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“Science is magic that works.”

- Kurt Vonnegut, Cat’s Cradle



Abstract

For the field of quantum computing and technology to continue its growth and begin to solve truly useful

problems, it must overcome the limitations imposed by errors affecting quantum devices. Leading mod-

ern devices can be classed as “noisy intermediate-scale quantum” or NISQ devices. These are devices

that have not realised fault-tolerance nor utilise error correction, but nonetheless could solve genuinely

useful, classically intractable problems. However, the scalability and reliability of current NISQ devices

is limited by the impact of errors. This thesis uses the principles of quantum control to work towards

improving quantum technology reliability. By characterising the errors affecting a quantum device and

tailoring robust, dynamic control solutions, I am able to achieve superior performance in a trapped-ion

quantum device compared to its baseline or primitive operation. I begin by characterising our experi-

mental system, a trapped 171Yb+ ion. Following on, I demonstrate three quantum control techniques.

First, I work to improve the measurement fidelity of a trapped-ion hyperfine qubit using electron shelving

to a metastable level. Second, this work develops and demonstrates an error characterisation tool to dia-

gnose the correlation properties of errors affecting a quantum device. Building from this, I demonstrate

the use of dynamically corrected gates to both improve single-qubit gate fidelities and reduce error cor-

relations temporally between gates and spatially between qubits. Finally, I discuss and implement a

more robust and flexible two-qubit entangling Mølmer-Sørensen gate using phase modulation of the in-

teraction laser. All of this work adds to the “toolkit” of quantum control and can be used to improve both

the reliability of modern device performance – in particular by reducing susceptibility to noise – and as-

sist with building up to larger numbers of qubits and gates by tailoring more robust, scalable entangling

gates between qubits.
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CHAPTER 1

Introduction

“The universe is a big place, perhaps the biggest.” 1

- Kurt Vonnegut, Venus on the Half Shell

1.1 A brief introduction to quantum computing

During the last century, humanity developed a new technology potentially more revolutionary than any

that came before it: the electronic computer. A device with such enhanced calculation power, memory

resources and connectivity that it profoundly advanced the state of research and innovation, and cre-

ated entirely new fields of study. New classes of problems that had previously never even been con-

sidered now became tractable; month-long calculations could be achieved in seconds; knowledge could

be communicated across distances and in time frames that were previously unimaginable. The result

was extraordinary advancements throughout science, technology and society, ranging from medicine to

warfare. Today, there is barely a job existing that does not rely partially or wholly on the power of

computers.

In parallel with the development of the computer, a new field of physics was being born. Quantum

mechanics, largely emerging throughout the 20th century, shone a new light on the microscopic world

of atoms, electrons and other fundamental particles, revealing counter-intuitive – even seemingly im-

possible – behaviour. As the technological wars over the hardware-development of the computer began

to settle, with advancements in semiconductor-based microprocessors rendering their competition ob-

solete, people began to question whether the bizarre rules of quantum physics could be used to further

enhance computer performance, or even enable new types of computation entirely [11–13].

1...but let’s start small.

1
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The state of “quantum computing” progressed significantly in the late 20th century both in software, with

the developments of novel algorithms exploiting the properties of quantum physics [14, 15], and hard-

ware, with the first demonstrations of quantum logic gates in a trapped-ion based quantum device [16].

Alongside these advancements were innovations in the field of error correction, trying to ensure that an

eventual quantum processor would be robust and reliable [17, 18]. By 2021, quantum processors have

been demonstrated with tens of qubits [19], even achieving “quantum advantage” [20, 21], wherein a

quantum computer solves a specific problem that would classically require an unfeasible computational

time – possibly even longer than the lifetime of the computer [22]. Large scale quantum entangle-

ment has been demonstrated, with the largest entangled states created using up to 16 superconducting

qubits [23, 24], 18 photonic qubits [25], and up to 24 trapped-ion qubits [26–28].

To build a quantum device, the system is required to be highly isolated, small and cold in order to min-

imise its interaction with the environment; any contact can degrade both the quality of the information

stored and the performance of an algorithm run on the device. Several physical systems are being ex-

plored as quantum platforms, each with its own advantages and disadvantages. These include trapped

ions [29], superconducting qubits via circuit quantum electrodynamics (cQED) [30], electron spins con-

fined in semiconductor quantum dots [31], photon-based systems using linear optics [32], nitrogen-

vacancy (NV) centres in diamonds [33], and even exotic topological quasi-particles termed “Majorana

fermions” [34].

Despite significant progress, modern quantum devices are still limited by errors. While these devices are

powerful, they are extraordinarily sensitive to noise in their environment or in the electromagnetic fields

used to manipulate them. Just as noise can interfere with classical devices, it can similarly induce errors

in quantum processors. Where these technologies diverge, however, is the way in which the resulting

errors affect an algorithm. The probability of error in classical computers has a discrete outcome for

every gate – either an error occurs or it does not. In a quantum computer, errors accumulate. They build

up over the course of an algorithm, eventually reaching a point at which the results become unreliable.

Analogous to classical computers, quantum error correction routines are being designed to provide ro-

bustness to these errors; however, current proposals require extremely large numbers of qubits and gates

for their implementation [35, 36].

The work in this thesis is concerned with understanding the types of noise that induce errors in quantum

devices and minimising their effect before the application of quantum error correction. By characterising

noise to understand how it impacts the device, one can tailor specific solutions to protect the device –
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and any operations run on it – from the noise, using techniques sampled from the field of “quantum

control”.

In this work, I will demonstrate several examples of open loop, dynamic control solutions using trapped
171Yb+ ions. I begin by outlining a selection of background material on general quantum theory, intro-

ducing notation and formalisms that will be used throughout this work. In Chapter 2 I discuss both the

general experimental implementation of a trapped-ion quantum device, and the specific details of the ion

traps and control systems used in this work. Chapter 3 presents an in-depth discussion of selected atomic

physics of 171Yb+, in particular characterising the 2S1/2 ↔ 2D5/2 transition at 411 nm. In this chapter,

I will demonstrate an electron-shelving method to decrease errors in the final qubit measurement, which

is a critical component of the quantum processor required to interpret the results of a quantum algorithm

accurately.

Chapters 4-8 contain demonstrations of control techniques for single and two-qubit gates in 171Yb+.

In Chapter 4, I present an analytic framework to interpret the results of two common quantum error

characterisation protocols, randomised benchmarking and gate-set tomography, by mapping quantum

circuits to random walks. In Chapter 5 I show that this framework can be used to predict the results

of randomised benchmarking and gate-set tomography under different types of noise (static vs. rapidly

varying), and develop methods to detect static error processes. In Chapter 6 I extend this work to

quantitatively measure the strength of noise with different correlation lengths affecting a quantum circuit.

I experimentally validate this framework and provide the first demonstration that dynamically corrected

gates, a form of quantum control, can reduce correlated errors affecting single-qubit gates. Chapters 7

and 8 demonstrate a two-qubit quantum control technique using phase-modulated lasers to reduce errors

in two-qubit “Mølmer-Sørensen” entangling gates. The errors treated arise due to residual coupling

between the qubits and the bosonic oscillator modes at the gate’s conclusion, which can occur due to

poor gate design or noise in the control laser frequency or amplitude. Chapter 7 presents the relevant

background theory as well as new derivations about the evolution of the qubits under the application of

the Mølmer-Sørensen gate, and Chapter 8 provides the experimental validation of this technique.

1.2 Background theory

I begin this thesis with an introduction to some of the basic concepts upon which quantum computing

relies – how quantum information is encoded, manipulated, and measured.
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1.2.1 The quantum bit

The fundamental unit of information in quantum computing is called the “qubit”, or quantum bit. Just as

a classical computer stores and manipulates information using classical bits, qubits are used to store and

process quantum information. However unlike the bit, which can only take one of two discrete values,

a qubit is able to exist in “superposition states”, which are linear combinations of two extreme values.

The space of all possible qubit states is a two-dimensional Hilbert space spanned by the two vectors

|0〉 ≡

(
1

0

)
|1〉 ≡

(
0

1

)
, (1.1)

which are given the labels |0〉 and |1〉 analogous to a classical bit. The qubit state can be written using

“Dirac” or “bra-ket” notation, using the “ket” to label a quantum state, |ψ〉, and a “bra” to label its

complex conjugate, 〈ψ|. The inner product between a bra and ket is given by a “braket”, 〈φ|ψ〉. A

general quantum state can be made using any complex, linear combination of the states |0〉 and |1〉 as

long as the vector is normalised to one. That is,

|ψ〉 =

(
a1

a2

)
, 〈ψ|ψ〉 =

(
a∗1 a∗2

)(a1

a2

)
= |a1|2 + |a2|2 = 1. (1.2)

The space of all possible qubit states can be visualised using the “Bloch sphere”, a two-dimensional

spherical surface with unit-length radius, as shown in Fig. 1.1. A qubit state is represented by the

“Bloch vector”: a unit-length vector, r, that points to a position on the surface of the sphere with

Cartesian coordinates (rx, ry, rz) and spherical coordinates (|r| = 1, θ, φ). The two basis states |0〉 and

|1〉 are conventionally assigned to the positive and negative poles along the z-axis. A general state |ψ〉

can then be written as a superposition of |0〉 and |1〉 using either the longitudinal and azimuthal angles,

θ and φ, or the Cartesian coordinates,

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (1.3)

=
1√
2

[√
1 + rz |0〉+

rx + iry√
1 + rz

|1〉
]
, (1.4)

with the limit |ψ〉 → |1〉 as (rx, ry, rz)→ (0, 0,−1).

The basis states |0〉 and |1〉 are actually eigenstates of the generator of rotations about the z-axis, called

the Pauli-z spin matrix, σ̂z . There are three Pauli matrices in total corresponding to the infinitesimal

generators of rotation about the three axes, x, y and z. The set containing the three Pauli matrices
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FIGURE 1.1. Qubit representation using the Bloch sphere. A pure quantum state can be represented
as a point on the two-dimensional surface of the unit-radius Bloch sphere. The basis states |0〉 and |1〉
are shown as the antipodal pole positions along the z-axis. The positive and negative basis states in the
x- and y-bases can be expressed as superpositions of the z-basis states.

in addition to the two-dimensional identity matrix spans the space of all two-dimensional Hermitian

matrices. The Pauli matrices can be written as follows,

Î =

(
1 0

0 1

)
, σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
. (1.5)

Just as the poles along the z-axis of the Bloch sphere correspond to the two eigenstates of σ̂z , the poles

along the x- and y-axes are the eigenstates of the σ̂x and σ̂y operators respectively. The ±σ̂x and ±σ̂y
eigenstates can be written as in terms of the σ̂z basis states, {|0〉 , |1〉},

|+〉x ≡
1√
2

(
1

1

)
, |−〉x ≡ 1√

2

(
1

−1

)
, |+〉y ≡

1√
2

(
1

i

)
, |−〉y ≡ 1√

2

(
1

−i

)
, (1.6)

such that σ̂x |+〉x = +1 |+〉x, and so on for the other states.

Mixed Quantum States

Until now, we have only considered “pure” quantum states. That is, states that contain all of the relevant

information needed to describe them. Pure states are not even restricted to a single qubit – they can

also refer to entangled multi-qubit systems, as long as all components of the system are known and

measurable. If a quantum system has some coupling to either the environment or to an unmeasurable

system generally, then it is referred to as a “mixed” quantum state. Due to the environmental coupling,

we cannot describe or measure all of the information needed to characterise the system. Instead, a mixed
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state is expressed as a statistical ensemble of pure states, as we must average over all possibilities of the

state of the environment.

Unlike a pure state, mixed states cannot be represented in Dirac notation. Instead, we use a formalism

called a “density matrix” to represent them, containing the probabilities for the state to be measured in

the basis states along the diagonal, and the complex “coherences” (or relative phases) between the basis

states on the off-diagonals. A density matrix, commonly represented by the symbol ρ, is a Hermitian,

positive-definite linear operator described by a linear combination of pure states with probabilities λk

ρ =
∑
k

λk |ψk〉 〈ψk| , λk ∈ R. (1.7)

All quantum states, mixed or pure, must obey Tr[ρ] = 1 to conserve probability; it is equivalent to stating

that the sum of a state’s probability densities (modulus squared probability amplitudes) over a complete

orthonormal basis must equal one. Pure states can also be expressed as density matrices and have the

unique property Tr[ρ2] = 1, while for mixed states Tr[ρ2] < 1. Indeed, the parameter Tr[ρ2] is called the

“purity” of the state, which can take an upper value of 1 (for a pure state) and a lower value of 1/d for

a d-dimensional system. For a qubit, the minimum purity is 1/2, corresponding to a completely random

system, containing no meaningful information. It is equivalent to a classical coin flip.

The mixed state can also be visualised using the Bloch sphere, however, the point now lies within the

sphere’s volume, described by a Bloch vector with length less than one. The maximally mixed state

corresponds to a zero-length Bloch vector at the origin of the sphere. This state has equal probability to

be measured in the positive and negative eigenstates along all three axes, and hence contains no useful

information. The Cartesian coordinates of a mixed state can be used to express the density matrix in

terms of the Pauli matrices as

ρ =
1

2
(̂I + rxσ̂x + ryσ̂y + rzσ̂z). (1.8)

The trace operation can then be used to decompose a density matrix into its different Pauli components

using

rα = Tr[ρσ̂α] (1.9)

for α ∈ {x, y, z}.
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1.2.2 Quantum operators and quantum channels

To modify a qubit state, we act upon it using a two-dimensional matrix called an “operator”, Û . This

operator must be unitary in order to conserve probability. A pure quantum state can be represented in

Dirac notation, |ψ〉, and is acted upon by a unitary operator via right multiplication to the qubit state,

Û(|ψ〉) = Û |ψ〉 . (1.10)

Here, we use the notation Û(|ψ〉) to describe the general concept of an operator “acting” on a state.

Unitary operators for a single qubit are rotation operators, moving the Bloch vector around the surface

of the sphere. They can also be used to translate density matrices, however, the action is now given by

conjugation,

Û(ρ) = ÛρÛ †. (1.11)

In this case, the unitary evolution is an example of a “quantum channel”.

In general, a quantum channel can describe either a coherent process, such as the controlled manip-

ulation of a qubit by a electromagnetic field, or an uncontrolled noise process, such as interference

from a Markovian noise bath. A quantum channel is a linear, completely positive, trace-preserving map

(CPTP) that maps density matrices to other density matrices. Unlike a unitary operator, which must

preserve a quantum state’s purity, quantum channels can describe processes that reduce purity through a

phenomenon called “decoherence”. Decoherence causes a quantum state to lose information. For some

types of decoherence, such as depolarisation, it can cause an initially pure qubit state to be eventually

degraded to the maximally mixed state.

To describe the action of a quantum channel Λ̂ on a density matrix ρ, we decompose the action in terms

of the constituent “Kraus operators”, Âk,

Λ̂(ρ) =
∑
k

ÂkρÂ
†
k. (1.12)

The Kraus operators are a set of linear operators that obey the completeness relation,∑
k

Â†kÂk = Î. (1.13)

The number of Kraus operators required to represent the action of Λ̂ denotes the channel’s “rank”. A

unitary operator is described using a “pure” channel with rank one. In this thesis, I will utilise the
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channel notation to describe error channels, often associated with either qubit decoherence or noise on

the control field. Two basic examples of quantum channels are listed here.

(1) The bit flip channel: in analogy to a classical bit flip error, a quantum state can be flipped about the

σ̂x-axis with probability p. The rank-two channel describing this process is

Λ̂(ρ) = (1− p)̂Iρ̂I + pσ̂xρσ̂x, (1.14)

created using two constituent Kraus operators,

Â1 =
√

1− p Î Â2 =
√
p σ̂x (1.15)∑

k

Â†kÂk = (1− p)̂I + p̂I = Î. (1.16)

(2) Depolarisation: qubit depolarisation is a form of decoherence describing the uniform contraction

of the Bloch sphere, or equivalently the qubit state becoming more highly mixed. For a depolarisation

probability p, this process is generated by three equal-weight Pauli channels in addition to the identity

operator,

Â1 =

√
1− 3p

4
Î, Â2 =

√
p

4
σ̂x, Â3 =

√
p

4
σ̂y, Â4 =

√
p

4
σ̂z (1.17)

∑
k

Â†kÂk =

(
1− 3p

4

)
Î +

p

4
(3̂I) = Î. (1.18)

The four Kraus operators correspond to a rank-four quantum error channel,

Λ̂(ρ) =

(
1− 3p

4

)
Îρ̂I +

p

4
(σ̂xρσ̂x + σ̂yρσ̂y + σ̂zρσ̂z) (1.19)

= (1− p) ρ+
p

2
Î (1.20)

where I have used Eqn. (1.8) to show that

Î =
1

2
(̂Iρ̂I + σ̂xρσ̂x + σ̂yρσ̂y + σ̂zρσ̂z). (1.21)

1.2.3 Definitions of fidelity

To quantify the accuracy of a quantum state compared to an ideal state, I introduce the concept of

“fidelity”, F . Fidelity measures the closeness of two quantum states or operators, which can be used

as a quantitative measure of the success of an algorithm. The fidelity of an arbitrary quantum state
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represented by the density operator ρ when compared to an ideal density operator σ is given by

F(ρ, σ) = F(σ, ρ) = Tr
[√√

ρ σ
√
ρ

]2

. (1.22)

If ρ is a pure state, then ρ2 = ρ =
√
ρ = |ψ〉 〈ψ|, and the fidelity can be rewritten in several useful

simplified forms.

F(ρ, σ) = Tr
[√
|ψ〉 〈ψ|σ |ψ〉 〈ψ|

]2

= 〈ψ|σ|ψ〉Tr
[√
|ψ〉 〈ψ|

]2

= 〈ψ|σ|ψ〉

= Tr [|ψ〉 〈ψ|σ]

= Tr [ρσ] (1.23)

When both ρ and σ represent pure states, the expression can be further simplified. If we consider a

(pure) state ρ = |ψ〉 〈ψ|, then the fidelity comparing to the ideal state σ = |φ〉 〈φ| is given by the state

overlap

F = |〈φ|ψ〉|2 . (1.24)

All of these expressions calculate fidelity by comparing two quantum states with one another, often taken

to be the real and ideal outputs of an operation or algorithm. One can instead quantify the fidelity of the

individual operations. In this case, the fidelity for an operator Ũ and an ideal operator Û of dimension d

is given by the Hilbert-Schmidt inner product

F(Ũ, Û) =

∣∣∣∣1dTr
[
Û †Ũ

]∣∣∣∣2 . (1.25)

In this work, we refer to the metric in Eqn. (1.25) as “trace fidelity”.

1.2.4 Further resources

The work in this thesis will draw from several fields of research, for which excellent comprehensive

resources exist for a beginner reader. A cornerstone of the ion trapping literature is the paper “Experi-

mental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions” published in 1998 by

D. J. Wineland et al. [37]. While this paper was published 23 years ago at the time of writing this thesis,

it remains one of the most comprehensive and relevant resources for understanding the basic physics
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of ion trapping, the behaviour of trapped ions, and the manipulation of ions with a laser or microwave

field. Specific details about a trapped ion system using the 171 isotope of Ytterbium can be found in

work by S. Olmschenk, both the 1997 paper [38] and his thesis [39]. For an introduction to the field

of quantum information, I highly recommend a two-part lecture series by J. Preskill [40–42]. Further-

more, J. Preskill’s lecture notes for the course Physics 229 given at the California Institute of Technology

provide a broad and in-depth technical analysis of quantum computing and information [43]. Although

the original notes were published in 1998, several chapters have been updated between 2015-2020 to in-

corporate recent advancements and achievements. A broad review of quantum computing can be found

in Nature by T. D. Ladd et al. in 2010 [44], discussing the basic principles of quantum computing as

well as its implementation via different physical architectures. An excellent introduction to the concept

of quantum error correction, including several illustrations of basic error correcting codes, can be found

in the introductory paper by S. J. Devitt et al. [45]. To understand the current state of quantum devices

during the “NISQ” (Noisy Intermediate-Scale Quantum) era, the 2018 paper by J. Preskill [46] is a good

place to start. Finally, underpinning this entire thesis is the concept of quantum control. To understand

quantum control and its applications, a five-part video series by the startup quantum company Q-CTRL,

for which I worked part-time during my PhD, provides a good non-technical introduction [47–51]. A

more technical overview about the development and theoretical foundation of error compensating pulses

is given by J. T. Merrill and K. R. Brown [52]. Due to the existence of such comprehensive resources,

I have omitted in-depth introductions and derivations for concepts from some of these fields. I have in-

cluded derivations for several important topics throughout this work where I feel a strong background is

particularly relevant for understanding the work being communicated in this thesis, such as ion trapping,

microwave-based ion manipulation, and quantum control.

The basic quantum concepts presented here are a vital part of the foundation upon which this thesis is

built. Moving ahead, I will continue to explore and utilise these ideas, going into greater depth about

how quantum operators work, and the manner in which errors can arise and affect quantum algorithms.

In the next chapter, I will introduce the experimental setup which was used to explore these fundamental

quantum concepts and obtain the results in this thesis.



CHAPTER 2

Experimental Details

“Another flaw in the human character is that everybody wants to build and nobody wants to

do maintenance.”

- Kurt Vonnegut, Hocus Pocus

For the work contained in this thesis I use a system of trapped 171Yb+ ions, ranging from a single ion to a

string of 10 confined ions. In this section, I introduce the basic hardware required to trap and manipulate

ions, as well as discuss the intrinsic properties of the 171Yb+ itself. Finally, I present several basic

examples of the manipulation 171Yb+ ions with a microwave field, showing Rabi flops and Ramsey

spectroscopy.

2.1 Linear Paul traps

Creating an electromagnetic potential that can confine a charged particle in three dimensions is non-

trivial. Indeed, Earnshaw’s theorem states that it is not possible to create such a potential using only

static electric fields. If two directions are confining, then the third must be anti-confining. This prin-

ciple has its origins in Gauss’s law for free space, which requires that electric fields be divergenceless.

Mathematically, this means that an electric potential U(r) must satisfy Laplace’s equation,

−∇2U = 0 (2.1)

where∇2 = ∇ · ∇ is the Laplace operator and∇ =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]
is the divergence (or “div”) operator.

To contain a positively charged particle, the confining electromagnetic field must have a stable equilib-

rium point. Such a position requires a local minimum in the field, where all lines of force lines point

inwards. This would ensure that any small deviation away from the equilibrium position is quickly cor-

rected by a restoring force, returning the particle to its original position. If, in any direction, the force

11
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lines point away from the equilibrium position, then it is an unstable equilibrium point. In that case, any

deviation from the equilibrium would be accelerated by the force in the anti-confining direction, causing

the charged particle to be expelled from the trap. Eqn. (2.1) can be equivalently expressed by stating that

no point in free space can be a complete source or sink for the force lines created by an electric field,

implying that it is not possible to create a stable equilibrium point if we are limited to solely using static

electric fields. Rather, only unstable “saddle points” can be created. This suggests that more complex

solutions must be sought to engineer a confining potential in three dimensions.

Two potential solutions were suggested. Firstly, the quadrupole radio-frequency (RF) Paul trap was de-

signed by Wolfgang Paul to create a “dynamic” electric potential using time-varying electric fields [53–

55]. Alternatively, the magnetic-field-based Penning trap was developed to create a “static” confining

potential using a combination of static electric and magnetic fields [56–59]. In this thesis, I will focus

on the Paul trap; for details about building and operating a Penning trap I suggest H. B. Ball’s thesis as

a resource [60].

One disadvantage of the RF Paul trap is that while using a dynamic electric potential enables confine-

ment, it also induces a driven “micromotion” in the charged particles at the frequency of the RF field,

Ωt. Any such micromotion can inhibit the efficacy of laser cooling. The quadrupole RF trap design has

a central “RF-null” location, where the particle would experience minimal micromotion; however, this

position can only be occupied by a single particle. The Coulomb repulsion between similarly charged

particles forces any additional particles away from the RF-null region. To refine the Paul trap, the linear

Paul trap was developed with an elongated RF-null area where multiple ions – even strings of many ions

– could be confined along a line [61]. In this work I use the linear version of the RF Paul trap.

The linear trap is created using four electrodes to provide radial confinement and two endcaps to provide

axial confinement, as illustrated in Fig. 2.1(a),(b). Ideally, the electrodes are created with hyperbolic

cross-sections to minimise anharmonicities, however, in practice circular cross-sections are an accept-

able substitute as they still produce an approximately harmonic potential along the trap axis and are gen-

erally easier to fabricate. The longitudinal direction parallel to the electrodes corresponds to the weakest

trapping axis, and is assigned to the z-axis, often referred to as the “axial direction”. The surface of

the electrodes are separated from the trap axis by distance R. To create a three-dimensional confining

potential, equal DC voltages, U0, are applied to both of the trap endcaps to confine the particles axially

along the z-axis. To confine the particle in the radial xy-plane, an RF voltage, V0 cos (Ωtt), is applied

to two diagonally opposite electrodes while the remaining two are grounded. Along the axial direction



2.1 LINEAR PAUL TRAPS 13

FIGURE 2.1. The rod-style linear Paul trap. (a) Schematic of the trap showing two DC endcaps at
voltage U0, two electrodes driven with an RF voltage, V0 cos (Ωtt), and two electrodes held at ground.
(b) One of the ion traps used in this work created with metal rod electrodes shown (top) enlarged for
the trap details and (bottom) embedded within the vacuum chamber. Two thin endcaps can be seen
protruding from either side in the top image. (c) The RF electrodes create a saddle potential in the radial
xy-plane, which is inverted at a frequency Ωt. The resulting equations of motion for a charged particle
correspond to a harmonic trapping pseudo-potential, which is confining along both axes, as shown in
(d).

we can calculate the potential due to the DC endcap voltages, U0. At the trap centre, the potential can

be approximated as [37, 61]

Φz(x, y, z) =
κU0

z2
0

[
z2 − 1

2
(x2 + y2)]

]
=:

m

2q
ω2
z

[
z2 − 1

2
(x2 + y2)]

]
(2.2)

ωz :=

√
2qκU0

z2
0m

(2.3)

for a particle with mass m and charge q. Here, κ is a geometric factor specific to the trap construction,

z0 is half the axial trapping region length, and ωz is the angular frequency describing oscillations along

the axial direction. The potential results in an axial equation of motion

d 2z

dt2
(t) = −2qκU0

z2
0m

z(t) = −ω2
zz(t) (2.4)

describing harmonic motion along the z-axis with angular frequency ωz . This motion can be considered

as macroscopic motion (or “macromotion”) when compared to the RF-driven, high frequency micromo-

tion. The macromotion oscillation frequencies along each of the trap axes, {ωx, ωy, ωz}, are often called

the “trap” or “secular” frequencies.
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The radial confinement of an RF Paul trap works by creating a saddle potential that is continuously

inverted [55], as illustrated in Fig. 2.1(c). In one direction, the saddle potential is confining, enabling

stable harmonic motion of the charged particles to continually refocus the particles to their original

positions. In the other direction, it is anti-confining and hence “defocuses” the particles by increasing

their amplitude until they escape the trap. By periodically inverting the saddle potential using an RF

field, it alternates between focusing and defocusing the particle, creating a “pseudo-potential” that is

effectively confining in all three dimensions (Fig. 2.1(d)).

Mathematically, this can by shown by deriving the equations of motion for a charged particle along the

two radial axes. The radial time-varying potential near the trap axis is approximated as

ϕr(x, y, t) =
V0

2

[
1 +

x2 − y2

R2

]
cos (Ωtt). (2.5)

Combining the contributions from the static axial and time-varying radial potentials, Eqns. (2.2) and

(2.5), we can write the Hamiltonian for a charged particles with mass m and charge q,

H =
|p|2

2m
+ q [ϕr(x, y, t) + Φz(x, y, z)] . (2.6)

Here, p = [px, py, pz] is the momentum vector, with |p|2 = p · p = p2
x + p2

y + p2
z . Using the Hamilton

equations of motion,
∂H
∂px

=
dx

dt
and

∂H
∂x

= −dpx
dt

, (2.7)

we can derive the equations of motion for a charged particle as follows.

d 2x

dt2
(t) =

∂

∂t

(
∂H
∂px

)
= − 1

m

(
∂H
∂x

)
= − q

m

[
V0

R2
cos (Ωtt)−

κU0

z2
0

]
x(t) (2.8)

The derivation for the equation of motion along the y-axis follows similarly.

The equations of motion can be rewritten as in the form of the classical Mathieu equations,

d 2x

dζ2
+ [ax + 2qx cos (2t)]x(t) = 0 (2.9)

d 2y

dζ2
+ [ay + 2qy cos (2t)]y(t) = 0 (2.10)
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by substituting

ζ =
Ωtt

2
(2.11)

ax = ay = − 4qκU0

z2
0mΩ2

t

(2.12)

qx = −qy =
2qV0

mR2Ω2
t

. (2.13)

The Mathieu equations can be solved using Floquet theory to derive expressions for x(t) and y(t) that

contain two harmonic oscillation terms: (1) a smaller amplitude oscillation at frequency Ωt, which

describes the driven “micromotion” that is induced by the trap RF; and (2) a larger amplitude oscillation

at frequency ω′r, the “secular” motion term. Assuming the charged particles are located closed to the

RF null position of the trap potential, and ax � qx � 1 and ay � qy � 1, we can neglect the fast

oscillating micromotion terms. In this case, the equations of motion correspond to a “pseudo-potential”

of the form

Φr(x, y) =

(
qV 2

0

4mΩ2
tR

4
− κU0

2z2
0

)
(x2 + y2)

=:
m

2q
ω′r

2
(x2 + y2) (2.14)

ω′r :=

√
q2V 2

0

2m2Ω2
tR

4
− qκU0

z2
0m

=:

√
ω2
r −

1

2
ω2
z (2.15)

ωr :=
qV0√

2mΩtR2
(2.16)

where ωr is the secular frequency in the absence of the static axial potential. The addition of the field

produced by the endcaps weakens the radial potential, reducing the secular oscillation frequency from

ωr to ω′r. Both secular frequencies along the x- and y-axes are equal and denoted ωr in the case of an

isotropic radial potential as considered here. I defer full derivations of the three-dimensional motion

of charged particles in a linear Paul trap to Chapter 7. This includes the calculation of separate radial

frequencies along the x- and y-axes due to the non-isotropic radial potentials required for laser cooling.

More extensive derivations of the ion trap dynamics using Floquet theory and including faster rotating

terms at Ωt and 2Ωt can be found in Refs. [37, 39, 62].
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2.2 The 171Yb+ ion

To perform the experiments in this thesis, I utilise the 171 isotope of Ytterbium to realise a qubit. The
171Yb+ ion has a rich history for use in metrology as a frequency standard [63] and has been utilised for

quantum computing research by several groups including Refs. [38, 64, 65]. The 171Yb+ ion has a spin-

1/2 nucleus, resulting in a hyperfine splitting of its internal energy levels due to the interaction between

the magnetic moments arising from the electron and nuclear spins. We choose to encode our qubit across

the 2S1/2 hyperfine ground states, which are split by 12.64 GHz, denoting |0〉 := 2S1/2 |F = 0,mF = 0〉

and |1〉 := 2S1/2 |F = 1,mF = 0〉. Using a hyperfine qubit has several advantages. The upper states

are extremely long-lived, far longer than any other relevant timescales in our experiments, and the qubit

can be encoded in a pair of first-order magnetic-field insensitive states, called “clock states” due to

their common use in metrology. Furthermore, as the qubit control field is on the order of several to

tens of GHz, rather than THz as required for an optical transition, it enables the use of well established

and highly controllable microwave systems ranging from standard telecommunication hardware 1 to

novel technologies providing ultra-low phase noise, such as a cryogenically cooled sapphire oscillator

(CSO) [66]. The benefits of reducing phase noise in control systems has been studied by Ball et al. [67],

with forthcoming experimental results set to demonstrate the improvement in gate fidelity with low

phase noise microwave systems.

Selected energy levels and laser transitions for 171Yb+ are shown in Fig. 2.2. The 2S1/2 qubit levels are

located in the bottom left. The qubit transition is first-order magnetic-field insensitive, with frequency

ωq/2π = 12642812118.466 + (310.8)B2 Hz (2.17)

where B is the magnetic field magnitude in Gauss. Doppler cooling, state preparation and state de-

tection are all performed on the 2S1/2 ↔ 2P1/2 transition using a diode laser near 369.5 nm2, which

is nominally tuned to excite the inner 2S1/2 |F = 1〉 ↔ 2P1/2 |F = 0〉 transition. The laser is split

into three separate beam paths for these three objectives. In each beam path, acousto-optic modulators

(AOMs) are used for switching and precise frequency control, and electro-optic modulators (EOMs)

induce sidebands around the centre laser frequency. For Doppler cooling, a second-order sideband in-

duced by an EOM driven at 7.374 GHz 3 simultaneously excites the 2S1/2 |F = 0〉 ↔ 2P1/2 |F = 1〉

1Keysight E8267D Vector Signal Generator (VSG)
2Moglabs ECD Littrow Configuration
3Newport EOM Model 4851, driven by a Vaunix Lab Brick LMS-103
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FIGURE 2.2. Selected energy levels and laser transitions in 171Yb+ (not to scale). The qubit states
are encoded in 2S1/2, shown in the bottom left corner. The lasers used in this thesis are highlighted,
including the 370 nm laser used for Doppler cooling, state preparation and detection, the 935 nm, 638 nm
and 760 nm laser used for repumping, and the 411 nm laser introduced in Chapter 3 for state detection
via electron shelving. Additional states due to Zeeman splittings are omitted for visual clarity and
dashed grey lines represent spontaneous decays. The linear Zeeman shifts for many of the energy levels
depicted are tabulated on the right hand side in MHz/G.

transition, ensuring that all levels within the qubit manifold are addressed. A separate 2.105 GHz EOM 4

in the state preparation beam path is used to optically pump any population initially in 2S1/2 |F = 1〉

to 2S1/2 |F = 0〉 via 2P1/2 |F = 1〉 at the start of each experiment. Finally, standard state detection is

performed by selectively exciting the |1〉 qubit state using the 370 nm light with no modulation. As such,

the |1〉 state is referred to as the “bright” qubit state and |0〉 as the “dark” qubit state. Details about these

fundamental techniques for ion trapping – Doppler cooling, optical pumping, and state detection via a

cycling transition – can be found in Ref. [37].

Decays and occasional collisions necessitate the use of “repump” lasers to clear out any auxiliary states,

returning the ion to the qubit manifold. A decay from 2P1/2 to 2D3/2 that occurs with 0.5 % probability

removes the ion from the Doppler cooling cycle. We utilise a diode laser at 935 nm 5 to repump the ion

via 3D[3/2]1/2, adding a 3.1 GHz EOM-induced sideband 6 to simultaneously address both hyperfine

levels. Collisions can occasionally cause the ion to transition to the long-lived 2F7/2-state, with a lifetime

4QUBIG EOM EO-T2100M3 driven by a Mini-Circuits VCO ZX95-2252C-S+
5Moglabs ECDL Littrow Configuration
6EOSPACE fibre EOM PM-0K5-10-PFA-PFA-935 driven by a Vaunix Lab Brick LSG-602-13
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in excess of 5 years [68]. Repumping from the 2F7/2-state has traditionally been achieved via the
1D[5/2]5/2 level with a 638 nm diode laser 7 that was scanned across a 5 GHz range to clear out both

hyperfine levels. It was also noted that the high power 355 nm pulsed laser used for Raman transitions

was also able to repump the ion from 2F7/2, although we are currently unsure of the mechanism via

which this occurs. Two new lasers at 411 nm and 760 nm are introduced in Chapter 3 for the purpose of

electron shelving on the 2S1/2 ↔ 2D5/2 transition to improve the detection fidelity. The 411 nm laser 8

is used for shelving and the 760 nm laser 9 is introduced to more efficiently clear out population in the
2F7/2 levels via 1D[3/2]3/2. A 5.26 GHz EOM is used for the 760 nm to address both 2F7/2 hyperfine

levels simultaneously 10.

Finally, in order to engineer two-qubit entangling gates, we employ a high power pulsed laser at 355 nm

to create an optical frequency comb 11, with 2.5 W average power,∼ 80 MHz repetition rate, and 5-10 ps

pulse duration. The 355 nm wavelength is 66 THz red detuned from 2P3/2 and 33 THz blue detuned

from 2P1/2. This division minimises the potential Stark shift induced by the laser, with the contributions

from the two P manifolds destructively interfering and approximately cancelling [69]. The 355 nm laser

interacts with the ion via a “two-photon Raman interaction”, wherein one photon is absorbed by the ion

and another is emitted through stimulated emission, essentially simultaneously. The result is an effective

transition with a frequency equivalent to the difference frequency of the two photons. Further details

about inducing a Raman transition in 171Yb+ using a pulsed laser can be found in Ref. [70].

2.3 Trapping and optical setup

For the experiments in this thesis, I utilise two different linear Paul ion traps. One is a “rod trap”,

which is constructed with electrodes that are long cylindrical metal rods and is shown in Fig. 2.1(b).

The rod trap is used for the quantum characterisation, validation and verification (QCVV) experiments

in Chapter 5. The remaining work in this thesis uses a “blade-style trap” [71], which operates in a

similar manner to the rod trap, but replaces cylindrical metal rods with rigid blades with circularly-

arced edges. The blade trap has the advantage of mechanical stability and greater optical access due

to the larger solid angle, improving fluorescence collection efficiency. For details about the blade trap

7Moglabs CEL
8Moglabs LDL001 Littow Configuration with a Moglabs Fast Servo Controller (FSC)
9Moglabs CEL002

10EOSPACE fibre EOM PM-0S5-05-PFA-PFA-760-UL driven by a Vaunix Lab Brick LSG-602
11SpectraPhysics Vanguard 355-2500
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FIGURE 2.3. Setup of the blade-style trap. (Left) The vacuum chamber containing the blade trap is
shown inside the red box. The white ring on the left holds the permanent magnet setting the quantisation
field. (Right) Photo of the gold-plated blade trap in its holder, as well as a example string of eight
171Yb+ ions (bottom right) fluorescing due to excitation from the Doppler cooling laser.

construction, see A. R. Milne’s forthcoming thesis [72]. An image of the blade trap and its surrounding

setup is shown in Fig. 2.3. Both traps performances’ with a single qubit have been characterised using a

protocol called randomised benchmarking (RB), which can be used to extract an average gate error (see

Section 4.1.3 for details on the protocol). Using the cylindrical rod trap, we measure an average gate

error of pRB = 5.99× 10−5 and a state preparation and measurement error (SPAM) κ = 3.64× 10−3.

On the blade-style trap, we record an average error pRB = (1.89± 0.12)× 10−5 and a SPAM error of

κ = (3.3± 0.1)× 10−3. These values are sufficiently low to ensure that any engineered errors used

in this thesis dominate the intrinsic background errors, in particular for the experiments presented in

Chapter 5 and Chapter 6. As most of the work in this thesis was developed using the blade-style trap,

I proceed with a description of the setup used for the blade trap experiment. Much of this information,

however, will also be relevant to the rod trap setup.

The ion is confined in a blade-style linear Paul trap with RF frequency Ωt/2π = 19 MHz and secular

trap frequencies {ωx, ωy, ωz}/2π = {1.6, 1.5, 0.5}MHz (Fig. 2.3). The trap is contained in a octagonal

vacuum chamber, which is pumped with a Non-Evaporable Getter (NEG) pump and an ion pump to
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FIGURE 2.4. Simplified overview of the laser and trap geometry for this work. Beam paths for the
four relevant lasers are shown, 370, 935, 411 and 760 nm, including any pertinent EOMs or AOMs, the
Fabry-Perot optical cavities used for frequency locking, and the pick-offs for the wavemeter (WM). The
370 nm laser is split into three beam paths for Doppler cooling (DC), optical pumping (OP), and state
detection (SD). The 411 nm laser is intensity stabilised using a photodiode (PD) and PID controller. In
the centre, a schematic of the octagonal vacuum chamber containing the trap is shown with five ions
along the trap axis. The bottom loop in the chamber is a 12.64 GHz microwave antenna powered by a
vector signal generator (VSG). The grey bar at the lower left indicates a permanent magnet setting the
quantisation magnetic field.

below 1e-11 Torr pressure for good isolation from other atoms and molecules. The magnetic quantisa-

tion field is produced by a permanent magnet, creating a 4.409(6) G magnitude field at the ion position,

which is measured using the 2S1/2 linear Zeeman shift, 1.398(1) MHz/G [73].

A simplified optical setup for the experiment is shown in Fig. 2.4. More detailed schematics can be found

in Ref. [72]. Here, the schematic illustrates a simplified beam path for the 370 nm, 935 nm, 411 nm and

760 nm diode lasers, including the cavities used to lock the frequency, pick-offs for the wavelength meter

(WM), and any modulation from electro- or acousto-optic modulators (EOMs/AOMs). In addition, an

intensity stabilisation PID 12 regulates the 411 nm laser power to improve the cavity lock stability and

achieve a more stable laser power at the trap. In the centre of the diagram, the laser-trap geometry is

illustrated. Five ions are shown along the horizontal trap axis, which is oriented at 45◦ to the quantisation

axisB, set by a permanent magnet at the lower left window. The 935 nm, 760 nm, and optical pumping

and state detection 370 nm lasers are aligned along the trap axis to equally illuminate all ions. The

Doppler cooling 370 nm laser is oriented 45◦ to the trap axis in order to overlap with all three secular

12Stanford Research Systems (SRS) SIM960 Analog PID Controller
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Wavelength (nm) FSR (GHz) Finesse AR (%) Part number

370 1.5 200-400 <0.2 SLS-NPLcav-4

935 1.5 200-400 <0.2 SLS-NPLcav-4

760 1.5 1,000-2,000 <0.1 SLS-100mm-nontunable

411 1.5 20,000-40,000 <0.15 6010-4 with vacuum housing VH6010-4

TABLE 2.1. Properties of the Fabry-Perot laser reference cavities, including free spectral range (FSR),
finesse at the centre wavelength listed in the first column, and the anti-reflection measurement for the
mirror backside at the centre wavelength.

motion directions for cooling. The 411 nm laser is perpendicular to the trap axis to ensure that it only

interacts with the radial motional modes. As the secular frequencies are higher for the radial modes, they

will have a lower mean phonon number associated with the Doppler cooling temperature limit, which

will enable better transfer fidelity using the 411 nm laser.

In the physical experiment, all lasers are delivered to the trap via optical fibres 13. The fibres used to

couple the light from the diode lasers are commercially available. For the high power Raman laser,

however, fibre coupling is achieved with specially modified UV photonic crystal fibres [74] that are

hydrogen loaded and UV cured, as well as nitrogen purged on the inputs, to prevent damage such as

solarisation. All previous attempts to couple the Raman laser into standard commercial fibres, even those

equipped with endcaps to reduce damage from high power inputs, resulted in rapid fibre degradation.

All of the diode lasers introduced above (370 nm, 935 nm, 638 nm, 760 nm and 411 nm) are controlled

using Moglabs laser diode controllers 14. Frequency monitoring is performed with wavelength meters 15

that are calibrated using a HeNe reference at 633 nm 16. Other than the 638 nm laser, each diode laser

is frequency locked to an individual Fabry-Perot cylindrical cavity with 50 mm diameter and 100 mm

length 17. The 370 nm and 935 nm reference cavities are all frequency tunable and built into a single

spacer block. The 411 nm and 760 nm cavities are both standalone and non-tunable (fixed frequency).

All of the cavities are vacuum pumped to <3e-7 Torr and temperature controlled. Specific properties of

the cavities are listed in Tab. 2.1.

13e.g. from Thorlabs and Schäfter + Kirchhoff GmbH
14MOGbox DLC-202 (for 935, 638 and 760 nm) and DLC-102HC (for 370 and 411 nm)
15HighFinesse WSU-10 and WS7
16SIOS SL 03 frequency-stabilised laser and controller
17Stable Laser Systems, Boulder CO, USA



22 2 EXPERIMENTAL DETAILS

Frequency tuning and light switching is performed with acousto-optic modulators (AOMs) for each of

the laser setups. The AOMs for the 370 nm laser are driven at 200 MHz 18 and are operated in single

pass configuration. The AOMs used in the 411 nm and 760 nm setups are both operated in double

pass configurations [75]. The advantage of a double pass setup is that there is no frequency-dependent

beam steering effect; any diffraction angle change during the first pass is countered in the second. A

second advantage of using double pass AOMs for the 411 nm and 760 nm laser setups is that the AOM

bandwidth is effectively doubled across the two passes. As the 411 nm and 760 nm Fabry-Perot cavities

cannot be tuned, it is critical to have wide frequency tuning range in our AOM arrangement to scan the

laser frequency to match the ion’s transition frequencies.

The two 411nm AOMs are both made from a Tellurium Dioxide substrate, with centre frequency

200 MHz and ±25 MHz 3 dB bandwidth 19. The two 760nm AOMs are also made with a Tellurium

Dioxide substrate. One has a 110 MHz centre frequency and ±12.5 MHz bandwidth 20, and the other

has a 300 MHz centre frequency and ±100 MHz bandwidth 21. All four of these AOMs can be operated

using any light polarisation, which makes it possible to use the double pass scheme presented by Donley

et al. [75] using a quarter wave plate. See their work for full details.

At the end of each experiment, the final qubit state is measured using state-selective fluorescence excited

by the 370 nm state detection laser. The fluorescence emitted during the Doppler cooling and state de-

tection periods is collected with a custom designed objective with NA = 0.56 (see A.R. Milne’s thesis for

more details [72]), and imaged either onto an avalanche photodiode (APD) 22 or a electron multiplying

CCD camera (EMCCD) 23 with ∼ 20× magnification. Photons collected during the Doppler cooling

period are used in post-processing to eliminate points where the qubit state was not prepared properly,

possibly having heated or driven into a dark state due to a collision. Photons collected during state de-

tection are used to determine the projected final qubit state. Further details about traditional methods of

state detection can be found in Chapter 3 where I quantitatively compare the performance of different

analysis routines and demonstrate a novel detection method based on electron shelving with the 411 nm

laser.

18IntraAction ASM-2002B8
19Brimrose TEF-200-50-411nm
20Brimrose TEMF-110-25-760
21Brimrose TEF-300-200-760
22Laser Components COUNT-10B
23Andor iXon Ultra 897
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All of the RF frequency synthesisers in our lab, both digital and analogue, are referenced to a common

10 MHz frequency reference source. The 10 MHz signal is produced by a Rubidium frequency stand-

ard 24 that is “cleaned up” by a 10 MHz stress-compensated (SC) phase-locked crystal oscillator 25 for

high frequency stabilisation. A distribution amplifier is then used to send the 10 MHz reference signal

to all relevant devices around the laboratory 26.

2.4 Manipulation of 171Yb+ with a microwave field

A critical element of a trapped-ion quantum processor is the coherent control field used to manipulate

the qubit state. Recall from Section 1.2.1 that the qubit state can be visualised as a vector on the Bloch

sphere where the two poles represent the qubit states |0〉 and |1〉 in the σ̂z-basis. The control field then

rotates the qubit vector around the surface of the Bloch sphere. For a hyperfine qubit such as 171Yb+,

the control can be realised using a microwave field [63, 76]. In this section, I derive the Hamiltonian

describing the interaction between a microwave field and an atomic qubit, detail the implementation of

a microwave-based control system in our lab, and demonstrate several fundamental experiments using a

microwave field.

2.4.1 The qubit-microwave interaction Hamiltonian

I begin by describing the interaction between a microwave field and an atom with spin-1/2 nucleus, as

originally investigated by I. I. Rabi [77]. Consider the time-varying magnetic component of a microwave

fieldB(t) = B cos(ωt+φ)xwith angular frequency ω, phase φ and amplitudeB. Then, when applied to

an atom with qubit frequency ωq and magnetic moment µσ̂x, we can describe the total system dynamics

with a two part Hamiltonian,

Ĥ0 = −ωq
2
σ̂z + µB cos (ωt+ φ)σ̂x. (2.18)

The first component describes the atom’s internal energy and the second component characterises the

interaction between the magnetic moment and the applied magnetic field.

To simplify the microwave-atom Hamiltonian, one can transform to a frame based on the Hamiltonian

ĤR = −ωq
2 σ̂z and corresponding unitary ÛR(t) = eiωqtσ̂z/2, i.e., move into a rotating frame at the qubit

24Stanford Research Systems (SRS) FS725
25Wenzel Associates, Inc. 501-09815 Revision G
26SpectraDynamics (SDI) HPDA-15RMi-B
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frequency. The resulting interaction Hamiltonian is expressed as

ĤI = Û †RĤ0ÛR − ĤR

= µB cos (ωt+ φ)e−iωqtσ̂z/2σ̂xe
iωqtσ̂z/2

= µB cos (ωt+ φ)

[
cos

(
ωqt

2

)
Î− i sin

(
ωqt

2

)
σ̂z

]
σ̂x

[
cos

(
ωqt

2

)
Î + i sin

(
ωqt

2

)
σ̂z

]
= µB cos (ωt+ φ)[cos (ωqt)σ̂x + sin (ωqt)σ̂y]. (2.19)

By assuming the microwave field frequency is close to resonant with the qubit, and then eliminating all

fast rotating terms at ±(ωq + ω) ≈ ±2ω with the rotating wave approximation, this expression can be

rewritten in terms of the angular detuning between the qubit and microwave frequencies, ∆ = ωq − ω,

as

ĤI ≈ µB

(
ei([ωq−ω]t−φ) + e−i([ωq−ω]t−φ)

4
σ̂x +

ei([ωq−ω]t−φ) − e−i([ωq−ω]t−φ)

4i
σ̂y

)

=
µB

2
(cos (∆t− φ)σ̂x + sin (∆t− φ)σ̂y) . (2.20)

The interaction Hamiltonian Eqn. (2.20) can be transformed again using a Hamiltonian rotating at the

detuning frequency, Ĥ ′R = ∆
2 σ̂z with corresponding unitary Û ′R(t) = e−i∆tσ̂z/2.

Ĥ ′I = Û ′R
†
ĤI Û

′
R − Ĥ ′R

= −∆

2
σ̂z +

µB

2
ei∆tσ̂z/2 (cos (∆t− φ)σ̂x + sin (∆t− φ)σ̂y) e

−i∆tσ̂z/2

= −∆

2
σ̂z +

µB

2
(cos (φ)σ̂x − sin (φ)σ̂y) (2.21)

Equation (2.21) describes the qubit rotation driven by a microwave field. Changing the phase of the

field, φ, changes the equatorial axis of rotation on the Bloch sphere, e.g. setting φ = 0 corresponds to a

rotation about the σ̂x-axis. The angular “Rabi frequency” is defined to be

Ω = µB, (2.22)

corresponding to the inverse of the time taken to complete a 2π revolution about the Bloch sphere. The

rotation angle can then be calculated using θt = Ωt.

By examining Eqn. (2.21), one can observe that if the microwave field and qubit are not exactly resonant,

it will introduce a σ̂z-rotation term, with strength proportional to the detuning ∆. This term has the effect
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of tilting the rotation axis away from the equatorial plane, creating rotations with a faster frequency and

smaller amplitude. In this case, the faster rotation frequency is termed the “generalised Rabi frequency”,

and is described by

Ω̃ =
√

Ω2 + ∆2 . (2.23)

A microwave rotation about the σ̂x-axis (with φ = 0) translates the qubit state between |0〉 and |1〉,

where the final qubit state probability oscillates as

P (|1〉) =

(
Ω

Ω̃

)2

sin 2

(
Ω̃t

2

)

=
1

1 + ∆2

Ω2

sin 2

(
Ω

√
1 +

∆2

Ω2

t

2

)
. (2.24)

This is an example of “Rabi cycling” or “flopping”. In Fig. 2.5(a) I show an example of a single qubit

undergoing Rabi flopping. A resonant 12.64 GHz microwave field is applied for a set window of time

and the evolved state is measured to show oscillations between |0〉 and |1〉. Here, the Rabi frequency is

measured to be Ω = 4.2 kHz.

Equation (2.24) shows that the effective error introduced by detuning the microwave (or qubit) frequency

is normalised by the Rabi frequency, δ = ∆/Ω. In Fig. 2.5(b), detuned Rabi flops are calculated

and plotted for four normalised detuning errors, δ = {0, 0.5, 1, 2}. Larger detuning errors result in

higher frequency, lower amplitude oscillations due to the increasing σ̂z component in the rotation axis.

As the detuning error increases, the σ̂z component begins to dominate the interaction and the rotation

axis eventually coincides with the z-axis of the Bloch sphere. If that occurs, then the highly detuned

microwave field can only rotate a qubit initially prepared in |0〉 or |1〉 about its own axis.

A note on the definition of the “Rabi frequency”

There are differing conventions for defining the Rabi frequency in the trapped ion and quantum informa-

tion literature. Some references define the Rabi frequency as the inverse of the time taken for the qubit to

complete a 2π revolution, i.e. the time taken to rotate from |0〉 to |1〉 and to |0〉 again. This 2π revolution

returns the initial state with an additional −1 phase factor, |ψ〉 → − |ψ〉. Other sources define the Rabi

frequency as the inverse of the time taken to complete a 4π revolution, in order to return the qubit state

to the initial state with no additional phase, |ψ〉 → |ψ〉.
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(Experiment)

(Theory)

(a)

(b)

FIGURE 2.5. Rabi flopping with a single qubit and a microwave control field. (a) Experimentally
measured single-qubit Rabi flops are illustrated, where a continuous microwave field rotates the state
between |0〉 and |1〉 before it is measured. Markers show data points averaged over r = 1000 repetitions,
and the solid line is a fit to Eqn. (2.24). The Rabi frequency is determined to be Ω/2π = 4.2 kHz. (b)
Theoretically calculated single-qubit Rabi flops are shown with Ω/2π = 4.2 kHz and an increasing
normalised detuning error, δ = ∆/Ω = {0, 0.5, 1, 2}.

Whilst these two definitions appear inconsistent, they are both founded on physical principles. The

variation arises due to the difference in quantifying the oscillation frequency of the qubit state probability

compared to the qubit state amplitude, which vary by a factor of two. In this work, we use the first

definition, which is the time taken to complete a 2π revolution of the qubit state about the Bloch sphere.

2.4.2 Microwave gate implementation

Single-qubit and global single-qubit rotations are driven with a 12.64 GHz microwave field that is pro-

duced by a vector signal generator (VSG) 27 and emitted from an in-vacuum loop antenna (Fig. 2.4).

Standard experiments requiring a constant phase microwave field, either continuously driven or gated,

can be performed using the unmodulated carrier frequency of the VSG. The carrier frequency was used

to perform the Rabi flops in Fig. 2.5. More complex quantum circuits with rotations about different axes

are achieved using I/Q modulation.

27Keysight E8267D
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In several projects within this thesis, we use predefined “gates” rather than continuously driven or gated

microwaves. Each gate has a set phase φ and duration t determining the axis of rotation and rotation

angle respectively. I define the “rotation operator”, which describes a rotation on the Bloch sphere by

target angle θt = Ωt about axis n = [cos (φ),− sin (φ), 0] as

Û(σ̂ · n, θt) := e−iθtσ̂·n/2

= cos

(
θt
2

)
Î− i sin

(
θt
2

)
σ̂ · n (2.25)

where σ̂ = [σ̂x, σ̂y, σ̂z] is the vector of Pauli spin operators.

