has already been able to achieve the video-level mAP of 60.7%,
which is comparable to the performance from the actionness detector
module in terms of video-level mAPs. On the other hand, the video-level
mAP drops 2.3% after replacing the multi-branch architecture in the ac-
tion segment detector with the single-branch architecture, which demon-
strates the effectiveness of the multi-branch architecture. Note that the
video-level mAP is further improved when combining the results from
actionness detector and the action segment detector without using the
temporal PCSC module, which indicates that the frame-level and the
segment-level actionness results could be complementary. When we fur-
ther apply our temporal PCSC framework, the video-level mAP of our
proposed method increases 1.2%, and arrives at the best performance
of 63.1%, which demonstrates the effectiveness of our PCSC framework
for temporal refinement. In total, we achieve about 7.0% improvement
after applying our temporal boundary refinement module on top of our
PCSC method, which indicates the necessity and benefits of the temporal
boundary refinement process in determining the temporal boundaries of
action tubes.

Temporal progressive cross-stream cooperation. In Table 3.7, we
report the video-level mAPs at the IoU threshold δ = 0.5 by using our
temporal PCSC method at different stages to verify the benefit of this
progressive strategy in the temporal domain. Stage 0 is our “PCSC +
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Table 3.9: The Mean Average Best Overlap (MABO) of the bounding
boxes with the ground-truth boxes at each stage in our PCSC action de-
tector method on the UCF-101-24 dataset.

Stage MABO(%)
1 84.1
2 84.3
3 84.5
4 84.6

Table 3.10: The average confident scores (%) of the bounding boxes
with respect to the IoU threshold θ at different stages on the UCF-101-
24 dataset.

θ Stage 1 Stage 2 Stage 3 Stage 4
0.5 55.3 55.7 56.3 57.0
0.6 62.1 63.2 64.3 65.5
0.7 68 68.5 69.4 69.5
0.8 73.9 74.5 74.8 75.1
0.9 78.4 78.4 79.5 80.1

Table 3.11: Detection speed in frame per second (FPS) for our action
detection module in the spatial domain on UCF-101-24 when using dif-
ferent number of stages.

Stage 0 1 2 3 4

Detection speed (FPS) 3.1 2.9 2.8 2.6 2.4

Table 3.12: Detection speed in video per second (VPS) for our tempo-
ral boundary refinement method for action tubes on UCF-101-24 when
using different number of stages.

Stage 0 1 2

Detection speed (VPS) 2.1 1.7 1.5

ASD + AD" method. Stage 1 and Stage 2 refer to our “PCSC + ASD + AD
+ T-PCSC" method using one-stage and two-stage temproal PCSC, re-
spectively. The video-level performance after using our temporal PCSC
method is improved as the number of stages increases, which demon-
strates the effectiveness of the progressive strategy in the temporal do-
main.
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3.4.4 Analysis of Our PCSC at Different Stages

In this section, we take the UCF-101-24 dataset as an example to fur-
ther investigate our PCSC framework for spatial localization at different
stages.

In order to investigate the similarity change of proposals generated
from two streams over multiple stages, for each proposal from the RGB
stream, we compute its maximum IoU (mIoU) with respect to all the pro-
posals from the flow stream. We define the large overlap ratio (LoR) as
the percentage of the RGB-stream proposals whose mIoU with all the
flow-stream proposals is larger than 0.7 over the total number of RGB
proposals. Table 3.8 shows the LoR of the latest RGB stream with re-
spect to the latest flow stream at every stage on the UCF-101-24 dataset.
Specifically, at stage 1 or stage 3, LoR indicates the overlap degree of
the RGB-stream proposals generated at the current stage (i.e., stage 1 or
stage 3, respectively) with respect to the flow-stream proposals gener-
ated at the previous stage (i.e., stage 0 or stage 2, respectively); at stage 2
or stage 4, LoR indicates the overlap degree of the RGB-stream propos-
als generated at the previous stage (i.e., stage 1 or stage 3, respectively)
with respect to the flow-stream proposals generated at the current stage
(i.e., stage 2 or stage 4, respectively). We observe that the LoR increases
from 61.1% at stage 1 to 95.4% at stage 4, which demonstrates that the
similarity of the region proposals from these two streams increases over
stages. At stage 4, the region proposals from different streams are very
similar to each other, and therefore, these two types of proposals are lack
of complementary information. As a result, there is no further improve-
ment after stage 4.

To further evaluate the improvement of our PCSC method over stages,
we report MABO and the average confident score to measure the local-
ization and classification performance of our PCSC method over stages.
Table 3.9 and Table 3.10 show the MABO and the average confident score
of our PCSC method at every stages on the UCF-101-24 dataset. In terms
of both metrics, improvement after each stage can be observed clearly,
which demonstrates the effectiveness of our PCSC method for both lo-
calization and classification.
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Figure 3.4: An example of visualization results from different methods
for one frame. (a) single-stream Faster-RCNN (RGB stream), (b) single-
stream Faster-RCNN (flow stream), (c) a simple combination of two-
stream results from Faster-RCNN [38], and (d) our PCSC. (Best viewed
on screen.)

3.4.5 Runtime Analysis

We report the detection speed of our action detection method in spa-
tial domain and our temporal boundary refinement method for detect-
ing action tubes when using different number of stages and the results
are provided in Table 3.11 and Table 3.12, respectively. We observe that
the detection speed of both our action detection method in the spatial
domain and the temporal boundary refinement method for detecting
action tubes slightly decreases as the number of stages increases (note
that Stage 0 in Table 3.11 corresponds to the baseline method Faster-
RCNN [38] and Stage 0 in Table 3.12 corresponds to the results from our
Initial Segment Generation module). Therefore, there is a trade-off be-
tween the localization performance and the speed by using the optimal
number of stages.
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Figure 3.5: Example results from our PCSC with temporal boundary re-
finement (TBR) and the two-stream Faster-RCNN method. There is one
ground-truth instance in (a) and no ground-truth instance in (b-d). In (a),
both of our PCSC with TBR method and the two-stream Faster-RCNN
method [38] successfully capture the ground-truth action instance “Ten-
nis Swing". In (b) and (c), both of our PCSC method and the two-stream
Faster-RCNN method falsely detect the bounding boxes with the class
label “Tennis Swing" for (b) and “Soccer Juggling" for (c). However, our
TBR method can remove the falsely detected bounding boxes from our
PCSC in both (b) and (c). In (d), both of our PCSC method and the two-
stream Faster-RCNN method falsely detect the action bounding boxes
with the class label “Basketball" and our TBR method cannot remove the
falsely detected bounding box from our PCSC in this failure case. (Best
viewed on screen.)

3.4.6 Qualitative Results

In addition to the quantitative performance comparison, we also provide
some visualization results to further demonstrate the performance of our
method. In Fig. 3.4, we show the visualization results generated by using
either single RGB or flow stream, simple combination of two streams
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and our two-stream cooperation method. The detection method using
only the RGB or flow stream leads to either missing detection (see Fig.
3.4 (a)) or false detection (see Fig. 3.4 (b)). As shown in Fig. 3.4 (c), a
simple combination of these two results can solve the missing detection
problem but cannot avoid the false detection. In contrast, our action
detection method can refine the detected bounding boxes produced by
either stream and remove some falsely detected bounding boxes (see Fig.
3.4 (d)).

Moreover, the effectiveness of our temporal refinement method is
also demonstrated in Figure 3.5. We compare the results from our method
and the two-stream Faster-RCNN method [38]. Although both our PCSC
method and the two-stream Faster-RCNN method can correctly detect
the ground-truth action instance (see Fig. 3.5 (a)), after the refinement
process by using our temporal boundary refinement module (TBR), the
actionness score for the correctly detected bounding box from our PCSC
is further increased. On the other hand, because of the similar scene
and motion patterns in the foreground frame (see Fig. 3.5 (a)) and the
background frame (see Fig. 3.5 (b)), both our PCSC method and the
two-stream Faster-RCNN method generate bounding boxes in the back-
ground frame, although there is no ground-truth action instance. How-
ever, for the falsely detected bounding box from our PCSC method, our
temporal boundary refinement (TBR) module can significantly decrease
the actionness score from 0.74 to 0.04, which eventually removes the
falsely detected bounding box. The similar observation can be found
in Fig. 3.5 (c).

While our method can remove some falsely detected bounding boxes
as shown in Fig. 3.5 (b) and Fig. 3.5 (c), there are still some challenging
cases that our method cannot work (see Fig. 3.5 (d)). Although the ac-
tionness score of the falsely detected action instance could be reduced
after the temporal refinement process by using our TBR module, it could
not be completely removed due to the relatively high score. We also ob-
serve that the state-of-the-art methods (e.g., two-stream Faster-RCNN [38])
cannot work well for this challenging case, either. Therefore, how to re-
duce false detection from the background frames is still an open issue,
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which will be studied in our future work.

3.5 Summary

In this chapter, we have proposed the Progressive Cross-stream Coop-
eration (PCSC) framework to improve the spatio-temporal action local-
ization results, in which we first use our PCSC framework for spatial
localization at the frame level and then apply our temporal PCSC frame-
work for temporal localization at the action tube level. Our PCSC frame-
work consists of several iterative stages. At each stage, we progressively
improve action localization results for one stream (i.e., RGB/flow) by
leveraging the information from another stream (i.e., RGB/flow) at both
region proposal level and feature level. The effectiveness of our newly
proposed approaches is demonstrated by extensive experiments on both
UCF-101-24 and J-HMDB datasets.



