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SUMMARY



One of the most important and far reaching concepts in mathematics

is that of a group. It is to this branch of mathematics that the work

in this thesis belongs.

An automorphism of a group is an expression of the symmetry of the

group structure. If there is sufficient symmetry then it is to be

expected that the structure will be restricted. The purpose of this

thesis is to make a precise statement of this relationship for the

case in which the symmetry is given by an invelutory automorphism.

Although the investigation of this problem dates back to Burnside

at the end of the nineteenth century, it is only during the last ten

years that any reasonably general results have been obtained. A survey

of recent work on the problem- for the case of finite groups with

arbitrary automorphisms is given in the introduction. There is also

an eacplicit statement of the results proved in the thesis together

with an indication of the method of proof.

Included in the second chapter is a summary of the theorems

needed for the proofs in later chapters. These results are either

group theoretic or belong to the theory of representations of finite

groups. It is interesting to notice that it is not necessary to use

any of the more recent deep theorems of group theory in an essential

way.

Chapters 5 and 4 deal with preliminary results which are needed

for the later theorems. The division into chapters corresponds to

group theoretic results and results depending on the theory of group

representations. At the end of chapter 4- there is an application of



the earlier results to prove a theorem on the structure of groups

expressible as a product of subgroups of a particular kind.

The remaining two chapters are devoted to the proof of the main :

theorems. Some examples are also included to indicate the strength of

the theorems.



PREFACE

All the theorems proved in this thesis are original.

The lemmas are also all original with the exception of the

following lemmas in Chapter III. Lemma 3 is a generalization

of a result proved by Dr. Kovacs and Professor Wall in [1MJ .

Lemma 5 and its corollaries have appeared in various forms,

the method of proof being essentially due to Burnside.

Lemma 4 is probably well known and whilst lemma 2 does not

appear to have been proved in the literature, the method

of proof is well known.

The first two lemmas in the proof of the theorem in

Chapter V follow Kovacs and Wall [1M3 fairly closely.

I wish to thank my supervisor, Professor G.E. Wall,

for his guidance and for the simplifications which he has

suggested in several of the proofs.



CHAPTER I

INTRODUCTION

A problem which frequently arises in finite group theory

“is the interpretation of information given about the action

of an automorphism w on a finite group G in terms of the

structure of G~. The object of this thesis is to examine

some special cases of this problem in which the automorphisms

are of order 2; As an example of the kind of result which

is obtained we have1: if the finite group G of odd order

is acted on by an automorphism w of order 2 such that Go

is a Hall subgroup of‘ G then there exists a normal abelian

complement of Go in G .

The earliest problems of this kind arose out of the study

of Frobenius groups; the groups which can arise as the regular

subgroup of a Frobenius group are precisely those groups with

a regulargautomorphism of prime order. Burnside proved in the

first edition of his "Theory of Groups of Finite Order" that

the finite groups with a regular automorphism of order 2 are

precisely the abelian groups of odd order. General results

about the structure of a group with a regular automorphism

of order p have only been obtained comparatively recently.

 

1The notation used in this Chapter is explained in Chapter II.

2An automorphism w of a group G is said to be regular if

xw = x for x e G implies x = 1 .



Higman [1313 has shown that if such a group is soluble then

it is nilpotent of bounded class, the bound being a function

of p . Thompson [15] succeeded in showing that the group

must be soluble.

Some other conditions for solubility involving the action

of automorphisms on a finite group have been obtained. Fischer

[7] has shown that if the finite group G has a regular auto-

morphism w of order 2p , where p is a prime, then G is

soluble if Gwp either is a 2-group or contains a Sylow 2—sub-

group of G . Fischer's proof depends on the Feit-Thompson

'theorem that groups of odd order are soluble, the Higman-

Thompson result already mentioned and the theorem of Brauer

and Suzuki on groups whose Sylow 2-subgroup is a quaternion

group. Earlier Gorenstein and Hernstein [9] had proved inde-

pendently of the Feit-Thompson theorem that a finite group

with a regular automorphism of order A is soluble. They also

showed that for such a group G' is nilpotent.

It is also of interest to suppose at the outset that the

group is soluble and then to seek additional properties. In

this vein, Alperin [1] has generalized Higman's result by

proving that if a finite soluble group G has an automorphism

m of prime order p and if {Gm} = pn , then the derived

length of G is bounded by a number depending only on p and

n o

 

3Numbers in square brackets refer to the references.



However the most general results on automorphisms of

soluble groups are due to Thompson [16]. If p is a prime,

let OP(G) denote the largest normal p—subgroup of G and

Op.(G) the largest normal subgroup of G of order prime to

p . Define 0 (G) inductively as the inverse image
P1P2”°Pr

in G of 0p (G/bp (G) ) . Then Thompson's theorem
r 1

e o opr_1

may be stated as follows: if G is a finite soluble group

with an automorphism w of prime order not dividing the order

of G , then for any prime q

2 .(a) oqmw) rye) if an!I
A

(1:) 02 (Gen) 5, MG)
<

(C) 0q (Gm) - oq.q'.q(G) .

Suppose that G is a group of odd order with an auto-

morphism w of order 2 such that Ga is nilpotent. Such a

group is soluble by the Feit-Thompson theorem. Kovacs and

Wall [1h] have shown that in these circumstances G/F(G) is

nilpotent provided that all the Sylow subgroups of Ga are

regular and that whenever G/F(G) is nilpotent, G/F(G) is

contained in the variety generated by Ga and the class of

abelian groups. The principal theorem proved in this thesis

gives information when G/F(G) is not nilpotent. We show

that G = F3(G) and that if (Gw)(r) = 1 then e(r) is
nilpotent. These results are the best possible in the sense

that there do exist groups G of the kind under consideration

for which G # F2(G) or G(r-1) is not nilpotent when Gm



has derived length r . The requirement that Gm be nil-

potent is essential. Indeed given any integer n there exist

groups G with involutory automorphisms possessing metabolian

(n)fixed point groups for which G is not nilpotent.

The principal theorem is proved by induction on the order

of the group and by way of contradiction. The KovacsANall

theorem is assumed for the special case in which Go is abelian

but this could be avoided. An initial group theoretical re-

duction provides a faithful irreducible represnntation of

G/F(G) . This representation is used together with Clifford's

theory on the restriction of an irreducible representation to

a normal subgroup to find further group properties. An ex—

tensive group theoretical analysis then leads to the final

contradiction. Some results of P.Hall on the system normal-

izes of a soluble group are employed in the final stages of

the proof.

We also consider groups of odd order which possess several

automorphisms of order 2. If a group G of odd order is

operated on by a group of automorphisms of order 8 and exponent

2 such that for each non-trivial automorphism belonging to the

group the fixed point group is nilpotent, then G is nilpotent.

This is not true in general if the group of automorphisms is

only of order n, the other conditions all being satisfied;

however in this case we can say that G' is nilpotent. It is

perhaps of interest to note that G need not be supersoluble.

In conclusion, we mention a result which arose out of the

proof of the main theorem: if the finite group G contains two



complementary Hall subgroups, one of which is abelian and

the other nilpotent of derived length r then G(r) is

nilpotent. The solubility of G is obtaineé from a theorem

of Wielandt. Results of this kind seem to be saarce in the

literature.



CHAPTER II

NOTATION AND SUMMARY OF KNOWN RESULTS

 

The following notation is, for the most part, well known.

All groups in this thesis are finite.

Let G

16!

¢(G)

2(a)

GI

G(r)

F(G)

Fn(G)

denote a finite group.

the order of G

the Frattini subgroup of G

the centre of G

the derived group of G

the r-th derived group of G , defined inductively

by G(0) = e , G(at-+1) = (G(r)).

the Fitting subgroup of G , the largest normal

nilpotent subgroup of G

the n—th term of the upper Fitting series of G

defined inductively by r1(e) = F(G), Fn+1(G) = the

inverse image in G of F(G/Fn(G))

the unit of a group, or the subgroup of a group

containing only the unit, according to the context.

Let x,y,... denote elements of G and H, K,... subgroups

of G .

[G:H[

H n K

{H.K!

the index of H in G

the intersection of H and K

the least subgroup of G containing all the elements

of both H and K . If K is normalizes by H ,

{K,H} = HK .



H is disjoint from K H n K = 1 .

ix,y,...;H,K,...} the least subgroup of G containing

all the elements x,y,... of G ané

all the elements of each of the sub-

groups H, K... of G .

H S K H is a subgroup of K, H = 1 and

H = K are allowed.

H < K H is a proper subgroup of K, H = 1

is alloweé but not H = K .

H 4 K H is a normal subgroup of K , H = 1

and H = K are allowed.

H is a non-trivial subgroup of G . H < K , H # 1 .

If K a H we call H/K a section of G .

CH(K) the centralizer of K in H .

NH(K) the normalizer of K in H .

If L and M are groups, L x M denotes the direct product

of L and M . ‘

Let u denote an automorphism of G and A a group of

automorphisms of G .

If x e G we denote the image of x under the automorphism

w by x“ .

H“ The collection of elements xw where

x e H forms a subgroup denoted by H“

w is a regular automorphism of G : x” = x only if x = 1 .