To adjust the phase of the microwave field created by the VSG, and hence set the rotation axis, we utilise

I/Q modulation. This involves two digital-to-analogue converters (DACs) that are combined 90◦ out of

phase to create an in-phase (I) and quadrature (Q) component. If the carrier frequency is resonant with

the qubit frequency, the I and Q components will drive qubit rotations about the x- and y-axes of the

Bloch sphere respectively. By combining the two components with different amplitudes, rotations about

any axis lying in the equatorial xy-plane of the Bloch sphere can be driven, with φ = arctan (Q/I).

The target angle can be achieved by tuning the length or amplitude of the gate. In practise, for I/Q-

modulated gates, the gates are predefined with a set number of digital samples of a fixed amplitude.

The gate length is then tuned by adjusting the sampling rate of the I/Q DACs, which changes the gate

duration. Rotations around the z-axis are carried out as frame-updates, i.e. pre-calculated, instantaneous

changes of the subsequent gate I/Q values to account for the phase shift. A subtlety of this procedure is

that we are changing the phase of the microwave system, whereas standard implementation of a σ̂z-gate

changes the phase of the qubit. As such, the phase shift must occur in the opposite direction. Identity

operations are realised as idle periods, wherein no signals are applied for a time equivalent to that of a

π-rotation. We additionally utilise an in-built modulation routine in the VSG called “RF blanking” for

fast switching to suppress transients in microwave power at pulse edges.

2.4.3 Microwave spectroscopy

The microwave interaction in Eqn. (2.21) does not exclusively describe interactions using the qubit

clock transition, 2S1/2 |F = 0,mF = 0〉 ↔ 2S1/2 |F = 1,mF = 0〉. By changing the drive frequency,

additional “stretch state” transitions can be driven to the mF = ±1 Zeeman levels of the upper |F = 1〉
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FF -1 F +1

FIGURE 2.6. Microwave spectra taken by driving the 2S1/2 |F = 0〉 → 2S1/2 |F = 1〉 transition for
∆mF = −1, 0,+1. The three scans used microwave interrogation durations of {0.3, 0.115, 0.5} ms
respectively, where the coupling strength for each transition depends on the microwave polarisation and
magnetic field orientation. The relative widths of the peaks are partially set by the interrogation time.
The magnetic field strength B can be calculated using the first-order magnetic-field insensitive clock
state transition frequency, 12642812118.466 + (310.8)2B Hz.

manifold. The mF = ±1 states are displaced from the zero-field energy by a linear Zeeman shift,

with coefficient 1.398(1) MHz/G for 2S1/2 |F = 1〉. As the stretch states are first-order magnetic-field

sensitive, they are significantly more susceptible to fluctuations in the magnetic field than the qubit clock

states, resulting in a shorter coherence time. We can measure the frequencies of the qubit and stretch

transitions using Rabi spectroscopy. This is achieved by preparing the ion in the state |0〉, applying a

microwave interrogation pulse to the ion, and measuring the probability that the ion has transitioned to
2S1/2 |F = 1〉, P (|1〉). The frequency of the microwave pulse is changed and the process is repeated to

measure the full spectrum.

In Fig. 2.6, the microwave frequency was scanned across the three transitions, ∆mF = −1, 0,+1, and

the peaks were fitted with Gaussian functions to extract the centre frequency. The qubit frequency was

measured to be 12.642818301(84) GHz. The offset from the zero-field frequency corresponds to the

quadratic Zeeman shift, 6.18(8) kHz. Using the quadratic Zeeman coefficient for the 2S1/2 ground state,

310.8 Hz/G [78], the magnetic field strength was measured to be 4.46(3) G, equating to a linear Zeeman

shift of 6.24(4) MHz.

The frequencies of the lower stretch state transition, ∆mF = −1, and the higher transition, ∆mF =

+1, were measured to be −6.2165(2) MHz and +6.2091(3) MHz respectively relative to the qubit

transition. Due to the quadratic displacement of the mF = 0 levels, the linear Zeeman shift is offset

from these measurement values by half the quadratic Zeeman shift. The linear shift was calculated to



2.4 MANIPULATION OF 171YB+ WITH A MICROWAVE FIELD 29

be −6.2134(2) MHz and +6.2121(3) MHz respectively, which are consistent with the value calculated

using the magnetic field measurement, but are slightly outside the uncertainty ranges of each other.

2.4.4 Ramsey spectroscopy

To create high fidelity microwave-based gates in a trapped-ion quantum processor, we require a method

of accurately calibrating the microwave field frequency to be resonant with the qubit transition. Any

detuning between these two frequencies will result in an error. The calibration can be achieved by meas-

uring the qubit frequency with “Rabi spectroscopy”, as illustrated in Fig. 2.6, wherein the frequency of a

microwave interrogation pulse is scanned and the probability of transitioning from |0〉 to |1〉 is measured.

However, the measurement precision is relatively poor, as observed in the qubit frequency measurement,

12.642818301(84) GHz. Indeed, if the detuning after calibration was equivalent to the maximum uncer-

tainty, 84 Hz, then the dimensionless error for a 5 kHz Rabi frequency would be δ = ∆/Ω = 1.7%.

To improve the frequency resolution, a new spectroscopic technique was proposed by N. Ramsey, com-

monly referred to as a “Ramsey measurement” [79,80]. The protocol involves two π/2-rotations enclos-

ing an idle period (Fig. 2.7), and can enable frequency calibrations with nearly 500× superior measure-

ment precision than that achieved using Rabi spectroscopy, with typical uncertainties of several hundred

millihertz 28 in our experiments.

A standard Ramsey interrogation with an idle period of length τR has the following form,

ÛRamsey = Û1Û2Û1

= e−iπσ̂x/4e−i∆τRσ̂z/2e−iπσ̂x/4 (2.26)

for an angular detuning ∆ between the qubit and control field. Here, we begin by assuming that the π/2-

rotations are error-free, both from off-resonance and over-rotation errors. Whilst the first assumption is

unrealistic, as if there is any non-zero detuning it will cause an off-resonance error in the driven gates,

the relative error contribution to the total sequence of operations is small. In general, the length of a π/2-

rotation, τπ/2, is significantly shorter than the Ramsey idle period, resulting in a considerably smaller

error associated with the π/2-rotations. For example, in our experiments τπ/2 ≈ 0.05 ms and typical

Ramsey times τR range from 20-200 ms.

28For an idle period of 50 ms, we achieve uncertainties of approximately ±200 mHz [2]
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(a) (c)(b)

FIGURE 2.7. Bloch spheres showing the evolution of the qubit Bloch vector during a single-ion
Ramsey experiment. The unitary operator for each step in the Ramsey protocol is shown above the
diagram and the resulting qubit state after the evolution is shown below. The qubit is initially prepared
in the |0〉 state at the north pole of the Bloch sphere. (a) A microwave π/2-rotation about the x-axis
brings the qubit vector to the |−y〉 state on the equator (red). (b) During an idle period of duration
τR, the qubit dephases relative to the microwave field, causing it to rotate about the z-axis of the Bloch
sphere with frequency ∆ (blue). (c) Finally, a second π/2-rotation about the x-axis ideally transfers to
the qubit to |1〉 if no dephasing has occurred. If the detuning ∆ is non-zero, then the qubit will be rotated
to a final state away from |1〉, unless the accumulated phase ∆τR is commensurate with a 2π rotation.

The Ramsey protocol is illustrated on a Bloch sphere in Fig. 2.7. The qubit is initially prepared in |0〉

and the first π/2-rotation about the x-axis brings the qubit vector state to the state |−y〉 on the equator

(red, panel (a)). A subsequent idle period allows phase to accumulate between the control field and the

qubit transition at a rate equivalent to the detuning ∆, displacing the qubit vector azimuthally (blue,

panel (b)). If the qubit and microwave field are resonant, then the second π/2-rotation about the x-axis

continues the first rotation, bringing the qubit to |1〉. However, any accumulated phase during the idle

period due to a detuning causes the final rotation to return the qubit vector to a displaced position on the

Bloch sphere (red, panel (c)).

As an example, if the idle period accumulates a phase of π/2 about the z-axis, then the qubit state is

displaced from |−y〉 to |+x〉 during the idle period. Then, the second π/2-rotation rotates the qubit

vector about its own axis, returning a final projective measurement onto the z-axis of P (|1〉) = 1/2.

Alternatively, if the accumulated phase is π, then the qubit rotates from |−y〉 to |+y〉 during the idle

period, and the final π/2-rotation returns the qubit to the initial |0〉 state, which is a 100% error from the

expected final state, |1〉.
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By scanning the length of the Ramsey idle period, τR, oscillations between the two qubit states can be

observed at a frequency commensurate with the detuning. Figure 2.8 shows a single ion evolving via a

Ramsey interaction. The detuning can be extracted from the oscillation frequency using

P (|1〉) = cos

(
∆τR

2

)2

=
1

2
(1 + cos (∆τR)) , (2.27)

which corresponds to ∆/2π = 7.9 Hz for the data in Fig. 2.8. In addition to the coherent oscillations, we

observe an exponentially narrowing envelope in the recorded data, eventually decaying to P (|1〉) = 1/2.

The decay occurs because the Ramsey interrogation is not just affected by systematic, static detuning

errors, which could be straightforwardly corrected with a spin echo, but also higher frequency dephasing

errors in either the control field or qubit frequency. As with most quantum experiments, the Ramsey

protocol and subsequent projective measurement must be repeated many times to gain statistics about

the true qubit vector σ̂z projection. If the detuning is not constant throughout these repetitions then we

will average over the reconstructed state vectors, reducing the contrast of the oscillations. The dephasing

error introduces an exponential decay that modifies Eqn. (2.27) to

P (|1〉) =
1

2

(
1 + cos (∆τR)e−τR/τ

)
, (2.28)

where τ is the exponential decay time and gives a measure of the observed dephasing time. For the

experiment in Fig. 2.8 measured on the blade-style trap with a single ion and a microwave field created

by the VSG 12.64 GHz carrier frequency, we measure τ = 1.337 s.

I now consider the effect of an amplitude error on the π/2-rotations, using π
2 →

π
2 (1 + ε), with the

dimensionless error ε. In this case, the equations describing the Ramsey interaction, Eqns. (2.26) and

(2.28), are modified to

ÛRamsey = e−iπ/4(1+ε)σ̂xe−i∆/2τRσ̂ze−iπ/4(1+ε)σ̂x , (2.29)

P (|1〉) =
1

2

(
1 + cos (∆τR)e−τR/τ

)
cos
(επ

2

)2
. (2.30)

Eqn. (2.30) shows that an over- or under-rotation error in the π/2-gates will reduce the overall amplitude

of the oscillations, but still allow the detuning to be accurately measured from the oscillatory period as

long as ε is small enough to achieve sufficient signal-to-noise in the measurement. Figure 2.9 shows

theoretical calculations of Ramsey oscillations with the same parameters as the experimental data in

Fig. 2.8, ∆/2π = 7.9 Hz and τ = 1.337 s. An over-rotation error has been introduced to affect the

π/2-rotations, causing the oscillation amplitude and mean to decrease as ε goes from 0 (black) to 0.5
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7.9

t

FIGURE 2.8. Data showing a single-ion Ramsey experiment. (Top) Schematic showing the Ramsey
experiment procedure. Two microwave π/2-pulses are separated by a variable wait time, during which
the microwave field and qubit frequency can become out of phase, either due to coherent/systematic
errors or higher frequency incoherent dephasing. (Bottom) Data from a single-ion Ramsey experiment
for which the microwave field was deliberately detuned by ∆/2π = 7.9 Hz to achieve an oscillating
pattern as the wait time, τR, was scanned. An exponentially decaying sine wave is fitted to find a decay
constant τ = 1.337 s, with the decay envelope indicated by dotted lines.

7.9

FIGURE 2.9. Theoretical calculations of a single-ion Ramsey experiment. The detuning and decay
constant are set to be ∆/2π = 7.9 Hz and τ = 1.337 s. A relative amplitude error in the π/2-rotations is
varied through values ε = {0, 0.1, 0.2, 0.5}, showing a reduction in the oscillation amplitude and mean,
but a consistent oscillation frequency.

(yellow). For all values of ε in Fig. 2.9, the oscillation frequency is unchanged and the detuning can be

extracted.

The phase Ramsey experiment

One disadvantage of calibrating the control frequency via an oscillatory Ramsey time scan measurement

is the required run-time. To measure small frequency errors, one must use sufficiently long interrogation
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times τR. Achieving sub-Hz resolution requires interrogation times of many hundreds of milliseconds,

and each measurement must be repeated sufficiently in order to average over the projective measurement

results. The full procedure can result in run-times of many minutes to resolve the oscillatory pattern,

which is incompatible with the regular control field re-calibrations eventually required for a quantum

processor to run long, complex algorithms. A second disadvantage of the time-scan method is that the

results are symmetric about ∆ = 0. Consequently, one cannot distinguish between positive and negative

detuning errors. Instead, this must be determined experimentally by shifting the control field frequency,

repeating the calibration and observing if the measured detuning increases or decreases.

An alternative method, still founded in Ramsey interferometry, requires only two measurements for a

fixed interrogation time. This method is termed the “phase Ramsey” or “clock” experiment [81, 82]

(Fig. 2.10). Here, the phase of the second π/2-rotation axis is changed by π/2 relative to the first,

such that the second rotation occurs about the y-axis rather than the x-axis. As such, in the case of no

detuning error, the second rotation should cause the Bloch vector to rotate about its own axis, resulting

in a final projection onto the z-axis of P (|1〉) = 1/2. The second data point follows similarly but

with the second rotation about the −y-axis. Both sequences of gates are illustrated schematically in

Fig. 2.10(a). The two points, when averaged over sufficient projective measurements, should both result

in the measurement P (|1〉) = 1/2 when there is no detuning error. If there is a positive detuning, then

the first measurement will record P (|1〉) > 1/2 and the second measurement should be symmetrically

below 1/2. If the detuning is negative, then the first and second results are swapped, clearly allowing us

to determine not just the magnitude of the detuning but also its sign. As with the time-scan measurement,

the phase Ramsey is largely insensitive to errors in the amplitude of the π/2-rotations; any error will

simply result in the two measurement points being symmetric about a point away from 1/2.

The measurements are described by the following sequences of operations,

ÛA = e−iπ(1+ε)σ̂y/4e−i∆τRσ̂z/2e−iπ(1+ε)σ̂x (2.31)

ÛB = eiπ(1+ε)σ̂y/4e−i∆τRσ̂z/2e−iπ(1+ε)σ̂x/4 (2.32)

where I have neglected decoherence effects and assumed there is a negligible off-resonance error during

the π/2-rotations. I have allowed for over-rotation errors in the π/2-rotations quantified by the dimen-

sionless error ε. Applying the circuits ÛA and ÛB to a qubit prepared in |0〉 and averaging over many
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projective measurements results in the respective values PA and PB ,

PA =
1

2
cos
(επ

2

)2
(1 + sin (∆τR)) (2.33)

PB =
1

2
cos
(επ

2

)2
(1− sin (∆τR)) . (2.34)

The detuning can be extracted from Eqn. (2.34) using,

sin (∆τR) =
2

1 + PB
PA

− 1

=
PA − PB
PA + PB

(2.35)

∆ =
1

τR
arcsin

(
PA − PB
PA + PB

)
. (2.36)

This expression for detuning is only valid in the regime τR ≤ π/(2|∆|), due to the periodicity of the

sine function.

While I do not consider a full treatment of the π/2-gate off-resonance error that results from a non-zero

detuning here, the effect can be estimated by modifying the final expression to

∆ =
1

τR + 4τπ/2/π
arcsin

(
PA − PB
PA + PB

)
. (2.37)

where (τR + 4τπ/2/π) is the effective Ramsey interrogation time including the two π/2-rotations. The

extra factor of 2/π multiplying the length of the two π/2-rotations, 2τπ/2, arises because the dephasing

error is occurring during a driven gate. This results in a more complex multi-axis error for which the

accumulated σ̂z-phase is approximately ∆×4τπ/2/π. For full details, see Appendix B.1 of J. Benhelm’s

thesis [83].

Figure 2.10 presents theoretical calculations about the results after a phase Ramsey measurement with

no added amplitude error, ε = 0. Panel (a) illustrates the two experiment circuits and their differing

final π/2-rotations. For any phase Ramsey measurement, both circuits are run with the same inter-

rogation time τR. We calculate the expected results after applying the circuits to a qubit prepared

in |0〉, PA and PB , which are plotted for different values of τR in panel (b) and three detunings,

∆/2π = {2.5, 5,−10} Hz. For a non-zero detuning, the values of PA (solid lines) and PB (dashed

lines) are symmetric about 1/2 and oscillate at frequency ∆. If the sign of the detuning is negated, then

the curves PA, PB are swapped, as shown for the negative detuning ∆/2π = −10 Hz (pink). This
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FIGURE 2.10. Theoretical calculations demonstrating the phase Ramsey experiment for fre-
quency calibration. (a) Experimental schematic for the two measurements involved in a phase Ramsey
experiment: the circuit ÛA with a final rotation about the y-axis, and the circuit ÛB with a final rotation
about the −y-axis. (b) Calculated final measurement values P (|1〉) are shown for the two circuits, PA
(solid lines) and PB (dashed lines). Three different detunings are plotted, ∆/2π = {2.5, 5,−10} Hz,
with varying idle periods, τR. (c) The error in the extracted estimate of ∆/2π is plotted for a range of de-
tunings and interrogation times. For each value of detuning, the estimate is only valid for τR < π/2|∆|,
indicated by the black dashed lines. The limits for the data in panel (b) with ∆/2π = 5 (purple) and
∆/2π = −10 Hz (pink) are indicated by the dotted lines.

behaviour allows us to successfully measure both the magnitude and sign of the detuning ∆. If there is

no detuning error, then the results of PA, PB would remain fixed at 1/2.

The phase Ramsey measurements are only valid for idle periods within the first quarter of the oscilla-

tion, indicated by dotted lines with colours corresponding to the main curves. Indeed, in Fig. 2.10(c) I

calculate the estimated detunings using Eqn. (2.37) and plot the error between these values and the true

detunings. The estimated detuning is only valid for τR ≤ π/(2|∆|), as indicated by the black dashed

curves. This phenomenon suggests that the length of the idle period must be chosen judiciously. It

is generally advantageous to choose a longer idle time to increase the signal-to-noise of the measure-

ment by separating the values PA and PB . However, if τR is too long then the calculated detuning will

be incorrect. The approach we use in our experiments is to repeat the phase Ramsey calibration three
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times with increasing resolution, generally using τR = {8, 25, 50} ms. This allows us to catch larger

deviations in the detuning with the first calibration (up to ∼ ±30 Hz), and then improve the estima-

tion precision with the higher resolution calibrations, typically achieving a precision of ±200 mHz for

τR = 50 ms.

2.5 Field inhomogeneity

As a trapped-ion quantum device is scaled up to larger numbers of qubits, the error rates should ideally

remain constant across the string of qubits. As will be discussed in Chapter 6, homogeneous error rates

between qubits is a common requirement of quantum error correction protocols, and is necessary if

one wants to exploit the intrinsic errors to implement a decoherence-free subspace. This requirement,

however, is rarely true. There are many reasons why qubits have differing error rates. In the case of

fabricated semiconductor or superconducting qubits, it can be due to manufacturing faults or defects.

By contrast, realising a qubit in the atomic physics of a trapped ion should result in identical, indistin-

guishable qubits. However, in practice, while the ions may be identical, this is not necessarily true of

the environments into which they are embedded.

One example of this can be observed in our blade-style trap. Along the length of the trap axis, the

magnetic field used to set the qubit quantisation axis is not constant. This is likely due to the location

of the ion pump relative to the trap and its insufficiently shielded magnet having a large influence on the

magnetic field in the trap. We can measure the magnitude of the gradient using Ramsey experiments, as

introduced previously for microwave frequency calibrations.

We confine a string of five 171Yb+ qubits in the blade-style trap. Multi-qubit measurements are per-

formed using the EMCCD camera rather than the APD to resolve individual ions’ fluorescence. To

measure the qubit frequencies, we perform a Ramsey experiment using two π/2-rotations about the

x-axis and a variable wait period τR, with the results shown in Fig. 2.11. By measuring the period of

each qubit’s oscillation, we find a 4.8 Hz variation in the qubit frequencies between the first and fifth

ions. The inter-ion spacing can be calculated using the axial trap frequencies when multiple ions are

confined [7]. With this technique, we obtain the EMCCD camera resolution that can then be used to de-

termine the length of a trapped ion string. We find that the five ion string is 22 µm long, corresponding

to a 218 mHz/µm frequency gradient along the string.
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FIGURE 2.11. Ramsey interferometry with five qubits in an inhomogeneous magnetic field. A
global microwave field of a fixed frequency, 12.642818036 GHz, was used to measure the qubit fre-
quencies with a Ramsey measurement. The final qubit states were measured using ion fluorescence
observed on an EMCCD camera. The detunings between the global microwave field frequency and the
individual qubit transition frequencies were extracted from the oscillation period for each ion, finding a
4.8 Hz variation between the first (black) and fifth (yellow) qubit.

In addition to a magnetic field gradient, we also observe a gradient in the applied microwave field

strength across the trapped ion string. The microwaves are emitted from an in-vacuum loop antenna

(Fig. 2.4), which has a resonance at approximately 12.64 GHz. Due to internal reflections off the trap

and the trap holder, the average microwave field intensity varies along the trap axis, and hence between

the qubit locations. As with the magnetic field gradient, the microwave strength inhomogeneity can be

measured using a simple experiment. We chose to measure the magnetic field gradient with a Ram-

sey measurement, as it is highly sensitive to qubit frequency errors and largely insensitive to amplitude

errors. Now, we use a Rabi interrogation measurement to record the variation in microwave field amp-

litude, as this technique is more sensitive to amplitude errors. The Rabi flop oscillation period is de-

pendent on the microwave field amplitude, Ω = µB (Eqn. (2.24)), and consequently any variation of the

microwave field intensity between qubit locations will be translated to differences in the measured Rabi

frequency.

We applied a continuous microwave field to a string of five trapped ions and measured their evolution

(Fig. 2.12). Over a period of 0 - 30 ms of microwave interrogation, it can be observed that the initially

in-phase Rabi flops gradually become out of sync due to differences in the individual qubits’ Rabi

frequencies. From Fig. 2.12, the Rabi frequency was measured using Eqn. (2.24), recording a 1.4 Hz/µm
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FIGURE 2.12. Rabi oscillations with five qubits in an inhomogeneous microwave field. Five
trapped-ion qubits were excited with continuously applied microwaves to drive oscillations between
|0〉 and |1〉 for Rabi interrogation times ranging from 0 - 30 ms. The Rabi frequencies for each ion are
proportional to the microwave field strength, which is not homogeneous across the ion string, resulting
in a 1.4 Hz/µm gradient in the measured Rabi frequencies.

gradient in the Rabi frequency. While small, this error will quickly accumulate when either circuit length

or qubit numbers are increased. Over a string of only seven qubits, this becomes a 1% variation in Rabi

frequency between the first and final qubit, for an average Rabi frequency of 5 kHz.

These inhomogeneities present an immediate concern for using a global control field to drive global

multi-qubit rotations – it becomes impossible to calibrate the frequency and amplitude of the field for all

qubits simultaneously. In Section 6.4, I will show the effect of these inhomogeneities on the variation of

randomised benchmarking error rates across a trapped ion string. There, I will also introduce a quantum

control technique called a “dynamically corrected gate” (DCG) that can be used to homogenise error

rates and enable global microwave gates despite field inhomogeneities.

In the next chapter, I continue a detailed exploration of the physical quantum system that we are employ-

ing for our experiments. I perform a precision characterisation of some of the relevant atomic physics

transitions in 171Yb+ and introduce the reader to the first example of an error suppressing control tech-

nique, using electron shelving to reduce measurement errors in a hyperfine trapped-ion qubit.



CHAPTER 3

Precision measurements in 171Yb+ for improved state detection

“What’s the point of being alive," she said, "if you’re not going to communicate?”

- Kurt Vonnegut, Bluebeard

This chapter includes a variety of precision measurements in 171Yb+ to characterise the 2S1/2 − 2D5/2

transition, and introduces a new method of state detection using electron shelving to the metastable
2D5/2 state. This work constitutes two manuscripts currently being reviewed: “Scalable hyperfine qubit

state detection via the 2S1/2 − 2D5/2 transition in 171Yb+” [1], and “Precision Characterization of the
2D5/2 State and Quadratic Zeeman Coefficient in 171Yb+” [2].

Trapped ions have seen a resurgence as a leading platform for the development of quantum information

systems. In recent years, a primary area of research has been the quality of single- and two-qubit gates,

where fidelities of better than 99.99% [84–86] and 99.9% [85, 87] have been reported, respectively. En-

abled by quantum control techniques, such as amplitude, frequency and phase-modulation [6, 88, 89],

high-fidelity two-qubit gates are now possible at high speeds [90, 91] and also across larger qubit re-

gisters [92,93]. Progress in this domain has allowed for the implementation of longer and more complex

quantum circuits, e.g. Refs. [94–96]. Yet, as the number of qubits in a joint register – and thereby the

potential size of a correlated state – grows, an increasingly important area for improvement becomes

state-detection fidelity. Detection errors are generally statistically independent and scale at least linearly

with the number of qubits. They therefore quickly become a significant factor limiting the overall per-

formance of a multi-qubit register, e.g. in the context of active quantum error correction conditioned on

stabiliser measurements [96–99].

Various qubit encodings are available in trapped ions which bring with them different advantages and

drawbacks – including in the area of demonstrated measurement fidelity. One can either choose two

ground states of the fine- or hyperfine structure for the encoding, or split the logical states across a

39
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ground- and a metastable state to form an optical qubit [100]. Hyperfine qubits such as 9Be+ [85],
43Ca+ [101, 102] or 171Yb+ [38] as considered here, are an attractive choice in that they do not suffer

from energy relaxation (T1 decay) like optical qubits, and also offer so-called “clock states” that are

first-order insensitive to perturbations from magnetic fields (providing long T2 coherence). In hyperfine

qubits, the qubit states are separated by microwave frequencies on the order of several to tens of GHz

enabling the use of low-noise microwave sources for high-fidelity qubit control [4, 67, 84].

Measurement on either category of trapped-ion qubit is generally performed using state-dependent laser-

induced fluorescence [103], whereby one logical state, the “bright state”, scatters photons and the other

does not, hence being referred to as the “dark state”. Optical qubits enable efficient discrimination

between the bright and dark states and have shown high detection fidelities, leveraging the large energy-

level separation of the qubit manifold [104,105]. By contrast, when using hyperfine qubits the relatively

small energy gap between the qubit states results in unwanted off-resonant scattering during detection.

This scattering limits the useful duration of the detection period and thereby the number of photons

that can be collected in it, negatively impacting the ability to distinguish qubit states from associated

photon-detection-probability distributions. To overcome this obstacle, one may pursue the use of new

complex imaging and detection hardware [106–110] or software-based data processing of time-resolved

information [104, 107, 111–114]. As qubit numbers are increased, however, the overhead for detection

hardware and software can become limiting, motivating an exploration of complementary “physics-

based” schemes to improve measurement fidelity in hyperfine qubits.

In this work, we borrow a detection technique widely employed in optical qubits to perform electron

shelving on a hyperfine 171Yb+ qubit to increase detection fidelity without modification of detection

hardware or software. By shelving the population of one of the qubit states to a metastable state sep-

arated by an optical transition, we can detect population remaining in the qubit manifold without being

limited by off-resonant scattering and the resulting leakage to the other logical state. We implement this

method using a quadrupole transition at 411 nm from the 2S1/2 qubit manifold to the 2D5/2 state, and

separately to the extremely long-lived metastable 2F7/2 level (Fig. 3.1). We also employ a repump laser

at 760 nm to efficiently restore all population to the qubit manifold after the detection period via the

rapidly decaying 1D[3/2]3/2 state. In our work, we further combine the shelving routine with efficient

software post-processing techniques using photons collected on an avalanche photodiode (APD) and

an electron multiplying charged coupled device (EMCCD) camera, using a time-resolved, non-adaptive

maximum likelihood protocol on the APD [113] and a machine-learning-based image classifier on the
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EMCCD. We characterise and compare the various routines, demonstrating measurement-fidelity im-

provements up to 300× leveraging the 2F7/2 level, and describe how this may be efficiently integrated

into quantum information experiments.

3.1 Trapped ion qubit state detection

Various approaches are being pursued to improve qubit state detection with ions, which can be broadly

classed as hardware-, software-, or physics-based. The first category uses specialised detectors, such

as superconducting nanowire single photon detectors (SNSPDs) either stand-alone [108] or embedded

in a surface-electrode RF trap [109], multi-channel photomultiplier tubes (PMTs) [106, 107], or fast

intensified cameras [110]. Several software-based methods have been demonstrated to improve the

final state estimation. Combining a record of the incident timing of photons during detection with

prior knowledge such as the expected fluorescence rate and decay times τB and τD from the bright and

dark states, one can infer the final state from a maximum likelihood calculation [104]. Furthermore, if

real-time data processing is available, the same detection fidelity can be achieved in shorter detection

times using an adaptive version of this technique. Wölk et al. [113] analyse the time-resolved detection

methods for the case of 171Yb+, which had been experimentally demonstrated for optical qubits by

Myerson et al. [104], and hyperfine qubits by Hume et al. [111] and Hemmerling et al. [112]. Other

software-based approaches include recent work by Ding et al. [114] investigating the use of machine-

learning methods for state estimation, implemented in hardware on an FPGA with a single 171Yb+ qubit;

they achieve similar results to Seif et al. [107], who apply machine learning methods to the time-resolved

readout from a PMT array in post-processing.

Detection of optical qubits falls under the physics-based approaches, achieving a very high signal-to-

noise ratio through what is generally referred to as “electron shelving” after Hans Dehmelt [115, 116].

In such settings, measurement fidelities of ≥ 99.99% have been reported for an optical qubit encoded in
40Ca+ using time-resolved measurements of fluorescence [104], and separately, without time resolution,

on an EMCCD camera [105]. The detection fidelity of an optical qubit is fundamentally limited by the

lifetime of the metastable state (a T1 decay process). Although the associated decay rate during detection

is often low under typical detection times, the decay probabilities are independent for each ion and can

thereby quickly become the limiting factor to the overall state detection fidelity in larger qubit registers.

To address this problem, a newer generation of fast cameras is being developed, which allow time-

resolved measurements to be carried out while also providing spatial resolution for identification of the
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FIGURE 3.1. Selected energy levels and laser frequencies for 171Yb+. The qubit levels are encoded
in the 2S1/2 hyperfine manifold, shown at the bottom centre. Additional energy levels due to Zeeman
splittings have been omitted for visual clarity and the dashed grey lines show relevant spontaneous
decays. (Inset) Decay channels from 2D5/2, with a simplified hyperfine notation.

unique quantum state in a multi-qubit register. First demonstrations have recently been reported for an

electron-shelved read-out in 138Ba+ [110], reaching ∼ 99.99% fidelity for a single qubit and at least

99.7% in a four-qubit register.

In 171Yb+ the measurement-fidelity limiting factor is leakage between the hyperfine qubit levels during

detection. The two logical states encoded in the 2S1/2 levels can be distinguished by state-selective

fluorescence induced by a 370 nm laser resonant with the 2S1/2 |F = 1〉 ↔ 2P1/2 |F = 0〉 transition,

which, aside from a small branching ratio to 2D3/2, forms a closed cycling transition (Fig. 3.1). However,

the small hyperfine splitting of 2.11 GHz between adjacent 2P1/2 levels results in a comparatively large

off-resonant scattering probability causing leakage primarily from the bright state 2S1/2 |F = 1〉 to the

dark state 2S1/2 |F = 0〉. The inverse occurs as well, but with a lower probability due to the effective

14.75 GHz detuning. The dynamics of this asymmetric leakage during state detection in hyperfine qubits

have been analysed theoretically by Acton et al. [121] and, more specifically for the case of 171Yb+, by

Wölk et al. [113]. A further challenge in 171Yb+ is its low fluorescence yield compared to other isotopes

without nuclear spin, such as 174Yb+. Fluorescence increases with the strength of an applied magnetic

field [64], but so does the magnetic field sensitivity of the clock transition encoding the qubit, negatively

impacting the available phase coherence time (T2).
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FIGURE 3.2. Comparison of single-qubit detection errors and times for trapped-ion qubits. (a) Over-
view of representative results for different hyperfine qubits, with 171Yb+ [108], 133Ba+ [117] and
9Be+ [109], and optical qubits, with 40Ca+ [104], 88Sr+ [118] and 138Ba+ [110]. Star markers rep-
resent the work presented here in 171Yb+ using the APD (red outline) and the EMCCD (black outline).
The shaded star markers at 1 ms detection are achieved by detecting in the long-lived 2F7/2 manifold
in 171Yb+. Currently, this procedure requires ∼ 100 ms (filled star markers) for shelving, but addi-
tional laser hardware should reduce this time by two orders of magnitude using STIRAP or an active
depopulation technique (AD) (see Sec. 3.4.2). (b) Results for 171Yb+, with circle markers represent-
ing standard detection techniques that can be straightforwardly implemented without advanced detector
technology [38,64,107,113,114]. The work presented here, shown as star markers, similarly requires no
additional detector hardware. The remaining markers require special hardware such as a mode-locked
laser [119] (square marker), superconducting nanowire single photon detectors (SNSPDs) [108] (dia-
mond marker), or a high NA objective [120] (triangle markers).

The efficiency of a detection protocol can be quantified in two dimensions, through the measured detec-

tion error and the required detection time – both of which should be ideally minimised for practical use

in quantum computing. In Fig. 3.2(a) we show an overview of results reported in the trapped-ion field for

both hyperfine and optical qubits together with the results (red stars) described in this manuscript using

the APD (red outline) and the EMCCD (black outline). Figure 3.2(b) compares detection errors for the
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specific case of 171Yb+. Open-circle markers represent measurements achieved without special hard-

ware for photon collection. The open-triangle markers show 171Yb+ detection fidelities achieved using

a high NA objective [120] and the open-square marker is a measurement in 171Yb+ using a mode-locked

laser to achieve near background free detection in the dark periods between ultra-short pulses [119]. The

open-diamond marker uses an SNSPD for photon collection [108]. The work we report here exceeds the

results achieved with “standard” detection hardware in 171Yb+, and if combined with high-speed op-

tical pumping via STIRAP provides a route for field-leading performance in detection error at practically

relevant measurement times.

3.2 Experimental setup

As discussed in Chapter 2, the qubit is realised in the hyperfine 2S1/2 energy levels of 171Yb+, split by

12.64 GHz, using the “clock states” |0〉 ≡ |F = 0,mF = 0〉 and |1〉 ≡ |F = 1,mF = 0〉 for first-order

magnetic-field insensitivity. The magnetic quantisation field is produced by a permanent magnet, cre-

ating a 440.9(6) µT magnitude field at the ions’ position, which was measured using the 2S1/2 linear

Zeeman shift of 13.98(1) kHz/µT [73]. Single-qubit operations are driven with a microwave field pro-

duced by a vector signal generator (VSG) that is delivered through an in-vacuum loop antenna. Photons

emitted during laser cooling and state detection are collected by a custom-made objective with an effect-

ive NA = 0.56 and imaged onto either an APD or an EMCCD.

A simplified energy-level diagram showing the states and transitions in 171Yb+ relevant to this work

is shown in Fig. 3.1. The hyperfine 2S1/2 qubit states are shown in the bottom centre of the diagram,

separated by 12.64 GHz. Doppler cooling (DC), optical pumping (OP), and state detection (SD) utilise

the 2S1/2 ↔ 2P1/2 transition; this requires a diode laser near 369.5 nm, nominally tuned to the in-

ner |F = 1〉 ↔ |F = 0〉 transition, that is split into three different beamlines. A second-order sideband

from a 7.374 GHz electro-optic modulator (EOM) simultaneously excites the outer |F = 0〉 ↔ |F = 1〉

transition during Doppler cooling ensuring all manifold states are addressed. At the start of each ex-

periment, following Doppler cooling, the ion is prepared in the qubit state |0〉 by adding a 2.105 GHz

sideband via a separate EOM to the 370 nm laser; this optically pumps any population in |1〉 to |0〉 via
2P1/2 |F = 1〉 [38]. To directly measure the final qubit state, the 370 nm laser light is applied to the ion

without any additional modulation to selectively excite |1〉, the “bright” qubit state. Occasional decays

from 2P1/2 to 2D3/2 (0.5%) remove the ion from the cooling cycle and necessitate a “clear-out” laser at



3.3 CHARACTERISATION OF THE 171YB+ 2S1/2 ↔ 2D5/2 TRANSITION 45

935 nm that is operated continuously to return the ion to the qubit manifold [122]. An EOM running at

3.067 GHz adds sidebands to the 935 nm laser to ensure both hyperfine levels of the 2D3/2 are repumped.

In this work, we introduce two additional lasers for the purpose of state detection: a 411 nm laser for

electron shelving from 2S1/2 to 2D5/2 [2, 119, 123–125], and a 760 nm laser [126–128] for repumping

from the long-lived 2F7/2 state (τ ≈ 5.4 years [68]) via 1D[3/2]3/2. The 760 nm laser replaces a 638 nm

laser [129] commonly used for this purpose and gives the benefit of substantially faster repumping. An

EOM driven at 5.260 GHz adds sidebands to the 760 nm laser to excite both 2F7/2 hyperfine states.

We stabilise both laser frequencies through Pound-Drever-Hall locks to cylindrical Fabry-Pérot cavities

with a free spectral range of 1.5 GHz; the 411 nm (760 nm) cavity has a finesse of approximately 32,000

(1,000−2,000) and a drift rate of ∼ 320 mHz/s (∼ 3.2 Hz/s). The ultra-low expansion spacer of the

411 nm cavity is temperature stabilised close to the minimum of its coefficient of thermal expansion

(CTE) located at 38.2◦C. Absolute frequency measurements use a HeNe-calibrated wavemeter1 with a

500 kHz precision, 10 MHz absolute accuracy at 760 nm and 177 MHz absolute accuracy at 411 nm

(due to operating > 200 nm from the 633 nm calibration wavelength). All laser beams are controlled

by acousto-optic modulators (AOMs) driven by direct digital synthesis sources referenced to a rubidium

frequency standard.

3.3 Characterisation of the 171Yb+ 2S1/2 ↔ 2D5/2 transition

In order to implement electron-shelved detection to 2D5/2 or 2F7/2, we must first characterise the
2S1/2 ↔ 2D5/2 transition driven by the 411 nm laser, as well as the clear-out transition using the 760 nm

laser. Table 3.1 contains a summary of the relevant parameters that have been measured in this work

required for high fidelity, electron-shelved state detection. From here we use simplified notation for the

hyperfine levels by omitting the F and mF labels in the Dirac notation for hyperfine states, |F,mF 〉.

3.3.1 Characterisation of the 411 nm shelving transition

We begin by performing spectroscopy on the 2S1/2 ↔ 2D5/2 optical transition near 411 nm, resolv-

ing individual hyperfine and Zeeman levels as shown in Figure 3.3. The 411 nm laser is locked to a

high finesse cavity with fixed length and 1.5 GHz free spectral range. By scanning the RF frequency

driving an AOM, we achieve finer frequency control than allowed by the discrete cavity lock points.

1HighFinesse WSU-10
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Parameter This work (exp.)

411 nm frequency for 2S1/2 |0, 0〉 ↔ 2D5/2 |2, 0〉 (THz) 729.487752(177)

411 nm frequency for 2S1/2 |1, 0〉 ↔ 2D5/2 |3, 0〉 (THz) 729.474917(177)

Hyperfine constant of 2D5/2 (MHz) -63.368(1)

Linear Zeeman coefficient of 2D5/2 |3〉 (kHz/µT) 13.96(2)

Linear Zeeman coefficient of 2D5/2 |2〉 (kHz/µT) 19.61(3)

Quadratic Zeeman coefficient for 2D5/2 |3, 0〉 (Hz/µT2) -0.350(1)

Lifetime of 2D5/2 |3〉 (ms) 7.1(4)

Decay from 2D5/2 |3〉 to 2S1/2 |1〉 17.6(4)%

Decay from 2D5/2 |3〉 to 2F7/2 82.4(4)%

Lifetime of 2D5/2 |2〉 (ms) 7.4(4)

Decay from 2D5/2 |2〉 to 2S1/2 |0〉 11.1(3)%

Decay from 2D5/2 |2〉 to 2S1/2 |1〉 7.4(3)%

Decay from 2D5/2 |2〉 to 2F7/2 81.6(4)%

760 nm repumper centre frequency (THz) after preparing 2D5/2 |3, 0〉 394.430203(16)

760 nm repumper centre frequency (THz) after preparing 2D5/2 |2, 0〉 394.424943(20)

TABLE 3.1. Relevant parameters for electron-shelved state detection via the 2S1/2 ↔ 2D5/2 transition
in 171Yb+.

Although absolute frequency measurements are limited by the accuracy of the wavemeter (177 MHz at

411 nm), differential measurements on the same cavity mode do not require the wavemeter and achieve

significantly higher accuracy.

The procedure to measure the 2S1/2 ↔ 2D5/2 spectra is illustrated schematically in Fig. 3.3(a); the

recorded spectra are shown in the lower panels for (b) 2S1/2 |1, 0〉 ↔ 2D5/2 |3,mF 〉, (c) 2S1/2 |1, 0〉 ↔
2D5/2 |2,mF 〉, and (d) 2S1/2 |0, 0〉 ↔ 2D5/2 |2,mF 〉. The ion is initially Doppler cooled (DC) and

prepared in 2S1/2 |0, 0〉 via optical pumping (OP), followed by a microwave π pulse (µw) to transfer

the ion to 2S1/2 |1, 0〉 for the measurements in panels (b) and (c). To shelve the population to 2D5/2,

we apply 50-100 µs of 411 nm light and scan the AOM frequency. The shelving success is measured

using 250 µs of high power, resonant Doppler cooling light (DC(∗)), which has EOM-induced sidebands

to excite both qubit states, to distinguish between a “dark” ion that has been successfully shelved and

a “bright” ion remaining in the 2S1/2 qubit manifold. Between each point, 20 ms of 760 nm light
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FIGURE 3.3. Spectra of the 2S1/2 ↔ 2D5/2 transition. (a) Schematic of the measurement protocol
for measuring the 411 nm spectra, showing when the 760 nm, 411 nm, and Doppler cooling (DC) and
optical pumping (OP) 370 nm light is applied. The final detection is performed using Doppler cooling
light at high-power and tuned near resonance (DC(∗)). A microwave π pulse (µw) is applied to prepare
2S1/2 |1, 0〉 for (b) and (c) only. (b)-(d) The 2S1/2 ↔ 2D5/2 spectra are measured for ∆mF = 0,±1,±2

(left). Energy level diagrams are shown with corresponding colours for the different Zeeman transitions
(right). We measure (b) 2S1/2 |1〉 ↔ 2D5/2 |3〉, (c) 2S1/2 |1〉 ↔ 2D5/2 |2〉, and (d) 2S1/2 |0〉 ↔ 2D5/2 |2〉.
In (c), we observe that the ∆mF = 0 transition cannot be driven, as expected due to atomic selection
rules. Any repetition with insufficient Doppler cooling photons is rejected in post-processing. Error bars
are calculated from quantum projection noise and each data-set is fitted to a Voigt profile.

clears out any population that has decayed to the 2F7/2 manifold after shelving. Post-processing on the

initial Doppler cooling photons ensures that the ion has successfully returned to the qubit manifold by

eliminating any point with insufficient cooling counts.

For each spectrum, the five accessible Zeeman transitions are detected, ∆mF = 0,±1,±2, with the

exception of 2S1/2 |1, 0〉 ↔ 2D5/2 |2, 0〉, which is forbidden by selection rules, as is the remaining

hyperfine transition 2S1/2 |0〉 ↔ 2D5/2 |3〉. The relative coupling strengths of the five ∆mF transitions

can be tuned by changing the polarisation of the incoming 411 nm light. The centre frequency for each

transition is measured by fitting the peaks to a Voigt profile to account for residual Doppler broadening;
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relative frequencies measured on the same cavity mode are only limited by the accuracy of the fitting

routine (0.1-2 kHz). The absolute measurement of 2S1/2 |0, 0〉 ↔ 2D5/2 |2, 0〉, 729.487752(177) THz,

is consistent with previous measurements [123, 130].

3.3.2 Measurement of the 2D5/2 lifetime and branching ratios

To measure the lifetime and branching ratios for 2D5/2, we prepare the two hyperfine states 2D5/2 |2〉

and 2D5/2 |3〉 and allow the state to decay. The measurement protocol is illustrated schematically in

Fig. 3.4(a). To maximise shelving fidelity to 2D5/2, multiple 411 nm π pulses to different Zeeman levels

are used. We use five successive π pulses, ∆mF = 0,±1,±2, to shelve to |F = 2〉 and three pulses,

∆mF = 0,±2, to shelve to |F = 3〉 (see Section 3.4.1 for further details). Directly after shelving,

100 µs of high-power resonant Doppler cooling light identifies any point that was not shelved – in post-

processing any point with sufficiently high photons recorded in this period likely remains in the 2S1/2

manifold and is consequently eliminated. From 2D5/2 the ion is allowed to decay for a variable wait

period scanned between 0-30 ms, after which we detect the final state. To determine the final ion state,

an initial 250 µs pulse of state-selective state detection light (SD) is used to distinguish between the two

qubit states |0〉 and |1〉. Following this, we apply 500 µs of high-power resonant Doppler cooling light

to distinguish between an ion in the qubit states 2S1/2 (bright), and the shelved states 2D5/2 and 2F7/2

(dark).

The three measured populations, P(|0〉), P(|1〉) and P(|shelf〉), are plotted in Fig. 3.4(b, c) after the ion

decays from the prepared state (b) 2D5/2 |2〉 and (c) 2D5/2 |3〉. In these experiments we are not able

Decay to 2S1/2 Decay to 2F7/2 Lifetime (ms)

This work (exp.) 171Yb+ |F = 3〉 17.6(4)% 82.4(4)% 7.1(4)

This work (exp.) 171Yb+ |F = 2〉 18.4(4)% 81.6(4)% 7.4(4)

Taylor et al. [131] (1997 exp.) 172Yb+ 17(4)% 83(3)% 7.2(3)

Yu et al. [132] (2000 exp.) 174Yb+ - - 7.0(4)

Fawcett et al. [133] (1991 calc.) Yb II 19.7% 80.3% 5.74

TABLE 3.2. Branching ratios and lifetime for the 2D5/2 state calculated by fitting an exponential decay
to the populations in Fig. 3.4. Both hyperfine states 2D5/2 |3〉 and 2D5/2 |2〉 are prepared and analysed
independently. Uncertainties are one standard deviation errors resulting from the fits. The results are
compared to previous measurements and theoretical calculations.
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FIGURE 3.4. Measurement of the 2D5/2 lifetime and branching ratios to 2S1/2 and 2F7/2. (a) Meas-
urement protocol for measuring branching ratios and lifetimes, showing when the 760 nm, 411 nm, and
Doppler cooling (DC), optical pumping (OP), state detection (SD) and high-power resonant Doppler
cooling (DC(∗)) 370 nm light is applied. The ion is first prepared in 2S1/2 |1, 0〉 for panel (c) using a
microwave π pulse (µw). Multiple 411 nm π pulses of length τn are used to shelve to 2D5/2, with (b)
n = 5 pulses to 2D5/2 |2,mF 〉, and (c) n = 3 pulses to 2D5/2 |3,mF 〉. (b, c) The populations P(|0〉),
P(|1〉) and P(|shelf〉) are plotted after shelving to (b) 2D5/2 |2〉 or (c) 2D5/2 |3〉 and waiting for the ion
to decay during an idle period of variable length. The term P(|shelf〉) combines any population in 2D5/2

and 2F7/2. Error bars are calculated from quantum projection noise, and any repetition with insufficient
initial Doppler cooling photons is rejected in post-processing. (d) Measured decays with corresponding
branching ratios extracted from exponential decay fits in (b, c) are shown for 2D5/2 |2〉 (grey, dotted)
and 2D5/2 |3〉 (black, dashed).

to distinguish between the states 2D5/2 and 2F7/2; the combined populations are labelled P(|shelf〉).

However, given the vastly different lifetimes of 2D5/2 and 2F7/2 [133], we can be confident that in the

long-time limit the population P(|shelf〉)→P(2F7/2). Indeed, given the extracted lifetime of 2D5/2, after

100 ms only 6e-5% of the population remains in 2D5/2.

To measure the branching ratios and lifetimes, an exponential decay is fitted to P(|shelf〉). The branching

ratios are obtained from the expected asymptotic limit of the fitted curve, with any remaining population
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in P(|shelf〉) assumed to have decayed to 2F7/2. The lifetime of 2D5/2 is measured to be 7.1(4) ms

(7.4(4) ms) when the ion is prepared in 2D5/2 |3〉 (2D5/2 |2〉). Examining the qubit state populations,

we confirm that the hyperfine level 2D5/2 |3〉 has no observable decay to |0〉, as expected for an electric

quadrupole E2 transition. The asymptotic limits for the |F = 0〉 and |F = 1〉 populations after preparing
2D5/2 |2〉 are 11.1(3)% and 7.4(3)%, which agree well with expected Clebsch-Gordon coefficients. The

branching ratios and lifetimes for both hyperfine levels are shown in Figure 3.4(d) and Table 3.1. These

measurements are in agreement with previous experimental results [131, 132].

3.3.3 Measurement of the second-order Zeeman coefficient of 2D5/2

To deduce the second-order Zeeman coefficient of the 2D5/2 |3, 0〉 state, we measure the 411 nm optical

transition with respect to the ground state microwave transition at different magnetic field strengths. The

B-field is varied between ∼ 4.4 G to ∼ 10 G by adjusting the placement of a permanent magnet and

current passing through a coil. For each B-field setting the frequencies of the 2S1/2 |0, 0〉 ↔ 2S1/2 |1, 0〉

hyperfine transition and the 2S1/2 |1, 0〉 ↔ 2D5/2 |3, 0〉 411 nm transition are recorded. The measure-

ments are interleaved, with Ramsey interrogation times of 50 ms and 0.1 ms for the microwave and

411 nm transitions respectively. At each point, the measured hyperfine frequency is added to the optical

411 nm frequency to obtain the 2S1/2 |0, 0〉 ↔ 2D5/2 |3, 0〉 frequency, eliminating the quadratic 2S1/2

shift. The ratio of the relative shift of these two transition frequencies is plotted in Fig. 3.5.

Applying a linear fit to the data produces a ratio -11.27(4), where the uncertainty is the standard error of

the fit. If we take the commonly reported value of 0.03108 Hz/µT2 as the quadratic Zeeman coefficient

of 2S1/2, we find the quadratic Zeeman coefficient of 2D5/2 |3, 0〉 to be -0.350(1) Hz/µT2. This value is

nearly two orders of magnitude more precise than the best published result (Table 3.3) [123].

Quadratic Zeeman coefficient (Hz/µT2)

This work (exp.) 2D5/2 |3, 0〉 -0.350(1)

Roberts et al. [123] (1999 exp.) 2D5/2 |2, 0〉 +0.38(8)

TABLE 3.3. Quadratic Zeeman coefficients measured for 2D5/2. The coefficient has opposite signs for
the two hyperfine levels |F = 3〉 , |F = 2〉.
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FIGURE 3.5. Frequency of the 2S1/2 |0, 0〉 ↔ 2D5/2 |3, 0〉 411 nm transition vs. the 2S1/2 |0, 0〉 ↔
2S1/2 |1, 0〉 microwave transition at different magnetic field strengths. The relevant transitions are il-
lustrated in the upper right energy level diagram. The optical frequency has been compensated for
cavity drift, which was measured to be 320(60) mHz per second. Typical statistical uncertainties of
the frequency measurements are approximately 200 Hz and 0.2 Hz for the optical and microwave fre-
quencies, respectively, with the error bar size highlighted in the lower inset. The frequency offsets are
fµW = 12.642812118466 GHz and f411 = 729.487559 THz. Applying a linear fit to the data we find a
ratio of -11.27(4).

3.3.4 Measurement of the 2D5/2 hyperfine splitting

The hyperfine splitting of 2D5/2 can be measured using the difference between the transition frequen-

cies of 2S1/2 |1, 0〉 ↔ 2D5/2 |2, 0〉 and 2S1/2 |1, 0〉 ↔ 2D5/2 |3, 0〉. Electric quadrupole selection rules

forbid the 2S1/2 |1, 0〉 ↔ 2D5/2 |2, 0〉 transition. We instead record the frequency of four transitions:
2S1/2 |1, 0〉 ↔ 2D5/2 |2,±1〉 and 2S1/2 |1, 0〉 ↔ 2D5/2 |3,±1〉 to infer the frequency of the centre trans-

ition. All four excitations are achievable on the same cavity mode allowing us to take a differential

measurement using the RF AOM frequencies that are not limited by the accuracy of the wavemeter. The

measurements were taken on the same day over a period of four hours; we compensate for drift in the

cavity frequency over this period.

The energy levels are shown schematically in Fig. 3.6, illustrating the effect of the hyperfine and Zee-

man interactions. From this, we see that calculating the average frequency of the ∆mF = +1 and

∆mF = −1 transitions for both ∆F = 1, 2, and then taking the difference of the two average values,

∆f , gives [134]

∆f = −∆D,5/2 −
8

9
QD,3. (3.1)
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FIGURE 3.6. Illustration of the level splitting of 2S1/2 and 2D5/2 due to the hyperfine interaction and
Zeeman effect. The two levels are separated by a frequency near 411 nm. The one half nuclear spin
of 171Yb+ causes the states to split into hyperfine doublets with hyperfine interaction constants AS and
AD for 2S1/2 and 2D5/2 respectively. An applied magnetic field causes the levels to further split due to
the Zeeman interaction. Only three Zeeman levels are shown mF = 0,±1. The linear Zeeman shift for
2S1/2 |1〉 is given by LS,1. Similarly, LD,F represents the linear shift for 2D5/2 |F 〉. The second-order
term of the interaction gives rise to a quadratic Zeeman term, QS and QD. The quadratic term on the
mF = ±1 states is 8

9× that of the mF = 0 state [134].