61

Chapter 4

PCG-TAL: Progressive
Cross-granularity Cooperation
for Temporal Action Localization

There are two major lines of works, i.e., anchor-based and frame-based
approaches, in the field of temporal action localization. But each line of
works is inherently limited to a certain detection granularity and can-
not simultaneously achieve high recall rates with accurate action bound-
aries. In chapter work, we propose a progressive cross-granularity co-
operation (PCG-TAL) framework to effectively take advantage of com-
plementarity between the anchor-based and frame-based paradigms, as
well as between two-view clues (i.e., appearance and motion). Specifi-
cally, our new Anchor-Frame Cooperation (AFC) module can effectively
integrate both two-granularity and two-stream knowledge at the feature
and proposal levels, as well as within each AFC module and across adja-
cent AFC modules. Specifically, the RGB-stream AFC module and the
flow-stream AFC module are stacked sequentially to form a progres-
sive localization framework. The whole framework can be learned in
an end-to-end fashion, whilst the temporal action localization perfor-
mance can be gradually boosted in a progressive manner. Our newly
proposed framework outperforms the state-of-the-art methods on three
benchmark datasets THUMOS14, ActivityNet v1.3 and UCF-101-24, which
clearly demonstrate the effectiveness of our framework.
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4.1 Background

4.1.1 Action Recognition

Video action recognition is one important research topic in the commu-
nity of video analysis. With the prominent development of deep learn-
ing in recent years, a large amount of works [84, 12, 64, 81, 4, 77, 56]
were proposed by applying the convolutional neural networks to solve
this classification problem. It is well-known that both the appearance
and motion clues are complementary to each other and discriminant for
video action recognition. The two-stream networks [12, 64, 81] exploited
the RGB frames and the optical flow maps to extract appearance and mo-
tion features, and then combined these two streams for complementary
information exchange from both modalities. Additionally, the works
in [84, 4, 77, 56] employed 3D convolutional neural layers to instanta-
neously model spatio-temporal information for videos. However, action
recognition is limited to the trimmed input videos, where one action is
spanned over the entire video. In addition, the action recognition mod-
els can also be applied to extract frame-level or snippet-level features
from untrimmed videos. For example, the temporal action localization
method just employ the I3D model [4] for base feature extraction.

4.1.2 Spatio-temporal Action Localization

The spatio-temporal action localization task aims to generate action tubes
for the predicted action categories with their spatial locations and tem-
poral durations. Most works [67, 66, 55] used the object detection frame-
work to spatially localize actions from individual frames and then tem-
porally linked the detected boxes to form an action tube. Several state-
of-the-arts works [26, 54, 69] took advantage of the two-stream RCNN
framework to improve the spat/io-temporal action localization perfor-
mances by exploiting the complementary information between the ap-
pearance and motion clues.
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4.1.3 Temporal Action Localization

Unlike spatio-temporal action localization, temporal action localization
focuses on how to accurately detect the starting and ending points of
a predicted action instance in the time domain of an untrimmed video.
Early works [97, 50] used slide windows to generate segment propos-
als and then applied the classifiers to classify actions for each proposal.
Most recent works can be roughly categorized into two types: (1) [49, 10,
29, 98, 103] used frame-level or snippet-level features to evaluate frame-
wise or snippet-wise actionness by predicting the action starting or end-
ing time, which were then used to determine the temporal boundaries
of actions for proposal generation; (2) another set of works [9, 15, 85, 5]
applied two-stage object detection framework to generate temporal seg-
ment proposals, and then utilized boundary regressor for segment re-
finement and action classifier for action prediction on a given proposal.
In the first class, the segments generated based on frame-wise or snippet-
wise labels have relatively accurate temporal boundaries as they are de-
termined at a finer level with larger aperture of temporal details. How-
ever, these segments often have low recall rate. In the second category,
as the proposals are generated by the predefined anchors with various
time intervals over the untrimmed videos, they are able to cover most
ground-truth instances. Unfortunately, they usually has lower perfor-
mances in terms of temporal boundary accuracy.

Either line of the aforementioned works can take advantage of in-
herent merits of the methods in the other line, resulting in the trade-off
between the boundary accuracy and recall rate. Some recent attempts,
such as CTAP [13] and MGG [46], were proposed to take the comple-
mentary merits of both lines of works into consideration. They either
used several isolated components with the stage-wise training scheme,
such as CTAP [13], or simply employed frame-wise or snippet-wise la-
bels to filter the boundaries of anchor-based segment proposals [46] but
without fully exploring the complementarity in a more systematic way.
In our work, our Anchor-Frame Cooperation (AFC) module can be end-
to-end optimized and also allows rich feature-level and segment-level
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interactions between action semantics extracted from these two comple-
mentary lines of works, which offers a significant performance gain to-
ward our temporal action localization framework. Two-stream fusion is
another cue to enhance the performance. Recent state-of-the-art meth-
ods [5, 99] used late fusion as the only operation to combine comple-
mentary information from two modalities, where each stream is trained
independently. In our work, each stream progressively and explicitly
helps the other stream at the feature level and the segment proposal
level. Two streams can also be trained collaboratively in an end-to-end
fashion, which is thus beneficial to fully exploit the complementarity be-
tween the appearance and motion clues.

4.2 Our Approach

In the following section, we will at first briefly introduce our overall tem-
poral action localization framework (in Sec. 4.2.1), and then present how
to perform progressive cross-granularity cooperation (in Sec. 4.2.2), as
well as the newly proposed Anchor-Frame Cooperation (AFC) module
(in Sec. 4.2.3). The training details and discussions will be provided in
Sec. 4.2.4 and Sec. 4.2.5, respectively.

4.2.1 Overall Framework

We denote an untrimmed video as V = {It ∈ RH×W×3}T
t=1, where It is

an RGB frame at time t, with the height of H and the width of W. We
seek to detect the action categories {ŷi}N

i=1 and their temporal durations
{(t̂i,s, t̂i,e)}N

i=1 in this untrimmed video, where N is the total number of
detected action instances. t̂i,s and t̂i,e indicate the starting and ending
time of each detected action ŷi.

The proposed progressive cross-granularity cooperation framework
builds upon the effective cooperation strategy between anchor-based lo-
calization methods and frame-based schemes. We briefly introduce each
component as follows:
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Base Feature Extraction. For each video V, we extract its RGB and flow
features BRGB and BFlow from a pre-trained and fixed feature extractor
(e.g., the I3D feature extractor [4]). The size of each feature is C × T,
where C indicates the number of channels for the feature.

Anchor-based Segment Proposal Generation. This module provides
the anchor-based knowledge for the subsequent cooperation stage, which
adopts the structure as that in TAL-Net [5]. This module is based on the
base features BRGB and BFlow, and each stream generates a set of tempo-
ral segment proposals of interest (called proposals in later text), such as
PRGB = {pRGB

i |pRGB
i = (tRGB

i,s , tRGB
i,e )}NRGB

i=1 and PFlow = {pFlow
i |pFlow

i =

(tFlow
i,s , tFlow

i,e )}NFlow

i=1 . NRGB and NFlow are the number of proposals for
the two streams. We then extract the anchor-based features PRGB

0 /PFlow
0

for each stream by using two temporal convolutional layers on top of
BRGB/BFlow, which can be readily used as the input to a standalone
“Detection Head" (described in Section 4.2.3) after a segment-of-interest
pooling operation [5]. The outputs from the detection head are the re-
fined action segments SRGB

0 /SFlow
0 and the predicted action categories.

Frame-based Segment Proposal Generation. The frame-based knowl-
edge come from a frame-based proposal generation module. Based on
the base features BRGB and BFlow, we apply two 1D convolutional lay-
ers (similar as [46]) along the temporal dimension to extract the frame-
based features for both streams, termed as QRGB

0 and QFlow
0 , respectively.

The frame-based feature in each stream is then processed by two parallel
1× 1 convolutions together with the sigmoid activation functions, which
outputs the probability distributions of temporal starting and ending
positions of an action, respectively. We then gather a set of temporal
segment proposals for each stream, i.e., QRGB

0 and QFlow
0 , respectively,

after pairing highly confident starting and ending indices with valid
durations, and removing redundant pairs by non-maxium suppression
(NMS).

Progressive Cross-granularity Cooperation Framework. Given the two-
stream features and proposals by the preceding two proposal generation
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Figure 4.1: (a) Overview of our Progressive Cross-granularity Cooper-
ation framework. At each stage, our Anchor-Frame Cooperation (AFC)
module focuses on only one stream (i.e., RGB/Flow). The RGB-stream
AFC modules at Stage 1 and 3(resp., the flow-stream AFC modules at
Stage 2 and 4) generate anchor-based features and segments as well as
frame-based features for the RGB stream (resp., the Flow stream). The
inputs of each AFC module are the proposals and features generated by
the previous stages. (b) (c) Details of our RGB-stream and Flow stream
AFC modules at different stages n. Note that we use the RGB-stream
AFC module in (b) when n is an odd number and the Flow-stream AFC
module in (c) when n is an even number. For better representation,
when n = 1, the initial proposals SRGB

n−2 and features PRGB
n−2 , QFlow

n−2 are
denoted as SRGB

0 , PRGB
0 and QFlow

0 . The initial proposals and features
from anchor-based and frame-based branches are obtained as described
in Section 4.2.3. In both (b) and (c), the frame-based and anchor-based
features are improved by the cross-granularity and cross-stream message
passing modules, respectively. The improved frame-based features are
used to generate better frame-based proposals, which are then combined
with anchor-based proposals from both RGB and flow streams. The
newly combined proposals together with the improved anchor-based
features are used as the input to “Detection Head" to generate the up-
dated segments.
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methods, our method progressively uses the newly proposed Anchor-
Frame Cooperation (AFC) module (described in Sec. 4.2.3) to output a
series of gradually improved localization results. Note that while each
AFC module focuses on knowledge exchange within one stream, there
are sufficient cross-granularity and cross-stream cooperations within each
AFC module and between two adjacent AFC modules. After stacking a
series of AFC modules, the final action localization results are obtained
after performing the NMS operation on the union set of the output action
segments across all stages.

