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All the results proved in this thesis after chapter 3 are original
except where I have indicated otherwise in the text. It should be noted
that several of the results were inspired by papers of Nolan R. Wallach
£161, [17]. In particular, section (8.2) presents relevant parts of
Wallach's work, and interprets his work in terms of chapters 4 - 7,
while section (8.3) is a more precise and categorical description of
another part of Wallach's work. Section (8.4) is original, but section
(8.5) uses techniques developed by Hochschild and Mostow in their paper
L7] to obtain similar results to theirs. My construction in section

(8.5) is, unlike theirs, functorial and natural.

The material of chapter 3 and of sections (4.3), (4.ua), (4.5),
(4.6a) is probably well-known, but I have been unable to locate proofs

in the literature.

I wish to thank my supervisor, Doctor D.W. Barnes, for his guidance
_and for numerous suggestions about the presentation of the material in
this thesis. I also wish-to thank Doctor Jémes N. Ward for undertaking
the onerous task of reading early drafts of this thesis and suggesting
many improvements and corrections. Finally, I should like to thank
members of the Sydney Category Theory Group for their time and help in

clarifying several points for me.
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Chapter 0 - Introduction

Notation is explained in chapter 1. The symbol (m.n) refers to

t .
the n b section of chapter m.

(0.1) Comparison of Induced Representations of Groups and Lie Algebras

In the theory of representations of finite groups, a construction
which often proves useful is that of the induced representation. Given
finite groups H < G, a field k, and a right kH-module M, one forms the

induced module M ®kaG and the coinduced module HomkH(kG,M), both of

which may be given the structure of right kG-modules in a natural way.
Some of the important properties of induced and coinduced modules for

finite groups are:

(1) (Frobenius reciprocity isomorphisms) If M is a right kH-module

and N is a right kG-module, then

HomkG(M ®kaG,N) = HomkH(M,N)
and

HomkG(N,HomkH(kG,M)) = HomkH(N,M);

(2) dimk(M ® HkG) = [G + H] . dim M;

k k

(3) M may be embedded in M @ kG, regarded as a kH-module, by a

kH

naturally split, natural kH-monomorphism;
® = < x :
(W) M kaG HomkH(PG,M) as kG-modules

These four properties of induced representations are among the
reasons why induced representations form a useful tool in the study

of finite groups and their representations.
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When we attempt a parallel construction for finite-dimensional

Lie algebras h < g over a field k and a right h-module W, difficulties

arise. The Lie-algebra analogue of the group algebra is the universal

enveloping algebra Ug of g (defined in section (1.2)). One can construct

the Ug-modules W @ Ug and HomUh(Ug,w) as before - details are given

Uh 2

in chapter 3. The analogues of properties (1) and (3) abecve hold.
However the analogues of properties (2) and (4) above fail except
when W = (0) or h = g. This difficulty destroys most of the usefulness

of the constructions.

The aim of this thesis is to look for alternative constructions
and to determine what properties such alternative constructions may

possess.

(0.2) Suitable Properties for an Induced Module

The isomorphisms of property (1) of section (0.1) determine
M ®kaG and HomkH(kG,M) in an (essentially) unique way. The remarks

in the latter part of section (0.1) then show that we cannot expect

our alternative constructions to satisfy such isomorphism properties.
Let us denote by R the obvious restriction functor
R : Mod-g = Mod-h

. for Lie algebras h < g.

Bearing property (3) of section (0.1) in mind, we should like to
find, for every finite-dimensional right Uh-module W, a finite

" dimensional right Ug-module V and a Uh-monomorphism

Iy ¢ W - RV.

Even this turns out to be impossible in general. We shall produce



two examples, in section (0.3), which demonstrate this fact.

Thus, instead, we shall try to associate with each (finite-
dimensional or infinite-dimensional) Uh-module W, a Ug-module V and a

Uh-monomorphism

jy @ W > RV.

Later, we shall investigate conditions for finite-dimensionality.

We shall make three other demands on our "induced module'" V and

the associated injection jw:

(i) we require that V depend functorially on W; that is, we

suppose that there exists a functor I : Mod-h > Mod-g

and for each right h-module an b—honomorphism jw : W > RIW;
(ii) we require that jw be natural in W;

(iii) we make a requirement which ensures that IW is not

unnecessarily large; we require that
(im ]w) - Ug = IW.

One of the central results of this thesis (theorem (5.8)) will be to
show that these three conditions imply an important part of the
analogue of the Frobenius reciprocity isomorphisms (see property (1)

of section (0.1)).

All of the remarks about jw may be dualized. If this is done,
we find ourselves discussing a natural Uh-epimorphism kw : RIW > W,
theorem (5.16) is a dual characterization of another part of the

Frobenius reciprocity isomorphisms.

In fact, theorem (5.16) implies that if the natural map

kw : RIW > W satisfies the condition that ker kw contains no nonzero



g-modules, then there is a natural injection

Hong(V,IW) > HomUh(RV,W)

for all g-modules V and h-modules W. Compare this with the second

Frobenius isomorphism of section (0.1), number (1).

The development, in chapters 4, 5 and 6, of the ideas outlined
above, will be carried out for a pair of abstract categories H and G

together with functors
R: g~ H
and I:H~>G.

It will sometimes be necessary to assume that H and G have
certain properties of Abelian categories. Further, in chapters 2 to 6,
the development will be carried out in a way converse-to that outlined
above. That is, we shall start with properties like the Frobenius
reciprocity isomeprhisms and show that they are equivalent to certain

properties of the maps jw and kw mentioned above.

In chapter 7, we shall discuss ways of constructing a functor I
and maps jw and kw in the particular case where H = Mod-h and G = Mod—g
and h < g are Lie algebras. The discussion in chapter 7 is, however,
still theoretical. We also prove, in this theoretical setting, a

simplicity criterion for induced modules, based on a result of Wallach

f16].

In chapter 8, we discuss models of the theory developed in
chapters 4 - 7, including constructions of Wallach [15,16] and a

modification of a construction of Hochschild and Mostow [7].

Chapter 9 contains a report on some results in Lie structure of

rings which arose as an offshoot of the work described above:- an
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important part of the theory of induced representations of groups is
Clifford's theory of induced representations of group extensioﬁs. We
prove analogues of some of Clifford's theorems for Lie ideal subrings
of rings. These results are also analogous to those of Zassenhaus

[17] and Barnes and Newell {1] for Lie algebras.

(0.3) Two Examples of Lie Algebras in which Induction is, in General,

Impossible

In this section we prove a claim, made in section (0.2), that

there exist Lie algebras h < g and finite-dimensional right h-modules

W which cannot be embedded in any finite-dimensional G-module.

We shall use the following interesting theorem of Zassenhaus:

Theorem ([17], page 252): Let g be a Lie algebra over a field of

characteristic zero and let h be an ideal of g. Then every finite-

dimensional representation of g restricts to a nilpotent representa-

tion ok [g,g] n rad(h).

We shall now produce a (finite-dimensional) Uh-module on which

L

10q

,gJ] n rad(h) does not act nilpotently.

Example A: Let g be a 2-dimensional Lie algebra over the field C of
complex numbers, with basis {e,f} and multiplication determined by the

relation [e,f] = e. Let h be the subspace of g spanned by {e}. 1t is

easily verified that h is an ideal of g and that [g,g] n rad(h) = h.

Let W be a one-dimensional vector space over €. Determine a

Uh-module structure on W by choosing a non-zero w ¢ W and setting

defined in chapter 9.

notation is explained in section (1.4).



for some chosen A € C.

If A # 0, then h = [g,g] n rad(h) does not act nilpotently on W.
0O

Remark: Because of the importance of Cartan subalgebras, that is, self-
normalising nilpotent subalgebras, in the study of semisimple Lie
algebras, and since the subalgebra h of ﬁxample A above is not a
Cartan subalgebra, we present an extra example with a Cartan subalgebra
in it.
Example B: Let g = s1(2,C) - the Lie algebra of 2x2 matrices over C
with trace zero. It is well-known that g is simple and has a Cartan

subalgebra of dimension one - spanned by {h}, say.

Define a one-dimensional h-module W by choosing a non-zero

w € W and a non-integer A € C and setting
w.h = Aw.

Then the following result (quoted from Humphreys [8], Corollary 7.2
page 33) shows that W cannot be embedded in a finite-dimensional

g-module.

Prcposition: Let V be any finite-dimensional g-module (g = s1(2,C)).
Then the eigenvalues of the Cartan subalgebra h on V are all integers.

0



Chapter 1 - Notation and Assumed Results

(1.0) Linearity.

Many of the results and constructions of this thesis require a
check that a map is linear. Without exception, these checks are

trivial. They will therefore be omitted without further comment.

(1.1) Categorical Conventions, Assumptions, and Definitions

The basic notions of category, object, morphism, domain and co-
domain, functor, natural transformation, left and right adjoint and
adjuhction, isomorphism, (commutative) diagram, full and faithful
functors, and duality will be assumed to be known. The notation used
for these concepts is set out in section (1.4). See MacLane [12] for

definitions.

We shall also require the notion of preadditive category and
additive functor (see MacLane [12], pages 28-29): any functor between
preadditive categories will be tacitly assumed to be additive. Similar-
ly, if the morphism sets in a category carry a vector space structure,

all functors and natural transformations will be assumed to be linear.

Zero Object. All categories will be assumed to contain a zero object,
that is, an object, denoted O, such that, for every other object A in
the category, there is exactly one morphism O - A and exactly one

morphism A -+ 0. Both these morphisms will be denoted by the symbol O.

Composition of Morphisms. Morphisms will be composed on the left. In

particular categories where the morphisms are functions, they will be
written on the left. Thus, if £ : A > B and g : B + C are morphisms

in some category, then their composition is written gf : A > C, or
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simply gf, or sometimes, gof. In particular, functors are written and

composed on the left.

"Factoring Through". Suppose f : A > C and g : B + C are morphisms.

We say that f factors through B via g if there exists a morphism

h : A > B such that gh = f.

The expression "factors through'" is also used in the dual situa-

tion: if £ : A~> C and h : A > B are morphisms, we say f factors through

B via h if there exists g : B - C such that gh = f.
The next dozen or so definitions follow Mitchell [13], pages 5-18.

Monomorphism or monic. A morphism & : A > B is called a monomorphism

or a monic if, for all pairs f, g of morphisms with codomain A,

of = ag implies f = g.

Epimorphism or epi. A morphism o : A + B is called an epimorphism or

an epi if, for all pairs f, g of morphisms with domain B, fa = go
implies f = g.

Subobjects. If o : A' - A is a monic, we shall call (A',a) a subobject
of A, and shall refer to o as the (natural) inclusion of A' in A. If

it is clear from context which monic o : A' > A is being referred to,

we may refer to A' as a subobject of A.

Isomorphic subobjects. Suppose a; : A; > A and 0, : A, > A are

subobject inclusions. A; and A, are called isomorphic subobjects of A

if there is an isomorphism 1 : A; > A, such that a,1 = q,.

Quotient cbjects. If o : A > A' is epi, we shall refer to (A',a) (or

sometimes just A') as a quotient object of A, and shall refer to o as

the (natural) projection of A onto A'.



Isomorphic quotient objects are defined in a manner dual to the

definition of isomorphic subobjects.

Image of a morphism. An image of a morphism f : A > B is defined to be .

a subobject (I,u) of B such that

(i) f factors through I via uj; and
(ii) if (J,v) is any other subobject of B such that f factors
through (J,v), then there is a monic w : I > J such that

the following diagram commutes: I —— B

That is, vw = u.

Coimage. A coimage of a morphism is defined in a manner dual to the

definition of "image".

In general, a morphism f need have neither image nor coimage.

An image of f, if it exists, is denoted by im f, similarly coim f .

Kernel of a morphism. A kernel of a morphism £ : A > B is a subobject

(K,i) of A such that
(i) fi = 0; and
(ii) if (J,1) is any subobject of A such that fl1 = 0, then there
is a unique monic m : J + K such that im = 1, that is, the

following diagram commutes: K l 3 A 3 5 B

N /A

J

Cokernel. The definition of a cokernel is dual to that of a kernel.

In general, a morphism need have neither a kernel nor a cokernel.

If, in a category A, every morphism has a kernel (respectively, a

cokernel), we say that A has kernels (respectively, has cokernels).
The kernel of a morphism f, if there is one, is denoted by ker f,

similarly coker f.
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g
Exact Sequence. A sequence A L B 3 C of morphisms and objects in a

category is called exact at B if im f and ker g exist, and are iso-

morphic subobjects of B.

Exact Category. A category A is called exact (cf Mitchell [13], page

18) if the following four conditions hold:

(i) A has kernels and cokernels;
(ii) every monic in A is a kernel;
(iii) every epi in A is a cokernel;
(iv) every morphism o :A > B in A can be written as the

composition of a monic i and an epi p, so that o = ip;

that is, so that the following diagram commutes:

A ——££—+ B
N A
I

(1.2) Universal Enveloping Algebras

The definition and elementary properties of tensor products will
be assumed to be known (cf Curtis and Reiner [2] (12.1) - (12.6)).

The notation is explained in section (1.4).

Construction: Let g be a Lie algebra over a field k. We are going to

construct an associative algebra Ug called the universal enveloping

algebra of g.

First we form the tensor algebra Tg on the vector space underlying

g. Define Tog =k and T g = Tlg e g for i 2 0 and set

= o .
e = P T
i=0 =

10Q

1
-~
L]
o]
@
~
joje}
®
luje]
~
@

1

The tensor algebra is endowed with an associative k-algebra structure

in an obvious way - see Hilton and Stammbach [6] page 230 for details.
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Next, we form the two-sided ideal R of Tg generated by all
elements of the form x ® y - y @ x - [x,y] (where %,y ¢ G and [x,y]

denotes Lie multiplication in g.

Finally, we form the quotient algebra

Ug = Tg/R.

Definition: Suppose A is an associative k-algebra. We define a Lie
algebra LA as follows. Let the underlying vector space of LA be the

same as that of A.  Suppose - denotes the multiplication on A. We

define a Lie multiplication [,] on LA by setting
[x,y] = x-y - y-x for x,y € A = LA.

It can be checked that [,] is indeed a Lie multiplication, and that L
is a functor from the category of all associative k-algebras to the

category of all Lie algebras over k.

Remarks on Universal Enveloping Algebras

(1) Ug is an associative k-algebra with 1. The map g - LUg defined
by g~ g+R € Tg/R = Ug (for g ¢ g) is a (natural) monomorphism of Lie
algebras. That the map so defined is injective is an immediate

consequence of the Poincaré-Birkhoff-Witt theorem - see section (1.3).

(2) Despite the construction using tensor products and quotient by
an ideal, multiplication in Ug will usually be denoted either by - or

by juxtaposition.

(3) Ug will frequently be regarded as a (right and/or left) Ug-
module via the regular representation(s) (c¢f Curtis and Reiner [21,

page 48).
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(4) There is a natural isomorphism between the category of right

g-modules and the category of right Ug-modules which preserves the

underlying vector spaces and respects the natural embedding of g in

LUg, mentioned in (1) above.

Accordingly, we use the terms "g-module' and "Ug-module" inter-

changeably.
All modules will be either right modules or bimodules.

(5) If h < g are Lie algebras, then there is an obvious embedding

Th + Tg. The theorem described in the next section (section (1.3))
allows us to deduce that this embedding Th > Tg induces an embedding
US + Ug. Thus, in particular, Ug may be regarded as a (left and/or
right) Uh-module, by restriction of the regular representations of Ug

on U

g.

(1.3) The Poincaré-Birkhoff-Witt Theorem.

Let g be a Lie algebra over k. We retain in this section the

notation of section (1.2) above. The structure of the universal
enveloping algebra Ug of g is elucidated by a theorem of Poincaré,

Birkhoff and Witt. To state this, we must make a definition.

Definition - Standard Monomial. Let {ei : 1 e J} beabasisof g
over k, and let J be totally ordered. For each nondecreasing sequence

S = (il,...,il) of elements of J, we define an element eg of Ug

by
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omitting the ®-signs and the ideal R, as explained in Remark (2) of
section (1.2). Any element of Ug so constructed is called a standard

monomial (with respect to the totally ordered basis {ei : i e J} of g.)

Note that the empty sequence S = ¢ is allowed, and that e¢ is the

identity element of Ug; it will be denoted by 1Ug'

Theorem (Poincaré-Birkhoff-Witt): The standard menomials, with respect

to any ordered basis of G, form a basis for the underlying vector space

of Ug.
For a proof, see, for example; Humphreys [8], pages 93ff.

Corollary: Let h be a subalgebra of the Lie algebra g. Then Ug is

free as a (left or right) Uh-module.

Proof of corollary (taken from Hilton and Stammbach [6], page 232):

Let g = h @ x as a vector space - that is, choose a vector space

complement x for h in g. Let H be a totally ordered basis of h, and
let X be a totally ordered basis of x. These orderings may be extended

to a total ordering of the basis H U X of g, such that if h € H and

.

x € X then h < x, in exactly one way.

With respect to this total crdering of H u X, the standard

monomials which involve only elements of X form a basis of Ug as left

Uh-module, by the Poincaré-Birkhoff-Witt theorem. That is

(Equation (A)) Ug = €£9 Uh . x

= xS a standard

monomial in X

s as left Uh-modules.
The orderings of H and X may also be extended to a total ordering
of Hu X such that if h € H and x ¢ X then h > x, again in exactly one

way. This time, we deduce from the Poincaré-Birkhoff-Witt theorem



that, as a right Uh-module,

(Equation (B)) u

1 Qq
1

]
XS a standard
monomial in ¥

The corollary now follows from the facts that Uh - Xg
to Uh as left Uh-module, and xé . Uh is isomorphic to Uh as

module.

Corollary: If h is a subalgebra of the Lie algebra g such

exists a subalgebra x of g such that g = h ® x as a vector

o
cQ
"
c
[lox
>
c
=
X

s U§ as a left Ug—module

ol
=
[aN
o
03
"
=
=~
®
£
X
I

. Uh as a right Uh-module.

Proof. Note that x . Ux may be thought of as the subspace

spanned by all standard monomials e, for which S # 6. The

S

now follows from the proof of the previous corollary.

(1.4) Notation

(a) Categorical Notation

Let A, B be categories. Then

(i) by A € A we shall mean that A is an object of A;

b,

6%9 %! .Uh ~  as a right Uh-module.

is isomorphic

right Uh-

that there

space, then

of Ux
corollary

0

(Let

A),A,,A € A, The notations f : A; > A, and A, £ A, will

suggest that f is a morphism with domain A, and codomain

A,. This notation serves largely as a reminder about domains

and codomains. )

(ii) 1, and 1, denote, respectively, the identity morphism on

A )

A and the identity functor A - Aj
(iii) A(A,,A,) means the set of all morphisms A; - A,

(iv) é(A,f) denotes the induced map

in

1>

9



A(A,A)) ~ A(ALA,)
defined by A(A,f)(9) = fo¢ for ¢ € A(A,A});
(v) A(f,A) denotes the induced map
A(A,,A) > A(A;,A)
defined by A(£,A)(¢) = ¢ of for ¢ € A(A,,A);
(vi) 1let A;,A; €. A and choose a € A(A;,A;) and B € é(Az,A;).
Then §(a,6) denotes the induced map
ACA ,8,) > A(A;,Ay)
defined by é(a,B)(¢) = Bodod for ¢ € é(AI,Az).
(vii) 1let F, G be functors A *+ B. Then the notation n : F > G
will mean that n is a natural transformation from F to G.
The A-component of a natural transformation n : F » G will
be denoted by Ny * FA -+~ GA, or just e
(viii) Gf will denote the image of f under the morphism function

of the functor G.