H/K is a w—section of G: H/K is a section of G ,

H“ = H and K”: K .



H/K is an A-section of G: H/‘K is a w-section of G for

all automorphisms w in A .

G The centralizer of m in G .

Let at be a field and G a group. Then £03) denotes

the group algebra of G over I . If V is an fwd-module,

we write scalars as left operators on V and elements of

I(G) as right operators on V . The statement "V is an

I(G)-modu1e" may be abbreviated to "V is a G—module" when

it is clear from the context that we are working over the field

of . If W1 2

is the smallest of (G) -submodule of V containing W1 and W2 .

9W2 for W+W ianW
1 1 2 1 2

module of V containing only the zero element, 0 , of V .

and W are of (G)-submodules of V , W1+ W2

We write w = O , the sub—

If I1 is an extension field of I , V’C1 denotes the

11(G)—module obtained by extending the scalar field of V

from 1, to <1: .

3' denotes the algebraic closure of GF(p) , the Galois

‘field with p-elements.

Some further definitions are contained in the summary

of known results.

The following results are assumed to be known but are

not explicitly mentioned each time that they are used.

The modular law.

Let L, M and N be subgroups of G such that L _<_ N .

Then L(Mn N) = LMn N .

([10] Theorem 8,LL.1.)



The fundamental property of the Frattini subgroup.

If L3G and L¢(G)=G then L=G.

([10] Theorem 10.u.1)

The Frattini subgroup of a p-group contains the derived

group and the p-th power of any element in the group.

([19] Theorem 10.u.3)

Nilpotent groups.

6)

The following statements are equivalent.

The group G is nilpotent.

Some term of the upper central series of G is equal

to G .

G is a direct product of its Sylow subgroups.

Elements of relatively prime order in G commute.

All the maximal subgroups of G are normal in G .

([1G] section 10.3)

Hall subgroups of soluble groups.

Let G be a soluble group of order mn where m and

n are relatively prime. Then

1) G possesses at least one subgroup of order m .

2) Any two subgroups of order m are conjugate.

3) Any subgroup whose order m' divides m is

contained in a subgroup of order m .

h) The number hm of subgroups of order m may be

expressed as a product of factors, each of which

is a power of a prime dividing the order of G .

([10] Theorem 9,3,1.)
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Subgroups of a group whose order and index are

relatively prime are called Hall subgroups. If p is a

prime, a Hall p'—subgroup of the group G is a subgroup H

whose index is a power of p and whose order is prime to p .

The Feit-Thompson Theorem.

Groups of odd order are soluble. [6] .

The Schur-Zassenhaus Theorem.

Let G be a finite group of order mn containing a

normal subgroup K of order m , where m and n are

relatively prime. Then there exists a complement of K in

G and all such complements are conjugate.

([10] Theorem 15.2.2 and [18] p. 162, Theorem 27)

If G is a finite group with a regular automorphism of

order 2 then G is abelian of odd order and the automorphism

maps each element onto its inverse. ([3] p.90)

If G is a soluble group then CG(F(G)) g F(G) .([2]p.6u6)

F<G/¢(G>) = F(G)/¢(G). ([21 10. 6M)-

A group G is called the splitting extension of K by

H if K is a normal subgroup of G and H is a subgroup

03 G whose elements may be taken as the coset represent-

atives of K . Given two groups H and K and for every

element h e H an automorphism of K , k 4—» kh all k e K ,

h h h h
such that k 1 2 = (k 1) 2 , h1,h2 e H there exists a group

G which is the splitting extension of K by H. ([10],section

6.5.)
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The remaining results are numbered and will be referred

to by means of these numbers each time that they are used.

1) If G contains two nilpotent complementary Hall sub-

groups then G is soluble. [17]

2) If N is a normal subgroup of the group G then

¢(N) s ¢(G) - ([8] page 162.)
3) A set of pairwise permutable Sylow subgroups of a group

G , one for each prime dividing the order of G, is called a

.Sylow system for G . If G is a soluble group then there

exists a Sylow system for G and all such systems are con-

jugate. The intersection of the normalizers of the subgroups

of a Sylow system is called the system normalizer. The set of

system normalizers forms a characteristic class of conjugate

subgroups of G . Let D be a system normalizer of G. If

G = Go > G1 > ... > G1‘ = 1 is a chief series for G then

G1+1 D Z Gi if G centralizes Gi/G1+1 (the covering theorem)

whilst G AD 3 G = G
1 1+1 1+1 1

theorem). These results may all be found in [11] and [12] .

if (G,G1)G (the avoiding

‘ u) If G = F2(G) then the system normalizers of G are

their own normalizers ([h] theorem 5.6).

5) Let G be a non nilpotent soluble group and suppose

that F(G) is the unique minimal normal subgroup of G . Then

F(G) is complemented in G . ([2] page 651.)

6) If m is an automorphism, of order 2, of G and the

order of G is odd then F(Gw) g F3(G) . [16].

7) Let G be a group of odd order with an automorphism w

of order 2. Suppose that Gm is abelian. Then G' g F(G).

([1u] page 11h).
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8) Clifford's Theorem and Related Results.

Let G denote a group, H a normal subgroup of G

and I an arbitrary field. Suppose W is a right I(H)-

module. For a fixed g e G let W(g) be the right {(1-1)—

module whose underlying vector space is W and on which H

acts according to the rule w 0 h = w g—1hg for each

w e W , h e H , where w 0 h denotes the module operation

in W(g) , and wh the operation in W . W(g) is called a

. conjugate of W .

Now let V be an irreducible IUD-module, then V

considered as an of (ID—module is completely reducible and the

irreducible of (H)-submodules of V are all conjugates of each

3

other. Therefore as an «f(H)-modu1e V =3 69ng where W is an

=1

irreducible of (H)-submodule of V and the ng are certain

conjugates of W . Suppose that Wg1,...,Wgr form a maximal

set of non-isomorphic conjugates of W and for each 1 ,

1 g i g r , let Vi be the sum of all the conjugates ng ,

1 g j g s , such that ng ; ng as right of(H)-modules.

Then

V=V1 6V2 $.90 $Vro

Thé vi are uniquely determined and are called the homo-

geneous components of V as an [GD-module. G acts as a

transitive permutation group on the V1 . The number r of

distinct homogeneous components of V is equal to the index

IG:H*) where H" is the subgroup of G consisting of all

g G G such that Wg I: W . ([5] , section 149.)
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9) Let G be a finite group and K a perfect field.

Then there exists a splitting field E , containing 192, ,

for G such that If: KI is finite. {[5}, theorem 69.11).

10) Let G be a-finite group, 9» a perfect field and E

a splitting field for G which is a finite normal extension

Eof ii . Then if V is an irreducible ‘Q(G)-modu1e, V is
a completely reducible 35 (G)—modu1e and the irreducible sub-

modules of V5 are algebraically conjugate. ([5], theorem

70.15.)



1’4-

CHAPTER III

PRELIMINARY LEMMAS

Lemma 1. Let P be a p—group and H a proper subgroup

of P . Then

[PzH] > fP':P'rw H] .

2292:. Since ]P:P‘11 H} = ]P:HIIH:P'/\ H! = |P:P'1}P':P'n H;

it is sufficient to prove that ]P:P'} > ]H:P'n H] . Now

P' is a normal subgroup of P so by the isomorphism theorem

P'H/P' S'H/P'n H . Therefore we need only prove that

fP:P'I > IP'H:P'[. But this is true unless P'H = P .

Since P is a p—group, P' g ¢(P) , so that P'H = P

only if H = P by the fundamental property of the Frattini

subgroup. This contradicts the assumption that H is a

proper subgroup of P and therefore the lemma is proved.

Lemma 2. Let G be a group with an automorphism w of

prime order p where p + 1G] . Suppose that F(G) is

abelian and that z(r2(e)) = 1 . Then there exists an

‘w-complement of F(G) in G .

3399:, There exists a Sylow system of F2(G) since F2(G)

is soluble. (See Chapter II (3)). Consider the set of

system normalizers of F2(G) . They form a characteristic

class of conjugate subgroups of F2(G) . Since p + 1F2(G)}

it follows that we can find an w-invariant system normalizer

D of F2(G) .
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By the covering theorem DF(G) = F2(G) . On the other

hand by the avoiding theorem if K is a minimal normal sub—

group of F2(G) contained in D n F(G) then (D,K) = 1 .

But (F(G),K) = 1 since F(G) is abelian so K g Z(DF(G)) =

Z(F2(G)) = 1 . Thus D n F(G) = 1 and D is an w—complement

of F(G) in F2(G) -

We now show that R = NG(D) is an wecomplement of F(G)

in G . Since D is its own normalizer in F2(G) (Chapter II

(4)) R n F(G) = NF2(G)(D) n F(G) = D n F(G) = 1 . Since the

system normalizers of F2(G) form a characteristic system of
1

conjugate subgroups of F2(G) if x e G then x" Dx is also

a system normalizer of F2(G) so that x-1Dx = y—1Dy for

some y e F2(G) . Since F2(G) = DF(G) we may suppose that

y E F(G) . Then xy-1 e NG(D) = R so x 6 By . Since x was

an arbitrary element of G , we have that G = RF(G) . D is

w—invariant so R = NG(D) is also w-invariant and complements

F(G) in G .