4.2.2 Progressive Cross-Granularity Cooperation

The proposed progressive cross-granularity cooperation framework aims
at encouraging rich feature-level and proposal-level collaboration simul-
taneously from two-granularity scheme (i.e., the anchor-based and frame-
based temporal localization methods), and from two-stream appearance
and motion clues (i.e., RGB and flow).

To be specific, this progressive cooperation process is performed by
iteratively stacking multiple AFC modules with each focusing on one
individual stream. As shown in Fig. 4.1(a), the first AFC stage focuses
the on RGB stream, and the second AFC stage on flow stream, which
are respectively referred to as RGB-stream AFC and flwo-stream AFC
for better presentation. For example, the RGB-stream AFC at stage n
(n is an odd number) employs the preceding two-stream detected ac-
tion segments SFlow

n−1 and SRGB
n−2 as the input two-stream proposals, and

uses preceding two-stream anchor-based features PFlow
n−1 and PRGB

n−2 and
flow-stream frame-based feature QFlow

n−2 as the input features. This AFC
stage will output the RGB-stream action segments SRGB

n and anchor-
based feature PRGB

n , as well as update the flow-stream frame-based fea-
tures as QFlow

n . These outputs will be used as the inputs to the subse-
quent AFC stages, thus enabling cross-granularity and cross-stream co-
operation over multiple AFC stages.
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In each AFC stage, which will be discussed in Sec. 4.2.3, we in-
troduce a set of feature-level message passing and proposal-level co-
operation strategies to effectively integrate the complementary knowl-
edge from the anchor-based branch to the frame-based branch through
“Cross-granularity Message Passing", and then back to the anchor-based
branch. We argue that, within each AFC stage, this particular structure
will seamlessly encourage collaboration through “Proposal Combina-
tion" (see Sec. 4.2.3 for more details) by exploiting cross-granularity and
cross-stream complementarty, at both the feature and proposal levels, as
well as between two temporal action localization schemes.

Since the rich cooperations can be performed within and across ad-
jacent AFC modules, the successes in detecting temporal segments at the
earlier AFC stages will be faithfully propagated to the subsequent AFC
stages, thus the proposed progressive localization strategy can gradually
improve the localization performances.

4.2.3 Anchor-frame Cooperation Module

The Anchor-frame Cooperation (AFC) module is based on the intuition
that complementary knowledge from two-stream anchor-based and frame-
based temporal localization methods would not only improve the action
boundary localization accuracy but also increase the recall rate of the de-
tected action segments. Therefore, the AFC module is designed to mine
the rich cross-granularity and cross-stream knowledge at both the fea-
ture and proposal levels, also between the aforementioned two lines of
action localization methods. To be specific, there are RGB-stream and
flow-stream AFC modules, according to the main stream that an AFC
module would like to focus on. In this section, we will present the de-
tailed structures of two types of AFC modules, as shown in Fig. 4.1(b-c).

Initialization. As the AFC module is applied in a progressive manner,
it uses the inputs from the preceding AFC stages. However, for the first
stage (i.e., n = 1), some inputs do not have valid predecessors. Instead,
we use the initial anchor-based and frame-based two-stream features
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PRGB
0 /PFlow

0 and QRGB
0 /QFlow

0 , as well as proposals SRGB
0 /SFlow

0 as the
input, as shown in Sec. 4.2.1 and Fig. 4.1(a).

Single-stream Anchor-to-Frame Message Passing (i.e., “Cross-granularity
Message Passing in Fig. 4.1(b-c)). Taking the RGB-stream AFC module
as an example. The network structure is shown in Fig. 4.1(b). About the
feature-level message passing, we use a simple message passing struc-
ture to propagate the feature-level message from the anchor-based fea-
tures PFlow

n−1 to the frame-based features QFlow
n−2 , both from the flow-stream.

The message passing operation is defined as

QFlow
n =Manchor→ f rame(PFlow

n−2 )⊕QFlow
n−2 . (4.1)

⊕ is the element-wise addition operation, and Manchor→ f rame(•) is the
flow-stream message passing function from the anchor-based branch to
the frame-based branch, which is formulated as two stacked 1× 1 convo-
lutional layers with ReLU non-linear activation functions. This improved
feature QFlow

n can generate more accurate action starting and ending
probability distributions (a.k.a., more accurate action durations) as they
absorb the temporal duration-aware anchor-based features, which can
generate better frame-based proposals QFlow

n , as described in Sec. 4.2.1.
For the flow-stream AFC module (see Fig. 4.1(c)), the message passing
process is similarly defined as QRGB

n = Manchor→ f rame(PRGB
n−2 ) ⊕ QRGB

n−2 ,
which flips the superscripts from Flow to RGB. QRGB

n also leads to better
frame-based RGB-stream proposals QRGB

n .

Cross-stream Frame-to-Anchor Proposal Cooperation (i.e., “Proposal Com-
bination" in Fig. 4.1(b-c)). We also use the RGB-stream AFC module
for instance, which is shown in Fig. 4.1(b), to enable cross-granularity
two-stream proposal-level cooperation, we gather sufficient valid frame-
based proposals QFlow

n by using the “Frame-based Segment Proposal
Generation" method described in Sec. 4.2.1 based on the improved frame-
based features QFlow

n . And then we combine QFlow
n together with the

two-stream anchor-based proposals SFlow
n−1 and SRGB

n−2 to form an updated
set of anchor-based proposals at stage n, i.e., PRGB

n = SRGB
n−2 ∪ SFlow

n−1 ∪



70
Chapter 4. PCG-TAL: Progressive Cross-granularity Cooperation for

Temporal Action Localization

QFlow
n . This set of proposals not only provides more comprehensive pro-

posals but also guides our approach to pool more accurate proposal fea-
tures, both of which would significantly benefit the subsequent bound-
ary refinement and action class prediction procedures in the detection
head. The flow-stream AFC module also perform the similar process as
in the RGB-stream AFC module, i.e., the anchor-based flow-stream pro-
posals are updated as PFlow

n = SFlow
n−2 ∪ SRGB

n−1 ∪QRGB
n .

Cross-stream Anchor-to-Anchor Message Passing (i.e., “Cross-stream
Message Passing" in Fig. 4.1(b-c)). In addition to anchor-frame coopera-
tion, we also include two-stream feature cooperation module. The two-
stream anchor-based features are updated similarly as equation (4.1) by
a message passing operation, i.e., PRGB

n =M f low→rgb(PFlow
n−1 )⊕ PRGB

n−2 for
the RGB stream, and PFlow

n =Mrgb→ f low(PRGB
n−1 )⊕ PFlow

n−2 for flow stream.

Detection Head. The detection head aims at refining the segment pro-
posals and predicting the action categories for each proposal. Its in-
puts are the segment proposal features generated by segment-of-interest
(SOI) pooling [5] with respect to the updated proposals PRGB

n /PFlow
n and

the updated anchor-based features PRGB
n /PFlow

n . To increase the percep-
tual aperture of action boundaries, we add two more SOI pooling op-
erations around the starting and ending indices of the proposals with
a given interval (in this paper, it is fixed to 10), and then concatenate
these pooled features after the segment proposal features. The concate-
nated segment proposal features are fed to the segment regressor for seg-
ment refinement and the action classifier for action prediction. We also
use GCN [99] to explore the proposal-to-proposal relations, which ad-
ditionally provides performance gains independent to our cooperation
schemes.

4.2.4 Training Details

At each AFC stage, the training losses are used at both anchor-based and
frame-based branches. To be specific, the training loss in each anchor-
based branch has two components: one is the cross-entropy loss for
the action classification task and the other is the smooth-L1 loss for the
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boundary regression task. On the other hand, the training loss in each
frame-based branch is also an cross-entropy loss, which indicates the
frame-wise action starting and ending positions. We sum up all losses
and jointly train our model. We follow the strategy in [46] to assign the
ground-truth labels for supervision at all AFC modules.

4.2.5 Discussions

Variants of the AFC Module. Besides using the aforementioned AFC
module, as illustrated in Fig. 4.1(b-c), one can also simplify the structure
by either removing the entire frame-based branch or the cross-stream
cooperation module (termed as “w/o CG" and “w/o CS" in Sec. 4.3.3, re-
spectively). In the first case (“w/o CG"), the variant looks like we incor-
porate the progressive feature and proposal cooperation strategy within
the two-stream anchor-based localization framework, thus is to some ex-
tent similar to the method proposed in [69]. But this variant is totally
applied in the temporal domain for temporal action localization, while
the work in [69] is conducted in spatial domain for spatial action local-
ization. We argue that our framework after incorporating the newly pro-
posed cross-granularity cooperation strategy significantly improves this
variant. Since it enhances the boundary-sensitive frame-based features
by leveraging anchor-based features with more duration-aware charac-
teristics, and in turn help generate high-quality anchor-based proposals
with better action boundaries and high recall rates. Thus it is more likely
that the final localization results can capture accurate action segments.
In the second case (“w/o CS"), the variant applies a simple two-stream
fusion strategy by aggregating RGB and flow features as lengthy feature
vectors before the first stage instead of using the “Cross-stream Message
Passing" block for fusing two-stream features. But this variant suffers
from early performance saturation (namely the localization results be-
come stable after the second stage as shown in Table 4.5), which is also
inferior to our AFC. We compare our method with these two variants in
our experiments, and show that our AFC framework outperforms these
two variants.

Similarity of Results Between Adjacent Stages. Note that even though
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each AFC module focuses on one stream, the rich cross-stream interac-
tions eventually make the two-stream features and proposals be similar
to each other. By applying more AFC stages, it can encourage more ac-
curate proposals and more representative action features from gradually
absorbed cross-stream information and cross-granularitry knowledges,
and thus significantly boosts the performance of temporal action local-
ization. But the performance gain will be less significant after a certain
number of stages. Empirically, we observe a three-stage design achieves
the best localization results.