(b) Set-Theoretic Notation

An elementary knowledge of set theory will be assumed. Let G, H

and K be sets. Then g € G means that g is an element of G, and

(=}

(i) G x H denotes the Cartesian product of G and Hj

(ii) let o : G > H be a function and suppose K is a subset of G:
then a K denotes the function o with domain restricted to be
K3

(iii) K

In
)

means K is a subset of G;
(iv) K c© G means K is a proper subset of G;
(v) G u H means the union of G and H;

G n H means the intersection of G and Hj;
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(vi) the notations f : a = b and adib indicate that f(a) =.b;
(these notations are often convenient when defining a
particular function; for example, (iv) of section (a) above
could have been written as "A(A,f) is defined by
¢ f o for ¢ e A(A,A}).")
(vii) a function & : G » H is injective if for all pairs
g,-8, € G, alg,) = a(g,) implies g; = g,; a function
0 : G~ H is surjective if, for all h € H, there exists

g e G such that a(g) = h.

(c) Lie Algebra Notation

An elementary knowledge of Lie algebras will be assumed.

All Lie algebras will be over a field k unless otherwise speci-
fied. k is also used to denote a certain natural transformation in the
second half of the thesis, but, with this warning, no confusion should

arise. Let h and g be Lie algebras. Then

(i) if x,y € g, the (Lie) product of % and y will be written [x,y];

(ii) h € g means h is a subalgebra of g;
h < g means h is a proper subalgebra of g;
h 9 g means h is a (Lie) ideal of g;

(iii) [g,gl denotes the derived subalgebra of g;
(iv) rad(h) denotes the solvable radical of h;
(v) Aut(g) denotes the automorphism group of g;

(vi) Mod-g, Mod-Ug, Homg and Hom _ all denote the category of

Ug

right Ug-modules.
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(d) Group-theoretic Notation

An elementary knowledge of group theory will be assumed. Let G

and H be groups and let k be a field. Then

IA

(i) H < G means H is a subgroup of G;

H < G means H is a proper subgroup of Gj

1A

H G means H is a normal subgroup of G;
(ii) Aut G means automorphism group of G;
(iii) kG means group algebra of G over k;

(iv) Mod-kG, HomkG both mean the category of all right kG-modules;

(v) [G # H] means index of H in G (assuming H < G).

(e) Notation for Associative Rings and Algebras

An elementary knowledge of associative rings and algebras will be
assumed. Let A, B be either associative rings with 1 or associative

algebras with 1 over a field k. Let x,y € B. Then

(i) 1 denotesthe identity element of Bj;

(ii) A < B means A is a subring (subalgebra) of B and 1 € A3
A < B means A is a proper subring (subalgebra) of B and
1, € Ay s
(iii) A < B means A is an ideal of B;
B/A means quotient of B by Aj
(iv) [x,y] denotes the commutator xy - yx of x and y;
(v) Mod-A and A-Mod denote, respectively, the categories of

right and left A-modules.

(f) Notation and Assumed Results for Module Theory and Vector Space

Theory

We shall assume a fair amount of module theory: say the relevant
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parts of Hersteins "Topics in Algebra' (Blaisdell, 1964), together with
some knowledge of products and coproducts, composition series, tensor
products, semisimplicity, which can be found in Curtis and Reiner {2],

and Rotman [15]. All modules will be unitary.

Let A, C be right modules over a ring or algebra R, and let
B, B;, B, be left R-modules. Let {SA: X e N} be a family of R-modules

(left or right but not a mixture), and let T be an Abelian group. Then

(1) HomR(A,C) means the set (Abelian group, or vector space) of
all R-homomorphisms from A to C;
(ii) A ®© B denotes tensor product of A and B over R;
(iii) EndR(A) denotes the endomorphism ring of A as R-module;
(iv) an R-balanced map ¢ : A X B » T means a bilinear map ¢,
such that for all a ¢ A, b € B and r ¢ R, ¢(ar,b) = ¢(a,rb);
(v) if Y ¢ A, then Y .R denotes the R-submodule of A generated
by Y3
(vi) if X c R, then AnnX(A) ={r eX: forall aeh, a.r = 0};
(vii) ef)ke/\ SA means direct sum of the modules SA;
(viii) TT}~€A SA means direct product of the modules SA;
(ix) —®Raneans the functor A v A €, B;

(x) A % B means the functor B » A ®.B3

IA

(xi) A £ C means A is a submodule of C;

N

A C means A is a proper submodule of C;
C/A denotes the quotient of C by A (assumes A £ C);

(xii) A subquotient of C is a submodule of a quotient module of C.

Let V £ W be vector spaces over a field k. Much of the above notation
applies to vector spaces.
(xiii) dimkV and dim V denote the dimension of V over k;

(xiv) the cocdimension of V in W is defined to be dimk(W/V).
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Chapter 2 - Green's Axiomatic Approach to Induced Representations

(2.1) Axiomatization of Induction, Restriction and Conjugation

Let h < g be Lie algebras.

In section (0.3), we say that it is, in general, impossible to
embed each finite-dimensional h-module in a finite-dimensional g-
module. Furthermore, the pairs of Lie algebras used in examples A

and B of section (0.3) were by no means contrived or pathological.

In this chapter, therefore, we shall change our aim. We shall

discuss well-behaved ways of embedding h-modules in (not necessarily

finite-dimensional) g-modules. By ''well-behaved ways', we mean ways
that obey axioms, (which we shall specify in section (2.2)) and which
have the properties outlined in section (0.2), (such as functoriality

and naturality).1

Our model of behaviour comes from the theory of induced represen-
tations of finite groups. J.A. Green, in [3], showed that the opera-
tions of induction, restriction and conjugation among the character
rings of subgroups of a finite group can be characterized by a list of

"axioms'" relating induction and restriction and conjugation.

(2.2) CGreen's Axiom Scheme

We shall describe Green's axiomatization for categories of

modules over finite groups rather than character rings, since we are

given a pair of Lie algebras h < g and a rule for embedding h-

modules in g-modules, we could pose the question: "how large is the
‘class of h-modules which are embedded in finite-dimensional g-modules
by the given rule?" We shall return to this question in chapters 7

and 8 (mainly section (8.2), parts (ix) and (x)).
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interested in modules for Lie algebras.

Let G be a finite group and k a field. Let K and H be subgroups

of G. If K is a subgroup of H, we define an induction functor

IH : Mod-kK - Mod-kH

K
by
]%{M =M® kH for M e Mod-kK.
K kK
Secondly, we define a restriction functor
H
RK : Mod-kH - Mod-kK
by

H

RKDI = N

as a vector space, but with algebra of operations restricted to be kK,

for N € Mod-kK.

Finally, we define, for a ¢ Aut G and M ¢ Mod-kK, a conjugation
functor

C : Mod-kK + Mod-kK*
K,a

by demanding that the underlying vector space of CK 0LM be the same as

3

that of M, and defining the K% -module product % on C

-1
o
m%=t=m.t

where m € CY uM’ t e Ka and . denotes the module product in M.
e

We shall use CK g to denote the conjugation functor determined
b
by the subgroup K and the inner automorphism 1 + ghllg (1 € G) of G.

We can now state Green's 9 axioms relating the functors I, R,

and C.

(1) Transitivity: Ii ~ jdentity functor and, if K < H < L, then
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R

(2) Transitivity: RS identity functor and, if K < H < L, then

K
H L o 50
RK RH RK'
(3) Transivity: CK,a = identity functor if « K = 1K and if
a,B € Aut G, then CKQ,BCK,G = CK,aB'
H® H
- - < )
(%) quCK,a CH,@ Ty (for K £ H and a € Aut G)

He H
~ <
(5) RKGCH,a Ko g (for K £ H and a € Aut G).

2
(@]
wJ

(6) Let T be a transversal of (H,K)-double cosets in G. (H,K < G).
Then

c

G €. § X HE
) H&NK “H,g °

'
R¢ 19 Thenk R
geT

(This is referred to as the Mackey axiom. Cf. Huppert [9],

page 553.)

H - H H N H
(7) HomkH(IK M,N) Hoka(M, Ry N) and HomkH(N,IKlﬁ) Hoka(RK:q,M)

for N € Mod-kH and M € Mod-kK.

This result is known as Frobenius reciprocity, or Nakayama's

lemma (cf. Huppert [9], page 556). It may also be expressed by

saying that IH E.

K is a simultaneous left and right adjoint for R

(8) If A,B € Mod-kK, and o € Aut G, then

CK,a(A ®kB) < CK,aA ® CK’aB.

(9) If A,B € Mod-kH and K £ H, then

H _ _H H
RK(A_®k B) = RKA o RKB.

We add another property of interest: the '"cohomological axiom':

if A € Mod-kK, and K < H, then

dim R IE A = [H:K]dim A.

H
k K

Finally, we note a fact that seems to have no counterpart in
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Green's considerations:

if K £ H and o € Aut G, then

B _H .
IK’ RK and CK,a are faithful functors.

(2.3) Axioms for Induction-Restriction-Conjugation in Lie Algebras

Let h < g be Lie algebras over a field k, and let V ¢ Mod-g.

Definition: We define a functor
g
R; Mod-g -+ Mod-h

by
§V _ Junderlying vector space of V with
Rh " |operators restricted to Uh

g - T

R; will be called a restriction functor, and often abbreviated to R.

Definition: We define the conjugation functor

Cp, o ¢ Mod-h > Mod-h®*

L=y

(o € Aut G) on the module W e Mod-h by

underlying vector space of W with ba—
module multiplication % given by

C W= wxh®=w.h
where w € W, h € h and "." is the
h-module multiplication for W.

noa

If I1 is an arbitrary functor system

—

1

Mod-h » Mod-g (

n-" 10q
1o’
IA
1ea
N’

then it makes sense to ask if Green's axioms, (except (6), and modified

where necessary), hold for the functors I and C,_ (h <

2 2

1m3* noq
1H0Q

|I3?UHO'Q

It is easy to check that all the axioms which involve only R

and C " functors do in fact hold, so that interest centres on the
2

ne



remaining axioms, viz. (1), (4)

It turns out that (1) and

proved in chapter 3 (results (3.

Thus we shall devote most

of axiom (7) and weakened forms

23.

and (7).

(4) are implied by (7): this will be

8), (3.83).

of the rest of this thesis to a study

of it.
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Chapter 3 - Preliminary Study of We . Ug and HomUh(Ug,W)

b

(Ug,W)

£3.1) Module Structure on We  Ug and Hom

Let h < g be Lie algebras over a field k and let W be a right
h-module.

Ug by regarding Ug as a left

We can construct a vector space W€9Uh

Uh-module. We shall define a right Ug-module structure on WébuhUg.

Tor w €e W, u € Ug and g € Ug, we set
(w®u).g = w o (ug).
This uniquely determines a Ug-module product on WébUhUg.

We can also construct a vector space Homuh(Ug,W) by regarding

Ug as a right Uh-module.

We shall define a right Ug-module structure on HomUh(Ug,W). For

fe HomUh(Ug,w), u € Ug and g € Ug, we define £2 ¢ HomUh(Ug,W) by
£8(u) = £(gu).

This pairing (f,g) » € is a Ug-module multiplication on HomUh(Ug,W).

(3.2) The embedding of W in W® _Ug and a dual map.

up-& ;

Lemma A: Let h < g be Lie algebras and let W be a Uh-module. Then the

map i.,: W~

W' Ug defined by

J ®
W UQ

1w(w) = we 1Ug for w e W

is an embedding of Uh-modules.

Proof: We use equation (A) of section (1.3) of this thesis: this

equation tells us that, as left Uh-modules,

= €}>UQ,X

xeX

U

1sQa
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where X is a certain set of "standard monomials" containing the identity

monomial lU . Thus
Ug =Uh T
as left Ug—modules, where T = €£> Ug,x.
xeX\{1 . }
Ug
Since W ®y ~ Preserves direct™sums (see Curtis and Reiner [2]

(12.12)), it follows that, as vector spaces

We ~We _UheWe T,

Uh Uh

1oq

UQU
It is easy to see that the direct sum injection from the left

hand summand in the isomorphism above is given by w ® h e w ® £(h), where

e : Uh »~ Ug is the natural injection of enveloping algebras. Further,

by (12.14) of Curtis and Reiner [2], the map we w ® 1 _ is an iso-

_ Uh
morphism of vector spaces (even of Uh-modules) from W.to WébUhUh.
Composing these two maps, we see that the map iw : W-+¥J®UhUg,

defined in the statement of this lemma, is injective. It is easy to

check that iw is a Uh-homomorphism. 0

Lemma B: Let h < g be Lie algebras and let W be a right Uh-module.

The map q : HomUh(Ug,W) ~ W defined by q. (f) = f(iU ) for

1ga

f e HomUh(Ug,W) is an epimorphism of Uh-modules.

Proof: First we prove that Ay is a Uh-homomorphism. Let h € Uh and

f e HomUh(Ug,W), then

]
Hh
~
Y
~

ay(£") =

).h since f € Hom . (Ug,W)
'Un g



so k,, is indeed a Uh-homomorphism.
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It now remains to prove surjectivity. That is, we must exhibit,

o ] (8 1 ) = S V.
for each w € W, a map f_ € HomUQ(Ug,W) such that kw(fw; fw(iug) 7

We shall use equation (B) of section (1.3) of this thesis: this

tells us that, as right Uh-modules,

Ug = E{} x.Uh

- xeX

where X is a certain set of "standard monomials", containing the empty

monomial 1. .
Ug

Now, given w € W, we define a linear map

w

by setting (for x € X, h € Uh),

inly f =
Certainly hw(iug) .

f :Ug~>W

o

0 if x # 1U

fw(x.h) = g -

Ve i :1
w.h 1f x U

1neQ

By the defining property of a direct sum, this fw extends

uniquely to a vector space homomorphism Ug = W. Suppose h,h e Uh,

and x € X; then

£ ((x.h)h)
w

1

Thus fw is-a Uh-homomorphism.

fw(x.(hﬁ))

0 if x

w.(hh) if x
0 o=

(wh).h if x

(fw(x.h)).

#

h.

The remainder of this chapter is devoted to proving that,

unless W = (0) or h = g, W®

h

Ug and Hom

Uh

(Ug,W) are infinite-dimensional;
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that axiocms (1) and (4). of chapter 2 hold for the functors -® and

un’2

Hom , (Ug,-); and that -®

U Ug and HomUh(dg,-) are respectively the left

Uh

and right adjoints to the restriction functor R : Mod-g = Mod-h.

The proofs are straightforward but tedious.

(3.8) Proposition: If h < g are Lie algebras over a field k, and W is

|
8

a nonzero finite-dimensional right h-module, then dimkHomUh(Ug,w) =

Proof: By formula (B), page 14 section (1.3) above, we can write

Ug = B x.un

xX€X

as vector spaces where X is a certain set of "standard monomials",

noting as well that the set X is infinite since h < g.

Thus, as vector spaces,

Hom . (Ug,W) = Hom é%} %x.Uh,W
Ub = g xeX -

1

TT Hom,j, (%.Uh, W)
xeX =

since HomUk(—,W) turns sums into products, and for each X e X
1

HomUh(x.UQ,W) =~ W as vector spaces, under the map f » f(x)

(f € HomUb(x.UQ,W). Thus unless dim W = 0,

dlmkHomUb(Ug,W) = dim [T_r W}
= xeX
= © since h < g. . 0

(3.4) Proposition: If h < g are Lie algebras over a field k, and W

is a non-zero right h-module, then

dimk(w ® Ug) = o,

Uh 2

Proof: By formula(A), page 13, section (1.3) of this thesis, we can
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write

= éf} Ué.x
xeX

where X is an infinite of "standard monomials". Since W @ -
Uh

preserves direct sums, we can deduce the following vector space

isomorphism:

ll:}‘
HGQ

{}} W e, Ub.x.
Xe

Also, W ®UhUh .X = W as vector spaces. Hence

dimk(w ®UhU§) = z dim W
= xeX

= o since X is infinite and dim W # 0.

(3.5) Theorem: HomUh(Ug,—) is a right adjoint to the restriction

functor.
That is, if h < g are Lie algebras, W € Mod-g, V € Mod-g and 1t

R : Mod-g - Mod-h is the restriction functor, then there is an iso-

morphism

ong(V, Hom (Ug,h)) 2 HomU (RV,W)

which is natural in V and W.
Proof: Define the map

L— Hong(V, HomUQ(Ug,W)) 5 HomUh(RV,W)

by, for ¢ € Hom, (V Hom,, (Ug,w)) and v € RV,

JVW(¢)(V) = (¢(v))(1ug).

Thus va(¢) is a map RV ~ W,

We must show (1) JVﬁ(¢) is a Uh-homomorphism;

(2) J.,., is injective;

VW

8]
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(3) Jyy is surjective;

and (4) J is natural in V and W.

(1) Jyu(9) is a Uh-homomorphism.

Let v € RV and h € UQ. Then

Ty (9 (v.h) (¢(V‘h)(1Ug)

¢(V)h(1Ug) since ¢ is a Uh-homomorphism

¢(v)(h.1Ug)
¢(v)(1Ug.h)

(($(v))(1, )).h since 6(v) is a Ub-
. homomorphism

((3,,($))(v)).h.

(2)  Injectivity of Iy

If va(¢) = 0, then for all v € RV,

0 = (@) = (GO,

Thus, for all x € Ug,

(p(v))(x)

"

((d(v))*) (1, )

~ 109

= (¢('v.x))(1Ug since ¢ is Ug-homomorphism

= 0 since vx € RV.

That is, for all v € Rv, ¢(v) = 0.

1
o

That is, ¢

(3) Surjectivity of -

; BB
For each ¢ € HomUb(RV,W), we must find a ¢ € Hong(V, HomUh(JE’W))

such that va(¢) = ¥.

Given Y, we define ¢ : V = Hom , (Ug,W) by

Uh

(d(v))(u) = Y(v.u) (for v ¢ V, u € Ug).
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We must check that (a) ¢(v) is an h-homomerphism and that (b) ¢ is a

g-homomorphism.

(a) Let u € Ug, h € Uh. Then

(¢(v))(u.h) = Y(v.uh)

(P(v.u)).h since ¥ is an h-homomorphism

1"

((¢(v))(u)).h.
(b) If v eV, x,ue Ug, then

eI

= Y(vxu)

= (¢(v))(xu)

= ($(v))*(w)
¢(v.x) = $(v)*.

Thus is a well-defined map in HomU?(V, HomUh(Ug,W)), and, for

v € RV
() = G
= V(vay)
=),
go Jyu(®) =¥, as required.

(4) N - is natural in V and W.

(a) Naturality in V. Let f : V, = V, be a g-homomorphism between

V,5V, € Mod-g.. We must show that the following diagram commutes

for all W e Mod-h:

J
V, W
Hom . (V,, HomUb(Ug,W)) ey HomUh(RVI,W)

Ug
J
Hong(f’ HomUb(U%,M)) HomUh(Rf,W)
) Iy '
HomUp( Wy HomU,Q (Ug,w)) —2, HomUh(R‘v’z ,W)

=3
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Suppose ¢ € Hom_  (V,, Homuh(Ug,W)). Then for v € RY,,

Ug
[HomUE(Rf,W)(JVIW(¢))](v) = (¢(f(v)))(1Ug)
while [JVZW(Hong(f, Hong(Ug,W))(ﬁb))](v) = (¢(f(v)))(1ug)

so the diagram commutes.

(b) Naturality in W. Let V € Mod-g, let W;,W, e Mod-h and let

g : W, > W, be an h-homomorphism. We must show that the following

diagram commutes:

Jd
i, '
Hong(V, HomUb(Ug,Wl)) SO A BN HomUQ(RV,Wl)

Hong(V, Hom . (Ug,g)) HomUQ(RV,g)

UL "2

Jd
VW :
Hong(V, HomUb(Ug,Wz)) SR s NN Homuh(RV,Wz)

Suppose ¢ € Hong(V, HomUh(Ug,Wl)). Note that, for v € V

[Hom(V, Hom(Ug,g))($)1I(v) = g o ¢(v).

Thus, for v € V, vaz(Hom(V, Hom(Ug,g))(¢))(v) = (g o ¢(V))(1U§)

while on the other hand, for v € V,

Gy, @) = $ (1)

SO

"

(Hom (RV,g)(JVW1(¢)))(v) g((¢(v))(1Ug))

1

(g o d(v)(1y)

so the diagram commutes.

This completes the proof of theorem (3.5). 0

(3.6) Theorem: - ®unle is a left adjoint to the restriction functor.
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That is, if h < g are Lie algebras, V € Mod-g and W € Mod-h, then

there is an isomorphism

- ® wl I 1
Koy * Hong(w Uhu§,v) 4 qomUh(w,Rv)

which is natural in W and V.