Lemma . Let G be a soluble group operated on by a group

A of automorphisms. Suppose that G satisfies the following

condition:

for some pair of non-negative integers (m,n) (n > O)

G(m) is not contained in Fn(G) ; but if H/K is any

A-section of G different from G/1 , then (H/K)(m)g Fn(H/K) .

Then if H is a normal A—subgroup of G .different from 1 ,

F(G) g H and F(G) is an elementary abelian p-group for

some prime p .
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2399:. Suppose that there exist two disjoint proper normal

A-subgroups of G , say H and K . Then G is isomorphic

to a subgroup of o/H x G/K so that G(m) g Fn(G) . This is

a contradiction so that the intersection M of all the non-

trivial normal A-subgroups of G is a non—trivial normal

A-subgroup of G . Since n > 0 , M is a proper normal

A-subgroup of G . G is soluble and M is characteristically

simple so M is an elementary abelian p-group for some prime

p . Clearly F(G), a M , is also a p-group.

Let i denote the Frattini subgroup of G . Since

F(G/¢) = F(G)/§ , Fn(G/§)= Fn(G)/¢ . Now if i > 1 , then

(G/§)(m) < Fn(G/i) so G(ml /o < Fn(G)/§ . Therefore

G(m) < Fn(G) contradicting the hypothesis. Hence x§= .

It follows, by Chapter II(2), that F(G) is an elementary

abelian p—group .

Write H/M = F(G/M) . Then F(G) g H and if P/M is

the Sylow p-subgroup of H/M then, since M is a p-group,

P is a normal p-subgroup of G so that P g F(G) . Hence

= F(G) . Now by hypothesis ‘(G/M)(m) g Fn(G/M) whilst

G(m) is not contained in Fn(G). Therefore, as G(m)/M

=(G/M)(m) , H properly contains F(G)

Since F(G) is an elementary abelian normal Sylow

p-subgroup of H , F(G) is a completely reducible H/F(G)-

module. But M is an H/F(G)-submodu1e of F(G) so

F(G) = M x N where N is also an H/F(G)-submodule of F(G) .
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Since H/M is nilpotent and F(G) is abelian, N g Z(H) .

Now suppose that Z(H) > 1 . Then Z(H) is a characteristic

subgroup of H , a normal A—subgroup of G . Hence Z(H) is

a normal A—subgroup of G and therefore contains M . Now

H/M is nilpotent so the upper central series of H terminates

at H . But this implies that H is nilpotent so that H g F(G)

contradicting the conclusion of the previous paragraph. There-

_ fore N g Z(H) = 1 and M = F(G) proving the lemma.

Lemma . Let H be an arbitrary finite group and q a prime

which does not divide the order of H . Let A denote the

group algebra of H over GF(q) , the field with q elements,

and let G denote the set of mappings

x -+ ax + b

of A into itself where a runs over H and b runs over A .

If we take the composition of maps as a product in G then G

is a group. The Fitting subgroup of G consists of the maps

ortherormxex+b where beA. G/F(G)=_-’H.

Proof. The element x ->ax + b may be denoted by the pair

(a,b) where a e H and b e A . Then the product operation

in G is given by

(a,b) o (c,d) = (ac, ad + b) .

It is now easy to verify that G is a group and that the set

N of elements of G of the form (1,b) where b e A is a

normal abelian subgroup of G .
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The map fi: G -¢ H defined by

¢((a,b)) = a

is a homomorphism of G onto H with kernel N . Thus

G/N E H .

Finally we prove that N = F(G) . Since N is a normal

abelian subgroup of G , N S F(G) . For b e A ,

(1,b)q = (1,qb) = (1,0) since A is the group algebra of H

_ over GF(q) . Thus every non-trivial element of N has order

equal to the prime q . Since IG:N' = [H] is prime to q ,

N is the Sylow q-subgroup of G . N is normal and abelian

so N g Z(F(G)) . Suppose that (a,b) e F(G) . Then since

N g F(G) , (a,0) e F(G) . But then (a,0) must commute with

all the elements of N so

ac = C

for all 0 e A . This implies that a = 1 and hence that

F(G) = N . The lemma is now established.

Lemma 5. Let G be a group of odd order with an automorphism

w of order 2 . Then there exists precisely one element of G ,

which is inverted by w , in each left (right) coset of Gm .

2299:, Consider the elements of G which can be written in

the form x-1xw for some x G . Since w2 = 1 , any such

element is inverted by w . Now suppose that 1

_1 w = y-1yw
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Then xw(y'1)w = xy-1 so that icy-1e Ga) . Hence 1: and

y belong to the same left coset of Gm . Thus the number

of elements of G inverted by w is at least as many as the

index of Go in G .

Now suppose that x and y are two elements of G

which are both inverted by w and xy"1 6 G6 . Then apply—

ing w we obtain x-1y = Icy"1 so that x2 = y2 . Since the

order of G is odd we deduce that x = y . This proves the

lemma for left cosets. A similar proof applies to right

cosets.

Qorollary . Let G be a group of odd order with an auto-

morphism w of order 2 . Every element of G may be ex-

pressed as the product of an element fixed by w and an

element inverted by w .

Corollary 2. Let G be a group of odd order with an auto-

morphism w of order 2 . Let H be a subgroup of G con-

taining Gm . Then H‘” = H .

Proof. Let x e H . We require to prove that x“ e H .

—1 w
and z = 2 by corollary 1 .

Since ngH,zeH so y=xz—1e H. Thus

::‘n = y_1z e H as required.

Now x = yz where yw = y

Corollary 5. Let G be an abelian group of odd order with

an automorphism w of order 2 . Then if N is the set of

elements of G which are inverted by w , N is a subgroup

of G and G = N x Gh .
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Theorem 1. Let G be a group of odd order with an auto-

morphism w of order 2 . Suppose that Ga is a Hall sub-

group of G . Then there exists a normal abelian complement

of Gm in G .

figtg. If we omit the condition that the group is of odd

order, then the conclusion is no longer valid. For let

3
G = [x,y,z[x2= y2= z = 1 , 2-1 xz = y, 2'1yz= 1:3”.me ,

and take w to be the inner automorphism of G induced by x .

. Then Gw = {x,y} = F(G) . Since G is soluble there cannot

exist a normal complement of Gm in G .

2299:, Consider the set of Hall subgroups of G which com-

plement Gw . Since the order of G is odd, and all the

groups in the set are conjugate in G , the set contains an

odd number of groups. The groups in the set form a character-

istic system of subgroups of G . Since w is of order 2 and

the number of groups in the set is odd, at least one group,

say H , of the set is mapped onto itself by w . Since

Hm = H n Ga , m acts as a regular automorphism of H so that

w inverts all the elements of H and N is abelian.

Since H n Ga: 1 whilst £H,Gw} = G , the elements of H

form a complete set of representatives of the left cosets of

Ga . Thus H consists of precisely those elements of G which

are inverted by w , by lemma 5. Now let x e H and y 5 Ga .

Then (37421)” = (ywydxmyw = y'1X'1y = (ar'1ac.ir)'1 so that

y'1xy e H . Therefore Gm normalizes H . Therefore H is a

normal abelian complement of G6 in G , and the theorem is

proved.
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CHAPTER IV

On Groups Expressible as a Product of Nilpotent

Hall Subgroups.

We denote by GF(p) the field containing p elements

and by :} the algebraic closure of GF(p) .

Lemma 1. Let P be a Sylow p-subgroup of the group G.

Suppose that

(i) P has derived length r

and

(ii) there exists a faithful irreducible :}(G)-module

V such that for all v e V and xi 6 P(1) (i=0,1,...,r-1)

v(1-xo)(1-x1) ... (1-xr_1) = 0 .

Then P(r-1) g CG(A) for any normal abelian subgroup A of G .

Proof. The lemma is certainly true if r = 0 so we may
 

suppose r a 1 . Let A denote a normal abelian subgroup

of G 0

Consider V as an :¥(A)-module . Since V is an

irreducible E¥(G)-module it follows from Chapter II (8) that

V = V1 $ ... $'Vn

where V1’°"'Vn are the homogeneous components of V as

an E;(A)-modu1e. Since A is abelian and Z} is algebraically

closed, the irreducible ff(A)-submodu1es of V are one

dimensional. But each V1 is a sum of isomorphic irreducible

E}(A)-submodfih§s of V so that we may describe the action of
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x e A on v 2 V1 by

fix = 11(X)W .