Here, ∆D,5/2 is the hyperfine splitting of 2D5/2 at zero magnetic field and QD,3 is the quadratic Zee-

man shift on the clock state 2D5/2 |3, 0〉, which differs from the quadratic Zeeman shift on the ±1

stretch states by a factor of 8/9. The second-order Zeeman coefficient for 2D5/2 |3, 0〉 was meas-

ured to be -0.350(1) Hz/µT2, which equates to QD,3 = −68.2(2) kHz for a magnetic field strength of

441.27(2) µT. Using Eqn. (3.1), we then find ∆D,5/2 = −190.104(3) MHz, corresponding to a hy-

perfine interaction constant AD,5/2 = −63.368(1). The uncertainty is limited by the standard error of

the estimated 411 nm peak centre in the Voigt fits, and the uncertainties of the second-order Zeeman

coefficient and cavity drift rate. This value is compared to previous measurements and calculations in

Table 3.4; it agrees with the previous experimental measurement and achieves a 700× improvement in

the precision.
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Reference AD,5/2

This work (exp.) -63.368(1)

Roberts et al. [123] (1999 exp.) -63.6(7)

Itano [135] (2006 calc.) -12.58

Sahoo et al. [136] (2011 calc.) -48(15)

Porsev et al. [137] (2012 calc.) -96

Nandy et al. [138] (2014 calc.) -69(6)

TABLE 3.4. Comparison of measurements and calculations of the hyperfine splitting constant of 2D5/2.
The measurement in this work compared the frequencies of the 2S1/2 |1, 0〉 ↔ 2D5/2 |2,±1〉 and
2S1/2 |1, 0〉 ↔ 2D5/2 |3,±1〉 transitions, measured on the same day and locked to the same cavity mode.

3.3.5 Characterisation of the 760 nm clear-out transition

After each experiment involving the 2D5/2 state, any population that has decayed to 2F7/2 must be re-

turned to the qubit manifold. There are several possible transitions over a range of wavelengths that can

be driven to achieve this goal: 638 nm [122], 760 nm [126], 828 nm [129], or 864 nm [131]. Here, we

employ a 760 nm laser as it has been observed to have the most rapid clear-out time. This phenomen-

ology owes to its excited energy level 1D[3/2]3/2 exhibiting a short upper-state lifetime (29 ns [139]),

and a decay path primarily to the 2S1/2 ground states rather than other D-levels [129]. To address both
2F7/2 hyperfine levels, a 5.260 GHz EOM is added to the 760 nm laser.

In Fig. 3.7, we present the measured spectra for the 760 nm 2F7/2 ↔ 1D[3/2]3/2 transition, with the

measurement protocol illustrated schematically in panel (a). We first prepare the ion in one of the 2D5/2

levels using the 411 nm shelving laser. A subsequent 10 ms wait period allows the ion to decay to either
2S1/2 or 2F7/2. Following the wait period, a 100 µs period of high power, on resonance Doppler cooling

induces fluorescence in cases where the ion has not decayed to 2F7/2, and we discard these experiments

in post-processing. The 760 nm laser is then applied to clear out the 2F7/2 state at a frequency adjusted

through AOMs. To detect the final state, high power, on resonance Doppler cooling light is used to

determine whether the ion has returned to the 2S1/2 manifold or remains in 2F7/2 after repumping.

The probability of excitation from 2F7/2 is plotted in Fig. 3.7(b),(c) for states prepared in different

mF levels of (b) 2D5/2 |2〉 and (c) 2D5/2 |3〉. The energy level diagrams in Fig. 3.7(d),(e) show the

potentially occupied 2F7/2 states populated through the electric dipole decay from (d) 2D5/2 |2, 0〉 or (e)
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FIGURE 3.7. Measurement of the 760 nm 2F7/2 repump transition. (a) Schematic for the measurement
protocol using the 760 nm, 411 nm, as well as Doppler cooling (DC) and optical pumping (OP) light at
370 nm. High power, on resonance Doppler cooling light is utilised for detection (DC(∗)). A microwave
π pulse (µw) is used in (c) to prepare 2S1/2 |1, 0〉. (b, c) Transitions observed at 760 nm after shelving
the ion to 2D5/2 |2,mF 〉 or 2D5/2 |3,mF 〉. For both transitions, the five Zeeman states mF = 0,±1,±2

are individually prepared by a 411 nm pulse and the recovery probability for a given 760 nm laser
frequency is shown with error bars are derived from quantum projection noise. The centre frequency of
each excitation pathway from 2F7/2 is extracted from a Gaussian fit. (d, e) Energy diagrams illustrating
the possible 2F7/2 states to which the ion can decay from 2D5/2 |F,mF = 0〉 as well as the allowed
760 nm excitations from 2F7/2 |F,mF = 0〉.

2D5/2 |3, 0〉 with the corresponding decay probabilities from the 2D5/2 levels [2, 123], and the possible

repump pathways from 2F7/2 |F,mF = 0〉.

Each peak in the spectrum is a combination of clearing out multiple prepared states in 2F7/2 with the

760 nm laser. We can only deterministically prepare a specific mF state in the 2D5/2 manifold using the

411 nm laser. From there, the ion decays probabilistically to 2F7/2 with ∆mF = 0,±1 (electric dipole
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Centre clear-out frequency (THz) after preparing
2D5/2 |3, 0〉 2D5/2 |2, 0〉

This work (exp.) 394.430203(16) 394.424943(20)

Mulholland et al. [128] (2019 exp.) 394.430026(519) 394.424837(519)

TABLE 3.5. The centre frequency of the 760 nm transition after preparing 2D5/2 |3, 0〉 and |2, 0〉 com-
pared to previous measurements [128]. The absolute frequency uncertainties are calculated from the
standard deviation of the Gaussian fit combined with the specified 3σ accuracy of the WSU-10 wave-
meter, which is 10 MHz at 760 nm.

(E1) coupling) or 2S1/2 with ∆mF = 0,±1,±2 (electric quadrupole (E2) coupling). While we can

ensure that the ion has not decayed back to the 2S1/2 using a short Doppler cooling pulse, we are unable

to determine which mF level it has decayed to within the 2F7/2 manifold. In addition, 2D5/2 |3〉 can

decay to both 2F7/2 hyperfine levels with 80% (3%) probability to 2F7/2 |4〉 (2F7/2 |3〉) [123]. Finally,

when the ion is excited from 2F7/2 with the 760 nm clear-out laser, it can be excited with five possible

Zeeman transitions, ∆mF = 0,±1,±2, as 2F7/2 ↔ 1D[3/2]3/2 is an E2 coupling. Consequently,

given a prepared mF level in 2D5/2, the 760 nm shown in the measurements comprise between 6 and

22 possible unresolved individual transitions of varying probabilities. The centre frequencies of the

transitions, obtained from Gaussian fits, are reported in Tab. 3.5 with a∼ 25× improvement in precision

relative to previous results [128].

3.4 171Yb+ state detection using electron shelving

The standard detection protocol used to discriminate between the qubit states |0〉 and |1〉 in 171Yb+ relies

on detecting state-selective laser-induced fluorescence at 370 nm. Ideally, the collected photons result

in two well-separated Poisson distributions corresponding to the different states. However, leakage

between the qubit levels due to off-resonant excitation during detection create one-sided tails on the

photon distributions that overlap and thereby lead to detection errors.

In the following, we augment the standard detection method by prepending the measurement with pulses

at 411 nm in order to transfer population from one qubit state to a metastable level. State detection is

then performed using 370 nm light that drives all transitions between the 2S1/2 and 2P1/2 manifolds,

effectively eliminating off-resonant excitations. Here, the achievable detection fidelity is limited by the

shelving transfer accuracy and the finite lifetime of the metastable state. As indicated in Tab. 3.1, the
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2D5/2 state lifetime is ∼ 7 ms, after which it decays to 2F7/2 (∼ 82%) or 2S1/2 (∼ 18%). This presents

two possibilities for an electron-shelving based detection protocol: (1) transfer the population of one

qubit state to 2D5/2 and detect for duration t� 7 ms before any significant decay occurs; or (2) optically

pump the |1〉 state to 2F7/2 via 2D5/2. In this section, we describe the detection protocols using both

shelving methods, discuss different software-based techniques to improve state discrimination under

these protocols, and finally compare the achieved state detection fidelities.

3.4.1 Electron-shelved detection in 2D5/2

The first protocol requires us to achieve an effective transfer of population from either hyperfine level

in the qubit manifold to the metastable 2D5/2 state. We begin by measuring the effectiveness of ap-

plying a π pulse on two transitions: 2S1/2 |1〉 → 2D5/2 |3〉 and 2S1/2 |0〉 → 2D5/2 |2〉 (Fig. 3.8(a)).

The linewidth of the 411 nm laser as well as the non-zero temperature of the motional modes limit

the shelving efficiency associated with a single π pulse. Thus, in order to maximise population trans-

fer, we implement a series of π pulses tuned to address multiple 2D5/2 Zeeman levels. When shelving

via 2S1/2 |0〉 → 2D5/2 |2〉, five Zeeman transitions can be driven successively, ∆mF = 0,±1,±2. By

contrast, the 2S1/2 |1〉 → 2D5/2 |3〉 transition only allows three successive pulses on ∆mF = 0,±2 to be

used, as the first-order Zeeman shift is approximately equal for the upper and lower states (∼ 14 kHz/µT).

If the ∆mF = ±1 transitions are excited, then any population initially transferred to 2D5/2 |3, 0〉 will be

de-shelved by the subsequent pulses.

The residual population in the qubit manifold after shelving is plotted in Fig. 3.8(b). As the num-

ber of shelving pulses is increased, the shelving fidelity improves from 93.9(2)% to 98.4(1)% for
2S1/2 |1〉 → 2D5/2 |3〉 (black), and from 97.9(2)% to 99.3(1)% for 2S1/2 |0〉 → 2D5/2 |2〉 (pink). The

clock transition between the mF = 0 states is driven first as its first-order magnetic-field insensitivity

allows for the highest state transfer probability. In general, we observe no significant difference when

changing the order of the subsequent pulses tuned to other Zeeman levels.

When using this protocol in large multi-qubit registers, it is critical to ensure that the population transfer

efficiency remains high for all ions throughout the experiment. Its effectiveness will be limited by laser

frequency drifts and variations in coupling strength due to laser intensity or polarisation gradients across

the ion string. As both of these effects are often slowly varying or even static “systematic” errors,

mitigation through advanced pulse sequences [5, 140–142] can be considered in addition to regular

calibration. Another commonly used routine for accurate population transfer is Rapid Adiabatic Passage
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FIGURE 3.8. Shelving efficiency of multiple π pulses to different Zeeman levels. (a) Schematic show-
ing the experimental sequence including n 411 nm shelving π pulses of length τn, a microwave pulse
(µw) used to initialise the ion in 2S1/2 |1, 0〉 before the 2S1/2 |1〉 → 2D5/2 |3〉 transition, and 370 nm
light used for Doppler cooling (DC), optical pumping (OP) and detection (DC(∗)). (b) The residual
population in the qubit manifold 2S1/2 after shelving via (black) 2S1/2 |1〉 → 2D5/2 |3〉 using three suc-
cessive shelving pulses, ∆mF = 0,±2, and (pink) 2S1/2 |0〉 → 2D5/2 |2〉 using five successive shelving
pulses, ∆mF = 0,±1,±2. The maximum shelving fidelity is 99.3(1)% after five shelving pulses to
2D5/2 |2〉. Error bars are calculated from quantum projection noise.

(RAP) [130, 143–145]. This technique involves linearly sweeping the frequency of the shelving laser,

while simultaneously shaping the amplitude of pulse to follow a Gaussian profile. The procedure is

more robust to systematic errors in the pulse frequency or length than a simple π pulse, at the cost of

enhanced sensitivity to high-frequency and dephasing errors [4, 146, 147].

In Fig. 3.9 we examine the theoretical maximum transfer fidelity using RAP for different inverse laser co-

herence times, Γ, and Rabi frequencies, Ω. The probability of transfer using a Landau-Zener model [148]

for RAP is given by

PLZ = 1− e−π2Ω2/α, (3.2)

where α is the frequency sweep rate used for the RAP pulse. To incorporate the effect of a finite

laser linewidth, the theory is modified to include a Markovian noise bath in a two-level dephasing

model [145, 149]. The transfer probability now depends on the inverse of the laser coherence, Γ, be-

coming

P =
1

2

(
1− e−2π2ΓΩ/α

)
+ e−2π2ΓΩ/αPLZ , (3.3)

which results in a sharp dropoff in transfer fidelity at lower sweep rates.
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FIGURE 3.9. Transfer fidelity using Rapid Adiabatic Passage (RAP) on the 2S1/2 ↔ 2D5/2 transition.
(a) Ramsey interferometry using the 411 nm laser on the 2S1/2 |0, 0〉 ↔ 2D5/2 |2, 0〉 transition, giving
an inverse laser coherence Γ = 2.6 kHz. (b, c) Maximum population transfer using RAP for (b) fixed
Rabi frequency Ω = 19 kHz and varying Γ, or (c) fixed Γ = 2.6 kHz and varying Ω. In both figures, the
solid black line is the result of our current experimental parameters and the black dashed line shows the
maximum achievable transfer.

In our experiment we record a Rabi frequency of 19 kHz on the 2S1/2 |0, 0〉 → 2D5/2 |2, 0〉 clock

transition and a 0.392 ms phase coherence time. This number is inferred from Ramsey interferometry

shown in Fig. 3.9(a) and corresponds to an inverse coherence time of Γ = 2.6 kHz, which we attribute to

laser linewidth. In Fig. 3.9(b),(c) we plot the calculated transfer fidelity against the sweep rate, as given

by Eqn. (3.3). Given our parameters, Γ = 2.6 kHz, Ω = 19 kHz, we could achieve a maximum transfer

fidelity of 0.72 (solid black lines), which is significantly worse than the fidelity of a single π pulse

(∼98%). To achieve > 99% transfer fidelity, we would either need to improve our laser coherence to

2 Hz or increase our Rabi frequency to 2.5 MHz (dashed black lines); both of these are unfeasible in our

current system. However, more reasonable parameter regimes achieving the same target can be found

with two-dimensional parameter analysis, e.g. reducing the inverse coherence time to ∼130 Hz and

increasing the Rabi frequency to 100 kHz. This would be achievable using higher laser lock-bandwidth

and a different laser source, respectively. We further plan to investigate numerically optimised robust

control waveforms [5] to improve state transfer efficiency.
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3.4.2 Electron-shelved detection in 2F7/2

Another attractive option for electron-shelved detection in 171Yb+ uses the 2F7/2 state with a life-

time in excess of 5 years [68], enabling longer detection periods, while still eliminating off-resonant

scattering. Given that 2S1/2 → 2F7/2 is an electric octupole transition, direct shelving to this state

requires ultra-stable laser systems generally only available in specialised frequency metrology labor-

atories [126, 130, 150]. To investigate this level for state detection without such a laser, we optically

pump the |1〉 qubit state to the 2F7/2 manifold via 2D5/2 |3〉 using 411 nm light. As before with the

electron-shelved detection in 2D5/2, once the population has been transferred to 2F7/2, we use high

power Doppler cooling light tuned to be resonant with the entire 2S1/2 and 2P1/2 manifolds to measure

laser induced fluorescence from the population remaining in the qubit manifold.

The incoherent shelving process used by us requires ∼ 100 ms to ensure >99.9% population transfer

to 2F7/2, which makes it impractical for use in quantum computing. One way to achieve fast shelving

to the F-state is via a STIRAP-like scheme [151] to a state that rapidly decays to the 2F7/2 manifold.

To implement such a scheme, one could use a laser at 410 nm connecting the 2D3/2 metastable state

to the 1[5/2]5/2 level [129, 152] and combine it with light at 435 nm connecting the 2S1/2 manifold to

the 2D3/2 state. As this scheme relies on the rapid decay of the 1[5/2]5/2 state, it could be executed

repeatedly akin to optical pumping, ensuring a high transfer efficiency to the long lived 2F7/2 state.

Alternatively, a pulsed two-stage scheme could be used, where multiple shelving pulses (similar to

Fig. 3.8) are combined with active depopulation (AD in Fig. 3.2) of the 2D5/2 state via resonant light at

3.4 µm [123].

3.4.3 State-detection protocol comparison

In this section, we now compare the detection fidelity for three different detection protocols: (1) 2S1/2

standard detection with light resonant only with the |1〉 state in the qubit manifold, (2) 2D5/2-shelved

detection with the Doppler cooling laser tuned on resonance at high power after shelving the |0〉 qubit

state to 2D5/2 |2〉 via five successive π pulses to different Zeeman states, and (3) 2F7/2-shelved detection

with the resonant Doppler cooling laser after incoherently shelving the |1〉 qubit state via 2D5/2.

In all cases measurements are conducted using either an APD recording global fluorescence or an EM-

CCD camera providing the spatially resolved information required for experiments with multi-qubit

registers. Except for protocol (3), we compare the performance of a simple threshold-based detection
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with a time-resolved maximum likelihood analysis for the APD data. For all three protocols, we compare

thresholding and a classifier-based software routine for analysis of EMCCD data.

The detection error is calculated by interleaving preparation of a dark and bright qubit state and averaging

the respective errors. We define the dark state error, εd, as the fraction of points prepared in the dark

state that are recorded as bright, and the bright state error εb accordingly. The overall detection error is

then quantified as ε = (εd + εb)/2. In order to derive a threshold value and train the image classifier,

five percent of measured data are dedicated to calibration/training, with the analysis being conducted on

the remaining 95% of the data.

APD-based detection

To find the lowest detection error achievable with the APD, we vary the length of the detection period

for the three different protocols as shown in Fig. 3.10(a). In the simplest protocol (1) of state-dependent

fluorescence detection in the qubit manifold, the photon count histograms of the bright (dark) state are

described by a Poissonian distribution modified with a tail towards the dark (bright) state counts [121].

This leads to a significant overlap between the histograms visible in Fig. 3.10(b) and correspondingly

a large detection error. When one of the qubit states is shelved by five successive π pulses to 2D5/2 |2〉

as in protocol (2), the application of detection light resonant with the entire 2S1/2 manifold eliminates

the off-resonant scattering and hence the decay tail of the bright state completely, which is shown in

Fig. 3.10(c). A residual but suppressed tail from the dark-state distribution remains due to decays from
2D5/2 back to the qubit manifold, with an 18% branching ratio. Lastly, incoherent shelving to the long-

lived 2F7/2 state in protocol (3) maximally suppresses the decay tails on both distributions as illustrated

in Fig. 3.10(d). To reduce the prohibitively long shelving times to 2F7/2 under optical pumping via
2D5/2 in these measurements, the ion is shelved only once every 1000 points before the dark state error

is measured. The ion is then returned to the qubit manifold with the 760 nm laser in order to measure the

bright state error for another 1000 points. These interleaved blocks are repeated 1000 times yielding a

total of 106 datapoints for each case. The total detection period is extended up to 1 ms for 2F7/2-shelved

detection as illustrated in the inset of Fig. 3.10(a).

To further improve on the detection error in the two protocols that show state decays, we also implement

a maximum likelihood estimation based on time-resolved data [113], referred to hereafter as “subbin-

ning”. Here, additional information about the decay dynamics during a measurement period is obtained

by dividing the 250 µs overall detection period into five smaller “subbins” of length 50 µs. This approach



3.4 171YB+ STATE DETECTION USING ELECTRON SHELVING 61

(a) S1/2
(T)S1/2

(S)

D5/2
(T)D5/2

(S)

F7/2
(T)F7/2

(T)

FIGURE 3.10. APD detection for three different detection protocols and two analysis methods. (a)
Detection error as a function of detection time for 2S1/2 standard detection with thresholding (red
crosses), S1/2

(T), and with subbinning (black crosses), S1/2
(S); 2D5/2-shelved detection with threshold-

ing (red circles), D5/2
(T), and with subbinning (black circles), D5/2

(S); and 2F7/2-shelved detection with
thresholding only (red squares), F7/2

(T). For both the bright and dark state measurements 20,000 points
are taken when using 2S1/2 and 2D5/2 detection, while for 2F7/2 we measure 1,000,000 points to resolve
errors at the 1× 10−6 level. (Inset) Extended 2F7/2-shelved results for detection periods up to 1 ms. The
grey region indicates the size of the main panel. (b)-(d) Bright and dark state distributions with 250 µs
detection time for the three methods 2S1/2,

2D5/2,
2F7/2 respectively. The red dashed line represents

the optimal threshold between the photon distributions determined from five percent of the data. Error
bands in (a) show the standard deviation resulting from 20 different optimisation runs to find the optimal
threshold by subsampling the data.

improves the ability to identify decay dynamics and allows for better discrimination of dark counts ori-

ginating from electronic noise or cosmic particles. For the analysis, we further require an independent

measurement of average count rates and the off-resonant scattering rates for the bright and dark states.

Given our standard parameters for standard 2S1/2 detection, we measure decay times from the bright

and dark states of τB ≈ 2 ms and τD ≈ 30 ms, respectively. For 2D5/2-shelved detection, τD is given by

the∼ 7 ms upper state lifetime of the shelved state, while τB has an effectively infinite value. Given that

there is no measurable decay during detection after shelving to 2F7/2, we do not perform time-resolved

analysis under that protocol. For details on the subbinning routine, see App. B.

EMCCD-based detection

To obtain spatially resolved measurements as required for multi-qubit experiments, we employ an EM-

CCD detector. Camera-based detection requires the identification of regions of interest (ROIs) for pixel-

based analyses. We locate these through Gaussian fits to the 2D ion location(s) of calibration images
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FIGURE 3.11. EMCCD based detection for two different detection protocols and analysis methods. (a)
Detection error using 2S1/2 standard detection with thresholding (red crosses), S1/2

(T), and the image
classifier (black crosses), S1/2

(C); and electron-shelved detection after quintuple shelving to 2D5/2 |2〉
with thresholding (red circles), D5/2

(T), and the classifier, D5/2
(C). The lines show the means after

sampling five different sets of training data, and shaded bands are ±1σ. 5000 measurements are taken
at each point for both the bright and dark prepared states. Five percent of the total data set is employed
for training and used for identification of hot pixels, thresholds, and classifier training. (b)-(d) Camera
histograms for 2D5/2-shelved detection at three detection times, illustrating how an optimum time is
found for thresholding. For each histogram, the dashed red line marks the optimal threshold between
“dark” and “bright”.

of (a) bright ion(s). Further processing then happens only on ROI data extracted from the full camera

images, which decreases processing time and can readily be parallelised.

As an ROI consists of multiple pixels, the thresholding method integrates their values over a certain

number of “hot” pixels (corresponding to a subset of the brightest pixels) to obtain a measure of total

counts in a given ROI. Alternatively, a set of calibration images obtained using ions prepared in the dark

and bright states can be used to train a Random Forest classifier [153] for each ROI in order to identify

a dark and bright ion. If trained on reliable data, this method is expected to be superior to the simple

thresholding model, as it will consider not just the net fluorescence in the region of interest but also

correlations between the counts on different pixels.

We compare the two spatial analysis methods across the three different detection protocols: standard
2S1/2, 2D5/2-shelved and 2F7/2-shelved. In Fig. 3.11(a), we evaluate the measured detection error as a
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function of detection time for the first two protocols. The 2S1/2 standard detection (cross markers) is

compared to the 2D5/2-shelved detection (open circles) and each dataset is analysed using the threshold-

ing method (red) and the image classifier (black). These data clearly show that the shelved detection

is superior to standard and that the image classifier can yield appreciable improvements under short to

intermediate detection times. This is likely related to a larger number of mislabeled training images due

to state decays, potentially offering room for further improvement.

The change in detection error at different detection times can be understood by examining the bright and

dark histograms for 2D5/2-shelved detection (Fig. 3.11(b)-(d)). At short detection times, the distributions

have a large overlap, with electrical noise in the camera dominating the signal (Fig. 3.11(b), 0.05 ms

detection period). At long detection periods (Fig. 3.11(d), 1.5 ms), the bright distribution mean has

increased sufficiently to separate it from the dark distribution, but state decays become dominant due to

the 7 ms lifetime of 2D5/2 producing a decay tail from the dark distribution. At the optimum detection

period, these two error contributions are balanced (Fig. 3.11(c), 0.4 ms detection period).

The detection error after using incoherent shelving to 2F7/2 is measured on the EMCCD for only one

detection time, 1 ms. This is due to the prohibitively long experimental run-times and the lack of

timing resolution on the EMCCD, which we had exploited on the APD to get multiple detection time

measurements. This data point is taken in the same style as for the APD, with blocks of 1000 interleaved

dark and bright measurements, between which the ion is prepared in the appropriate bright 2S1/2 or dark
2F7/2 state. Both the classifier and the threshold are used to analyse this data, with a minimum error

found using the classifier at 6.3(3)× 10−4.

3.4.4 Summary of results

We summarise our findings of the lowest measured errors for all detection protocols and analysis meth-

ods in Table 3.6. Overall, we achieve a 5.6× improvement in fidelity using electron-shelved detection

in 2D5/2 compared to standard 2S1/2 detection, measuring an error of 1.8(2)× 10−3 with a 100 µs de-

tection time on the APD. When using the EMCCD, we record a minimum error of 7.7(2)× 10−3 using
2D5/2-shelved detection, 4.3× lower than the best observed error using standard detection. For 2F7/2-

shelved detection with a 1 ms detection time, the detection error is reduced by another factor of 300× to

6(7)× 10−6 on the APD, and a factor of 12× to 6.3(3)× 10−4 on the EMCCD.
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Detection

Analysis EMCCD thresholding EMCCD classifier

Error Time (ms) Error Time (ms)
2S1/2 standard 4.3(3)× 10−2 0.3 3.3(2)× 10−2 0.3
2D5/2-shelved 9(1)× 10−3 0.4 7.7(2)× 10−3 0.4
2F7/2-shelved 2(1)× 10−3 1 6.3(3)× 10−4 1

Detection

Analysis APD thresholding APD subbinning

Error Time (ms) Error Time (ms)
2S1/2 standard 1.20(6)× 10−2 0.1 1.00(5)× 10−2 0.15
2D5/2-shelved 1.8(2)× 10−3 0.1 2.0(2)× 10−3 ≥0.15
2F7/2-shelved 6(7)× 10−6 1 - -

TABLE 3.6. State detection errors and optimum detection times on the EMCCD and APD using three
detection protocols: (1) standard detection in 2S1/2, (2) electron-shelved detection in 2D5/2, and (3)
incoherently shelved detection in 2F7/2. These are compared for different analysis methods: basic
thresholding, camera image classification, and time-resolved subbinning.

3.5 Conclusion

In this work, we demonstrate that it is possible to combine the benefits of a long-lived, first-order

magnetic-field insensitive hyperfine qubit with the high-fidelity detection typically observed in an op-

tical qubit. By first shelving the population in one qubit state of 171Yb+ to a metastable level, we are able

to use high-power, near-resonant Doppler cooling light to perform efficient state discrimination without

suffering off-resonant leakage. To enable scaling to larger qubit registers, we also characterise the de-

tection error after shelving to 2D5/2 when using a spatially-resolving EMCCD. For both the APD and

EMCCD detectors we compare the performance of software routines for processing photon detection

data. This involves either analysing time-resolved information about the incoming photons collected on

the APD, or exploiting spatial correlations between EMCCD pixels using a classifier routine. We also

validate that the state detection error in our system can be further reduced by shelving to the long-lived
2F7/2 manifold. New laser systems used in one of two schemes we outline could be used to overcome

the prohibitively long optical pumping time to 2F7/2, making this a viable avenue for ultra-high-fidelity

detection.
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Ultimately our results foreshadow the possibility of combining novel data-processing software routines

with physics-based techniques in the future to further reduce measurement errors without requiring

extensive hardware modifications. When combined with an efficient repump laser at 760 nm to reset

the qubit state, we believe the electron-shelving based detection routine presented here will improve the

practicality and scalability of current 171Yb+ quantum devices.



CHAPTER 4

Modelling quantum verification protocols in the presence of temporally

correlated noise

“I want to stay as close to the edge as I can without going over. Out on the edge you see all

kinds of things you can’t see from the center.”

- Kurt Vonnegut, Player Piano

The work in this chapter models the behaviour of common quantum characterisation, validation and

verification protocols to predict their response to noise with different correlation lengths. It forms the

theoretical foundation upon which the following two experimental chapters are based. The work is

largely based on the Supplementary Material of “Experimental quantum verification in the presence

of temporally correlated noise” published in npj Quantum Information Volume 4, Article number: 7

(2018) [3], and the Appendix of “Dynamically corrected gates suppress spatio-temporal error cor-

relations as measured by randomised benchmarking” published in Phys. Rev. Research 2, 013156

(2020) [4].

Quantum characterisation, validation and verification (QCVV) techniques are widely used in the quantum

information community in order to evaluate the performance of experimental hardware. A variety

of techniques have emerged including randomised benchmarking (RB) [154, 155], purity benchmark-

ing [156], process tomography [157–160], adaptive methods [161], and gate set tomography (GST)

[162, 163]. Each protocol has relative strengths and weaknesses; for instance, RB has low experimental

overhead but only provides average information about gate performance, while process tomography

provides more information at the cost of unfavourable scaling in measurement overhead [164]. Des-

pite their differences, these protocols share the common theme that they were originally developed and

mathematically formalised assuming that error processes are statistically independent and do not exhibit

strong correlations in time [154, 155, 163]. In the following chapters, I will present work examining the

66
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behaviour of common QCVV protocols in the presence of correlated noise processes. We will show how

the protocol outputs are affected by correlations, and outline simple modifications to extract information

about the underlying error correlations.

In this chapter, I begin by describing the two techniques under examination – randomised benchmarking

and gate set tomography. I will outline a theoretical model originally presented by Ball et al. [165]

that can be used to predict the results of randomised benchmarking in the presence of correlated errors.

Following this, I will detail the modifications that had to be made in order for this theory to be applicable

to realistic experimental conditions.

4.1 Introduction to quantum characterisation, validation and verification

techniques

I begin by introducing two QCVV techniques, randomised benchmarking and gate set tomography,

with a particular focus on the former. In this section I will outline the mathematical formalism on

which randomised benchmarking is based, and explain the physical implementation and analysis of

both routines.

4.1.1 Theoretical background of randomised benchmarking (RB)

Randomised benchmarking or RB is one of the most commonly used QCVV protocols, largely due to

its low overhead and relatively rapid run-times. In addition, it has a low sensitivity to state preparation

and measurement errors (SPAM). The aim of randomised benchmarking is to quantify the gate fidelity

for a given qubit and control system in its laboratory conditions. It was first proposed by Emerson et

al. [154], wherein they theoretically demonstrated that the average gate error could be estimated using

a simple “motion-reversal” sequence – a unitary Û followed by its inverse Û †. Unlike more complex

QCVV protocols such as gate set tomography (GST), it cannot extract information about individual gate

errors, instead returning an average error per gate (EPG).

The error affecting the net sequence can be represented as a completely positive, trace-preserving

(CPTP) error channel Λ̂. Consider a unitary operator Û that acts on an initial qubit density operator

ρ via conjugation. Then, the effect of an error channel on the gate is to modify the ideal evolution as
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follows,

Λ̂(Û(ρ)) = Λ̂(ÛρÛ †) =
∑
k

ÂkÛρÛ
†Â†k, (4.1)

where the error channel has been decomposed into its constituent Kraus operators Âk. Here, I have used

the notation Λ̂(·) and Û(·) to represent the generalised “action” of an operator.

The original proposal obtained the average gate error by generating random unitary operators with re-

spect to the Haar measure. This measure is left-translation-invariant and creates a uniform distribution

over the unitary matrices. For a d-dimensional Hilbert space, I represent the group of unitary operators

in Cd as U(d). The individual gate fidelities Fg are averaged over all operators in this group, Û ∈ U(d),

to obtain an estimate of the mean fidelity EÛ (Fg). Using the Haar measure dU , the average gate fidelity

for gates affected by the error channel Λ̂ is given by [154]

EÛ (Fg) =

∫
U(d)

dUTr

[√√
ÛρÛ † Λ̂(ÛρÛ †)

√
ÛρÛ †

]2

=

∫
U(d)

dUTr
[
ÛρÛ †Λ̂(ÛρÛ †)

]
. (4.2)

Here, the fidelity metric has been simplified using Eqn. (1.23) by assuming that ρ, and hence ÛρÛ †,

are pure states. Note that I have not assumed that the error-affected state, Λ̂(ÛρÛ †), is pure. It can be

shown that Eqn. (4.2) reduces to

EÛ (Fg) =

∑
k

∣∣∣Tr[Âk]
∣∣∣2 + d

d2 + d
. (4.3)

Hence, the average fidelity can be written as a polynomial of degree two in the matrix elements of the

error channel Λ̂ and their complex conjugates, i.e. degree (2, 2).

Measuring the average gate fidelity using Haar-random unitaries is experimentally inefficient due to

the number of gates required to produce the operators. Later work showed that one could simplify the

experimental implementation, and still achieve the same effective result, by using a subset of the unitary

group called the “Clifford group”, a type of unitary 2-design [166]. Operators from the Clifford group

are appealing as they can be straightforwardly implemented in quantum devices [167,168]. In general, a

unitary t-design is a subset of the unitary operators withK elements, {Ûk} ∈ U(d), that can simulate the

results of sampling from the Haar-random unitaries for the purpose of estimating a polynomial of degree

at most t in both the matrix elements of Ûk and their complex conjugates. That is, for a polynomial of
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degree (t, t), P(t,t)(Û), one finds [166]

1

K

K∑
k=1

P(t,t)(Ûk) =

∫
U(D)

dUP(t,t)(Û) (4.4)

where dU is the Haar measure. Equation (4.3) shows that EÛ (Fg) is a polynomial of degree (2, 2).

As the Clifford group is a unitary 2-design, it is an appropriate substitute for Haar-random unitaries to

estimate the average gate fidelity and hence for the implementation of randomised benchmarking.

4.1.2 Clifford group representation for a single qubit

The Clifford group can be generated using only the Hadamard, CNOT and phase gates, or simply the

Hadamard and phase gates for a single qubit [167, 168]. Furthermore, the inverse gate for a sequence

comprising purely Clifford operations (required for motion-reversal) can be efficiently calculated on a

classical computer. If we define the “Pauli group” using the Pauli and identity operators as

P = {±Î,±σ̂x,±σ̂y,±σ̂z}, (4.5)

then a unitary operation Ĉj is an element of the Clifford group if and only if

ĈjPĈ
†
j = P. (4.6)

That is, the Clifford group is the normaliser of the Pauli group, such that for every Pauli operation

P ∈ P and every Clifford gate Ĉj , there exists P ′ ∈ P such that ĈjPĈ
†
j = P ′. For a single qubit, if

we consider a Cartesian basis associated with the Pauli operators that we denote “Pauli space”, then the

set of all Clifford gates can be thought of as rotations of the Bloch sphere that permute the orientation

of ±σ̂x,±σ̂y,±σ̂z in this space. To obtain a clearer physical picture of this phenomenon, consider

associating σ̂x to any of the six Cartesian axes {±x̂,±ŷ,±ẑ}. With this axis fixed, we may rotate the

axes about σ̂x into four possible orientations while preserving xyz right-handedness. This is the action

of the Clifford group: the group of rotational symmetries of the cube.

We construct our representation as follows. Let R̂i(θ) represent one of nine elementary unitaries

generating a clockwise rotation (looking down the axis of rotation toward the origin) through angle

θ ∈ {π,±π/2} about axis i ∈ {x, y, z}. Up to a global phase, the three π rotations correspond to

R̂i(π) = e−iσ̂iπ/2 ≡ σ̂i, i ∈ {x, y, z}. (4.7)
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# Gate Name Action on (σ̂x, σ̂y, σ̂z) Minimal Mapping Notes Gate Time (τπ)

Ĉ1 Î (σ̂x, σ̂y, σ̂z) R̂−i R̂
+
i , i ∈ {1, 2, 3} Identity 1

Ĉ2 σ̂x (σ̂x,−σ̂y,−σ̂z) σ̂x 1

Ĉ3 σ̂y (−σ̂x, σ̂y,−σ̂z) σ̂y π rotation 1

Ĉ4 σ̂z (−σ̂x,−σ̂y, σ̂z) σ̂z 0

Ĉ5 R̂+
x (σ̂x,−σ̂z, σ̂y) R̂+

x 1/2

Ĉ6 R̂+
y (σ̂z, σ̂y,−σ̂x) R̂+

y +π/2 rotations 1/2

Ĉ7 R̂+
z (−σ̂y, σ̂x, σ̂z) R̂+

z 0

Ĉ8 R̂−x (σ̂x, σ̂z,−σ̂y) R̂−x 1/2

Ĉ9 R̂−y (−σ̂z, σ̂y, σ̂x) R̂−y −π/2 rotations 1/2

Ĉ10 R̂−z (σ̂y,−σ̂x, σ̂z) R̂−z 0

Ĉ11 (−σ̂x,−σ̂z,−σ̂y) R̂+
x σ̂z 1/2

Ĉ12 (−σ̂x, σ̂z, σ̂y) R̂−x σ̂z 1/2

Ĉ13 (−σ̂y,−σ̂x,−σ̂z) σ̂xR̂
+
z 1

Ĉ14 (σ̂y, σ̂x,−σ̂z) σ̂xR̂
−
z 1

Ĉ15 (−σ̂y,−σ̂z, σ̂x) R̂+
x R̂

+
z 1/2

Ĉ16 (−σ̂y, σ̂z,−σ̂x) R̂−x R̂
+
z 1/2

Ĉ17 (−σ̂z,−σ̂x, σ̂y) R̂−z R̂
+
x 1/2

Ĉ18 (−σ̂z,−σ̂y,−σ̂x) R̂−y σ̂z 1/2

Ĉ19 (−σ̂z, σ̂x,−σ̂y) R̂−y R̂
+
z 1/2

Ĉ20 (σ̂z,−σ̂x,−σ̂y) R̂+
y R̂
−
z 1/2

Ĉ21 Ĥ (σ̂z,−σ̂y, σ̂x) R̂+
y σ̂z Hadamard 1/2

Ĉ22 (σ̂y,−σ̂z,−σ̂x) R̂+
x R̂
−
z 1/2

Ĉ23 (σ̂z, σ̂x, σ̂y) R̂+
y R̂

+
z 1/2

Ĉ24 (σ̂y, σ̂z, σ̂x) R̂−x R̂
−
z 1/2

TABLE 4.1. Representation of the Clifford group for a single qubit from products of elementary rota-
tions. Relevant transformations of the coordinate system σ̂x, σ̂y, σ̂z under the action of each Clifford
shown in column 3. Minimal product of elementary operations needed to generate each Clifford shown
in column 4, in the order of physical gate-application from right to left (as would be multiplied with a
qubit state). Column 5 indicates where these geometric rotations map to logical operations of interest
for quantum information. Column 6 indicates the physical time of the gate implementation relative to a
driven π rotation incorporating instantaneous, and consequently dephasing-free, σ̂z operations.

For the remaining six π/2 rotations we introduce the shorthand

R̂±i := R̂i

(
±π

2

)
= e∓iσ̂iπ/4, i ∈ {x, y, z}. (4.8)
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For example, the operators R̂±i permute the Pauli operators/axes as

R̂+
x : (σ̂x, σ̂y, σ̂z)→ (σ̂x,−σ̂z, σ̂y) (4.9)

R̂+
y : (σ̂x, σ̂y, σ̂z)→ (σ̂z, σ̂y,−σ̂x) (4.10)

R̂+
z : (σ̂x, σ̂y, σ̂z)→ (−σ̂y, σ̂x, σ̂z). (4.11)

Products of these nine elementary operations generate a representation of the 24 elements of the single-

qubit Clifford group as tabulated in Table 4.1. The final column relates to the physical implementation

of the gates in our experiment, showing the relative length compared to a driven π rotation.

4.1.3 Implementing single-qubit randomised benchmarking

To implement single-qubit randomised benchmarking, sequences are constructed by concatenating unit-

ary operations selected at random from the Clifford group. A distinct randomisation containing J gates

is represented by the index vector η = [η1, η2, . . . , ηJ ] containing references to the 24 Clifford gates,

such that ηj ∈ {1, . . . , 24} and Ĉηj is a Clifford operation. For a sequence of J gates, the first J − 1

gates are sampled at random. The final operation is pre-calculated to invert the preceding rotations,

ĈηJ =

J−1∏
j=1

Ĉηj

−1

, (4.12)

such that the total sequence implements a net identity
∏J
j=1 Ĉηj = Î, resulting in 24J−1 distinct se-

quence possibilities. Note, for the products of operators, each successive term is right multiplied to

the previous operator, as the operations act with right multiplication to the qubit. Hence, the big Pi

product notation in Eqn. (4.12) multiplies terms from the opposite side compared to its standard usage.

The pre-calculated sequences are applied to a qubit prepared in |0〉 and the final qubit state after the

evolution is measured. Any deviation from the ideal final state, Î |0〉 = |0〉, is an error. By constructing

sequences with increasing numbers of gates and measuring how the resulting error scales, we can obtain

a measure of the average gate error.

The procedure for randomised benchmarking is outlined below.

1. For a particular choice of sequence length J , randomly select J − 1 gates from the Clifford

group and store the indices in the vector η.
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2. Calculate the final Clifford gate to be the inverse operator of the preceding (J − 1)-length

sequence, such that CηJ · · ·Cη1 = Î.

3. Using the minimal physical mappings for each Clifford gate shown in Table 4.1, apply the total

J-length sequence to a qubit prepared in the state |0〉.

4. Measure the final qubit state using a projective measurement onto the z-axis, P (|1〉).

5. Repeat steps (3)-(4) for r repetitions to obtain a estimate of the final state projection onto the

z-axis. In the presence of noise or decoherence, the sequence will not necessarily implement

a net identity operation, and consequently the qubit population will not precisely return to

|0〉. Any deviation will be averaged over different instances of the noise across the repetitions,

producing the sequence “survival probability”, P := 1− 〈P (|1〉)〉r.

6. Repeat steps (1)-(5) using k different randomly composed Clifford sequences of length J to

obtain a mean survival probability averaged over sequences for the particular sequence length

J , denoted P(J).

7. Repeat steps (1)-(6) for different choices of sequence length J to obtain an exponentially de-

caying mean qubit survival probability with sequence length. The exponential decay constant

gives an estimate of the average error per gate (EPG), pRB, by fitting the expression,

P(J) = 0.5 + (0.5− κ)e−pRBJ (4.13)

where κ is the state preparation and measurement (SPAM) error. As the number of gates

is increased, the exponential survival probability decay in Eqn. (4.13) tends towards 0.5, as

would be expected for a completely decohered or mixed qubit state.

The sequences generated in the protocol above can also be shuffled, such that sequences with different

numbers of gates (different J) are interleaved with one another. This reduces the effect of systematic

drifts that may occur over the course of the experiment, which would otherwise bias sequences imple-

mented later in the protocol.

A key aim of this work is to understand the behaviour of QCVV protocols in the presence of noise

with particular characteristics, such as correlation length. Consequently, in many instances we engineer

the noise to be a known quantity to test the system response. To implement noise engineering, another

step is added to the randomised benchmarking protocol after step (5), i.e. before moving to a different

sequence. At this point, the same sequence is repeated for n different realisations of the engineered

noise process, obtaining a noise-averaged estimate of the survival probability, 〈P〉n.
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4.1.4 Implementing single-qubit gate set tomography

While randomised benchmarking is efficiently implemented and analysed, it only returns an average

gate error. To quantify gate-specific errors, a more complex QCVV protocol must be utilised. In this

work, we employ gate set tomography (GST) for this purpose to examine its response to correlated error

processes. Here, I outline how GST is implemented; for more comprehensive details see Refs. [163,169].

In experimental GST, as defined by the pyGSTi python-based package [169], operations are selected

deterministically according to a tabulated routine to create specifically crafted sequences that are de-

signed to maximise overall sensitivity to all detectable error types. These sequences are constructed by

concatenating so-called “germs”, short sequences implementing predefined unitary rotations, which, in

our case, are constructed from a subset of Clifford gates. The germs are generated from a specific gate

set, several of which are suggested in the pyGSTi tutorials. The recommended “standard” GST gate set

is {GI , Gx, Gy}, corresponding to a π/2-length idle period, a π/2 rotation about the x-axis, and a π/2

rotation about the y-axis respectively. This gate set produces the following 11 germs,

G ∈
{

(Gx), (Gy), (GI), (GxGy), (GxGyGI), (GxGIGy), (GxGIGI),

(GyGIGI), (GxGxGIGy), (GxGyGyGI), (GxGxGyGxGyGy)
}

(4.14)

which we use in our experiments, identical to those used by Blume-Kohout et al. [163]. In our numerical

analyses, we extend the standard gate set from {GI , Gx, Gy} → {GI , Gx, Gy,−Gx,−Gy}, while also

expanding the generated germ set from 11 to 39 elements to maintain amplificational completeness.

Each of these germs is concatenated with itself up to a maximum length that successively increases as

L = {1, 2, 4, 8, 16, 32, . . . }. More concretely, this implies that the germ is repeated as many times as

possible until the number of constituent gates would exceed L, or alternatively, if |G| is the number of

constituent gates in the germ G, then it is repeated l =
⌊
L
|G|

⌋
times, using the mathematical “floor”

notation. For example, the germ (GyGIGI) has three constituent gates and cannot be implemented at

all for L = 1, 2. It is repeated once for L = 4, twice for L = 8, and so on.

Each concatenated germ sequence is appended with an initial and final unitary termed the “fiducial”

operations Fα and Fβ respectively, which set the reference frame for state-preparation and measurement.

The six fiducial operations are taken from the set

Fα, Fβ ∈ {∅, Ĝx, Ĝy, ĜxĜx, ĜxĜxĜx, ĜyĜyĜy}, (4.15)
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(a)
RB:

GST:

(b)

FIGURE 4.1. QCVV sequence construction and mapping to accumulated error. (a) Overview of unit-
ary sequence construction for RB and GST using Clifford gates, Ĉηj or fiducial operations, Fα,β and
repeated germs (G)l respectively. (b) Sequence-dependent “random walk” calculated for an arbitrary
QCVV sequence (here according to the RB prescription) with J = 100 in Pauli space. Black dot indic-
ates origin and black cross indicates sequence terminus. Blue line represents the 3D walk, which can be
used to calculate the trace infidelity, while grey represents the 2D projection, which is measurable using
a standard projective measurement. The black solid and dashed arrows indicates the net walk vectors for
V and V2D respectively, given unit-length step size.

where ∅ stands for no gate operation, and Gx and Gy stand for π/2 rotations around the x and y-

axes of the Bloch sphere. They are chosen to form an informationally complete set of input states and

measurement bases akin to quantum process tomography. Each germ sequence is measured in all 36

combinations of the fiducials Fα and Fβ .

The construction of both an RB sequence and a GST sequence is shown in Fig. 4.1(a). The jth unitary in

the general sequence is denoted by Ûj , where j ∈ {1, . . . , J}. For RB, the first J−1 gates are randomly

selected Clifford gates indexed by the sequence vector η, Ĉηj , and the final gate is the inverse of the

preceding operations. For GST, the first and last gates are one of the six fiducials, Fα,β , and the central

gates comprise one of the 11 germ sequences specified in Eqn. (4.14) repeated l times to a produce a

total of |G| × l = |G| ×
⌊
L
|G|

⌋
= (J − 2) constituent Clifford gates.

4.2 Mapping Clifford sequences to random walks in Pauli space

The key analytic tool for our study is a formalism mapping an applied noise model to an output error for

a given Clifford sequence. This section sets out the theory used to model the randomised benchmarking

data presented in the following chapters. The theory is adapted from the model originally presented

Ref. [165], and involves a number of modifications incorporating the previously underappreciated role

of the experimental readout process and the experimental implementation itself (i.e. the structure of the

error model). We begin by reviewing the original model presented by Ball et al. in Ref. [165].
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In single-qubit RB, random sequences of Clifford operators are implemented. Multiple such randomisa-

tions are performed, and from the ensemble statistics of the resulting fidelity measurements experiment-

alists may extract the average EPG arising from the system’s interaction with the noise environment. For

an RB sequence of length J , including the final inverting Clifford operation, we write the net operation

as the operator product

Ŝη :=
J∏
j=1

Ĉηj = Î (4.16)

where each new term uses right multiplication to the preceding term and η contains the Clifford gate

references for the particular sequence.

When the system interacts with the underlying noise environment, the target Clifford operations Ĉηj are

implemented imperfectly as C̃ηj ,δj , resulting in the noise-affected product

S̃η,δ :=
J∏
j=1

C̃ηj ,δj 6= Î (4.17)

where δ is a J-length vector denoting the random noise realisation, with each element representing the

strength of the noise during the gate, e.g. δj is the noise affecting the jth gate. The net operator product

is therefore no longer necessarily equal to the identity gate, reducing the operational fidelity compared

to implementing the ideal sequence Ŝη.

The noise-averaged fidelity for a particular sequence η is therefore written as 〈F(η, δ)〉n where 〈·〉n
denotes the expectation value of the fidelity F(η, δ) averaged over n realisations of the noise random

variable, δ. The original analytic model employed the “trace fidelity” metric, as outlined in Section 1.2.3,

defined as

Ftrace (η, δ) :=

∣∣∣∣12Tr
(
Ŝ†ηS̃η,δ

)∣∣∣∣2 =
1

4

∣∣∣Tr
(
S̃η,δ

)∣∣∣2 (4.18)

to quantify the fidelity of implementing the RB sequence η in the presence of the noise realisation δ.

This operator-based trace fidelity metric captures the overlap between ideal, Ŝη = Î, and noise-affected

sequences, S̃η,δ, via the Hilbert-Schmidt inner product. The expression for the noise-averaged fidelity

therefore takes the form

〈Ftrace(η, δ)〉n =
1

4

〈∣∣∣Tr
(
S̃η,δ

)∣∣∣2〉
n

. (4.19)
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To model the error, we initially consider a σ̂z phase error of strength δj following each Clifford gate, as

studied in Ref. [165]. The effect of the “interleaved dephasing” error can be expressed in terms of an

imperfect Clifford gate

C̃ηj ,δj = eiδj σ̂z Ĉηj . (4.20)

In this case the total noisy sequence S̃η,δ can be expression using a Taylor expansion in δj , yielding

S̃η,δ =
J∏
j=1

(
Î + iδj σ̂z −

δ2
j

2
σ̂2
z + . . .

)
Ĉηj . (4.21)

If we assume the average EPG is small, then the expansion can be truncated after second order. For noise

variables sampled from a zero-mean normal distribution with root-mean-square (rms) σ, δj ∼ N (0, σ2),

the assumption of small EPGs translates to the condition that Jσ2 � 1. In this case we approximate the

total noisy sequence as

S̃η,δ ≈
J∏
j=1

(
Î + iδj σ̂z −

δ2
j

2
σ̂2
z

)
Ĉηj (4.22)

≈ ξ(0) + ξ
(1)
1 + ξ

(2)
1,1 + ξ

(2)
2 . (4.23)

Here, the product cross-terms have been grouped into terms labelled ξ(a)
b , which contain terms of order a

in δ, with the subscript b referring to the order in δ of the individual error terms that have been combined.

For example, a subscript b = 1, 1 has two distinct noise terms δj , δk 6=j contributed from different error

operator steps that have been combined, whereas b = 2 refers to a second-order term from a single step,

δ2
j . Explicitly, using the shorthand Ĉk,j := Ĉηk · · · Ĉηj ,

ξ(0) = ĈηJ · · · Ĉη1 =: ĈJ,1 = Î, (4.24)

ξ
(1)
1 =

J∑
j=1

(iδj)ĈJ,j+1σ̂zĈj,1

=

J∑
j=1

(iδj)Ĉ
†
j,1σ̂zĈj,1, (4.25)

ξ
(2)
1,1 =

∑
j<k

(iδj)(iδk)ĈJ,k+1σ̂zĈk,j+1σ̂zĈj,1

= −
∑
j<k

δjδkĈJ,k+1σ̂z

(
Ĉ†J,k+1ĈJ,k+1

)
Ĉk,j+1σ̂zĈj,1

= −
∑
j<k

δjδkĈ
†
k,1σ̂zĈk,1Ĉ

†
j,1σ̂zĈj,1, (4.26)
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ξ
(2)
2 = −1

2

J∑
j=1

δ2
j ĈJ,j+1σ̂

2
z Ĉj,1

= −1

2

J∑
j=1

δ2
j Î, (4.27)

using ĈJ,k+1Ĉk,j+1 = ĈJ,j+1 and σ̂2
z = Î. Additionally, we have used the fact that the net sequence

in the absence of error is the identity gate, hence the sub-sequence ĈJ,j+1 must be the inverse of the

complementary sub-sequence Ĉj,1, such that ĈJ,j+1 = Ĉ†j,1.

Using group theoretic properties of the Clifford group, which state that the conjugation of a Pauli oper-

ator with a Clifford operator maps to another Pauli operator, we may express

ξ(0) = Î, (4.28)

ξ
(1)
1 =

J∑
j=1

(iδj)P̂j , (4.29)

ξ
(2)
1,1 = −

∑
j<k

δjδkP̂kP̂j , (4.30)

ξ
(2)
2 = −1

2

J∑
j=1

δ2
j Î, (4.31)

in terms of random signed Pauli operators defined as P̂j := Ĉ†j,1σ̂zĈj,1 ∈ ±{σ̂x, σ̂y, σ̂z}. Using the

vector of Pauli operators σ̂ = [σ̂x, σ̂y, σ̂z], P̂j can be written generally as

P̂j = xj σ̂x + yj σ̂y + zj σ̂z =: rj · σ̂. (4.32)

The coefficients xj , yj , zj ∈ {0,±1} are subject to the constraint |xj |2 + |yj |2 + |zj |2 = 1, such that

there is only one non-zero coefficient, and we define

rj := [xj , yj , zj ], ‖rj‖ = 1. (4.33)

That is, rj ∈ ±{x,y, z} are unit vectors pointing at random along the principal Cartesian axes, mapping

the “direction” of the operators P̂j in the operator space spanned by the Pauli operators.

Returning to the expression for the noise-affected sequence, and noting that for the trace fidelity metric

Eqn. (4.19) we need keep only terms with non-vanishing trace, using Tr[σ̂xyz] = 0 and Tr[̂I] = 2 we can
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write the following expressions.

S̃η,δ ≈

1− 1

2

J∑
j=1

δ2
j

 Î +
J∑
j=1

(iδj)P̂j −
∑
j<k

δjδkP̂jP̂k (4.34)

1

2
Tr[S̃η,δ] ≈ 1− 1

2

J∑
j=1

δ2
j −

1

2

∑
j<k

δjδkTr[P̂jP̂k] (4.35)

Moving to the vector notation defined in Eqn. (4.32), we can rewrite the final term, again utilising the

fact that the Pauli operators are trace zero,

1

2
Tr[P̂jP̂k] =

1

2
Tr[(rj · σ̂)(rk · σ̂)]

=
1

2
Tr
[
(rj · rk )̂I + i(rj × rk) · σ̂

]
= rj · rk, (4.36)

where all other terms in the second last line are trace zero. Then, we can write

1

2
Tr[S̃η,δ] ≈ 1− 1

2

J∑
j=1

δ2
j −

∑
j<k

δjδkrj · rk

= 1− 1

2

J∑
j=1

δ2
j −

1

2

J∑
j,k=1

δjδkrj · rk +
1

2

J∑
j=1

δ2
j ‖rj‖2

= 1− 1

2

J∑
j,k=1

δjδkrj · rk (4.37)

by changing the restricted sum to be non-restrictive due to the commutativity of the dot product in the

second last line, and substituting ‖rj‖ = 1 in the final line.