Ug(

Proof: We define the map KWV as follows: for ¢ € Hom Ug,V),

[
We

w € W, set

Ug)'

(K (ON (W) = ¢(w @ 1
Clearly K (¢) is a linear map W > RV; we must show

(1) va(¢) is an h-homomorphism;
(2) KWV is injectivey

(3) KWV is surjective;

and () va is natural in W and V.

(1) va(¢) is an h-homomorphism.

If we Wand h € UQ, then

¢(wh @ 1UE)

¢(w @ h) i

(K (6)) G )

"

P(w @ 1Ug).h since ¢ is a g-homomorphism

(K, (8D () h

(2) Ky is injective.

Suppose va(¢) = 0. That is, for w ¢ W

0 = (va(¢))(w) = ¢(w @ 1Ug)'

Since ¢ is a g-homomorphism, this implies that for all x € Ug, w € W

0 =¢(we 1l J.x=¢(w ® x).

Ug

So ¢ = 0, hence va is injective.
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(3) va is surjective.

Suppose Y € HomUh(w,RV). We want to find a map ¢ € Hom  (W®

such that KWV(¢) = Y.

We construct such a map using the definition of the tensor product

We  Ug (cf. Curtis and Reiner [2] section (12.1)-(12.6)). Consider the

ap ¢ : WX Ug * V defined by

%(w,u) = Y(w).u for w € W, u € Ug.

~

This is easily seen to be a Uh-balanced bilinear map, so ¢ factors

through W®  Ug by a unique, well-defined map

Uh

given by ¢(w @ u) = Y(w).u for w € W and u € Ug. We shall check that

¢ is a g-homomorphism. For g € Ug, ueUg, and w e W, -

n

d((w ® u).g) = P(w).ug

(WYlw).u).g

o(w © u).g.

I 7 ® N
So ¢ € Hong(hc9UhU§,V). Finally, for any w € W

i

(va(¢))(w) d(W o 1Ug)

i

Il)(w).lUg

Ylw).

So va(qb) = P

f . .
(u) {(a) va is natural in W.

Let W,,W, be Ug—modules,'and let g : W, » W, be an h-homomorphism.

We must show that for all V ¢ Mod-g, the following diagram commutes:
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Kav ‘
: 1Y L e
HongUh ®UDU§'V)°_M—”——’ HumUb(Wl,RV)
Hom(g @ Ug,V) Hom(g,RV)
KW \Y
Hong(Wzdb U§,V) 2l s Homuh(WZ,RV)

Uh

Let ¢ € Homg(wl ® UbUg,V). Then, for w, € W,

lev(¢)(w1) = ¢(w, ® 1Ug)

so for w, € W,,

(Hom (g, RV) (K, (93))(1) = (K (8) o g)iny)
1 1

d(glw,) @ 1Ug)

while Hom(g ® Ug,v)(¢) = ¢ o (g ® Ug), so for w, € W,,

szv(Hom(g ® Ug,V)(¢))(w2) b o (ge Ug)(w2 ® 1Ug)

¢(glw,) @ 1Ug)

so the diagram commutes as required.

(b) KWV is natural in V.

Let V,, V, be g-modules and iet f : V; > V,be a g-homomorphism.

We need to show that for any h-module W, the foilowing diagram commutes:

*

' Kiv,
Homug(Wqugug*V1)‘"”““*"7 Homuh(W,RVI)
HanJ@UhUg,f) Hom(W,Rf)
K,

@
Hong(w UhU%,VZ)

-—2 Hom, (W,RV,)

" Choose ¢ € Hom., (We _Ug,V,). Then for w € W,

U Uh

1oQ

val(¢)(w) = ¢(w © 1),

so (Hom(W,Rf)(va (¢)))(w) = £(¢(w ® 1)) while, for w ¢ W and u € Ug,



(Hom(W® , Ug,£)(¢))(w @ u) = £(¢(w & u))
so for w € W,

va (Hom(Ww ®UQU§,f)(¢))(w) =

2

(Hom(w €9U§U§,f)(¢))(w @ 1Ug)

f(¢p(w ® 1Ug))'
Thus the diagram commutes.

This completes the proof of theorem (3.6).

(3.7) Unsuitability of Frobenius Reciprocity as an Axiom.

By corollary 1, page 83 of MacLane [12], any two left adjoints
to a functor are naturally isomorphic, and dually for right adjoints.
Hence any left adjoint to the restriction functor R : Mod-g -+ Mcd-h
(h < g Lie algebras) is naturally isomorphic to the functor —caUhUg,
and any right adjoint to R is naturally isomorphic to HomUh(Ué’_S'
Thus, in both cases, such an adjoint functor takes finite—aimensional
nonzero h-modules to infinite dimensional g-modules (by propositions

(3.3) and (3.4)).

For this reason, we shall discontinue our study of Green's
Frobenius reciprocity axioms (axiom (7) of section (2.2)) at the end
of this chapter, and study, instead, modified forms of the Frobenius
reciprocity axioms. First, however, we shall indicate how eifher
Frobenius reciprocity axiom may be used to prove the Lie algebra

analogues of "axioms" (1) and (4) (of section (2.2)).

(3.8) Frobenius Reciprocity Implies the Transitivity of Induction

Let h < g < f be Lie algebras. Let us denote the functors
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-® Ug and -9

Uh o

U

[{143e]

by the symbols I; and I, respectively, and let

R, : Mod—g - Mod-g

: Mod-g = Mod-

n-'

be the obvious restriction functors.
Note that R,R, : Mod-f - Mod-h coincides with the natural
restriction functor Mod-f - Mod-h.

Let W € Mod-h, U € Mod-f. Then, using the natural isomorphisms

of theorem (3.6), we have

Hom,; (I,I,W,U) = Hong(IIW,RZU)

1

R

HomUb(W,RlRZU).
Hence I,I, is a left adjoint to the natural restriction functor

R,R, :Mod-f » Mod-h.

But by theorem (3.6) of this thesis, the functor
—-®UbU§ is another left adjoint to R;R,. Hence, by MacLane [12] p.83
Corollary 1, I,I, is naturally isomorphic to-—®Uth. Hence the fact

that the induction functors I,, I, are left adjoints implies transitivity

of induction. g

Also —®[H}@ is naturally isomorphic to the identity functor;
(see Curtis and Reiner [2] (12.14) , or use (3.6) of this thesis
together with the obvious fact that the identity functor is self-

adjoint).

Similarly axiom (1), of section (2.2), follows from the right

adjointness part of the Frobenius reciprocity axiom.
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(3.9) Frobenius Reciprocity Implies that Conjugation Commutes with

Induction.

Let h < g < f be Lie algebras, and let & € Aut f. Let Ch o
= = = - L)

Cg o Pe conjugation functors as defined in section (2.3):
3
C, _ : Mod-h - Mod-h"
]3,(1 = =
- o
c : Mod-g Mod-g
g,a = =
g & -
Let Rﬁ, ; be restriction functors as defined in section (2.3):
= b= g
Ri : Mod-g - Mod-h
g a
Ra @ Mod-g ¢ > Mod-h" .
g § g“
Let I; : Mod-h - Mod- -8 and Ig : Mod-h® > Mod-g® be left adjoints to
g = g = ) )
Rg and Rga respectively.
We shall show that € I§ = IQG Ch,a'

B E{0e]
(o3

We shall use the easy results that if W € Modfg, V e Mod—g, then

g g
(a) HomUh(w,R};v) = Hom ho‘(cb Ri}acg,av)
and
g g
(B) HomU OL(IhOLC}} Cg,OLV) = Hom g(p o Ot'lThOLw V)
By (A), g g
omuh(W,RbV) = Hom a(Cb Rhucg,aV)
%a =
= Homy, a(IhaCh,aW,Cg,aV) (by left adjointness)
= o =
5 ong(Cgu,a'lIiqu,aw’V) by (B) above,
g - g_
o) Cga _llh h,o is a left adjoint to Rb Hence, by the uniqueness

of left adjoints (MaclLane [12] p.83 Corollary 1),

g g

Ty * O 11O 0

"z
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It follows that C il
g,0

1= 19q
H:I‘H”
= g

=2
Q

(3.10) Remarks

Thus axioms (1) and (4) of section (2.2) follow from axiom (7) of
section (2.2). The weakened forms of axiom (7) that we shall be study-
ing from now on do not seem to imply axioms (1) and (4) (nor even
weakened forms of axioms (1) and (4)!). We shall not, however, study

axioms (1) and (%) any further in this thesis.
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Chapter 4 - Partial Adjoints

(4.1) Introduction to the Concept of a Partial Adjoint

Since the remarks in 3.7 show that we cannot hope to find a
finite-dimensional induced module functor which is either a left or

right adjoint to the restriction functor R : Mod-g -+ Mod-h where

h < g are Lie algebras, it is natural to ask if we can find a similar

but weaker property which an induction functor might satisfy.

Motivated by a paper of Wallach [17] (see Lemma 2.2), we consider

eight possible weakenings of left and right adjointness.

Let H and G be arbitrary categories and let I : H > G and

R : G > H be functors between them. Consider the following axioms:

(i) TFor all We H, V € G there is a map

G(IW,V) - H(W,RV)
which is injective, and natural in W and V.
(ii) For all We H, V € G, there is a map
6(Iw,Vv) » H(W,RV)
which is surjective, and natural in W and V.
(iii) For all W ¢ H, V € G, there is a map
H(W,RV) - G(IW,V)
which is injective and natural in W and V.
(iv) For all W e H, V e G, there is a map
H(W,RV) - G(IW,V)

which is Eprigptive and natural in W and V.
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(i)' For all V € G, W € H, there is a map
¢(V,IW) > H(RV,W)
which is injective and natural in V and W.
(ii)' For all V € G, W € H, there is a map
G(V,IW) » H(RV,W)

which is surjective and natural in V and W.

(This axiom has also been studied by Kainen in [11].)
(iii)' For all V € G, W € H, there is a map
H(RV,W) » G(V,IW)
which is injective and natural in V and W.
(iv)"' For all V € G, W € H, there is a map
H(RV,W) ~ G(V,IW)
which is surjective and natural in V and W.

(4.2)

Let h < g be Lie algebras. Put H = Mod-h and G = Mod-g and let

leg

e the restriction functor. In the rest of this chapter, we

R:goH
shall obtain results which show that a functor I : H > G satisfying
any of axioms (ii), (ii)', (iii), (iii)' has a representation which
precludes it from being a finite-dimensional-induced-module functor.
Thereafter, we shall concentrate our attention on the axioms (i) and

(i)', (iv) and (iv)'.
We need four lemmas.

o
(4.3) Lemma: Suppose A « B « C is a sequence of modules and morphisms

in a category G. Suppose that ker o, coker B and im B exist in G and
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that im B = ker(coker B). Finally, suppose that the induced sequence

(:;(A,v) M Q(B,v) w (:3(c,v)

is exact when V = A and when V = coker R.

Then the original sequence must have been exact, too.

Proof:  From exactness of G(A,A) gigiég g(B,A).gSilél g(C,A) it follows

that
a = G(a,A)(1,) e im(g(a,n))

= ker(g(B,A)),

so 0 = g(B,A)(a) = a o B. Thus im & < ker B. For the reverse
inequality, consider the exact sequence

¢(a,coker B) G(B,coker B) Q(B’COkEE_g) G(C,coker B).

Q(A,coker R)
If k denotes the canonical map B + coker B, then

G(B, coker B)(k) = koB =0
S0

k e ker G(B, coker B) = im G(a, coker B).
That 1is, there exists ¢ ¢ Q(A, coker B) such that
k = G(a, coker B)(¢) = ¢ o a.

< ker(¢ o a)
¢
= ker k ;\\M l

coker B

n

Clearly ker a

= im B by hypothesis.
Thus ker o and im B are equivalent subobjects; that is, the original

sequence is exact. 0

(4.4) Lemma: (Yoneda lemma). Let G be a category and let A, B € G.
Suppose that

n : G(A,-) + g(B,-)
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is a natural transformation. Then the morphism UA(lA) : B > A induces

n, in the sense that for all V € G,

n, = 6(n,(1,),V).

\Y

Proof: See MacLane [121, page 61. 0

(4.ba) Corollary: Let H and G be categories and let C,D : H > G be

functors. Suppose that

Ny g(cw,v) > c(Dw,v)

(W € H, V € G) is a natural transformation. Then the morphism

. T -> o < 3 3
nw,cw(lcw) : DW + CW induces N and is natural in W.

. - - 3 ~ 2 ¥ 3
Proof: By lemma (4.4), nw,cw(lcw) induces N. Suppose W,W' € H and

f e H(W,W'). Then we know that the following diagram commutes:

My owe
G(CW',CW') ———2—— G(DW',CW')
G(CEf,CW') G(Df,CW")
n i N

cow,cit) —0C o g(ow,cut)

Hence, in particular,

Q(Df»cw')(”W',cw'(lcw')) = nw,cw,(@(Cf,cw')(ch,)).
That is ”w',cw'(lcw') o Df = nw’cw,(Cf)
= g(nw,cw(lcw),CW')(Cf)
by lemma (4.4)
=Cf o Ny oplioy)
oo Twewtlen)
. | . Thus nw’cw(lcw) is matural
L v in W.
DW h i ——;) W 0

(1
W',CW' T CW
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o
(4.5) Lemma: Suppose A > B> C is a sequence of modules and morphisms

in a category G. Suppose that ker B, coker o and im a exist in G, and

that the induced sequence

g(v,a) 209 gev,p) 88 g(v,0)

is exact when V = A and when V = ker B. Then the original sequence must

have been exact.

Proof: Let k denote the inclusion morphism ker B * B. Since

g(ker B,A) ggfﬁlféﬂf G(ker B ,B) ggﬁﬂlf&f? G(ker 8 ,C)

is exact, and k € ker(G(ker B ,B)), we may deduce that
k € im G(ker B,a),

hence there exists ¢ € G(ker B ,A) such that

k =a-° ¢,

Thus ker B = im k = im(o o ¢) < im a.

Now we prove the reverse inequality. Since the sequence

aa,8) £ oea,m) E4:E) gae)

is exact,

a=oc° 1, =G6(Aa)1,) c in G(A,a)

and im G(A,a) = ker G(A,B), hence

B ea = 0.
That is, im o < ker B. Thus im o = ker B as required. | g
(4.6) Lemma: (Yoneda lemma). Let G be a category and let A,B € G.

Suppose that

n s G(-,A) + g(~,B)
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is a natural transformation. Then the morphism ﬂA(lA) e G(A,B)

induces 1 in the sense that for all V € G

Ny = Q(V,nA(lA)).

Proof: Dual to that of (4.4). 0

(4.6a) Corollary: Let Hand G be categories and let C,D : H > G be

functors. Suppose that for W e H, V €

[L[p]

b

Ny @ 8V,CW) = g(v,DW)

are the components of a natural transformation N. Then the morphism

(

) € G(CW,DW) induces n and is natural in W.

New. e ew

Proof: By lemma (4.6), Moy w(icw) induces N. Thus it remains to prove
LY 2|
naturality. Suppose W,W' e H and f e H(W,W'). Then, by assumption,

the following diagram commutes:

New,w
G(CW,CH) =) g(cw,DW)

g(cw,cf) l G(cw,Df)

g(cw,cw')-77—-—-¢ g(Cw,DW")
CW,W!

Hence, in particular,

Q(CW,Df)(nCW,W(lcw)) = ncw,w.(g(cw,Cf)(lcw))
i.e . _ )
Df ”cw,w(lcw) = ncw,w'(Cf)

= Moo e o) © ©F

since ncw',w'(lcw') induces nCW,W' by the first part of this corollary.

That is, the following diagram commutes:
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CW .._gf‘_zﬂ_,._”c_..'_‘ N DW
f
Cf L Df
CW' ——————3  DW'
New,u ey
that is, N (1..) is natural in W. (i

CW,W "CW
We shall now apply these lemmas to obtain some consequences of
xioms (ii) and (iii), (ii)' and (iii)' (of section (4.1)) in theorems

(4.7), (4.8), (4.9) and (4.10) respectively.

(4.7) Theorem: Let H and G be categories and let I : H ~ G,

R : G > H be functors. Suppose that there exists a natural surjection
6(Iw,v) »> H(W,RV)

for each W € H and V € G and that R has a left adjoint L : H > G. Then

[H{op}

-

Mm
.

there is a split natural monomorphism 9w e G(LW,IW) for each W

Corollary (4.7a): Let h < g be Lie algebras and set H = Mod-

i Fon

b

G = Mod-g. Let R : G > H be the restriction functor, and suppose that

there exists a functor I : H > G, and, for every W € Hand V € G, a

linear surjection G(IW,V) - H(W,RV), natural in W and V.. Then there

is a natural Ug-monomorphism

VJ®UhUg > IW for each W €

H}e=

In particular, dim IW = ® unless W = {0} or h = g.

Proof of Corollary: By (3.6), -® _ Ug is the left adjoint to R. So

U

theorem (4.7) applies, and guarantees the existence of the natural

monomorphism W@ > IW for each W ¢ H. By proposition (3.4),

up"2
dim IW = « unless W = {0} or h = g. N
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Proof of theorem (4.7): By the hypotheses, there is, for every W € H

and V € G, a natural surjective composition map

Oy ° g(lw,qié:——_i:izg(Lw,v)
H(W,RV)

where the righthand map is the adjunction. Set ew = ew,IW(ilw)' Then

by Yoneda lemma, (4.4) and (4.4a), € is natural in W and for any

W

a € g(IW,v), ewv(a) =qQ ° ew. Put V = LW. Since Gw

there exists Gw e G(IW,LW) such that ©

is surjective
,Lw ] b

W,LW(¢W) = 1. That is,

W W LW:

Hence GW is a split, natural monomorphism.

(4.8) Theorem: Let G and H be categories and let R : G > H and

I : H~> G be functors. Suppose that R has a left adjoint L : H~> G

and that there is a natural injection
H(W,RV) > ¢(Iw,V)

for every W e H and V ¢ G. Then, for each W ¢ H, there is an epi-
morphism

6, € G(IW,LW)

which is natural in W.

Proof: Let We H, Ve G. Let BWV denote the composition map

G(LW,V) > H(W,RV) » (IW,V)

where the lefthand map is the adjunction map and the righthand map is
the natural injection whose existence was supposed in the statement of

the theorem. Then va is injective and natural, and so for any
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o € G(LW,V), the following diagram commutes:

ew,Lw

G(LW,LW) G(IW,LW)

g(Lw,a) Q(Iw,a)

G(LW,V) —— G{(IwW,V)
WV -

. c T - % .
Def}ne Bw e G(IW,LW) by B eW,LW(iLW) By corollary (4.u4a)

Gwv(a) = o Oy (%)

and Sw is natural in W. To see that ew is epi, consider

Oy o
IW ——t Lw=ﬁ§$V.

If a o B, = B e 6y, then, by (%) above, it follows that

Swv(a) = 6 _(8), and so, since O,y is injective, we see o = B. Thus

WV
W is epi. O

Corollary (4.8a): Tet G = Mod-g and H = Mod-h where h < g are Lie

algebras. Let R : G = H be the restriction functor and suppose that

there exists a functor I : H > G, and, for every W e H, V € G, a linear
injection H(W,RV) > g(IW,V) natural in W and V. Then, for all W ¢ H

there is a Ug-epimorphism IW -~ We  Ug, natural in W. In particular

o
dim IW = « unless W = {0} or b = g.

Ug is the left adjoint to R. Applying (4.8) and

Proof: By (3.6),-—®Uh

proposition (3.4), we obtain the conclusions of the corollary. g

(4.9) Theorem: Let H and G be categories and let R : G+ H, I : H+ G

be functors. Suppose that R possesses a right adjoint F, and that for

all W e Hand V ¢ G, there is a natural surjection

G(V,IW) » H(RV,W).
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Then for all W ¢ H, there is a split natural epimorphism Gw : IW > EW.