Since A is a normal subgroup of G , G acts as a

permutation group on the V1 . For each i=1,...,n let

H be the subgroup of G which fixes Vi .
i

We now prove that P(r—1) 5 Hi for all i . For

suppose that P(r'1) i Hj . Then H n P(k) is a proper
3

subgroup of P(k) for k = 0,1,...,r—1 . Thus by

Chapter III, lemma 1

[P(i): P(i)tw H3] > ]P(1+1): P<1+1)r1Hjl

for 1 = O,1,...,r-2 . Now [P(i):P(i)n H3! is the

number of Vk in the same system of transitivity as Vj

under P(1) . Thus we may choose xi 6 P(i) such that

iji is not in the same system of trensitivity as V:j

under P<1+1> (i=0,...,r-2) . Let x e P(r_1) . Then

for all v 6 V3

v(1-xo)(1-x1) ... (1-xr_2)(1-x) = O .

Since V:j x0 is not in the same system of transitivity as

V3 under P’ and since V = V19 ... 6 Vin as an 3'0.)-

module we can conclude that

v(1-x1)(1-x2) ... (1-xr_2)(1-x) = 0 .

Processing in this way we finally deduce that

v(1-x) = O .
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But v was arbitrary in V3 so it follows that x e Hj .

Since x ‘was arbitrary in P(P-1) we have P(r—1) g H
3

a contradiction. Thus P(r-1) g H for all i .
i

Let xeP(r-1) and y EA. If v eV then

v = v1+ V2+ 000 + Vn

where vi er (i=1,...,n). Now
i

vxy = (v1x)y + (V2X)y + to. + (VnX)y

x1(y) v1x + x2(y)v2x + ... + xn(y) vnx

since vix €.Vi for each i . Thus

vxy = (x1(y)v1)x + (x2(y)v2)x + + (xn(y)vn)x

(v1y)x + (vzy)x + ... + (vny)x

(v1+ v2 + ... + vn)yx

VYX .

But v was arbitrary in V so xy and yx are represented

in the same way on v . Since v is a faithful 7(G)-modu1e

xy = yx

or as y was an arbitrary element of A and x an arbitrary

element of P(r‘1) , P(r_1) g CG(A) . This completes the

proof.

Lemma 2. Let G be a finite soluble group with Sylow

p-subgroup P . Suppose that

a) F(G) is a minimal normal subgroup of G .

b) F(G) is a p—group .

c) P has derived length r .
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Then P(r-1) centralizes every abelian normal subgroup of

G/F(G) .

ggggg. Since the lemma is trivially true if e = F(G) we

may assume that G is not nilpotent. Set F = F(G) . It

follows from (a) and Chapter II (5) that there exists a

complement M of F in G . We must show that if R is a

Sylow p-subgroup of M then R(P-1) centralizes every

abelian normal subgroup of M .

M acts as a group of automorphisms of F since F is

a normal subgroup of G . Since F is the minimal normal

subgroup of G , F is an elementary abelian p-group. Con-

sidering F as a vector space over GF(p) we obtain an

irreducible GF(p) (M)-module. CG(F) g F so the represent-

ation of M corresPonding to the module is faithful.

Since R is a Sylow p-subgroup of M , RF is a Sylow

p—subgroup of G , and is conjugate to P . Thus (RF)(r)= 1

Letting xi 9 R(i) for each i = 0,1,...,r—1 and using the

additive notation we deduce that

(1) f(1-xo)(1-x1) ... {1-K ) = e
r-1

for all f e F .

We now construct from F an irreducible '3(M)-module V

which induces a faithful representation of M and for which

(1) is satisfied for all f e'V .

Since M is a finite group and GF(p) is a perfect

field, there exists, by Chapter II (9), a finite extension

field of GF(p) which is a splitting field for M . Since
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an extension field of a splitting field is still a splitting

field, there exists a finite normal extension field of GF(p) , “

which is a splitting field for M . This enables us to apply

Chapter II (10). However the conclusion of Chapter II (10)

will still apply if we replace the finite normal extension

field of GF(p) by E; , the algebraic closure of GF(p) .

Form the 3(M)-modu1e F3 by extending the scalar field from

GF(p) to 3: and let V be an irreducible 23(M)-submodule.

Ft? is obtained from F by extending the field of

scalars so as F gives rise to a faithful representation of

M so does r3 . By Chapter II (10) the irreducible 3m)—

submodules of F13 are all algebraically conjugate so they all

induce representations with the same kernel. Since F:; is

completely reducible, it is a direct sum of irreducible :}(M)-

submodules, each of which induces a representation of M with

the same kernel as the representation induced by V . Thus

as F:3 induces a faithful representation of M , V re-

presents M faithfully. ‘

Since (1) is true for f e r and F3 is obtained

from F by extending the field of scalars (1) holds for

f e r3 . But v is an 3(M)-submodu1e of 3'3 so (1) is

true if we take f e V .

Now replacing G by M and P by R in the statement

of lemma 1 we see that the hypothesis of the lemma is satis-

fied so it follows that R(r-1) g CM(A) for any normal

abelian subgroup A of M . This is what we set out to prove.
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Theorem 1. Let the group G contain two complementary

Hall subgroups H and K such that H is abelian and K

is nilpotent with K(r) = 1 . Then the r-th derived group

of G is nilpotent.

23292. Suppose that the theorem is false and let G be a

counterexample of minimum order. It follows from Chapter II

(1) that G is soluble. Therefore every proper subgroup

and factor group of G satisfies the hypothesis of the

theorem, and so by the minimality of G , also satisfies the

conclusion. Let A be the group containing just the identity

automorphism of G , and apply Chapter III lemma 3. Since all

the conditions of the lemma are satisfied we deduce that

F(G) is the unique minimal normal subgroup of G .

.It follows that F(G) is a p-group for some prime p .

Since F(G) is a normal subgroup of G , F(G) g H or

F(G) S K . Suppose F(G) g H . Since G is soluble

CG(F(G)) _<_ F(G) , so that as H is abelian, H _<_ F(G) .

Thus H = F(G) and G/F(G) a K . But K”) = 1 so

G”) g F(G) . Thus we may assume that F(G) 5 K .

Since F(G) is a p-group, K is nilpotent and

CG(F(G)) g F(G) , K is a p-group. Taking K for P in

lemma 2 we deduce that K(r-1) centralizes every abelian

normal subgroup of G/F(G) .

On the other hand since F(G) is a. p-group, F2(G)/F(G)

is a p'—group. Therefore F2(G)/F(G) g HF(G)/F(G) ané so

is abelian. Now K(r—1)F(G)/F(G) g cG/F(G)(F2(G)/F(G»_<_F2(G)/F(e) ;

80 as é}?fl9>F(G) is a p—group whilst F2(G)/F(G) 16 a
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p'-group, K(r-1) g F(G) .

We now apply the theorem to the group G/F(G) .A G/F(G)

is the product of the two Hall subgroups KF(G)/F(G) ane

HF(G)/F(G) , the first of which is nilpotent of derived length

r-1 and the second is abelian. Thus (G/F(G))‘""5_ F2(G)/F(G)

and therefore G(r—1) g F2(G) . Since as we have already seen

F2(G)/F(G) is abelian, G(r) g F(G) . This contradiction to

the definnion of G proves the theorem.

A group of interest in connection with theorem 1 is the

group G of 2 x 2 matrices over GF(3) . This group is of

order #8 and so may be written as the product of a Sylow

3-subgroup H and a Sylow 2-subgroup K . H is abelian

and K has derived length 2 . Thus by the theorem G" is

nilpotent. However G" is not abelian and G' is not

nilpotent.
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CHAPTER V
 

THE MAIN THEOREM

Theorem 1. Let G be a group of odd order with an auto—

morphism m of order 2. Suppose that Gm is nilpotent

and that (Gw)(r) = 1 . Then sh") is nilpotent and

G = ram) .

Kovacs and Wall [dug have exhibited a group G satis-

, fying the conditions of theorem 1 and for which G # F2(G) .

Before proving the theorem we give some other examples.

Example 1. Given any group H of odd order we construct a

group G with an automorphism m of order 2 such that

Gm g H but for which G(r'1) is not nilpotent where r is

the derived length of H .

Indeed let g be any odd prime not dividing the order

of H and construct a group G as described in Chapter III

lemma h. For this group, G/F(G) S H so tut G(r) is not

nilpotent. It remains to construct an automorphism m of G

of order 2 and such that Gm E H . We define the mapping

w : G -9G by letting the element x —9 ax + b of G be

mapped onto the mapping x -> ax - b of G . It is easy to

check that this mapping is an automorphism of G of order 2.

Since q is odd the fixed point group Gm consists of the

mappings x -> ex and therefore is isomorphic to H .

Example 2. Let n be an arbitrary integer. We construct a

0
group G of?§rder with an automorphism w of order 2, such
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that Ga is metabelian (but not nilpotent). However

G(n) is not nilpotent.

To construct such a group choose a p-group P , for

p an odd prime, with an automorphism w of order 2 such

that Pm is cyclic and P(n) # 1 . Kovacs and Wall [1hJ

have given examples of groups with these properties. Form

H , the splitting extension of P by w and choose an odd

prime q # p . We may now construct the group G described

in lemma'u of Chapter III. Let M be the normal subgroup

of c of index 2 in G . It is clear that F(M) a F(G)

and that M/F(M)= . Thus M(n) is not nilpotent. On

the other hand if 9 is an involution of G then (F(M))a

is abelian since F(M) is abelian and MO/(F(M))e 2’ 13‘n is

cyclic. Thus M is metabelian and we have a group withG

the required properties.