Number of Proposals. The number of proposals will not rapidly in-
crease when the number of stages increases, because the NMS opera-
tions applied in previous detection heads remarkably reduce redundant
segments but still preserve highly confident temporal segments. But the
number of proposals will not decrease as well, as the proposed proposal
cooperation strategy still absorbs sufficient number of proposals from
complementary sources.

4.3 Experiment

4.3.1 Datasets and Setup

Datasets. We evaluate our temporal action localization framework on
three datasets: THUMOS14 [25], ActivityNet v1.3 [3] and UCF-101-24 [68].

- THUMOS14 contains 1,010 and 1,574 untrimmed videos from 20
action classes for validation and testing, respectively. We use 200 tempo-
rally annotated videos in the validation set as the training samples, and
212 temporally annotated videos in the test set as the testing samples.

- ActivityNet v1.3 contains 19,994 videos from 200 different activities.
The whole video set is divided into training, validation and testing sets
with the ratio of 2:1:1. We evaluate our model on the validation set as
the annotation for the testing set is not publicly available.

- UCF-101-24 consists of 3,207 untrimmed videos from 24 action
classes with spatio-temporal annotations provided by [67]. We use an
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existing spatial action detection method [69] to spatially locate actions
at each frame and generate action tubes by linking the detection results
across frames. We consider these action tubes as untrimmed videos and
use our model to identify the temporal action boundaries. We report and
compare the results based on split 1.

Implementation Details. We use a two-stream I3D [4] model pretrained
on Kinetics as the feature extractor to extract base features. For training,
we set the size of minibatch as 256 for the anchor-based proposal genera-
tion network and 64 for detection head, respectively. The initial learning
rate is 0.001 for both the THUMOS14 and the UCF-101-24 datasets, and
0.005 for the ActivityNet v1.3. During training, we divide the learning
rate by 10 for every 12 epoches.

Evaluation Metrics. We evaluate our model by mean average precision
(mAP). A detected action segment or action tube is considered as cor-
rect if its overlapping with the ground-truth instances is larger than a
threshold δ, and its action label is correctly predicted. To measure the
overlapping area, we use temporal intersection-over-union (tIoU) for
temporal action localization on THUMOS14 and ActivityNet v1.3 and
spatio-temporal intersection-over-union (st-IoU) for spatio-temporal ac-
tion localization on UCF-101-24.

4.3.2 Comparison with the State-of-the-art Methods

We compare our PCG-TAL framework with the state-of-the-art methods
on THUMOS14, ActivityNet v1.3 and UCF-101-24. All results of the ex-
isting methods are quoted from their original papers.

THUMOS14. We report the results on the THUMOS14 in Table 4.1. Our
method PCG-TAL outperforms the existing methods at all tIoU thresh-
olds. Similar to our method, both TAL-Net [5] and P-GCN [99] use I3D
features as their base features and apply a two-stream framework and
late fusion strategy to exploit the complementary information between
appearance and motion clues. When using the tIoU threshold δ = 0.5,
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Table 4.1: Comparison (mAP %) on the THUMOS14 dataset using dif-
ferent tIoU thresholds

tIoU thresh. δ 0.1 0.2 0.3 0.4 0.5
SCNN [63] 47.7 43.5 36.3 28.7 19.0

REINFORCE[95] 48.9 44.0 36.0 26.4 17.1
CDC [62] - - 40.1 29.4 23.3
SMS[98] 51.0 45.2 36.5 27.8 17.8

TRUN [15] 54.0 50.9 44.1 34.9 25.6
R-C3D [85] 54.5 51.5 44.8 35.6 28.9
SSN [103] 66.0 59.4 51.9 41.0 29.8
BSN [37] - - 53.5 45.0 36.9

MGG [46] - - 53.9 46.8 37.4
BMN [35] - - 56.0 47.4 38.8

TAL-Net [5] 59.8 57.1 53.2 48.5 42.8
P-GCN [99] 69.5 67.8 63.6 57.8 49.1

ours 71.2 68.9 65.1 59.5 51.2

our method outperforms TAL-Net and P-GCN by 8.4% and 2.1%, respec-
tively. The improvement largely comes from our well designed progres-
sive cooperation framework that fully exploits the cross-granularity in-
formation between anchor-based and frame-based methods. However,
the mAP of our method is 13.8% higher than that of MGG, possibly be-
cause MGG can not well capture the complementary information be-
tween these two methods (i.e., the frame actionness producer and the
segment proposal producer). It is worth mentioning that, following P-
GCN [99], we also apply the GCN module in [99] to consider proposal-
to-proposal relations in our detection head, and our method can still
achieve mAP of 48.37% without using the GCN module, which is com-
parable to the performance of P-GCN.

ActivityNet v1.3. We also compare the mAPs at different tIoU thresh-
olds δ = {0.5, 0.75, 0.95} on the validation set of the ActivityNet v1.3
dataset. Besides, we report average mAP as well, which is calculated by
averaging all mAPs at multiple tIoU thresholds δ from 0.5 to 0.95 with
an interval of 0.05. All the results are shown in Table 4.2. In terms of
the average mAP, our method can achieve mAP of 28.85%, which out-
performs P-GCN [99], SSN [103] and TAL-Net [5] by 1.86%, 6.87% and
8.63%, respectively. In Table 4.3, it is observed that both BSN [37] and
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Table 4.2: Comparison (mAPs %) on the ActivityNet v1.3 (val) dataset
using different tIoU thresholds. No extra external video labels are used.

tIoU threshold δ 0.5 0.75 0.95 Average
CDC [62] 45.30 26.00 0.20 23.80
TCN [9] 36.44 21.15 3.90 -

R-C3D [85] 26.80 - - -
SSN [103] 39.12 23.48 5.49 23.98

TAL-Net [5] 38.23 18.30 1.30 20.22
P-GCN[99] 42.90 28.14 2.47 26.99

ours 44.31 29.85 5.47 28.85

Table 4.3: Comparison (mAPs %) on the ActivityNet v1.3 (val) dataset
using different tIoU thresholds. The external video labels from
UntrimmedNet [80] are applied.

tIoU threshold δ 0.5 0.75 0.95 Average
BSN [37] 46.45 29.96 8.02 30.03

P-GCN [99] 48.26 33.16 3.27 31.11
BMN [35] 50.07 34.78 8.29 33.85

ours 52.04 35.92 7.97 34.91

BMN [35] are superior than the best result shown in Table 4.2. However,
BSN and BMN have to rely on the extra external video-level action labels
from untrimmedNet [80]. Similarly, the performance of our method can
be boosted by using extra external labels as in [35] and proposals from
BMN, whose average mAP (34.91%) is better than BSN and BMN.

UCF-101-24. To further evaluate our method, we conduct another com-
parison for the spatio-temporal action localization task, on the UCF-101-
24 dataset [68]. We report mAPs at st-IoU threshold δ = {0.2, 0.5, 0.75}
and average mAP when δ is set between 0.5 and 0.95 with an interval
of 0.05. The input action tubes before temporal refinement were pro-
vided by the authors in [69]. The results are reported in Table 4.4. As
can be seen, our method achieves better results then the state-of-the-
art methods over all st-IoU thresholds, which shows that our proposed
method can also help improve the spatio-temporal action localization re-
sults. Note that our method and the temporal refinement module in [69]
use the same action tubes and the mAP of our method is 2.5% higher at
the st-IoU threshold δ = 0.5.
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Table 4.4: Comparison (mAPs % ) on the UCF-101-24 dataset using dif-
ferent st-IoU thresholds.

st-IoU thresh. δ 0.2 0.5 0.75 0.5:0.95
LTT[83] 46.8 - - -

MRTSR[54] 73.5 32.1 02.7 07.3
MSAT[60] 66.6 36.4 0.79 14.4
ROAD[67] 73.5 46.3 15.0 20.4
ACT [26] 76.5 49.2 19.7 23.4
TAD[19] - 59.9 - -
PCSC[69] 84.3 61.0 23.0 27.8

ours 84.9 63.5 23.7 29.2

4.3.3 Ablation study

We perform a set of ablation studies to investigate the contribution of
each component in our proposed PCG-TAL framework.

Anchor-Frame Cooperation. We compare the performances among five
AFC-related variants and our complete method: (1) w/o CS-MP: we re-
move the “Cross-stream Message Passing" block from our AFC mod-
ule; (2) w/o CG-MP: we remove the “Cross-granularity Message Passing"
block from our AFC module; (3) w/o PC: we remove the “Proposal Com-
bination" block from our AFC module in which QFlow

n and QRGB
n are

directly used as the input to“Detection Head" in the RGB-stream AFC
module and the flow-stream AFC module, respectively; (4) w/o CS: we
aggregate two-stream features as lengthy feature vectors for both frame-
based and anchor-based branches before the first stage, in which the ag-
gregated features are directly used as the input to the “Cross-granularity
Message Passing" block and “Detection Head" in Fig. 4.1(b-c); (5) w/o

CG: we remove the entire frame-based branch and in this case only two
proposal sets based on the RGB and flow features generated from the
anchor-based scheme are combined in the “Proposal Combination" block
in Fig. 4.1(b-c); (6) AFC: our complete method. Note that two alterna-
tive methods “w/o CS" and “w/o CS-MP" have the same network struc-
ture in each AFC module except that the input anchor-based features
to the “Cross-granularity Message Passing" block and “Detection Head"
are respectively PFlow

n−1 and PRGB
n−2 (for the RGB-stream AFC module) and
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Table 4.5: Ablation study among different AFC-related variants at dif-
ferent training stages on the THUMOS14 dataset.