From this result, we see that the use of an interleaved σ̂z phase error model, where dephasing error

operators are inserted between Clifford gates, yields the central result

〈Ftrace(η, δ)〉n =
1

4

∣∣∣Tr
(
S̃η,δ

)∣∣∣2 = 1− 〈‖R‖2〉n +O(δ4), (4.38)

R :=
J∑
j=1

δjrj , (4.39)

where we eliminate all terms with O(δ3) because 〈δj〉n = 0 and 〈δ3
j 〉n = 0 for δ ∼ N (0, σ2). Fur-

thermore, any combination of 〈δjδkδl〉n = 0 as the terms can be separated if they are independent, e.g.

〈δjδkδl〉 = 〈δj〉n〈δk〉n〈δl〉n = 0 if j 6= k 6= l.
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From this analysis we obtain the following geometric interpretation. Error accumulation over a J-gate

Clifford sequence maps to a random walk,R, in a three-dimensional vector space. The step directions rj

represent the action of the error unitaries P̂j in the operator space spanned by the Pauli operators (“Pauli

space”), and the step lengths, δj , capture the phase error applied after the jth gate. The overall form of the

walk is a statistical measure of how the sequence itself interacts with the noise process to produce a net,

measurable accumulation of error. Sequences that are highly susceptible to error accumulation produce

walks that migrate far from the origin, while sequences exhibiting error suppression produce walks that

meander back towards the origin. The net walk length is captured in the mean-squared distance from the

origin 〈‖R‖2〉n, averaged over noise realisations.

At this stage we can link the correlation properties of the noise to the form of the walk for a specific

sequence. Considering only the underlying properties of the sequence, we set the step lengths δj to one

in order to create a deterministic sequence-dependent walk defined by V ≡
∑J

j=1 rj . The presence or

absence of temporal noise correlations is now captured through a rescaling of the individual steps in the

deterministic walk for a specific sequence. In the case of slowly varying or static noise that is constant

throughout the sequence realisation (δj ≡ δ for all j) the net error can be separated into two independent

parts, ‖R‖2 = δ2‖V ‖2. However, in the case of rapidly varying noise these two terms are no longer

separable and the net error must be calculated as the convolution of the noise value at each time-step and

each individual step in the random walk, ‖R‖2 = ‖
∑J

j=1 δjrj‖2.

We can calculate the noise-averaged fidelity distributions over the randomly constructed Clifford se-

quences, η. Firstly, the probability density function (PDF) for the unscaled walk length squared corres-

ponds to the distance square of an unbiased three-dimensional walk, and takes the form of the gamma

distribution [165]

‖V ‖2 ∼ Γ

(
a =

3

2
, b =

2

3
J

)
(4.40)

with shape parameter a = 3
2 and scale parameter b = 2

3J . Then, for slowly varying or static noise

sampled from a zero-mean normal distribution, we assume all noise random variables δj ≡ δ ∼ N (0, σ2)

are identical over a given noise realisation S̃η,δ. The noise then scales the unscaled random walk distri-

bution by σ2,

1− 〈Ftrace(η, δ)〉n ∼ Γ

(
a =

3

2
, b =

2

3
Jσ2

)
. (4.41)
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Finally, for rapidly varying noise that changes for each gate, the PDF is modified to be

1− 〈Ftrace(η, δ)〉n ∼ Γ

(
a =

3n

2
, b =

2

3n
Jσ2

)
(4.42)

where n is the number of noise realisations sampled from the zero-mean normal distribution with rms

σ, δj ∼ N (0, σ2).

4.3 Linking random walk theory to experiment

I now describe the modifications to the above model from Ref. [165] that are necessary for good agree-

ment with experimental data. As above, we start with the choice of fidelity metric before moving onto

the structure of the error model.

4.3.1 Fidelity modifications for projective measurements

Appropriately linking the picture of error accumulation to standard laboratory measurements requires

consideration of the measurement routine itself. In typical measurements, at the end of the sequence

the qubit Bloch vector is projected onto the quantisation axis, z, with basis states |0〉 and |1〉. We con-

sequently substitute the noise-averaged fidelity 〈F(η, δ)〉n for the “noise-averaged survival probability”,

〈P (η, δ)〉n := 〈| 〈0| S̃η,δ |0〉 |2〉n (4.43)

ascertained using projective measurements. A measurement of this type is insensitive to rotations around

the projective z-axis of the Bloch sphere. Consequently, the metric is sufficiently different from the trace

fidelity used in the original model to prevent good agreement between first principles PDF calculations

and experimental projective measurements.

Here, I seek to reconcile this difference by re-evaluating the formalism for projective measurements. As

with the trace fidelity, the Taylor expansion of the error operator can be used to predict the sequence

fidelity. Recall the expression for the noise-affected sequence from Eqn. (4.34),

S̃η,δ ≈

1− 1

2

J∑
j=1

δ2
j

 Î +
J∑
j=1

(iδj)P̂j −
∑
j<k

δjδkP̂jP̂k, (4.44)
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which I now use to calculate

〈0| S̃η,δ |0〉 ≈

1− 1

2

J∑
j=1

δ2
j

+
J∑
j=1

(iδj) 〈0| P̂j |0〉 −
∑
j<k

δjδk 〈0| P̂jP̂k |0〉 (4.45)

based on the expected projective measurements outcomes. I proceed by using the relations 〈0| σ̂z |0〉 = 1

and 〈0| σ̂x |0〉 = 〈0| σ̂y |0〉 = 0. Consequently, the single Pauli-step term, P̂j = rj · σ̂, can be replaced

purely with its z-component,

J∑
j=1

iδj 〈0| P̂j |0〉 =
J∑
j=1

iδjzj =: iRz, (4.46)

where Rz is the component of the three-dimensional Pauli-space random walk in the σ̂z direction, i.e.

R = [Rx, Ry, Rz].

To simplify the final term, 〈0| P̂jP̂k |0〉, one can use the relation

σ̂ασ̂β = δα,β Î + iεαβγσγ (4.47)

where δα,β is the Kronecker delta (distinct from the noise term δj and identified by two subscripts rather

than one) and εαβγ is the Levi-Civita product for α, β, γ ∈ {x, y, z}. Applying this relation, and only

taking the resulting terms proportional to σ̂z and Î because 〈0| σ̂x |0〉 = 〈0| σ̂y |0〉 = 0, one can write∑
j<k

δjδk 〈0| P̂jP̂k |0〉 =
∑
j<k

δjδk(rj · rk + i(xjyk − xkyj))

=
1

2

J∑
j,k=1

δjδkrj · rk −
1

2

J∑
j=1

δ2
j ‖rj‖2 + i

∑
j<k

δjδk(xjyk − xkyj)

=
1

2
‖R‖2 − 1

2

J∑
j=1

δ2
j + i

∑
j<k

δjδk(xjyk − xkyj) (4.48)

by recasting part of the restricted sum into a non-restricted sum and using ‖rj‖ = 1.

Combining Eqns. (4.46) and (4.48) into the noise-averaged survival probability, Eqn. (4.43), one finds

〈P(η, δ)〉n =

〈∣∣∣∣∣∣1− 1

2

J∑
j=1

δ2
j + iRz −

1

2
‖R‖2 +

1

2

J∑
j=1

δ2
j − i

∑
j<k

δjδk(xjyk − xkyj)

∣∣∣∣∣∣
2〉

n

= 1− 〈‖R‖2〉n + 〈|Rz|2〉n +O(δ4)

= 〈Ftrace(η, δ)〉n + 〈|Rz|2〉+O(δ4) (4.49)
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where I eliminate all terms with O(δ3) due to the noise averaging for δ ∼ N (0, σ2). Here, the random

walk components along each direction are defined as

Rx =
J∑
j=1

δjxj , Ry =
J∑
j=1

δjyj , Rz =
J∑
j=1

δjzj (4.50)

andR = [Rx, Ry, Rz]. From Eqn. (4.49), it is apparent that the walk steps in the σ̂z direction (measure-

ment basis) do not contribute to the survival probability infidelity. By projecting the final state S̃η,δ |0〉

onto the measurement basis in σ̂z , we become “blind” to error accumulation along this degree of freedom

in Pauli space. By contrast, the trace fidelity involves no such projection, and measures errors associ-

ated with all operator outcomes in SU(2). Equation (4.49) shows that the survival probability maps to

a J-step random walk in R3 projected onto a two-dimensional subspace (i.e. the xy-plane), which is

illustrated in Fig. 4.1(b). This is formally equivalent to a random walk strictly in R2 of 2
3J steps.

Once averaged over the random noise variable δ, the distribution of 〈P(η, δ)〉n over different Clifford

sequences still follows a gamma distribution with updated shape and scale parameters. The PDF for

the unscaled walk length squared in two dimensions, ‖V2D‖2, matches that of the distance square of a

two-dimensional random walk with 2
3J steps, which takes the form of a gamma distribution with shape

a = 1 and scale b = 2
3J ,

‖V2D‖2 ∼ Γ

(
a = 1, b =

2

3
J

)
. (4.51)

The noise-averaged survival probabilities for a slowly varying or static noise process that is constant

throughout a sequence realisation remain gamma distributed,

1− 〈P(η, δ)〉n ∼ Γ

(
a = 1, b =

2

3
Jσ2

)
(4.52)

where δj ≡ δ ∼ N (0, σ2) and σ2 has entered as a scaling parameter as was done in obtaining Eqn. (4.41).

While an explicit gamma distribution form for the rapidly varying errors has not yet been proven, in the

limit of large n and J it approximately follows the distribution

1− 〈P(η, δ)〉n ∼ Γ

(
a = n, b =

2

3n
Jσ2

)
. (4.53)

4.3.2 Random walk modifications for different error channels

Until now, I have used the terms “noise” and “errors” relatively interchangeably, assuming that any

noise process affecting a gate will be translated into an identical magnitude error. This was possible
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using the “interleaved dephasing” error model, which introduces an error of equal magnitude to the

hypothetical dephasing “noise” between gates. For realistic noise models, however, this translation is

not so straightforward. In experiments, noise often acts concurrently with a gate’s operation, resulting

in multi-axis and gate-dependent errors for the different Clifford operations. Due to the introduced

gate-dependence, an exactly constant noise process will not be directly translated to a constant error

process with identical error operators for every gate, and hence the translation for each gate needs to be

considered explicitly. In this section, I examine the translation of physical noise to experimental errors,

studying how the bandwidth and implementation of the noise affects the resulting errors. In particular,

I calculate the relationship between the rms magnitude of the physical noise process, ρ, and that of the

resulting error operators, σ.

The method to transform noise strength to error strength for noisy, primitive Clifford gates is initially

presented here for a general noise process that is static over the duration of a single gate. Each of

the single-qubit Clifford gates are made up of rotations on the Bloch sphere with the rotation axis and

angle specified by the Clifford gate index, ηj ∈ {1, . . . , 24}. If the jth gate in a sequence is affected by

laboratory noise with value δj ∼ N (0, ρ2), then the resulting noise-affected gate can be decomposed into

an error operator and the ideal gate, C̃ηj ,δj = Λ̂ηj ,δj Ĉηj . In general, for a unitary semi-classical noise

process, the error operator can be written in terms of the error vector ε using the Magnus expansion,

Λ̂ = ei
∑∞
α=1[ε]α·σ̂ (4.54)

where σ̂ is the vector of Pauli matrices and α is the Mangus expansion order. I explicitly separate the

error vector into two components, allowing the error operator to be written as a function of the applied

noise,

Λ̂ηj ,δj = ei
∑∞
α=1 δ

α
j [νηj ]α·σ̂

≈ Î + iδj [νηj ]1 · σ̂ (4.55)

truncating the expansion at second order by requiring δj � 1. For the Magnus expansion of order α,

I have replaced [εj ]α = δαj [νηj ]α to explicitly show the dependence on the physical noise strength δj ,

which will change between different realisations of the noise, and the particular gate’s susceptibility

to the error channel, described by the term νηj . There will be 24 gate-specific error vector terms, νηj ,

corresponding to the 24 Clifford operations, which can be calculated explicitly for a given noise process.

We now consider how these terms modify our ideal randomised benchmarking sequence.
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Starting with the standard randomised benchmarking procedure, we compile a sequence of randomly

composed single-qubit Clifford operations,
∏J
j=1 Ĉηj = Î. Then, the complete noise-affected sequence

is given by

S̃η,δ =
J∏
j=1

Λ̂ηj ,δj Ĉηj . (4.56)

As before, we approximate the noise-affected sequence by translating the first-order term of each error

operator to a step in Pauli-error space, with the total random walk in three dimensions given by

R3D =

J∑
j=1

δjr3D,j , (4.57)

r3D,j · σ̂ := ĈηJ . . . Ĉηj+1

(
[νηj ]1 · σ̂

)
Ĉηj . . . Ĉη1

= Ĉ†j,1
(
[νηj ]1 · σ̂

)
Ĉj,1, (4.58)

where I now explicitly add a “3D” subscript to describe the steps in the full three-dimensional Pauli

space. Recall that previously for the interleaved dephasing model, the error operator was always σ̂z , and

the step was simply given by Eqn. (4.32),

r3D,j · σ̂ = Ĉ†j,1σ̂zĈj,1. (4.59)

The crucial difference between these two derivations is that, due to the introduction of νηj , we no longer

assume ‖r3D,j‖ = 1.

To obtain the sequence survival probability that would be measured via a single-axis projective meas-

urement, the relevant steps are obtained from the projection of r3D,j in the two-dimensional σ̂xσ̂y-plane

of Pauli-error space, r2D,j . This allows us to write the noise-averaged survival probability for a qubit

initially prepared in |0〉 as

〈P(η, δ)〉n = 〈|〈0| S̃η,δ |0〉|2〉n = 1− 〈‖R2D‖2〉n +O
(
ρ4
)
, (4.60)

where R2D is the two-dimensional random walk and the noise is sampled from the zero-mean normal

distribution δ ∼ N (0, ρ2). Continuing forward, we will exclusively utilise the two-dimensional walk

relevant to the projective measurements and, to simplify notation, consequently substitute r2D,j ≡ rj
andR2D ≡ R.
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From the expression for noise-averaged survival probability, the distribution moments over sequences

can be calculated for arbitrary step lengths. This is achieved by taking the expectation and variance

of R =
∑J

j=1 δjrj , when the noise process is either correlated or uncorrelated. For a correlated noise

process, constant across all gates, I represent the rms strength of the noise by ρC and calculate the

statistical moments for the noise-averaged survival probability, denoted 〈PC(η, δ)〉n.

E [〈PC(η, δ)〉n] = 1− JE
[
‖rj‖2

]
ρ2
C , (4.61)

V [〈PC(η, δ)〉n] =
J(n+ 2)

n

(
E
[
‖rj‖4

]
+ (J − 2)E

[
‖rj‖2

]2)
ρ4
C (4.62)

For an uncorrelated noise process with the noise strength changing every gate time or more frequently,

the rms strength is represented by ρU and the noise-averaged survival probability 〈PU (η, δ)〉n. Then

the statistical moments are

E [〈PU (η, δ)〉n] = 1− JE
[
‖rj‖2

]
ρ2
U , (4.63)

V [〈PU (η, δ)〉n] =
J

n

(
(2 + n)E

[
‖rj‖4

]
+ (J − 1− n)E

[
‖rj‖2

]2)
ρ4
U . (4.64)

These expressions are based on the expected values of ‖rj‖2 and ‖rj‖4 averaged across all gates. Their

form entirely arises because we have relaxed the assumption that ‖r3D,j‖ = 1, allowing gate-dependent

and multi-axis errors. In fact, if we analyse the case of unit-length steps in three dimensions correspond-

ing to two-dimensional steps with ‖rj‖2 = ‖rj‖4 = 2/3, these expressions reduce to

E [〈PC(η, δ)〉n] = 1− 2

3
Jρ2

C , (4.65)

V [〈PC(η, δ)〉n] =
4

9

J(n+ 2)

n

(
J − 1

2

)
ρ4
C ≈

4

9
J2ρ4

C (4.66)

E [〈PU (η, δ)〉n] = 1− 2

3
Jρ2

U , (4.67)

V [〈PU (η, δ)〉n] =
4

9

J

n

(
J + 2 +

n

2

)
ρ4
U ≈

4

9n
J2ρ4

U , (4.68)

where the approximations are made in the limit of large J and n. Hence, we recover the moments

calculated from the original interleaved dephasing error model (Eqns. (4.52) and (4.53)).

In Table 4.2, I show the expectation values of ‖rj‖2 and ‖rj‖4 for a range of physical noise processes

that can be used to calculate the expected statistical moments. In addition, I show a covariance value

called Cov
(
‖rU,j‖2, ‖rC,j‖2

)
that will be required when a correlated and uncorrelated noise component

for the same error channel are simultaneously present, e.g. rapidly varying frequency errors added to a
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Engineered Noise Process E
[
‖rj‖2

]
E
[
‖rj‖4

]
Cov

(
‖rU,j‖2, ‖rC,j‖2

)
Interleaved Dephasing 2/3 2/3 2/9

2
3

(
1
2 + π2

96

)
2
3

(
7
24 + π4

384

)
2
3

(
7
24 + π4

384

)
− 4

9

(
1
2 + π2

96

)2

Concurrent Detuning
1 value every primitive π/2
gate time

2
3

(
1
2 + π2

192

)
2
3

(
1
4 + π4

1536

)
17
108 + π4

1152 −
4
9

(
1
2 + π2

192

)(
1
2 + π2

96

)
Over- and Under-rotation
1 value per primitive (π or
π/2) gate

π2/18 5π4/576 29π4/5184

Over- and Under-rotation
1 value every primitive π/2
gate time

π2/36 5π4/2304 29π4/10368

TABLE 4.2. The expected step lengths in the Pauli σ̂xσ̂y-plane based on the average Clifford gate
error for different engineered noise. These quantities are used to predict the statistical moments of
the sequence survival-probability distributions in Eqns. (4.61)-(4.64). The covariance values are taken
between the expected step value for a correlated noise process (‖rC,j‖) and an uncorrelated noise pro-
cess (‖rU,j‖2) from the same error model. They will be required to predict the behaviour of RB when
correlated and uncorrelated noise processes are simultaneously present. For both the concurrent detun-
ing and over-rotation errors, two bandwidths are considered for the uncorrelated error. The correlated
error process step will be the same for both cases.

slow drift. In that case, if the uncorrelated noise process changes within an individual gate duration, then

the expected single step lengths may have to be derived independently for the correlated noise (‖rC,j‖)

and the uncorrelated noise (‖rU,j‖). This will be discussed in greater detail in Chapter 6. I finish this

chapter by showing an explicit example of how to derive the terms ‖rj‖2 and ‖rj‖4 for a particular error

model – the concurrent detuning error.

4.3.3 Expected random walk steps for concurrently applied detuning noise

The main error model studied in our work involves the application of a laboratory detuning between

the control field and qubit transition during a non-zero-duration operation. Deliberately induced off-

resonance errors are implemented via a fixed detuning ∆ from the qubit’s transition frequency. Only the

physically implemented gates (proportional to σ̂I ≡ Î, σ̂x and σ̂y) will be affected by the off-resonance

error; frame changes from σ̂z rotations remain error free. The noise-affected gates can be rewritten as
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rotation operators modified by an additional concurrent σ̂z rotation with strength normalised by the Rabi

frequency Ω, δ = ∆/Ω,

R̂i(θ, δ) = exp

{
−i
(
θ

2
σ̂i +

|θ|
2
δσ̂z

)}
, i ∈ {I, x, y}. (4.69)

The first term in the exponent corresponds to the unperturbed unitary where the rotation angle is chosen

from θ ∈ {−π/2, π/2, π} and σ̂I ≡ Î. The second term relates to the σ̂z off-resonance error, for which

the absolute value of θ ensures that the sign of the detuning term is preserved under positive and negative

gate rotations.

Concurrently applied detuning noise leads to gate-dependent errors. For example, π rotations accumu-

late twice the phase in the presence of a non-zero detuning as π/2 rotations. Here, I provide the specific

matrix form of the unitary operations employed in experiments and simulations where the error model

involves a concurrently applied σ̂z Hamiltonian term. The basic unperturbed operations about each axis

are defined to be

ĈI(θ) = e−i
θ
2
σ̂I , (4.70a)

Ĉx(θ) = e−i
θ
2
σ̂x , (4.70b)

Ĉy(θ) = e−i
θ
2
σ̂y , (4.70c)

Ĉz(θ) = e−i
θ
2
σ̂z . (4.70d)

In the presence of engineered off-resonance errors, the effective error magnitude δ = ∆/Ω modifies the

unitary evolution of our gates by introducing a concurrent σ̂z rotation

C̃I(θ, δ) = e
−i
(
θ
2
σ̂I+

|θ|
2
δσ̂z
)
, (4.71a)

C̃x(θ, δ) = e
−i
(
θ
2
σ̂x+

|θ|
2
δσ̂z
)
, (4.71b)

C̃y(θ, δ) = e
−i
(
θ
2
σ̂y+

|θ|
2
δσ̂z
)
, (4.71c)

C̃z(θ, δ) = e−i
θ
2
σ̂z . (4.71d)

The modified unitaries can be written in matrix form as,

C̃I(θ, δ) =

 e−
i(θΩ+∆|θ|)

2Ω 0

0 e
i(∆|θ|−θΩ)

2Ω

 , (4.72a)
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C̃x(θ, δ) =

 cos
(
θ̃
2

)
−

i∆ sin
(
|θ̃|
2

)
√

∆2+Ω2
−
iΩ sin

(
θ̃
2

)
√

∆2+Ω2

−
iΩ sin

(
θ̃
2

)
√

∆2+Ω2
cos
(
θ̃
2

)
+

i∆ sin
(
|θ̃|
2

)
√

∆2+Ω2

 , (4.72b)

C̃y(θ, δ) =

 cosh
(
i|θ̃|
2

)
−

∆ sinh
(
i|θ̃|
2

)
√

∆2+Ω2

iθ sinh
(
i|θ̃|
2

)
|θ̃|

−
iθ sinh

(
i|θ̃|
2

)
|θ̃| cosh

(
i|θ̃|
2

)
+

∆ sinh
(
i|θ̃|
2

)
√

∆2+Ω2

 , (4.72c)

C̃z(θ, δ) =

 e−
iθ
2 0

0 e
iθ
2

 , (4.72d)

where I define the modified rotation angle as θ̃ = θ
√

∆2+Ω2

Ω , which reduces to θ when ∆ = 0. Note that

C̃z = Ĉz because rotations around the z-axis are carried out instantaneously by absorbing them into the

pre-calculated changes of the phase of the microwave output of the VSG.

The error operators affecting the Clifford operations can be calculated from the noise-affected gates

using Λ̂ = C̃Ĉ† and Taylor expanding in terms of δ to find,

Λ̂(̂I)(π, δ) = Î− iπδ2 σ̂z +O
(
δ2
)

(4.73a)

Λ̂(σ̂x)(π, δ) = Î + iδσ̂y +O
(
δ2
)

(4.73b)

Λ̂(σ̂x)(±π
2 , δ) = Î± iδ

2 σ̂y −
iδ
2 σ̂z +O

(
δ2
)

(4.73c)

Λ̂(σ̂y)(π, δ) = Î− iδσ̂x +O
(
δ2
)

(4.73d)

Λ̂(σ̂y)(±π
2 , δ) = Î∓ iδ

2 σ̂x −
iδ
2 σ̂z +O

(
δ2
)

(4.73e)

Λ̂(σ̂z)(θ, δ) = Î, (4.73f)

more generally expressed for the jth operation in the sequence as

Λ̂ηj (δj) = Î + δj [νηj ]1 · σ̂ +O
(
δ2
j

)
. (4.74)

Only eight error operators are required to treat all 24 Clifford operations due to the error-free nature

of σ̂z-rotations, which are generally implemented via instantaneous phase-changes on the control field.

Following the definition of the Clifford operations given in Table 4.1, there is only one non-σ̂z-rotation

per Clifford, which exactly corresponds to one of the eight error maps described in Eqn. (4.73). If σ̂z
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operations were also affected by the noise, the procedure would follow similarly but all 24 error maps

would need to be calculated.

To find the expected random walk steps for this unitary error channel, recall from Eqn. (4.58) that the

direction of the Pauli-error steps is determined by conjugating the first-order error vector component

[νηj ]1 · σ̂ with the preceding operations in the randomly composed sequence. As such, a given step

will remain deterministic in its size, yet be performed along an arbitrary direction in Pauli-error space,

determined by the randomly selected, preceding gates. Studying the error maps for concurrent detuning

noise, we can write the gate-dependent steps as

Λ̂(̂I)(π)→ π
2 m̂1 (4.75)

Λ̂(σ̂x)(π)→ 1m̂1 (4.76)

Λ̂(σ̂x)(±π
2 )→ 1

2m̂1 + 1
2m̂2 (4.77)

Λ̂(σ̂y)(π)→ 1m̂1 (4.78)

Λ̂(σ̂y)(±π
2 )→ 1

2m̂1 + 1
2m̂2 (4.79)

Λ̂(σ̂z)(θ)→ 0 (4.80)

with m̂1, m̂2 ∈ ±{σ̂x, σ̂y, σ̂z}. This implies that π-rotations about the x and y-axes of the Bloch sphere

produce a unit-length step in Pauli-error space that will be randomly oriented along one of the six

principal axes. Similarly, π2 -rotations produce a 1√
2

-length step oriented at 45◦ between two principal

axes, Î gates produce a π
2 -length step along a principal axis, and rotations about the z-axis contribute no

step due to their error-free nature.

The probability of producing a particular non-zero ‖rj‖ is shown in Table 4.3, based on the prevalence

of different gates in the 24 Clifford gates and the likeliness of their projection into the σ̂xσ̂y-plane. Note

that these steps are completely independent of the strength of the particular noise realisation, δj . The

noise will eventually rescale each step length, but here we only consider the unscaled walk.

The particular error channel we are modelling is constant over at least an individual gate duration,

as per the noisy gate definitions in Eqn. (4.71). If we consider “correlated” noise as constant over

an entire sequence realisation and “uncorrelated” noise as constant over an individual gate duration

and changing between every gate, then for this particular bandwidth it is not necessary to distinguish

between E
[
‖rC,j‖2

]
and E

[
‖rU,j‖2

]
. Both the correlated and uncorrelated error processes are static

over the duration of an individual gate, and hence will result in the same expected average random walk
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‖rj‖ 1 1√
2

1
2

π
2

Prσ̂xσ̂y 4
24 ×

2
3

16
24 ×

4
12

16
24 ×

8
12

1
24 ×

2
3

TABLE 4.3. Likelihood of producing particular length random walk steps in the σ̂xσ̂y-plane of Pauli-
error space when engineered detuning noise is applied, based on the number of Clifford gates corres-
ponding to the error map, and the chance of a randomly oriented step in the σ̂xσ̂y-plane.

steps. It is only when increasing the bandwidth of the uncorrelated noise that they need be distinguished.

Using Table 4.3 one finds

E
[
‖rj‖2

]
=

2

3

(
1

2
+
π2

96

)
(4.81)

E
[
‖rj‖4

]
=

2

3

(
7

24
+

π4

384

)
(4.82)

E
[
‖rU,j‖2‖rC,j‖2

]
= E

[
‖rj‖4

]
. (4.83)

Using Eqns. (4.61) and (4.63) for the expectation of the noise-averaged survival probability, I find

E [〈P(η, δ)〉n] ≈ Jσ2 2
3

(
1
2 + π2

96

)
(4.84)

for both correlated and uncorrelated noise. This illustrates the equivalence of the distribution mean,

which is related to the parameter that standard randomised benchmarking analysis returns, for noise of

the same strength despite vastly different correlation lengths.

The difference between the correlated and uncorrelated processes becomes evident when looking at the

variance over survival probabilities with increased noise averaging, calculated using Eqns. (4.62) and

(4.64). For uncorrelated errors,

V [PU ] ≈ J2σ4

n

[
4
9

(
1
2 + π2

96

)2
+ 1

J

{
3
(

7
36 + π4

576

)
− 8

9

(
1
2 + π2

96

)2
}

+ (n−1)
J

{
7
36 + π4

576 −
4
9

(
1
2 + π2

96

)2
}]

, (4.85)

which, in the limit n → ∞, saturates at a value proportional to 1
J relative to the starting variance. For

correlated errors,

V [PC ] ≈ J2σ4

n

[
12
9

(
1
2 + π2

96

)2
+ 1

J

{
3
(

7
36 + π4

576

)
− 8

3

(
1
2 + π2

96

)2
}

+ (n− 1)

{
4
9

(
1
2 + π2

96

)2
+ 1

J

(
7
36 + π4

576 −
8
9

(
1
2 + π2

96

)2
)}]

, (4.86)
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again tending towards a constant. However, the saturation occurs within a significantly smaller number

of noise averages than for uncorrelated noise and saturates at a much larger variance, which is propor-

tional to 1 + 1
J relative to the starting variance.

Using the revised model, the noise-averaged survival-probability distributions under correlated noise

remain Gamma distributed with an updated scale parameter. While this is yet to be shown explicitly for

the uncorrelated case, the behaviour is approximated in the limit of large n and J , with n < J2, by the

gamma distributions

PC ∼ Γ(a = 1, b = 2
3Jσ

2(1
2 + π2

96 )), (4.87)

PU ∼ Γ(a = n, b = 2
3nJσ

2(1
2 + π2

96 )). (4.88)

To adjust for higher bandwidth uncorrelated noise that take multiple values of δ in a single error map,

such as changing every primitive π/2 times, I make use of the relation

δ1 ± δ2 ∼ N (0, 2ρ2) (4.89)

≡
√

2N (0, ρ2)

such that the multiple values of δ could be expressed as

δ1 ± δ2 ≡
√

2 δ, with δ ∼ N (0, ρ2) (4.90)

from which point the previous method can be followed. The equivalence in Eqn. (4.90) occurs because

δ1, δ2 are independent samples from a Gaussian distribution, meaning their combination is also Gaussian

distributed. This relation was used to produce the expectation values of ‖rj‖ in Table 4.2 for noise that

changed every primitive π/2 time – corresponding to two noise values within a π-length gate.

*****

The theoretical model in this chapter translates unitary circuits of Clifford operators to random walks in

“Pauli space”. This framework can be used to predict the susceptibility of individual circuits to correlated

noise processes, as will be demonstrated through the next two chapters. I continue in the next chapter by

validating the theoretical model and using it to augment the analysis of randomised benchmarking and

gate set tomography.



CHAPTER 5

Experimental quantum verification in the presence of temporally

correlated noise

“One might be led to suspect that there were all sorts of things going on in the Universe which

he or she did not thoroughly understand.”

- Kurt Vonnegut, Bluebeard

The following chapter studies the effect of correlated errors on the outputs of QCVV protocols, validating

the theoretical model presented in the previous chapter. This work is reproduced with minimal changes

from “Experimental quantum verification in the presence of temporally correlated noise” published in

npj Quantum Information volume 4, Article number: 7 (2018) [3].

Growth in the capabilities of quantum information hardware mandates access to techniques for perform-

ance verification that function under realistic laboratory conditions. Even in highly controlled laboratory

environments there are a range of noise sources that, when applied to a qubit concurrent with logical

gate operations, produce effective error models that diverge significantly from the assumptions under-

lying most quantum characterisation, verification and validation (QCVV) protocols. In particular, the

assumptions that errors are statistically independent between gates and qubits, and gate independent. For

example, slow variations in ambient magnetic fields or drifts in amplifier gain can produce temporally

correlated noise processes, often characterised through a power spectral density possessing large weight

at low frequencies [170–172]. So far such processes have been largely ignored in experimental QCVV,

with predominantly phenomenological attempts used to explain deviations from ideal outputs [173]. Un-

derstanding that such an approach is untenable when attempting to rigorously compare QCVV results

to metrics relevant to quantum error correction has recently led to an expansion of theoretical activity in

this space [156, 165, 174–177].

92
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In this work our objectives are to experimentally characterise and explain the impact of temporally

correlated noise processes on the outputs of QCVV protocols, and to identify potential modifications

enabling users to improve the utility of the information returned. Our analysis highlights the role of

sequence structure in enhancing or suppressing the sensitivity of QCVV protocols to noise with different

correlation lengths. We examine two commonly used QCVV protocols: randomised benchmarking (RB)

and gate set tomography (GST). The construction of these protocols follows a similar pattern, a series

of unitary quantum operations is applied to one or more qubits sequentially in time, followed by a

projective measurement. Experimental measurements are acquired and combined, then experimental

parameters are changed according to some prescription (e.g. changing the sequence length) and further

data are collected. The variation in QCVV protocols predominantly comes from the different constituent

operations that are applied and the analysis techniques by which measurement results are post-processed

to extract information. The full prescriptions for both RB and GST are outlined in Section 4.1.

We perform QCVV experiments using a single trapped 171Yb+ ion as a long-lived, high-stability qubit.

Engineered frequency noise in the control system (∝ σ̂z) enables quantitative analysis of the impact of

different temporal noise correlations on QCVV results under known conditions. Noise is engineered in

two distinct noise-correlation regimes. Firstly, the noise is implemented as a constant miscalibration over

the entire sequence, which is the extreme case for slowly varying noise and produces highly temporally

correlated errors. Secondly, the noise is engineered to be rapidly varying, yielding an approximately

white power spectrum that leads to errors that are largely uncorrelated between gates. Measurements re-

veal that QCVV outputs diverge significantly when subject to these different types of noise, highlighting

potential circumstances where the information extracted from a given protocol may no longer accur-

ately represent the true error processes experienced by individual gates. Our experiments are compared

against analytic calculations that link the impact of the underlying sequence structure with the presence

of noise correlations using the framework presented in Chapter 4.

Experiments on RB validate predictions that measured fidelities over sequences are described by a

gamma distribution varying between approximately Gaussian, and a broad, highly skewed distribution

for rapidly and slowly varying noise respectively. Similarly we find a strong gate set dependence of de-

fault experimental GST procedures in the presence of correlated errors, leading to significant deviations

between estimated and calculated diamond distances in the presence of correlated σ̂z errors. Numer-

ical simulations demonstrate that expansion of the gate set to include negative rotations can suppress

these discrepancies and increase reported diamond distances by orders of magnitude for the same error
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processes. Similar effects do not occur for correlated σ̂x or σ̂y errors or depolarising noise processes,

highlighting the critical interplay of selected gate set and the gauge optimisation process on the meaning

of the reported diamond norm in correlated noise environments.

5.1 Experimental platform and engineered noise

We perform experiments using the 171Yb+ experimental setup described in Chapter 2. In particular, we

utilise a 12.64 GHz microwave field produced by a vector signal generator (VSG) to control the qubit and

implement Clifford operations. Regularly spaced phase Ramsey calibrations track the qubit transition

frequency to better than 1 Hz accuracy (see Section 2.4.4 for details on the calibration procedure). In our

laboratory, this qubit and the associated control system have been demonstrated to possess a coherence

time of T2 ∼ 1 s, measurement fidelity of ∼ 99.7% limited by photon collection efficiency, and error

rates from intrinsic system noise of pRB ≈ 6× 10−5 using “baseline” RB experiments.

Experiments involve state preparation in the |0〉 state via optical pumping, application of a unitary se-

quence appropriate for the QCVV protocol while subject to engineered noise, and projective measure-

ment of the qubit along the quantisation axis. The sequence of operations applied and the measurement

procedure are determined by the protocol in use. To implement the full set of Clifford gates listed in

Table 4.1, we generate I/Q-modulated gates in the VSG, as described in Chapter 2.4.1. In particular, all

σ̂z rotations are implemented as instantaneous pre-calculated frame rotations, and are hence error free

(up to the relative phases of the digital-to-analogue converters (DACs) used for I and Q modulation),

and identity gates are performed using π-rotation-length idle periods. All RB and GST sequences are

uploaded to the VSG prior to the experiments and selected when required. When the number of imple-

mented sequences is large, as is the case with GST, the latter step is the bottleneck as sequence selection

can take up to tens of seconds, depending on the constituent number of gates J . This slowdown is due to

the use of the in-built protocol “RF blanking”, which allows for superior suppression of both microwave

leakage and amplitude instabilities at the edges of pulses, but adds significant overhead associated with

switching between sequences.

We engineer σ̂z noise applied concurrently with Clifford operations through the application of a detun-

ing, ∆, of the qubit driving field from resonance using an externally modulated vector signal generator.

This creates an effective error δ = ∆/Ω, with Rabi frequency Ω fixed at Ω = 22.5 kHz. As the detuning
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Constant noise Rapidly varying noise 

FIGURE 5.1. Schematic representation of constant and rapidly varying noise with relevant time scales
defined by the sequence where δ = ∆/Ω represents the normalised instantaneous noise values drawn
from a normal distribution with ρ2 variance. Grey lines show examples of possible noise realisations,
and the red solid line is one such realisation. For RB, the noise is sampled from this distribution and
varies shot-to-shot between noise realisations, while in GST a single value is selected for the entire set
of experiments.

is applied concurrently with driven qubit rotations about x and y-axes, rotation errors arise along mul-

tiple directions on the Bloch sphere, rather than being purely σ̂z in character. An additional violation of

typical assumptions employed in RB is that the errors are not gate-independent [177]. As different gates

have varying durations (e.g. a π/2 rotation has half the duration of a π rotation), the same engineered

noise will induce different strength errors for different gates.

We consider two limiting noise cases – rapidly varying noise that changes with every gate, and slowly

varying noise that is constant for an entire sequence duration, as illustrated in Fig. 5.1. For both cases, we

engineer n different noise “realisations” in order to average over an appropriate ensemble. We set both

distributions of noise values to be δ = ∆/Ω ∼ N (0, ρ2), where ρ2 is the variance of the distribution,

such that the root-mean-square (rms) value is approximately equivalent in both cases once averaged over

all noise realisations. For each of the n = 200 noise realisations, the distribution is sampled either once

(slowly varying) or J times (rapidly varying) for a sequence comprising J gates.

In RB experiments slowly varying noise is implemented by shifting the VSG drive frequency by a fixed

amount based on a list of n = 200 samples from a zero-mean Gaussian distribution with rms value

ρ = 1 kHz/22.5 kHz = 0.044 (Fig. 5.2(a)). The same list of noise realisations is repeated for each

RB sequence in a set of given length J , yielding sets of noise-averaged survival probabilities, 〈P〉n.

Rapidly varying noise in RB is implemented via the VSG’s external frequency modulation, whereby the

frequency offset is encoded as a series of calibrated offset voltages on an arbitrary waveform generator 1

and supplied time-synchronous to each gate within a sequence. Again, n = 200 different realisations,

each consisting of J samples, are applied to each RB sequence to extract a noise-averaged fidelity

1Keysight 33622A
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FIGURE 5.2. Real examples of engineered noise distributions used for randomised benchmarking with
∆/Ω ∼ N (0, ρ2) and ρ = 1 kHz/22.5 kHz. The distribution of detuning values are plotted for (a) 200
detuning values used for n = 200 individual realisations of a correlated noise process; (b) 100 values
from a single realisation of rapidly varying noise, where the noise value changes with every gate for a
sequence of J = 100 gates; and (c) all noise values from n = 200 noise realisations of rapidly varying
noise applied to a J = 100 gate sequence (20,000 samples total). For all distributions, the actual sample
mean and variance are displayed above the plot.

with rms ρ = 1 kHz/22.5 kHz = 0.044 (Fig. 5.2(b),(c)). Figure 5.2 shows examples of the real noise

distributions employed in the experiment.

In the experimental implementation of GST, we implement constant noise of the same strength over

all the sequences. In addition to a baseline experiment with no engineered noise, only a small set

of noise detunings are implemented due to the large overhead imposed by sequence selection prior to

execution. The values of detunings used for GST are shown in Table 5.1. The engineered error data for

each of the 2737 sequences was acquired interleaved with the baseline ∆ = 0 case, such that the data

sets are comparable and slow experimental drifts affect them equally. Due to overhead associated with

switching between sequences, we recorded r = 220 repetitions for each sequence in direct succession.

Detuning ∆ δ = ∆/Ω

75 Hz 0.33

500 Hz 2.2

1 kHz 4.4

1.4 kHz 6.2

TABLE 5.1. Engineered detuning values for GST with fractional errors normalised by Rabi frequency
Ω = 22.5 kHz.
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The toolkit’s authors advise to instead interleave sequences and repetitions to spread slow drifts across

the data set in order to reduce model violations in the fitting routines [178].

5.2 Survival probability distributions for randomised benchmarking

In the limit of rapidly varying noise, all sequences of randomly ordered Clifford gates with length J

are equivalent under noise averaging, and all sequence survival probabilities tend towards the mean.

Recent theoretical studies have demonstrated that measurements on RB sequences in the presence of

temporal noise correlations, can produce a divergence between average and worst-case reported trace

fidelities [165,175]. Thus we find that measurement outcomes for different RB sequences are character-

ised by distributions with distinctly different shapes depending on the temporal correlations in the noise.

The standard practice of combining all measurements to extract an average error per gate (EPG), pRB,

from the decay of the mean over all J-gate sequences as a function of J , results in a global ensemble

average and does not take advantage of this information. That is, as the noise we implement exhibits

temporal correlations, the value of pRB one extracts may not be meaningful as a measure of average

Clifford gate error. Our analysis takes advantage of the additional information which is always present

in a RB experiment in order to evaluate the impact of noise correlations and deduce useful information

about the underlying error process.

In our experimental study we measure the noise-averaged survival probabilities for a set of sequences

{ηi}J , indexed by i and of length J , for different lengths 25 ≤ J ≤ 200. We implement the same set

of J-length RB sequences under application of either slowly or rapidly varying detuning noise. For an

arbitrary individual sequence ηi and a single noise realisation, we perform r nominally identical repeti-

tions of the experiment. We combine the information from the outcomes of these individual repetitions

to produce a maximum-likelihood estimate of survival probability, Pi. The use of multiple repetitions

under identical conditions reduces quantum projection noise in the qubit measurement and assists in

isolating specific quantitative contributions to the distribution of survival probabilities, though this is not

possible without noise engineering. In general, we average measured outcomes over a fixed number of

noise realisations, n, to yield the noise-averaged survival probability 〈Pi〉n for a fixed sequence ηi

Figure 5.3(a) shows the noise-averaged survival probabilities for each sequence with k = 50 sequence

points per gate length. An exponential decay is fit to the noise-averaged mean values at each sequence
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FIGURE 5.3. RB distributions over sequences in the presence of different noise correlations. a Standard
RB protocol showing noise-averaged survival probability as a function of J for the same set of sequences
implemented under slowly varying (grey) or rapidly varying (red) noise with ρ = 0.044. Each experi-
ment is repeated r = 25 to r = 30 times under fixed conditions, and each survival probability is averaged
over n = 200 noise realisations. Lines represent exponential fits to the mean survival probability used to
extract the error-rate pRB. b-c Scaling of the noise-averaged survival probability distribution expectation
value and variance with sequence length J . Solid lines are theoretical predictions given the sequence
length and noise strength ρ, with the theoretical expectation values coinciding for slowly and rapidly
varying noise of the same strength. d-g Histograms for data in panel a in the presence of slowly varying
noise. Black line: gamma distribution using input parameters calculated from first principles (see text).
Green line: fitted gamma distribution with shape parameter fixed, a = 1. χ2 values for calculated (fitted)
gamma distributions are {0.354(0.091), 0.212(0.078), 0.241(0.204), 0.348(0.348)}.

length 〈P(J)〉n to calculate the average EPG pRB using

1− 〈P(J)〉n = 0.5− (0.5− κ)e−pRBJ (5.1)

where κ is the state preparation and measurement error (SPAM), found to be κ = 3× 10−3 for both the

rapidly and slowly varying noise. The fit is weighted by the variance over sequences for each J .
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In the case of rapidly varying noise (red data points and fit) we observe the distribution of sequence

outcomes is symmetrically spread around the sequence-averaged mean survival probability and the en-

tire distribution shifts away from zero error with increasing J . The presence of slowly varying noise,

by contrast, produces a broad distribution of measured 〈P〉n over each set {ηi}J , demonstrating a pos-

itively skewed set of outcomes and the persistence of a long tail at higher error rates (lower survival

probabilities). In this case, as J increases the distribution broadens and increases its mean, but remains

skewed. Under both noise correlation cases, the measured 〈P(J)〉n remain approximately the same.

The differences in the distribution of measured survival probabilities over sequences under these two

noise models reproduces the central predictions of Ref. [165] and the previous chapter.

We compare the characteristics of the noise-averaged survival probability distributions against analytic

predictions for both slowly and rapidly varying noise, beginning with the expectation and variance,

1 − E[〈P〉n] and V[〈P〉n] respectively (Fig. 5.3(b-c)). We find good agreement by taking only the

applied noise strength as an input into a first-principles theoretical model modified for projective meas-

urements (2D walk) and noise applied concurrently with gate implementation. More specifically, using

Sections 4.3.2 and 4.3.3 from the previous chapter, the expectation and variance can be calculated from

Eqns. (4.61)- (4.64), using the expected random walk steps in Table 4.2 for “Concurrent Detuning, 1

value per primitive (π or π/2) gate”.

Theoretical predictions suggest that the distribution of outcomes under both noise models – as well

as intermediate models described by coloured power spectra – should be well described by a gamma

distribution [165]. The general gamma distribution probability density function is given by

Γ(a, b) : f(x) =
xa−1

Γ(a)ba
exp

[
−x
b

]
, (5.2)

where a and b are the shape and scale parameters and Γ(x) is the gamma function. The form of the

gamma distribution will vary significantly between the limiting noise cases treated here, tending towards

a symmetric Gaussian for rapidly varying noise and a broader positively skewed distribution in the

presence of slowly varying noise, as determined by the values of a and b.

Figures 5.3(d-g) show histograms of RB sequence survival probabilities in the presence of the extreme

case of slowly varying noise, quasi-DC miscalibration. We overlay gamma distributions calculated from

first principles using no free parameters (black lines) using Eqn. (4.87)

I = 1− P ∼ 〈Γ〉n
(
a = 1, b =

2Jρ2

3

(
1

2
+
π2

96

))
, (5.3)
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and alternatively by fitting a gamma distribution with a = 1 fixed while allowing b to vary as a fit para-

meter (green lines). The theoretical prediction captures both the measured skew towards high survival

probabilities and the approximate “length” of the tail at low survival probabilities. We believe that re-

sidual disagreement between data and first-principles calculations arises due to both limited sequence

sampling and contributions from higher-order analytic error terms when the approximation Jρ2 � 1 is

no longer valid. Importantly, data and theory show that the mode of the distribution for slowly varying

noise is close to unity survival probability (〈P〉n = 1) for all values of J and therefore corresponds to a

lower error than the mean.

5.3 Modification of randomised benchmarking for identification of model

violation

The fact that the distribution of sequence survival probabilities under slowly varying noise does not

converge to the mean indicates sequence dependence in the resulting error accumulation. The emer-

gence of this phenomenology is elucidated through an examination of the random walks for different

sequences, beginning by considering the unscaled walk in two dimensions V2D, calculated with unit-

length steps. Certain sequences translate to walks with large displacements, ‖V2D‖2, hence amplifying

the accumulation of error, while others tend back towards the origin and show reduced accumulated

error (Fig. 5.4(a,b)). We classify sequences as “long-walk” if they possess a 2D projection beyond the

diffusive mean-squared limit for an unbiased random walk, ‖V2D‖2 > 2
3J .

To illustrate the link between the sequence walk in Pauli space and the noise-averaged survival probab-

ility, we plot the experimentally measured 1 − 〈P〉n for sequences of fixed length J = 200 against the

calculated 2D walk length squared, ‖V2D‖2 in Fig. 5.4(c). Here, the random walk was calculated using

the “interleaved dephasing” model presented in Section 4.2 modified to two dimensions for projective

measurements2. Data are presented for both rapidly varying (red open markers) and slowly varying (grey

solid markers) noise, where the same set of sequences is used for both noise models. Measurements for

rapidly varying noise are fit with a line possessing a slope approximately consistent with zero, while

for the same sequences under slowly varying noise, the measurements show a positive dependence on

‖V2D‖2 as expected. We believe the significant scatter in the plot is partially due to a concurrently acting

2At the time of writing this manuscript, the full theoretical model in the previous chapter had not been entirely developed.
We relied on the interleaving dephasing model as a proxy for concurrent detuning noise in this particular demonstration.
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FIGURE 5.4. RB using long-walk sequences. a-b) Schematic representations of (a) “long” and (b)
“short” unscaled walks V in 3D (coloured lines) and 2D (black lines). The short vs. long definition
is set relative to a limit deduced from diffusive behaviour, as indicated by the blue circle, equal to

√
J

for 3D and
√

2J/3 for 2D walks. c) Noise-averaged survival probabilities for the same sequences as
a function of walk length in the 2D plane ‖V2D‖2, when subject to slowly varying (grey) and rapidly
varying (red) noise with linear fit overlaid. The slope of this fit is (0.8± 1)× 10−5, consistent with zero.
d) RB using pre-calculated long-walk sequences. Solid red line corresponds to RB performed using 20
long-walk sequences and rapidly varying noise. Extracted p(LW )

RB matches that extracted under the same
conditions using an unbiased sampling of all sequences (dashed blue line). Grey line corresponds to RB
using the same long-walk sequences and slowly varying noise. For the exponential fits, the SPAM is
fixed to κ = 3× 10−3.

noise source and higher-order contributions to error, neither of which are incorporated in the first prin-

ciples calculation of the walk length. Nonetheless, the effect of sequence structure on measured survival

probability is clearly visible for the case of slowly varying noise.

In aggregate, this phenomenology gives rise to the skewed gamma distribution under slowly varying

noise described above, and the convergence of all individual sequence noise-averaged survival probabil-

ities to the ensemble average when the noise is rapidly varying. However, pre-selection of RB sequences

possessing large unscaled walk lengths also provides a mechanism to both identify the presence of tem-

porally correlated errors and extract an RB outcome that more closely approximates worst-case errors.



102 5 EXPERIMENTAL QUANTUM VERIFICATION IN THE PRESENCE OF TEMPORALLY CORRELATED NOISE

In Fig. 5.4(d) we plot 1−〈P〉n against the sequence length for a subset of sequences pre-selected to pos-

sess long walks, whose error rates we denote pLW(RB). For this demonstration, the long walk pre-selection

condition is ‖V2D‖2 > 2× 2
3J .

When these long-walk sequences are subjected to rapidly varying noise, the distribution of survival

probabilities over sequences remains approximately Gaussian about the mean, and the expectation value

over this subset closely approximates the expectation value over an unbiased random sampling of the 24J

possible J-gate sequences, 〈Prapid
LW (J)〉n ≈ 〈P

rapid
(J)〉n. This can be seen in Fig. 5.4(d), comparing

the red solid line for the long walk sub-selection and the blue dashed line for the full distribution results.

However, in the presence of slowly varying noise we observe a larger mean in 〈Pslow
LW (J)〉n (grey solid

line) than that achieved with unbiased sampling. The difference between the sequence-averaged survival

probabilities in these noise cases arises solely because of the intrinsic properties of the sequences in use.

Extracting an RB gate-error-rate, p(LW )
RB from 〈PLW (J)〉n in the presence of slowly varying noise, we

typically find an increase p(LW )
RB ∼ 2 - 5× pRB relative to standard sequence sampling, depending on

the number of long-walk sequences employed, and the threshold value of ‖V2D‖2 used to define a

“long walk”. This approach effectively constitutes the construction of an RB protocol that increases

the reported error rate by enhancing sensitivity to a particular noise type, which in our case is ∝ σ̂z .

Alternative sequences may also be calculated to enhance sensitivity to σ̂x or σ̂y noise compared to

randomly selected RB sequences. These error enhancing sequences give a clear, qualitative signature of

the violation of the assumption that the error process is uncorrelated in time, although we do not claim

that such a signature is in general uniquely associated with the presence of temporal noise correlations.

Furthermore, because calculation of ‖V2D‖2 and sequence pre-selection is performed numerically in

advance, this approach alleviates the requirement to average extensively in experiment over sequences

in order to reveal the skewed fidelity distribution.

5.4 Experimental GST in the presence of correlated noise

We now apply the sequence-dependent random walk framework to the default experimental GST gate

set in order to understand the interplay of sequence structure and temporal noise correlations in the ex-

perimental GST estimation procedures. We begin by collating all standard experimental GST sequences

up to L = 256 gates in length using gates GI ≡ Î, a π/2-length idle period identity, Gx, a π/2 rotation

about σ̂x, andGy, a π/2 rotation about σ̂y. We define sequences to include fiducial operations and germs
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(see Ref [163]), and calculate the corresponding walk lengths 3. Here we assume unit step size under

application of either a constant σ̂z or σ̂x unitary error process (Fig. 5.5(a,b)) such that ‖R‖2 = δ2‖V ‖2,

and plot ‖V2D‖2 as a proxy for projected sequence error vs. J . We overlay the results on the calculated

probability distribution of unit-step walks for RB sequences, presented as a colour scale for comparison.

Points appear clumped due to the experimental GST prescription using different fiducials (leading to

different sequence lengths) surrounding a reported germ, as highlighted in Fig. 5.5(b).

Examining these data indicates that GST sequences used in the default package broadly sample the

range of expected fidelities in the presence of strongly correlated σ̂x errors, more effectively so than RB.

However, their structure appears to systematically suppress measured errors in the presence of correlated

σ̂z errors. This mimics the positive skew of RB sequence survival probabilities in the presence of

slowly varying noise, as observed in the colour scale. In the presence of correlated σ̂z errors, only GST

sequences consisting of repeated GI germs, formally equivalent to Ramsey experiments [179], show

sensitivity to this kind of error. We now explore the impact of these observations in further detail by

both numerical investigations and experiments involving engineered unitary σ̂z errors.

Given measurement outcomes (experimental or simulated) for the prescribed sequences, the open-source

analysis package pyGSTi [169] extracts a large set of results characterising the gate set performance.

One important metric calculated by the protocol for each gate is the diamond distance, ‖Gideal−Gerr‖�,

which is meant to provide a worst-case bound on the distance to the ideal gate operation. Experimental

GST has found wide adoption in part because of its ability to calculate this metric, which is postulated

to be important for formal analyses of fault-tolerance in the context of quantum error correction.

In our first test, we numerically probe the sensitivity of the experimental GST analysis procedure to

correlated error using the aforementioned pyGSTi toolkit. We introduce constant σ̂x, σ̂y, or σ̂z errors

via concurrent unitary rotations added to the formerly ideal operations. Therefore the exact mathem-

atical representation of each gate (GI,x,y) is known from analytical transformations and we have two

paths to evaluate gate performance (Fig. 5.5(c)). First, we directly calculate the diamond distance

(‖Gideal −Gerr‖�) using the known matrix representation of Gerr and maintaining the initial frame of

reference. Second, we estimate it by employing pyGSTi to simulate data using Gerr and determine the

diamond distance (‖Gideal −G(est)
err ‖�) of the estimate G(est)

err obtained by the toolkit’s fitting routines.