The theorem is proved by induction on ]G} and by way

of contradiction. Suppose therefore that G is a group of

minimal order satisfying the hypotheses of the theorem but

not the conclusion. Since the theorem is known for r=1 we

may suppose that r > 1 .

The order of G is odd by hypothesis so G is soluble.

Lemma 1. F(G) is the unique minimal normal w-subgroup of

G . Therefore F(G) is an elementary abelian p-group for

some prime p .
(:3?

   
Proof. Lefi H/K be a w-section of G . Then (fi(K)%

=GwK11 H/K since the order of w is a prime not divin;
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the order of G . Thus H/K satisfies the hypotheses of

the theorem and if H/K # G/1 , it follows from the minimality

of G that H/K satisfies the conclusion of the theorem.

Let A denote the group of automorphisms of G consisting of

w and the identity automorphism. Then an A-section of G

is just a w-section of G so G satisfies the hypothesis

of Chapter III lemma 3. This completes the proof of lemma 1.

Notation.~ For each positive integer n , set Fn = Fn(G) .

.Let r denote the splitting extension of G by w .

Lemma 2. (1) (G/F1)w g e/F1 ,

(11) F is a faithful irreducible r/F1-module,
1

(iii) (F1)w > 1 . Therefore p I lel .

 

Proof. (1) If (G/F1)w = G/F1 , then G/F1 is isomorphic

to a section of Ga and therefore is nilpotent of derived

length less than or equal to r . It follows that G satis—

fies the conclusion of the theorem. Hence (G/F1)w # G/F1 .

(11) Lemma 1 implies that F1 is an irreducible

r/F1-module. To prove that F is a faithful r/F1-modu1e
1

we need to prove that Cr(F1) = F1 . Since F1 is the

Fitting subgroup of G , and since G is soluble,

CG(F1) = F1 . Hence if cr(r1) > F1 , !0P(F1):F1] = 2 . In

this case r/F1 has a normal Sylow 2—subgroup so that

r/F1 = G/r1 x gpiwr1} from which it follows that

(G/F1)w = G/F1 , contradicting (i). This proves (ii) .
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(111) (F1)w > 1 for if (F1)w = 1 , w must

invert all the elements of F1 . Then, since P/F1 is

faithfully represented by its action on F1 , wF1 lies in

the centre of r/F1 . But this again implies that

(cf/15'1)‘0 = e/F1 , contradicting (1) .

Lemma 5. F2/F1 is a p'-group. G/F1 has no non—trivial

normal p-subgroups.

- Proof. Suppose that P/F1 is the Sylow p-subgroup of

F2/F1 . Then as F1 is a p-group, P is a normal p-

subgroup of G . Hence P g F The second statement1 0

follows from the first.

‘ _ (r-1)Lemma .‘ If Gm is a p group then G — FZGw and (Ga)

is not contained in F1 . F2/F1 is abelian.

2392:. We know, by lemma 2, that F1 is a p-group and, by

lemma 3, that F2/F1 is a p'-group. Since G/F1 is soluble

and FZ/F1 is a normal subgroup of G/F1 , F2/F1 is con—

tained in every Hall p'-subgroup of G/F1 . Now the Hall

p'—subgroups of G-/'F1 are all conjugate and the order of G

is odd so the number of Hall p'-subgroups is odd. Clearly

the automorphism w permutes these Hall p'-subgroups and

since the number of them is odd, at least one is fixed by w .

Thus we can choose a Hall p'-subgroup H/F1 such that H” = H .
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Now Hm = H n Gw is a p—group so that Hm i F1 . Thus w

acts as a regular automorphism on H/F1 so that H/F1 is

abelian. Since G/F1 is a soluble group,

CG/F1(F2/F1) < Fg/F1 . But Fz/F1 g H/F1 so that as H/F1

is abelian, H/F1 g CG/F1(F2/F1) S F2/F1 g H/F1 . Thus

F2/F1 is the unique Hall p'-subgroup of G/F1 . It follows

that G/F2 is a p-group. Therefore G = F5 .

Since G = F3 and G does not satisfy the conclusion

of the theorem, G(r) is not nilpotent.

Suppose by way of contradiction that Gw(r’1) §.F1

Then (G/F1) has derived length at most r-1 , so by the

minimality o? G , (G/F1)(r—1) is nilpotent. Thus

G(r_1) 5 F2 and since, as we have already seen, Fz/F1 is

abelian, G(r) i F1 . This contradiction proves that

Ga(r-1) is not contained in F1 .

Finally we show that if G-wF2 < G , Gm(r-1) is con—

tained in F1 . It then follows from the conclusion of the

‘ previous paragraph that Gsz = G . Suppose then that

Gsz < G , and let K be a maximal subgroup of G contain-

ing Gsz . Since K is a maximal subgroup of G contain—

ing F2 and since G/F2 is nilpotent, K is a normal sub-

group of G . By Chapter III lemma 5, corollary 2, as

Ga 5 Gsz fi K , K is an m-subgroup of G . Therefore,

by the minimality of e , K(r) is nilpotent. But K(r)

is a characteristic subgroup of K , a normal subgroup of

G , and therefore K(r) is a normal subgroup of G .
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Hence K(r) < F so that K(r-1) 5 F2 . Now
— 1

Ga(r_1) g K(r—1) 3 r2 . But ow is a p-group and F1 is

the Sylow p—subgroup of F2 so Gw(r-1) 3 F1 . This

completes the proof of the lemma.

We have shown that F1 is the unique minimal normal

w—subgroup of G . Since G is a normal subgroup of r ,

F(G) g F(r) . If F(r) # F(G) then IF(P):F(G)| = 2 so

that w e F(r) . But in this case, since F(r) is nil—

potent, (F1)w = F1 contraditing lemma 2(ii) . Thus

F = F(r) is the unique minimal normal subgroup of r .
1

frzGl = 2 so the solubility of r follows from that of G .

Therefore we can apply Chapter II (5) to deduce the existence

of a complement N of F1 in r . By Sylow's theorem we

can suppose, by taking a suitable conjugate of N if

necessary, that w e N .

Let M = G n N . Then, by the modular law,

G = G n r = G n NF = (G n N)F1 = MF so M is a complement
1 1

‘ of F1 in G .

Since the elements of N form a complete set of coset

representatifes of F1 in r , we may consider F1 as an

GF(p)(N)-module. We now summarize the results of the lemmas

and the hypotheses of the theorem in module notation.

(1) F1
(2) (F1) > 0 .

‘” (i) -
(3) If r e (F1) and xi 6 (mw) (i—O,1,...,r—1)

a)

then f(1-x°)(1-x1) ... (1-xr_1) = 0 .

is a faithful irreducible N—module over GF(p).
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(u) If f 6 (F1) and x e;Mw is of order prime to
w

p , then since Go is nilpotent,

f1 = f.

It also follows from lemma 2 that Mo # M .

Using the same method as in the proof of Chapter IV ,

lemma 2 , we obtain an N—module V , over i} , the algebraic

closure of GF(p) , with the following properties:

(1) V is a faithful irreducible N-module over i} ,

(2) Vw = {v e Vlvw = v} > O ,

(3) If v 6 V6 and x1 ‘5(Mo)(i) (1=o,1,...,r-1)

then v(1-xo)(1-x1),...,(1-x ) = o .
r—1

(u) If v e Vw and x e-Mw is of order prime to p ,

then vx = v .

Notation. Q = F(M) .

Lemma 5. V is an irreducible M—module.

‘Proof. By way of contradiction suppose that there exists

an irreducible T}(M)-submodu1e W of V such that 0 < W < V .

Since Wm is also an irreducible M-submodule of V and since

W + Wm is an 27(N)-module, it follows from the first property

of v that v = w + Wm . Therefore as an 23(M)—modu1e

V W 6) Wm .

Suppose that Ga is not a p-group. Then there exists

an element x # 1 in Mm of order prime to p . Let w e W

be arbitrary. Then w + Wm e'V& so, by the property (h) of
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V , (w + ww)x = w + ww . Equating the W and Wm com-

ponents of both sides, we deduce that x acts trivially on

both W and Wm . Hence x acts trivially on W + Wm = V .

But this contradicts the first property of V . Thus we may

assume that Gm is a p-group.

Let x e Q and suppose that for all w e W , wx = w .

Since Q is a p'-group and Ga is a p-group x‘9 = x—1 .

Hence if w e.W , (ww)x = wx'1w = ww so that x acts

trivially on W + Wm = V . But then by the first property

of v , x = 1 , so that w is a faithful 3(Q)-modu1e.

Since Q = F(M) and M is soluble, any normal subgroup of

M has a non-trivial intersection with Q . Hence if W

were not a faithful :}(M)—module, W would not be a faith-

ful G’(Q)-modu1e. Thus w is a faithful 3(M)-modu1e.

If I e w then 1: + We: eVm so that if x1 e (Mega)

(i=0,1,2,...,r-1) it follows from the third property of V

that ) ___ O
uj(w+ww)(1-xo)(1-X1) ... (1-Xr_1

Equating the 'W-component of the left hand side to O we

obtain
w(1—x°)(1-x1)... (1-xr_1) .