Stage 0 1 2 3 4
AFC 44.75 46.92 48.14 48.37 48.22

w/o CS 44.21 44.96 45.47 45.48 45.37
w/o CG 43.55 45.95 46.71 46.65 46.67

w/o CS-MP 44.75 45.34 45.51 45.53 45.49
w/o CG-MP 44.75 46.32 46.97 46.85 46.79

w/o PC 42.14 43.21 45.14 45.74 45.77

PRGB
n−1 and PFlow

n−2 (for the flow-stream AFC module) in “w/o CS-MP", while
the inputs are the same (i.e., the aggregated features) in “w/o CS". Also,
the discussions for the alternative methods “w/o CS" and “w/o GS" are
provided in Sec. 4.2.5. We take the THUMOS14 dataset at tIoU threshold
δ = 0.5 as an example to report the mAPs of different variants at differ-
ent stages in Table 4.5. Note that we remove the GCN module from our
method for fair comparison.

In Table 4.5, the results for stage 0 are obtained based on the initial
proposals generated by our complete method and five alternative meth-
ods before applying our AFC module. The initial proposals for “w/o
CS-MP" and “w/o CG-MP" are the same as our complete method, so the re-
sults of these three methods at stage 0 are the same. The initial proposals
are PRGB

0 ∪PFlow
0 for “w/o CG", andQRGB

0 ∪QFlow
0 for “w/o PC". We have

the following observations, (1) the two alternative methods “w/o CS"
and“w/o CS-MP" achieve comparable results when the number of stages
increase as these two methods share the same network structure. (2) our
complete method outperforms “w/o CS-MP", “w/o CG-MP" and“w/o PC",
which demonstrates that it is useful to include three cross-stream and/or
cross-granularity operations at both feature and proposal levels in each
AFC module within our framework. (3) our complete method also out-
performs the alternative method “w/o CG", which demonstrates that it
is beneficial to encourage cross-granularity collaboration by passing the
features from the anchor-based approach to the frame-based scheme and
simultaneously providing the segment proposals from the frame-based
scheme back to “Detection Head" of the anchor-based approach. (4) at
the first few stages, the results of all methods are generally improved
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Table 4.6: LoR (%) scores of proposals from adjacent stages. This score
is calculated for each video and averaged for all videos in the test set of
the THUMOS14 dataset.

Stage Comparisons LoR (%)

1 PRGB
1 vs. SFlow

0 67.1
2 PFlow

2 vs. PRGB
1 79.2

3 PRGB
3 vs. PFlow

2 89.5
4 PFlow

4 vs. PRGB
3 97.1

when the number of stages increases and the results will become stable
after 2 or 3 stages.

Similarity of Proposals. To evaluate the similarity of the proposals from
different stages for our method, we define a new metric named as Large-
over-Ratio (LoR) score. Taking the proposal sets PRGB

1 at Stage 1 and
PFlow

2 at Stage 2 as the examples. The LoR score at Stage 2 is the ratio of
the similar proposals in PFlow

2 among all proposals in PFlow
2 . A proposal

is defined as a similar proposal if its maximum temporal intersection-
over-union (max-tIoU) score is higher than a pre-defined threshold 0.7
with the preceding proposalsPRGB

1 . The max-tIoU score for one proposal
in the corresponding proposal set (say PFlow

2 ) is calculated by comparing
it with all proposals in the other proposal set (say PRGB

1 ), returning the
maximum temporal intersection-over-union score. Therefore, a higher
LoR score indicates that two sets of proposals from different streams are
more similar to each other.

Table 4.6 shows the LoR scores at different stages, where LoR scores
at Stage 1 and Stage 3 examine the similarities between RGB-stream pro-
posals against the preceding flow-stream proposals, and those at Stage
2 and Stage 4 indicate the similarities between flow-stream proposals
against the preceding RGB-stream proposals. In Table 4.6, we observe
that the LoR score gradually increases from 67.1% at Stage 1 to 97.1%
at Stage 4. This large LoR score at Stage 4 indicates that the proposals
in PFlow

4 and those in PRGB
3 are very similar even they are gathered for

different streams. Thus little complementary information can be further
exploited between these two types of proposals. In this case, we can-
not achieve further performance improvements by using our temporal
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action localization method after Stage 3, which is consistent with the re-
sults in Table 4.5.

Quality of the Generated Action Segments. To further analyze our
PCG-TAL framework, we evaluate the quality of the action segments
generated from our proposed method. We follow the work in [37] to
calculate average recall (AR) when using different average number of
proposals (AN), which is referred to as AR@AN. On the THUMOS14
dataset [25], we compute the average recall by averaging eleven recall
rates based on the tIoU thresholds between 0.5 and 1.0 with an interval
of 0.05.

In Fig. 4.2, we compare the AR@AN results of action segments gen-
erated from the following baseline methods and our PCG-TAL method at
different number of stages: (1) FB: we use only the frame-based method
to generate action segments; (2) AB: we use only the anchor-based method
to generate action segments; (3) SC: we simply combine the segment pro-
posals from the “FB" method and the “AB" method to generate action
segments. Note that the baseline methods “FB", “AB" and “SC" are not
based on the multi-stage framework, for better presentation, their av-
erage recall rates at stage 0 are the same as their results at stages 1-4.
The results from our PGC-TAL method at stage 0 are the results from
the “SC" method. We observe that the action segments generated from
the “AB’ method are better than those from the “FB" method as its av-
erage recall rates are higher. Additionally, a simple combination of ac-
tion segments as used in the “SC" method can lead to higher average re-
call rates, which demonstrates the complementarity between the frame-
based and anchor-based temporal action localization methods. We also
observe that the average recall rates from our PCG-TAL method improve
as the number of stages increases. The results together with the quanti-
tative results shown in Table 4.5 demonstrate that our newly proposed
PCG-TAL framework, which takes advantage of cross-granularity and
cross-stream complementary information, can help progressively gen-
erate better action segments with higher recall rates and more accurate
boundaries.
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(a) AR@50 (%) for various methods at different number of stages

(b) AR@100 (%) for various methods at different number of stages

(c) AR@200 (%) for various methods at different number of stages

(d) AR@500 (%) for various methods at different number of stages

Figure 4.2: AR@AN (%) for the action segments generated from various
methods at different number of stages on the THUMOS14 dataset.
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Ground Truth

Anchor-based Method

PCG-TAL at Stage 3

97.7s 104.2s

95.4s 104.6s
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Video Clip
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97s 104.5s

PCG-TAL at Stage 1

PCG-TAL at Stage 2

Time
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95.4s

95.4s

Figure 4.3: Qualitative comparisons of the results from two base-
line methods (i.e., the anchor-based method [5] and the frame-based
method [37]) and our PCG-TAL method at different number of stages
on the THUMOS14 dataset. More frames during the period between the
95.4-th second to the 97.7-th second of the video clip are shown in the
blue boxes, where the actor slowly walks into the circle spot to start the
action. The true action instance of the action class “Throw Discus" with
the starting frame and the ending frame from the 97.7-th second to the
104.2-th second of the video clip are marked in the red box. The frames
during the period from the 104.2-th second to the 104.6-th second of the
video clip are shown in the green boxes, where the actor just finishes the
action and starts to straighten himself up. In this example, the anchor-
based method detects the action segment with less accurate boundaries
while the frame-based method misses the true action instance. Our PCG-
TAL method can progressively improve the temporal boundaries of the
action segment.

4.3.4 Qualitative Results

In addition to the quantitative performance comparison, we also provide
some visualization results to further demonstrate the performance of our
method. In Fig. 4.3, we show the visualization results generated by us-
ing either anchor-based method [5] or frame-based method [37], and our
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PCG-TAL method at different number of stages. Although the anchor-
based method can successfully capture the action instance, it generates
action segments with less accurate temporal boundaries. Meanwhile,
the frame-based method fails to detect the action instance due to the low
prediction probabilities as the starting or ending positions during that
period of time. On the other hand, our PCG-TAL method can take ad-
vantage of both the anchor-based and frame-based methods to progres-
sively improve the temporal boundaries of the detected action segment,
and eventually generate the action segment with more accurate temporal
boundaries, which demonstrates the effectiveness of our proposed AFC
module.

4.4 Summary

In this chapter, we have proposed a progressive cross-granularity co-
operation (PCG-TAL) framework, to gradually improve temporal ac-
tion localization performance. Our PCG-TAL framework consists of an
Anchor-Frame Cooperation (AFC) module to take advantage of both
frame-based and anchor-based proposal generation schemes, along with
a two-stream cooperation strategy to encourage collaboration between
the complementary appearance and motion clues, In our framework,
the cooperation mechanisms are conducted in a progressive fashion at
both feature level and segment proposal level by stacking multiple AFC
modules over different stages. Comprehensive experiments and abla-
tion studies on THUMOS14, ActivityNet v1.3, and UCF-101-24 datasets
show the effectiveness of our proposed framework.
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Chapter 5

STVGBert: A Visual-linguistic
Transformer based Framework
for Spatio-temporal Video
Grounding

Spatio-temporal video grounding (STVG) aims to localize a spatio-temporal
tube of a target object in an untrimmed video based on a query sen-
tence. In this work, we propose a two-step visual-linguistic transformer
based framework called STVGBert for the STVG task, which consists of
a Spatial Visual Grounding network (SVG-net) and a Temporal Bound-
ary Refinement network (TBR-net). In the first step, the SVG-net directly
takes a video and a query sentence as the input and produces the ini-
tial tube prediction. In the second step, the TBR-net refines the tempo-
ral boundaries of the initial tube to further improve the spatio-temporal
video grounding performance. As the key component in our SVG-net,
the newly introduced cross-modal feature learning module improves
ViLBERT by additionally preserving spatial information when extract-
ing text-guided visual features. Besides, the TBR-net is a novel ViLBERT-
based multi-stage temporal localization network, which exploits the com-
plementarity of the anchor-based and the frame-based temporal bound-
ary refinement methods. Different from the existing works for the video
grounding tasks, our proposed framework does not rely on any pre-
trained object detector. Comprehensive experiments demonstrate our
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newly proposed framework outperforms the state-of-the-art methods on
two benchmark datasets, VidSTG and HC-STVG.