Proof: Let W ¢ Hand V € G. We have a natural surjective composition

map

¥R

G(V,IW) » H(RV,W) > G(V,FW)

which we shall denote by © Set 6. =6 (1..,). Then by Yoneda

Vi° W OUIW,WIW
lemma (4.6) and (4.6%a), Gw is natural in W and for any O € Q(V,IW),
evw(a) = ew ‘° a.
Put V = FW. Since er " is surjective, there exists ¢w € G(FW,IW) such
X 2

that BFW,W(¢W) = 1+ That is 6w ° ¢w = 1.y- Thus Gw is a split epi-

morphism IW = FW. 0

Corollary: Let h < g be Lie algebras, set H = Mod-h, G = Mod-g, and

let R : G > H be the restriction functors. Suppose that there is a

functor I : H > G and, for every W e Hand V € G, a surjection
g(v,IW) > H(RV,W)
natural in V and W. Then, for every W € H there is a Ué—epimorphism
W > HomUQ(Ug,W).

Ly

In particular, dim IW = ® unless h = or W = {0}.

[H{4ye]

.Proof: By (3.5), HomUh(Ug,—) is a right adjoint te R. Applying (4.9)

and proposition (3.3), we obtain the conclusion of the corollary. O

(4.10) Theorem: Let G and H be categories. Let R : G> Hand I : H~+G

be functors, and suppose that for every W ¢ H and V € G there is a natural
injection

H(RV,W) » G(V,IW).

If R possesses a right adjoint F : H » G, then for every W ¢ H there is a
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moncmorphism 6 e G(FW,IW) natural in W.

W

Proof: Let W e H, V € G. We have a natural, injective composition map

G(V,FW) > H(RV,H) > G(V,IN)

which we shall denote by va. Set Sw = 0 By Yoneda lemma

'
i, i tew
((4.6) and (H.Ga)),‘ew is natural in W and for every a e G(V,FW),

evw(a) = ew o .

S
(0]
Consider the following diagram: V:ﬁgg}ﬁﬂ——ﬂa IW., If Sw °© 0 = Gw 5 B,
then the equation above tells us that va(a) = eVW(B)’ so, since GVW is
injective, it follows that a = B. Thus Gw is monic. ' 0

Corollary (4.10a): Let h < g be Lie algebras and let H = Mod-h and

n=

G = Mod-g. Let R : G > H be the restriction functor and suppose that

for every W € H and V € G there is a natural linear injection
H(RV,W) » G(V,IW).
Then, for all W € H there is a Ug-monomorphism
Homuh(Ué,W) -+ IW.

In particular, dim IW = © unless W = {0} or h = g.

Proof: By (3.5), Homuh(Ug,—) is the right adjoint to R. Applying
theorem (4.10) and proposition (3.3), we obtain the conclusions of the

corollary. 0

Remark: The corollaries to theorems (4.7) - (4.10) show that functors
satisfying any of axioms (ii), (iii), (ii)' or (iii)' are unsuitable for
producing finite-dimensional induced modules. We shall study only

axioms (i), (iv), (i)' and (iv)' in the rest of this thesis.



50

Chapter 5 = The Injectivity Axioms

(5.1) This chapter studies consequences of the axioms (i) and (i)' of
section (4.1); these axioms are restated below for ease of reference.

They will dominate chapters 7 and 8.

Notation: Throughout this chapter, H and G will be categories {with zero

objects) and

-
i

¥
"o

]
ne
4
nm

will be functors.

The Left Injectivity Axiom (Axiom (i) of (4.1)) holds for I and R 1f,;

for all W e H, all V € G, there exists a natural injection

ewv : 6(IW,V) ~ H(W,RV).

The Right Injectivity Axiom ((i}' of (4.1)) holds for I and R if, for all

We Hand all V € G, there exists a natural injection

oy & g(V,IW) ~ H(RV,W).

Remarks: In chapter 8, we will produce functors I and R which satisfy
both the left and right injectivity axioms simultaneously. This is
something which we can't do with the left and right adjoints to the

restriction functor Mod-g =+ Mod-h (where h < g are Lie algebras). For

we showed, in the proofs of (3.3) and (3.4) that W & Ug is isomorphic

h

to a direct sum of !Xl copies of W as a vector space, while HomUh(Ug,W)
is isomorphic as a vector space to the direct product of IX'I copies of
W, where X and X' are infinite sets with the same cardinality. Thus,

if W # (0), HomUh(Ug,w) and W @ Ug cannot be isomorphic as vector

o'

% "jaft" since I resembles a left adjoint to R.
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spaces, let alone as g-modules.

In chapter 7, we shall study the special consequences of both left
and right injectivity axioms holding simultaneously. In this chapter,

we shall study these axioms individually.

‘Convention: In sections (5.2) to (5.6) we shall suppose that the left

injectivity axiom holds with respect to I and R.

(5.2) Definition of jW' Let W ¢ H. Define a morphism

=8 (1_..)

P MBI By Jy S Sy oyt

Ty
noting that

Oy, 1w = G(IW,IW) > H(W,RIW).

Remark: MacLane [12] (page 81) would probably call jy the unit of the

(weakened) adjunction ev Note that in the terminology of MacLane

V-

again, 6., has no counit, hence no "triangular identities" in the sense

WV
-of MacLane [12], page 83.

(5.3) Lemma: Let We H, V € G. Then Iy induces QWV’ in the sense that

if ¢ €G(IW,V) then
ewv(qb) = R o jw‘
Proof: Suppose ¢ e G(IW,V). Then certainly R¢ o jw € H(W,RV), and we

have the following commutative naturality diagram:

0
G(IW,IW) ~——w——I—H) H(W,RIW)

G(IW,$) H(W,R$)

\ \ Sy .
¢(Iw,v) - =————3 H(W,RV)

Hence H(W,R$) (6 )) = R o jw, and 0 (g(zw,¢)(11w)) = 0 () are

W, Iw(llw Wv Wy

equal. U



(5.4) Lemma: j is a natural transfcrmation from the identity functor

on g to the functor RI : H * H. That is, jw : W RIW is natural in W,

for W € H.

Proof: Let W,,W, € H and choose any ¥ € g(wz,wl). By naturality of

ewv, the following diagram commutes for all V € G:

S
_C__%(le ,V) -__._w_l..Y_9 g}(w1 ,RV)

G(T),V) H(P,RV)

)
@(IWZ,V)~—~—E3Y-§ H(¥W, ,RV)

Putting V = IW; and chasing 1IW around the diagram, we find that
1

}:i(tp,Rle)(ew1 (1...))

JIW,TIH, g(w’Rle)(le)

Jg, o ¥

while

O, 1w, (V)

RIY © §. -
2

( W, ) (
ewz,lwlkg(Iw’le)‘ilwl))

Thus, by commutativity of the diagram above,

oy - @ Y 5 RIY @
I, W,®
that is, the diagram
Iy
s, RIW2

W2
] ’ RIy
R T i
Wy smssobonny RIWy commutes. O

(5.5) Propesition: I is epi-preserving.

et
jus

Proof: Let W,,W, € We must show that if Y ¢ H(W,,W,) is epi, then

Iy is epi.

Suppose V ¢ G and y,8 ¢ G(IW,,V) are such that y o Ip = & ¢ Iy
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i
IV,

S THy == V
6
Then, by functoriality of R, it follows that

Ry ° RIY = RS © RIY,

hence RY © RIY © j = RS o RIY ¢ 5 .
Wy Wy
Consider the following diagram:

RIW, —S¥ s RIW, ——L3 RV

R5
le ]\ T jwz

I
W, —t s W,
which commutes, by lemma (5.4). From the commutativity of the diagram,

and the equation above it, we deduce that

ow.

RY © j °II)=R(S°
w2 2

T

Since ¥ is epi, it follows that Ry ° j, = RS » jN . That is,
2 2

BWZV(Y) = szv(ﬁ), by lemma (5.3). Hence y = § since szv is injective.

Soy o IY = 8§ o IY entails that v = §. That is, IY is epi. O

(5.6) Proposition: Let H be a category with cokernels, let W e H and

VeG. If¢e g(IW,V) is a morphism with the property that R¢ factors

through coker jw via its natural projection, then ¢ = 0.
. Rd
Proof: It is easy to check that

W—-—-B RIW

since H has cokernels, R¢ factors \\\\i
= projection //

through coker y via the natural saker ]w
projection only if R¢ o jw = 0.
But R¢ o jw = va(¢) and 6WV is injective. Hence, if R$ factors through

coker jw via the natural projection, then ¢ = 0. O

Corocllary: Let

ney

< g be Lie algebres. If E = Mod-h and G = Mod-g and

R : Mod-g + Mod~h is the restriction functor, thea for all W ¢ Mod-h,
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IW = (im jw)'Ué'

Proof: Let V = IW/(im jw.Ug), and let ¢ be the canonical projection

IW > V.

Clearly R¢$ factors through coker jw via the natural projection:

RIW—— (RIW/im jw) = coker j,

R

4

(RIW/im ;)

= RIW/R(im j,.Ug).
(R(im 3..Ug)/in ) -

Hence, by proposition (5.6), ¢ = 0. But ¢ is surjective, so
0 = im ¢ = IW/(im jw).Ug.

Hence IW = (im jw).Ug. 0

(5.7) Proposition: Let H and G be categories and let R : G 2 H,

I : H~ G be functors for which the left injectivity axiom holds. Then
I is faithful if and only if for each W ¢ H the morphism jw defined in

section (5.2) is monic.

Proof: (a) 1 faithful implies jw monic. Suppose that I is faithful,

let W, ,W, € H, and let f,g € g(wl,wz) and consider the diagram
f Iy,
W, =} W, —2% RIW, .
g
We must show that if jw o f = jw o g, then f = g.
2

-
P

By the naturality of j (lemma (5.4)) and lemma (5.3),

§. o £=RIfeo . =0 (1F)
W, Jw, T Vw,, 1w,
and jwzo g = RIg o ]wl = GWI,IWZ(Ig)'
L ;o 4l 4 oy i
Hence ig, © £ Ta, ° g implies GW],IWZ(If) dWI,IW?(Tg)



55. -

Since 6W1,IW2 1s 1injective, this implies If = Ig.

Since I is faithful, this implies f = g.

(b)

jw monic implies I faithful. Suppose that jw is monic for

all W e H. Let W, ,W, ¢ H and choose f,g ¢ H(W,,W,) such that If = Ig.

We must show that f = g.
Now If = Ig implies RIf = RIg

which impliies RIg o jw = RIg ° jw
1

1
which implies jw o f = jw ° g
2 2

by lemma (5.4), and, since j is monic, this last equation implies
y sz q

f = g. 0

We sum up (5.2) - (5.4) and (5.6) in the next theorem.

(5.8) Main Theorem: Suppose that H and G are preadditive categories,

that I : H~> G and R : G > H are functors, and that H has cokernels.

Then the left injectivity axiom of (5.1) is equivalent to the

following two conditions:

(a) there exists a natural transformation j : 1H 4+ RI

and (b)) for all W e H, V e G and all ¢ e G(IW,V), if R} factors

through coker jw via the natural projection, then ¢ = 0.

Proof: (5.2) and (5.4) tell us that the left injectivity axiom implies
condition (a), and (5.6) tells us that the left injectivity axiom implies
condition (b). Thus it remains to show that (a) and (b) tojether imply

the left injectivity axiom.

Assume that (a) and (b) hold. For all W ¢ H and V € G, we must

define a map

Gwv 2 g(Tw,v) » H(W,RV).
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Suppose ¢ € G(IW,V). We define Gwv(¢) = Rp © Jy It is easy to check

that ewv(¢) e H(W,RV).

Next we must show that eWV is natural in W and V, and injective.

(1) Naturality of O,

Let W,W' € H and V,V' € G. Choose eny O ¢ H(W',W) and any
B e g(V,V'). We shall show that the following diagram commutes:

O
G(TW,¥) =———3 H(H,RV)

g(Ia,B)l j/g(a,RB)

g(zw',v')-g———% H(W',RV')
- W'vr o

That is, for all ¢ € G(IW,V), we want to show

H(o,R8) (B, (9)) = 0., (6(1a,8)(9)).

\1|V|

1"

Wv

That is, for all ¢ € G(IW,V), we want to show

1

R8 o (Rp © j.) o a=RB oo Ia)e i,

or RE © R ° (j, ° a) RB ° Rp o (RIO © j,)
using the functoriality of R.
But condition (a) tells us that
jw o a = RIQ ° jW"
and so, premultiplying both sides of this by RB ° R$, we obtain the

required commutativity condition.

(2) Injectivity. Let W e H, V € G. We must show that for any

1

¢ € Q(IW,V), 6wv(¢) = 0 implies ¢ = 0. That is, that R} o jw = 0
implies ¢ = 0. It is easy to check that since H has cokernels, R¢

factors through coker jw via the natural projection if R} o jw = 0.

Thus, using condition (b), we see that R} o jw = 0 implies ¢ = O.
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Remark: Let h < g be Lie algebras. If H = Mod-

» § = Mod-g and

R : Mod-g »> Mod-h is the restriction functor, then condition (b) of

(5.8) can be replaced by: (b)' for all W € H, IW = (im jw).Ug.

Proof: We must show that if W € Mod-h, V € Mod-g, and ¢ « Homg(Iw,V),

then R © jy =0 implies ¢ = 0 when (b)' holds.

Let w € Wand u € U Then, since R} © jw =0, ¢(jw(w))_u = 0

e

But ¢ is a Ug-homomorphism, so
¢(3,(w).u) = 0.
That is ¢((im jw).Ug) = 0. But then, by (b)', ¢(IW) = 0; that is,
¢ = 0.
The converse - that the left injectivity axiom implies condition
(b)' - is proved in the corollary to Proposition (5.6). U

The next result is another in the series begun with theorems (4.7)
to (4.10). This time, the result gives us a representation of our

functor I

T

- G in terms of a (hypothetical) left adjoint to the

functor R : >

e

HG

(5.9) Theorem: Let G and H be categories. Let R : G+ Hand I : H~>G

be functors satisfying the left injectivity axiom of section (5.1) and
suppose that R has a left adjoint L : H > G. Then, for each W ¢ H there

exists an epimorphism U € g(LW,IW) which is natural in W.

W

Proof: Suppose W € H and V € G. Then there is a natural, injective
composition map

¢(Iw,V)——> G(LW,V)

/
W,RV)

24



where the righthand map is

by U and set My = Hy IW(

WVD

=
<

any o € G(IW,V), uwv(a) = &

diagram LW-*“9IW—E§$V wher

W (R), which implies a = B

WV

(5.9a) Corollary: For W €

(VIS Q(W,RV) lifts through ©

factors through IW via My @

W

ly
¥
RV

The converse is also true.

'such that = . The

OJv(ﬂ)

Suppose we are given W ¢ H,
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the adjunction. Denote this composition map

1IW)' (4.4) and (4.4a), for

By Yoneda lemma,

is natural in W. Consider the

°o Y. and My

W

e a,B e G(IW,V). a ° w, = B °‘%q$%“wv(a) =

since Uwv is injective. Thus uw is epi. 0O

H, denote the adjunction isomorphism by

KW,IW : g(LW,IW) > E(W,RIW). If jw : W > RIW is the morphism defined in
section (5.2), then

KW,IW(UW) = Jge
Proof: Let W € @. In the notation of sections (5.2) and (5.9),
Moot = Koo © Swmwe W T W, melpe)e and dy = Oy p{igy). Hence

s K B ()

W W, IW W, IW " IW
- Kw,lwbl(jw)
. 'KW,IW(UW) = 3y o

(5.9b) Corollary: Let W e Hand V € G, and let Ky denote the adjunction
G(Lw,v) > H(W,RV). If ¥ € H(W,RV) and there exists T € G(IW,v) such
that Gwv(ﬂ) = ¥, then va_l(W) =T . In other words, a morphism

L)

E

to a morphism m ¢ G(IW,V) only if Ky

Wwv

s shown in the commutative diagram below:

Lw

My
(w)l\‘lw

VeG, § e HW,RV) and T e G(TIW,V)

first thing we want to prove is that
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va(ﬂ o uw) = ¥. Now,

va(ﬂ ° uw) R(m © uw) ° KW,IW(llw)’ by MaclLane [12], Theorem 1,

page 80,

= RT o Ry, °© KW,IW(llw)’ by functoriality of R,
= RmW o KW,IW(UW)’ by an argument like that of (5.3),

= Ry o by Corollary (5.9a),

]k’,
5 Bwv(ﬂ), by lemma (5.3),
= {, by hypothesis.

To prove the converse, we must suppose that We H, V e G,

Y e H(W,RV) and that 7 e 6(IW,V) satisfies
o g = KT
Ty = Ky W
and show that ewv(n) = .

The argument to show this is an obvious reversal of the steps of

the proof of the first parf of this corollary. 0

The Right Injectivity Axiom

The study of the right injectivity axiom is dual to that of the

left injectivity axiom. We carry out this dualization in detail.

Convention: In sections (5.10) to (5.14) we shall suppose that the

right injectivity axiom holds for the functors I and R. (See section

(5.1) for definition.)

(5.10) Definition of ky: Let W e H. We define a morphism

kw : RIW > W
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(1_.), noting that

by Ky = Moy 'y

nIW,W : G(IW,IW) » H(RIW,W).

(5.11) Lemma: Let We H, V e G. Then ky induces Nyye in the sense

that if ¢ e G(V,IW) then

nvw(¢) = k., ° Ro.

W

Proof: Suppose W e H, V e G and ¢ « G(V,IW).

Certainly kw o R} € g(RV,W), and we have the following commutative

naturality diagram:

n
G(IW,IW) -31Efi; H(RIW,W)
G(¢,IW) H(R),W)
G(V,IW) g H(RV,W)

VW
Hence g(R@,W)(n(w W(llw)) = e, @ R$, on the cne hand, is equal to
%

nvw(g(¢,1w)(1lw)) = nvw(¢),.on the other hand. g

(5.12) Lemma: k is a natural transformation from the functor

RI : H~ H to the identity functor on H. That is, k., is natural in W,

W

for W € H.

Proof: lLet W,,W, € H, V € G, and choose ¥ e H(W,,W,). By the

naturality of n the following diagram commutes:

VW’

n »
G(V,TH,) — 0y H(RV,H,)

G(V,1y) H(RV,¥)

G(V,IW,) ——> H(RV,W,)
Tyw, °~

around the diagram. We now find
1

t = IW, and chase !
Put V IW, and chase lIw



61.

! =
}:i(RIdI,\P)(Ule,wl(lle)) an“wz(g(le,W)(inl))
That is -
H(RIW, ) (k) = nIWsz(W)
or
Y o k = k o RIY.
W, W,

That is, the following diagram commutes:

Ky
RIW) 2y W)
RIY I J’ v
b
RIV,~—4—> W, so k. is natural in W. 0
W, |

(5.13) Proposition: I is monic-preserving.

Proof: Suppose that W, ,W, € Hand y ¢ H(W, ,W,). We must show that if

Y is monic then Iy is monic.

Suppose V € G and y,8 € G(V,IW;) are such that
Iy oy = I o &:

V‘(‘S"IW I—‘P-e»lw

Then, by functoriality of R, it follows that
RIY © Rv = RIY © RS,

hence k o RIY o Ry =
v,

k.. o RIY o RS.
W,

Consider the following diagram:

Ry RIY
B 3 RIW,—> RIW,

5
k k
wlj/ , l W,

wl w2
Y

By lemma (5.12), the righthand square commutes. Hence the last

equation implies
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o =1 o c
Y] kwloRY U kw1 RS.

Since Y is monic, this leads to

ky °RY =k, °RS,

and by lemma (5.11), this is the same as saying

Ny, (6).

(v) -
1

T,

Since n is injective,
VW,
Thus Iy is monic.

(5.14) Proposition: Let H be a category with kernels, and let W € H

and V € G. If ¢ e G(V,IW) is a morphism with the property that R$
factors through ker kw via its natural inclusion, then ¢ = O.

Proof: Since H has kernels, R¢ Ré kw
B RV 3> RIW > W

factors through ker ki via the
inclusion

natural inclusion only if

ker kw

| R$ = 0. But B ® R = nvw(¢)

by lemma (5.11) and Now is injective.