From lemma 3 and lemma h it follows that Mm is the

Sylow p-subgroup of M and has derived length r . Thus

applying Chapter IV, lemma 1 to the group M , taking Mm

as the Sylow p-subgroup and W as the :}(M)-module we

deduce that Mw(r-1) g CM(A) for any abelian nOrmal sub-

group A of M . In particular taking A = F(M) = Q which
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is abelian by lemma 3 we obtain Mw(r'1) g CM(Q) = Q . But

Mw(r_1) is a p-group whilst Q is a p'-group. Thus

Mw(r'4) = 1 contrary to lemma u . ‘This contradiction

completes the proof of lemma 5.

Lemma 6. If L # 1 is a normal w-subgroup of M , then

Lw is a nan-trivial proper subgroup of L .

£3993. Since M is soluble and every soluble group contains

a characteristic subgroup which is abelian, it is sufficient

to prove the lemma for abelian L . Therefore L is suppose&

to be a normal abelian subgroup of M . Now L is contained

in F(M) = Q . It follows from lemma 3 that L is a pigroup.

Write

V=V 9V29...®V8

1

where V is considered as an :}(L)-modu1e and the V1 are

the homogeneous components. Since L is an abelian p'-group

whilst I? is algebraically closed of characteristic p , the

action of x 6 L on v e Vi may be described by

vx = xi(x)v .

It follows from Chapter II, (8), that the characters X1 are

all conjugate and that the number, s , of homogeneous com-

ponents divides the order of M . Thus none of the characters

x1 (i=1,2,...,s) is the trivial character since V is a

faithful module. Also 3 is odd.
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We complete the proof of the lemma by showing that if

Lw = 1 or Lw = L then we can choose an i such that 1;

is the trivial character.

Since w has order 2 and' V is an ‘3o(N)-modu1e, for

each 1 (=1,2,...,s) there exists 3 such that vi¢h=v:I

and vi“ = Vi . Since 8 is odd there exists at least one

i for which Vim = V1 . Suppose v chi and x e L . Then

xi(x)viw = viwx = vixww = x1(xw)viw so that xi(x) = x1(xw)

for all x e L . Now if Lw = 1 , then for all x e L ,

x” = x'1 so that xi(x) = xi(x-1) or x1(12) = 1 . Since

L has odd order, it follows that x1 is the trivial

character. Thus Lw > 1 .

Now suppose that Lw = L . By the second property of

V , V6 > 0 so that there exists 0 # v = vw e V'. Since

L = Lw is a p'-group, it follows from the fourth property

of v that v=vx forall xéL. Thus ikvlkeiH is

a trivial L—submodule of V ’and therefore is contained in

‘some V For this V 9% = 1 clearly. This contra-
3 ° 3 ’

diction proves the lemma.

Remark. In lemma 6, Lw cannot be a normal subgroup of M ,

for if it were we would obtain a contradiction by applying

lemma 6 to Lw . But (Z(M))w is a normal subgroup of M

so Z(M) = 1 . Therefore we can now assume that Q = F(M)

is a proper subgroup of M .

Lemma . Q is abelian.
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Proof. We consider V as a Q-module and write

V=V EVZQ...@VS
1

where the Vi are the homogeneous components of‘ V . Let

Q1 be the kernel of the representation of Q obtained on

V1 for each i = 1,...,s . Then the Q1 are all conjugate

by Chapter II (8) , so that if Q' 3 Q1 for some i then

Q' 3 Q1 for all i . Therefore in this case Q' is con-

tained in the kernel of V e V2 e ... 6 VB = V . But V is

1

a faithful M-module so that this implies that Q' = 1 , and

proves the lemma.

Now suppose that Qw is contained in one of the groups

Qi (i=1,...,s), say Qj . Then by Chapter III, lemma 5,

corollary 2, Q3” = Q3 . Therefore w induces a regular

automorphism on Q/Qj so that Q/Qj is abelian. Con—

sequently Q' g Qj . Thus it is sufficient to prove that

for some i , Qw is contained in Q1 .

Suppose that there exists an i such that Vim # Vi .

Let v e V1 . Then v + vm e Vw so that as Qw is a

p’-group if x e Qw , by the fourth prOperty of V ,

(v+vw)x = v + vm . Equating the V components of both
1

sides, we see that vx = v so that Qw is contained in Q1 .

It remains only to show that we cannot have Vim = V1

for all i . Suppose by way of contradiction that for all

1 Via) =Vi and fix '1 . Considering v

module, we may write

1 as a Z(Q)—

V =W ®W12$...$W

i 11 in



39

where for each 3 , W1j is a homogeneous component of V1 .

Since Vim = Vi we find, as we have done previously in

similar circumstances, that there exists a 3 such that

Wijw Nij .

Since Z(Q) is an abelian p'—group, the elements of 2(a)

act as scalar multipliers on the wij . Suppose that if

x e Z(Q) and w E W , wx = xij(x)w . Then xij(x)ww =
13

wwx = wxww = xij(xw)ww so that xij(x) = xij(xw) . Since

Z(Q) is a non—trivial normal abelian subgroup of M , it

follows that (Z(Q))w < Z(Q) by lemma 6. Therefore, by

Chapter III, lemma 5, corollary 3, the set H of elements

of Z(Q) inverted by w forms a non-trivial subgroup of

Z(Q) . Since H is a subgroup of Z(Q) , H is normal in

Q . Now if x e H , xij(x) = xij(xw) = xij(x-1) . Since

H is of odd order, for all x e H , xij(x) = 1 . Thus H

is contained in the kernel of the representation of Z(Q)

given by W Since for k # j , the kernel of W1 is
13 ' k

‘conjugate to that of wij in Q and since H is a normal

subgroup of Q , H is contained in the kernel of W for
1k

all k . Thus H is contained in the kernel of Wi1ey.awiu=

Vi . But this is true for all i so that H is contained

in the kernel of V $V26...G§VS=V. Since V isa1

faithful 3’ (rm-module, this implies that H = 1 . This

contradiction to the fact that H is a non-trivial sub—

group of Z(Q) completes the proof of the lemma.
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Lemma 8. Gm g F3(G) .

Egggfi. Since Gm is nilpotent this follows immediately

from Chapter II, (6). However it is of interest to give a

proof which does not depend on Thompson's theorem.

Suppose by way of contradiction that Gm is not con—

tained in F3(G) . Thus G ,6 F3(G) . By the minimality of

G , if H is any normal o-subgroup of G , H = F3(H) .

It follows that ‘G/F3(G) is cyclic of prime order, say t .

We may also choose x e Mw such that M = ix, F2(M)} .

We begin by showing that Z(F2(M)) = 1 . For if

K = Z(F2(M)) > 1 then it is a non—trivial normal w—sub—

group of M . By lemma 6 it follows that K(0 > 1 . Now

Km = K n Mu) <1 Mm and Kw g Z(F2(M)) so Km 4 F2011) . It

follows that 1 < Kwd ix, F2(M)} = M , contradicting lemma 6.

Thus Z(F2(M)) = 1 . Lemma 2 of Chapter III now implies the

existence of an w—complement H of Q = F(M) in M .

We now prove that Q is a q—group for some prime q .

‘Suppose by way of contradiction that Q1 and Q2 are two

non—trivial complementary Hall subgroups of Q . Let

i = 1 or 2 . Since Q1 is a characteristic subgroup of

M , F1Q1H is a proper w-subgroup of G . Therefore

F3(F1Q1H) = F1Q1H . Let F2(F1Qifi) = 131131121 where R1 5H .

Then H/Ri E F1QiH/F1Q1Ri is nilpotent. Since H/R111 R2 is

isomorphic to a subgroup of H/R1 x H/R2 and H is not

nilpotent, R1vw R2 # 1 . Let S denote a minimal normal

m—subgroup of H contained in R1 n R2 . Then S is an
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s-group for some prime 3 . If s +’[Q1] then since

F2(F1Qis) = F1QiS , QiS is nilpotent and therefore

S g CM(Q1) . If s I [Q1] then S centralizes the Sylow

s’-subgroups of Qi by the same argument. Thus SQ1Q2 = SQ

ll Dis a nilpotent normal subgroup of M . Thus SQ g F(M)

or S g Q n H = 1 . This contradiction proves that Q is a

q—group for some prime q .

Let R denote a Sylow p'-subgroup of F(H) . We will

prove that R = 1 and so conclude that F(H) is a p-group.

If R # 1, then for some integer e a 1 , Rqe) = 1 and .