3The walk was again calculated using an interleaved error model for either σ̂z or σ̂x errors
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FIGURE 5.5. Demonstration of GST sensitivity to correlated error models. a, b) Sensitivity of GST
sequences to σ̂x, σ̂z interleaved errors using the length squared of the sequence-dependent walk vector
‖V2D‖2. GST sequence walks are shown as red crosses on a background colour scale illustrating the
distribution over 106 randomly composed RB walks and their average (yellow line). Here gates are
defined as constituent Clifford operations of length τπ/2. c) Flow diagram for the numerical analysis
of the diamond norm estimation under correlated errors concurrent with gates G. d, e) Results of the
analysis for the standard gate set GI , Gx, Gy with the calculated diamond distance shown as solid lines
(dashed lines) without (with) gauge optimisation on all graphs, and GST estimation depicted as symbols.
Both over-rotation errors on the Gx, Gy gates (d) and concurrent detuning errors (e) are studied. f,
g) Analysis is repeated by extending the gate set to include −Gx,−Gy. In panels (d) and (f) which
employ only over-rotation errors, the calculated diamond distance for GI vanishes and we do not show
the noise floor for visual clarity. h) Experimental investigation of concurrent detuning σ̂z errors via a
deliberately engineered detuning ∆. Markers indicate GST estimates from experimental data and solid
lines represent analytical calculations performed within the pyGSTi toolkit.
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As a self-consistent QCVV implementation, the experimental GST estimation procedure incorporates a

gauge optimisation by construction, as it makes no assumptions in regard to the qubit and its measure-

ment basis. It performs two rounds of gauge optimisation, allowing identification of a frame in which to

minimise the distance of the entire set of estimated gates in relation to the target gates. The relevance of

this gauge freedom on RB-derived estimates of gate performance was highlighted recently in Ref. [180].

To illustrate how gauge freedom affects the results, we separately calculate the diamond distance with

and without gauge optimising our analytic gate set Gerr using routines included in the pyGSTi toolkit.

We plot the calculated and estimated diamond norms for GI,x,y, subject to processes similar to either a

constant over-rotation (i.e. proportional to σ̂x or σ̂y depending on the gate in question, with no error

on GI operations such that the ideal rotation angle, θ → (1 + ε) θ), or a constant detuning error

(i.e. proportional to σ̂z), as shown Fig. 5.5(d,e). Here we see that the estimated diamond distance for

operators GI,x,y closely matches the calculated value in the presence of numerical over-rotation errors.

When used with its standard gate set {Gx, Gy, GI}, pyGSTi’s estimate of Gx and Gy errors arising

from constant unitary σ̂z errors differs significantly, however, and only the diamond norm estimate for

GI appears similar to the directly calculated value. Other estimated quantities such as process infidelity

and the associated Choi matrices are affected in a similar way. However, performing gauge optimisation

on the analytically calculated matrices Gerr as well (within the pyGSTi package) reduces the difference

in the reported diamond distance for σ̂z errors, and produces agreement with the much lower Gx,y

diamond distance reported by the GST estimation procedure (Fig. 5.5(e)). Among the error models we

have tested for this gate set, such behaviour is only manifested in the presence of temporally correlated

σ̂z errors and does not appear using various other error processes built into the pyGSTi analysis package.

We note that full gauge optimisation is a requirement for self-consistency of results within GST.

To further investigate the influence of the gauge degree of freedom, we repeat our numerical analysis un-

der the application of identical unitary errors, but extend the gate set by adding negative rotations −Gx,

−Gy corresponding to −π/2 σ̂x and σ̂y rotations and incorporating a number of associated compound

germs (Fig. 5.5(f,g)). The resulting gauge-optimised calculated and estimated diamond-distance values

now increase, moving closer to the analytic calculation obtained without gauge optimisation. The be-

haviour of estimated diamond distances for operations −Gx and −Gy are indistinguishable from those

presented to within numerical uncertainty. This simple change in the gate set directly reveals the role

of gauge optimisation in the discrepancies we noted above. The additional information now available to
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experimental GST via the extended gate and germ set effectively constrains the optimisation procedure,

allowing it to detect errors that could previously be absorbed in a gauge transformation.

We follow up on these numerical investigations by performing experiments using experimental GST

sequences subjected to engineered unitary σ̂z-errors of varying strength. As before, we generate an op-

eration with known error magnitude and form, allowing us to directly produce a matrix representation

for the gate and hence calculate the diamond distance for the (deliberately) imperfect gates we apply to

our trapped-ion system. Again the experimental GST procedure produces an estimate of the diamond

distance that matches the calculation for GI , but yields estimates of the diamond distance from exper-

imental data approximately an order of magnitude below the (un-optimised) calculated value for Gx,y

(Fig. 5.5(h)). Allowing gauge optimisation on the calculated diamond distance changes its scaling with

error magnitude as in simulations above. We do not find strong agreement between data for Gx,y and

this gauge-optimised scaling, but cannot exclude the possibility that other finite sampling effects may

cause saturation of small reported diamond distances.

5.5 Discussion

In our studies we have employed a simple analytic framework - a formalism mapping noise to error

accumulation in sequences of Clifford operations - to explore the sensitivity of RB and GST to slowly

varying noise processes. Theoretical predictions derived from this framework match RB experiments

employing engineered noise with known characteristics: either slowly varying or rapidly varying on the

sequence timescale. This highlights the utility of the random-walk analysis in determining sequence-

dependent sensitivities of QCVV protocols in the presence of temporally correlated noise.

We have compared RB survival probabilities over sequences to a gamma distribution Γ(a = 1, b), where

b is determined by the type of error model employed in the experiment, and shown good agreement

using no free parameters. In addition we have demonstrated that in the presence of slowly varying noise,

the mode of the distribution of survival probabilities over sequences is shifted towards lower error rates

than the mean and that a long tail of high-error outcomes appears as predicted in Ref. [165].

Overall, the experiments reported here give a clear experimental signature of the violation of the assump-

tion that errors between gates are independent. While we do not claim that the features we observe are in

general uniquely derived from this interpretation, we hope these results may help experimentalists seek-

ing to interpret complex RB data sets. We believe that more detailed reporting of RB outcomes including
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the publication of distributions of the survival probability P , as well as the sequences employed, will

facilitate more meaningful comparisons between RB data sets derived from different physical systems,

as the relevance of pRB is diminished when error processes exhibit temporal correlations.

Through a combination of analytic calculations, numerics, and experiments with engineered errors we

have found a similar bias towards lower estimates of diamond distance in experimental GST procedures

when using the standard GI,x,y gate set subjected to strongly correlated, unitary σ̂z errors. The asym-

metry we observe between the manifestation of correlated σ̂x/σ̂y and σ̂z error-sensitivity has previously

only been reported in the context of randomised benchmarking [180]. We have shown explicitly how the

low diamond-distance estimates under this kind of noise are related to the gauge optimisation performed

as part of the protocol; limiting the gauge freedom by extending the gate set under application of an

identical error process dramatically changed the estimated diamond distance of the very same gates in

numerical simulations. This highlights that estimates are always reported up to an implicit gauge degree

of freedom, making absolute comparisons of diamond norms challenging.

These observations are commensurate with a simple physical interpretation of the effect of an optimised

gauge transformation in the circumstances we examine. In the presence of correlated σ̂z errors, when

the gate set is limited toGI,x,y gates, the reconstructed operator includes an extra error component along

the z-axis. The effect of gauge optimisation is to rotate the axis of rotation of the Gx and Gy operators

back to the equatorial plane, effectively cancelling this error. Under this circumstance the magnitude

of rotation of these gates is smaller than expected in a fixed lab frame, and the second-order nature

of the residual errors result in a steeper gradient of the dotted line in Fig. 5.5(e). In contrast the GI

rotation should have no net rotation and therefore this error will not be cancelled by a simple gauge

transformation.

Gauge optimisation is designed to produce the best estimate for errors over the entire gate set in relation

to a given target, and in a sense acts to “distribute” nominal errors over all constituent rotations in

the gate set. The validity of such a gauge transformation in the presence of independent protocols

for establishing a measurement basis remains an open question and has been highlighted recently by

Rudnicki et al. [181]. The variation of calculated and estimated diamond distances under correlated

σ̂z errors when subjected to seemingly small modifications of the default gate set has again not been

reported previously in the context of GST, and indicates an important dependence of its output on the

specific gate set employed, the characteristics of the underlying error source, and the gauge optimisation

procedure.
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Clearly the observed performance of experimental GST in the presence of correlated σ̂x noise, such as

resulting from experimental over-rotations, can make GST a valuable tool in debugging an experimental

system [182], although precise calibrations can also be carried out efficiently using a subset of the

full experimental GST protocol [183]. The effect of gauge optimisation in the presence of σ̂z errors

and with use of the default gate set, however, is concerning as a key implied benefit of experimental

GST is its ability to provide a rigorous upper bound on gate errors using a fully self-contained analysis

package. Recent experimental work [163] on the topic claimed such upper bounds on gate errors using

experimental GST and compared these to the fault-tolerance threshold with high reported confidence and

tight uncertainties. The results above and observations made [181] suggest that there may be residual

uncertainty in interpretation of such data due to the potential unresolved conflict between full gauge

freedom and the nominal existence of a measurement basis constraining that freedom. Furthermore,

when acquiring and evaluating data, care has to be taken to to suppress any form of model violations

reported by the GST toolkit in its likelihood analysis, as otherwise the extracted performance metrics

may become unreliable. These deviations are currently not reflected in the uncertainties (i.e. error bars)

calculated for those metrics by the toolkit and discussions with its authors suggest that a connection

between the two is a non-trivial process.

In light of the investigations reported here, we believe that there is a need for greater awareness of the

subtleties of the use of both RB and GST in the presence of temporally correlated noise environments.

In order to enhance the meaning and utility of reported results we advocate that QCVV benchmarks

such as pRB and experimental GST diamond distances should be reported together with a quantitative

measure of violation from a purely Markovian, temporally uncorrelated model. In the case of RB, this

could be the difference between the extracted pRB of long and short walk sequences; in experimental

GST the deviation is already being reported as part of the routine, yet the question about the impact

of gauge optimisation that we identified remains. Similarly, if using experimental GST as a standalone

gate evaluation procedure one cannot know a priori the form of the underlying noise – and hence any

associated experimental GST insensitivities. Increasing the rigour of resultant upper bounds on diamond

distances could require performing experimental GST using multiple different gate sets to identify po-

tential “blind spots”, owing to the implicitly required gauge transformations. Given the experimental

overhead, however, this brute force approach is not necessarily attractive and further modifications to

experimental GST could resolve the issue with greater efficiency. Overall, we hope that these observa-

tions will assist in both the interpretation of QCVV experiments when model violation may occur, and

the development of new techniques with improved rigour and efficiency for larger scale systems.



CHAPTER 6

Dynamically corrected gates suppress spatio-temporal error correlations

as measured by randomised benchmarking

“You were sick, but now you’re well again, and there’s work to do.”

- Kurt Vonnegut, Timequake

In this chapter, I present a first-principles analysis of the manifestation of error correlations in random-

ised benchmarking, and validate this model through experiments performed using engineered errors.

Furthermore, I demonstrate that the use of dynamically corrected gates (DCGs), generally considered

for the reduction of error magnitudes, can also suppress error correlations in space and time throughout

quantum circuits. This work is reproduced with minimal changes from “Dynamically corrected gates

suppress spatio-temporal error correlations as measured by randomised benchmarking” published in

Phys. Rev. Research 2, 013156 (2020) [4].

Suppressing and correcting errors in quantum circuits is a critical challenge driving a substantial frac-

tion of research in the quantum information science community. These efforts build on quantum error

correction (QEC) and the theory of fault tolerance [18, 184–188] as the fundamental developments that

support the concept of large-scale quantum computation [189–191]. In combination, these theoretical

constructs suggest that so long as the probability of error in each physical quantum information carrier

can be reduced below a threshold value, a properly executed QEC protocol can detect and suppress lo-

gical errors to arbitrarily low levels, and hence enable arbitrarily large computations. Underlying this

proposition is an assumption that errors are statistically independent, i.e., the emergence of a qubit error

at a specific time is uncorrelated with errors arising in other qubits or at any other time in the compu-

tation. Error correlations that decay with distance between qubits (spatially) can induce simultaneous

multi-qubit errors [192], and correlations that decay with circuit length (temporally) have been shown

to produce more rapid accumulation of net circuit errors [156, 180].

109
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The practicality of the assumption of uncorrelated errors has long been questioned, as laboratory sources

of noise commonly exhibit strong temporal correlations, captured through spectral measures exhibiting

high weight at low frequencies. As such, coherent errors induced by low frequency noise and miscalibra-

tions have recently become a larger focus of research, with their detrimental effects on QEC implement-

ations being examined [156, 193–195] and first ideas targeting their suppression emerging [196, 197].

Attempts to address these errors in the theory of quantum error correction are challenging and results

to date suggest that revision of postulated fault-tolerant thresholds may be required [198, 199] relative

to more optimistic predictions that have recently emerged [200]. Indeed, when implicit assumptions

that errors are both spatially and temporally uncorrelated are weakened, the value of a tolerable error

threshold can change from some value ε to ε2, easily leading to order-of-magnitude decreases in the

acceptable error rates [189].

The adverse effect of correlated errors on error correction procedures has been observed in the context of

a repetition code both experimentally [201] – where they were seen to effectively negate any advantage

obtained from iterative error correction – and theoretically [193], where an increase in the logical failure

rate was identified. Furthermore, while a recent full-scale numerical simulation has shown that coherent

errors at the physical layer can, in fact, be overcome by topological error correcting codes [36], large

numbers of physical qubits are required with error rates that are uniformly sub-threshold. The emerging

message is that, while correlated errors do not invalidate the use of QEC, their presence can significantly

increase the requisite overhead, and may reduce the tolerable magnitude of physical qubit errors.

In this manuscript, we demonstrate experimentally that using a low-level abstraction known as a dynam-

ically corrected gate (DCG), we can suppress error correlations in addition to error magnitudes. Re-

placing “primitive” physical quantum gate operations with logically equivalent DCGs [202–206] forms

a “virtual” layer wherein error characteristics can be modified (“virtualised”) before the application

of QEC [207, 208]. We present a novel first-principles analysis of Clifford randomised benchmark-

ing [166, 209] in order to quantitatively model the impact of error correlations on simple experimental

observables, building on concepts in Ref. [165] and Chapter 4. Specifically, we identify that error correl-

ations are manifested in the scaling of the distribution over sequence randomisations, at fixed sequence

length, with measurement averaging. We validate this framework using randomised benchmarking ex-

periments performed with a single trapped Ytterbium ion. We then demonstrate that the replacement of

the individual Clifford operations within each sequence with logically equivalent DCGs modifies the er-

ror correlation signatures such that they are experimentally consistent with the presence of uncorrelated
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errors. Single-qubit experiments performed under engineered noise with tunable correlation character-

istics show consistent reduction in the correlated error component when switching from primitive to

DCG sequences. We explain this behaviour using a framework that describes the action of DCGs at

the operator level [206, 210, 211] as whitening the effective error spectrum experienced by each gate.

Finally, we demonstrate that using DCGs in sequence construction reduces spatial error correlations

between qubits, through simultaneous randomised benchmarking on five trapped ion qubits. These res-

ults provide direct and strong evidence that the use of dynamically protected physical qubit operations in

a layered architecture for quantum computing [208] can facilitate the successful application of existing

QEC theory with only minimal revision on the path to fault-tolerant quantum computation.

6.1 Identifying signatures of error correlations in circuits

We begin by laying out the challenge of establishing clear quantitative metrics allowing the identification

of error correlations in quantum circuits. The types of correlated errors treated here concern unitary,

coherent errors that can be represented by additive environmental coupling terms (e.g., dephasing noise)

or fluctuating control field terms in the system Hamiltonian. In general, such error channels exhibit

strong temporal correlations when they are induced by coloured noise spectra or systematic drifts in

control parameters due to insufficiently precise or too infrequent calibrations. Correlated errors between

gates can also be caused by incoherent error channels when considering, for example, changes in T1

times, which lead to slow variations of fundamental gate error rates. We do not consider the latter

form of correlated errors here; however, it is worth noting that they can also lead to detrimental and

non-Markovian behaviour in gate performance.

As a first step we analyse how correlations in a physical noise process translate to correlations in the

resultant unitary errors within a circuit of J gates, with gates indexed by j. In our model, any noisy

operation Ũj within the circuit can be decomposed into the ideal operator Ûj and an error operator Λ̂j ,

such that Ũj = Λ̂jÛj . Here, Ûj ≡ Û(nj , θj) rotates the qubit state vector by angle θj around an arbitrary

axis nj on the Bloch sphere. Considering unitary semi-classical noise processes, the error component in

each operation can be written as Λ̂j = exp {i
∑∞

α=1[εj ]α · σ̂}, with σ̂ the vector of Pauli matrices, α an

index denoting the Magnus expansion order [212], and εj the error vector characterising the strength and

nature (affected quadrature) of the error [211–214]. A quantum circuit experiences temporally correlated

errors if the values of εj across the circuit (in space or time) exhibit non-zero correlations.
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Our approach to measuring error correlations is built on common quantum verification protocols em-

ployed to infer the average behaviour of gate operations [156, 162, 163, 209, 215–222]. Restricting our

analysis to the single-qubit case, error correlations between gates may occur in these protocols when

physical noise processes exhibit strong correlations in time. We demonstrate this numerically by cal-

culating the error vector εj for each operation in a single-qubit randomised benchmarking sequence

exposed to detuning (σ̂z) noise with a variable block-correlation length, Mn; this is defined to be the

number of gates over which the noise strength is constant within the sequence. The sequence is as-

sembled from the 24 Clifford operations comprising combinations of π and π/2-rotations about the x, y

and z-axes of the Bloch sphere, and an identity gate Î. Calculating the autocorrelation function of the

error vector’s magnitude throughout a sequence reveals strong correlations over a length of gates,Mε,

which appear to scale linearly with the correlation length of the input noise process, Mn (Fig. 6.1c).

This behaviour suggests a linear mapping from noise correlations to error correlations in conventional

settings. As a prelude to future demonstrations in this manuscript, we note that if the individual Clifford

gates are replaced by DCGs, this simple linear mapping from input noise correlations to output error

correlations breaks down.

In general, the primary limitation one faces in accessing information aboutMε in a physical experiment

is that using standard, projective measurements at the end of a circuit will limit the ability to probe cor-

relations that arise throughout the circuit’s execution. Most experimental quantum verification routines

suffer from exactly this limitation, and primarily measure the average difference between a qubit state

transformed under an imperfect operation and a predetermined target state at the end of the protocol

(Fig. 6.1a). However, as we will illustrate in the following, there is additional useful information present

in the outcomes of randomised benchmarking measurement routines that may be employed to extract

novel insights about error correlations appearing during the sequence.

The key underlying concept is that in a randomised benchmarking sequence built up from many opera-

tions, the resultant net state transformation in the presence of noise, Ũeff |ψ〉 (Fig. 6.1b), is determined

by an interplay of both the sensitivity of each individual operation to the noise [212] and the impact of

the sequence structure on error accumulation [165, 221, 223]. Specifically, nominally equivalent ran-

domised benchmarking sequences (constructed to perform the same net operation) exhibit variations in

correlated-noise susceptibility that are analytically calculable and verifiable in experiments. We use this

variability and the behaviour under experimental averaging to extract a signature of error correlations

within quantum sequences.
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FIGURE 6.1. Translation of noise correlations to error correlations in quantum circuits. a, A single
operation applied to a qubit in the presence of noise Ũj can be decomposed into an error operator Λ̂j and
the target operation Ûj . Bloch spheres schematically illustrate the effect of an imperfect π-rotation about
the x-axis acting on input state |1〉, with dark shading indicating an over-rotation error. b, Noise (red
line) exhibiting non-zero temporal correlation of lengthMn = 3, quantised in units of gate operations,
acts on a quantum circuit composed of sequentially applied unitary operations. The resultant errors
accumulate and lead to a noisy effective operator Ũeff , whose effect is determined through a projective
measurement at the end of the circuit. c, Translation of correlations in a noise process to correlations in
the magnitude of the circuit error vector, ‖εj‖. The error vector for each gate of a randomly composed
sequence of 1000 primitive gates under a noise process with noise correlation lengthMn is calculated
and the autocorrelation function of the magnitude of the error vector, E [‖εj1‖‖εj2‖], is shown for the
first 100 gates. d, e, Random walks for the extreme error correlation cases, d,Mε = 1 (uncorrelated)
and e,Mε = J (fully correlated). Final walk displacements of eight sequences, each with 1000 error
realisations, are shown along with the full walk for a single sequence that is common between the two
cases.

6.1.1 Random walk formalism for error accumulation

We present a first-principles analysis to directly link measurement outcomes for single-qubit randomised

benchmarking sequences to the nature of the underlying error correlations quantified byMε, expanding

the formalism introduced in Ref. [165]. We consider randomised benchmarking sequences composed of

J single-qubit Clifford operations,
∏J
j=1 Ĉηj = Î, with the vector η containing labels for the 24 Clifford

operations, ηj ∈ {1, 2, . . . , 24}. A final gate is pre-calculated to yield a net identity operation for the

sequence, such that in the absence of error the final qubit state will be the same as the initial state. Due

to imperfections in the operations, the physically implemented gates C̃ηj differ from the ideal gates by

an error map C̃ηj = Λ̂ηj Ĉηj .

The accumulation of errors throughout a sequence can be represented by a sequence-dependent “random

walk” in three-dimensional Pauli-error space; the net walk length can then be related to the final sequence
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error [165]. For a particular realisation of the error i, this walk is captured by the vector

R
(i)
3D =

J∑
j=1

ε
(i)
j r3D,j (6.1)

with gate error values ε(i)
j ∼ N (0, σ2) sampled from a zero-mean Gaussian distribution with rms value

σ. It will be shown in Section 6.1.3 that this leads to an average, randomised benchmarking error per

gate ∝ σ2. The values of r3D,j define the sequence-specific random walk steps; they can be calculated

deterministically for any randomised benchmarking sequence, irrespective of the strength or correlation

characteristics of the gate errors. If the noise is gate independent and single axis, then the values of r3D

are unit-length steps. As discussed in Section 4.3.2, more complex models can be similarly modelled

with step lengths that are not necessarily unit-length, i.e. ‖r3D‖ 6= 1.

In a circumstance where the normalised error takes a consistent value ε(i)
j ≡ 1, the length of the J-step

walk created by these steps ‖V3D‖ is an intrinsic property of the sequence and will be shown to act

as a proxy for its susceptibility to correlated errors. Examining individual randomised benchmarking

sequences reveals the idiosyncratic nature of their walks; certain randomisations exhibit long walks,

while others have walks that terminate near the origin, solely determined by the structure of the sequence

and the form of the error channel. Accordingly, in the presence of correlated errors we expect a wide

variance of outcomes, determined by the underlying structures of the randomly selected sequences.

The general framework linking this Pauli walk to accumulated error was experimentally validated in

Chapter 5, published in Ref. [221].

6.1.2 Signatures of error correlations

We identify that the key measurable signature of error correlations arises in the process of experimental

averaging over repetitions of a sequence, and hence over different realisations of the error. In order

to understand this, we begin by examining how error correlations impact the random walk introduced

above, and how the behaviour of that walk changes with experimental averaging.

Gate errors induce the mapping r3D,j → R
(i)
3D; the term ε

(i)
j in Eqn. (6.1) can change the direction

and scale the magnitude of each step in the random walk. Thus correlations in ε(i)
j are translated into

correlated modifications of the steps in R(i)
3D. To see the effect of correlations in the error process, we

calculate the locus of walk termination points for eight different sequences and 1000 error realisations,

shown in Fig. 6.1d,e. In the presence of errors whose magnitudes are constant across all gates in a
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given benchmarking sequence, the error ε(i)
j ≡ ε(i) rescales all steps in the walk uniformly, such that all

termination points for a given sequence fall on a line (Fig. 6.1e). The walk terminations for the same

sequence are thus dominated by the underlying sequence structure (“rays” in Fig. 6.1e). By contrast, in

the presence of uncorrelated errors where ε(i)
j changes randomly for each step, the termination points

appear randomly distributed in Pauli space for different realisations of the error (Fig. 6.1d).

These differences will manifest in an experiment that averages the experimental performance of a set

of sequences over many different realisations of an error-inducing noise process. In the case of correl-

ated errors, the preservation of sequence-structure dependence in the sequence error leads to a broad

distribution of outcomes over different randomised benchmarking sequences. This breadth is main-

tained even when averaging experiments together over various realisations of the random but temporally

correlated errors. In contrast, for uncorrelated errors, the random, formless distribution of walk termin-

ation points over the same set of sequences implies that averaging over experiments would result in a

spread of outcomes that grows narrower as the experiment number increases, consistent with the central

limit theorem. It is therefore in the distribution over measured results of noise-averaged, randomised

benchmarking sequences that the signatures of error correlations between gates within a sequence will

appear. In Sections 6.1.3 and 6.1.4 we will describe how this phenomenology can be accessed through

a modified analysis of conventional randomised benchmarking experiments.

6.1.3 Mapping to measurable quantities

We now link the random-walk framework to measurements commonly performed in the laboratory – a

single projective measurement in the qubit basis. Such measurements are unaffected by rotations about

the z-axis, i.e., they are phase invariant. Consequently, this type of projective measurement is insensitive

to the component of the random walk oriented along the σ̂z-axis, and instead probes a two-dimensional

projection of the walk onto the σ̂xσ̂y-plane of Pauli-error space [221]. Considering a measurement

routine involving averaging a single sequence over n realisations of the error, we may relate the two-

dimensional walk length to the projective measurement results as,

〈P〉n = 1− 〈‖R2D‖2〉n +O
(
σ4
)
, (6.2)

where 〈·〉n is an average over n instances of the error process, 〈P〉n := 1− 〈P (|1〉)〉n is the measurable,

noise-averaged sequence “survival probability” when the qubit is initialised in the state |0〉, σ is the rms

of the normally distributed errors, and R2D denotes the random walk in the σ̂xσ̂y-plane of Pauli-error
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space. For simplicity, we will proceed by referring to R2D, and its individual steps r2D,j , simply as R

and rj respectively.

We analyse in detail three distinct error correlation regimes for a unitary error channel with values

ε
(i)
j ∼ N (0, σ2): (i) Mε = J , identically correlated errors with fixed, constant magnitude over a se-

quence and rms value σC , εC ∼ N (0, σ2
C); (ii)Mε = 1, uncorrelated, normally distributed errors that

change randomly between each gate in a sequence with rms value σU , εU ∼ N (0, σ2
U ); and (iii) statist-

ically independent, contemporaneous correlated and uncorrelated error processes such that the relative

strengths σC and σU determine the effective error correlation length.

The expression for survival probability in Eqn. (6.2) can be used to calculate the distribution of sur-

vival probabilities without modification for both regime (i) and (ii) simply by using the appropriately

calculated random walks. In the limit of long sequences and many noise averages (large J and n), the

noise-averaged survival probability is Gamma distributed over different, nominally equivalent, sequence

randomisations [221]; the shape and scale parameters of the distribution, a and b respectively, can be

calculated from first principles using the particulars of the sequence, noise averaging, and error charac-

teristics. For these two limiting cases of identically correlated errors over a sequence and uncorrelated

errors changing randomly between gates, the respective survival probabilities are sampled from Gamma

distributions shaped according to

〈PC〉n ∼ Γ(a = 1, b = 2
3Jσ

2), (6.3a)

〈PU 〉n ∼ Γ(a = n, b = 2
3nJσ

2). (6.3b)

From these expressions, the variance and expectation values of the distribution over sequence random-

isations can be calculated. To leading order, both distributions exhibit the same mean value E = ab,

giving a randomised benchmarking average gate error of 2
3σ

2. However, the distributions diverge in the

second moment V = ab2.

We may now derive the properties of the distribution associated with regime (iii) by considering two

independent walks; one is induced by the correlated error component R(i)
C , and the other by the uncor-

related component R(i)
U . To begin, it is convenient to note that in the case of a correlated, fixed error

process over a sequence, it is possible to factor out the constant error strength from the random walk for
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Error Type 1− E [〈P〉n] V [〈P〉n]

(i) Fully Correlated,Mε = J 2
3Jσ

2
C

2
9

(n+2)
n J(2J − 1)σ4

C

(ii) Uncorrelated,Mε = 1 2
3Jσ

2
U

2
9nJ (4 + 2J + n)σ4

U

(iii) Correlated + Uncorrelated 2
3J(σ2

U + σ2
C) V [〈PU 〉n] + V [〈PC〉n] + 4

9Jσ
2
Cσ

2
U

TABLE 6.1. The statistical moments for the distribution of noise-averaged sequence survival probabil-
ities with different error correlation lengths – fully correlated across the sequence, completely uncorrel-
ated values between gates, and a combination of two independent error processes in the same quadrature,
one correlated and one uncorrelated. The variance for case (iii) incorporates contributions from each er-
ror source individually, V [〈PC〉n] ,V [〈PU 〉n], as well as a cross-term.

a particular realisation of the error [165],

R
(i)
C = ε

(i)
C

J∑
j=1

rj = ε
(i)
C V. (6.4)

We thus introduce V to describe the two-dimensional sequence-specific walk, defined by the steps rj

that remain invariant under different realisations of the error process (Fig. 6.1e). This separability is

not achievable in the presence of uncorrelated errors due to the randomisation of each step in the walk

by the error process. The expression for survival probability can then be expanded in terms of these

independent walks to second order in σC , σU as

〈P〉n = 1− 〈‖R(i)
U + ε

(i)
C V‖

2〉n

= 1− 〈‖R(i)
U ‖

2〉n − σ2
C‖V‖2, (6.5)

where the cross-term is identically zero using 〈ε(i)
C 〉n = 0.

For all three correlation regimes, higher-order terms and cross-terms contribute to the second moment of

the distribution and have been calculated analytically (Table 6.1). These terms reduce to those calculated

using the Gamma distributions in Eqn. 6.3 in the limit of large J and n, with J � n. On inspection, we

expect that in the presence of uncorrelated errors the variance will narrow with increasing n, while it will

remain fixed in the presence of correlated errors. Such differences in scaling of a variance measure with

averaging are reminiscent of the manifestation of noise correlations in other physical quantities, e.g.,

the Allan variance used in precision frequency metrology [224, 225]. Our analysis therefore highlights

that calculating the variance of measurements of randomised benchmarking survival probabilities for

different sequences, and exploring how this variance changes with experimental averaging, can give
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insights into the underlying error correlations. The functional dependence of the distribution variance

with n will be employed throughout the remainder of this work as a key signature of error correlations in

standard randomised benchmarking. In the next section we demonstrate how the model can be updated

to connect to realistic laboratory noise models.

6.1.4 Modelling realistic laboratory error models

Building on the general framework introduced above, we introduce new first-principles calculations

connecting the theoretical model for gate error with actual, error-inducing noise in experiments. We

determine the sequence walk in the presence of arbitrary, unitary error maps, incorporating the possibil-

ity of multi-axis and gate-dependent errors. This facilitates the analysis of experimental measurements

performed subject to the most common noise sources encountered in the laboratory.

We consider two physically motivated noise processes that can occur throughout a randomised bench-

marking sequence. First, frequency detuning noise – either on the qubit’s resonant frequency or the fre-

quency of the control field used to drive qubit gate operations – creates an off-resonance error between

the qubit and control. Second, amplitude noise, which may arise from coupling-strength variations or

drifts and miscalibrations in the control, results in an over- or under-rotation error of the qubit state vec-

tor. Both of these represent “concurrent” noise sources (i.e., applied simultaneously with the execution

of a gate), which ultimately produce complex gate-dependent errors.

In general, depending on their underlying cause, both frequency detuning and amplitude noise processes

may possess temporally correlated and uncorrelated components. Correlated noise sources include mis-

calibrations, magnetic field drifts, and temperature drifts in control systems, while uncorrelated noise of-

ten stems from electrical noise or local environmental sources, e.g., anomalous heating in ion traps [226]

or two-level system (TLS) fluctuators in superconducting qubits [227, 228].

To now examine the impact of these physical noise processes on the behaviour of the sequence survival-

probability distributions, we proceed by explicitly calculating the translation between the physical noise

strength, δ(i)
j ∼ N (0, ρ2), and the effective sequence errors at the core of our model ε = ε(δ). In our

notation, ρ is used to denote the rms magnitude of the noise, distinguishing it from the rms magnitude

of the error operator σ. Our calculations incorporate the fact that single-axis noise (e.g., detuning)

present during a non-commuting operation generally results in a multi-axis error process. Furthermore,
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Error Type ρ→ σ Translation for E ρ→ σ Translation for V

(i) Fully
Correlated,
Mn = J

σ2
C = 3

2E
[
‖rj‖2

]
ρ2
C σ4

C = 9
2

E[‖rj‖4]+(J−2)E[‖rj‖2]
2

2J−1 ρ4
C

(ii) Uncorrelated,
Mn = 1

σ2
U = 3

2E
[
‖rj‖2

]
ρ2
U σ4

U = 9
2

(2+n)E[‖rj‖4]+(J−1−n)E[‖rj‖2]
2

4+2J+n ρ4
U

(iii) Correlated +
Uncorrelated

(σ2
C + σ2

U ) =
3
2

(
E
[
‖rU,j‖2

]
ρ2
U + E

[
‖rC,j‖2

]
ρ2
C

) σ2
Cσ

2
U = 9

2Cov
(
‖rU,j‖2, ‖rC,j‖2

)
ρ2
Cρ

2
U

TABLE 6.2. The translation from the rms value of a physical noise process, ρ, with correlation length
Mn, to the rms value of the gate error, σ, used to calculate the first and second moments of noise-
averaged sequence survival probabilities. The values ρC , ρU represent the rms magnitudes of the correl-
ated and uncorrelated noise processes respectively. Similarly, the terms rU,j , rC,j represent the random
walk steps for the different noise processes. Full details of the derivation of the relevant random walk
step expectation values, E

[
‖rj‖2

]
, E
[
‖rj‖4

]
, and Cov

(
‖rU,j‖2, ‖rC,j‖2

)
for the specific noise mod-

els employed in our verification experiments are presented in Chapter 4, Section 4.3.2.

physical implementations of Clifford operations typically employ variable gate durations, resulting in

gate-dependent error operators.

In this setting, the error ε(i)
j employed in Eqn. (6.1) is replaced by the physical noise strength δ(i)

j . As

a result, the previously unit-length steps r3D,j now take more complex, but still analytically calculable,

values due to the gate-dependence and multi-axis character of the errors induced by concurrent noise

processes. For a particular noise process we calculate the associated random walk, which enables a

mapping of the rms magnitude of the physical noise ρ to an updated rms value of the error σ. Sec-

tion 4.3.2 in Chapter 4 describes the formalism to calculate the noise-to-error translation in standard

Clifford gates for an arbitrary, unitary error process. Table 6.2 summarises the results which, when com-

bined with the expressions from Table 6.1, can be used to predict both the expectation and the variance

of the distribution of survival probabilities over sequence randomisation.

6.2 Experimental implementation

In this section, we proceed to validate the framework discussed above, using it to quantitatively analyse

the strength of a correlated noise process affecting a quantum circuit. We perform experiments using a

hyperfine 171Yb+ qubit, for which qubit rotations are driven via an I/Q-modulated 12.64 GHz microwave



120 6 DYNAMICALLY CORRECTED GATES SUPPRESS SPATIO-TEMPORAL ERROR CORRELATIONS AS MEASURED BY RB

field generated by a Vector Signal Generator (VSG) (see Chapter 2 for full details). Rotations about the

z-axis are implemented as instantaneous, pre-calculated I/Q frame shifts. The single-qubit detection data

is collected and analysed in a time-resolved manner [113, 221] using an avalanche photodiode (APD);

multi-qubit data employs an EMCCD camera and processing through a Random Forest classifier from

the scikit-learn framework [153].

The experiments in this manuscript are performed using k sequences each comprising J operations. The

first J − 1 gates are randomly composed Clifford operations and the final operation is selected such

that the sequence implements the identity in the absence of error. The full randomised benchmarking

protocol can be found in Chapter 4.1.3, with a full list of the Clifford operations and their physical im-

plementations tabulated in Table 4.1. A single ion in the blade trap used for these experiments achieves

a baseline (no engineered error) average error per gate of pRB ≈ 1.9× 10−5 and a state preparation and

measurement error (SPAM) of κ = (3.3± 0.1)× 10−3.

6.2.1 Verifying error correlation signatures with engineered errors

The key signature of the presence of temporally correlated errors appears in the variance of the distribu-

tion over sequence survival probabilities and its scaling with experimental averaging; averaging reduces

the variance in the case of uncorrelated errors, but has limited impact when errors exhibit strong tem-

poral correlations. We begin our experimental study by engineering experimental noise sources to test

and verify the predictions of the theoretical model presented in Chapter 6.1. We perform standard ran-

domised benchmarking, but engineer detuning and control-amplitude noise with different user-defined

bandwidths. All noise values are generated numerically, and are sampled from a zero-mean Gaussian

distribution δ ∼ N (0, ρ2) with rms strength ρ. Off-resonance errors are induced via fractional detun-

ing noise present during the application of the randomised benchmarking sequence, δ = (∆/Ω), set

by the frequency detuning ∆ between the qubit transition and the microwave source in units of the

Rabi frequency, Ω. Over-rotation errors are produced by amplitude noise in the microwave control

field, effectively changing Ω. Two limiting noise bandwidths are treated: maximally correlated noise,

Mn = J , with rms strength ρC ; and uncorrelated noise, Mn ≤ 1, with rms strength ρU . For the de-

tuning (control-amplitude) noise process, the correlated noise component is engineered using a constant

offset in the VSG microwave frequency (amplitude) over the entire sequence, and the uncorrelated noise

is applied via an external FM (AM) modulation input, and changes value every primitive π/2-time. The

relevant random walk steps calculated for these noise processes, E[‖rj‖2] and E[‖rj‖4], that are used to
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model our experimental measurements are found in Table 4.2 of Section 4.3.2, using the “1 value every

primitive π/2 gate time” bandwidth.

Instead of simply calculating the randomised benchmarking decay rate, pRB, derived from fitting to the

mean of the distribution over different values of J , we instead focus on analysing our data to extract in-

formation that is otherwise generally discarded in averaging processes. In each individual measurement,

the qubit is initialised in state |0〉 via optical pumping and one of k = 50 randomised benchmarking

sequences with J = 100 gates is applied in the presence of engineered noise. A final projective meas-

urement in each experiment yields a discretised qubit state measurement, which is used to infer the

probability of finding the qubit in state |1〉 by repeating the experiment r = 220 times under application

of the same engineered noise realisation (reducing quantum projection noise). The survival-probability

measurement outcomes for each sequence are then averaged over a variable number up to n = 200

different realisations of noise possessing the same engineered correlations. This process is repeated for

all k = 50 sequences, allowing us to calculate the distribution variance over noise-averaged survival

probabilities.

Figs. 6.2a-c show the distributions over randomised benchmarking sequences of the measured noise-

averaged survival probabilities in the presence of concurrent detuning noise. The same set of sequences

is subject to correlated (grey) or uncorrelated (red) noise sampled from a common distribution. Data are

represented as histograms for different fixed values of averaging number, n, for each sequence. Solid

lines are theoretical predictions for the distribution of survival probabilities derived from the updated

random-walk framework, as given by the Gamma distributions from Eqn. (6.3), and substituting the

error rms value σ using the noise-to-error translation for the expectation value shown in Table 6.2.

These theoretical predictions - which involve no free parameters - show good agreement with the data

in the regimes studied.

These data clearly illustrate the differences in the distributions over the same set of randomised bench-

marking sequences when subjected to noise with differing correlation properties. As shown in Ref. [165]

and highlighted here in Table 6.1, the distributions possess approximately the same mean value, despite

the differing noise-correlation properties. The skew to high fidelities in the data taken using correlated

noise is a manifestation of the randomised decoupling effects known to exist within some randomised

benchmarking sequences [165]. More importantly, the behaviour of the variance of the distributions

under an increasing number of noise averages n varies substantially. For small n the distributions are
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FIGURE 6.2. Signatures of error correlations in randomised benchmarking sequences. a-c, Dis-
tribution of measured survival probabilities for k = 50 randomly composed sequences averaged over
n = 5, 25 and 100 noise realisations drawn from δ ∼ N (0, ρ2 = 2× 10−3) for both maximally correl-
ated,Mn = J , (grey) and uncorrelated (red) engineered noise processes. Uncorrelated noise possesses
a “π/2-bandwidth”, i.e., noise values change with a rate set at the inverse of the duration of a primitive
π/2-rotation, and hence can take one or multiple values in a gate (Mn ≤ 1). Solid lines are normal-
ised Gamma distributions plotted with no free parameters. d, Scaling of cumulatively noise-averaged
histogram variances, V(n)

k ≡ Vk [〈P (|1〉)〉n]. Trajectories correspond to different orderings of noise real-
isations with dotted lines representing the mean of 1000 re-orderings, and solid lines are theoretical
predictions with no free parameters (see main text). Vertical dashed lines indicate the values of n used
in panels a-c.

similarly broad despite the differences in their shapes, but with further averaging the distribution meas-

ured under uncorrelated noise narrows while the variance of the distribution measured under correlated

noise remains approximately constant (as discussed in Sec. 6.1.3).

To highlight the effect of noise correlations on the experimental averaging behaviour, we plot the vari-

ance of the distribution over measured sequence survival probabilities, V(n)
k ≡ Vk [〈P (|1〉)〉n], as a func-

tion of the number of noise averages n (Fig. 6.2d). Data are represented as a collection of trajectories,

each constituting a randomised reshuffling of the data set (indexed by individual noise realisations). Data

sets are averaged over n noise realisations sampled from the full set, and n is allowed to vary from left

to right. This continues until all n = 200 noise realisations have been sampled. This procedure is used

to mitigate potential unintended systematic bias in the scaling of the the noise-averaged variance with n.

For instance, if by chance the first several noise samples over which one averages varied substantially,
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the variance may be artificially inflated from the ensemble average value; accordingly the resulting de-

viations between noise-averaging-trajectories are largest for small n and vanish at the far right of the

graph where all data sets are fully averaged over all available data. For correlated noise,Mn = J , the

resulting trajectories are initially broadly distributed and fluctuate before converging with n to a fixed,

analytically calculable variance. By contrast, in the case of uncorrelated noise withMn ≤ 1, all traject-

ories show an approximate reduction in V(n)
k ∝ 1/n, commensurate with a continued narrowing of the

distribution of outcomes over different sequences under averaging (Fig. 6.2a-c).

Solid lines capturing key scaling behaviours observed in both data sets of Fig. 6.2d are derived from

the expression for variance in Table 6.1. We use the noise-to-error translations from Table 6.2 and

the expected random walk steps for the relevant error model in Table 4.2, which are calculated for

concurrent detuning noise with no free parameters. Overall, agreement with the measured experimental

data are good across a wide parameter range and two orders of magnitude in V(n)
k . For correlated noise,

small deviations between the theoretical trace and measured mean scaling appear for low values of n.

Numerical evidence attributes this to the limited sample size in terms of sequences, which does not

always capture the rare, highly error-susceptible sequences that would lead to a larger variance. In the

case of uncorrelated noise, there is an overall vertical shift between the theory and the data, which is

fully compensated by adjusting the rms noise strength ρU by∼ 6%. Numerical simulations and analytic

considerations attribute the need for this adjustment to the strong noise employed in these experiments,

which violates the theoretical assumption Jρ2
U � 1, such that higher-order terms in the theory cannot

be fully ignored.

The uncorrelated noise data begin to deviate from an exact 1/n-scaling of V(n)
k at large numbers of

noise averages. This behaviour is captured by our theoretical model and varies in a predictable way

with the applied noise bandwidth and sequence length J ; we have verified it is not due to fundamental

measurement limits in our system or quantum projection noise. We are able to attribute this “saturation”

in variance scaling for uncorrelated noise to residual sequence dependence, even in the case of purely

uncorrelated noise, and the fact that our projective measurement probes only a two-dimensional σ̂xσ̂y-

plane in Pauli-error space. For example, one can imagine a sequence composed solely of Î gates, which,

due to an induced off-resonance error, will experience a net phase rotation that cannot be measured

by single-axis projective measurements. Hence, no amount of averaging over different noise strength

realisations will produce a survival probability that converges to the distribution mean, even in the case

of uncorrelated noise.
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Overall we find that our theoretical models predict not only the full distribution of survival probabilities

over randomised benchmarking sequences, but also the scaling of this distribution’s variance with ex-

perimental averaging. The difference between the grey and red data in Fig. 6.2d, and the agreement of

theory, thus constitute key experimental validations of the central theoretical contributions made in this

manuscript.

6.3 Suppressing error correlations using dynamically corrected gates

In the next part of our study we explore the ability to modify error correlations within a sequence through

deterministic replacement of each Clifford operation in a randomised benchmarking sequence with an

error-suppressing dynamically corrected gate (DCG). Each DCG is implemented by replacing primitive

physical rotations with composite pulses comprising multiple physical rotations [210], according to one

of several prescriptions [204].

6.3.1 Dynamically corrected gate construction

The particular DCG constructions examined in this work are the ‘Compensation for Off-Resonance with

a Pulse SEquence’ (CORPSE) [229] and ‘Walsh Amplitude Modulated Filter’ (WAMF) [230] gates,

which suppress detuning errors, and the BB1 pulse family [231], which suppresses over-rotation errors.

We also briefly discuss the use of reduced CinBB (CORPSE in BB1), which suppresses errors in both

quadratures. For each of these constructions, the target angle θt = π, π/2 gates are created as multi-

segment pulses described by the segments’ rotation angles θi, phase angles φi, and Rabi frequencies

Gate Construction (θ1,Ω1, φ1) (θ2,Ω2, φ2) (θ3,Ω3, φ3) (θ4,Ω4, φ4)

Primitive (θt,Ω, 0) - - -

CORPSE (2π + θt/2− k,Ω, 0) (2π − 2k,Ω, π) (θt/2− k,Ω, 0) -

WAMF
(
X0+X3

4 ,Ω, 0
) (

X0−X3
2 , X0−X3

X0+X3
Ω, 0

) (
X0+X3

4 ,Ω, 0
)

-

BB1 (θt,Ω, 0) (π,Ω, φk) (2π,Ω, 3φk) (π,Ω, φk)

TABLE 6.3. Gate parameters required to construct a target rotation about the x-axis by angle θt using
different pulse constructions. An additional π/2 shift in φ is required for rotations about the y-axis. Here,
k = arcsin [ sin [θt/2]

2 ], φk = arccos [−θt4π ], and for WAMF DCGs, the target rotations θt = (π4 ,
π
2 , π) have

X0 = (21
4 , 2

1
2 , 3)π and X3 = (0.36, 0.64, 1)π determined explicitly.
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FIGURE 6.3. Robustness of different pulse constructions to errors. a, A sequence of 10 π-rotations
is applied to a single qubit, alternating between the +x and −x axes to amplify detuning errors, and the
final state is measured. The relative detuning error is scanned between ±10%, which induces deviations
from the ideal final state, with the resultant measured error indicated by higher points on the graph.
This process is repeated using primitive (black), CORPSE (purple), BB1 (orange) and CinBB (yellow)
gates. b, The same gate constructions are used for a sequence of 10 π-rotations all about the +x axis to
amplify over-rotation errors. The pulse length error is scanned between ±10% and the measured error
in the final qubit state is again indicated by higher points on the graph.

Ωi normalised to the maximum frequency Ω. The constructions of the different gates are shown in

Table 6.3. To ensure that the error suppressing aspects of the DCGs are maintained for all Clifford gates,

the identity gate is implemented as a rotary spin echo by concatenating a π rotation about the x-axis with

its inverse −π rotation. While this results in a net zero rotation, effectively identical to the simple wait

time used for primitive Î gates, it makes the identity operation first-order insensitive to detuning errors

during its implementation. The physical motivation here is that if a qubit is remaining idle at any point

during a multi-qubit circuit, it may be preferable to continuously drive this type of rotary spin echo to

ensure that it does not accumulate phase errors during its idle period.

Virtualising single qubit gates as DCGs introduces a robustness to a particular quadrature of error, as

shown in Fig. 6.3. A single qubit is prepared in |0〉, 10 π-rotations are applied using four different pulse

constructions, and the difference between the final and initial qubit states is measured, P (|1〉), which

is zero for error-free rotations. In Fig. 6.3a, an off-resonance error is added, with the relative detuning

offset between the qubit frequency and the microwave drive scanned over ±10%. The 10 π-pulses are

driven around alternating axes x and −x to amplify the off-resonance error. For off-resonance errors,

it is observed that the CORPSE and reduced CinBB (CORPSE in BB1) pulses are more robust to the

error process than the primitive gates because they minimise the difference between the final and initial

qubit states over a wider range of detuning errors. For over- and under-rotations induced by a pulse
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length error in Fig. 6.3b, the π-pulses are all driven around a single axis x to amplify the error. Here,

the BB1 and reduced CinBB pulses are found to be more robust. This demonstrates the multi-axis error

suppression of reduced CinBB pulses. Primitive gates, on the other hand, are highly sensitive to errors

in both quadratures.

6.3.2 Modification of variance scaling with engineered errors using DCGs

Dynamically corrected gates abstract the target state transformations away from the physical qubit ma-

nipulation in a manner that builds in error robustness via coherent averaging. In this way, these compos-

ite gates modify the error susceptibility of the target operations, and in particular change the relationship

between an input correlated-noise process and output gate errors. We therefore refer to their action as

“virtualising” the Clifford operations, consistent with an abstraction above the physical-layer operations

presented in Ref. [208].

The error-virtualisation process is described quantitatively by calculating the error vector εj at the op-

erator level and expressing it in the Fourier domain. In the limit of classical Gaussian dephasing noise,

described in the Fourier domain as the spectrum βz(ω), the leading-order Magnus term (α = 1) in the

σ̂z-quadrature may be written as

[εj,z]1 = −i
∫
dω

2π
G(1)
z (ω, Tj)βz(ω). (6.6)

Here, G(1)
z (ω, Tj) is an analytically calculable, filter-transfer function that describes the spectral char-

acteristics of a gate active for duration Tj [211]. The effective error spectrum experienced by the gate

may therefore be represented by the spectral overlap of the filter-transfer function with the noise, written

as G(1)
z (ω, Tj)× βz(ω)→ E(ω, Tj). Fig. 6.4a demonstrates the mapping between input noise and the

effective error spectrum schematically for an example 1/ω-noise spectrum and a primitive π-rotation

about the x-axis. In this example, correlations in the noise are directly transferred to the correlations in

the effective error spectrum [214] (c.f. directMn toMε translation for primitive gates in Fig. 6.1c).

Replacement of the primitive gate with a logically equivalent DCG virtualises the effective error spec-

trum for each operator through the process of noise filtering [206, 210, 211, 214]. Fig. 6.4b illustrates

this effect, where the DCG’s reduced susceptibility to low frequency noise (captured through its filter-

transfer function) results in a “whitening” of the effective error spectrum relative to βz(ω). We use the

term whitening to describe the reduction of low-frequency weight, producing an error spectrum with

characteristics closer to a white spectrum than the original input; we do not imply the effective error
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FIGURE 6.4. Suppression of error correlations using dynamically corrected gates. a, The first-
order, generalised filter-transfer function for dephasing noise of a primitive operation G(1)

z (ω, Tj) and
the noise spectrum (here βz(ω) ∝ 1/ω) combine to produce an effective error spectrum E(ω, Tj) for a
single gate. b, The modified filter functions for first-order DCGs scale as ω at low frequencies, which
results in a “whitening” of E(ω, Tj) relative to the input noise spectrum. c, d, Variance scaling with n
for primitive (grey) gates, and WAMF (orange), CORPSE (blue) and BB1 (green) DCGs all subjected
to noise with both correlated and uncorrelated components. For c, detuning noise is engineered with
strength δC ∼ N (0, ρ2

C = 2× 10−3), δU ∼ N (0, ρ2
U = 5× 10−4), and for d, amplitude noise is engin-

eered with strength δC ∼ N (0, ρ2
C = 9× 10−4), δU ∼ N (0, ρ2

U = 2× 10−4). Dotted lines are means
of 1000 trajectories randomised over noise realisations, and solid lines for the DCGs are theoretical fits
from Table 6.1 to the mean with the values of σ2

U and σ2
C allowed to vary. Black solid lines for primitive

gates are derived from the same theory with no free parameters. As with Fig. 6.2, all data is measured
for k = 50 sequences of length J = 100 with n = 200 noise realisations and r = 220 repetitions.

spectrum after DCG application is formally white (frequency independent). In the current context, this

whitening suggests that DCGs should not only reduce overall error magnitudes when the noise is dom-

inated by low frequency contributions, but they should also suppress the signatures of error correlations

between sequentially applied gates.

We begin by performing a detailed, quantitative study of the measured signatures of error correlations

through the application of engineered noise. We experimentally implement primitive, CORPSE, WAMF

and BB1 gates, where the first two DCGs are designed to suppress errors arising from frequency de-

tuning noise and the latter is designed to suppress errors arising from amplitude noise. Using the same

set of randomly generated randomised benchmarking sequences as in Fig. 6.2, we now apply a mixed

noise spectrum, simultaneously containing uncorrelated, rapidly varying noise (Mn ≤ 1), and quasi-

static offsets that are constant over a full sequence giving a strongly correlated component (Mn = J).
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In addition to performing measurements with primitive gates, we also construct DCG sequences by de-

terministically replacing each Clifford with its logically equivalent DCG counterpart. The relations for

the mixed noise spectrum provided in Tables 6.1 and 6.2 now permit a direct study of the impact of using

DCGs on error correlations appearing within the randomised benchmarking sequences via the averaging

behaviour of V(n)
k .

Beginning with frequency detuning noise, both DCG implementations shown in Fig. 6.4c exhibit an

initial variance scaling with noise averaging V(n)
k ∝ 1/n, reminiscent of the application of the purely

uncorrelated noise process in Fig. 6.2d. The observed saturation in V(n)
k at large n for the DCG data

combines contributions due to both the analytically calculable component occurring in the presence of

purely uncorrelated noise introduced above, and residual uncompensated error correlations. The general

behaviour observed for the DCG sequences is to be contrasted with that observed for the same sequences

composed of primitive gates where, as in Fig. 6.2, the strong correlated noise component causes the

variance to converge to a large constant value (grey).

Similar behaviour is observed when considering the amplitude error quadrature. We demonstrate this

through the application of engineered control-amplitude noise in Fig. 6.4d, where measurements on

sequences composed of DCGs derived from the BB1 family exhibit a similar V(n)
k ∝ 1/n averaging

behaviour. Again, this is contrasted with the behaviour of sequences composed of primitive gates where

once more the variance saturates to a high constant value, despite application of the same noise in both

settings.

6.3.3 Quantitative analysis of error-correlation suppression

In order to calculate the change in error correlations realised in randomised benchmarking sequences

composed of DCGs, we compare experimental measurements of V(n)
k with the predictions of the model

summarised in Table 6.1. For the primitive gates, we explicitly translate the applied detuning noise

strengths to an effective error strength using the noise-to-error relations in Table 6.2; for this, we also

use the expected random walk step expressions calculated and presented in Table 4.2 of Section 4.3.2

in Chapter 4 for detuning or amplitude noise with a π/2-bandwidth in the uncorrelated component.