Hence, if R factors through ker kw via the natural inclusion,

then ¢ = 0. il

e
] e e

= Mod-

Hep]
(i}

o

([}

Corollary: Let h < g be Lie algebras. If Mod-g, and

R : Mod-g - Mod-h is the restriction functor, then ker kw contains no

nonzero g-submodules of IW, for all W e Mod-h.

_Eroof: Let W ¢ Mod-g, and lét V be a Ug-submodule of IW, such that RV

is contained in ker k.., and let ¢ : V - IW be the natural inclusion.

w)

Then certainly R¢ factors through ker kw via the inclusion of ker kw



in RIW. Hence ¢ = 0. But ¢ is an inclusion map, so V 0. That i

ker kw contains no nonzero g-modules.

(5.15) Proposition: Let H and G be categories and I : H~> G, R : G

functors for which the right injectivity axiom holds. Then I is
faithful if and only if for all W e H the morphisms kw ¢ RIW = W,

defined in (5.10), are epi.

Proof: (a) I faithful implies k. epi.

Suppose I is Ffaithful, let W,,W, ¢ H, let f,g € H(W,;,W,) and
consider the diagram

Ky i
RIW, —— W, =223 W,

We must show that if f o kw =g o kw , then f = g.
1 1

By naturality of k (lemma (5.12)) and lemma (5.11),

fok, =%k, o RIf =n_, (If)
W, W, IW, ,W,
g ok, =k, o RIg=n_ (Ig).
W, W, W, ,W,
Thus f o kwl =g o kw1 implies
n (If) = n. (1g)
v, W, IW, W,
which leads to If = Ig .
But then, since I is faithful,
f=g

(b) ki epi implies T faithful.

Suppose kw is epi for all W ¢ H. Let W, ,W, ¢ H and choose
f,g ¢ H(W,;,W,) such that
If = Ig.

We must deduce that f = g.
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Now If = Ig implies RIf = RIg
which implies k °© RIf = k., © RIg
Wy P
which implies f ° kw1 =g ° kwl

which implies f = g

since k, is epi. u
1

We sum up (5.10) - (5.12) and (5.14) in the next theorem.

(5.16) Main Theorem: Suppose that H and § are preadditive categories,

that T : H> G and R : G~ H are functors, and that H has kernels.

Then the right injectivity axiom of (5.1) is equivalent to the
following two conditions:

(a) there exists a natural transformation k : RI * 1 ;

and (b) for all We H, Ve Ggand ¢ € G(V,IW), if R$ factors through

ker kw via the natural inclusion then ¢ = 0.

Proof: (5.10) and (5.12) tell us that the right injectivity axiom

" implies condition (a), and (5.14) tells us that right injectivity axiom

implies ccndition (b).

Thus, it remains to show that conditions (a) and (b) together

imply the right injectivity axiom.

Assume that (a) and (b) hold. For all W € H and V € G we must

define a map

n G(Vv,IW) ~ H(RV,W).

Vi -
Suppose ¢ e G(V,IW).

We define nvw(¢) = kw o Rb.
(RV,W).

: P
Clearly nvw(¢) e I

We must show that n is natural in V and W, and injective.

VW



(1) gﬁfuralltiﬁgf_ﬁvw.

Let W,W' ¢ H, V,V' € G and choose 0 ¢ E(W,W‘), B e gV, V). We

shall show that the following diagram commutes:

Ty
GV, DN} ==y HIRV;W)
G(8,10) H(RB,0)
G(V',IW') —— H(RV',W')
My oy
We need to show that for all ¢ e G(V,IW;,
H(RB,a) (ny(6)) = ny e (G(B,Ta) (9)).
That is, we must show, for ¢ e G(V,IW), that
a o (ky o RP) o RB = ke R(Ia o ¢ o B)

or o o kw o Rp o RB = k.,' o RIo o Rp o RP

W

using the functoriality of R.
But condition (a) tells us that

a o ky = ky, ° RIa,

and so, postmultiplying by R¢ o RR, we obtain the required commutativity
P piying Dy q y

condition.

(2)  Injectivity.

Let W ¢ Hand V € G. We must show that for any ¢ e G(V,IW),

nvw(¢) = 0 implies ¢ = 0.

It is easy to check that, since H has kernels, R¢ factors through

ker k., via the natural inclusion if kw o R¢ = 0. Thus, using condition

W
(b), we see that kw o R¢p = 0 implies ¢ = O. O
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Remark: Let h = g be Lie algebras. If H = Mod-h,

1 {ep]

= Mod-g and
R : Mod-g * Mod-h is the restriction functor, then condition (b) of

(5.16) can be replaced by

(b)? for all W € H, ker kw contains no nonzero Ug-modules.

Proof: We must show that if W € Mod-h, V € Mod-g and ¢ ¢ Homg(V,Iw),

then ky © R¢ = 0 implies ¢ = O when (b)' holds. Suppose (b)' holds,
and kw ° R¢ = 0. Then, for all v € V, kw(¢(v)) = 0, so
im ¢ € ker kw.
But im ¢ is a Ug-submodule of IW. Thus, by assumption (b)', im ¢ = 0,
i.e. ¢ = 0.
The converse - that the right injectivity axiom implies condition

(b)' - was proved in the corollary to Proposition (5.1u). o

The next result is related to (4.7) - (4.10) and (5.9). It

allows us to represent our functor I : H = G in terms of a right adjoint

t

to R : G > H (if such a right adjoint exists),

(5.17) Theorem: Let H and G be categories. Let R : G+rHand I : H~>gG

be functors satisfying the right injectivity axiom of settion (5.1) and

suppose that R has a right adjoint F : H~=> G. Then for each W € H,

there is a monic v, € G(IW,FW) which is natural in W.

W

Proof: Let W e Hand V ¢ G. Let Iy ° G(V,FW) » H(RV,W) denote the

adjunction map, and let Vv denote the composite map which forms the
“top line of the following commutative diagram:

V.
VW
GV, IH) —21y  G(V,FW)

\ ~ ﬂJ _1
Nyw\ B / VW

v
H(RV,W)
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In the diagram above, Ny is the map explained in (5.1). Thus Vi, is

(1..). By Yoneda

S ective : . at V.. = ¥
injective and natural in V and W Set W W, W IW

lemma, ((4.6) and (4.6a)), Yy is natural in W and if o € g(V,IW), then

Vg ®) = Vg * 8-
_£i9 vW
Consider the diagram V-_E_,Iw —3 FW where a,B € G(V,IW).

V., o0 =

W o B ¢=9VVw(&) = vvw(u) which implies a = B since Vg 18

Vu
injective. Thus V. is monic. 0
In the next two corollaries and their proofs, we maintain the

notation of theorem (5.17) and its proof.

(5.17a) Corollary: For W e H, recall that

. ¢ S 7
Igw G(IW,FW) » H(RIV,W)

is the adjunction isomorphism.

If ki @ RIW > W is the morphism defined in section (5.10), then

JIW,W(VW) = kw.

Proof: Let We Hand Ve G. By definition,

Vo = Jyw | ° My 204
Vi © Vg w )
Thus By & J 1 (1...))
’ W VIw,w o CTW,W IV
-1 S o
= JIW,W (kw) by definition (5.10)..
That is, k., =J (v.). O

W IW,W W

(5.17b) Corollary: Let W e Hand Ve G. Let va: G(V,FW) ~ Q(RV,W)

denote the adjunction map. If ¢ e H(RV,W) and there exists m e G(V,IW)
) - =4 - o .
such that nvw(ﬂ) = |, then va (P) = Vg oo T In other words, a

morphism ¥ ¢ H(RV,W) 1lifts through n,, to a morphism ™ e G(V,IW) only
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if the morphism va-l(w) factors through IW via V..

The converse is also true.

Proof: Suppose we are given \ T
ettt .

Ty > ow
W .

RV
WeH, Veg, Ve H(RV,W) %
B W LW W

and T € G(V,IW) such that

nvw(ﬂ) = . The first thing we want to prove is that va(\)w o m) = Y.

]

c 2
JIW,W(llw) ° RV, T) by MacLane, [12] Theorem 1

Now va(vw o )
page 80,

1"

JIW,W(ilw) ° Rv, ° R by functoriality of R,

I w(\)w) o RT by an argument like that of
. lemma (5.11)

= ky © RW by Corollary (5.17a)

1"

ﬂvw(ﬂ) by lemma (5.11)

Y by hypothesis.

To prove the converse, we must suppose that V ¢ H, V € G, Y e E(RV,W)

and that m e G(V,IW) satisfies Vv, o T = va—l(W}, and show that

”vw(") = Y.

The argument to show this is an obvious reversal of the‘steps of the

proof of the first part of this corollary. U

Remarks: In chapter 7, we shall return to study the properties of
functors I : H> Gand R : G > H which satisfy the right and left

injectivity axioms simultaneously.
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Chapter 6 - The Surjectivity Axioms

(6.1): Of the eight possible weak types of adjointness proposed in
section (4.1), we have now studied all but types (iv) and (iv)'. This

chapter is devoted to filling this gap.

We shall restate and rename axioms (iv) and (iv)' below for

convenience,

Notation: Throughout this chapter, H and G will be categories (with

zero objects) and

I:H~>¢C
R:¢c~H

will be functors.

The Left Surjectivity Axiom (axiom (iv) of section (4.1)) holds

for I and R if, for all W € H, all V € G, there exists a natural sur-
jection

B H(W,RV) - G(IW,V).

WV H

The Right Surjectivity Axiom (axiom (iv)' of section (4.1)) holds

for I and R if, for all W € H, all V ¢ G, there exists a natural sur-
jection

o, ¢ HORV,W) > g(V,TH).

Convention: In sections (6.2) to (6.6), we shall suppose that the left

surjectivity axiom holds with respect to I and R.

(6.2) Definition of bv: Let V. € G. We define a morphism bV e G(IRV,V)

by

by = BRv,v(*Rv)’
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noting that

B H(RV,RV) -+ G(IRV,V).

RV,V °

(6.3) Lemma: Let W e H, Ve G. Then bV induces BWV in the sense that,

if ¢ € H(W,RV), then BWV(W) = bV o IY.

Proof: Let W e H and V € G, and suppose Y € H(W,RV). Then certainly

by © Iy ¢ g(IW,V). By the naturality of BWV in W, the following diagram

commutes:

B
H(RV,RV) LN g(IRV,V)

H(Y,RV) 61y, V)

H(W,RV)  —— G(IW,V)
= BWV =

We chase 1RV around this diagram, and find:

H

G(Ip,vI(8 (1..,))

RV,V "RV BWV(E(w’RV)(iRV))

that is, by ° Iy BWV(W). g

(6.4) Lemma: b is a natural transformation IR + 15- That is, by is

natural in V for V € g.

Proof: Let We H, V,,V, € G and let ¢ € g(Vl,Vz). By the naturality of

BWV in V, the following diagram commutes:
B
H(W,RV,) V) 6(1Iw,vy)
H(W,Rd) G(IW,¢)
N
H(W,RV, ) s GB(IW,V,)
3 S

WV,
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We now put W = RV, and chase 1RV around the resulting commutative diagram,
1

and find that:

g(IRV1,¢)(BRV )) = B V2({__{(va,qu)(lRV ).

(1
3%y B¥, RV, , i

+ 1 =
That is, ¢ bvl BRVl,VZ(R¢)

b - IR by lemma (6.3).
2

In other words, the following diagram commutes:

bV
IRV, —1, v,
IR¢J ¢
, Js
IRV, —— V,
v,
so bV is natural in V for V € G. : 0

(6.5) Proposition: Let W € H and V € G, and suppose ¢ € G(IW,V). Then

¢ factors through IRV via by.

Proof: Let We H, Ve g, ¢ € g(IW,V). By the left surjectivity axiom,

there exists Y ¢ H(W,RV) such that BWV(W) = ¢. But, by lemma (6.3),

By () = by © Y.

So ¢ = Dby o TV,

i.e. the following diagram commutes:

W e—— vV

A

IRV

so ¢ factors through IRV via by. 0
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(6.6) Lemma: If R is full, then for all V,V' € G and & € G(IRV,V'),
there exists ¢ e G(V,V') such that §=¢ o bV; that is, such that the

following diagram commutes:

S
IR = i !

A%

Proof: Let V,V' ¢ § and § ¢ G(IRV,V'). We have a surjective map

B : H(RV,RV') » G({IRV,V'),

RV, V'
hence there exists Y e H(RV,RV') such that BRV V,(IJ)) = §, Since R is
- 2

full,
R : G(V,V') =+ H(RV,RV')

is surjective, so there exists ¢ ¢ G(V,V') such that

R(p:\po
That is, BRV,V'(R¢) = G, But, by lemma (6.3),
BRV,V'(R¢) = bV' o IR$
= o 1tV b
¢ bV by naturality of v
(lemma (6.4))
So § = ¢ o bV as claimed, D

Remark: Suppose h < g are Lie algebras., The natural restriction

functor R : Mod-g + Mod-h is not full,

(6,7) Theorem: Let I : H~+G be a full functor. Then the left sur-

jectivity axiom of (6.1) is equivalent to the following pair of
conditions:

(a) There is a natural transformation b : IR > 1G
and (b) For W e H and V e G, every morphism ¢ « Q(IWZV) Factors

through IRV via bV.
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Proof: (6.2) and (6.4) tell us that the left surjectivity axiom implies
condition (a), and (6.5) tells us that the left surjectivity axiom
implies condition (b). It remains to prove that conditions (a) and (b)

together imply the left surjectivity axiom, provided I is full.

Assume that (a) and (b) hold, and let W e H, V € G, We must
define a map

B ¢ H(W,RV) = G(IW,V)

WV
Suppose ¥ € H(W,RV). We define Bwv(w) = bV o Iy, It is easy to check

|
that B, (V) e g(1W,V).

Now we must show that B ., is natural in W and V, and surjective,

WV
provided I is full,

(1) Naturality of B

Wv*
Let W, ¢ H and V,V € G. Choose Y € H(W,W) and § e G(V,V). We
need to show that the following diagram is commutative.

B

H(W,RV) By g(1w,V)
H(Y,RS) 6(Iy,8)
’
H(W,RV) - > §(IW,V)
- A

That is, we must show that for all Y ¢ g(W,RV)
vg(Iy,S)(Bwv(w)) = Swv(g(Y,Ré)(W)).
That is, for all Y € H(W,RV)

§ e (bv o IY) o Iy = bg © I(RS © Y o )

or 6 o bv o JP e Iy = bV o JRS o TP < Iy.

Now condition (a) tells us that



§ o bV = bv o IRS.

If we multiply on the right by Iy o Iy, we obtain the desired conclusion.

el g
(2) Surjectivity of BWV

Let W e H and V € G, and suppose I is full. Suppose ¢ € g(IW,V).

We must find a morphism ¥ e H(W,RV) such that BWV(W) = .

By condition (b), ¢ factorizes as ¢ = b, o X for some

v

X € Q(IW,IRV): b e )
Since I is full, there xl' bV
exists Y e H(W,RV) such IRV
that Iy = X.
Then Bwv(w) =Dy © Iy

= bV ° ¥

= ¢ , as required, 0

Next we pay a visit to the sequence of results begun with (4,7)-(4.10),

.(5.9) and (5,17).

(6.8)Theorem: Let I and R satisfy the left surjectivity axiom, and

suppose that R has a left adjoint L : H > G. Then, for all W ¢ H, there

is a split monomorphism Bw € G(IW,LW) such that BW is natural in W.

Proof: Suppose W e H, V € G, and let Ky ¢(Lw,v) ~ H(W,RV) denote

the adjunction isomorphism.

"~

Let B denote the composition map

B
G(LH, V) v, H(W,RV) —e3 G(IH,V).

WV

~

8 is surijective since B.... is surjective,
A% < WV

Hence, by Corollary (4.4a), the morphism Bw e G(IW,LW) defined by
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>

B, = f

W (1)

W,LW LW

~
is natural in W, Also, since BW 9 is surjective, there exists
’-7

M. € G¢(LW,IW) such that

B, M) = 1y
By (4.4a) and (4.4), this means
T By T e

Thus Bw is a split monic, 0

Convention: In sections (6,9)-(6,13) we shall assume that the right

suriectivity axiom holds with respect to I and R.

(6.2) Definition of a,: Let V e G, We define a morphism ay € G(V,IRV)

by

(1

a. =

v = % pygy)s

RV
noting that

: WLRV) -+ @(V.I .
% v H(RV,RV) + G(V,IRV)

(6.10) Lemma: Let W e Hand V € G, Then 2y induces Oy in the sensze
= = 3 v

that, if ¢ e H(RV,W), then avw(w) = IP o aye

Proof: Suppose We H, Ve G and P € Q(RV,W). Then certainly
Iy o ay € G(V,IW). By the naturality of L. in W, the following diagram

commutes:

Oy
H(RV,RV)  emm—2nee3y G(V,IRV)
H(RV,¥) 1 5V, 1Y)
B(RV,W) =3 G(V,IW)

VW
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We chase 1RV around this diagram, and find:

GOV, T Oy (L)) = 0y (HCRY, 1) (1)),

That is, I o ay = avw(w). O

(6.41) Lemma: a is a natural transformation g 4+ IR, That is, ay is

natural in V (V ¢ g).

Proof: Let We H, V,,V, € G and let ¢ ¢ 6(v,,V,). By naturality of

Cmg in V, the following diagram commutes:

A
H(RV} W)ty G(V,IW)

Izi(Rd,),w)l l§(¢,IW)

I;I(RVZ L) —-C—)L;_;,—‘} ‘(:;(VZ’IW)
oW

around the resulting diagram to
1

Now put ¥ = RV, and chase 1RV

obtain:

B 7 = H I\ °
G(¢,IRV, )(ocVl ,va(iva )) %, ,va(.;(%,va)(iva))
That is
. o & = o0, (Ro)
ay ° ¢ =0y gy, (RO
= IR¢ o ag s by lemma (6.,10)

2
So the following diagram commutes:

V, =ty IRV,

¢ T TIR@g

y, ————3> IRV,

a

)

hat is, ay is natural in V for V € G.

(6.12) Proposition: Let W e Hand V e G, and suppose ¢ € G(V,IW). Then

¢ factors through IRV via a.

Proof: Let We H, Ve G and ¢ ¢ G(V,IW). By the right surjectivity




axiom, there exists Y e H{(RV,W) such that avw(w) = ¢,
But, by lemma (6.10), va(w) = Iy o ay. Thus
¢:Iq"°avo

that is, the following diagram comrutes:

\Y ~—————-§IW

W

So ¢ factors through IRV via aye [

(6,13) Temma: Suppose R is full, and let V,V' € G. For all § e G(V',IRV),

there exists ¢ e G{V',V) such that § = ay ° ¢; that is, such that the

following diagram commites:

v'—m——-——él

N~

Proof: Let V,V' ¢ G and choose § ¢ G(V',IRV). We have a surjective

nm

map
Ot gy H(RV',RV) > G(V',IRV)
so there exists ¢ ¢ H(RV',RV) such that
%Gy py(¥) = 8.

Since R is full,

R : G(V',V) > H(RV',RV)
is surjective, so there exists .p € G(V',V) such that R¢ = §, Hence

RV(Rcb) = 6.

IR} o 2y

1

But, by lemma (6.10), uV'?RV(R¢)

:avo¢
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by the naturality of a,, in V (see lemma (6.,11)).

v

Thus § = ay ° ¢. This completes the proof. r

(6.14) Theorem: Let I : H =+ G be a full functor. Then the right sur-
jectivity axiom of (6.1) is eguivalent to the following pair of condi-
tions.

(a) There is a natural transformation a : 1G > IR;
and- (b) For We H, Ve g, every morphism ¢ ¢ g(;,IW) factors

through IRV via aye

Proof: (6.9) and (€.11) tell us that the right surjectivity axiom
implies condition (a), and {(6.12) tells us that the right surjectivity
axiom implies condition (b). Tt remains to prove that the conditions

(a) and (») together inply the right surjectivity aviom, provided I i

n

full,

m

Assume (a) and (b) hold, and let W e H, V ¢ G. We must define a

map
Oy ¢ HRV,H) > 6(V,TH),

Suppose ¥ € H(RV,W). We define

uvw(w) = Iy o aye .
It is easy to check that avw(¢) e G(V,IW),
Now we shall show that o,,., is natural in V and W and that, provided

VW

I dis full, 6. is surjective,

VW

13 =
(1) Naturality of %

Let W,W ¢ H and V,V € G. Choose y ¢ E(W,W) and § ¢ g(V,V . Ve

need to show that the fcllowing diagram is commutative:
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Q.