5.1 Background

5.1.1 Vision-language Modelling

Transformer-based neural networks have been widely explored for vari-
ous vision-language tasks [75, 32, 33, 47, 70], such as visual question an-
swering, image captioning, and image-text retrieval. Apart from these
works designed for image-based visual-linguistic tasks, Sun et al. [71]
proposed VideoBERT for the video captioning task by modeling tempo-
ral variations across multiple video frames. However, this work does not
model spatial information within each frame, so that it cannot be applied
for the spatio-temporal video grounding task discusseed in this work.

The aforementioned transformer-based neural networks take the fea-
tures extracted from either Region of Interests (RoIs) in images or video
frames as the input features, but spatial information in the feature space
cannot be preserved when transforming them to visual tokens. In this
work, we propose an improved version of ViLBERT [47] to better model
spatio-temporal information in videos and learn better cross-modal rep-
resentations.

5.1.2 Visual Grounding in Images/Videos

Visual grounding in images/videos aims to localize the object of interest
in an image/video based on a query sentence. In most existing meth-
ods [42, 96, 45, 82, 87, 88, 41, 86, 7, 102], a pre-trained object detector is
often required to pre-generate object proposals. The proposal that best
matches the given input description is then selected as the final result.
For the visual grounding tasks in images, some recent works [92, 34, 48,
91] proposed new one-stage grounding frameworks without using the
pre-trained object detector. For example, Liao et al. [34] used the anchor-
free object detection method [104] to localize the target objects based on
the cross-modal representations. For the video grounding task, Zhang et
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al. [102] proposed a new method (referred to as STGRN) that does not
rely on the pre-generated tube proposals. Unfortunately, this work [102]
still requires a pre-trained object detector to first generate object propos-
als since the output bounding boxes are retrieved from these candidate
bounding boxes. In the concurrent work STGVT [76], similar as in our
proposed framework, it also adopted a visual-linguistic transformer to
learn cross-modal representations for the spatio-temporal video ground-
ing task. But this work [76] also needs to first generate the tube proposals
as in most existing methods [7, 86]. Additionally, in the works [59, 30,
101, 90], the pre-trained object detectors are also required to generate
object proposals for object relationship modelling.

In contrast to these works [102, 76, 59, 30, 101, 90], in this work, we
introduce a new framework with an improved ViLBERT module to gen-
erate spatio-temporal object tubes without requiring any pre-trained ob-
ject detectors. We also propose a temporal boundary refinement network
to further refine the temporal boundaries, which has not been explored
in the existing methods.

5.2 Methodology

5.2.1 Overview

We denote an untrimmed video V with KT frames as a set of non-overlapping
video clips, namely we have V = {Vclip

k }
K
k=1, where Vclip

k indicates the
k-th video clip consisting of T frames, and K is the number of video clips.
We also denote a textual description as S = {sn}N

n=1, where sn indicates
the n-th word in the description S, and N is the total number of words.
The STVG task aims to output the spatio-temporal tube B = {bt}te

t=ts

containing the object of interest (i.e., the target object) between the ts-th
frame and the te-th frame, where bt is a 4-d vector indicating the top-left
and bottom-right spatial coordinates of the target bounding box in the
t-th frame. ts and te are the temporal starting and ending frame indexes
of the object tube B.
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In this task, it is required to perform both spatial localization and
temporal localization based on the query sentence. Therefore, we pro-
pose a two-step framework which consists of two sub-networks, Spa-
tial Visual Grounding network (SVG-net) and Temporal Boundary Refine-
ment network (TBR-net). As shown in Fig. 5.1, the SVG-net first takes
the untrimmed video and the textual description as the input, and pre-
dicts the initial object tube, based on which the TBR-net progressively
updates the temporal boundaries by using a newly proposed ViLBERT-
based multi-stage framework to produce the final spatio-temporal object
tube. We will describe each step in details in the following sections.

5.2.2 Spatial Visual Grounding

Unlike the previous methods [86, 7], which first output a set of tube pro-
posals by linking the pre-detected object bounding boxes, our SVG-net
does not require any pre-trained object detector. In general, our SVG-net
extracts the visual features from the video frames, and then produces the
text-guided visual feature by using our newly introduced cross-modal
feature learning module and finally generates an initial object tube, in-
cluding the bounding boxes bt for the target object in each frame and the
indexes of the starting and ending frames.

Visual Feature and Textual Feature Encoding. We first use ResNet-
101 [20] as the image encoder to extract the visual feature. The output
from the 4th residual block is reshaped to the size of HW × C with H,
W and C indicating the height, width, and the number of channels of
the feature map, respectively, which is then employed as the extracted
visual feature. For the k-th video clip, we stack the extracted visual
features from each frame in this video clip to construct the clip feature
Fclip

k ∈ RT×HW×C, which is then fed into our cross-modal feature learn-
ing module to produce the multi-modal visual feature.

For the textual descriptions, we use a word embedding module to
map each word in the description as a word vector, and each word vec-
tor is considered as one textual input token. Additionally, we add two
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special tokens, [‘CLS’] and [‘SEP’], before and after the textual input to-
kens of the description to construct the complete textual input tokens
E = {en}N+2

n=1 , where en is the i-th textual input token.

Multi-modal Feature Learning. Given the visual input feature Fclip
k

and the textual input tokens E, we develop an improved ViLBERT mod-
ule called ST-ViLBERT, to learn the visual-linguistic representation. Fol-
lowing the structure of ViLBERT [47], our ST-ViLBERT module consists
of a visual branch and a textual branch where both branches adopt the
multi-layer transformer encoder [78] structure. As shown in Figure 5.2(a),
the visual branch interacts with the textual branch via a set of co-attention
layers, which exchanges information between the key-value pairs to gen-
erate the text-guided visual feature (or vice versa). Please refer to the
work [47] for further details.

The work ViLBERT [47] takes the visual features extracted from all
pre-generated proposals within an image as the visual input to learn the
visual-linguistic representation (see Figure 5.2(a)). However, since these
visual features are spatially pooled by using the average pooling oper-
ation, spatial information in the visual input feature space will be lost.
While such information is important for bounding boxes prediction, this
is not an issue for ViLBERT as it assumes the bounding boxes are gener-
ated by using the pre-trained object detectors.

Our ST-ViLBERT module extends ViLBERT for the spatial localiza-
tion task without requiring any pre-generated bounding boxes, so we
need to preserve spatial information when performing cross-modal fea-
ture learning. Specifically, we introduce a Spatio-temporal Combination
and Decomposition (STCD) module to replace the Multi-head Attention
and Add & Norm modules for the visual branch in ViLBERT. As shown
in Figure 5.2(b), our STCD module respectively applies the spatial and
temporal average pooling operations on the input visual feature (i.e., the
visual output from the last layer) to produce the initial temporal fea-
ture with the size of T × C and the initial spatial feature with the size
of HW × C, which are then concatenated to construct the combined vi-
sual feature with the size of (T + HW)× C. We then pass the combined
visual feature to the textual branch, which is used as key and value in
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(a) One Co-attention Layer in ViLBERT

(b) Our Spatio-temporal Combination and Decomposition Module

Figure 5.2: (a) The overview of one co-attention layer in ViLBERT [47].
The co-attention block, consisting of a visual branch and a textual
branch, generates the visual-linguistic representations by exchanging the
key-value pairs for the multi-head attention blocks. (b) The structure of
our Spatio-temporal Combination and Decomposition (STCD) module,
which replaces the “Multi-head attention" and “Add & Norm" blocks in
the visual branch of ViLBERT (marked in the green dotted box in (a)).
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the multi-head attention block of the textual branch. Additionally, the
combined visual feature is also fed to the multi-attention block of the vi-
sual branch together with the textual input (i.e., the textual output from
the last layer) to generate the initial text-guided visual feature with the
size of (T + HW) × C, which is then decomposed into the text-guided
temporal feature with the size of T × C and the text-guided spatial fea-
ture with the size of HW × C. These two features are then respectively
replicated HW and T times to match the dimension of the input visual
feature. The replicated features and the input visual feature are added
up and normalized to generate the intermediate visual feature with the
size of T × HW × C. The remaining part (including the textual branch)
are the same as that in ViLBERT [47]. In our ST-ViLBERT, we take the
output from the visual and textual branches in the last co-attention layer
as the text-guided visual feature Ftv ∈ RT×HW×C and the visual-guided
textual feature, respectively.

Spatial Localization Given the text-guided visual feature Ftv, our SVG-
net predicts the bounding box bt at each frame. We first reshape Ftv

to the size of T × H ×W × C. Taking the feature from each individual
frame (with the size of H ×W × C) as the input of three deconvolution
layers, we then upsample the spatial resolution by a factor of 8. Sim-
ilar as in CenterNet [104], the upsampled feature is used as the input
of two parallel detection heads, with each head consisting of a 3 × 3
convolution layer for feature extraction and a 1 × 1 convolution layer
for dimension reduction. The first detection head outputs a heatmap
A ∈ R8H×8W , where the value at each spatial location indicates the prob-
ability of this position being the bounding box center of the target object,
and the second head regresses the size (i.e., the height and width) of the
target bounding box at each position. In the heatmap, we select the spa-
tial location with the highest probability as the predicted bounding box
center, and use the corresponding predicted height and width at this se-
lected position to calculate the top-left and the bottom-right coordinates
of the predicted bounding box.