R(e-1) g 1 . Since Q = F(M) is a q-group, F(H) e’F2(M)/F(M)

is a q'-group, so R is of order prime to q . Consider the

group F1QR . Since R is a characteristic subgroup of H ,

F1QR is a proper normal w—subgroup of G . Also

(F1QR)w=—(F ) Q R =(F1)w x Qw x R since cw is nil-
w w w w

potent and F, Q, B have relatively prime orders. Thus

((FWQR))(6)_(FW)'x(Q)'x(R)()_<_R(Q)=1. By
‘the minimality of G it follows that (F1QR)(£ ) is n11-

potent. Since F1QR 41G , (F1QR)(Q) < F1 . Therefore

(F QR)CC'1) < FQ so that R(£1)< n FQ = 1 . This

contradiction to the definition of: proves that R = 1

and hence that F(H) is a p-group. Write P = F(H)

Since H is not nilpotent and )H: P]: ls:F3(G)]=

a prime, t # p . Let S denote a Sylow t—subgroup of H

which is normalized by w . Then S complements P in H

and Sm = S .
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is normalized by S is centralized by S . For if R is

a proper w-subgroup of P which is normalized by S then,

by the minimality of G , F3(F1QRS) = F1QRS . Since

F g F(F1QRS) and F is a p—group which is its own

1 1

centralizer in G , F(F1QRS) is a p—group. Also

M n F(F1QRS) g CM(Q) = Q , a q-group. Thus F1 = F(F1QRS) .

Similarly since Q is a q—group, F2(F1QRS)/F1 is a q—group.

»If F2(F1QRS) > F1Q then since R is a p-group,

F2(F1QRS) = F1QS . But then R normalizes s so that

(3,3) g R n s = 1 . If on the other hand F2(F1QRS) = F1Q

then F1QRS/F1Q s RS is nilpotent so again (R,S) = 1 .

Thus any proper w-subgroup of P which is normalized by

S is centralized by S .

Since F3(G) # G , S does not centralize P . Also

P/§(P) is completely reducible under the action of iw,S}

so P/¢(P) is acted on irreducibly by {w,S} . Suppose

that Pw t §(P) . Then Pw§(P)/0(P) is an {o,s}—sub-

moduel of P/§(P) . Thus Pw§(P) = P and therefore by the

fundamental property of the Frattini subgroup, Pm = P .

But then since Ga is nilpotent S centralizes P which

is false. Thus Pw g §(P) . It follows that w inverts all

the elements of P/§(P) and so it also inverts all the

elements of P/P' . Thus Pm g P' .

Suppose P has derived length 8 . Then 6 Z 1 ,

P(Q) = 1 and P(e'1)# 1 . Consider F3(G) = F1QP .
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(F3(G))w=-(F)w prw = Qm x ((F1)wa) . Since Pw < P' ,

Pw(Q-1) = 1 and hence as (F1)w 4 (F1)wa, ((F1)wPm)(Q)=

It follows that (F3(G))w has derived length at most 8,

Thus (F3(G))(Z) < F and therefore (F3(G))(e-1)_ F2(G).
1

Thus P(g-1) g P n F1Q = 1 , a contradiction. This contra-

diction completes the proof of lemma 8.

‘Lemma . G = F3(G).

Proof. Suppose by way of contradiction that G > F3(G)

Since G0 3 F3(G) by lemma 8, w induces a regular auto-

morphism on G/F so that G/F is abelian. If H is any
3 3

subgroup of G containing F3 then since Gm g H , Hm = H

(Chapter III, lemma 5, corollary 2) and H A G since

G/F3 is abelian. Thus if H # G , by the minimality of G ,

= F3(H) . Since H is normal in G , F3(H) 3 F3 . Thus

F g H = F3(H) g'F and therefore H = F3 . It follows that
3 3

G/F3 is a cyclic group of prime order.

Since Gm < F < G , Mm g F2(M) < M and by Chapter III,
3

lemma 5, we can choose an element x e M such that

{x,F2(M)} M and xw = x—1 . Now consider the w—subgroup

of G , K = ix;Q,r1} . Since x“ = x‘ , whilst r2 = QF,t
1

is a normal subgroup of K , Kw g (QF1)w . But Q is an

abelian p'-group, F1 is an abelian p-group, and Gm is

nilpotent; therefore Kw is abelian. Thus, as the theorem

is true for r = 1 , K' is nilpotent.
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K' . Then B is a normal p'—subgroup of K and since Fi

is a p-group, B n F1 = 1 . Since F1 is also a normal

subgroup of K and G is soluble, B S CK(F1) g CG(F1) 3 F1 .

Thus B = 1 and therefore K' g QF1 is a p-group. Therefore

K' g F Let L = {x,Q} . Then L is a subgroup of M1 O

and K = F1L . Now L s K/F1 is abelian so that x e CM(Q) .

But Q = F(M) and M is soluble, so this implies that x 6 Q .

This contradiction to the choice of x proves the lemma.

Corollary. Since G = F3(G) by lemma 9, whilst G does not

satisfy the conclusion of the theorem, it follows that

G(r) > F1 . Thus M(r) > 1

Lemma 10. There exists an w—complement D of Q in M .

Q is a q—group for some prime q # p and M/Q is a

q'-group.

12392;. Since G = F3(G) , M = F2(M) . We have shown in

the remark at the end of the proof of lemma 6 that Z(M) = 1 .

Also by lemma 7, Q = F(M) is abelian. Thus we may apply

Chapter III, lemma 2 to deduce the existence of an w—subgroup

D of M which complements Q in M .

We next show that if K is a proper w—subgroup of M

then K(r) = 1 . For if K is a proper w-subgroup of M ,



M5

F1K is a proper w-subgroup of G . Since (Gw)(r) = 1 ,

((F1K)w)(r) = 1 , and therefore the minimality of G implies

that (F1K)(r) is nilpotent. Let A denote the Hall p'—

subgroup of (F1K)(r) . Then A is a normal subgroup of

F1K and so also is F1 . Therefore (F1,A) g F (1 A = 11

since F1 is a p-group whilst A is a p'—group. It

follows that A g CG(F1) = F so that A = 1 . Thus1

(F1K)(r) is a p—group. We also have that K(r) g M(r) g Q ,

a p'-group so it follows that K(r) = 1 , as we set out to

prove.

Now suppose that Q is not a q-group for any prime q .

Then we may write Q = Q1Q2 where Q1 and Q2 are Hall

subgroups of Q of relatively prime orders. Since Q = F(M),

the Q1 are normal w-subgroups of M . Thus for each i

DQi is a proper w—subgroup of M and so (DQi)(r) = 1

Since Qi is abelian, it follows that

(oi, o, D', ..., D(r‘1)) = 1 (1:1,2) .

Also D is a proper w—subgroup of G so that D(r) = 1 .

Now

M(r) (DQ1Q2)(P)

= D(r)(o1,D,D',...,D(r‘1))(Q2,D,...,D(r’1))

= 1

using, in addition to the above results, the fact that

Q = Q1Q2 is an abelian group. But this contradicts the

corollary to lemma 9. Thus Q is a q—group for some prime

q # p .



M6

Since M/Q is nilpotent, Q is a q—group, and

Q = F(M) it follows that D s’M/Q is a q'-group.

Lemma 11. D = D .

2222:. Suppose that Dw < D . Then, since D % M/Q is

nilpotent by lemma 9, there exists a proper normal subgroup

K of D containing. Dw . Form KQF1 , a proper normal sub—

'group of G . Since Gm = (F1)w QwaChislfontained in

KQF1 , KQF1 is an w-subgroup of G byglemma 5, corollary 2.

Hence by the minimality of G , (KQF1)(r) 3 F1 and there-

fore (KQF1)(r-1) 3 F2 = F1Q . Thus

Dw(r-1) s K(r_1) g D n F1Q = 1 . Since r > 1 , Gm is

nilpotent and D is a q'-group whilst Q is a q—group,

Me = Dwa has derived length at most r—1 . Thus

M(r’1) g F(M) = Q and since Q is abelian M(r) = 1 . But

this contradicts the corollary to lemma 9. Thus Dw = D .

‘ Now Qw is normalized by Q since Q is abelian and

is normalized by D , since Qw = Q n um and D = Dmg Mm .

Thus Qw is normalized by DQ = M , contrary to lemma 6.

This last contradiction completes the proof of the

theorem.
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CHAPTER VI

FURTHER THEOREMS

The theorems to be proved in this chapter are

Theorem 1. Let G be a group of odd order with a group

of automorphisms, A , of order A and exponent 2 , such that

for each m e A , w #1 , Gm is nilpotent. Then G' $F(G) .

Theorem 2. Let G be a group of odd order with a group

of automorphisms, A , of order 8 and exponent 2 , such that

for each m e A , w ¢ 1 , Ga is nilpotent. Then G is

nilpotent.

A group satisfying the hypothesis of theorem 1 need not

be supersoluble. To see this take H to be the group

ix,ylx2= y13= 1 , x‘1yx = y—1} , let q = 3 and form the

group G described in Chapter III, lemma h. Then there

exists a normal subgroup L of G of odd order and index 2

in G . F(L) = F(G) is an elementary abelian B—group whilst

IL:F(L)] = 13 . Thus L is not supersoluble. We show that

L possesses a group of automorphisms satisfying the hypo—

thesis of theorem 1. Choose an element w1 of G of order 2

and an element x e L of order 13 such that m1xw1 = 1-4 .