The solid, black lines in Figs. 6.4c,d are then derived using these calculated error strengths, with no

free parameters. Agreement between experimental measurements and theoretical predictions for the

primitive gate sequences is good, but we observe a small (∼20%) deviation that appears approximately

constant over several orders of magnitude in n for both noise processes. Ongoing work is investigating
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the source of this discrepancy; possible sources include the unaccounted impact of higher-order terms

due to the strength of the applied noise, and undersampling of the distribution over noise-averaged

sequences.

To extract the relative correlated and uncorrelated error components after DCG application, we fit the

data using the theoretical predictions for the scaling of V(n)
k shown in Table 6.1, and use the strengths of

the two error components σ2
U and σ2

C as free parameters. First, for all DCGs we observe a reduction in

σ2
C coupled with an increase in σ2

U . Specifically, σ2
C is reduced by a factor of 49× for CORPSE, 6× for

WAMF, and 10× for BB1, while all experience an increase in σ2
U by approximately 6 - 7×. The relative

performance of the DCGs observed in our experiments is aligned with their documented strengths, as

CORPSE is known to more efficiently cancel purely static detuning errors than WAMF [210, 230],

although improved calibration of the pulse-amplitude values used in WAMF gates is expected to improve

the efficacy of correlated-error suppression.

The increase in σ2
U is approximately consistent with the increase in duration of the DCGs relative to the

primitive gate implementations. Considering the high-pass-filtering nature of all DCGs illustrates why

uncorrelated noise processes fluctuating rapidly on the scale of the individual DCGs are transmitted by

their filters and lead to residual errors that may be amplified by the DCG structure. Overall, these meas-

urements – in particular the scaling of V(n)
k – are consistent with an interpretation that the action of the

noise whitening in the filter-transfer-function framework transforms correlated noise into predominantly

uncorrelated residual errors at the operator level.

6.3.4 Signatures of variable error-correlation lengths

To expand on the previous analyses, we experimentally demonstrate that the reduction in effective error

correlation, indeed, resides at the virtual gate layer. Using the same sequences as before, and the same

engineered ρU and ρC rms magnitudes for detuning noise, the length of the correlated noise component

is now varied in terms of the number of gates at the virtual level, breaking it up into blocks of length

Mn. The lab-frame durations of the noise blocks therefore now differ by a factor of ∼ 6 between the

primitive and the CORPSE gates (the average increase in the duration of the Clifford operations when

using CORPSE).

In the case of sequences composed of primitive gates, the signature exhibited by the variance scaling

under noise averaging in Fig. 6.5a gradually changes from indicating correlated errors (saturation at high
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FIGURE 6.5. Suppression of error correlations using DCGs under noise with varyingMn. a, b,
Variance scaling of k = 20 sequences with noise averaging for a, primitive and b, CORPSE gates.
Traces are normalised to the initial mean variance for each applied noise case. Engineered noise is
composed of an uncorrelated component (Mn ≤ 1) and a block correlated component of length Mn

that is varied from fully correlated (Mn = J) to uncorrelated (Mn = 1) in units of virtual gates. Dotted
lines are means of 1000 randomised trajectories. c, Ratio of initial to final variance in the upper panels
asMn is varied for primitive (black) and CORPSE (blue) gates. Dotted line marks the ratio at which
CORPSE gates saturate, and the dashed vertical line indicates the value ofMn where this ratio crosses
the scaling trend for primitive gates. Error bars calculated from the SEM of the 200 initial values of
variance and normalised by the fully noise-averaged variance are smaller than point size.

variance) to purely uncorrelated errors (1/n-like scaling) as the block length is decreased, consistent

with observations in Fig. 6.2 and Fig. 6.4. By contrast, the sequences composed of CORPSE gates

in Fig. 6.5b retain their overall 1/n-like scaling behaviour for all correlated component block lengths,

demonstrating that residual uncorrelated errors remain dominant. All traces in Fig. 6.5a,b have been

normalised to the initial mean variance for each engineered noise case to highlight the change in the

relative correlated and uncorrelated error components, rather than the net error strength.

As a witness of the suppression of error correlations, Fig. 6.5c shows the ratio of the initial mean variance

〈V(n=1)
k 〉n to the final, fully noise-averaged variance V(n=200)

k . This ratio scales approximately inversely

with Mn for primitive gates but remains nearly constant for CORPSE gates. Extrapolation of this
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ratio for CORPSE back towards smallMn reveals a crossover with the primitive data that lies between

Mn ≈ 1 to 2. This suggests that CORPSE gates can reduce the noise correlation length to an error

correlation length commensurate with physical noise Mn ≈ 1 to 2. Because the noise correlation

blocks were matched to the duration of the underlying Cliffords - whether through primitive or composite

construction - these data highlight the efficacy of DCGs in virtualising error characteristics for the logical

gates implemented.

6.4 DCG’s impact on intrinsic errors

After verifying the utility of the theoretical constructs we have introduced in this work, we now turn

to characterising the intrinsic errors limiting the performance of our system. In the trapped 171Yb+

ion experiment described in Section 2.3, we achieve a single-qubit randomised benchmarking average

error per gate (EPG) of (1.89 ± 0.12) × 10−5 (see App. C). Increasing the number of qubits to five

and performing simultaneous randomised benchmarking using a global microwave control field reveals

a monotonic increase in the EPG across the register, ranging from (5.7±0.5)×10−5 to (1.3±0.1)×10−4.

As such, were we to run multi-ion algorithms that use global state manipulations, e.g., transversal gates

in the 7-qubit Steane code [186], we would not see the net error rate scale linearly with respect to

the initial single-qubit EPG. This non-linear scaling with increasing qubit numbers has been observed

in many systems and is often due to cross-talk between qubits [232]. It is important to note that this

experimental observation of inhomogeneous error rates also violates a common assumption on noise

statistics made in studies of error correcting codes, namely that the noise is independent and identically-

distributed (iid).

In our case, the underlying cause of the observed error inhomogeneity is a sub-percent-level gradient in

the amplitude of the microwave control field across the ion chain, caused by interference from metallic

surfaces in the proximity of our in-vacuum antenna. We also observe a small magnetic-field gradient

across the qubit chain, such that both amplitude and detuning noise are present simultaneously. Spatially

correlated errors have recently been studied in Ref. [233], wherein it is noted that previous studies of

multi-qubit errors tend to assume either spatially independent errors or identically spatially correlated

errors, facilitating the use of a decoherence free subspace. Our situation, with a gradient of spatially

correlated errors, falls between these two cases, but can still induce simultaneous multi-qubit errors that

lower the efficacy of QEC.
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FIGURE 6.6. Intrinsic errors in a five-qubit chain. a, Variance over noise-averaged sequence
survival probabilities for five qubits using k = 60 sequences of length J = 500, averaged
over up to r = 500 repetitions. Each trajectory is produced by shuffling the order of repeti-
tions used in the graph to avoid bias, dotted lines indicate the means of 1000 trajectory random-
isations, and solid lines are fits where the correlated and uncorrelated error strengths were free to
vary. The correlated error strengths, σ2

C , are {1.2, 1.5, 1.9, 2.4, 2.7} × 10−4 from qubit 1 to 5 for
the primitive gates, and {2.3, 2.5, 1.1, 2.2, 2.3} × 10−5 for the BB1 gates. The uncorrelated er-
ror strengths, σ2

U , are {7.5, 8.1, 8.5, 8.6, 8.7} × 10−4 from qubit 1 to 5 for the primitive gates, and
{6.5, 6.5, 6.3, 6.6, 6.5} × 10−4 for the BB1 gates. (Inset) EMCCD image of a five-ion chain. The con-
trol field amplitude and frequency is calibrated with respect to the highlighted, leftmost ion. b, Pairwise,
cross-correlation coefficients between the five-qubit survival probabilities for primitive (left) and BB1
(right) gates, revealing a ∼ 50% reduction in the correlations between qubit errors when using BB1.

To characterise the impact of DCGs on spatially correlated errors, we utilise simultaneous randomised

benchmarking sequences of length J = 500 applied to all five qubits in the register, and again explore

variance scaling with experimental averaging (Fig. 6.6). We construct DCG sequences using BB1 gates

to combat the dominant microwave-control-amplitude errors. Data collection proceeds by interleaving

a single sequence implemented using either primitive or BB1 gates to ensure a fair comparison between

the sequences in time, in the event that any systematic drifts occur.
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FIGURE 6.7. Randomised benchmarking with ten qubits. Average gate errors (left) and SPAM errors
(right) extracted from global randomised benchmarking for 10 trapped ion qubits using primitive gates
(black crosses), and BB1 gates (purple crosses). The mean error across the string is shown as a dotted
line, and ±1 standard deviation is denoted by the shaded area. We observe a 10.2× reduction in the
spread of errors and a 2.6× reduction in the mean error when using BB1 gates rather than primitive
gates. There is no significant change in the SPAM error. Error bars are calculated from the fitting
uncertainties returned by the RB exponential decay fit.

We examine the scaling of V(r)
k with averaging over repetitions r, up to r = 500; because noise is native

to the system, we make the substitution n ≡ r. The signature of the temporally correlated intrinsic

errors is observed for all ions when using sequences of primitive gates in Fig. 6.6a (red). We observe

a staggered, increasing saturation value for V(r)
k at r = 500, increasing with the spatial distance from

qubit 1 (leftmost qubit in Fig. 6.6a inset), which is used to calibrate the gate operations. As expected,

the qubit that is furthest from the calibration qubit suffers both the worst randomised benchmarking

performance and shows the highest saturation value in variance scaling. By contrast, the over-rotation

error suppressing BB1 gates (blue) saturate at a value of variance over an order of magnitude lower

than achieved by the primitive gates, and recover a 1/r-like scaling for all qubits. We further find

the relationship between the physical positions of the qubits and the ordering of saturation variances

has become scrambled. Using the analysis introduced above, we fit the mean variance trends with the

expression in Table 6.1, allowing the strengths of the error σ2
C , σ2

U to vary. We extract a reduction in the

correlated error strength when using BB1 gates ranging from ∼ 5 to 16× for the five qubits.

To directly probe the action of DCGs in virtualising the spatially correlated errors, we calculate the

pairwise cross-correlation coefficient between the survival probabilities in each experimental realisation
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(Fig. 6.6b). For primitive gates, all errors are highly correlated between qubits (cross-correlation coef-

ficient ≥ 0.9 for all qubit pairs), whereas for the BB1 gates, a reduction of approximately 50% can be

seen between all qubit pairs, further supporting the evidence that DCGs provide a suppression of error

correlations in both time and space.

Separate investigations not presented here using the multi-axis error suppressing DCG CinBB, which

combines the detuning-error robustness of CORPSE with the amplitude-error robustness of BB1 [234],

showed no additional benefit. This observation suggests that the off-resonance error created by the

magnetic-field gradient was sufficiently small that it was dominated by other larger, but rapidly fluctuat-

ing, intrinsic error sources

In addition to reducing the correlated error component, we can see that DCGs can be used to homo-

genise error rates across a string of qubits, an important requirement for quantum processors. Average

error rates can vary between qubits for many reasons, in particular systematic field gradients or miscal-

ibrations. Due to the magnetic and microwave field gradients in our experiment, our average error rates

across a 10 ion string vary by over an order of magnitude. Replacing primitive gates with amplitude-

error-suppressing BB1 gates reduces the mean error across the string by a factor of 2.6, and the spread

of errors by a factor of 10.2 (Fig. 6.7). The extracted SPAM errors appear unaffected by the choice of

gate, as expected. These results have been published by Ball et al. [5].

6.5 Outlook

The results we have presented suggest that the path to the practical implementation of QEC may be

facilitated by transforming miscalibrations and common laboratory noise sources exhibiting slow drifts

and low-weight noise spectra, into effective error processes with dramatically reduced correlations at the

virtual layer using DCGs. We believe this is important as the pursuit of functional quantum computers

– even at the mesoscale – will clearly require major advances in the control and suppression of errors,

as gate counts quickly exceed 1010 for even moderate problems requiring only ∼ 200 qubits [235].

Combined with the observation that certain DCGs can mitigate spatial cross-talk in multi-qubit systems

[236], we believe that our demonstration of the suppression of temporal and spatial error correlations

within quantum circuits solidifies the central importance of dynamic error suppression techniques at the

virtual level for practical quantum computing.



CHAPTER 7

Theoretical background about the Mølmer-Sørensen gate

“Around and around and around we spin,

With feet of lead and wings of tin.”

- Kurt Vonnegut, Cat’s Cradle

The following material introduces the theory behind the Mølmer-Sørensen entangling gate, in particu-

lar, considering the bosonic motional modes used to facilitate entanglement. Parts of this chapter are

partially reproduced from the Supplementary Material of “Phase-modulated entangling gates robust to

static and time-varying errors” [6], while others constitute new material. See the Statement of Contri-

bution for full details.

The Mølmer-Sørensen (MS) gate is the most widely used entangling gate in trapped ion systems [237–

240]. As with the earlier proposed Cirac-Zoller gate [241, 242], the MS gate is able to entangle qubit

states by exploiting their coupling to the collective, bosonic modes of ion motion. Unlike the Cirac-

Zoller gate, which requires ground-state cooling for the initial state, the MS gate can be implemented

with initial thermal states of motion, making it more easily realisable and more robust to common

laboratory noise.

The focus of this chapter is to introduce the theory behind the MS gate and derive a formalism to predict

the evolution of observable quantities under its application. In addition, I derive a “Filter Function”

formalism to describe the performance of the MS gate in the presence of time-varying noise. I begin this

chapter with a derivation of the trapped ion motional mode frequencies and eigenvectors for a system of

N trapped ions.

135
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7.1 Trapped ion motional spectra in three dimensions

The Mølmer-Sørensen gate utilises the harmonic motional modes of the trapped ions to facilitate entan-

glement between qubits. As such, it is important for us to be able to calculate the expected eigenvectors

and frequencies characterising the modes’ oscillations. In this section, I derive the full eigenspectra de-

scribing motion along all three trapping directions. This calculation is based off the work in “Quantum

dynamics of cold trapped ions with application to quantum computation,” D. F. V. James [7], which

derives the expected ion positions and motion along the weakest trapping axis. To do so, it assumes

that the radial confinement is significantly stronger than the axial and that the ion motion transverse to

the axis is negligible. Consequently, the original formalism did not extend to calculating the transverse

motion eigenspectra, nor could it predict structural phase transitions in the ion crystal configuration that

extend beyond one dimension, e.g. “zig-zag” configurations.

7.1.1 Equilibrium positions of an ion string in three dimensions

The trapped ion system can be modelled as a set of harmonically oscillating particles with an additional

ion-ion repulsive Coulomb interaction. The total potential energy then has contributions from both the

individual harmonic oscillators and the pairwise electric potential energy between similarly charged

ions. In one-dimension, the potential energy is given by

V (1D) =
1

2
M

N∑
m=1

ν2
zzm(t)2 +

Z2e2

8πε0

N∑
n,m=1

m6=n

1

|zn(t)− zm(t)|
(7.1)

where νz is the angular frequency of the centre-of-mass mode along the axial z direction, zm(t) is the

position of the mth ion at time t, M is the ion mass in kilograms, Z is the degree of ionisation (here for
171Yb+, Z = 1), e is the charge of an electron, and ε0 is the vacuum permittivity. The potential energy

can be extended to three dimensions as

V (3D) =
1

2
M

N∑
m=1

3∑
i=1

ν2
i rmi(t)

2 +
Z2e2

8πε0

N∑
n,m=1

m6=n

1

‖rn(t)− rm(t)‖2
(7.2)

where νi is the ith component of the vector containing the three angular centre-of-mass mode frequen-

cies, ν = [νx, νy, νz], and rmi(t) is the ith component of the position vector for the mth ion at time t in

three dimensions, rm(t) = [xm(t), ym(t), zm(t)]. The symbol ‖ · ‖2 represents the L2 Euclidean norm,
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which calculates the length of a vector in Euclidean space, e.g. ‖a‖2 =
√
a · a . In all of the following,

the z-axis will correspond to the “axial direction” or the weak trapping axis, and is indexed by i = 3.

The position of the ion can be expanded about some static equilibrium position, r(0)
m = [x

(0)
m , y

(0)
m , z

(0)
m ],

with a small time-dependent displacement, qm(t) = [qmx(t), qmy(t), qmz(t)], allowing us to rewrite

rm(t) = r
(0)
m + qm(t). The equilibrium position of the jth ion is found by calculating the stationary

points of the potential energy, i.e., the value r(0)
j that minimises the first partial derivative of V (3D) with

respect to rj(t). This can be calculated as

∂V (3D)

∂rj i

∣∣∣∣∣
rji(t)=rj

(0)
i

= 0, for all j ∈ {1, . . . , N}, i ∈ {1, 2, 3} (7.3)

where the notation
∣∣
rji(t)=rj

(0)
i

refers to taking the partial derivative at the equilibrium position where

rj i(t) = rj
(0)
i and qj i(t) = 0.

To find the equilibrium positions of the ion string in three dimensions, one must solve the 3N simultan-

eous equations from Eqn. (7.3) for j ∈ {1, . . . , N} ions and the three dimensions i ∈ {1, 2, 3}. Using

the expression in Eqn. (7.2) for V (3D), the first derivative with respect to the jth ion’s position along the

ith (i.e. rj i(t)) can be expanded and simplified.

Mν2
i rj

(0)
i −

Z2e2

8πε0

N∑
m=1
m 6=j

N∑
n=1
n 6=m

δn,j

(
rn

(0)
i − rm

(0)
i

)
‖r(0)

n − r(0)
m ‖32

− Z2e2

8πε0

N∑
m=1

δm,j

N∑
n=1
n6=m

−
(
rn

(0)
i − rm

(0)
i

)
‖r(0)

n − r(0)
m ‖32

= 0

Mν2
i rj

(0)
i −

Z2e2

4πε0

N∑
m=1
m 6=j

(
rj

(0)
i − rm

(0)
i

)
‖r(0)

j − r
(0)
m ‖32

= 0 (7.4)

I proceed analogously to James by defining a natural length scale, lz , corresponding the weak trapping

axis to simplify the expressions, where

l3z =
Z2e2

4πε0Mν2
z

. (7.5)

The normalised equilibrium positions are then defined as uj = r
(0)
j /lz =

[
x

(0)
j

lz
,
y

(0)
j

lz
,
z

(0)
j

lz

]
, allowing us

to rewrite Eqn. (7.4) in terms of the normalised coordinates. After dividing through by Mν2
i , we find

rj
(0)
i −

l3zν
2
z

ν2
i

N∑
m=1
m 6=j

(
rj

(0)
i − rm

(0)
i

)
‖r(0)

j − r
(0)
m ‖32

= 0 (7.6)
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rj
(0)
i −

ν2
z

ν2
i

N∑
m=1
m 6=j

(
rj

(0)
i − rm

(0)
i

)
‖uj − um‖32

= 0 (7.7)

The fraction ν2
z/ν

2
i will rescale the normalisation for the stronger trapping radial axes, i 6= 3. Dividing

this expression through by lz then produces an equation wholly in terms of the normalised coordinates,

uj i −
ν2
z

ν2
i

N∑
m=1
m6=j

(
uj i − umi

)
‖uj − um‖32

= 0. (7.8)

From Eqn. (7.8), one can numerically solve the 3N simultaneously equations for j ∈ {1, . . . , N} and

the three axes i ∈ {1, 2, 3} to calculate the values of uj . Unlike James, we cannot further simplify this

expression. In the one-dimensional form this expression can be rewritten as

uj3 −
N∑
m=1
m6=j

(
uj3 − um3

)
|uj3 − um3|3

= uj3 −
j−1∑
m=1

1(
uj3 − um3

)2 − N∑
m=j+1

1(
uj3 − um3

)2 (7.9)

by assuming that the ion axial positions are ordered with their index, i.e., z(0)
i > z

(0)
j for all i > j

with i, j ∈ {1, . . . , N}. This simplification cannot be extended to three dimensions as the transverse

equilibrium positions do not necessarily increase monotonically with index, e.g. zigzag configurations.

As an example, consider a string of N = 5 ions. The centre-of-mass mode (COM) frequencies are an

indication of the trapping potential strength in each direction; the frequencies scale as the square root

of the axial potential/radial pseudo-potential. The axial potential scales linearly with the endcap DC

voltages, U0, and the radial pseudo-potential scales quadratically with the electrode RF voltages, V0,

such that, [νx, νy, νz] ∝
[
V0, V0,

√
U0

]
.

In Fig. 7.1(a)-(c), the normalised equilibrium positions um are illustrated for three COM frequencies

ν/2π = [1.6, 1.5, 0.5] MHz. The positions are tabulated in Fig. 7.1(a), and the axial cross-sections are

plotted showing the z-axis positions vs. the x-axis positions (Fig. 7.1(b)), and the z-axis vs. y-axis

positions (Fig. 7.1(c)). For this trapping potential, the ions are spaced along the z-axis with increasing

separation as they move away from the ion centre, and are centred along the x- and y-axes. If the axial

potential is increased, the ions move closer together along the weak trapping z-axis, and eventually show

a “zigzag” configuration in the transverse directions. This is illustrated in Fig. 7.1(d)-(f) where the axial

COM frequency has been increased from 2π×0.5 MHz to 2π×0.9 MHz.
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(a)

i

Ion
u1i u2i u3i u4i u5i

1 0 0 0 0 0

2 0 0 0 0 0

3 -1.74 -0.82 0 0.82 1.74

(d)

i

Ion
u1i u2i u3i u4i u5i

x 0 0 0 0 0

y -0.35 0.56 0 -0.56 0.35

z -1.32 -0.82 0 0.82 1.32

FIGURE 7.1. Normalised positions um = r
(0)
m /lz for N = 5 ions along the i = 1, 2, 3 directions

corresponding to the x-, y-, z-axes respectively. (a)-(c) COM frequencies ν/2π = [1.6, 1.5, 0.5] MHz,
and (d)-(f) ν/2π = [1.6, 1.5, 0.9] MHz. (a),(d) The normalised positions are tabulated for each axis. As
the axial confinement is increased, the ions become more closely spaced along the z-axis. (b),(e) The
cross-section positions are shown for z-axis vs. x-axis positions, with the ions approximately centred
at um1 = 0 for all ions. (c),(f) The cross-section positions are shown for z-axis vs. y-axis. Here, a
“zig-zag” equilibrium position has been found along the y-axis due to the tighter axial potential.

7.1.2 Motional mode eigenvectors of an ion string in three dimensions

Having now calculated the equilibrium positions, we return to the term qm(t) describing a time-dependent

displacement from the equilibrium. I proceed by deriving the three-dimensional motional eigenspectra

that will be crucial to implementing the MS gate. The N ion string will have N secular modes of os-

cillation along each of the three trap axes. The motion is collective for the entire ion string because the

positively charged ions are coupled by the repulsive Coulomb interaction. The centre-of-mass (COM)

mode is defined to be the mode in which all ions oscillate with equal eigenvectors and eigenvalues, as

if the ions were rigidly held together. The COM mode is the lowest frequency “axial” mode, along the

direction of the weak trap axis z, and the highest frequency “transverse/radial” mode, perpendicular to

the trap axis x, y. The amplitude of the COM oscillation decreases with the number of ions as 1/
√
N .
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For clarity, I begin by introducing and restating several important vector quantities for the mth ion.

− rm(t) = [xm(t), ym(t), zm(t)] – the position at time t

− r(0)
m = [x(0)

m , y(0)
m , z(0)

m ] – the equilibrium position

− um = r(0)
m /lz = [umx, umy, umz] – the dimensionless equilibrium position, normalised by the

natural length scale along the weak trapping axis lz

− qm(t) = [qmx(t), qmy(t), qmz(t)] – the displacement from equilibrium at time t, such that the

position can be written as rm(t) = r(0)
m + qm(t)

− q̇m(t) = [q̇mx(t), q̇my(t), q̇mz(t)] – the first time derivative of the displacement at time t

In the following calculations, all of these vectors will be indexed by i = 1, 2, 3 corresponding to axis

x, y, z respectively. For example, qm1(t) is the displacement of the mth ion at time t along the x-axis.

To calculate the eigenvectors and eigenvalues for each of the motional modes, I examine the Lagrangian

function describing the motion. The Lagrangian in three dimensions is

L(3D) =
M

2

N∑
m=1

3∑
i=1

q̇mi(t)
2 − 1

2

N∑
n,m=1

3∑
i=1

qni(t)qmi(t)
∂2V (3D)

∂rni∂rmi

∣∣∣∣∣
rm

(0)
i ,rn

(0)
i

+O(qn
3
i ) (7.10)

where the second-order partial derivative is evaluated at the equilibrium position, i.e., rmi(t) = rm
(0)
i

and rni(t) = rn
(0)
i , or equivalently qmi(t) = qni(t) = 0. Using the expression for the first-order deriv-

ative of V (3D) with respect to rj i(t) in Eqn. (7.4), the second-order partial derivative can be expanded.

∂2V (3D)

∂rni∂rmi

∣∣∣∣∣
rm

(0)
i ,rn

(0)
i

=
∂

∂rni

Mν2
i rmi(t)−

Z2e2

4πε0

N∑
p=1

p 6=m

(rmi(t)− rpi(t))
‖rm(t)− rp(t)‖32


∣∣∣∣∣
rm

(0)
i ,rn

(0)
i

=


Mν2

i

1 +
ν2
z

ν2
i

N∑
p=1

p6=m

1

‖um − up‖32

(
−1 + 3

(umi − upi)
2

‖um − up‖22

) if n = m

Mν2
z

‖um − un‖32

(
1− 3

(umi − uni)2

‖um − un‖22

)
if n 6= m

(7.11)

Then, the Lagrangian can be rewritten to second order in qn(t) as

L(3D) =
M

2

3∑
i=1

 N∑
m=1

q̇mi(t)
2 − ν2

i

N∑
n,m=1

Ainmqni(t)qmi(t)

 (7.12)
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where

Ainm =


1 +

ν2
z

ν2
i

N∑
p=1

p 6=m

1

‖um − up‖32

(
−1 + 3

(umi − upi)
2

‖um − up‖22

)
if n = m

ν2
z

ν2
i

1

‖um − un‖32

(
1− 3

(umi − uni)2

‖um − un‖22

)
if n 6= m

(7.13)

are the components of the matrices
↔
Ai for the x-, y- and z-axes indexed by i = 1, 2, 3 respectively.

The eigenspectra of the three matrices
↔
Ai will determine the behaviour of the trapped ions. The N

eigenvectors and eigenvalues along the ith direction are defined as b(i)
p and µ(i)

p respectively, such that

↔
Aib

(i)
p = µ(i)

p b
(i)
p p ∈ {1, . . . , N}, i ∈ {1, 2, 3}. (7.14)

For each direction, the eigenvectors and eigenvalues of
↔
Ai can be determined numerically. The matrix

↔
Ai is real, symmetric and semi-positive definite, and must hence have non-negative eigenvalues and

orthonormal eigenvectors. Orthonormality implies that the modal matrix
↔
Vi created with the eigen-

vectors of
↔
Ai as its columns,

↔
Vi = [b

(i)
1 . . . b

(i)
N ], is orthogonal, such that

↔
Vi
†↔
Vi =

↔
Vi
↔
Vi
†

= Î. The

orthonormality condition can be re-expressed in terms of a sum over eigenvector components as

N∑
m=1

bp
(i)
m bq

(i)
m = δp,q (7.15)

N∑
p=1

bp
(i)
m bp

(i)
n = δm,n (7.16)

where bp(i)
m is the mth element of the pth eigenvector along the ith axis, b(i)

p .

The eigenvectors describe the motion of each ion m for each motional mode p. The collective modes

can be expressed in terms of individual local ion coordinates qmi(t) as

Q(i)
p (t) =

N∑
m=1

bp
(i)
m qmi(t), (7.17)

or equivalently, the local ion coordinates can be expressed in terms of the collective motion,

qmi(t) =

N∑
p=1

bp
(i)
mQ

(i)
p (t). (7.18)

To transform between these two expressions, the orthonormality rules in Eqns. (7.15), (7.16) can be

straightforwardly applied.
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Using the expression for the local ion coordinates (Eqn. 7.18), the Lagrangian can be rewritten in terms

of the collective motional modes. For the kinetic energy term,

M

2

3∑
i=1

N∑
m=1

q̇mi(t)
2 =

M

2

3∑
i=1

N∑
m=1

N∑
p,q=1

bp
(i)
m bq

(i)
m Q̇

(i)
p (t)Q̇(i)

q (t)

=
M

2

3∑
i=1

N∑
p,q=1

Q̇(i)
p (t)Q̇(i)

q (t)
N∑
m=1

bp
(i)
m bq

(i)
m

=
M

2

3∑
i=1

N∑
p=1

Q̇(i)
p (t)2, (7.19)

where I have used the eigenvector orthonormality (Eqn. (7.15)) in the last line. For the potential energy

term, the matrix
↔
Ai is rewritten in terms of its modal matrix

↔
Vi, formed using the eigenvectors of

↔
Ai as

its columns, and special diagonal matrix
↔
Di, which consists of the eigenvalues of

↔
Ai along its diagonal.

↔
Ai =

↔
Vi
↔
Di

↔
V †i (7.20)

Ainm =
N∑
p=1

VinpDippVimp

=
N∑
p=1

µ(i)
p bp

(i)
n bp

(i)
m (7.21)

Then the potential energy term can be rewritten as

M

2

3∑
i=1

ν2
i

N∑
n,m=1

Ainmqni(t)qmi(t) =
M

2

3∑
i=1

ν2
i

N∑
n,m=1

N∑
p=1

µ(i)
p bp

(i)
n bp

(i)
m qni(t)qmi(t)

=
M

2

3∑
i=1

ν2
i

N∑
p=1

µ(i)
p

(
N∑
m=1

bp
(i)
m qmi(t)

)2

=
M

2

3∑
i=1

N∑
p=1

ν
(p)
i

2
Q(i)
p (t)

2
. (7.22)

Here, I have introduced a new term for the frequency of the pth motional mode along the ith axis, ν(p)
i .

This term is calculated from the centre-of-mass mode frequency along the ith axis νi as

ν
(p)
i =

√
µ

(i)
p νi. (7.23)

In particular, the centre-of-mass mode corresponds to an eigenvalue of µ(i)
p = 1.
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Eigenvectors bpm Eigenvalues Mode frequency (MHz)

Mode p Ion 1 Ion 2 Ion 3 x y z x y z

1 0.577 0.577 0.577 1.0 1.0 1.0 1.6 1.5 0.5

2 -0.707 0 0.707 0.902 0.889 3.0 1.520 1.414 0.866

3 0.408 -0.817 0.408 0.766 0.733 5.8 1.400 1.285 1.204

TABLE 7.1. Eigenvectors, eigenvalues and mode frequencies for an N = 3 ion string with 3N = 9

modes, with centre-of-mass frequencies ν/2π = [1.6, 1.5, 0.5] MHz. Each axis has three collective
motional modes; these modes have common eigenvectors across the three axes but differing eigenvalues.
The first mode (p = 1) is the COM mode, where all ions have equal eigenvectors. This is the lowest
frequency mode in the axial (z) direction, and the highest frequency mode along the transverse (x, y)
directions. Equation (7.23) is used to convert between the mode eigenvalues and frequencies.

When the axial potential is sufficiently relaxed for the ions to be centred along the transverse axes, with

normalised equilibrium positions uxm = uym = 0 for all ions, the matrix
↔
A simplifies to

Ainm =


1 +

ν2
z

ν2
i

N∑
p=1

p 6=m

1

|um3 − up3|3
(−1 + 3δi,3) if n = m

ν2
z

ν2
i

1

|um3 − un3|3
(1− 3δi,3) if n 6= m

(7.24)

where δi,3 is the Kronecker delta. In this case, because the matrices for each axis commute, then if the

matrices are diagonalisable it implies that they must be simultaneously diagonalisable. Consequently,

all three axes have equal eigenvectors describing the motional modes, although they will have differing

eigenvalues.

As an example, we consider N = 3 ions with COM frequencies ν/2π = [1.6, 1.5, 0.5] MHz. The

eigenvectors, eigenvalues and mode frequencies are shown in Tab. 7.1. As the ions are centred along the

transverse axes for this potential, the eigenvectors are common for the three axes and are only written

explicitly once. Figure 7.2 shows an example of the oscillatory movement when an axial motional mode

is excited for three trapped 171Yb+ ions. Voltages were applied to the ion trap endcaps to excite the

axial COM (left) and “breathing” (right) modes, corresponding to modes p = 1 and p = 2 in Tab. 7.1

respectively.

The expressions derived in this first section can be used to calculate the equilibrium positions, motional

mode directions/eigenvectors, and motional mode frequencies for any number of trapped ions along
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FIGURE 7.2. Images of a three-ion 171Yb+ chain when the axial centre-of-mass mode (left), and the
breathing mode (right) are excited. The eigenvector directions for each ion are shown at the top of each
column. Red dashed lines provide guides to the eye to indicate the ions’ displacements. Image credit to
C. Hempel, Quantum Control Laboratory, University of Sydney.

each of the three trapping directions. This work has been a critical element for predicting Mølmer-

Sørensen gate fidelity and optimising gate parameters, as well as designing experiments such as chemical

simulations in trapped ion systems [243].

7.2 Description of the Mølmer-Sørensen evolution

Now that we have arrived at a formalism to calculate the behaviour of the collective modes of oscillation

for an ion string, we can move onto describing the Mølmer-Sørensen gate, which couples the motional

degrees of freedom with the ions’ electronic degrees of freedom to achieve qubit-qubit entanglement. In

this section, I will simplify the notation from the previous section for motional mode frequencies and

eigenvectors. Rather than explicitly separating the 3N modes into the three axis components and then

labelling them from p = 1, . . . N , e.g. ν(x)
p , I instead combine all modes into one set and index them

from k = 1, . . . , 3N , e.g. νk.

In the following sections, I will discuss large Hilbert spaces describing multiple qubits and oscillator

modes. To describe coupling between operators acting on different subspaces I use the symbol⊗, which
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represents a tensor product. The relevant operators for the qubit and oscillator modes are defined in

the following manner. The Pauli operator in a two-dimensional Hilbert space for basis j ∈ {x, y, z} is

represented as σ̂j : this is the operator that acts on a single qubit. By contrast, the operator denoted σ̂(µ)
j

is the Pauli operator in basis j acting on the µth qubit embedded in the entire relevant qubit subspace,

i.e. σ̂
(µ)
j = Î⊗ · · · ⊗ Î⊗ σ̂j ⊗ Î⊗ · · · Î, such that all qubits other than the µth are acted upon by the

two-dimensional identity operator, Î. Similarly, â†, â are the creation and annihilation operators for a

single mode, and â†k, âk are the operators for the kth mode embedded in the full motional subspace,

â†k = Î ⊗ · · · ⊗ Î ⊗ â† ⊗ Î ⊗ · · · Î. To couple the qubit and motional subspaces, I will use an explicit

tensor product, e.g. σ̂(µ)
x ⊗ â†k. Finally, the collective Pauli-x operator acting on the two qubits µ and ν

is defined as,

Ŝ(µν)
x = σ̂(µ)

x + σ̂(ν)
x (7.25)

Ŝ(µν)
x

2
= 2̂I⊗ Î + 2σ̂(µ)

x σ̂(ν)
x (7.26)

using a basic property of Pauli matrices, σ̂(µ)
x

2
= Î ⊗ Î, and the commutation of matrices acting on

different subspaces, σ̂(µ)
x σ̂

(ν)
x = σ̂

(ν)
x σ̂

(µ)
x .

The qubit-motion interaction can be mediated by a bichromatic laser pulse, with components tuned

below (red) and above (blue) the bare qubit transition. The components are detuned by an amount

equivalent to one motional mode quanta for the kth mode, νk, with an additional detuning δk. The

detuning is defined as δk = ωb − ω0 − νk = ω0 − νk − ωr, where ωb (ωr) is the frequency of the blue

(red) component of the bichromat, ω0 is the qubit frequency, and νk is the frequency of the kth motional

mode. All of these frequencies are angular. The qubit-qubit interaction basis σ̂φs ⊗ σ̂φs is determined

by the optical phases φr and φb of the red and blue components respectively, such that

φs =
φb + φr

2
(7.27)

σ̂φs = cos (φs)σ̂x + sin (φs)σ̂y. (7.28)

By setting φr = −φb, the interaction basis is fixed as σ̂φs ⊗ σ̂φs = σ̂x ⊗ σ̂x.

We consider a system of N qubits coupled to M bosonic oscillator modes described by the Hamiltonian

ĤMS(t) = i~
N∑
µ=1

σ̂
(µ)
φs
⊗

M∑
k=1

(
γ

(µ)
k (t)â†k − γ

(µ)
k

∗
(t)âk

)
(7.29)

γ
(µ)
k (t) = Ωf

(µ)
k e−iδkt (7.30)
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where the creation and annihilation operators â†k, âk act on the kth oscillator mode. The term γ
(µ)
k (t)

describes the coupling between the µth qubit and kth mode; it can be represented as a trajectory in phase

space. The coupling strength is determined by the overall coupling strength between the qubits and the

driving field Ω (Rabi frequency), and a hardware-specific coupling parameter f (µ)
k .

In a system of trapped ions, the oscillator modes correspond to collective motional modes of the ions in

the trapping potential. The interaction strength between the µth ion and the kth motional mode with the

driving field is captured by the Lamb-Dicke parameter η(µ)
k ,

f
(µ)
k =

−iη(µ)
k

2
=
−i
2
bkµk̃ cos (θ)

√
~

2Mνk
, (7.31)

which incorporates the motional mode eigenvector for mode k and ion µ, bkµ, and the overlap of the

spatial structure of the motional mode with the effective wavevector of the driving field [7]. This uses

the following parameters: the mediating laser wavevector, k̃; the angle between the wavevector and the

mode orientation, θ; the angular frequency of the mode, νk; the mass of a single 171Yb+ ion, M ; and

Planck’s constant, ~.

The Hamiltonian (7.29) produces a state-dependent force in the [σ̂x]⊗N -eigenbasis, as described by the

unitary evolution

ÛMS(t) = exp
{
−i
∫ t

0
ĤMS(t1)dt1 +

(−i)2

2

∫ t

0
dt1

∫ t1

0
dt2[ĤMS(t1), ĤMS(t2)] + . . .

}
= exp


N∑
µ=1

σ̂(µ)
x ⊗ B̂µ(t)

 exp

i
N∑

µ,ν=1

ϕµν(t)σ̂(µ)
x σ̂(ν)

x

 , (7.32)

which is obtained from the Magnus expansion, where all higher order terms after the first two are identic-

ally zero. These first two terms commute and can hence be separated into individual exponentials de-

scribing two key components of the evolution.

For N > 1 qubits, the second component produces pairwise entanglement between qubits µ and ν,

captured by the phase

ϕµν(t) = Im

[
M∑
k=1

∫ t

0
dt1

∫ t1

0
dt2γ

(µ)
k (t1)γ

(ν)
k

∗
(t2)

]
, (7.33)

which will achieve maximum qubit-qubit entanglement when ϕµν(t) = π/8.
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The first component in Eqn. (7.32) describes a qubit-state-dependent displacement of the oscillator

modes,

exp


N∑
µ=1

σ̂(µ)
x ⊗ B̂µ(t)

 = exp


N∑
µ=1

σ̂(µ)
x ⊗

M∑
k=1

(
f

(µ)
k αk(t)â

†
k − f

(µ)
k

∗
αk(t)

∗âk

) (7.34)

αk(t) = Ω

∫ t

0
dt′e−iδkt

′
(7.35)

where the term αk(t) represents the circular displacement trajectory in the phase space corresponding to

the kth oscillator.

The action of Eqn. (7.34) on the qubit-oscillator system can be expressed in terms of the “displacement

operators”, D̂(α) = exp{αâ† − α∗â}, which use the creation and annihilation operators to displace a

state in phase space along a trajectory described by the argument α. One can consider the different phase

space trajectories corresponding to each individual oscillator mode using D̂k(αk) = exp{αkâ†k − α
∗
kâk}.

To incorporate the qubit-state dependence into the displacement, the qubit and motional operators are

coupled via a tensor product within the displacement operator,

D̂k(σ̂
(µ)
x αk) = exp{σ̂(µ)

x ⊗ (αkâ
†
k − α

∗
kâk)}. (7.36)

For more details on the properties of the displacement operator, see App. A.

I rewrite the first term of the unitary as a product of displacement operators,

exp


N∑
µ=1

σ̂(µ)
x ⊗ B̂µ(t)

 =

M∏
k=1

D̂k

 N∑
µ=1

σ̂(µ)
x f

(µ)
k αk(t)

 , (7.37)

to show that the operator creates a qubit-state-dependent displacement for each qubit-oscillator wave-

packet. More explicitly, the N -qubit system can be described by 2N eigenstates in the [σ̂x]⊗N -basis.

Under the action of the displacement operator, the wave packet associated with the kth oscillator splits as

each component becomes entangled with one of the qubit eigenstates and is coherently displaced along

a circular trajectory in phase space proportional to αk(t). Any residual oscillator excitation, captured

by non-zero αk(τg) at the conclusion of the gate time τg, results in a loss of qubit-qubit entanglement

fidelity because the motional and qubit state spaces are still coupled.

The magnitude and orientation of the phase-space displacement are determined by an interplay between

the wave packet’s σ̂(µ)
x eigenvalues and the mode’s Lamb-Dicke parameters. More precisely, each eigen-

state in the [σ̂x]⊗N -basis written as |El〉 has an associated eigenvalue E(µ)
l = ±1 for the σ̂(µ)

x operator,
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which acts on the µth qubit. For a particular mode k, acting the state-dependent displacement operator

(Eqn. (7.37)) on the separable qubit-oscillator state |El〉 ⊗ ρk, with the oscillator ρk in a thermal state,

displaces the wave packet in phase space along the trajectory

αk,l(t) =
N∑
µ=1

E
(µ)
l f

(µ)
k αk(t). (7.38)

Here, both E(µ)
l and f (µ)

k can be positive or negative, giving interference between different terms in the

sum, and hence their combination over the sum of ions will set the net orientation and magnitude of the

wave packet displacement.

For example, consider the motion of two ions along a particular axis, with a COM mode (equal ei-

genvectors for both ions, such that f (1)
k = f

(2)
k ) and a “tilt” mode (equal magnitude and opposite sign

Lamb-Dicke parameters for both ions, f (1)
k = −f (2)

k ). Here, the even eigenstates |++〉 , |−−〉 will be

displaced when the COM mode is excited because the terms E(µ)
l and f (µ)

k add constructively, whereas

the odd eigenstates |+−〉 , |−+〉 will remain at the origin in phase space. The opposite will be true of

the tilt mode.

Despite the unique interference patterns, all of the displaced wave packet trajectories remain proportional

to the base trajectory αk(t), and hence are forced to return periodically to the origin with a period of

2π/|δk|. Consequently, the motional decoupling condition can be expressed as

αk(τg) = Ω

∫ τg

0
dte−iδkt = 0 for all k ∈ {1, . . . ,M}. (7.39)

For an individual mode this condition can be satisfied by setting δkτg = 2πn, n ∈ Z, which will con-

clude the gate at the natural trajectory period. However, as the number of oscillator modes is increased,

this condition becomes intractably difficult to solve for all values of δk simultaneously, and necessit-

ates prohibitively long gate times. To address this, we introduce a time-dependent modulation of the

motional phase of the driving force, φ(t) = (φb(t) − φr(t))/2, allowing us to rewrite the decoupling

condition as

αk(τg) = Ω

∫ τg

0
dte−i[δkt+φ(t)] = 0 for all k ∈ {1, . . . ,M}, (7.40)

which can be solved for piece-wise constant values of φ(t) either analytically [9] or using a multi-

objective numerical optimisation. Both solutions are experimentally validated in the work in Chapter 8.
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7.3 Measurement of observables after Mølmer-Sørensen evolution

In this section, I calculate analytic expressions for an observable after the application of the Mølmer-

Sørensen (MS) time evolution operator. This work facilitates the use of arbitrary phase shifts, as required

for the experimental work in Chapter 8, and calculates a generalised expression describing any two

addressed ions embedded within an N -ion register and coupled to any number of modes. The derivation

presented here follows and extends the original approach presented by Roos et al. [10] and Kirchmair

et al. [8], which was restricted to considering two ions from a two-ion register coupled to one motional

mode. Examples of observables that can be calculated include the state populations, used to validate

experimental measurements in Figs. 8.4 and 8.6 of Chapter 8, and the experimentally measurable Bell

state fidelity, used in Fig. 8.5 of Chapter 8.

7.3.1 General observable calculation for two qubits

I begin the derivation by considering two specific qubits, indexed by µ and ν, embedded within an

N -ion register, that are coupled to M motional modes and addressed by the MS interaction. The MS

unitary operator can be separated into its two commuting components, ÛMS(t) = Û1(t)Û2(t), with Û1(t)

describing the qubit-qubit entanglement and Û2(t) describing qubit-oscillator coupling.

Û1(t) = exp

i ∑
µ′,ν′=µ,ν

ϕµ′ν′(t)σ̂
(µ′)
x σ̂(ν′)

x


≡ exp

{
iϕ(t)Ŝ(µν)

x

2
}
, (7.41)

Û2(t) =
M∏
k=1

D̂k

 ∑
µ′=µ,ν

σ̂(µ′)
x α

(µ′)
k (t)

 (7.42)

Here, the summations have changed from being over all N qubits, as in Eqn. (7.32), to selectively

choosing the two addressed qubits µ and ν. The entangling phase accumulated between the two qubits,

ϕ(t) ≡ ϕµν(t) = ϕνµ(t), can be calculated using Eqn. (7.33) and the final equivalence for Û1(t) holds

up to a global phase. I introduce the term

α
(µ)
k (t) = f

(µ)
k αk(t) = f

(µ)
k Ω

∫ t

0
dt′e−i(δkt

′+φ(t′)) (7.43)

to describe the motional coupling between the kth mode and µth qubit with scaling factors added to

characterise the coupling strength.
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To measure a qubit observable given by the operator Ô, one can take the trace after multiplying Ô with

the final density matrix, ρf : O(t) = Tr
[
Ôρf

]
. To represent the qubit-oscillator state, I introduce the

notation
⊗M

k=1 to represent a tensor product between many terms, in analogy to the big Sigma and big Pi

notation for summation and multiplication. An initially separable qubit-oscillator state of two targeted

qubits and M oscillators is prepared in,

ρQ

M⊗
k=1

ρk = |00〉 〈00|
M⊗
k=1

∞∑
nk=0

pnk |nk〉 〈nk| (7.44)

= |00〉 〈00| ⊗
∞∑

n1,...,nk,...,nM=0

pn1 · · · pnk · · · pnM |n1 . . . nk . . . nM 〉 〈n1 . . . nk . . . nM |

where each oscillator is in a thermal state with mean phonon number n̄k such that the coefficient is

given by pnk = [1/(n̄k + 1)][n̄k/(n̄k + 1)]nk . The initial density matrices ρQ and ρk correspond to

the two-qubit subspace and the oscillator subspace for mode k respectively, with both qubits pre-

pared in |0〉. In the final line, I remove the explicit tensor notation to rewrite the motional states

as |n1 . . . nk . . . nM 〉 := |n1〉 ⊗ · · · ⊗ |nk〉 ⊗ · · · ⊗ |nM 〉, with M sums over all possible phonon oc-

cupancy values (zero to infinity) for each mode k ∈ {1, . . . ,M}.

For this initial state, the evolution of an observable quantity after applying the MS operator is given by

O(t) = Tr
[
ÔÛ1Û2

(
ρQ

M⊗
k=1

ρk

)
Û †2 Û

†
1

]
=

∞∑
n1,...,nM=0

pn1 · · · pnMTrQ
[
ρQ 〈n1 · · ·nM | Û †2 Û

†
1ÔÛ1Û2 |n1 · · ·nM 〉

]
(7.45)

where TrQ
[
.
]

is the trace over the qubit subspace. Note that neither operator Û1(t) or Ô act on the

oscillator states and will hence commute with any purely motional subspace operators.

To calculate the outcome of Eqn. (7.45), we first rewrite Û2(t) in terms of the projection operators onto

the four eigenstates of Ŝ(µν)
x : P̂++, P̂+−, P̂−+, P̂−−, corresponding to the eigenstates |++〉x , |+−〉x,

|−+〉x , |−−〉x respectively. Note, µ is referenced as the first qubit for each state and ν is the second.

Û2(t) =
M∏
k=1

D̂k

 ∑
µ′=µ,ν

σ̂(µ′)
x α

(µ′)
k (t)


=

M∏
k=1

exp

 ∑
µ′=µ,ν

σ̂(µ′)
x ⊗

(
α

(µ′)
k (t)â†k − α

(µ′)
k (t)

∗
âk

)
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=
M∏
k=1

[
P̂++ ⊗ D̂k

(
+α

(µ)
k (t) + α

(ν)
k (t)

)
+ P̂+− ⊗ D̂k

(
+α

(µ)
k (t)− α(ν)

k (t)
)

+ P̂−+ ⊗ D̂k

(
−α(µ)

k (t) + α
(ν)
k (t)

)
+ P̂−− ⊗ D̂k

(
−α(µ)

k (t)− α(ν)
k (t)

)]
=:

[
P̂++ ⊗

M∏
k=1

D̂k(αk++) + P̂+− ⊗
M∏
k=1

D̂k(αk+−)

+P̂−+ ⊗
M∏
k=1

D̂k(αk−+) + P̂−− ⊗
M∏
k=1

D̂k(αk−−)

]
(7.46)

The term αkXY := Xα
(µ)
k + Y α

(ν)
k for X,Y ∈ {+,−} has been introduced for simplicity. In the final

line, the product over M modes has been moved to the individual displacement operator terms; this is

possible using the identities of the projection operators, P̂ijP̂kl = P̂ijδikδjl.

When the four terms in Eqn. (7.46) are substituted for Û2 and Û †2 in the observable evolution given by

Eqn. (7.45), 16 cross-terms are produced. The terms can be separated using trace linearity. We consider

the form of one such term created from P̂X1Y1 ⊗ D̂k(αkX1Y1) in Û †2 and P̂X2Y2 ⊗ D̂k(αkX2Y2) in Û2.

OX1Y1X2Y2
=

∞∑
n1,...,nM=0

pn1
· · · pnMTrQ

[
ρQ 〈n1 . . . nM |

(
P̂ †X1Y1

⊗
M∏
k=1

D̂†k(αkX1Y1
)

)
Û†1 ÔÛ1

×

(
P̂X2Y2

⊗
M∏
k′=1

D̂k′(αk′X2Y2
)

)
|n1 . . . nM 〉

]

= TrQ

[
Û†1 ÔÛ1P̂X2Y2

ρQP̂X1Y1

⊗
∞∑

n1,...,nM=0

pn1 · · · pnM 〈n1 . . . nM |
M∏
k=1

D̂k(−αkX1Y1)D̂k(αkX2Y2) |n1 . . . nM 〉

]
(7.47)

Here, I have utilised the relations D̂k(α)† = D̂k(−α) and P̂ †XY = P̂XY . To separate the qubit and

motional components, the phonon sums and coefficients have been brought into the trace using the

linearity of the trace. The two products over the M modes indexed by k, k′ have been combined by

gathering the displacement operators for the same mode using the relation [D̂k(α), D̂j(β)] = 0 if j 6= k.

This expression can be simplified using properties of the displacement operator. Namely,

D̂k(α)D̂k(β) = D̂k(α+ β)e(αβ∗−α∗β)/2, (7.48)

∞∑
nk=0

pnk 〈nk| D̂k(αk) |nk〉 = e−|αk|
2(n̄k+ 1

2) (7.49)
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when the coefficients pnk describe a thermal state [10]. Using these relations, the cross-term becomes

OX1Y1X2Y2 = TrQ
[
Û †1ÔÛ1P̂X2Y2ρQP̂X1Y1e

(−αkX1Y1
α∗kX2Y2

+α∗kX1Y1
αkX2Y2

)/2

×
∞∑

n1,...,nM=0

pn1 · · · pnM 〈n1 . . . nM |
M∏
k=1

D̂k(−αkX1Y1 + αkX2Y2) |n1 . . . nM 〉


= TrQ

[
Û †1ÔÛ1P̂X2Y2ρQP̂X1Y1e

−
∑M
k=1 |αkX2Y2

−αkX1Y1
|2(n̄k+ 1

2)
]
. (7.50)

In the final line, we are able to eliminate the term

e
(−αkX1Y1

α∗kX2Y2
+α∗kX1Y1

αkX2Y2
)/2

= e
−Im

[
αkX1Y1

α∗kX2Y2

]
= 1 (7.51)

because the exponent simplifies to zero. This can be seen by noting that αkX1Y1α
∗
kX2Y2

is real,

αkX1Y1α
∗
kX2Y2

=
(
X1α

(µ)
k + Y1α

(ν)
k

)(
X2α

(µ)
k

∗
+ Y2α

(ν)
k

∗)
=

(
X1
−iη(µ)

k

2
αk + Y1

−iη(ν)
k

2
αk

)(
X2

iη
(µ)
k

2
α∗k + Y2

iη
(ν)
k

2
α∗k

)

=
|αk|2

4

(
X1η

(µ)
k + Y1η

(ν)
k

)(
X2η

(µ)
k + Y2η

(ν)
k

)
∈ R. (7.52)

The 16 cross-terms of the formOX1Y1X2Y2(t) that make up the observable evolution can be grouped into

four groups of four terms for different combinations ofX1, Y1, X2, Y2 ∈ {+,−}. To simplify notation, I

introduce a symbol to negateX and Y : X̃ = −X, Ỹ = −Y . Furthermore, I note that αkXX = −αkX̃X̃ .

The four groups of motional terms are as follows.

1. Four terms when X2 = X1 and Y2 = Y1:

e−
∑M
k=1 |αkX1Y1

−αkX1Y1
|2(n̄k+ 1

2) = 1 (7.53)

2. Four terms when X2 = −X1 =: X̃1 and Y2 = −Y1 =: Ỹ1:

e
−
∑M
k=1 |αkX̃1Ỹ1

−αkX1Y1
|2(n̄k+ 1

2) = e−
∑M
k=1 |−αkX1Y1

−αkX1Y1
|2(n̄k+ 1

2)

= e−4
∑M
k=1 |αkX1Y1

|2(n̄k+ 1
2) (7.54)

3. Four terms when X2 = −X1 =: X̃1 and Y2 = Y1:

e
−
∑M
k=1 |αkX̃1Y1

−αkX1Y1
|2(n̄k+ 1

2) = e−
∑M
k=1 |−X1α

(µ)
k +Y1α

(ν)
k −X1α

(µ)
k −Y1α

(ν)
k |

2(n̄k+ 1
2)

= e−4
∑M
k=1 |α

(µ)
k (t)|2(n̄k+ 1

2) (7.55)
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4. Four terms when X2 = X1 and Y2 = −Y1 =: Ỹ1, which follow similarly:

e
−
∑M
k=1 |αkX1Ỹ1

−αkX1Y1
|2(n̄k+ 1

2) = e−4
∑M
k=1 |α

(ν)
k (t)|2(n̄k+ 1

2) (7.56)

Now the sum of the 16 cross-terms that appear in the expansion of the observable evolution can be

written out using Eqn. (7.50), where each term can be expressed using Eqns. (7.53)-(7.56).