Initial Tube Generation Sub-module In addition to bounding box
prediction, the SVG-net also predicts the temporal starting and ending
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frame positions. As shown in Fig. 5.1(b), we apply spatial average pool-
ing on the text-guided visual feature Ftv to produce the global text-guided
visual feature Fgtv ∈ RT×C for each input video clip with T frames. We
also feed the global textual feature (i.e., the visual-guided textual fea-
ture corresponding to the token [‘CLS’]) into a MLP layer to produce the
intermediate textual feature in the C-dim common feature space such
that we can compute the initial relevance score for each frame between
the corresponding visual feature from Fgtv and the intermediate textual
feature in the common feature space by using the correlation operation.
After applying the Sigmoid activation function, we obtain the final rele-
vance score oobj for each frame in one video clip, which indicates how
each frame is relevant to the textual description in the common fea-
ture space. We then combine the relevance scores of all frames from all
video clips to construct a sequence of relevance scores for all KT frames
in the whole video and then apply a median filter operation to smooth
this score sequence. After that, the positions of the starting and ending
frames can be determined by using a pre-defined threshold. Namely, the
bounding boxes with the smoothed relevance scores less than the thresh-
old will be removed from the initial tube. If more than one starting and
ending frame pairs are detected, we select the pair with the longest dura-
tion as our initial starting and ending frame prediction result (t̄0

s , t̄0
e ). The

initial temporal boundaries (t̄0
s , t̄0

e ) and the predicted bounding boxes bt

form the initial tube prediction result Binit = {bt}t̄0
e

t=t̄0
s
.

Loss Functions We use a combination of a focal loss, a L1 loss, and a
cross-entropy loss to train the SVG-net. At the training stage, we ran-
domly sample a set of video clips with T consecutive frames from each
input videos, and then we select the video clips which contain at least
one frame having a ground-truth bounding box as the training sam-
ples. Below we take one frame as an example to introduce the losses.
Specifically, for each frame in a training video clip, we denote the cen-
ter, width and height, as well as the relevance label of the ground-truth
bounding box as (x̂, ŷ), ŵ, ĥ, and ô, respectively. When the frame con-
tains a ground-truth bounding box, we have ô = 1; otherwise, we have
ô = 0. Based on the ground-truth bounding box, we follow [104] to gen-
erate a center heatmap Â for each frame by using the Gaussian kernel
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âx,y = exp(− (x−x̂)2+(y−ŷ)2

2σ2 ), where âx,y is the value of Â ∈ R8H×8W at
the spatial location (x, y), and σ is the bandwidth parameter, which is
adaptively determined based on the object size [28]. For training our
SVG-net, the objective function LSVG for each frame in the training video
clip is defined as follows:

LSVG =λ1Lc(A; Â) + λ2Lrel(oobj; ô)

+ λ3Lsize(wx̂,ŷ; hx̂,ŷ; ŵ; ĥ),
(5.1)

where A ∈ R8H×8W is the predicted heatmap, oobj is the predicted rel-
evance score, wx̂,ŷ and hx̂,ŷ are the predicted width and height of the
bounding box centered at the position (x̂,ŷ). Lc is the focal loss [39]
for predicting the bounding box center; Lsize is a L1 loss for regressing
the size of the bounding box; Lrel is a cross-entropy loss for relevance
score prediction. We empirically set the loss weights λ1 = λ2 = 1 and
λ3 = 0.1. We then average LSVG over all frames in each training video
clip to produce the total loss for this training video clip. Please refer to
Supplementary for further details.

5.2.3 Temporal Boundary Refinement

The accurate temporal boundaries of the generated tube play an impor-
tant role in the spatio-temporal video grounding task. For the temporal
localization task, we observe that the anchor-based methods can often
produce temporal segments covering the entire ground-truth segments,
but their boundaries may not be accurate. While the frame-based meth-
ods can accurately determine boundaries in local starting/ending re-
gions, it may falsely detect the temporal segments because overall segment-
level information is missing in these methods. To this end, we develop
a multi-stage ViLBERT-based Temporal Boundary Refinement network
(TBR-net), consisting of an anchor-based branch and a frame-based branch,
to progressively refine the temporal boundaries of the initial tube.

As shown in Fig. 5.3, at the first stage, the output from the SVG-
net (i.e., Binit) is used as an anchor, and its temporal boundaries are first
refined by using the anchor-based branch, which takes advantage of the
overall feature of the anchor to produce the refined temporal boundaries,
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t̃s and t̃e. The frame-based branch then continues to refine the bound-
aries t̃s and t̃e within the local regions by leveraging the frame-level fea-
tures. The improved temporal boundaries from the frame-based branch,
(i.e., t̄s and t̄e), can be used as a better anchor for the anchor-based branch
at the next stage. The iterative process will repeat until satisfactory re-
sults are obtained. We take the first stage of our SVG-net as an example
to introduce the details of each branch, and the details in other stages are
similar to those in the first stage.

Anchor-based branch For the anchor-based branch, the core idea is to
take advantage of the feature extracted from the whole anchor in order
to regress the target boundaries and predict the offsets.

Given an anchor with the temporal boundaries (t̄0
s , t̄0

e ) and the length
l = t̄0

e − t̄0
s , we temporally extend the anchor before and after the start-

ing and the ending frames by l/4, to include more context informa-
tion. We then uniformly sample 20 frames within the temporal dura-
tion [t̄0

s − l/4, t̄0
e + l/4] and generate the anchor feature F̃ by stacking the

corresponding features along the temporal dimension from the pooled
video feature Fpool at the 20 sampled frames, where the pooled video
feature Fpool is generated by stacking the spatially pooled features from
all frames within each video along the temporal dimension.

The anchor feature F̃ together with the textual input token E are
used as the input to the co-attention based transformer module of ViL-
BERT to generate the text-guided anchor feature, based on which the
average pooling operation is used to produce the pooled text-guided an-
chor feature. This feature is then fed into an MLP layer to regress the
relative positions with respect to t̄0

s and t̄0
e , and generate the new starting

and ending frame positions t̃1
s and t̃1

e .

Frame-based branch For the frame-based branch, we extract the fea-
ture from each frame within the starting/ending duration and predicts
the possibility of this frame being a starting/ending frame. Below we
take the starting position as an example. Given the refined starting posi-
tion t̃1

s generated from the previous anchor-based branch, we define the
starting duration as Ds = [t̃1

s −D/2+ 1,t̃1
s + D/2], where D is the length
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of the starting duration. We then construct the frame-level feature F̄s

by stacking the corresponding features of all frames within the starting
duration from the pooled video feature Fpool. We then take the frame-
level feature F̄s and the textual input token E as the input and adopt the
ViLBERT module to produce the text-guided frame-level feature, which
is then used as the input to a 1D convolution operation to predict the
probability of each frame within the starting duration being the starting
frame. We then select the frame with the highest probability as the start-
ing frame position t̄1

s . Accordingly, we can produce the ending frame
position t̄1

e . Note that the kernel size of the 1D convolution operations is
1 and the parameters related to the operations for generating the starting
and ending frame positions are not shared. Once the new starting and
ending frame positions t̄1

s and t̄1
e are generated, they can be used as the

input for the anchor-based branch at the next stage.

Loss Functions To train our TBR-net, we define the training objective
function LTBR as follow:

LTBR =λ4Lanc(∆t; ∆t̂) + λ5Ls(ps; p̂s) + λ6Le(pe; p̂e), (5.2)

where Lanc is the regression loss used in [14] for regressing the temporal
offsets; Ls and Le are the cross-entropy loss for predicting the starting
and the ending frames, respectively. In Lanc, ∆t and ∆t̂ are the predicted
offsets and the ground-truth offsets, respectively; In Ls, ps is the pre-
dicted probability of being the starting frame for the frames within the
starting duration, while p̂s is the ground-truth label for starting frame po-
sition prediction. Similarly, we use pe and p̂e for the loss Le. In this work,
we empirically set the loss weights λ4 = λ5 = λ6 = 1.

5.3 Experiment

5.3.1 Experiment Setup

Datasets We evaluate our proposed framework on the VidSTG [102]
dataset and the HC-STVG [76] dataset.
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-VidSTG. This dataset consists of 99,943 sentence descriptions with
44,808 declarative sentences and 55,135 interrogative sentences describ-
ing 79 types of objects appearing in the untrimmed videos. Follow-
ing [102], we divide the sentence descriptions into the training set, the
validation set, and the testing set with 36,202 (resp., 44,482), 3,996 (resp.,
4,960), and 4,610 (resp., 5,693) declarative (resp., interrogative) sentences.
The described objects in the untrimmed videos are annotated with the
spatio-temporal tubes.

-HC-STVG. This dataset consists of 5,660 video-description pairs
and all videos are untrimmed. This dataset is human-centric since all
videos are captured in multi-person scenes and the descriptions contain
rich expressions related to human attributes and actions. This dataset
is divided into the training set and the testing set with 4,500 and 1,160
video-sentence pairs, respectively. All target persons are annotated with
spatio-temporal tubes.

Implementation details We use the ResNet-101 [20] network pretrained
on ImageNet [11] as our image encoder to extract the visual features from
the RGB frames in the input videos. For the ST-ViLBERT module in our
SVG-net and the ViLBERT module in our TBR-net, we employ the ViL-
BERT model pretained on the Conceptual Caption dataset [61] for ini-
tialization. Following [102], we sample the input videos at the frame
rate of 5fps. The batch size and the initial learning rate are set to be 6
and 0.00001, respectively. After training our models (for both SVG-net
and TBR-net) for 50 epochs, we decrease the learning rate by a factor of
10 and then train the models for another 10 epochs. The window size of
the median filter, the pre-defined threshold θp, and the temporal length
of each clip K are set as 9, 0.3, and 4, respectively. We apply three stages
in the temporal boundary refinement step as the results are already sat-
urated. Our method is implemented by using PyTorch on the machine
with a single GTX 1080Ti GPU.