H(RV,W) L. 6(V,IwW)
H(RS,Y) l [g(a,ly)
H(RW, §) wemmeeedy G(§ TH)

= (wi =

To show that the diagram commutes, we must prove that for all Y e H(RV,W),
G(38, IY)(GVW(W)) = va(g(R5,Y)(¢)).

That is, we must prove that for all ¥ e H(RV,W),

Iy o (I o a,) o8 = I(y o Y  RS) o ag

Iy o Iy o IRS © ag ,

e

e Iy o I o ay o 8

by functoriality of I,
Now, condition (a) tells us that

aV°6=IR6°aV,

and premultiplying both sides of this equation by Iy o Iy (where

¥ € H(RV,W)), we obtain the desired conclusion.

(2) Surjectivity of uVW

Let W e H, V € G, and suppose I is full, For each ¢ e G(V,IVW),

we must find a ¢ € H(RV,W) such .that avw(w) = .

By condition (b), each ¢ G(V,IW) may be factorized as ¢ = X ° ays

where X € g(IRV,IW):

V'———————9Iw Since I is full, there exists
\\& ///ﬂ ¥ e H(RV,W) such that
IRV Iy = X
Then avw(w) = TP o ay = X °ay = ¢, so we have found a morphism Y with

the required property. 0
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Next we conclude the series of results begun with (4.7)-(4.10),

(5.9) and (5.17), and (6.8),

(6.15) Theorem: Let I and R satisfy the right surjectivity axiom, and

suppose that R has a right adjoint F : H » G. Then, for all W e H,

there is a split epimorphism oy € G(FW,IW) such that O is natural in W.

Proof: Suppose W e H, V ¢ G, and let

Iy ¢ GV, IW) > H(RV,W)

denote the adjunction isomorphism,

Let o . denote the composition map

Vi
I o
VW
6(v,Fw) ——lﬁler(RV,W) — g(V,IW),

~

Oy is surjective since o.,., is surjective.

VW

Hence, by corollavy (4.6a), the map o, € G(FW,IW) defined by

O = gy y{ipy)

is natural in W,

Also, since G is surjective, there exists M, € G(IW,FW) such

IW,W
that

gy w¥y) = Ly

But by (4.6) and (4.6a),

A

0‘Iw,w(“w) = Oy ° My

So ay © W, = 1., and o is a split epimorphism. ]

W W



81.

Chapter 7 - The Tnjectivity Axioms Revisited

(7.1) Let H and G be categories, and let

G be a faithful functor

i
[last

¥
L[}

H a functor,

o]
o

o
.=
{{op]

¥

In this chapter, we shall investigate the consequences of assuming that
I and R satisfy both the left and right injeétivity axioms, These
axioms, it will be recalled, were first investigated separately in
chapter 5, and we shall maintain the notational conventions introduced
there; in particular, we shall maintain the notation jw, (W e g)
introduced in section (5.2) for a certain morphism in H(W,RIW), and
the notation kw (W € H) introduced in section (5.10) for a certain
morphism in H(RIW,W).

We shall use the reformilations of the injectivity axioms given

in theorems (5.8) and (5.16),

In most of this chapter, we shall be dealing with specified

categories H and G.

(7.2) The Splitting Axiom, .

Definition: Let H be an exact preadditive category, An object W e H

is said to be simple, if the only subobjects of W are O and W.
In the usual way, we have

Schur's Lemma: If H is an exact preadditive category and W is a simple

object of H, then H(W,W) is a division ring.
We shall use the definition and lemma above to make plausible an
axiom which we are going to state at the end of this section, and shall

call the Splitting Axiom,
p g
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Suppose H, G are categories, that I ¢ H> G and R : G > H are

functeors, and that j : 1H 3 RI and k : RI + 1H are natural transforma-

tions, Choose W, € Hand f e H(W,W), and consider the following

diagram:
3 k
W Y5 RIW LI,
f 1 lel lf
W - > RIW -5 i
il g

The outside rectangle commutes because the inside squares commute, i.e,

ke j: 1H > 1H is a natural transformation,

Hence, if H is an exact, preadditive category and W is a simple

object in H, then kw ° jw is invertible or zero,
Suppose that for all W € H, kw o jw is invertible, and denote

this composition map by Ew. It is easy to check that for W € H, jw ° E%l

is natural in W, It is also easy to check that, for all W ¢ H, if jw
‘has the property expressed in condition (b) of theorem (5.8), then so
. =
does: J, ° &y -
. g 5 -1
Thus, by theorem (5.8), for all W e H, V € G, Iy ° Ew induces a
natural injection

6(Iw,v) - H(W,RV).
Finally, for all W € H,

3 —1 e
kW ° (]w 0 Ew ) =1

w.
Definition: Let H and @ be categories, and let I : H+ G, R : G~ H

be functors. Suppose j : 1H 5 RI and k : RI =+ 1H are natural transforma-

tions,

We shall say that j and k satisfy the splitting axiom if, for each
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WoeH,

If I and R satisfy both left and right injectivity axioms, and

hence, by (5.%4) and (5.12), give rise to natural transformations

g 1H + RI, k : RI ;-1H, then we shall say that I and R satisfy the

splitting axiom if, for each W e H, kW ° jw = 1W.

(7.3) Proposition: Let H and G be categories of modules, and let

I:H->G, R: G~ Hbe functors satisfying the left and right injectivity
axioms and the splitting axiom., Choose W,, W,, Wy € H and a e H(W,,W,),
B e H(W,,W3). If

RIV, —z75> RIV, —7g> RINs

is an exact sequence, then the original sequence

By Gy el T

W
must have been exact., That is, RI '"reflects" exactness.

Proof: We know that im(RIa) = ker(RIB), and that the following diagram

is commutative:

RIW, o eney BT RIB  y\RTW,
jwl,kal jwznsz ij K
W, s Tz —t Ws
We also know that kwi ° jwi = 1wi for i = 1,2,3,

(1) First, we shall show that ker f cim a.

If b € ker B, then B(b) = 0, so j, (B(b)) = 0, so RIB(j, (b)) = 0O
3 2
by naturality of j. Hence jw (b) € ker RIB = im RIa. That is, there
2

exists a* e RIW, such that RIo(a*) = jw ).
2
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log
!

= sz(jwz(b))

sz(RIa(a*))

a(kw (a®*)) Dby naturality of k
1

€ im O.

(2) Next we prove im o cker B.

Let b € im g, so that there exists a ¢ W;such that b = a(a).
Then

B(b)

B(a(a)) = B(a(kwl(jwl(a)))

B(kw (RIa(jw (a))) by naturality of k
2 1

ky (RIB(RIoc(jw (a))) by naturality of k
3 1
and RIB ° RIa = 0 since im RIo = ker RIB, so B(b) = 0, That is,

b € ker B. O

Convention, The following conventions will be in force until the end

of section (7,14). We shall suppose that h £ g are Lie algebras, and

write H = Mod-h, G = Mod-g. We shall denote by R the restriction functor

Mod-g + Mod-h. I : Mod-h - Mod-g will be a functor.

(7.4): Suppose that I and R satisfy the left injectivity axiom. Then
theorems (5.9) and (3.6) guarantee the existence of a natural epimorphism
of g-modules

o ® ;
UW t W Uh U§ - IW,

The following proposition identifies this map quite precisely,

(7.4) Proposition: In the above notation, and for W € H, w € W, and

u e Ug,

uw(w ® u) = jw(w).u

where the multiplication referred to on the righthand side 1s the module

multiplication in IW,
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Proof: By Corollary (5.9a), we have that

-1,
My = Ky Gy
From the definition of K (see proof of theorem (3,6)), it may be seen that

for any V € G and ¥ € HomUH(W,RV),
= -
Ky WG & ) = Plw).u,

Hence, in the case V = IW, VY = Iy

|

uw(w ® u) = (Kw,Iwnl(jw))(w ® u) = jw(w).u .

(7.5) Next, we shall identify the morphism vy of Theorem (5,17) in a

similar fashion to section (7.4). Suppose I and R satisfy the right
injectivity axiom, Let W € H., Theorems (5.17) and (3.5) guarantee the

existence of a natural injection V

w’ IW > HomUQ(Ug,W).

(7.5) Proposition: In the above notation, and for W ¢ H, v ¢ IW, u € Ug,

(Vw(v))(u) = kw(vu),

where the multiplication referred to on the right hand side is the module

miltiplication in IW.

Proof: By Corollary (5.17a),

From the definition of J (see the proof of theorem (3.5)) it may be seen

that for any V € G, and any ¥ ¢ Homh(RV,W), veVand ue Ug
-1
= | 1
(g NN @) = Ylvau),
Thus, when V = IW and {y = kw, we find that for v € IW, u e Ug,
(v, (v)) () = K (vau). a

(7.6). Suppose I : H - G and R : G > H satisfy both left and right
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injectivity axioms. For W e H, v will denote the g-module monomorphism

W

vy ¢ IW > HomUQ(Ug,w)

defined by the equation in Proposition (7.5).

(7.6) Proposition: With notation as above, and with W ¢ H, w ¢ W,

x € Ug, u € Ug, the embedding

. I > :
vy Iw Homg(Ug,W)

is completely determined by the equation
(v, (GG (@) = k(G Ge) )
where the multiplication on both sides of the equation is the module

multiplication in IW.

Proof: By the corollary to proposition (5.6}, IW = (im jw).Ug. Thus,
if v € IW, v can be written as

n
iy 2i=1 Iy )ex;

for suitable WiseoosW € W and RyseessR € Ug.. Thus, by (7.5)

for any u € Ug,

(v, (v)) ()

kw(v.u)

n
= X, (]

j=q1 Jylwgdex;).w)

n
Ling XyGiplrp)exgw.

The proposition now follows from the fact that 2 is lirear in v.

(7.7) Proposition: Suppose that I and R satisfy the right injectivity

axiom, Let W € I:‘i, and let e : R(HOmUh(U.g-,W)) -+ W be the "evaluation"
map, defined by

e(P) = w(lug) for Y € R(HomUQ(Ug,W)).

Then, with the notation of (7.5), the following diagram commutes:



86,

R(Homh(Ug,W))
va e
RIW . %
I
kW
Proof: If v € RIW, then
e((RvW)(v)) = (vw(v))(iug)
= kW(V'iUg)
= kw(v).
Thus e e Rv, = Ky 0

(7.8) Proposition: (cf Wallach [16], theorem 3,1). Let I and R satisfy

-

both left and right injectivity axioms. If I : Mod-h + Mod-g is a
functor, and Jj : 1H = RI, k : RI 3 1., arve natural transformations

H

satisfying

(i) for all W ¢ H, im ﬁw.Ug = IW;

(ii) for all W e H, ker EW contains no non-zero g-modules,

and (iii) for 2ll W € H, w € W, and u ¢ Ug,
kw(]w(w).u) = kw(jw(w).u)

then for all W € H

=1

W = IW as g-modules,

Proof: Let W e H. Define vy + I +’Homh(Ug,w) as in (7.6). Define

Vy v -~ HomE(Ug,W) analogously, by (Vw(jw(w).x))(u) = kw(jw(w).xu)
for w € W, x € Ug, u € Ug., (We have implicitly used condition (i) in

this definition,) By theorems (5.8), (5.16), (5.17) and proposition

(7.6), GW is a g-mencmorphism,
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Let Gw be vw with codomain restricted to im vw.

Let QW be GW with codomain restricted to im GW'

Clearly, condition (iii) implies that

im v, = im V_,
W W

Hence (GW)—I ° GW : IW » IW is an isomorphism of Ug-modules. 0

(7.9) Proposition: (This result was originally proved by N,R. Wallach

in [17] - Proposition 3.1, for a particular functor I, which will be
described in the next chapter.) Let I and R satisfy the left and right
injectivity axioms, and the splitting axiom. Let W be a simple Uh-

module with the property that ker k. contains no subquotients Uh-

W

isomorphic to W. Then IW is a simple Ug-module,

Proof: Suppose IW is not simple: let M be a proper non-trivial g-

submodule of IW. Write 2£:M - IW for the inclusion map.

Then RY - jw ° kw o R% is an h-monomorphism. For certainly

R - jw o kw o R% is an h-homomorphism, and if m# 0, me M and
m - jw(kw(m)) = 0, then m € im jw, sc that, by the simplicity of W

and the facts that jw is an h-homomorphism, and m # O,
im jw = m.,Uh,

But then, by Corollary (5.6), whiqh says that IW = im jW’Ué’ we see that
m.Ug = im jW‘U§ = IW,

Hence IW = m,Ug € M ¢ IW, a contradiction. So R - jw ° kw o R%

nm

is monic, as claimed.

* Wallach's statement and proof of this result contain an error, His

proof does not, of course, use the injectivity axioms.
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By the corollary to (5.14), M ¢ ker kw, so we can choose an
element v ¢ M such that v e ker k.. Set W="¥ - jw(kw(v))}.Ub. W is

a Ub-submodule of RM, and it is easy to check that W e ker kw, using

the splitting axiom,

Since every element of W may be written in the form v.h -~ jw(kw(v.h))
for some h € Uh and with the element v chosen as above, we may define a

map & : W= W as follows:
Let h € Uh, Set E(voh = jw(kw(v.h))) " kw(v.h).

We must check that & is well-defined, Since RL - jw ° kW o R is
monic,

v.h - jw(kw(v.h)) =0

implies that vh = 0 which implies that kw(vh) = 0. Thus & is well-
defined, and obviously an h-homomorphism. Also, since v ¢ ker kw,
im & # {0}. Hence, by the simplicity of W, im & = W. That is,

W/ ker £ =W

as an bh-module., But W / ker & is a subquotient of ker k This contra-

W
dicts a hypothesis of the proposition., Thus the supposition that

there existed a proper nonzero submodule of IW must have been false., [
Remark: This result is, in a sense, an analogue of the Mackey axiom -
axiom (6) of chapter 2. For the Mackey isomorphism is used in the fheory

of induced representations of groups, to prove a rather similar simplicity

criterion: see Huppert, [9], page 553 ff,

(7.10) Discussion: Let W be an h-module. Suppose that we have a
natural Uh-monomorphism

o
Vy W->R HomUQ(Ug,W).
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Let W be another Uh-module, let f e HomUh(W,W), and let ¢ € HomUh(Ug,W).

We can define a functor

lije}

I Mod—g > Mod-

I

by

IW = (im v&).Ug & HomUQ(Ué,W)
and

(If)(¢) = f o ¢ € HomUh(Ug,W).

It is easy to verify that I is, in fact, a functor.

It is easy to check that there are natural h-homomorphisms

By ¢+ W o> RIV
and ky @ RIW > W
given by jw(w) = v;(w) for w e W
( =
and kW‘¢) ¢(1Ug) for ¢ € RIW.

Clearly jw is injective, and (im jw).Ug = IW. So by Theorem (5.8),

.I and R satisfy the left injectivity axiom, It is not clear, from the
assumptions we have made so far, that kw need be surjective, nor that

ker kw need contain no nonzero §-modules. Thus we don't know whether

I satisfies the right injectivity axiom (cf Theorem (5.16)). We don't

know whether j and k satisfy the splitting axiom, either.

However, we can clearly hope to derive some benefit from the study

of natural h-monomorphisms

W~ HomUh(Ug,W)

for W € Mod~§.

Let U be a left Ug-, right Uh-module, and let W € Mod-h. Then

HomUh(U,W) may be given the structure of a g-module as follows,
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Let ¢ € HomUh(ﬁ,W), let U ¢ U, let x ¢ Ug. Define ¢x € HomUh(ﬁ,W)

(@) = ¢(x.0).

Now let ¥ : Ug + U be a right Uh~homomorphism,y induces a linear map

Hom(y,W)

HomUQ(U,W) rHomUE(UE,W)

and it is of interest to know when Hom(y,W) is an injective g-homomorphism,

and when HomUh(ﬁ,W) contains a copy of the h-module W in a natural way.

(7.11) Lemma: In the notation used above, Hom(y,W) is a g-homomorphism

if and only if Yy is a left Ug-homomorphism.

Proof: (1) Hom(y,W) a Ug-homomorphism for all W € Mod-h implies Y a

left Ug-homomorphism,

Let W = U, We are supposing that Hom(y,U) is a Ug-homomorphism,

Let g € Ug. Let us consider the action of Hom(y,U) on 1-, and on 1%.

U
For all u e Ug,

(Hom(y, D) (15))(w) = (1) (y(u))
= 15(g.y(w)
= g.y(u)
while
fHom(y, 1) (1501 5(u) = 150y (gu))
= y(gu).

Since Hom(y,U) is a Ug-homomorphism, it follows that

g.y(u) = y(gu).

That is, Yy is a left Ug-homomorphism.
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(2) Yy a left Ug-homomorphism implies Hom(y,W) a g-homomorphism

for all W e lod-h.

Suppose Y is a left Ug-homomorphism. Let ¢ € HomUh(ﬁ,W),

g,u € Ug, and W € Mod-h. Then

fHom(y, 1) (¢)}B(u) =" Hom(y,W) ()} gu)
d(y(gu))
$(g.y(w))
$&Cy(w))

1

Hom(y,W) (68 Hu).
Thus Hom(y,W) (&) = {Hom(y,W) () }5, 0

(7.12) Lemma: In the notation explained just before lemma (7.11),

Hom(y,W) is injective for all W e Mod-h if and only if y : Ug > U is

surjective.

Proof: Suppose Y is surjective, that W is any right h-module, and

.¢, o' € HomUh(ﬁ,w) are such that the following diagram commutes:

Yy _ ¢
Ug —> 0 T3 W

Then, by the surjectivity of vy, ¢ = ¢'. That is,
¢ oy =¢"' oy implies ¢ = ¢'.

Hom(y, W) (¢)

But ¢ o vy

"

and ¢'o vy = Hom(y,W)(¢').
Thus, Hom(y,W)($) = Hom(y.W)(¢') implies ¢ = ¢', so Hom(y,W) is injective.

Conversely, suppose Hom(y,W) is injective for all W e Mod-h,

Let W ¢ Mod-h and choose ¢, ¢! € HomUh(ﬁ,W). Then Hom(y,W)(¢) =
Hom(y,W)(¢') implies ¢ = ¢', That is, ¢ oy = ¢! c ¥ implies ¢ = ¢'.

That is, Y is surjective, (1
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(7.13) Lemma: Let U be a fixed right h-module, and let W be a right

h-module.

The natural Uh-monomorphisms from W to HomUh(U,W) are in bijective

correspondence with the Uh-epimorphisms from U to Uh.

Proof: Let Xy ¢ W > HomUh(ﬁ,W) be a natural h-monomorphism., There is
a natural h-isomorphism

. 7 -
ey * Hong(UQ’h) > W
given by ew(¢) = ¢(1Uh) for ¢ € HomUh(Ug,w), so X, corresponds to a
natural Uh-monomorphism
& ‘ 1 ]
Xy ° &y ¢ Hong(Lg’w) -+ Hong(J’W)°
The result now follows from MacLane [12], p.8%, Lemma. 0

Discussion: The gist of the last three lemmas is that one way to

construct an induction functor from Mod-h to Mod-g is to look for a

left Ug-, right Uh-module U and a pair of maps

Y : Ug > 1T,

6 : U~

=

where y is a left Ug-, right Uh-epimorphism and § is a right Gh-epi-

morphism,
It should perhaps be mentioned that the case where vy = 1Uc and §
is a map constructed using the Poincare-Birkhoff-Witt theorem (of

section (1.3)) has already been discussed in sections (3,5) and (3.3).
At the other extreme, some progress can be made with the case U = Uh:

see section (8.5).

Returning to the general case, a left Ug-, right Uh-epimorphism

Yy i Ug ~ U has for kernel a left Ug-, right Uh-submodule A of Ug, by
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the homomorphism theorems: that is g= Ug/A.