Then w1 induces an automorphism of L of order 2 with

Lw1 g F(L) and so nilpotent. A second automorphism oz of
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L may be defined by x = x and z = z for all

z s F(L) . Then w2 is also of order 2 and Lu is nil-

2

potent. It is easily verified that w1 and m2 commute

and that Lw w is nilpotent. Hence L is a non-super-

1 2

soluble group satisfying the hypothesis of theorem 1.

Each of the theorems is to be proved by induction on

the order of the group G , and by way of contradiction.

Let G be a group of minimal order not satisfying the hypo-

thesis of the theorem in question. For theorem 1 we take

(m,n) = (1,1) and for theorem 2 we take (m,n) = (0,1) .

Now if H/K # G/1 is an A-section of G , either A is

represented faithfully as a group of automorphisms of H/K

in which case by induction (H/K)(m) g Fn(H/K) or for some

automorphism w e A , w # 1 , (H/K)w = (H/K) so that H/K

is nilpotent being isomorphic to a section of Gw . Thus

as ]G} is odd, the Hypothesis of Chapter III, lemma 3 is

satisfied and we conclude that F(G) is the unique minimal

‘normal A-subgroup of G .

The proofs of each of the theorems will now be completed

independently.

Proof of Theorem 1. Suppose that the theorem is false and

let G be a counterexample of minimal order. Then F(G) is

the unique minimal normal A-subgroup of G . F(G) is an

elementary abelian p-group for some prime p .
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Let r denote the splitting extension of G by A ,

and write F = F(e).

Suppose that (G/F)w = G/F for some w e A , w # 1 .

Then since Ga is nilpotent, G/F is nilpotent. It is now

an easy consequence of the minimality of G that G/F is a

q—group for some prime q # p . Therefore we can choose a

Sylow q—subgroup Q of G to complement F in G . Since

Nr(Q)F = r , by taking a suitable conjugate of Q if

- necessary, we may assume A normalizes Q . Since

(G/F)w = G/F , ow = Q . Now 2(a) = 1 for if 2(a) > 1 ,

Z(G) 3 F which is false since G is soluble. Since Ga

is nilpotent and Q = Q is a group of order prime to p ,
0.)

whilst F is an abelian p-group, Fm = G¢ n F g Z(FQ) = z(e)=1.

Therefore Fw = 1 . Now we may write w = w1w2 where

w1 and ”2 are non-trivial elements of A . Since

Qw m = Q , it follows that Qw = Qw . New foam Fm and

1 2 1 2 1

F . Since F = 1 , it follows from Chapter III, lemma 5

that Fm Fm = F . Now Ga and Gm are nilpotent so as

1 2 1 2

before Qm = Qw is centralized by Fm ané Fw .

1 2 1 2
Therefore Q“)1 g CG(Fw1Fw2) = CG(F) = F . Thus w1 induces

a regular automorphism of Q which implies that Q is

abelian. Since G = FQ , we conclude that G' g F contrary

to the definition of G . Therefore for no w e A , m f 1 ,

is (a/F)w = G/F .
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If Fm = 1 or F for some w e A , w # 1 then w

either inverts or fixes all the elements of F . Since

G/F is represented faithfully as a group of automorphisms

of F , it follows that (G/F)w = G/F . Since this has already

been shown to be false, we conclude that for each m e A , w # 1,

F > F&>1. Also, since CG(F) = F , Cr(F) = F .

Since CP(F) = F , F = F(P) is the unique minimal

. normal subgroup of r . Thus we may deduce from Chapter II

(5) ; that there exists a complement N of F in r . By

Sylow's theorem we may suppose that A g N . Let M = G n N

and F(M) = Q . The modular law implies that M is a complement

of F in G .

For convenience we now summarize the properties of F

which we have obtained.

(a) F is the unique minimal normal subgroup of r .

(b) Cr(F) = F .

(c) If re e A , m g 1 then cw g CG(Fw) . This follows

since F is a p-group, Q = F2(G)/F and Gm is nilpotent.

(d) for each m e A , w g 1, Fm > 1 .

Because of properties (a) and (b), F may be considered

as a faithful irreducible (r/F)—module over GF(p) . Let

.:3 denote the algebraic closure of GF(p) . Applying the

same method as in the proof of Chapter IV,lemma 2 we deduce

the existence of an E}(N)-module V with the properties:
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(1) V is a faithful irreducible N—module over 2; ,

(2) for each m e A , Vw = {v e'V]vw = v} > O ,

.(3) for each m e.A , w # 1 , if v Q Vw and x e Qw

then vx = v .

The next step in the proof is to show that

(h) V is an irreducible :;(M)-module.

Suppose by way of contradiction that V is not an

irreducible Z¥(M)-modu1e. Let w be an irreducible E?(M)—

'submodule of V . Then for at least two elements w1,w2 e A ,

(wvwz 7! 1) we have m1 #w and wbz #w . Let w oh

so that o + cocci e v (i=1,2) . Now if y c Q then by
(.01 (Di

property (5) (w + wwi)y = w + wwi .

Equating the W components of each side we deduce that Qwi

acts trivially on W and so on V . But V is a faithful

N-module over 3 so it follows that Qw =1 for i=1,2.
1

By Chapter III,lemma h m and w2 each invert all the.1

elements of Q so Qw w = Q . By properties (0) and (d)
l 1 2
of F and since F is abelian it follows that

1 < Fw1w2 _<_ Z(Q¢1w2F) = Z(FQ) = Z(F2(G)) .

Since F is the unique minimal normal subgroup of r and

Z(F2(G)) is normal in r , F g- Z(F2(G)) . But this implies

that 192(3) is nilpotent, contrary to the fact that G is

soluble and non-nilpotent. ,This contradiction proves (h) .

I If we now follow the proof of Chapter V, lemma 6 then

we deduce



52

(A) if w e A , w # 1 , and L is a non-trivial normal

w-subgroup of M , then 1 < Lw < L .

It follows from (A) that Z(M) = 1 , or else since

(2(M))‘0 is a normal w-subgroup of M , ((z(s))w)co

# (Z(M))w , a contradiction.

Since Z(M) = 1 , F2(G) is a proper subgroup of G , so

by the minimality of G , Q = F2(G)/F is abelian. We may

also deduce from the minimality of G that M/Q is

characteristically simple. Therefore M/Q is an elementary

abelian r-group for some prime r .

Suppose that r divides the order of Q . Let R be

a Sylow r-subgroup of M . Since Q is a nOrmal subgroup

of M and rf [Q] ,Z(R)nQ>1. But z(R)anz(Rq)

= Z(M) since Q is abelian. Thus Z(M) > 1 , a contra—

diction. It follows that r does not divide the order of Q .

Let R be a Sylow R-subgroup of M . Since Q is of

order prime to r , R KIQ = 1 . Clearly RQ = M . Now

form NN(R) . It is easily shown that NN(R)Q, = N so, by

‘taking a suitable conjugate of R if necessary, we may

suppose that A normalizes R . Thus R is an A-complement

of Q in M . We could also have obtained the existence of

this complement by using Chapter III, lemma 2.

It is an easy consequence of the minimality of G that

the representation of A on R is irreducible. But an

irreducible representation over a field of characteristic

not equal to two, of the non-cyclic group of order 4 is

one—dimensional. Therefore for at least one w e A ,
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w # 1 , we have Rm = R . Now since Mm g Gw is nilpotent,

r does not divide the order of Q and Q is abelian,

Qw _<_Z(RQ) =z(M) =1 . 'But by (A), Qw>1' This

contradiction completes the proof of theorem 1 .

Proof of Theorem 2. Suppose that the theorem is false and

choose a counterexample G of minimal order. Then F = F(G)

is the unique minimal normal A-subgroup of G .

If L is a proper normal A-subgroup of G then L is

nilpotent. Therefore F is the unique maximal nomnal'A—

subgroup of G and G/F is an elementary abelian r—group

for some prime r since G is soluble. Thus G/F is an

irreducible A-module over GF(r) . Since A is of exponent

two, any representation of A over a field of characteristic

not equal to two is one dimensional. Therefore the kernel of

the representation of A on G/F must have order at least A.

Let w1 and w2 be two distinct non—unit elements of A in

the kernel. Then

G/F = emu”: (ca/mt“; (e/F)w1w2 .
Suppose that w Q A , w # 1 , and (G/F)w = G/F .

Since F is the unique minimal normal A-subgroup of the

soluble group G , F is an elementary abelian p—group.

By definition G is not nilpotent, so G/F is not a p—group.

Therefore r # p . Now (G/F)w = G/F is isomorphic to a

section of Gm so the Sylow r-subgroup R of Gm is a

complement of F in G . Since Gm is nilpotent and F

is abelian, F“0 = F r16“ is centralized by RF = G . Now
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if z(e) > 1 , since F is the unique minimal normal

A-subgroup of G , Z(G) a F = F(G) , a contradiction since

G is soluble. Therefore Fw g Z(G) = 1 . It follows that

w inverts all the elements of F .

Combining these results we have for x 6 F ,

w w w w

x 1 = x 2 = x 1 2 = x—1 .

w w w

Thus x 1 = x 1 2 = (X_1) 2 = X !

contrary to the assumption that the order of G is odd.

This proves the theorem.
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