Evaluation metrics We follow [102] to use m_vIoU and vIoU@R as
our evaluation criteria. The vIoU is calculated as vIoU = 1

|SU | ∑t∈SI
rt,

where rt is the IoU between the detected bounding box and the ground-
truth bounding box at frame t, the set SI contains the intersected frames
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between the detected tubes and the ground-truth tubes (i.e., the intersec-
tion set between the frames from both tubes), and SU is the set of frames
from either the detected tubes or the ground-truth tubes. The m_vIoU
score is defined as the average vIoU score over all testing samples, and
vIoU@R refers to the ratio of the testing samples with vIoU > R over all
the testing samples.

Baseline Methods

-STGRN [102] is the state-of-the-art method on the VidSTC dataset.
Although this method does not require pre-generate tube proposals, it
still requires the pre-trained detector to produce the bounding box pro-
posals in each frame, which are then used to build the spatial relation
graph and the temporal dynamic graph. And the final bounding boxes
are selected from these proposals. Therefore, its performance is highly
dependent on the quality of the pre-generated proposals.

-STGVT [76] is the state-of-the-art method on the HC-STVG dataset.
Similar to our SVG-net, it adopts a visual-linguistic transformer module
based on ViLBERT [47] to learn the cross-modal representations. How-
ever, STGVT relies on a pre-trained object detector and a linking algo-
rithm to generate the tube proposals, while our framework does not re-
quire any pre-generated tubes.

-Vanilla (ours) In our proposed SVG-net, the key part is ST-ViLBERT.
Different from the original ViLBERT [47], which does not model spatial
information for the input visual features, the ST-ViLBERT in our SVG-
net can preserve spatial information from the input visual features and
model spatio-temporal information. To evaluate the effectiveness of the
ST-ViLBERT, we introduce this baseline by replacing the ST-ViLBERT
with the original ViLBERT.

-SVG-net (ours) As the first step of our proposed framework, the
SVG-net can predict the initial tube. Here we treat it as a baseline method.
By comparing the performance of this baseline method and our two-step
framework, we can evaluate the effectiveness of our TBR-net.
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5.3.2 Comparison with the State-of-the-art Methods

We compare our proposed method with the state-of-the-art methods on
both VidSTG and HC-STVG datasets. The results on these two datasets
are shown in Table 5.1 and Table 5.2. From the results, we observe that:
1) Our proposed method outperforms the state-of-the-art methods by
a large margin on both datasets in terms of all evaluation metrics; 2)
SVG-net (ours) achieves better performance when compared with the
Vanilla model, indicating that it is more effective to use our ST-ViLBERT
module to learn cross-modal representations than the original ViLBERT
module; 3) Our proposed Temporal Boundary Refinement method can
further boost the performance. When compared with the initial tube
generation results from our SVG-net, we can further achieve more than
2% improvement in terms of all evaluation metrics after applying our
TBR-net to refine the tmeporal boundaries.

5.3.3 Ablation Study

In this section, we take the VidSTG dataset as an example to conduct the
ablation study and investigate the contributions of different components
in our proposed method.

Effectiveness of the ST-ViLBERT Module As shown in Table 5.1 and
Table 5.2, the video visual grounding results after using our SVG-net
are much higher than our baseline method Vanilla, which demonstrates
it is useful to additionally preserve spatial information when modeling
spatio-temporal information in the spatial visual grounding step.

It is also interesting to observe that the performance improvement
between our SVG-net and our baseline method Vanilla on the HC-STVG
dataset is larger than that on the VidSTG dataset, which indicates it is
more useful to employ the proposed ST-ViLBERT module on the HC-
STVG dataset. A possible explanation is that the HC-STVG dataset has
many complex multi-person scenes, which makes the spatial localization
task more challenging than the VidSTG dataset. Without pre-generating
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Table 5.2: Results of different methods on the HC-STVG dataset. “*"
indicates the results are quoted from the original work.

Method m_vIoU vIoU@0.3 vIoU@0.5
STGVT* [76] 18.15 26.81 9.48
Vanilla (ours) 17.94 25.59 8.75

SVG-net (ours) 19.45 27.78 10.12
SVG-net +

TBR-net (ours)
22.41 30.31 12.07

the tube proposals, our ST-ViLBERT can learn a more representative cross-
modal feature than the original ViLBERT because spatial information is
preserved from the input visual feature in our ST-ViLBERT.

Effectiveness of the TBR-net Our temporal boundary refinement method
takes advantage of complementary information between the anchor-based
and frame-based temporal boundary refinement methods to progres-
sively refine the temporal boundary locations of the initial object tubes
from our SVG-net. To verify the effectiveness of combining these two
lines of temporal localization methods and the design of our multi-stage
structure, we conduct the experiments by using different variants for
the temporal boundary refinement module. The results are reported in
Table 5.3. For all methods, the initial tubes are generated by using our
SVG-net, so these methods are referred to as SVG-net, SVG-net + IFB-net,
SVG-net + IAB-net, and SVG-net + TBR-net, respectively.

Through the results, we have the following observations: (1) For
the iterative frame-based method (IFB-net) and the iterative anchor-based
method (IAB-net), the spatio-temporal video grounding performance can
be slightly improved after increasing the number of stages. (2) The per-
formance of both SVG-net + IFB-net and SVG-net + IAB-net at any stages
are generally better than that of the baseline method SVG-net, indicat-
ing that either the frame-based or the anchor-based method can refine
the temporal boundaries of the initial object tubes. (3) Also, the re-
sults show that the IFB-net can bring more improvement in terms of
vIoU@0.5, while the IAB-net performs better in terms of vIoU@0.3. (4)
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Our full model SVG-net + TBR-net outperforms the two alternative meth-
ods SVG-net + IFB-net and SVG-net + IAB-net and achieves the best re-
sults in terms of all evaluation metrics, which demonstrates our TBR-net
can take advantage of the merits of these two alternative methods.

5.4 Summary

In this chapter, we have proposed a novel two-step spatio-temporal video
grounding framework STVGBert based on the visual-linguistic trans-
former to produce spatio-temporal object tubes for a given query sen-
tence, which consists of SVG-net and TBR-net. Besides, we have intro-
duced a novel cross-modal feature learning module ST-ViLBERT in our
SVG-net. Our SVG-net can produce bounding boxes without requiring
any pre-trained object detector. We have also designed a new Temporal
Boundary Refinement network, which leverages the complementarity
of the frame-based and the anchor-based methods to iteratively refine
the temporal boundaries. Comprehensive experiments on two bench-
mark datasets VidSTG and HC-STVG demonstrate the effectiveness of
our newly proposed framework for spatio-temporal video grounding.
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Conclusions and Future Work

As the increasing accessibility of personal camera devices and the rapid
development of network technologies, we have witnessed an increas-
ing number of videos on Internet. It can be foreseen that the number
of videos will continually grow in the future. The learning techniques
for video localization will attract more and more attentions from both
academies and industries. In this thesis, we have investigated three ma-
jor vision tasks for video localization, spatio-temporal action localiza-
tion, temporal action localization, and spatio-temporal visual ground-
ing, and we have also developed new algorithms for each of these prob-
lems. In this chapter, we conclude the contributions of our works and
discuss the potential directions of video localization in the future.

6.1 Conclusions

The contributions of this thesis are summarized as follows,

• We have proposed the Progressive Cross-stream Cooperation (PCSC)
framework to improve the spatio-temporal action localization re-
sults, in which we first use our PCSC framework for spatial lo-
calization at the frame level and then apply our temporal PCSC
framework for temporal localization at the action tube level. Our
PCSC framework consists of several iterative stages. At each stage,
we progressively improve action localization results for one stream
(i.e., RGB/flow) by leveraging the information from another stream
(i.e., RGB/flow) at both region proposal level and feature level.
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The effectiveness of our newly proposed approaches is demon-
strated by extensive experiments on both UCF-101-24 and J-HMDB
datasets.

• We have proposed a progressive cross-granularity cooperation (PCG-
TAL) framework, to gradually improve temporal action localiza-
tion performance. Our PCG-TAL framework consists of an Anchor-
Frame Cooperation (AFC) module to take advantage of both frame-
based and anchor-based proposal generation schemes, along with
a two-stream cooperation strategy to encourage collaboration be-
tween the complementary appearance and motion clues, In our
framework, the cooperation mechanisms are conducted in a pro-
gressive fashion at both feature level and segment proposal level
by stacking multiple AFC modules over different stages. Compre-
hensive experiments and ablation studies on THUMOS14, Activi-
tyNet v1.3, and UCF-101-24 datasets show the effectiveness of our
proposed framework.

• We have proposed a novel two-step spatio-temporal video ground-
ing framework STVGBert based on the visual-linguistic transformer
to produce spatio-temporal object tubes for a given query sentence,
which consists of SVG-net and TBR-net. Besides, we have intro-
duced a novel cross-modal feature learning module ST-ViLBERT in
our SVG-net. Our SVG-net can produce bounding boxes without
requiring any pre-trained object detector. We have also designed a
new Temporal Boundary Refinement network, which leverages the
complementarity of the frame-based and the anchor-based meth-
ods to iteratively refine the temporal boundaries. Comprehensive
experiments on two benchmark datasets VidSTG and HC-STVG
demonstrate the effectiveness of our newly proposed framework
for spatio-temporal video grounding.

6.2 Future Work

The potential directions of video localization in the future could be unify-
ing the spatial video localization and the temporal video localization into
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one framework. As described in Chapter 3, most of the existing works
generate the spatial and temporal action localization results by two sep-
arate networks, respectively. It is a non-trivial task to integrate these
two networks into one framework and optimize it as a whole. Similarly,
while we have made progresses on handling the spatial visual ground-
ing task and the temporal visual grounding task with our STVGBert in-
troduced in Chapter 5, these two tasks are still performed by two sep-
arate networks. We believe that it still needs more efforts in the future
to combine these two branches to generate the spatial and the temporal
visual grounding results simultaneously.
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