Before embarking on a detailed study of these ideals, we shall
conclude this discussion with a result which suggests yet another way
of constructing induced module functors. An analogous result is well-

known in the theory of group representations,

(7.14) Theorem: (ef Mitchell, p. 143, Theorem 3.,1). Let W,W € Mod-h.

Then there is a natural iscmorphism

R

)
Un Ug),W).

HomUQ(W,R(HomUQ(Ug,W))) HomUh(R(w ®

Proof: HomUh(W,R Hom, (Ug,W)) = Hong(W ®, Vg, Homy (Ug,W))

by theorem (3.6)

R

HomUb(R(W ® U%),W)

U
by theorem (3.5).

Discussion: We are actually interested in the case W = W. The result

tells us that looking for h-homomorphisms
W R(HomUh(Ug,W)) (W € Mod-h)
is equivalent to looking for h-homomorphisms

R(W @Uh Ug) > W, 4 .

We now return to the study of left Ug-, right Uh-submodules.

(7.45)Definition: Let h < g be Lie algebras, The symbol (Mod-h|monics)

will denote the category of all right h-modules and all h-monomorphisms

between them. (Mod-g|monics) is similarly defined. The symbol

Sub(Ug,Uh) will denote the (lattice) category of all left Ug-, right

Uh-submodules of Ug, and all submodule inclusions between them.
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Convention: For the rest of this chapter, h < g will be Lie algebras.,
We shall set H = (Modmglmonics), G = (Mod—glmonics), R : (Mod—glmonics) -
(Mod~glmonics) the obvious restriction functor, and I will be a functor

from (Mod-h|monics) to (Mod-g|monics) except where otherwise noted.

Discussion: The original aim of this thesis was to find finite-dimensional

induced modules., With this in mind, suppose that A € Sub(Ug,Ug) has the

property that Ug/A is of finite rank as a Uh-module.

That is, there is an epimorphism M - Ug/A of h-modules, where M
is a free Uh-module of finite rank. Let W € Mod-h. There is an
induced h-monomorphism Hom, (Ug/A,W) ~ HomUh(M,W) like that used in

the proof of lemma (7.12).

IA

We can deduce that dim HomUh(Ug/A,W) dim HomUh(M,W)

IA

dim W x rank M.

A

Thus, if dim W < «, then dim HomUh(Ug/A,w) ©, If we could find a

suitable functor

—
e

Mod«Q +—Mod—g

such that IVW ¢ HomUh(Ug/A,w) whenever dim W <®, then we would have

achieved the original aim of this thesis.

However, the two examples in section (0.3) of this thesis show

that such a functor I cannot be found.
We therefore modify our aim a little.

Aim: We shall seek a contravariant functor A : (Mod-h|monics) - Sub(Ug,Uh),
and a functor I : (Mod—glmonics) - (Mod—glmonics) such that for every
W e (Mod—glmonics)A

W < HomUb(Ug/AW,w),

such that I and R satisfy the left injectivity axiom,
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Now, the argument above leads to the conclusion that dim IW < «

provided that Ug/AW is of finite rank as Uh-module and dim W < <,

Remark: It seems to be impossible to demand that A and I be defined
on domains larger than (Mod—glmonics) and still prove the main result
(7.21) below. The reason for this is embodied in the proof of the next

proposition, and in lemma (7.18),

(7.16) Proposition: Let A : (Mod—glmonics) -> Sub(Ug,Ug) be a contra-

variant functor, and let W,V e (Mod-h monies). Let Yy * Ug » Ug/AW
denote the obvious projection map., Let £ : W -~ W be an h-monomorphism.

Then it is possible to define a map
f, HomUQ(Ug/AW,W) - HomUQ(Ug/AW,W)

so that the following diagram commutes:

Hom(Yw,W)
Hom . (Ug/AW,W) -3 Homy (Ug,W)
£y 1 HomUh(Ug,f)
o 7 Y T W
Homup(Ué(Aw,L) HomUQ(Jg,W)

Hom(YW,ﬁ)

In fact, f, can be defined so that it is also a Ug-homomorphism,

Proof: Let u,u' € Ug, ¢ € HomUh(Ug/Aw,W).
Define f, by

(F,(0))(u + AW = £(¢(u + AW)).
There are several items to check.

#1. Is f, a well-defined mapping?

Suppose u + AW = u' + AWl
Then u - u' € AW, and since there is a Uh~monomorphism £ : W =~ W,
Af : AW < AW is an inclusion, by our hypothesis about A, so

u - u' € AW ,
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Therefore u + AW = u' + AW,
S0 F(u + AW))= (E(¢u’ + AW)).
That is, (£, (u + AR = (F,(¢))(u! + AW)

and so f, is a well-defined mapping.

#2. Is f£,.(¢) € HomUh(Ug/AW,W)?

That is, is f,(¢) a Uh-homomorphism? Let h € Uh. Then

i

(£,(¢))(uh + AW) = £($(uh + AW))

F(p(u + AW)).h

((£,(4))(u + AW)).h .
Thus £,(¢) is an E—homomorphism.

#3., 1Is f, a right g-module homomorphism?

Let x € Ug.

1

(£,(6™)(u + AT) = £(¢7(u + AW))

F(o(xu 4 AW))

"

(£,(6))Cxu + AR)

(£,($))*(u + AW)

So f, is a right g-module homomorphism,

#4. Does the diagram in the statement of the Proposition commute, with

f, defined as above?

Hom(Ug,f)((Hom(Yw,W)(dJ))(u))
= (f o o Yw)(u)
= f(¢p(u + AW))

while Hom(ys,W) ((£,($))(u))

Ws
= (£,(9) © =) (w)
= £,(0)(u + AT)

= £(¢(u + AW)).
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Thus the diagram commutes. {
Let W be a right Uh-module, and let A be a contravariant functor
from (Mod-glmonics) to Sub(Ug,Uh). The next proposition answers the
following question: What restriction does the condition that IW be

embedded in HomUh(Ug/AW,W) place on the submodule AW of Ug?

(7.17) Proposition: Let A and Y, be as in.(7.16). Let V be any

g-submodule of HomUh(Ug,w). Then V ¢ im Hom(YV,W) if and only if

0}.

n

AW < {u e Ug : for all v € V, v(u)
Proof: It is easy to check that
Hom(Yw,W)(HomUQ(Ug/Aw,h))

is the set of maps ¢ ¢ HomUh(Ug,W) which factor through Ug/AW via Y.
That is, ¢ € im Hom(yw,w) if and only if there exists X‘€ HomUh(Ug/Aw,w)

such that the following diagram commutes:

¢
Ug == W
YV\/X
Ug/AW
This condition holds if and only if the map
X ¢ Ug/AW >~ W

"defined" by (for u e Ug)

y(u + AW) = ¢(u)

is well-defined and in fact X .is well-defined if and only if

u € AW implies d&(u) = 0.
Thus V ¢ Hom(YW,W)(HomUh(Ug/Aw,W)) if and only if

AW <" {uv e Ug : for all v e V, v(u) = 0}. [



(7.17a) Corollary: Let W € (Mod—glmonics). If I is an induction

- functor (Mod-h|monics) - (Mod-gtmonics) arising from natural transforma-
tions § : 1 > RI, k : RI > 1 as outlined in proposition (7,6), and if
there is a contravariant functor A : (Mod—@{n@nics) > Sub(Ug,Ug) such
that

IW ¢ HomUh(Ug/Aw,W)
then AW ¢ {u e Ug : for all w e W, x € Ug, kw(jw(w).xu) & B},

Proof: This follows from Propositicn (7.17) ebove, together with

Proposition (7.6). 0

( 7.18) Construction of the functor B: Suppose that there exist

natural transformations j : 1H -+ RI, k : RI - 1H, and let W, W be right

h-modules.

Define

BW

"{ueUg: for all w € W, x € Ug, kw(jw(w).xu) = 0}.
Then BW is a left Ug-, right Uh-submodule of Ug: this is easy to verify.

Suppose that there exists an h-monomorphism £ : W + W, We shall
show that in this case, BW < BW, and we shall denote the inclusion map

by the symbol Bf. It is here that we use the naturality of j and K.
Suppose u € BW. Then for all x € Ug and all w € W, f(w) € W, so

0

H

ke (G (£¢)) )

kW(RIf(jw(w)).Xu) by naturality of j

kW(RIf(jw(w).xu)) since RIf is an Ug-homomorphismk

f(kw(jw(w).xu)) by naturality of k.

But f is monic, hence, for all x € Ug and all w e W,

f = kw(‘jw(w) JHLY
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That is u € BW,
So BW < BW. 0
Proposition: B is a contravariant functor (Mod-h|monics) =+ Sub(Ug,Uh).

(7.20)Proposition: Let I and R satisfy left and right injectivity

axioms. Let W be a right h-~module, If dim IW < «, then

dim HomUh(Ug/BW,W) < o,

Proof: Suppose dim IW < «,

1) Ann,, (IW) < BW.

1o

For, let u € AnnU (IW)., Then for all w € W, for all x € Ug,
g =
jw(w).xu = 0 (since jw(;).x e IW). Hence, a fortiori, for all w € W
and x € Ug

kw(jw(w).xu) = 1,
Thus u € BW.

2) IW is a faithful Ug/AnnUg(IW)—module. Thus Ug/AnnUg(IW)
may be embedded, as a k-algebra, in the finite dimensional k—;lgebra

Ug(Iw) is of finite dimension over k.

3) Since AnnUg(Iw) < BW, it follows from (2) that Ug/BW is also

Endk(IW). So Ué/Ann
. of finite dimension'gver . .

4) Since W is embedded in RIW (by jw), W is finite-dimensional.
Thus Homk(Ug/BW,W) is finite-dimensional, Hence, a fortiori,

HomUh(Ug/BW,W) is finite-dimensional,

(7.21) Construction and Theorem: Let A : (Mod-h monics) ~ Sub{Ug,Uk)
be a contravariant functor, Let W, W be right h-modules, and let
£ : W~ # be an h-nonomorphism, Let T : W >R HomUh(Ug,/Aw,w) be a

Uh-monomorphism such that, if f, is defined as in Proposition (7.,16),



then the following diagram commutes:

Ty
W sy HomUh(Ug/AW,W)
% ] WO
W T;-—-» HomUh(Ug/AW,h)
Suppose that W = ) inf'ﬁw(w)}.

weW

Define I : (Mod-h monics)> (Mod-g monics) by setting IW = (im TW)Ug

and defining, for w € W and x € Ug,

(1) (1, () %) = To(FGa)) . x

and extending this definition of If to all of IW by linearity,

Then I is a functor and I and R satisfy the left injectivity

axicm,

cedimension in Ug and W is finite-dimensional.,

Proof: (1)

e

Functoriality of I.

defined., Suppose Xyseessk € Ug and WiseoosW € W, and that

n
.Z Tw(wi).xi = 0
i=1

Then, for all u € Ug,

n
((1F)C ) Tw(wi).xi))(u + AW)
i=1

1(Tw(f(wi)).xi)(u + AW)

(fa(Tw(w.)).x.)(u + AW)
wEWTL i

e
=

e
N8 NS

1f((Tw(wi).Xi)(u + AW))

.

]
1 18

n
= £(( Tw(w.).x.)(u + AW))
Wb il i
i=1

= £(0) = 0,

by definition of If,
by commutativity,

by definition of f,
(see Propn. (7.16))

100.

Furthermore, IW is finite-dimensional whenever AW is of finite

First we shall check that If is well-
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It is also easy to verify that (If)(Tw(w).x) is always a Uh-
homemerphism, for w € W and x € Ug, Further, If is a Ug-homomocrphism,

since, if w € W and x,y,u € Ug, then

(TF) (1,0 .30 (u + A

((I£) (T, (1)) (yu + A7)

(TW(f(w)).x)(yu + AW)

(to(£Gw))) . Gyu + AW)

while ((If)(Tw(w).Xy))(u + AW)

"

(Tw(f(w)).xy)(u + AW)

To(£()) (xyu + AW).

Finally, If is injective, since, if WysesaoW €W and

xl,...,xn € Ug,

n
(I£)C § T, )ex) = 0,
i=1

then for all u ¢ Ug,

n
0 = Z (TW(f(wi))'xi)(u + AW) by definition of If

i=1
n ’ -

= (£t (w,.))(x,u + AW) Ly commutativity
. =Wl 4 : .
i=1 hypothesis
n .

= ) £t (w,)(x,u + AW)) by definition of f,
fd Wil 1, =

n
= £( z (Tw(wi).xi)(u + AW)).
i=1

Since f is injective, this forces

n
0 = .Z (Tw(wi).xi)(u + AVW) for all u € Ug.
i=1
n
That is '2 Tw(wi).xi = 0,
1=1

Thus I is a well-defined functor from (Mod-h|menics) to (Mod~g|monics).
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(2) Left injectivity axiom. We shall show that I and R satisfy

the left injectivity axiom., By theorem (5.8), it is sufficient to
show that there exists a morphism jw of (Mod—h‘monics) such that

jw : W~ RIVW is natural in W and (im jw).Ug = IW.

We define jw to be T, with codomain restricted to RIW. That jw is

W

a morphism of (Mod-glmonics) and (im jw)Ug = IW are trivial., It remains

to prové that jw is natural in W.

- ]

Recall that W, W are right W ~———-1L——~§ RIW
Uh-modules and f is a right Uh- fl lBIf
monomorphism, Thus, for w € W, W ——"-E:f‘—*i RIW

W
(RIf o 3 )(w) = (RIF)(G,(w))
= (RIf)(Tw(w)) by definition of jw
= (I£)(t,())
= TW(f(W) by definition of If
= (jw o £)(w) by definition of jw.

So jw is natural in W,

(3) Dimension of IW, The proof that, if W is finite-dimensional

and Ug/AW is finite-dimension, then IW is finite-dimensional, is trivial.

g
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Chapter 8 - Models of the Axiom Svstems

(8.1) Convention: In this chapter h < g will be Lie algebras of various

special types, and R : Mod-g -+ Mod-h will denote the obvious restriction

functor.

(8.2) Induction from Cartan-type subalgebras I - Wallach's Functor

In his papers [16], [17], Wallach constructs an induction functor
for a certain type of subalgebra h of gs which in fact satisfies the
left and right injectivity axioms. Wallach proves that his functor
satisfies the injectivity claim of the right injectivity axiom, He

ignores all questions of naturality.

We shall describe Wallach's functor and show that it satisfies both
left and right injectivity axioms by verifying the conditions of theorems

(5.8) and (5.416) of this thesis.
Recall that Q -

Let g have subalgebras n;, n, such that g = n; @ h @ np, as a vector

space, and such that [n,,h] ¢

n

13
-
“

(n,,h] <

n
ns

2

~ Wallach calls such a.Lie algebra a "Lie algebra with decomposition".

We shall write t = 1, @

uo'

(i) Definition of the functor I . Let W ¢ Mod-h. Wallach constructs

his module1 IW as follows., Define a functor2

s Mod-g > Mod—g

W = ﬁ

1. Wallach uses the symbol Wl for what we have called W; Wallach uses
the symbol ~ for another purpose.

2. Wallach calls his induced module W¥*, not IW,
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by requiring that the underlying vector space of W be the same as that
of W, that h acts on W as it does on W, and that n, acts trivially on W.
This functor acts as an identity map on morphisms, and we shall not

distinguish between a morphism and its image under the functor.
Recall from section (1.3)(second corollary) that
Ug = Ut @ Un,.n,.Ut

as a right Ut-module. Since [h,n,] ¢ n,, it is easy to check that the
summands are also left Uh-modules. Hence, the projection map y : Ug ~> Ut

onto the first summand (above) is a left Uh-, right Ut-module homomorphism,

Thus we can define a map
jw T W R(HomUE(Ué,W))

by .
jw(w)(u) = w.y(u)

where w € W and u € Ug, and it is easy to verify that jw is an h-mono-
morphism,
Next, Wallach sets
IV = (im jw).Ug.
Let W e Mod-h, and choose o € Homh(w,ﬁ). Wallach defines a map
1¢ : IW - IW by

(19)(£) = ¢ » £

for £ € IW ¢ HomUt(Ug,W). Tt is easy to verify that, with this definition,

I is a functor Mod-h = Mod-g.

A
3. Wallach calls his h-monomorphism w, not jw.
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N

(ii) Proof that I is faithful. Suppose that ¢ « Homh(W,W), and I¢ = 03

0. That is, for all

then, in particular, for all w € W, (I¢)(§w(w))
wewW, ¢o jw(w) = 0, and so for all w € W, ¢(w) = (¢ © gw(w))(lug) = @,
That is, ¢ = 0, i

(iii) Definition of the natural transformation j -+ RI. Let

1Mod—}zl
W € Mod-h. We define the map jw : W~ RIW to be §W with codomain

restricted to be RIW, I claim that jw is natural in W, For, suppose

that ¢ € Homh(w,ﬁ). Then, for w € W and u ¢ Ug,

Iy RIG(3, (1)) (w)

= (9 ° 30w

O
B s
A =~
i~
=
!

- RT = ¢(w.y(u))
: = ¢(w).y(u)
= (jﬁ(q)(w)))(u).
Thus RIp © jw = jW o ¢,

(iv) I and R satisfy the left injectivity axiom. We use theorem (5.8)
and the Remark following it. We have verified condition (a) of theorem
(5.8) above, and condition (b)' (see the Remark) is a trivial consequence

of the definition of jW'

(v) Definition of the natural transformation k : RI * 1N0d~h' Let
f € RIW, Thus f € HomUh(Ug,W), since RIW ¢ HomUQ(Ug,W). We define a
map

k, : RIW > W
by
kw(f) = f(lUg).

It is easy to check that kw is'a Uh-homomorphism, Note that for w e W,
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kg (Gpn) = () ()

1
=
RN

l
=

Thus v k =1

W
We deduce from this that kw is an epimorphism of Uh-modules. As

a side-product:

(vi) I and R satisfy the splitting axiom of section (7.2)

(vii) kw is natural in W, and ker kw contains no nonzero Ug~-modules,

Suppose W is a Uh-module and ¢ « HomUh(W,W). Let £ € RIW., Then

(¢ © X)) §
' W .
while kW(RI¢(f)) v
W ¢ » RIW
= kﬁ((b o f) W .

(6 o (1)

¢(f(1Ug)).

Thus kw is natural in W.

Next we show that ker kw contains no nonzero Ug-modules, Suppose

that ker kw does contain a nonzero g-module: then ker kw contains a cyclic

g-module, m.Ug, say, where m € HomUh(Ug,w) and m # O,

We shall show that m.Ug ¢ ker‘kw implies m = 0, and this contra-

diction will establish what we want to prove.

If mUg ¢ ker kw, then for all u e Ug, kW(mu) = 0, That is, for
all u ¢ Ug, mu(lU ) = 0, That is, for all u € Ug, m(u) = 0. That is,

¥

nez

m = 0.
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(viii) I and R satisfy the right injectivity axiom. This follows from

theorem (5.16), the remark following it, and (vii) above.

Wallach proves two results about his functor I which are inter-

esting for us:

(ix) (Wallach [16] Theorem 3.1): Let g =1n; @ h @ n, be a triangular

10q

decomposition of the Lie algebra g : - that is, a decomposition of the
type explained at the start of section (8.2) of this thesis, but with
the additional property that n, and n, must both act nilpotently on

every finite-dimensional g-module,

If W is a simple h-module, then HomUt(Ug,ﬁ) (see Section (i)
above) contains at most one non-zero finite-dimensional simple g-module,
Such a non-zero finite-dimensional simple g-module exists if and only

if dinkIW < ®, in which case IW is the simple g-module,

(x) (Wallach [17], Proposition (4,1)). Consider the case where g is

a semisimple Lie algebra over an algebraijcally closed field k of

characteristic zero. Such a Lie algebra has a triangular decomposition

[}
N

g=mn, ®ho
where h is a Cartan subalgebra of g, and n,, n, are respectively the
sums of weight spaces for the negative and for the positive roots in
the root system of g with respect to h. (More details and references

are given in Wallach [17] page 164.)

If W is a simple finite-dimensional (i.e. one-dimensional) Uh-
module, then IW is a simple (not necessarily finite-dimensional)

g—module.