O(t) = TrQ
[
Û†1 ÔÛ1

×
{(
P̂++ρQP̂++ + P̂+−ρQP̂+− + P̂+−ρQP̂+− + P̂−−ρQP̂−−

)
+
(
P̂−−ρQP̂++ + P̂++ρQP̂−−

)
e−4

∑M
k=1 |αk++|2(n̄k+ 1

2 )

+
(
P̂−+ρQP̂+− + P̂+−ρQP̂−+

)
e−4

∑M
k=1 |αk+−|

2(n̄k+ 1
2 )

+
(
P̂−+ρQP̂++ + P̂−−ρQP̂+− + P̂++ρQP̂−+ + P̂+−ρQP̂−−

)
e−4

∑M
k=1 |α

(µ)
k (t)|2(n̄k+ 1

2 )

+
(
P̂+−ρQP̂++ + P̂++ρQP̂+− + P̂−−ρQP̂−+ + P̂−+ρQP̂−−

)
e−4

∑M
k=1 |α

(ν)
k (t)|2(n̄k+ 1

2 )
}]

(7.57)

Several of the terms with the form OX1Y1X̃1Ỹ1
(t) (from Eqn. (7.54)) have been combined and simplified

by noting that |αk++| = |αk−−| and |αk+−| = |αk−+|. Substituting in the initial qubit condition,

ρQ = |00〉 〈00|, and using the projection matrices defined in App. A gives,

O(t) =
1

16
TrQ

[
ÔÛ1

{
4̂I +

(
Ŝ(µν)
z

2 − Ŝ(µν)
y

2
)
e−4

∑M
k=1 |αk++|2(n̄k+ 1

2)

+
(
Ŝ(µν)
z

2
+ Ŝ(µν)

y

2 − 4̂I
)
e−4

∑M
k=1 |αk+−|2(n̄k+ 1

2)

+4σ̂(µ)
z e−4

∑M
k=1 |α

(µ)
k (t)|2(n̄k+ 1

2) + 4σ̂(ν)
z e−4

∑M
k=1 |α

(ν)
k (t)|2(n̄k+ 1

2)
}
Û †1

]
. (7.58)

Finally, I conjugate the Pauli operators by Û1(t) = eiϕ(t)Ŝ
(µν)
x

2

using the matrix relations in App.A. This

produces the final expression describing the evolution of the expectation value of an observable for two

qubits embedded within an N -ion register that are excited by the MS interaction.

O(t) =
1

16
TrQ

[
Ô
{

4̂I +
(
Ŝ(µν)
z

2 − Ŝ(µν)
y

2
)
e−
∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2)

+
(
Ŝ(µν)
z

2
+ Ŝ(µν)

y

2 − 4̂I
)
e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)

+ 4
(

sin [4ϕ(t)]σ̂(µ)
y σ̂(ν)

x + cos [4ϕ(t)]σ̂(µ)
z

)
e−
∑M
k=1 |η

(µ)
k αk(t)|2(n̄k+ 1

2)

+4
(

sin [4ϕ(t)]σ̂(µ)
x σ̂(ν)

y + cos [4ϕ(t)]σ̂(ν)
z

)
e−
∑M
k=1 |η

(ν)
k αk(t)|2(n̄k+ 1

2)
}]

(7.59)

where I have expanded the short-hand terms αkXY = Xα
(µ)
k + Y α

(ν)
k and αµk = fµk αk = −iηµkαk/2.
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7.3.2 Examples of observables evolving under the MS interaction

From Eqn. (7.59), one can calculate the expectation value of a qubit observable Ô after the MS evolution.

I begin with the two-qubit populations, Pn, defined to be the likelihood of measuring n qubits in |1〉.

For this, I use the projection operators Ô = P̂ij = |ij〉 〈ij|, i, j ∈ {0, 1}.

P0(t) = 〈P̂00(t)〉

=
1

8

{
2 + e−

∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)

+2 cos [4ϕ(t)]
(
e−
∑M
k=1 |η

(µ)
k αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |η

(ν)
k αk(t)|2(n̄k+ 1

2)
)}

(7.60a)

P1(t) = 〈P̂01(t)〉+ 〈P̂10(t)〉

=
1

4

{
2− e−

∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2) − e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)
}

(7.60b)

P2(t) = 〈P̂11(t)〉

=
1

8

{
2 + e−

∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)

−2 cos [4ϕ(t)]
(
e−
∑M
k=1 |η

(µ)
k αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |η

(ν)
k αk(t)|2(n̄k+ 1

2)
)}

(7.60c)

If the two addressed qubits are embedded within a two-qubit register (N = 2), then there are only six

motional modes and they all have symmetric or anti-symmetric Lamb-Dicke parameters between the

ions, i.e., η(1)
k = ±η(2)

k for all k ∈ {1, . . . , 6}. Hence, the populations for two qubits addressed in a

two-qubit register simplify to

P0(t) =
1

8

{
2 + e−

∑M
k=1 |(η

(1)
k +η

(2)
k )αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |(η

(1)
k −η

(2)
k )αk(t)|2(n̄k+ 1

2)

+4 cos [4ϕ(t)]e−
∑M
k=1 |η

(1)
k αk(t)|2(n̄k+ 1

2)
}

(7.61a)

P1(t) =
1

4

{
2− e−

∑M
k=1 |(η

(1)
k +η

(2)
k )αk(t)|2(n̄k+ 1

2) − e−
∑M
k=1 |(η

(1)
k −η

(2)
k )αk(t)|2(n̄k+ 1

2)
}

(7.61b)

P2(t) =
1

8

{
2 + e−

∑M
k=1 |(η

(1)
k +η

(2)
k )αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |(η

(1)
k −η

(2)
k )αk(t)|2(n̄k+ 1

2)

−4 cos [4ϕ(t)]e−
∑M
k=1 |η

(1)
k αk(t)|2(n̄k+ 1

2)
}

(7.61c)

To calculate the expected ion population for a single ion being excited by the MS interaction, one

must redo the observable calculation for the case of a single qubit. In this case, Û1(t) is a global

phase term proportional to the identity. When prepared in the initially separable qubit-oscillator state
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|0〉 〈0|
⊗M

k=1

∑
n pnk |nk〉 〈nk|, the final expression for the evolution of the expectation value of an ob-

servable becomes

O(t) =
1

2
TrQ

[
Ô
(

Î + σ̂ze
−
∑M
k=1 |η

(1)
k αk(t)|2(n̄k+ 1

2)
)]
. (7.62)

The single ion populations are then

P0(t) =
1

2

(
1 + e−

∑M
k=1 |η

(1)
k αk(t)|2(n̄k+ 1

2)
)

(7.63a)

P1(t) =
1

2

(
1− e−

∑M
k=1 |η

(1)
k αk(t)|2(n̄k+ 1

2)
)
. (7.63b)

The expressions in Eqns. (7.61) and (7.63) were utilised in Figs. 8.4 and 8.6 of Chapter 8 for the theor-

etical ion populations after an MS interaction, both with and without phase modulation.

Additionally, we can use the calculations here to predict the Bell state fidelity of the qubit states after

the MS interaction. The fidelity is given by the overlap between the final qubit state ρf , and the ideal

Bell state, |ΦB〉 = 1√
2

(|00〉 − i |11〉) created when ϕ(t) = −π
8 ,

FB = 〈ΦB| ρf |ΦB〉

=
1

2

(
〈00| ρf |00〉+ 〈11| ρf |11〉 − i 〈00| ρf |11〉+ i 〈11| ρf |00〉

)
=

1

2
(P0 + P2 − 2 Im[ρf,30]) . (7.64)

This can be calculated using the even population expressions P0 and P2 and the off-diagonal element of

the qubit density matrix ρf,30. For the latter, one can calculate ρf from the expression inside the trace of

Eqn. (7.59) when O = Î. Then, taking the imaginary component of the off-diagonal element gives

FB =
1

8

{
2 + e−

∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)

−2 sin [4ϕ(t)]
(
e−
∑M
k=1 |η

(µ)
k αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |η

(ν)
k αk(t)|2(n̄k+ 1

2)
)}

. (7.65)

To experimentally measure the value of the off-diagonal coherence, ρf,30, we apply a global π/2-pulse

after the MS operation. Scanning the phase of the pulse and measuring the parity (Peven − Podd) reveals

sinusoidal oscillations; the contrast Πc is equal to twice the magnitude of ρf,30. This procedure phys-

ically extracts the value 2|ρf,30|, rather than 2 Im[ρf,30], which modifies the experimentally measured

value of fidelity as follows.
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Fexp =
1

2
(P0 + P2 + ΠC)

=
1

8

{
2 + e−

∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)

+ Abs
[
e−
∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(t)|2(n̄k+ 1

2) − e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(t)|2(n̄k+ 1

2)

+2i sin [4ϕ(t)]
(
e−
∑M
k=1 |η

(µ)
k αk(t)|2(n̄k+ 1

2) + e−
∑M
k=1 |η

(ν)
k αk(t)|2(n̄k+ 1

2)
)]}

(7.66)

When the residual motional entanglement is negligible, these two expressions for fidelity are equivalent

(recalling that we calculate the Bell state fidelity for ϕ(t) = −π
8 ). The expression for Fexp was used in

Fig. 8.5 of Chapter 8 showing the parameter regime flexibility of phase-modulated MS gates.

7.4 Prediction of the effect of time-varying noise on the Mølmer-Sørensen

gate

Until now, the only “error” we have considered to affect the MS gate implementation is that of a poor

gate construction. That is, due to the qubits coupling to many modes, it is difficult to facilitate disen-

tanglement from all the motional subspaces simultaneously. In the next chapter, we will go into further

detail about how to construct a gate that can simultaneously decouple from all modes using analytically

or numerically calculated phase shifts in the interaction laser. In this section, I discuss a second source of

error that can affect the gate performance – noise. Noise in the interaction laser amplitude or frequency,

or in the frequencies of the motional modes themselves, will alter the gate performance, modifying it

from the ideal evolution. Predicting the effect of systematic static errors is straightforward – one can use

the observable calculations from the previous section and alter the values of Rabi rate, Ω, and detuning,

δ, from the ideal to the error-shifted values. However, understanding the effect of time-varying noise

is more complicated. To enable a calculation of the gate performance under noise, we introduce the

concept of the “filter function”.

The filter function framework presented by Green et al. [244] and experimentally validated by Soare

et al. [147] captures the sensitivity of an operator to time-varying noise processes. If an error channel

transforms the control operation ÛC into the noisy operator Ũ , then the infidelity of the operator can be

quantified using the Hilbert-Schmidt inner product,

I = 1− 1

d2

∣∣∣Tr
(
Û †CŨ

)∣∣∣2 , (7.67)
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where d is the dimension of the operator. In physical experiments the infidelity can only be measured

over an ensemble average of noise samples, yielding the noise-averaged infidelity,

Iav = 1− E

[
1

d2

∣∣∣Tr
(
Û †CŨ

)∣∣∣2] . (7.68)

The expected infidelity of an operation due to a noise process ε can be calculated from the overlap of the

noise spectrum, Sε(ω), and the operation’s filter function, Fε(ω),

Iav =
1

2π

∫ ∞
−∞

dωSε(ω)Fε(ω). (7.69)

The performance of the MS gate is captured by two quantities: (1) the residual qubit-oscillator coupling

and (2) the qubit-qubit entangling phase, ϕ(τg). The former should ideally be zero at the gate’s con-

clusion, whilst maximal qubit-qubit entanglement necessitates that the latter be ϕ(τg) = π/8. Here, we

modify the filter function framework to derive a filter function Fδ(ω) that predicts infidelity solely due to

residual qubit-oscillator coupling caused by noise on the mode frequencies (a time-dependent detuning

error). As the residual qubit-oscillator coupling will be independent of any entangling phase acquired

with two or more ions, we proceed by considering a gate-equivalent operation performed on a single

ion.

We alter our metric from the total gate infidelity in Eqn. (7.68) to the residual qubit-oscillator coupling,
1
4

∑M
k=1

∣∣∣η(1)
k αk(τg)

∣∣∣2. If the residual motional displacement is small, that is 1
4

∑M
k=1

∣∣∣η(1)
k αk(τg)

∣∣∣2 � 1,

then from Eqn. (7.63) we see that it can be directly inferred from a measurement of P1,

P1 =
1

2

(
1− e−

∑M
k=1 |η

(1)
k αk(τg)|2(n̄k+ 1

2)
)

≈ 1

2

M∑
k=1

∣∣∣η(1)
k αk(τg)

∣∣∣2(n̄k +
1

2

)

=:
1

4

M∑
k=1

∣∣∣η(1)
k αk(τg)

∣∣∣2 Tk (7.70)

with Tk := 2
(
n̄k + 1

2

)
, where n̄k is the mean phonon number of mode k.

We consider time-varying noise on the laser detuning, δk, or equivalently fluctuations of the motional fre-

quencies, which could be induced by variations in the electric trapping potential. Figure 8.6 of Chapter 8

demonstrates the improved robustness to quasi-static detuning noise for ΦM gates with increasing orders

of noise suppression. We now explore their enhanced robustness for time-varying noise.
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The detuning is modified as δk → δk + ε(t), where ε(t) is a zero-mean noise process, altering the phase

space mode trajectories in Eqn. (7.40) to

αk(τg) = Ω

∫ τg

0
dte−i[(δk+ε(t))t+φ(t)]. (7.71)

The assumption that the residual motional displacement remains small requires “weak” noise, that is

E
[
ε(t)2

]
τg

2 � 1. As with the infidelity in the traditional filter function formalism, we can only exper-

imentally consider noise-averaged measurements. Taking the ensemble average over the noise process

yields

E[P1] ≈ E

[
1

4

M∑
k=1

∣∣∣η(1)
k αk(τg)

∣∣∣2 Tk
]

≈ 1

4

∑
k

Tk

∣∣∣Ωη(1)
k

∣∣∣2 ∫ τg

0
dt1

∫ τg

0
dt2e

−i[δk(t1−t2)+φ(t1)−φ(t2)]

× E

[(
1− iε(t1)t1 −

ε(t1)2t21
2

)(
1 + iε(t2)t2 −

ε(t2)2t22
2

)]

=
∑
k

Tk

∣∣∣∣∣Ωη
(1)
k

2

∣∣∣∣∣
2 ∫ τg

0
dt1

∫ τg

0
dt2e

−i[δk(t1−t2)+φ(t1)−φ(t2)]E [ε(t1)ε(t2)] t1t2 (7.72)

considering terms up to E
[
ε(t)2

]
t2 ≤ E

[
ε(t)2

]
τ2
g . Assuming that the gate has been constructed to

decouple from all modes in the absence of noise, we can ignore all terms dependent on only one integral

variable, as they will be multiplied by exactly zero due to the complete mode decoupling condition in

the other integral. The Wiener–Khinchin Theorem then relates the autocorrelation function in the noise

ensemble expectation to the noise spectrum in the frequency domain,

E [ε(t1)ε(t2)] =
1

2π

∫ ∞
−∞

dωSδ(ω)eiω(t1−t2). (7.73)

Applying this, we can rewrite the expectation of P1 in terms of the noise spectrum, Sδ(ω), and the

“modal filter functions”, Fδ,k(ω):

E[P1] ≈ 1

2π

∫ ∞
−∞

dωSδ(ω)

M∑
k=1

Tk

∣∣∣∣∣Ωη
(1)
k

2

∣∣∣∣∣
2 ∫ τg

0
dt1

∫ τg

0
dt2e

−i[(δk−ω)(t1−t2)+φ(t1)−φ(t2)]t1t2

=
1

2π

∫ ∞
−∞

dωSδ(ω)
1

4

M∑
k=1

Tk

∣∣∣∣∣Ωη
(1)
k

2

∫ τg

0
dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣∣
2

=:
1

2π

∫ ∞
−∞

dωSδ(ω)
M∑
k=1

Fδ,k(ω). (7.74)
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The total filter function Fδ(ω) is defined as a summation of the individual modal filter functions, Fδ,k(ω),

Fδ(ω) =
M∑
k=1

Fδ,k(ω)

=
M∑
k=1

Tk

∣∣∣∣∣Ωη
(1)
k

2

∫ τg

0
dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣∣
2

. (7.75)

The spectral overlap in Eqn. (7.74) predicts the expected value of P1 (and thus the residual motional

displacement) in the presence of a given noise spectrum Sδ(ω), allowing us to compare the performance

of ΦM gates with different levels of noise suppression for each motional mode.

In Fig. 8.7 of Chapter 8, we experimentally validate the analytic filter function theory. A sinusoidal

modulation at frequency ωmod is added to the detuning of the interaction laser and, to obtain an ensemble

average of the engineered noise process, the measurement is averaged over the starting phase of the

modulation. This produces the noise spectrum Sδ(ω) = π(δ(ω − ωmod) + δ(ω + ωmod)), consisting of

two delta functions. The gate is calibrated to decouple from the motional mode in the absence of noise,

so any residual coupling is solely due to the engineered noise process and will result in P1 > 0. The

frequency of the detuning modulation is scanned and from the phase-averaged E[P1], we directly infer

(F (ω) + F (−ω)).

Following a similar procedure, we can also derive Fδ(ω) for a targeted entangling operation between a

pair of ions µ, ν in an N ion chain. In this case, the residual motional coupling is given by

1

4

M∑
k=1

∣∣∣(η(µ)
k + η

(ν)
k )αk(τg)

∣∣∣2 +
1

4

M∑
k=1

∣∣∣(η(µ)
k − η

(ν)
k )αk(τg)

∣∣∣2 , (7.76)

which can be approximated by the expression for P1 from Eqn. (7.60),

P1(t) =
1

4

{
2− e−

∑M
k=1 |(η

(µ)
k +η

(ν)
k )αk(τg)|2(n̄k+ 1

2) − e−
∑M
k=1 |(η

(µ)
k −η

(ν)
k )αk(τg)|2(n̄k+ 1

2)
}

≈ 1

4

M∑
k=1

∣∣∣(η(µ)
k + η

(ν)
k )αk(τg)

∣∣∣2(n̄k +
1

2

)
+

1

4

M∑
k=1

∣∣∣(η(µ)
k − η

(ν)
k )αk(τg)

∣∣∣2(n̄k +
1

2

)

=
1

4

M∑
k=1

(
|η(µ)
k |

2 + |η(ν)
k |

2
)
|αk(τg)|2Tk (7.77)

with Tk = 2
(
n̄k + 1

2

)
. The filter function becomes

Fδ(ω) =

M∑
k=1

Tk

∣∣∣∣∣η
(µ)
k

2

∣∣∣∣∣
2

+

∣∣∣∣∣η
(ν)
k

2

∣∣∣∣∣
2
∣∣∣∣Ω ∫ τg

0
dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣2 . (7.78)



CHAPTER 8

Phase-modulated entangling gates robust to static and time-varying

errors

“And a step backward, after making a wrong turn, is a step in the right direction.”

- Kurt Vonnegut, Player Piano

The work in this chapter aimed to create highly flexible, robust two-qubit entangling gates in trapped

ions. High-fidelity two-qubit gates are a critical element of the quantum computing architecture, com-

plementing the work of previous chapters (Chapter 6) to engineer high-fidelity, robust single-qubit gates

using microwaves. This chapter is reproduced with minor changes from “Phase-modulated entangling

gates robust to static and time-varying errors” published in Physical Review Applied 13, 024022 [6].

The ability to perform robust, high fidelity entangling gates in multi-qubit systems is a key requirement

for realising scalable quantum information processing [245]. In several hardware architectures, qubits

are entangled through shared bosonic oscillator modes via an interaction that is moderated by an external

driving field. The Mølmer-Sørensen (MS) gate [238, 239, 246] and the σz-gate [29] in trapped ions as

well as the resonator-induced phase gate in superconducting circuits [247–249] are of this type. In

addition, interactions simultaneously employing multiple bosonic modes have been explored to improve

gate fidelities [250] and probe novel types of interactions [251] in superconducting circuits.

A major source of error for oscillator-mediated gates is residual qubit-oscillator entanglement at the

end of the operation [252]. This detrimental effect can arise due to the presence of quasi-static or

time-varying noise on the driving field, slow drifts in experimental parameters such as the qubit and

oscillator frequencies, or the presence of spectator modes that are not properly accounted for in the

gate construction. In trapped ion systems, various schemes have been demonstrated that minimise this

residual coupling [253–258], with some also incorporating the ability to simultaneously decouple from

160
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multiple modes [9,88,90,259–264]. Their common feature is a temporal modulation of the driving field,

modifying the trajectories of the joint qubit-oscillator states in each oscillator’s phase space.

In this work, we experimentally demonstrate a class of phase-modulated (ΦM) entangling gates using

trapped ions in the presence of multi-mode motional spectra. Specifically, we implement an MS-type

interaction and employ discrete phase shifts of the driving field to suppress dominant gate errors. Us-

ing both an analytic scheme [9] and numerical optimisation to calculate the required phase shifts, we

experimentally validate that phase modulation permits motional mode decoupling for arbitrary laser

frequencies in a way not otherwise achievable through the conventional gate construction [265]. We

achieve an average two-qubit gate fidelity of 99.4(2)% (including SPAM errors) across a range of laser

detunings near a pair of motional modes, reducing errors by up to two orders of magnitude relative to

the best unmodulated alternative. We also demonstrate that proper construction of the ΦM sequence

provides the ability to systematically increase gate-robustness to static offsets in the laser detuning, as

well as time-varying laser detuning and amplitude noise. Experimental measurements are in agreement

with a theoretical model developed in the filter function framework [244] to capture the influence of

time-dependent noise. Finally, we study the scaling behaviour of both the analytic and numerically de-

rived phase-modulated gate constructions with system size, and demonstrate that the use of numerical

optimisation reduces scaling behaviour from exponential to linear with mode number, providing a means

to accommodate high-fidelity, time-optimised ΦM gate construction in large multi-ion registers.

8.1 Oscillator-mediated entangling gates

In oscillator-mediated entangling gates, the application of an external driving field, typically a mi-

crowave or laser, produces a qubit-state-dependent displacement of the oscillator wave packet in phase

space. As presented in Section 7.2, the MS coupling between a system of N qubits and M bosonic

oscillator modes can be described by the following time-dependent Hamiltonian

Ĥ(t) = i~
N∑
µ=1

σ̂(µ)
s ⊗

M∑
k=1

(
γ

(µ)
k (t)â†k − γ

(µ)∗
k (t)âk

)
, (8.1)

where σ̂(µ)
s is the Pauli spin operator in the basis s ∈ {x, y, z} acting on the µth qubit, which is tensored

with â†k, âk the creation and annihilation operators acting on the kth oscillator mode. The complex-

valued function γ(µ)
k (t) = Ωf

(µ)
k e−iδkt describes the coupling of the µth qubit and kth oscillator mode,

where the effective coupling strength is given by the product between the strength of the driving field
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Ω and a hardware-specific factor, f (µ)
k . Here, δk is the angular frequency difference (detuning) of the

driving field from the kth oscillator mode. Under the application of the driving field, the coupled system

undergoes a unitary evolution [8, 10] including both a qubit-qubit entangling term and a qubit-state-

dependent displacement D̂ of the oscillator modes in phase space. The latter is central to our discussion

and is described by

D̂ = exp


N∑
µ=1

σ̂(µ)
s ⊗

M∑
k=1

[
f

(µ)
k αk(t)â

†
k − f

(µ)∗
k α∗k(t)âk

] . (8.2)

Due to the detuning δk, the wave packets associated with joint qubit-oscillator states undergo circular

phase space trajectories proportional to the coherent displacement αk(t) = Ω
∫ t

0 dt
′e−i[δkt

′+φ(t′)]. The

kth mode trajectory returns to its starting point with a period of 2π/|δk| and the enclosed area of all wave

packet trajectories is commensurate with the accumulated qubit-qubit entangling phase. Here, φ(t) is

the phase difference between the oscillator and the driving field, which we refer to as the coupling phase

and modulate in our approach.

Successful completion of a qubit-qubit entangling operation requires the elimination of qubit-oscillator

entanglement; for a gate of length t = τg, this is achieved by satisfying the condition αk(τg) = 0, for

each mode k. For example, Fig. 8.1 shows two modes being displaced along phase space trajectories

described by αk(t) with frequencies δ2 = 2δ1, such that mode 2 rotates twice as fast as mode 1, and

φ(t) = 0. The gate time must be chosen to allow both phase space loops to return to the origin simultan-

eously. Here, this is straightforward as the two frequencies are commensurate. Choosing τg = 2π
δ1

= 4π
δ2

,

as in Fig. 8.1(c), causes mode 1 to complete a full phase space loop returning to the origin, and mode 2

to complete two loops. However, if the frequencies are not commensurate, particularly as more motional

modes are considered, this becomes increasingly difficult to achieve. Modulation of the coupling phase

φ(t) may be used to direct the phase space trajectories, returning each trajectory to the origin in a shorter

time than the typical approach of ensuring that the gate time and drive detuning are related by an integer

multiple for all modes, δkτg = 2πj, for j ∈ ±{1, 2, ...}. The ability to actively steer these trajectories is

particularly important with large mode numbers where the gate time would otherwise grow prohibitively

long, and even allows us to ensure effective mode decoupling in the presence of time-dependent para-

meter fluctuations. The required phase modulations may be determined through analytic calculation [9]

or numerical optimisation, and we now outline the details of these two approaches.



8.1 OSCILLATOR-MEDIATED ENTANGLING GATES 163

FIGURE 8.1. Schematic of two oscillator modes being displaced in phase space at different frequencies,
δ1 (purple) and δ2 = 2δ1 (orange). The modes are displaced along circular trajectories at frequency
δk with a radius inversely proportional to the frequency, described by αk(τg) = Ω

∫ τg
0 dte−iδkt. The

trajectories are shown for three gates times: (a) τg = π
2δ1

= π
δ2

when neither mode is decoupled, (b)
τg = π

δ1
= 2π

δ2
when mode 2 is decoupled (returns to the origin) but mode 1 is maximally displaced, and

(c) τg = 2π
δ1

= 4π
δ2

when both modes have returned to the origin and are decoupled. At the final time in
panel (c), mode 2 has actually completed two full circles in phase space, returning it to the origin for
a second time. The net displacement is described by the absolute value |αk(t)| =

√
2 Ω
δk

√
1− cos [δkt] .

The net displacements are indicated by dashed black arrows in panel (a).

8.1.1 Calculation of phase modulation sequences

The key to the analytic ΦM scheme is that for any time evolution of the kth oscillator state over the

interval t ∈ [0, τ ], its phase space trajectory can be returned to the origin by repeating the same evolu-

tion over the interval t ∈ [τ, 2τ ] with an overall shift of the coupling phase, φ(t), equal to −(π + δkτ)

(Fig. 8.2(a)). Using the Heaviside function Θ(x), a segment τ of this evolution may be represented by

r(x = t; τ) = Θ(t) Θ(τ − t) e−iφ(t), modifying the qubit-oscillator coupling γ(µ)
k (t)→ γ

(µ)
k (t)r(t; τ).

We define a family of operators Rδk , that are parameterised by δk and act on the function r(x; τ)

as Rδkr(x = t; τ) = r(t; τ) + ei(δkτ+π)r(t− τ ; τ). This captures a two-segment, piecewise-constant

modulation sequence over the interval t ∈ [0, 2τ ], which returns the trajectory of mode k to its initial

state, αk(2τ) = 0. As illustrated in Fig. 8.2(b, c), this process of phase-shifted concatenation may be re-

peated to construct sequences that close any number of oscillator trajectories in a desired gate time τg. In

order to decoupleM oscillators, the gate is divided into 2M time segments of length τs = τg/2
M and the

phase modulation sequence is constructed asRδM ...Rδ1r0(t; τs), where r0(t; τs) = Θ(t)Θ(τs − t) is the

“base” sequence for which we take φ(t) ≡ 0. The reduced notation rδM ...δ1(t; τg) ≡ RδM · · ·Rδ1r0(t; τs)

is used to refer to the full sequence of 2M phase segments, where the phase in each segment may be

calculated exactly using a closed-form expression [9].
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time

(a) (c)

(b)

(d)

(e)

FIGURE 8.2. Construction of phase modulation sequences. (a) Schematic plot of αk(t) for 0 ≤ t ≤ 2τ .
Shifting the coupling phase, initially φ0, by an amount −(π + δkτ ) at t = τ returns the oscillator
trajectory to the origin at t = 2τ . (b) Construction of the ΦM sequence Rδ2Rδ1r0(t; τs) from the
base sequence r0(t; τs). Each application of Rδk produces a new sequence consisting of the original
sequence (black arrow) followed by the entire original sequence phase-shifted by −(π + δkτ ) (grey
arrow), where τ is the duration of the original sequence. The example sequence closes the trajectories
of two modes k = 1, 2, shown in (c), with detunings δ1, δ2 in four time segments of length τs = τg/4.
Colours indicate the varying coupling phase φn in each time segment t ∈ [nτs, (n+ 1)τs]. (d) Example
phase space trajectory (left) and schematic showing the construction (right) of a standard numerically
optimised phase modulation sequence targeting two modes with S = 8 phase segments of τg/8 duration
each. (e) For the robust numerical sequence, the number of phase segments is doubled to S = 16,
with each τg/16 in length. The time-averaged position of the phase space trajectory (red dot) lies at the
origin. This condition, combined with the constraint that ∆φn+1 = ∆φS−(n+1) results in a trajectory
symmetric about a line through the origin (dashed line).

ΦM sequences that provide increased robustness to parameter fluctuations during the gate operation

can be constructed by repeated application of the operator Rδk on the base sequence r0(t; τs). The

number of times the operator is applied determines the “order” of noise suppression associated with

decoupling from mode k. A sequence that suppresses noise to order (p + 1) will achieve decoup-

ling in the presence of noise that modifies the qubit-oscillator coupling via γ(µ)
k (t) → γ

(µ)
k (t)β

(p)
k (t),
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where β(p)
k (t) =

∑p
j=0 βk,jt

j is a pth-order polynomial in terms of the noise strength. For example,

the sequence described by Rδ2Rδ2Rδ1r0(t; τs) = rδ2δ2δ1(t; τg) will decouple modes k = 1 and k = 2,

providing additional noise suppression to second order for mode k = 2. These robust sequences result

in mode trajectories that return to the origin repeatedly throughout the operation and, in the presence of

noise, coherently average away deviations from the ideal oscillator trajectories.

Numerical optimisation can also be used to produce ΦM sequences that enable multi-mode decoupling.

This approach is designed to mitigate the unfavourable exponential scaling of the number of phase shifts

with mode-number M encountered in our analytic approach, trading closed-form solutions for the need

to rely on numeric techniques (rather than a transparent physical argument) in finding them. For a spe-

cified gate time τg, set of drive-field detunings {δk}, and number of phase segments S, the optimisation

procedure finds ΦM sequences that ensure allM modes exhibit residual motional displacement below an

arbitrarily defined threshold
∑

µ

∑
k

∣∣∣f (µ)
k αk(τg)

∣∣∣2 ≤ ε. We find empirically that good solutions yield-

ing ε . 10−4 are achievable using only a linear scaling in segment number M with a small prefactor,

S = 4M (see Fig. 8.2(d)).

The numerical optimisation is performed utilising MATLAB’s inbuilt constrained optimisation routine

fmincon. For the optimisation, we consider a targeted entangling operation between two ions µ, ν in an

N ion chain with 2N radial motional modes. The motional frequency spectrum is either numerically

calculated using the COM frequencies and the eigenspectra calculation in Section 7.1 from the previous

chapter, or manually input from experimental measurements. We specify the number of phase segments

S, drive field detunings {δk}, gate time τg and maximum Rabi frequency Ωmax. For these parameters,

the optimisation procedure finds ΦM sequences that maximise the acquired entangling phase between

the two target ions ϕµν(τg). This optimisation occurs subject to the constraint that the residual motional

displacement remain below a threshold of 10−4, that is

∑
i=µ,ν

M∑
k=1

∣∣∣∣12η(i)
k αk(τg)

∣∣∣∣2 ≤ 10−4. (8.3)

The optimisation procedure will converge once the constraint (Eqn. (8.3)) has been satisfied and the im-

provement in ϕµν(τg) between successive iterations drops below a set threshold, chosen to be 10−4.

A maximally entangling gate may be successfully achieved if ϕµν(τg) ≥ π/8. For ΦM sequences

that exceed this value, the Rabi frequency may be scaled down to exactly achieve the target phase

ϕµν(τg) = π/8.
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Robustness to fluctuations in experimental parameters may be realised in numerically optimised ΦM

sequences by imposing the additional constraint that the time-averaged positions of the phase space tra-

jectories for all modes lie at the origin, that is αk,avg(τg) = 1
τg

∫ τg
0 αk(t)dt = 0. By further requiring

that the trajectories be symmetric about half the gate time [253, 260], minimising αk,avg(τg) is equi-

valent to minimising αk(τg) and the optimisation constraint becomes
∑

µ

∑
k

∣∣∣f (µ)
k αk,avg(τg)

∣∣∣2 ≤ ε.
The realisation of symmetric phase space trajectories may be expressed as a condition on phase differ-

ences between time segments in the two halves of the sequence, such that ∆φn+1 = ∆φS−(n+1). Here,

∆φn = (φn − φn−1) and φn is the coupling phase in the time segment t ∈ [nτg/S, (n+ 1)τg/S]. In

order to account for the additional symmetry constraint, the number of phase segments employed in the

optimisation is increased to S = 8M , which ensures the optimiser routinely finds gate constructions

satisfying the constraints. The difference in construction between the standard and robust numerically

optimised ΦM sequences is illustrated in Fig. 8.2(d,e).

8.1.2 Experimental implementation of the Mølmer-Sørensen interaction in 171Yb+

In 171Yb+ the qubit-oscillator laser interaction is commonly implemented via a two-photon Raman

transition using a high power, pulsed laser at 355 nm. The interaction uses two phase-coherent laser

beams, usually from the same initial laser, to inelastically excite the ion by changing its internal state.

The net transition frequency is equivalent to the frequency difference between the two Raman compon-

ents, ∆ω = ω1 − ω2.

We show three example Raman transitions that can be driven in Fig. 8.3 by changing the Raman fre-

quency difference. The “carrier” transition is defined to be the excitation between the two qubit states,

|0〉 ↔ |1〉. This is illustrated in Fig. 8.3(a) by tuning the beat frequency to be equal to the qubit trans-

ition, ∆ω = ω0. By changing the beat frequency to be offset from the qubit transition by a motional

quanta, we can not just drive electronic transitions, but also motional changes. In Fig. 8.3(b) we tune

the beat frequency above the qubit transition by the frequency of the kth mode, ∆ω = ω0 + νk. Con-

sequently, when the ion is driven from |0〉 to |1〉, it adds one motional quanta to the mode, transitioning

from nk → nk+1 phonons. This transition is called a “Blue Sideband” transition (BSB), as we drive the

motional sideband on the blue side of the qubit transition. A similar “Red Sideband” transition (RSB)

can be driven by tuning the beat frequency below the qubit frequency, ∆ω = ω0 − νk, as shown in

Fig. 8.3(c).
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FIGURE 8.3. Energy levels showing two-photon Raman interactions performed using a 355 nm laser.
The difference between the two frequency components of the Raman interaction, ∆ω = ω1 − ω2,
determines which transition is driven. (a)-(c) Three different frequency differences are shown: (a)
∆ω = ω0, equal to the qubit frequency to drive the “carrier” transition; (b) ∆ω = ω0 + νk, equal to
the carrier frequency with one quanta of energy added for the kth motional mode to drive a blue side-
band (BSB) transition; and (c) ∆ω = ω0 − νk, equal to the carrier frequency with one quanta of energy
for mode k subtracted to drive a red sideband (RSB) transition. (d) A bichromat replaces the single fre-
quency ω1 to drive the MS interaction. The two bichromat frequencies are set symmetrically around the
qubit frequency with ∆ωb = ω

(MS)
b − ω2 = ω0 + νk + δk, and ∆ωr = ω

(MS)
r − ω2 = ω0 − νk − δk.

They are detuned from the carrier transition by one motional mode quanta in addition to a detuning,
δk. For all four panels, the Raman beat frequency is shown above the energy levels, as is the change in
phonon occupancy nk for panels (a)-(c).

In panel (d), we illustrate the implementation of the MS interaction using a Raman transition. Here, the

detuning is defined as δk = ∆ωb − ω0 − νk = ω0 − νk − ∆ωr, where ∆ωb (∆ωr) is the frequency

difference between the two Raman beams for the blue (red) component of the bichromat. To change the

phase of the red or blue component to tune either the “spin phase” (φs = (φb + φr)/2) or the “motional

phase” (φ = (φb − φr)/2), it is sufficient to modulate the phase of one of two Raman beams used for

that component.

The hardware-specific coupling parameter in Eqn. (7.31) is altered to be

f
(µ)
k =

−iη(µ)
k

2
=
−i
2
bkµ∆k̃ cos θ

√
~

2Mνk
, (8.4)
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where we use the net wavevector between the two Raman beams to calculate the Lamb-Dicke para-

meter ∆k̃, and the angle θ is similarly defined to be between the mode orientation and the net Raman

wavevector.

8.2 Experimental Setup

We experimentally implement the schemes outlined above using a system of 171Yb+ ions confined in

a linear Paul trap (similar to [266]) with centre-of-mass (COM) trap frequencies along the three trap

axes, νx,y,z/2π ≈ [1.6, 1.5, 0.5] MHz. Qubits are encoded in the 2S1/2 ground-state manifold where we

associate the hyperfine states |F = 0,mF = 0〉 ≡ |0〉 and |F = 1,mF = 0〉 ≡ |1〉, split by 12.6 GHz,

with qubit states |0〉 and |1〉 respectively. State initialisation to |0〉 via optical pumping and state detection

are performed using a laser resonant with the 2S1/2 − 2P1/2 transition near 369.5 nm.

A pulsed laser near 355 nm is used to drive stimulated Raman transitions between the qubit states [70] via

two orthogonal laser beams in a geometry where they only couple to the x, y radial motional modes of the

trapped ions. To implement entangling gates, a two-tone radio-frequency signal produced by an arbitrary

waveform generator is applied to an acousto-optic modulator controlling one of these beams. This pro-

duces a bichromatic light field that off-resonantly drives the red and blue sideband transitions, creating

the state-dependent force used in the gate. Modulation of the coupling phase φ(t) is achieved by ad-

justing the phase difference between the red and blue frequency components, φ(t) = [φb(t)− φr(t)] /2.

The maximum achievable gate Rabi frequency is Ω = 2π × 40 kHz, limited by the available optical

power.

8.3 Results and Discussion

8.3.1 Motional mode decoupling

We begin by demonstrating the ability to arbitrarily decouple multiple motional modes using the ana-

lytic ΦM scheme. A single qubit is prepared in state |0〉 and the bichromatic Raman fields are applied

for τg = 80 µs. The Raman beams’ frequency difference is scanned over a range including two radial

modes. Here, the application of the state-dependent force produces a purely qubit-oscillator interac-

tion and any residual mutual coupling at the conclusion of the operation will result in P1 > 0, where

population Pi is the probability of i ions being projected into state |1〉.
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FIGURE 8.4. Motional mode decoupling in the single ion case. Population P1 as a function of laser
detuning scanned about two radial modes, k = 1 and k = 2 (dashed vertical lines). Solid lines are fits to
the data, with each mode’s initial average phonon number after sideband cooling (n̄k) a free parameter.
(a) Mode frequencies split far apart. Arrows indicate detunings at which δ1 = ±2π/τg and the inset
shows corresponding phase space trajectories for each mode, with n̄1, 2 = (0.2, 0.4). (b) Mode fre-
quencies closely spaced. The phase modulation sequence rδ2δ1(t; τg) (purple) achieves decoupling at an
arbitrary detuning δ1/2π = −8.5 kHz (arrow), with phase segments φ0,1,2,3 ≈ (0, 1.34, 0.343, 1.68)π.
The inset compares unmodulated and ΦM trajectories. Fits give n̄1, 2 = (1.2, 1.2) for the unmodulated
and n̄1, 2 = (2.5, 1) for the ΦM data.

In Fig. 8.4(a), we tune the modes to have a frequency splitting sufficiently large that the predominant

interaction is with only a single mode. In this configuration, complete decoupling is achieved for the

detunings δ1 = ±2π/τg, indicated by P1 dropping to zero symmetrically about δ1 = 0 (similarly

about δ1 = −70 kHz, corresponding to δ2 = 0). In Fig. 8.4(b), the mode splitting has been decreased

via electrostatic tuning of the trap potential such that both modes will become excited when the laser

is detuned close to either, illustrating the problem of mode crowding typically experienced in larger

systems. For an unmodulated Raman drive, the black data in Fig. 8.4(b) show a large value of P1 at

intermediate detunings (-17 to 0 kHz), where decoupling was previously achievable for mode k = 1.

By contrast, we may drive P1 to zero at an arbitrarily chosen detuning (arrow) using a four-segment ΦM

sequence to decouple both modes (purple data). The resulting phase space trajectories at this detuning

are illustrated in the insets to Fig. 8.4(b), showing how the modulation protocol steers both trajectories
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back towards the origin at the conclusion of the gate. We have achieved similar decoupling at a range of

arbitrary detunings via appropriate construction of the ΦM sequence.

8.3.2 Flexibility in gate operation

We now validate the impact of phase modulation in two-qubit MS entangling gates and demonstrate the

flexibility it affords in choice of experimental parameters. For two qubits, there are four radial motional

modes that may be excited by the Raman laser; we denote them from highest to lowest frequency as

k = 1 to k = 4. Starting in state |00〉, we produce the entangled Bell-state (|00〉 − i |11〉)/
√

2 by

tuning the Raman laser fields to excite both the x-tilt (k = 2) and y-COM (k = 3) modes in our trap,

separated by ∆/2π ≈ 10 kHz (Fig. 8.5). The remaining two modes are detuned by∼ 80 kHz, far enough

to not be significantly excited. The gate time is chosen such that when the detuning from either mode

is an integer multiple of ∆/3, the spin and motion fully decouple, giving τg = 2π × 3/∆ (∼ 310 µs).

Based on populations P0, P1 and P2, the gate fidelity is estimated as F = (P0 + P2)/2 + πc/2. Here,
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0.2
0

1.0

0.8

0.6

0.4

0.2

0.0

Fi
de

lit
y 

 

-1.0 -0.5 0.0
Normalized detuning

 Unmodulated
 Phase-modulated

-1 -1

0 0

1 1

Phase

50

25

0

P
op

. (
%

)

00 01,10 11
State

P
arity

FIGURE 8.5. Maximum achievable gate fidelity as a function of detuning. Solid lines show theor-
etical predictions for initial phonon-numbers of n̄2,3 = 0 and the dashed line show predictions for
n̄2,3 = 0.2. Different ΦM sequences are implemented over the detuning range, with rδ2δ3(t; τg)

used for δ2/∆ ≥ −0.5 and rδ3δ2(t; τg) for δ2/∆ < −0.5. The required Rabi frequency Ω ranges from
2π× (24− 26) kHz for the ΦM gates and 2π× (19− 26) kHz for the unmodulated gates. Error bars are
derived from quantum projection noise on the state population estimates and a fit of the parity contrast.
The inset shows the underlying data for the ΦM gate at δ2/∆ = −0.5 (arrow), for whichF = 99.4(5)%.
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πc is the parity contrast of the created Bell-state observed upon scanning the phase of an additional

π/2-pulse after the gate.

To demonstrate the flexibility of the analytic ΦM scheme, we vary the laser detuning over a range

between the y-COM and x-tilt modes, optimising the Rabi frequency Ω at each detuning to achieve a

maximally entangling gate. Fig. 8.5 compares the highest theoretically achievable fidelity (lines) for

unmodulated and ΦM-MS gates, along with experimental measurements (markers). For the unmodu-

lated gate (black), maximum fidelity can only be achieved at two particular detunings where both mode

trajectories naturally close. Elsewhere, the measured two-qubit gate fidelity drops to as low as 50% due

to strong residual mode excitation at the conclusion of the gate. In contrast, by implementing an appro-

priate ΦM gate, maximum fidelity can be ideally achieved for any detuning (purple line). For the ΦM

data, we obtain an average experimental Bell-state fidelity of 99.4(2)% across the range of detunings

shown, without any form of SPAM subtraction. We estimate the contribution to the Bell state infidelity

from imperfect state estimation to be 0.4(4)%.

8.3.3 Suppressing static gate errors

An additional benefit of ΦM gates is the ability to incorporate robustness to imperfections in gate im-

plementation. We explore this phenomenology by engineering static detuning offset errors during ap-

plication of an entangling gate, and measuring P1 as a proxy for gate infidelity associated with residual

qubit-oscillator coupling. Such offsets are a common error and may arise due to slow drifts or incorrect

calibration of the oscillator mode frequencies.

In Fig. 8.6(a) we illustrate this feature by performing two-ion ΦM-MS gates constructed analytically

with different orders of noise suppression for the target mode (k = 4). As the suppression order in

the gate construction is increased, the range of detunings around zero for which P1 ≈ 0 broadens,

demonstrating robustness for deviations up to ±1 kHz from the target detuning value with third-order

suppression. Data agree well with analytic theory calculated using Eqn. (7.61) from Section 7.3 predict-

ing the functional dependence of the measured P1 on detuning. Fig. 8.6(b) demonstrates in the phase

space picture how the process of phase-shifted sequence concatenation results in repeated decoupling of

the mode throughout the gate, reducing residual excitation even for large detuning errors.

Similar benefits are also observed using robust numerically optimised ΦM sequences in Fig. 8.6(c),

where we compare the standard and robust numerical gate constructions, again in the presence of static
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FIGURE 8.6. Robustness of ΦM gates to detuning offsets. (a) Motional excitation quantified by P1

at the conclusion of a two-qubit entangling gate as a function of detuning offset magnitude. Solid
lines are theory with n̄4 = 0.1. The gate time is fixed at τg = 500 µs, with a target detuning of
−2 kHz from mode 4. The unmodulated gate (grey) is compared to the ΦM sequences rδ4δ4(t; τg)

(blue) and rδ4δ4δ4δ3δ2(t; τg) (purple), which provide second and third order noise suppression for mode
4, respectively. Rabi frequency Ω is scaled to enact a maximally entangling gate at zero detuning error
and ranges from 2π× (18−39) kHz. The scaling required for the third-order sequence also necessitates
the decoupling of modes 2 and 3. (b) Phase space trajectories for mode 4 with a detuning error of
+500 Hz, marked via the dashed line in (a). All plots are of equal scale. (c) P1 at the conclusion
of a two-qubit entangling gate for numerically optimised phase modulation sequences, constructed to
sufficiently decouple from all four modes. Solid lines are theory with n̄4 = 0.05. The gate time is fixed
at τg = 400 µs with a target detuning of −4 kHz from mode 4. The standard numerically optimised
gate (grey) with 16 phase segments is compared to a robust solution (purple) with 32 phase segments.
Rabi frequencies are 2π × 23 kHz and 2π × 28 kHz for the standard and robust gates, respectively. (d)
Corresponding phase space trajectories for mode 4 with a detuning error of +500 Hz, marked via the
dashed line in (c).

detuning offset errors. In our experiments, the standard sequence does not provide robustness to such

offsets, and we observe that P1 as a function of the applied detuning error behaves similarly to the

unmodulated gate in Fig. 8.6(a). The symmetrisation procedure and requirement that the time-averaged

positions of the phase space trajectories are approximately zero for the robust gate solution reduces

sensitivity to detuning errors, again indicated by the broadening of the dip in P1.
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8.3.4 Reducing sensitivity to time-dependent noise

Phase-modulated gates provide a third advantage in that they can provide robustness to time-varying

experimental parameters in addition to static systematic offsets. This is useful in circumstances where

parameters can drift or suffer from fluctuations due to, for example, electrical interference. In the follow-

ing, we experimentally validate that ΦM gates may be used to provide robustness against errors induced

by fluctuations in the motional mode frequencies and laser amplitude, which result in a time-dependent

detuning offset and coupling-strength error, respectively.

Gate effectiveness in suppressing time-dependent noise is conveniently captured using a filter function

formalism [9,147,244,267], which describes the noise-susceptibility of an arbitrary control operation as

a function of noise frequency. Modifications to the framework allow us to predict infidelity solely due

to residual qubit-oscillator coupling in two-qubit entangling gates. For a given noise spectrum, Sε(ω),

the decoupling error is inferred from the noise-averaged P1 population,

E [P1] ≈ 1

2π

∫ ∞
−∞

dωSε (ω)Fε (ω) . (8.5)

Here, the filter function Fε(ω) expresses the susceptibility or “admittance” of the gate operation to a

given noise source, with ε ∈ {Ω, δ} denoting laser amplitude or detuning noise, respectively. For laser

amplitude noise, the analytic form of the filter function has been previously described [9]. The filter

function for detuning noise represents an original contribution of this work and, and for the case of an

operation performed on a single qubit, is given by

Fδ(ω) =
∑
k

Tk

∣∣∣∣Ωf (1)
k

∫ τg

0
dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣2 . (8.6)

Here we have defined Tk = 2 (n̄k + 1/2), which incorporates the average phonon occupancy for each

mode, n̄k. The derivation of this filter function, as well as that for a targeted entangling operation

between a pair of qubits embedded in an N -qubit system, is described in Section 7.4 in the previous

chapter.

To probe gate sensitivity under application of the two noise types described above with the highest pos-

sible measurement fidelity, we perform a gate-equivalent operation on a single ion in the presence of

engineered noise in the respective quadrature. The gate detuning is set such that the motional interaction
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FIGURE 8.7. Suppression of time-dependent noise. (a,b) Noise-averaged measurements of P1 for a
single ion plotted against applied (a) detuning and (b) amplitude noise frequency. Overlaid are the
analytic filter function predictions with n̄1,2 = 0.9 (dashed lines) and the predictions with an added
frequency-independent offset (solid lines), determined by the average of the six lowest-frequency data
points. For (a), the added offsets are 5.1× 10−3 (unmodulated) and 3.3× 10−3 (ΦM). For (b), the
added offsets are 4.7× 10−3 (unmodulated) and 1.7× 10−3 (ΦM). For (a) the modulation depth is
β = 0.1 with τg = 300 µs and for (b) β = 0.29 with τg = 250 µs. The Rabi frequencies range
from 2π × (14− 34) kHz and Ω is scaled in the ΦM operations to enclose the same phase space area
as the equivalent unmodulated operation. Shading indicates the measurement floor. (c, d) Two-qubit
gate fidelities with engineered (c) detuning and (d) amplitude noise. For both noise types, τg = 500 µs
and Ω ranges from 2π × (18− 36) kHz. Here, the detuning noise is engineered by directly modulating
the frequency of the motional modes via the application of a sinusoidally oscillating voltage to the DC
trap electrodes. Measured gate fidelities for (c) are 86%, 91% and 96%, respectively, under β = 0.25.
For (d), the measured gate fidelities are 82% and 87%, under β = 0.2. Due to limitations on the
experimentally achievable Rabi frequency in our setup (Ω = 2π × 40 kHz), only a second-order ΦM
sequence is performed for the amplitude noise case shown in (d).

predominantly occurs with a single mode, and the decoupling condition is met (δ1 = 2π/τg). We exper-

imentally implement a system-identification procedure [147] in which a single-frequency “noise” mod-

ulation is applied and produces an effective spectrum S(ωmod) = β2(δ(ω − ωmod) + δ(ω + ωmod))/4,

where β quantifies the strength of the modulation. A measurement of E [P1] under this phase-averaged

noise spectrum then gives a direct probe of the filter function at a single frequency, ωmod. We then vary

ωmod and measure E [P1] at each value, effectively reconstructing the frequency-dependent filter func-

tion of the underlying gate operation. This approach is possible as the filter function Eqn. (8.6) is only

dependent on the residual qubit-oscillator coupling and independent of any entangling phase that would

be acquired with two or more ions.

We engineer detuning noise via frequency-modulation of the two-tone RF signal producing the bichro-

matic gate beam; this has an effect on the gate interaction equivalent to fluctuating motional mode
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frequencies and modifies the laser detuning as δk → δk(1 + β sin(ωmodt+ φmod)), where ωmod quanti-

fies the frequency of the modulation and φmod its phase. In a similar manner, laser amplitude noise is

engineered by a direct modulation of the overall laser intensity via an acousto-optic modulator, yielding

Ω→ Ω(1 + β sin(ωmodt+ φmod)).

The noise-suppressing properties of ΦM gates are experimentally validated in Fig. 8.7(a,b). In these

experiments, we perform frequency-dependent system identification on an unmodulated and an analytic

ΦM sequence constructed to exhibit second-order suppression of both detuning and laser-amplitude

noise. Experimentally, we observe that the ΦM gate (blue) exhibits lower measured error across the

range of applied noise frequencies until a crossover is reached near the inverse gate time ωmodτg/2π ≈ 1.

This behaviour indicates a trade-off between low frequency error suppression and sensitivity to noise

near the inverse gate time, consistent with observations for single-qubit operations [147].

We find good agreement between experimental measurements and an empirical model combining the

prediction for gate error from the filter function with a frequency-independent error offset extracted from

measurement (solid lines). For both noise types, the filter function predictions for ΦM gates (dashed

lines) show decreased noise sensitivity in the regime ωmodτg/2π < 1, captured by an enhanced slope

on a log-log plot. In the case of detuning noise shown in (a), the base filter function prediction for the

unmodulated gate exhibits broadband sensitivity to noise, manifested in the saturation of E [P1] towards

lower noise frequencies. For the unmodulated gate exposed to amplitude noise as shown in (b), the filter

function prediction drops towards zero in the low frequency regime, as a quasi-static error will simply

result in a scaling of the Rabi frequency and will not affect the closure of the phase space trajectories.

The error offset employed in our empirical model may arise in the experiment due to uncompensated

noise from some uncontrolled source, or potentially from higher-order modulation-frequency-dependent

terms in the filter function [267, 268] (i.e. higher-order sensitivity to the applied single-frequency noise

source). In error-suppressing gates we have previously observed that when studying agreement between

measurements and filter function predictions, higher-order filter function contributions grow in import-

ance when leading-order error terms are cancelled by a compensating pulse [147]. However, in these

measurements we find larger error offsets associated with unmodulated gates, consistent with the pres-

ence of an intrinsic noise process to which the unmodulated gate is more susceptible.

We next demonstrate that ΦM gates provide error-suppression in two-qubit entangling operations sub-

jected to time-dependent noise, measuring the full gate fidelity. As in the system-identification routine
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above, we apply a single-frequency noise modulation, with a normalised frequency ωmodτg/2π = 0.1.

Here, the noise modulation is sufficiently strong to reduce the unmodulated (no ΦM) gate fidelity below

90%. This fidelity-loss can be substantially recovered though use of ΦM; replacing an unmodulated

gate with a ΦM construction (Fig. 8.7(c,d)), we observe an increase in gate fidelity as the order of error

suppression is increased for both noise types.

8.3.5 Scaling to larger systems

When performing ΦM gates in systems with a large number of oscillator modes, one needs to consider

the associated growth in the number of phase segments required to achieve mode decoupling. In ion trap

systems, every additional ion contributes one axial and two radial modes to the spectrum. Increasing

the number of phase segments typically results in trajectories that enclose a smaller phase space area,

necessitating either an increase in the Rabi frequency or gate time in order to accumulate the desired

entangling phase. Ideally, both of these quantities should be minimised, reducing sensitivity to error

sources such as photon scattering [269] or, in the case of increased gate time, motional heating and

motional dephasing. To explore the relevant scaling behaviour for both analytic and numerically optim-

ised constructions, we consider the case of a fixed maximum Rabi frequency and calculate the shortest

achievable gate time realised in the two approaches, as a function of ion number in a linear chain.

As a concrete example, we consider an entangling operation between the two outermost adjacent ions

in an N -ion chain of 171Yb+ ions. For each N , we fix Ω = 2π × 100 kHz and perform a discretised

search over detuning and gate time, choosing the ΦM sequence that results in a maximally entangled

pair in the shortest time τB . The ΦM sequences are constructed to decouple from all M = 2N radial

motional modes such that ε . 10−4. As shown in Fig. 8.8(a), with increasingN , the numerically optim-

ised sequences scale more favourably than those calculated analytically. For the standard numerically

optimised sequences, we find the shortest gate time is constant (140 µs) for up to N = 10 ions. In

the robust case, τB is slower than the standard sequences by a small offset and grows gradually with

ion number from 170 µs (N = 2) to 210 µs (N = 10). The rapid increase in τB for the analytic gate

construction, combined with the simultaneous exponential growth in the required number of phase seg-

ments (2M ), ultimately render it less suitable for larger systems than the numerically derived alternative.

Also, despite the fact that a specific analytic ΦM sequence may be calculated in closed form, the process

of choosing the best analytic construction from all possible permutations of rδM ...δ1(t; τg) sequences

can add computational complexity, as the ordering of mode closure represents an additional degree of
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FIGURE 8.8. Scaling to larger qubit systems. (a) Shortest achievable gate time (τB) as a func-
tion of the number of qubits, decoupling from all M = 2N radial modes. The number of phase
shifts for each ΦM approach is fixed at: S = 2M (analytic), S = 4M (standard numerical) and
S = 8M (robust numerical). The mode spectrum is calculated using COM trapping frequencies of
νx,y,z/2π = [1.62, 1.54, 0.15] MHz with the maximum Rabi frequency limited to Ω = 2π × 100 kHz.
(b) Shortest achievable gate time (τB) represented as a colour-scale for standard numerically optimised
entangling gates between different target pairs in an N = 10 ion chain, decoupling from the radial
modes. Black represents the median gate time, red indicates slower gates and blue indicates faster. (c)
Schematic depiction of the equilibrium positions for a N = 10 ion chain and corresponding radial mode

spectrum. Vertical bars positioned at the frequency of each mode k indicate the value of |η(µ)
k η

(ν)
k |,

which is |η(µ)
k η

(ν)
k | normalised to the maximum value of |η(µ)

k η
(ν)
k | for all k. Arrows indicate the detun-

ings corresponding to τB for two target pairs: 1,4 (red) and 5,6 (blue).

freedom that impacts gate time. To avoid this computational overhead, for the analytic data shown in

Fig. 8.8(a), we consider only a single permutation corresponding to mode closure in order from largest

to smallest detuning. This ordering tends to minimise the error-contribution from far-detuned modes by

keeping their trajectories close to the origin, while also producing trajectories for the strongly excited

modes that result in a larger accumulated entangling phase.

These observations also hold for entangling operations performed on arbitrary ion pairs within a larger

chain, where spatial variation in ion-motion coupling across the chain provides an additional considera-

tion in gate construction. In Fig. 8.8(b), we investigate the dependence of τB on the choice of target ion

pair within an N = 10 ion crystal for standard numerically optimised gates, again requiring decoupling

from just the radial motional modes. Assuming a 2π × 100 kHz maximum Rabi frequency, τB ranges
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from 120 µs to 175 µs. This variation highlights the fact that the rate at which entanglement is accumu-

lated between ions µ, ν will depend on how strongly the ions are coupled to the dominant excited modes,

as quantified by the Lamb-Dicke parameters η(µ)
k , η

(ν)
k . For example, a particular mode may involve a

large displacement of the outer ions, while the central ions remain almost stationary. This mode would

therefore be unsuitable for use in entangling gates attempting to induce coupling between central and

outer ions. Such variability in the coupling strength across a chain is shown for two different ion pairs in

Fig. 8.8(c), where we plot the magnitude of the Lamb-Dicke parameters across a complex multi-mode

spectrum.

Considering this additional complexity, the flexibility provided by ΦM sequences to set the detuning

arbitrarily within the mode spectrum enables the leveraging of entangling-phase contributions from mul-

tiple modes where
∣∣∣η(µ)
k η

(ν)
k

∣∣∣ is greatest for the given ion pair. As such, the use of ΦM gates also offers

speed advantages relative to conventional techniques where the detuning would simply be fixed close

to a COM mode and the gate speed limited by the requirement that the other modes are not signific-

antly excited. Using phase modulation, we are free to set the detuning arbitrarily for gates implemented

between different target ion pairs; the arrows in Fig. 8.8(c) show the detuning values corresponding to

τB for gates between two different ion pairs. Without phase modulation, the detuning could not be set

arbitrarily while still achieving a high-fidelity gate (see Fig. 8.5).

8.4 Conclusion

We have demonstrated that phase modulation provides a robust and flexible framework for performing

high-fidelity entangling gates in qubit-oscillator systems, validated using trapped ions. We have imple-

mented two-qubit entangling gates with an average fidelity of 99.4(2)%, achieving maximum fidelity

for arbitrary laser detunings, including settings where unmodulated gates cannot be achieved with high

fidelity. In addition, we have shown that the ΦM framework provides robustness to static and time-

dependent errors in the laser amplitude and gate detuning, captured through a new theoretical model in

the filter function framework.

The ΦM approach to constructing oscillator-mediated entangling gates gates holds several practical

advantages relative to alternative modulation approaches [88,257]. First, the amplitude and frequency of

the driving field remain fixed throughout the gate operation, meaning experimental -– often duty-cycle-

dependent — nonlinearities and the effect of time-dependent AC Stark shifts need not be considered.
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Next, the ΦM technique is also readily extensible to multi-qubit entangling gates in larger systems,

where we have shown that numerical optimisation may be utilised to exponentially reduce the number

of phase shifts required to decouple from an increasing number of modes, and flexibility in gate detuning

can be used to extract speedups in gate implementation. We hope that the ΦM techniques demonstrated

here may be employed beyond ion trap systems to improve gate fidelity in other architectures that utilise

oscillator-mediated operations.



CHAPTER 9

Conclusion

“Computers Aren’t So Smart, After All: During the "computer craze" of the 1950s and 1960s some

people envisioned the machine replacing the human brain. It hasn’t happened and, says the author, it

probably never will. So we must still think for ourselves.” [270]

*****

An article from 1974 in The Atlantic proudly foreshadowed the dimming of the era of electrical com-

putation, claiming that the previous decades of hype and growth had reached a natural conclusion and

could provide no further innovation [270]. With little assumption, I presume that the subsequent events

of the following 47 years are well-enough known to the reader to conclude that this scepticism was

misplaced. However, it was not unfounded.

The development of the computer was an extraordinarily challenging task riddled with missteps and

failures, that are only evident as such with the perspective of history. It was a pathway filled with broken

vacuum tubes, hardware “bugs” created by their literal namesake, thousands of hours of woman and

man-power, and hundreds of unfulfilled promises. It would be simple in hindsight to dismiss early

critics as modern Luddites but the reality is considerably more complex. In many ways, critics were

able to penetrate the obscuring veil of hype with a clearer-eyed view to illuminate the underlying faults

hindering progress. The difficultly of managing hardware errors and creating robust programs threatened

the scalability and reliability of programmable computers, and led to the need to revise expectations and

early promises. While computers eventually became a revolutionary and powerful technology, their

development was not without its struggles, and the problem of how to reduce and manage errors was a

foremost consideration.

With every new generation of the computer, we expand our capability to innovate and explore interesting,

nuanced questions but we also introduce a greater number of ways in which subtle errors can affect the

180
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final output. Early iterations of programmable computing devices were often single purpose but also

more robust to errors. If a Jacquard loom dropped a stitch, the textile would still have integrity, whereas

the fidelity of our gates is affected by the magnetic field distortions of the local train timetable. Similarly,

early classical digital computers may have required air conditioning to prevent overheating, but never

needed liquid helium. Whilst we may not wake up to discover a moth inside our vacuum chamber,1

trapped alongside our ions, we are still susceptible to hundreds of sources of error, many not even

considered for classical computers. Growth in our technological capabilities enables growth in both the

potential of the devices we can create and the sources of error that can render them useless.

In the last two decades, the field of quantum computing has seen growth unlike anything it has en-

countered before. Innovations and investment are being contributed from a diverse range of sources –

academia, government, private industries, and startups. Some fear that the field has reached its “peak

of inflated expectations” in the “hype cycle”, and is ready to crash. Many others, myself included, be-

lieve modern quantum technology stands on the threshold of creating a truly effectual device for the

purpose of solving computationally complex – and even intractable – problems. However, efforts are

encountering resistance in both reliability and scalability.

Just as with classical computers, the development of a practical large-scale quantum processor requires

collaboration from contributors across the entire quantum computing architecture – software, hardware,

firmware, error correction – in parallel. Groups can no longer operate independently, refining hardware

or developing software algorithms without communication and integration. A critical component of this

integration will be dynamic quantum control to reduce errors at a logical level in order to precondition a

system for quantum error correction, or possibly, in some circumstances, obviate the need for it entirely.

Summary and Outlook

The demonstrations I have presented in this thesis are a collection of tools from the “quantum control

toolkit” that can be used for two broad purposes.

Firstly, noise characterisation allows us to understand the nature of underlying errors affecting the

quantum processor. This knowledge can then be used as a probe to sense where errors are occurring, al-

lowing us to make informed improvements to the physical hardware. The theoretical work in Chapter 4

forms the basis of a characterisation protocol experimentally verified in Chapters 5 and 6. By modifying

the analysis of the results measured during common QCVV protocols with minimal to no alterations

1or certainly hope not!
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to the protocols themselves, we are able to reveal more subtle information about not just the average

errors, but also underlying temporal correlations in the error process. Identifying the correlation char-

acteristics of the dominant error process can be used to eliminate many possible sources of error. For

example, in a trapped-ion system, detecting primarily uncorrelated errors removes the need to probe for

slow drifts or poor calibrations in the control field, but does not preclude the possibility of laser light

leakage scrambling the information through a depolarising process.

Secondly, once all reasonable improvements to the physical hardware have been made – limited possibly

by physical constraints, ability or finances – the tools presented here can be used to tailor dynamic

control solutions to improve the system reliability and scalability beyond that achieved with primitive

gates. Chapters 3, 6 and 8 all demonstrate the use of quantum control to push experimental fidelities

past their physical limits.

In Chapter 3, I demonstrate a specific application for trapped ion systems, using electron shelving to

improve the measurement fidelity achieved in a hyperfine ion qubit, which is typically limited by off-

resonant scattering during the detection period. Chapter 6 demonstrates the use of dynamically corrected

gates for single qubits to both improve net error rates and reduce temporal and spatial error correlations

between gates and qubits. Moving from single-qubit rotations to two-qubit entangling gates, Chapter 8 is

the first example of using phase-modulated Mølmer-Sørensen gates to improve entangling gate fidelities

by reducing residual qubit-motional coupling at the gate’s conclusion. The theoretical work in Chapter 7

explores the physics behind the Mølmer-Sørensen gate, calculating the eigenspectra of the motional

modes required for its operation and predicting the gate output in both the ideal operation and in the

presence of time-varying noise. This work was fundamental in predicting the output of different MS

gate constructions, and was necessary to build numerically optimised phase modulation sequences.

Chapters 6 and 8 are examples of more general quantum control techniques that can be extended to

other platforms beyond trapped ions. Indeed, initial work implementing dynamically corrected gates

on superconducting qubits shows promising advancements, demonstrating the first model-based robust

control [271]. Likewise, two-qubit entangling gates in superconducting circuits could utilise phase mod-

ulation to reduce residual coupling errors, just as we have demonstrated with the Mølmer-Sørensen gate.

These tools also extend beyond quantum computing, being equally pertinent to applications in trapped-

ion metrology or sensing.
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Already in our setup, we see several practical examples of using quantum control to improve our per-

formance. For instance, scaling to larger numbers of qubits and using global simultaneous microwave

rotations necessitates the use of BB1 dynamically corrected gates to account for the microwave field

intensity gradient. Furthermore, the electron-shelving based detection in Chapter 3 will almost certainly

require dynamically corrected gates to correct for frequency and amplitude errors, eliminating the need

for frequent recalibrations in the shelving parameters.

Moving forwards, one of the most critical next steps is integration. We must work with groups to

improve the performance of their algorithms by introducing these tools into existing setups. Already,

there are opportunities proposed to improve the reliability of variational quantum eigensolvers (VQE)

and digital quantum simulators by incorporating quantum control techniques. With the integration of

quantum control into noisy intermediate-scale quantum systems, I believe we will begin to achieve truly

advantageous results. I hope that the work in this thesis has contributed to the rich and developing field

of quantum control.



“All this happened, more or less.”

- Kurt Vonnegut, Slaughterhouse-Five
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“So it goes.”

- Kurt Vonnegut, Slaughterhouse-Five



APPENDIX A

Useful mathematical relations and definitions

A1 Basic operations

1. The Pauli group:

Î =

(
1 0

0 1

)
σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
(A.1)

2. The Hadamard operator rotates by θ = π/2 about the axis 45◦ between the x and z-axes, expressed

as n = [ 1√
2
, 0, 1√

2
].

Ĥ =
1√
2

(
1 1

1 −1

)
. (A.2)

3. The phase gate:

P̂ =

(
1 0

0 i

)
(A.3)

A2 Useful mathematical relations

A2.1 General identities

1. Baker–Campbell–Hausdorff formula simplification : if the commutator of two operators is a

complex-valued scalar, [X̂, Ŷ ] = c ∈ C, then

eaX̂ebŶ = eaX̂+bŶ+ab
2

[X̂,Ŷ ]

= eaX̂+bŶ eabc/2. (A.4)
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2. The displacement operator for oscillator mode k with creation and annihilation operators â†k, âk

and the (potentially complex valued) displacement α is defined to be

D̂k(α) = eαâ
†
k−α

∗âk . (A.5)

The operator D̂k obeys the following rules.

(i) D̂k(α)D̂k(β) = D̂k(α+ β)e(αβ∗−α∗β)/2

= eαβ
∗−α∗βD̂k(β)D̂k(α)

(A.6)

(ii) [D̂j(α), D̂k(β)] = 0 if j 6= k (A.7)

(iii) D̂k(α)† = eα
∗âk−αâ†k = D̂k(−α) (A.8)

(iv) D̂k(α)†D̂k(α) = Î (A.9)

(v)
∞∑

nk=0

pnk 〈nk| D̂k(α) |nk〉 = e−|α|
2(n̄k+ 1

2
) (A.10)

(vi) D̂k(αŜx) = e(σ̂
(µ)
x +σ̂

(ν)
x )⊗(αâ†k−α

∗âk)

= P̂0 ⊗ e0 + P̂+2 ⊗ e2(αâ†k−α
∗âk) + P̂−2 ⊗ e−2(αâ†k−α

∗âk)

= P̂0 ⊗ Î + P̂+2 ⊗ D̂k(2α) + P̂−2 ⊗ D̂k(−2α)

Here, the total Pauli-x spin operator is defined as Ŝx = σ̂
(µ)
x + σ̂

(ν)
x , the mean phonon num-

ber of mode k is given n̄k, and the operators P̂+2 = P̂++ = |++〉 〈++| , P̂−2 = P̂−− =

|−−〉 〈−−| , P̂0 = P̂+− + P̂−+ = (|+−〉 〈+−|) + (|−+〉 〈−+|) are the projection operators

onto to eigenvalues +2, -2 and 0 respectively.

3. The following conjugation relations as used in the Mølmer-Sørensen observable evolution de-

rivations.

[Ŝ2
j , Ŝ

2
k ] = 0 (A.11)

eiγŜ
2
xŜ2

j e
−iγŜ2

x = Ŝ2
j (A.12)

eiγŜ
2
x σ̂(µ)

z e−iγŜ
2
x = sin (4γ)σ̂(µ)

y σ̂(ν)
x + cos (4γ)σ̂(µ)

z (A.13)

eiγŜ
2
x σ̂(ν)

z e−iγŜ
2
x = sin (4γ)σ̂(µ)

x σ̂(ν)
y + cos (4γ)σ̂(ν)

z (A.14)
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A3 Matrices for calculating observables under evolution of the

Mølmer-Sørensen gate

In the σ̂z ⊗ σ̂z-basis (the computational basis), the total Pauli spin matrices are given by the following.

Ŝx =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 Ŝy =


0 −i −i 0

i 0 0 −i
i 0 0 −i
0 i i 0

 Ŝz = 2


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 (A.15)

Ŝ2
x = 2


1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

 Ŝ2
y = 2


1 0 0 −1

0 1 1 0

0 1 1 0

−1 0 0 1

 Ŝ2
z = 4


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 (A.16)

In the σ̂x ⊗ σ̂x-basis, the projection matrices for the four eigenstates |++〉 , |+−〉 , |−+〉 , |−−〉 are as

follows.

P̂++ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , P̂+− =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ,

P̂−+ =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , P̂−− =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 . (A.17)

Ideally, we would like to express these matrices in terms of the computational basis, σ̂z ⊗ σ̂z . To

perform a basis transformation for the matrix Â from the basis states {|ei〉} to the new states {|fi〉}, use

the following expressions.

Â{|fi〉} = Ê†e→f Â{|ei〉}Êe→f (A.18)

Êe→f = {〈ei|}{|fi〉} =


〈e1|f1〉 〈e1|f2〉 〈e1|f3〉 〈e1|f4〉
〈e2|f1〉 〈e2|f2〉 〈e2|f3〉 〈e2|f4〉
〈e3|f1〉 〈e3|f2〉 〈e3|f3〉 〈e3|f4〉
〈e4|f1〉 〈e4|f2〉 〈e4|f3〉 〈e4|f4〉

 (A.19)
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We consider the basis states σ̂z ⊗ σ̂z and σ̂x ⊗ σ̂x. The basis states for σ̂x ⊗ σ̂x can be written in the

computational basis as,

|++〉 =
1√
2

(
1

1

)
⊗ 1√

2

(
1

1

)
=

1

2


1

1

1

1

 ,

|+−〉 =
1

2


1

−1

1

−1

 , |−+〉 =
1

2


1

1

−1

−1

 , |−−〉 =
1

2


1

−1

−1

1

 . (A.20)

Then, the transformation matrix is given by

Êxx→zz =


〈+ + |00〉 〈+ + |01〉 〈+ + |10〉 〈+ + |11〉
〈+− |00〉 〈+− |01〉 〈+− |10〉 〈+− |11〉
〈−+ |00〉 〈−+ |01〉 〈−+ |10〉 〈−+ |11〉
〈− − |00〉 〈− − |01〉 〈− − |10〉 〈− − |11〉

 =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . (A.21)

Finally, we can re-express the projection matrices from Eqn. (A.17) in the σ̂z ⊗ σ̂z-basis.

P̂++
.
=

1

4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 =
1

8
(Ŝ2
x + 2Ŝx),

P̂+−
.
=

1

4


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

 =
1

4
(2̂I− 1

2
Ŝ2
x + σ̂(µ)

x − σ̂(ν)
x ),

P̂−+
.
=

1

4


1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

 =
1

4
(2̂I− 1

2
Ŝ2
x − σ̂(µ)

x + σ̂(ν)
x ),

P̂−−
.
=

1

4


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

 =
1

8
(Ŝ2
x − 2Ŝx) (A.22)



APPENDIX B

Bayesian measurement analysis protocols for one and two-qubits on the

APD

The fluorescence detected during single-qubit experiments is measured using an avalanche photodiode

(APD). The data is analysed with a either standard thresholding protocol or a time-resolved maximum

likelihood analysis. We explain the time-resolved maximum likelihood analysis protocol in detail here,

used for time-resolved photon data collected on the APD. The description here is taken from the Sup-

plementary Materials of S. Mavadia, C. L. Edmunds, et al. [221], presented in Chapters 4 and 5.

Two-qubit experiments are often recorded on the EMCCD to obtain spacial resolution, however, the

results in Chapter 8 use the APD to reduce electrical noise and improve detection fidelity. To analyse the

two-qubit results, two separate maximum likelihoods are used, one returning the state probabilities and

the other estimating the Bell state fidelity error. The descriptions for two-qubit measurement analysis on

the APD are taken from the Methods section of A. R. Milne, C. L. Edmunds, et al. [6] which is presented

in Chapters 8.

B1 “Subbinning” protocol for temporally resolved qubit state detection

We use the photon information we collect from the ion to determine the projected state of the qubit after

each repetition of an experiment. This is done via a Markov model initially published for 171Yb+ by

Wolk et al. [113]. For the RB experiments described in the main text we combine this information over

r repetitions to calculate the most likely projection of the Bloch vector on the z-axis. This methodology

has a reduced measurement error compared to a simple threshold detection technique that assigns a state

based on whether the total number of detected photon counts is above or below a certain level.

To detect the state of the ion at the end of a sequence of microwave-driven rotations, we apply light at

369.4 nm resonant with the optical dipole transition between the S1/2, F = 1 and P1/2, F = 0 states

209
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(Figure B.1). During this detection period, an avalanche photodiode registers photons that are scattered

if the qubit was projected into the |F = 1,mF = 0〉 state, hence denoted ‘bright state’, and no photons

if the qubit was projected into the |F = 0,mF = 0〉 ‘dark’ state.

Due to the proximity of the other electronic levels in the S and P manifolds, off-resonant excitations

(proportional to the applied laser power) can occur and change the state of the qubit during the detection

period, adversely affecting the detection fidelity. The rate at which these changes occur can be expressed

in terms of a bright (dark) state lifetime τB (τD).

Rather than simply considering a single transition between the bright and dark states (or vice versa)

we can generalise this to multiple transitions within a single measurement detection period [113]. To

identify these individual transitions we split the photon detection time into equal length sub-bins and

make the assumption that there is at most one transition between bright and dark state per sub-bin.

We then use the number of photons within each sub-bin and the distribution of photons across sub-bins

within a single detection period to determine the likelihood of the ion initially having been projected into

the bright or the dark state. For full details of this procedure and a mathematical derivation, see [113].

In this work we divided the total detection time into 5 sub-bins. In each experimental repetition we

calculate the mean detected photon rate in the bright state, RB , and the dark state, RD, by fitting a

double Poisson function to a histogram of the entire data set. For a given detection laser power, the

decay rates τ−1
B,D are obtained from a separately performed calibration where we initialise the ion in

either the bright or dark state and then observe the average photon count rate over many repetitions as a

function of detection time.

12.6 GHz

369.4 nm
Detection

S1/2

F=1

F=0

2.1 GHzP1/2

F=0

F=1

Qubit

FIGURE B.1. Relevant energy levels for 171Yb+ and their energy splittings, with the Zeeman struc-
ture omitted. The qubit is encoded in the S1/2, |F = 0,mF = 0〉 and S1/2, |F = 1,mF = 0〉 states and
controlled via microwave radiation resonant with a magnetic dipole transition at 12.64 GHz.
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In addition to analysing photons in the detection period using sub-bins, we also remove experimental

repetitions which do not emit a certain number of photons during the laser cooling period prior to the

microwave rotations. This accounts for the rare occurrences when the ion is subject to a collision or

other heating effect that may impact the efficacy of the experiment.

The above protocol returns the most likely outcome for each single repetition. To improve the accuracy

of state-estimation, we calculate the most likely projection φ along the z-axis. To do this we implement

a Bayesian approach to find the probability distribution over all possible projections. The distribution

is discretised in steps of 10−3 and initialised such that the likelihood of measuring any projection along

the z-axis is equal,

Pr(φ) = 1/K, (B.1)

whereK is a normalisation term. We then condition this probability on the observed photon distribution,

pϕ, such that

Pr(φ|pϕ) = K−1
∏

Pr(pϕ|φ) (B.2)

where Pr(pϕ|φ) is calculated from the likelihood of finding the qubit in either the |1〉 or |0〉 state,

Pr(pϕ|φ) = Pr(pϕ||1〉)Pr(|1〉|φ) + Pr(pϕ||0〉)Pr(|0〉|φ). (B.3)

The terms Pr(pϕ||1〉) and Pr(pϕ||0〉) are the likelihoods of measuring the photon distribution pϕ given

that we start in the bright or dark state respectively and are calculated via the Markov model described

above. The values Pr(|1〉|φ) and Pr(|0〉|φ) are the probabilities of projecting the qubit into either the

|1〉 or |0〉 state during detection given a particular φ. We incrementally update Pr(φ|pϕ) by adding

information for each repetition across all of the noise realisations. To find the most likely outcome for a

particular sequence we then calculate the mean of this distribution.

B2 Maximum-likelihood procedure for two-qubit state estimation

Hyperfine qubits such as 171Yb+ are susceptible to leakage between the qubit states from off-resonant

excitations during the laser-induced fluorescence measurement. We employ a maximum-likelihood state

estimation procedure [257], which reduces measurement error by accounting for the effect of state decay

based on independent calibrations. In a given two-qubit experiment, we would like to determine the

resultant state populations Pi, which are the probabilities for measuring i ions in the |1〉 state. To do

this, the ions are illuminated with a 369 nm laser, projecting each qubit into either the |1〉 (bright) or
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|0〉 (dark) state. The experiment is repeated n times and the number of photon counts measured on

an avalanche photodiode (APD) for each repetition is recorded. The resultant count rates are plotted

in a histogram and by setting two count rate thresholds c1 and c2 between the resulting distributions,

each repetition is assigned a outcome of ‘i ions bright’, where i ∈ {0, 1, 2}. We denote the number of

repetitions assigned to each outcome as xi, with x0 + x1 + x2 = n. Due to state decays, there will be

an overlap in the count rate distributions, meaning the true probabilities Pi are not simply the proportion

of repetitions assigned to outcome i. Instead, we define a linear map relating the measured probabilities

P ′i = xi/n to the true probabilities Pi, which takes the form P ′i =
∑

j P (i|j)Pj . Here, P (i|j) is the

probability of classifying a repetition as ‘i ions bright’ given the ions were prepared in the state ‘j ions

bright’. The probabilities P (i|0) and P (i|2) are obtained by preparing and measuring the states |00〉

and |11〉, respectively, in calibration experiments. Without the ability to individually address ions, it is

not possible to prepare the state |01〉 or |10〉, hence to determine the probabilities P (i|1), we assume

P (2|1) = 0 (which is a fair assumption given our detection duration and laser powers) and utilise a

single ion to obtain P (0|1) and P (1|1). For a given set of repetitions, we compute the log-likelihood

function f(P1, P2) for discretised values of P1, P2 between 0 and 1. The values of P1, P2 that maximise

f(P1, P2) are the most probable given the data [257].

f(P1, P2) =

log

(
(n+ 1)(n+ 2)n!P ′1(P1, P2)x1P ′2(P1, P2)x2(1− P ′1(P1, P2)− P ′2(P1, P2))n−x1−x2

x1!x2!(n− x1 − x2)!

)
(B.4)

Note that Eqn. (B.4) only depends on populations P1 and P2 as normalisation always enables P0

to be expressed as 1− P1 − P2. In order to make f(P1, P2) computable, Stirling’s approximation

(log(n!) ≈ n log(n)− n) must be used as terms such as n! diverge too rapidly to be calculated for

large n.

B3 Two-qubit Bell state measurement fidelity

To calculate how the measured Bell state fidelity is affected by imperfect state estimation via the max-

imum likelihood (ML) scheme, we follow an approach similar to the one outlined in [272]. By preparing

and measuring known input states, we again construct a linear map relating the true populations Pi to the

population outcomes determined by the ML procedure P
′′
i . In this case, the values P (i|j) represent the
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probability that the ML procedure assigns some population ‘i ions bright’ to the measurement outcome,

given that a state with population ‘j ions bright’ is prepared.

As described in the main text, the application of the MS gate results in the Bell state (|00〉+ i |11〉)/
√

2 ,

the fidelity of which may be expressed as

F =
P0 + P2

2
+
πc
2
. (B.5)

Here, πc is parity contrast of the resultant state, measured by varying the phase of an additional π/2

analysis pulse at the conclusion of the gate. Assuming a Bell state with perfect fidelity, πc may be

expressed as half the difference in parity between two states |E〉 = (|00〉 − i |11〉)/
√

2 and |O〉 =

(|01〉+ i |10〉)/
√

2 with parities P = 1 and P = −1, respectively. Hence the expression for the fidelity

(Eqn. B.5) becomes

F =
P0,E + P2,E

2

+
(P0,E + P2,E − P1,E)− (P0,O + P2,O − P1,O)

4
,

(B.6)

where Pi,k indicate the populations for the ideal Bell states |k〉, with k ∈ {E,O}.

We model the effect of imperfect state estimation by substituting the true populations Pi,k in Eqn. B.6

with the measured populations P
′′
i,k, which are related to the true populations by the linear map. As an

example, we may calculate the measured populations P
′′
i,E asP

′′
0,E

P
′′
1,E

P
′′
2,E

 =

P (0|0) P (0|1) P (0|2)

P (1|0) P (1|1) P (1|2)

P (2|0) P (2|1) P (2|2)


1/2

0

1/2

 (B.7)

=

P (0|0) + P (0|2)

P (1|0) + P (1|2)

P (2|0) + P (2|2)

 . (B.8)

Re-expressing Eqn. B.6 in terms of the probabilities P (i|j), we arrive at an expression for the Bell state

fidelity incorporating imperfect state estimation.

F = 1− 1

2
[P (0|1) + P (1|2) + P (1|0) + P (2|1)]

= 1− ε
(B.9)
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Hence the contribution to the measured infidelity due to state estimation is given by

1−F = ε =
1

2
[P (0|1) + P (1|2) + P (1|0) + P (2|1)] . (B.10)

The matrix below shows typical values of P (i|j), which inserted into Eqn. B.10 give an error contri-

bution of ε ≈ 0.4(4)%. The quoted uncertainties are the standard deviation over multiple calibration

measurements.

P (i|j) =

 0.997(4) 0.001(3) 0.0002(6)

0.002(4) 0.997(3) 0.003(6)

0.0002(4) 0.001(1) 0.996(6)

 (B.11)



APPENDIX C

Randomised benchmarking on 171Yb+ qubits

We characterise the trap’s baseline performance (with no engineered noise) using single-qubit RB with

microwave primitive gates produced by the I/Q-modulated VSG. The RB sequence survival probabilities

are plotted in Fig. C.1 for sequence lengths from J = 2 to J = 500. The mean survival probability for

each sequence length is fitted to an exponential decay,

P = 0.5 + (0.5− κ)e−pRBJ , (C.1)

FIGURE C.1. Single-qubit randomised benchmarking. Randomised benchmarking is performed on
a single qubit using a total of 300 sequences composed of primitive gates, with 50 sequences each of
length J = 2, 25, 50, 100, 200, and 500. Each sequence was repeated r = 500 times to reduce quantum
projection noise. Black markers represent individual sequence survival probabilities, red crosses indicate
the mean survival probabilities for each sequence length, and the solid red line in a fit to the means to
extract the average error per gate.
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to extract the average error per gate (EPG). A single ion in the blade trap achieves a baseline average EPG

of pRB ≈ 1.9×10−5 and a state preparation and measurement error (SPAM) of κ = (3.3± 0.1)× 10−3.



APPENDIX D

Supplementary Material about the results of noise engineering in GST

experiments

D1 Limitations of random walk model

In the main text we suggest that the magnitude of the noise and sequence averaged error in some cases

exceeds the validity bounds for the first-order approximations employed in the random walk framework

for RB. While the formal bound in [165] requires Jρ2 � 1, the data presented in Figs. 5.3 in the main

text ranges from Jρ2 = 0.05 to Jρ2 = 0.40 for 25 gate and 200 gate sequences respectively. Figure D.1

shows several simulated survival probability distributions as a function of expectation value Jρ2. As

the value of Jρ2 increases the shape of the distribution diverges from a gamma distribution with shape

parameter α = 1 (which is mathematically equivalent to an exponential PDF).

To a first-order approximation we can also incorporate the effects of measurement error (SPAM) by

introducing an offset into the gamma distribution describing measured survival probabilities over se-

quences. We can see this effect using data sets similar to those shown in Fig. 5.3 of the main text, but

measured using a detector with higher background counts and analysed with a lower-fidelity detection

protocol called “threshold detection".

Threshold detection determines whether each single repetition was in the |0〉 or |1〉 state by checking if

the detected number of photons is above a certain fixed threshold. To find the noise-averaged survival

probability we find the mean of all repetitions over noise realisations associated with each sequence. This

ultimately leads to a larger measurement error than the method employed in the main text, permitting

quantitative comparisons of the effects. As shown in Fig. D.1, the shape parameter diverges from the

model if the expectation of the distribution is large, and accordingly we restrict our analysis to data using

J = 10 to numerically fit an offset for all data sets.
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FIGURE D.1. Survival probability distributions as a function of expectation value Jρ2. The integral
of the simulated histogram values and PDFs are equal to unity. In each case the sequences and noise
realisations were kept constant and the magnitude of errors is multiplied by a scalar to produce the
correct displayed value of Jρ2 and the number of gates in a sequence is held constant at J = 100. Fits
are constrained to maintain shape parameter, α = 1, in the gamma distributions.

We show such data in Fig. D.2 and overlay the distribution from Eqn. (4.87) with the extracted offset.

For comparison we show the same data which is subject to the Bayesian estimation technique described

in Sec. B1, which is more effective in reducing measurement error. Data remain well described by the

gamma distribution with α = 1 after incorporation of a fixed offset from unit survival probability.

Finally, we suggest that the scatter of the points in Fig. 5.4 of the main text partially arises because ‖V ‖2

is calculated using only the simplified error model that was originally studied in reference [165], where
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FIGURE D.2. Survival probabilities distributions of sequences with different numbers of gates with
ρ2 = 2.9 × 10−3. Panels a,b use a simplified analysis technique called “threshold detection" (see text)
and panels c,d use the Bayesian estimation technique outlined in section B1. These are overlaid with
gamma distributions derived from Eqn. (4.87) with an additional offset to take into account the level
of measurement error in the system calculated from the J = 10 data independently for the two sets of
panels.

the errors are interleaved throughout the sequence and between gates. To verify this we have performed

numerical simulations of sequence survival probabilities under application of the original error model

and compare against measured data for the same sequences, but the experimentally relevant concurrent

mode (Fig. D.3). We observe that the root-mean-square error between the data points and the best

linear fit for the interleaved error case is approximately half that for the concurrently applied error case.

However, in both cases we still observe a clear linear relationship between walk length and survival

probability under the influence of slowly varying noise.
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0 100 200 300 400 500

‖V2D‖2

0.0

0.1

0.2

0.3

0.4

0.5

1
−
P

1−P vs ‖V2D‖2

Interleaved error simulation, RMS=0.050

Measured data, RMS=0.091

FIGURE D.3. Noise averaged survival probabilities for measured data subject to concurrently applied
noise (blue circles) and simulated outcomes where the interleaved error model matches ref [165] (green
circles) as a function of calculated ‖V2D‖2. The solid lines represent linear fits to their associated data
sets. The root-mean-square error between the data and linear fit is halved for the interleaved error model
(green), which more closely matches how the random walk was calculated.

D2 GST error simulations

All numerical simulations conducted here have been implemented within the pyGSTi toolkit. We have

also independently verified that error models developed in Matlab perform similarly. In addition to the

analytic concurrent error models described in the main text we have also compared our findings to a

variety of other error models found as inbuilt options within pyGSTi. The toolkit includes the .rotate()

function, corresponding to a post-multiplied error of an amount θ around the x, y or z-axis of the Bloch

sphere. It is also possible to simulate the effect of depolarising noise using pyGSTi built-in functionality.

In Fig. D.4 below we are using both to investigate the effect of gauge freedom under a variety of error

models and using both gate sets.

The extended gate set associated with integration of negative rotations about x and y, {Gx, Gy, Gi} →

{Gx, Gy, Gi,−Gx,−Gy}, also involves extending the set of germs from the original 11 listed in the

methods section to the following enlarged list of 39 entries, where Gxm and Gym stand for the negative

rotations:

(’Gx’), (’Gy’), (’Gi’), (’Gxm’), (’Gym’),

(’Gx’, ’Gy’), (’Gxm’, ’Gym’), (’Gxm’, ’Gy’), (’Gx’, ’Gym’),

(’Gx’, ’Gy’, ’Gi’), (’Gx’, ’Gi’, ’Gy’), (’Gx’, ’Gi’, ’Gi’), (’Gy’, ’Gi’, ’Gi’),
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(’Gxm’, ’Gy’, ’Gi’), (’Gx’, ’Gym’, ’Gi’), (’Gxm’, ’Gi’, ’Gy’), (’Gx’, ’Gi’, ’Gym’),

(’Gxm’, ’Gym’, ’Gi’), (’Gxm’, ’Gi’, ’Gym’), (’Gxm’, ’Gi’, ’Gi’), (’Gym’, ’Gi’, ’Gi’),

(’Gx’, ’Gx’, ’Gi’, ’Gy’), (’Gx’, ’Gy’, ’Gy’, ’Gi’), (’Gxm’, ’Gxm’, ’Gi’, ’Gy’), (’Gxm’, ’Gx’, ’Gi’,

’Gym’),

(’Gx’, ’Gxm’, ’Gi’, ’Gym’),(’Gx’, ’Gx’, ’Gi’, ’Gym’),(’Gx’, ’Gxm’, ’Gi’, ’Gy’),(’Gxm’, ’Gx’, ’Gi’,

’Gy’),

(’Gxm’, ’Gym’, ’Gy’, ’Gi’), (’Gxm’, ’Gy’, ’Gym’, ’Gi’), (’Gx’, ’Gym’, ’Gym’, ’Gi’),

(’Gxm’, ’Gy’, ’Gy’, ’Gi’), (’Gx’, ’Gy’, ’Gym’, ’Gi’), (’Gx’, ’Gym’, ’Gy’, ’Gi’),

(’Gxm’, ’Gxm’, ’Gi’, ’Gym’), (’Gxm’, ’Gym’, ’Gym’, ’Gi’),

(’Gx’, ’Gx’, ’Gy’, ’Gx’, ’Gy’, ’Gy’), (’Gxm’, ’Gxm’, ’Gym’, ’Gxm’, ’Gym’, ’Gym’)

Following the example outlined in pyGSTi’s tutorial ‘12 Germ selection’, we have confirmed that this

set of germs remains amplificationally complete under our new extended gate set.
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FIGURE D.4. Comparison of the sensitivity of the standard {Gx, Gy, Gi} gate set and an extended
version{Gx, Gy, Gi,−Gx,−Gy} using the built-in .rotate() and .depolarize function.

D3 GST experiments and results

In this section we provide a summary of the key results reported by the pyGSTi analysis toolkit [169],

version 0.9.2. We show the raw estimates and selected derived quantities from the reports generated

by the toolkit and refer to its included tutorials for further descriptions and explanations of the reported

quantities. We also provide the datasets, python analysis notebooks and generated reports as separate
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supplementary files. In these other quantities such as process matrices and the visualised likelihood

analyses linked to model violations can be found.

All error cases were measured in direct succession, i.e. for every prescribed GST sequence, r = 220 re-

petitions were recorded for each detuning before proceeding to the next GST sequence. In this way, long

term drifts are common mode to all of the separate datasets. The Rabi frequency during all experiments

was Ω = 22.5 kHz.

Additional engineered noise cases not considered in detail in the main text are also presented following

these tables in a final section.

TABLE D.1. GST estimate of SPAM probabilities

∆ = 0 ∆ = 75 Hz ∆ = 500 Hz ∆ = 1 kHz ∆ = 1.4 kHz

E
0.0044

±0.0007

0.0043

±0.0007

0.0061

±0.0008

0.0064

±0.0008

0.0069

±0.0009

Ec
0.9956

±0.0033

0.9967

±0.001

0.995

±0.0008

0.9943

±0.0007

0.992

±0.0008

Target rotation angles are {Gi, Gx, Gy} = {0, 0.5, 0.5}. Process infidelity, trace distance and diamond

norm are ideally 0.

TABLE D.2. Estimated performance in the absence of any additive detuning error (∆ =0 Hz).

Gate Rotation Angle
Process

Infidelity

1/2 Trace
Distance

1/2 3-Norm

Gi
(0.0022

±0.0001)π

0.0012

±0.0001

0.0048

±0.0002

0.0048

±0.0002

Gx
(0.4995

±0.0001)π

0.0001

±0.0001

0.0011

±0.0001

0.0011

±0.0001

Gy
(0.4998

±0.0001)π

0.0004

±0.0001

0.0009

±0.0001

0.0009

±0.0002
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TABLE D.3. Estimated performance under ∆ = 75 Hz detuning error

Gate Rotation Angle
Process

Infidelity

1/2 Trace
Distance

1/2 3-Norm

Gi
(0.0032

±0.0001)π

0.0012

±0.0001

0.0059

±0.0002

0.006

±0.0002

Gx
(0.4996

±0.0001)π

0.0001

±0.0001

0.0011

±0.0001

0.0011

±0.0001

Gy
(0.5001

±0.0001)π

0.0004

±0.0001

0.0009

±0.0002

0.0011

±0.0002

TABLE D.4. Estimated performance under ∆ = 500 Hz detuning error

Gate Rotation Angle
Process

Infidelity

1/2 Trace
Distance

1/2 3-Norm

Gi
(0.0119

±4× 10−5)π

0.0002

±0.0001

0.019

±0.0002

0.0191

±0.0002

Gx
(0.4999

±0.0001)π

0.0003

±0.0001

0.0011

±0.0001

0.0012

±0.0001

Gy
(0.5007

±0.0001)π

0.0003

±0.0001

0.0016

±0.0001

0.0018

±0.0002

TABLE D.5. Estimated performance under ∆ = 1000 Hz detuning error

Gate Rotation Angle
Process

Infidelity

1/2 Trace
Distance

1/2 3-Norm

Gi
(0.0236

±5× 10−5)π

0.0014

±0.0001

0.0371

±0.0001

0.0372

±0.0001

Gx
(0.5009

±0.0001)π

0.0002

±0.0001

0.0022

±0.0001

0.0022

±0.0002

Gy
(0.5013

±5× 10−5)π

0.0001

±0.0001

0.0027

±0.0001

0.0028

±0.0002
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TABLE D.6. Estimated performance under ∆ = 1400 Hz detuning error

Gate Rotation Angle
Process

Infidelity

1/2 Trace
Distance

1/2 3-Norm

Gi
(0.033

±4× 10−5)π

0.0027

±0.0001

0.052

±0.0003

0.052

±0.0003

Gx
(0.5016

±0.0001)π

−5× 10−6

±0.0001

0.0035

±0.0001

0.0035

±0.0002

Gy
(0.5016

±5× 10−5)π

0.0002

±0.0001

0.0036

±0.0001

0.0036

±0.0001

TABLE D.7. GST estimate of the logic gate operations in the absence of any additive detuning error
(∆ = 0 Hz).

Gate Superoperator (Pauli basis) 95% C.I. 1/2-width

Gi


1 0.0001 −0.0001 1× 10−5

0.0002 1 0.0005 −0.0055

−0.0001 0.0009 1 0.0052

−0.0001 0.0047 −0.0046 0.9954




0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0002 0.0003

0.0002 0.0002 0.0001 0.0003

0.0003 0.0003 0.0003 0.0003



Gx


1 1× 10−5 −0.0002 0.0002

0.0001 1 0.0007 0.001

4× 10−5 0.0004 0.0018 −0.9998

0.0001 −0.0007 0.9998 0.0011




0.0001 0.0001 0.0001 0.0001

0.0002 0.0001 0.0003 0.0003

0.0002 0.0003 0.0003 0.0001

0.0001 0.0003 0.0001 0.0003



Gy


1 0.0002 −0.0001 0.0002

0.0002 0.0004 0.0012 0.9991

−0.0002 0.0009 1 −0.0002

−0.0002 −0.9991 0.0005 0.0007




0.0001 0.0001 0.0001 0.0001

0.0002 0.0004 0.0003 0.0001

0.0002 0.0003 0.0001 0.0003

0.0002 0.0001 0.0003 0.0004


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TABLE D.8. GST estimate of the logic gate operations under ∆ = 75 Hz detuning error.

Gate Superoperator (Pauli basis) 95% C.I. 1/2-width

Gi


1 −2× 10−5 −3× 10−5 2× 10−5

−1× 10−5 0.9999 0.0055 −0.0067

−0.0001 −0.0041 0.9998 0.0058

0.0001 0.0065 −0.0068 0.9956




0.0001 0.0001 0.0001 0.0001

0.0002 0.0001 0.0003 0.0005

0.0002 0.0002 0.0001 0.0003

0.0003 0.0004 0.0004 0.0003



Gx


1 5× 10−5 −0.0002 0.0002

0.0002 1 0.0007 0.0012

0.0001 0.0001 0.0018 −0.9998

0.0001 −0.0007 0.9998 0.0007




0.0001 0.0001 0.0001 0.0001

0.0002 0.0001 0.0003 0.0003

0.0001 0.0003 0.0003 0.0001

0.0001 0.0003 0.0001 0.0003



Gy


1 0.0002 −0.0001 0.0002

0.0003 −0.0006 0.0015 0.9993

−0.0001 0.0009 1 0.0002

−0.0003 −0.9993 0.0004 −2× 10−6




0.0001 0.0001 0.0001 0.0001

0.0001 0.0004 0.0003 0.0001

0.0002 0.0003 0.0001 0.0003

0.0001 0.0001 0.0003 0.0004


TABLE D.9. GST estimate of the logic gate operations under ∆ = 500 Hz detuning error.

Gate Superoperator (Pauli basis) 95% C.I. 1/2-width

Gi


1 −5× 10−5 −0.0001 0.0001

−0.0001 0.9993 0.0357 −0.0097

−0.0001 −0.0347 0.9994 0.0083

0.0001 0.0092 −0.0088 1.0004




0.0001 0.0001 0.0001 0.0001

0.0002 0.0001 0.0003 0.0004

0.0002 0.0003 0.0001 0.0004

0.0002 0.0004 0.0004 0.0001



Gx


1 0.0001 −0.0002 0.0002

0.0002 1 0.0011 0.0018

3× 10−5 0.0005 0.0003 −0.9995

0.0001 −0.0012 0.9994 3× 10−5




0.0001 0.0001 0.0001 0.0001

0.0002 0.0001 0.0003 0.0003

0.0001 0.0003 0.0003 0.0001

0.0001 0.0003 0.0001 0.0003



Gy


1 0.0002 −0.0001 0.0002

0.0002 −0.0026 0.0016 0.9994

−0.0002 0.0011 1 −0.0007

−0.0002 −0.9995 0.0012 −0.0018




0.0001 0.0001 0.0001 0.0001

0.0001 0.0003 0.0003 0.0001

0.0002 0.0003 0.0001 0.0003

0.0001 0.0001 0.0003 0.0003


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TABLE D.10. GST estimate of the logic gate operations under ∆ = 1 kHz detuning error.

Gate Superoperator (Pauli basis) 95% C.I. 1/2-width

Gi


1 4× 10−5 −0.0001 3× 10−6

−1× 10−5 0.9973 0.0732 −0.0073

−0.0002 −0.0731 0.9972 0.0078

0.0001 0.0093 −0.009 1




0.0001 0.0001 0.0001 0.0001

0.0003 0.0001 0.0005 0.0005

0.0002 0.0005 0.0001 0.0005

0.0002 0.0005 0.0005 0.0001



Gx


1 4× 10−5 −0.0002 0.0002

0.0001 0.9999 0.0017 0.0023

−2× 10−5 0.0014 −0.0026 −0.9997

−1× 10−5 −0.0021 0.9997 −0.003




0.0001 0.0001 0.0001 0.0001

0.0002 0.0001 0.0003 0.0003

0.0001 0.0003 0.0003 0.0001

0.0001 0.0003 0.0001 0.0003



Gy


1 0.0002 −0.0001 0.0002

0.0002 −0.0045 0.0022 0.9998

−0.0002 0.0019 1 −0.0015

−0.0001 −0.9998 0.0018 −0.0037




0.0001 0.0001 0.0001 0.0001

0.0001 0.0002 0.0003 0.0001

0.0002 0.0003 0.0001 0.0003

0.0001 0.0001 0.0003 0.0002


TABLE D.11. GST estimate of the logic gate operations under ∆ = 1.4 kHz detuning error.

Gate Superoperator (Pauli basis) 95% C.I. 1/2-width

Gi


1 0.0001 −4× 10−5 −4× 10−5

0.0001 0.9947 0.1035 −0.0045

−0.0001 −0.1032 0.9946 0.005

0.0001 0.0053 −0.0054 1




0.0001 0.0001 0.0001 0.0001

0.0003 0.0001 0.0006 0.0005

0.0003 0.0006 0.0001 0.0005

0.0002 0.0006 0.0005 0.0001



Gx


1 0.0001 −0.0002 0.0002

0.0002 1 0.0035 0.0031

0.0001 0.0031 −0.0051 −1.0001

3× 10−5 −0.0027 1 −0.0047




0.0001 0.0001 5× 10−5 0.0001

0.0002 0.0001 0.0003 0.0002

0.0001 0.0002 0.0003 0.0001

0.0001 0.0003 0.0001 0.0003



Gy


1 0.0002 −0.0001 0.0002

0.0002 −0.005 0.0031 0.9995

−0.0003 0.0027 0.9999 −0.0031

−0.0002 −0.9996 0.0035 −0.0052




0.0001 0.0001 0.0001 5× 10−5

0.0001 0.0002 0.0003 0.0001

0.0002 0.0003 0.0001 0.0003

0.0001 0.0001 0.0003 0.0002


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The tables below report the comparison between the computed estimate based on GST’s completely

positive trace preserving (CPTP) model and the experimental data given to the analysis routine. Here,

NS and Np are the number of gate strings and fit parameters, respectively. The quantity 2∆ log(L)

measures the goodness of fit of the GST model (small is better) and is expected to lie within [k −
√

2k , k +
√

2k ] where k = Ns − Np. Nσ = (2∆ log(L) − k)/
√

2k is the number of standard

deviations from the mean and provides an indication of the agreement with the model underlying the

GST analysis. The star rating is a crude indication of the strength of model violation seen. Detailed

reports and data are available on request. More detailed explanations can be found in the tutorials and

generated reports of the pyGSTi toolkit [169].

TABLE D.12. GST goodness of fit in the absence of any additive detining error (∆ = 0 Hz)

L 2∆ log(L) k 2∆ log(L)− k
√

2k Nσ Ns Np Rating
1 49.457 52 -2.5432 10.198 -0.25 92 40 FFFFF

2 119.78 128 -8.2157 16 -0.51 168 40 FFFFF

4 456.12 401 55.122 28.32 1.95 441 40 FFFF

8 860.83 777 83.827 39.421 2.13 817 40 FFFF

16 1368.5 1161 207.46 48.187 4.31 1201 40 FFFF

32 1922.7 1545 377.69 55.588 6.79 1585 40 FFFF

64 3082.7 1929 1153.7 62.113 18.6 1969 40 FFFF

128 7860 2313 5547 68.015 81.6 2353 40 FFF

256 2×104 2697 2×104 73.444 2×102 2737 40 FF

TABLE D.13. GST goodness of fit under ∆ =75 Hz detuning error

L 2∆ log(L) k 2∆ log(L)− k
√

2k Nσ Ns Np Rating
1 59.185 52 7.1851 10.198 0.7 92 40 FFFFF

2 145.12 128 17.117 16 1.07 168 40 FFFF

4 448.75 401 47.751 28.32 1.69 441 40 FFFF

8 889.84 777 112.84 39.421 2.86 817 40 FFFF

16 1358 1161 197.02 48.187 4.09 1201 40 FFFF

32 1882.3 1545 337.29 55.588 6.07 1585 40 FFFF

64 2903.9 1929 974.94 62.113 15.7 1969 40 FFFF

128 7715.9 2313 5402.9 68.015 79.4 2353 40 FFF

256 2×104 2697 2×104 73.444 2×102 2737 40 FF
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TABLE D.14. GST goodness of fit under ∆ =500 Hz detuning error

L 2∆ log(L) k 2∆ log(L)− k
√

2k Nσ Ns Np Rating
1 67.508 52 15.508 10.198 1.52 92 40 FFFF

2 138.08 128 10.082 16 0.63 168 40 FFFFF

4 424.26 401 23.261 28.32 0.82 441 40 FFFFF

8 882.46 777 105.46 39.421 2.68 817 40 FFFF

16 1329.8 1161 168.78 48.187 3.5 1201 40 FFFF

32 1857.7 1545 312.67 55.588 5.62 1585 40 FFFF

64 2861.8 1929 932.76 62.113 15 1969 40 FFFF

128 5637 2313 3324 68.015 48.9 2353 40 FFFF

256 1×104 2697 7957.3 73.444 1×102 2737 40 FFF

TABLE D.15. GST goodness of fit under ∆ =1 kHz detuning error

L 2∆ log(L) k 2∆ log(L)− k
√

2k Nσ Ns Np Rating
1 55.22 52 3.2203 10.198 0.32 92 40 FFFFF

2 129.21 128 1.2101 16 0.08 168 40 FFFFF

4 426.82 401 25.821 28.32 0.91 441 40 FFFFF

8 774.03 777 -2.9656 39.421 -0.08 817 40 FFFFF

16 1308.9 1161 147.9 48.187 3.07 1201 40 FFFF

32 1862.4 1545 317.37 55.588 5.71 1585 40 FFFF

64 2565.1 1929 636.14 62.113 10.2 1969 40 FFFF

128 4743.6 2313 2430.6 68.015 35.7 2353 40 FFFF

256 7622.6 2697 4925.6 73.444 67.1 2737 40 FFFF

TABLE D.16. GST goodness of fit under ∆ =1.4 Hz detuning error

L 2∆ log(L) k 2∆ log(L)− k
√

2k Nσ Ns Np Rating
1 80.609 52 28.609 10.198 2.81 92 40 FFFF

2 149.36 128 21.356 16 1.33 168 40 FFFF

4 447.87 401 46.871 28.32 1.66 441 40 FFFF

8 897.86 777 120.86 39.421 3.07 817 40 FFFF

16 1427.1 1161 266.15 48.187 5.52 1201 40 FFFF

32 1970 1545 425.04 55.588 7.65 1585 40 FFFF

64 2585.6 1929 656.62 62.113 10.6 1969 40 FFFF

128 4421.8 2313 2108.8 68.015 31 2353 40 FFFF

256 7240.9 2697 4543.9 73.444 61.9 2737 40 FFFF
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