108,

(8.3) Induction from Cartan-type subalgebras II - An adjunction

related to Wallach's Functor.

Convention: In this section, I will be the functor defined in section

(8.2), and g will thus be a "Lie algebra with decomposition'", as in

(8.2). That is, g has subalgebras h, n;, n, such that

§ =n, @h

D
ns

2

ol
0
@
<
®
0
+
(o]
3
[7)

J
o}
%)
®

-
ol
3
o
m

=}

-

A

=8
—
n

¢ n, and [n,,h] ¢ n,. We shall write

1

Intrcduction: Since the functor I is not (necessarily) a left adjoint

to R, we can ask if I has a right adjoint (or a left adjoint, for that

matter).

Wallach [17], in his Lemma 2.1 and Theorem 3.1, proved some
results in this direction. In this section, we shall extend his work
by defining a functor J, closely related to I, and describing a functor

which is a two-sided adjoint to J.

(i)  Definition of the functor C : Mod-g > Mod-h. Let v € Mod-g.

Define, first of all, the set
cv={vev: v.n, = (0)}. ;

Let V € Mod-g and suppose f ¢ Hong(V,V). Then f}~ ¢ CV~> ¥ is an
= = Ccv
h-homomorphism with image contained in CV, since

. if h € Uh and v ¢ EV, then for all n € o,

(vh)n

(vn)h + v.[h,n]

= 0 since vn = 0 and [h,n] €

ns

so v.[h,n] = 0

thus vh ¢ CV
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and . if veCVandne€n,,

flv).n = £lv,n) = £(0) = 0

so f(v) ¢ EV, ie. imf| ¢ v .
Ccv

Thus, if we define Cf to be £ with domain restricted to CV and codomain
restricted to EV, then it is easy to check that ¢ is a functor from

Mod-g to Mod-h,

(ii) Definition of the category G. Let G be the full subcategory of

Mod-g whose objects are all V € Mod-g such that

(1) (Ev).u§ =y
(2) V.o, n CV = (0)

(3) V.n,; contains no nonzero g-modules

where V.n, denotes the subspace of V (considered as a vector space)
spanned by all elements of V of the form v.n where v ¢ V and n € n,.

It is easy to check that V.n, is an h-submodule of RV.

(iii) Definition of the functor C : G > Mod-h., We define C to be the

restriction of the functor C of part (i) to the category G.

(iv) Definition of the functor J : Mod-h » G. Wallach, in [17], lemma

2.1, proves that if W € Mod-h, then IW ¢ G, We shall write J for the

functor I with codomain restricted to G.

(v) Adjointness of J and C; definitions and calculations. Wallach also

states that W = CJW. If jw : W > RIW is the Uh-monomorphism defined in

section (8.2) above, then the map

Sy ¢ W > Cdw,

defined to be jw with codomain restricted to CJW, is such a Uh-isomorphism,

It is easy to check that Sy is natural in W, using the naturality of jw,
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Another result of Wallach [17], his theorem 3,1, shows that if

V e G, then V = JCV. It is necessary to outline his proof, in order to
specify the isomorphism. We shall then show that this isomorphism is

natural in V.

Let V € G. The conditions (1) and (2) of part (ii) above
guarantee that

RV = CV & V.n,
as an h-module,

Let Py ¢ RV - CV be the projection onto the first summand. We
define a map

: V> JCv

by
(tV(V))(u) = pV(V.U) for v € V, u € Ug,

o\
(Recall that JCV ¢ HomUt(Ug,CV), from (8.2) part (i) and definitions

of J and C.)

It is easily verified that for v € V, tv(v) is a Ut-homomorphism,

that tV is a g-homomorphism, and that, because of condition (3) of

part (ii) above, tv is injective.

We shall now prove that t,, is surjective.

v
Observe that pv(v.u) = v.y(u) for v € CV and u € Ug, and where
y : Ug »> Ut is the projection defined in part (i) of section (8.2).

It follows that

it
Viey

so that, using condition (1) of part (ii) above,

= :]C‘J’

im(tv) (im t ).Ug

# CV -
= (im jCV).Ug

JCV by definition of J.

1t
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Thus tv is surjective and hence an isomorphism.

Next, we check the naturality of tv in V. Let V,V ¢ G, and let

o € g(V,V). Consider the diagram

ty
V ety JCV

¢1 lJC¢

§ ——> Jo¥
5

Let v e V, u e Ug: (JCo ¢ tv)(v) = Cd o (tV(v)), hence

(Co ° (tv(v)))(u) = C¢(pv(v.u))

while tv(¢(v))(u) pv(¢(v).u)

1

PV(¢(V'U))
So, the diagram above will commute if and only if
Py ° R = Co ° Py
that is, if and only if the following diagram commutes for all
¢ e G(V,V):

Py
RV e CV

bel lC¢

RY ——> (¥
Py

As was noted by Wallach [17], in the proof of this theorem 3.1, i 7

Ve Gand v € V, we can write
v = Vg

for some ¥ € CV and some g € Ug, because of condition (1) of part (ii)

-

above.

Thus, with this notation

pv(v) = ¥.¥lgle
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A similar remark applies to V. Thus, in our case, for v € V and g € Ug,
d(v) = ¢(¥.g) = d(V).g
and so pv(¢(v)) = ¢(¥).y(g). But, on the other hand,

o(¥F.v(g))

¢(pv(v))

I

o(v).y(g).

Thus the diagrams above do commute, and tv is natural in V,

(vi) Adjointness of J and C; conclusions. By part (v), there exist

natural isomorphisms

sw ¢ W > CJW for W e Mod—g

tv : V> Jgcv for V e G.
Thus, by MacLane [12] page 91, Theorem 1, C is both a left and a right

adjoint for J, and the categories Mod-h and G are equivalent.

Since Maclane's proof is indirect, we shall write down the

adjunction isomorphisms. and their inverses:

Let V € G, W € Mod-h.

(A) Define Tyy ° homUE(CV,W) > 6(V,JdW) as follows:

let Y € Homh(CV,W), and set
va(¢) = JyP o tye

The inverse TVW is defined as follows:

let ¢ € G(V,JW), let v €CV and set

il
(Tyy (ENv) = ((C¢)(V))(1U§)‘

(B) Define 0 _,: Q(JW,V) > HomUH(W,CV) as follows:

Y
let ¢ e G(JW,V) and set

A = Co o
GWV((’bl C\,b Sw.
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Define GWV as follows:

let Y € homU}(W CcY), let wl""’wn e W,

let X 5000 % € Ug, so that Z - w(wi)xi e JW, and set

n n
Oy WY 3uGr)exg) = § ey Gy (b)) x, ).
i=1 i=1

J_,
Mod-h ¢ G is an equivalence of categories,

6!

Theorem:

(8.4) Induction from Cartan-type subalgebras III - a dualization of

Wallach's construction.

Conventicns: In this section, g will be a "Lie algebra with decomposi-

tion", as in (8.2) and (8.3). That is, g has subalgebras h, n,, n

such that
We shall write

Recall from section (1.,2) of this thesis that
Ug = Ut @ Ut.n,.Un,

as a left Ut-module. Since [n,,h] ¢ n,, it is easy to check that the
summands are right Uh-modules, Let y : Ug + Ut denote the projection

onto the first summand; Y is a left Ut-, right Uh-module homomorphism.

Note that Y is a different map from the map Y introduced in

section (8.2).

Introduction: We are going to define a functor I: Mod-h - Mod-g and
show that it satisfies the left and right injectivity axioms. We shall
define it in much the same fashion as we defined Wallach's functor (in
section (8.2)) but we shall use the tensor product functor - ®UhU§

in place of the functor HomUh(U§,~).
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(i) Definition of the functor I : Modng > Mod~§. Let W ¢ Mod—g.

Define a functor

as follows., The underlying vector space of W is the same as that of W,

and h acts on W as it does on W. 1, acts trivially on W. Since t = n, @

H=a

this specifies the module W. This functor is defined to act trivially
on morphisms (i.,e., it does not change them) and we do not distinguish
between a morphism and its image under the functor. That is, if

Wi,W, € Mod-nn,

HomUE(wl,wz) = HomUh(Wl,Wz).
Next define an E—epimorphism

kw : R(W e

~

as follows: for w e W and u € Ug, set

Ut Ug) > W

ﬁw(w @ u) = w.y(u)

and extend this definition to all of W @

Ut Ug by linearity. Ik, is

W

well-defined, because the map W X Ug > W defined by
(wou) > w.y(u) (for w € W, u ¢ Ug)

is Ut-balanced and bilinear (cf Curtis and Reiner, sections (12.1) to

(12.6).

~

Consider the h-submodule ker ?w of We Ug, ker EW contains a

ut =

unique largest g-module, namely the sum of all the g-modules contained

in ker ﬁw. Call this unique largest g—modﬁle Y(W) < ker kw. Clearly

ﬁw factors through R(W Bt Ug/Y(W)) via the natural projection - by a

map

}?w : R(W °yt Ug/'r’( W) W,

say.



115.

We define our functor

I: Mod-h + Mod-g

as follows: first, on objects.

Set IW = (W LN Ug)/Y(W) and give it the quotient g-module

structure. Now we must define the action of I on morphisms. Let

W,,W, € Mod-h, and let ¥ ¢ Homh(wl,wz). Suppose w € W;, u € Ug, so that
weu+ Y(W;) e IW,.

Define (IP)(w ® u + Y(Wl) = Y(w) ® u + Y(W,), and extend this definition

to all of IW, by linearity.
We must check that Iy is well-defined. Note firstly that the map

woeue Y(w) ®u (weW,ueUg)

1noq

is well-defined by the functoriality of - ®ut Ug. Suppose that

Wiseas oW € W and Upseassll € Ug, and that

n
Yow., ®u, € Y(W,).
2 d 1 1

i=1
~
Then, since Y(W,) is a g-module contained in ker kw , for all x € Ug
= 1 =
R n
0 =y (] w; ®ugx)
i=1
n ——
= L wge¥(agn)
i=1
n —-—
N =1
v 0 = 1,-)(.2 W, oy(u %))
i=1

n
= Z CHRICED

i=1
. n
= kg ('2 w(wi) ® uix).
2 i=1
n

That is, for all x € Ug, ( 2 P(w.) ® u,)x € ker K
= i=1 4 i 2 w2
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n
hi 3
. But this forces (.z W(wi) ® ui)U§

n N
or (.2 Plw,) @ ui).Ug c ker sz L

i=1

n
c Y(W,), so, in particular, Z w(wi) ®u, e Y(W,). Hence Iy is well-
i=1

defined. It is easy to check that I has the homomorphism property of

a functor.

(ii) Naturality of EW’ and the Right Injectivity Axiom. Let W e Mod-h.

We now show that the Uh-epimorphism k. ¢ RIW > W, defined in part (i),

W
is natural in W. Let W;,W, ¢ Mod-h, and let Y € HomUH(Wl,WZ). We must

show that the following diagram commutes:

= ky
RIW; oty Wy

= | l :

k

W,

Let w € ﬁl and u € Ug, It is sufficient to check commutativity

on a generator w ® u + Y(W,) of RIW;:

w(iwl(w ®u + Y(W,))

Ylw.y(u))

Y(w).y(u)

while sz(le(w ®u + Y(W,)))

Ky, (900) @ u + Y(W,))

]

Y(w).y(u).

So the diagram commutes as required., By its definition, ker EW

contains no nonzero g-modules, Thus theorem (5.16) of this thesis

tells us that I and R satisfy the right injectivity axiom,

(iii) Definition and naturality of the map EW' Let W e Mod-h, let

w e W, We define a map

ﬁw : W~ RIW

Ug + Y(W).

by ﬁw(w) =weo 1l
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It is easy to check that ﬁw is an h~homomorphism, and since

= 1y Iy

is injective., Also, clearly, (im ﬁw).Ug = IW.
Let W,,W, € Mod-g and suppose Y € HomUh(Wl,Wz). I claim that fw

is natural in W. To see this, we must check that the following diagram

commutes:

W, % " RIW,
Iw
2
Let w ¢ W,. Then (RIYI(G, () = RIYP)(w @ 1gg + Y(H1))
i

Y(w) © 10@ % Y(W,)

while'fw (Y(w)) = Y(w) @ 1Ug + Y(W,).
2 -

Thus the diagram does indeed commute, and so EW is natural in W.

(iv) Left Injectivity Axiom. By part (iii) above and theorem (5.8) of

this thesis, I and R satisfy the left injectivity axiom.

Also, by part (iii) above, I satisfies the splitting axiom of

section (7.2) of this thesis.

(8.5) Induction from Complemented Ideals.,

Hochschild and Mostow, in their paper [7], pp. 937-939, described
a way of inducing from a complemented ideal., Their induced module

construction was not, however, on the face of it, functorial.

The modification of their construction described in this section
is functorial, and the functor we shall construct satisfies the left

injectivity axiom.

Conventions: In this section, h @ g will be a complemented ideal - that

is, an ideal h of g for which there exists a subalgebra g in g which is
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a vector space complement to h:
g=hes as a vector space.

Hochschild and Mostow define a left g-module structure on Uh,
which we shall presently describe, Uh will be assumed to bear this

module structure "#" throughout this section,

(1) g-module structure on Uh, Since g =h @ g, for any g € g there

exist a unique h € h and a unique s € g such that
g=h+ s,
Thus, if u € Uh, we can set
g*®*u=(h+s)®u=hu+ (su-us),.

It can be proved, by induction on the length of standard monomials,
that su-us € Uh, and it is then easy to verify that the above equation(s)

determine a g-module structure on Uh,

(ii) Definition of the maps gw,_jw, and the object function of the

functor I. Let W e Mod-h. We can construct a vector space Homk(UQ,W)
and we put a g-module structure on Homk(Uh,w) by defining, for
f e Homk(Ug,W) and g € g, u € Uh
£8(u) = £(g * u),
If we define a map
jw : W~ Homk(UQ,W)
by (for w € W and u € Uh) setting
jw(w)(u) = Wl

then it is easy to check that §w is a well-defined h-monomorphism,
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We define a g-submodule IW of Homk(UQ,W) by setting

3

IW = (im “Iw).Ug.

~

We define jw : W > RIW to be §W with codomain restricted to RIW. Clearly

jW is still an h-monomorphism and
(im ]W)U§ = TW,

(iii) Action of I on morphisms; naturality of jw. Let W,W e Mod-h, and

let Y ¢ Ho (W,W)., Let f ¢ IW, thus f may be written as a sum
"Uh g

.

J
1 W

H

"o~

(w.).x.
. i’
i

with WisewssW € W and Kyseees¥ € Ug. Let u € Uh. We set

((IP)(E))(w) = (Y o £)(u).

We shall show that (IY)(f) € IW.

n
(TYEN @) = W o} 3600 .x,)(u)
=g T "
n
= w(.i wi.(xi *u))

i=1

n
Z ll)(wi).(xi ® u)

1

i

1
n
C} 30 ().
i=1

So (IY)(f) € IW. Thus IY € Homg(IW,IW)Q Clearly, I satisfies

the homomorphism property of a functor.

Next, I claim that jw is natural in W. We must show that the

following diagram commutes:

J
W ———*—E—“rﬁ RIW

v Jl, lm
§ semenceiy, IR
I
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Choose u € Uh and w € W, Then

(RIP) o 3 )G = (P o § ()W)

1

Plw.u)

Y(w).u
(jW(W(w))(u)
(jW ° w)(W)(u).

il

]

Thus jﬁ oY = RIY ¢ jw as required,

(iv) Conclusions: Injectivity Axiom and Faithfulness of I. By theorem

(5.8) and the results of parts (ii) and (iii), it follows that I and R

satisfy the left injectivity axiom,
Further I is a faithful functor.
For, if Iy = 0, then, in particular, for all w € W,
(1) (3,Gn) = o
So for all w € W, (I@)(jw(w))(lug) = 0,
Tha% is.W(w) = 0 for all w € W, That is Y = 0, Thus I is faithful.

(v) Theorem. (cf. Hochschild and Mostow [7] and Zassenhaus [18].)

Let g be a finite~dimensional Lie algebra over a field k of

characteristic zero, and let h be a complemented ideal of g with comple-

mentary subalgebra

e

Sg.
Let W be a finite-dimensional h-module on which [g,g] acts nil-
potently. Then IW, as defined.in part (ii) above, is a finite-dimensional

g—module.

Remark: It may be seen that this result is a form of converse to the

theorem of Zassenhaus cited in section (0.3).
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The proof is rather close to that of the analogous result of

Hochschild and Mostow, mentioned above.

Proof of theorem:

(1) Definition of s(W), and of 4,

Let W ¢ Mod—g. Let

be a composition series for W, We write

S(W) = {g}-(w /w )

i=1 =

and call S(W) the semisimple h-module corresponding to W.

By the Jordan-Holder theorem (see, for example, Curtis and Reiner
[2] (43.7), p.79) S(W) is determined up to isomorphism. A subalgebra of
h acts nilpotently on W if and only if it acts trivially on S(W).

Note that a composition series for W can have length (n) at most

dimkW. Write d = dimkW.

(2) The formmlas (A) and (B) and the core of the proof.

(Ann _( (V))) = AnnUQ(W) | - (A)

= AnnUE(S(W)) - (B)

Since, by hypothesis, [h,s] ¢ AnnUh(S(W)), it follows that AnnUh(S(W))

is a g-submodule of Uh, Hence (AnnUh(S(W)))d is a g-submodule of Uh.
If f e Homk(UQ,W), and
f(AnnUE(W)) = (D)4

then for all x ¢ Ug

n

f(x{Ann h(o(W))) )
W

fX((AnnUQ(S(W)))d)

in

f(Ann ) by (A) above

= O.
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Now im Jg annihilates AnnUh(W), so IW = (im jw).Ug annihilates
(AnnUh(S(W)))d. Let us write J - (AnnUh(S(W)))d. It is easy to see
that EW is enbedded in Homk(Ug/J,w) (cf—proposition (7.17) of this
thesis.)
Since W is finite-dimensional, AnnUh(W) is of finite codimension
in Uh. Hence, by inequality (B), above, AnnUh(S(W)) is of finite

: . . 1
codimension in Uh. Now we need a lemma of Zassenhaus.

Lemma: If X and Y are ideals of Uh of finite dimension, then so is XY.

We deduce from this lemma that J is of finite codimension in Ug.
Thus
dim Homk(UQ/J,W) < o
and so, since IW ¢ Homk(Ug/J,w),

dimk(IW) < ®, O

! cf [18] page 263
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Chapter 9 - Lie Ideal Subrings and Clifford's Theorem

(9.1) Introduction. The reader should note that the theorems, proposi-

tions and lemmas of this chapter are labelled in a different way from

those of chapters 1 to 8.

In [14], M.A. Rieffel remarks that there is '"one very important
part of the theory of induced representations of groups which [he does]
not a present see how to generalize to rings, namely Clifford's theory

of induced representations of group extensions!,

He then notes that the difficulty lies in finding a satisfactory

concept of "normal' subring of a ring.

In this chapter, we present a possible candidate for the role of
"normal" subring. It is shown that, with this concept of normal
subring, the analogues of at least two of the main results of Clifford's
theory of induced representations of group extensions hold, with some

‘restrictions on the rings and modules involved.

Throughout this chapter, all rings considered will be assumed
to have identity elements. The identity element of a ring R will be

denoted by 1 By a subring S of a ring R, we shall mean a subset of

R.
R closed under subtraction and multiplication, and containing 1P' All
modules will be assumed to be unitary. All modules will be right

modules or bimodules. The symbols [s,r] will be used to denote the

commtator sr - rs of two elements s and r of a ring. CR(S) will

it

denote the subring {reR:V seS prs=sr}and Z(R) the centre
of a ring R 2 8, If M is an R-module, and X is a subset of M, then
Ann(X) will denote {r e R: X.r = D}}. By an R-component of an

R-module M, we shall mean a quotient module V/W, where W c V and W

and V are R-submodules of M.
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Definition: A Lie ideal subring S of a ring R is a subring of R which

is also a Lie ideal of R, that is, a subring with the following property:
¥VseSVr e R [s,r] €S,
The Lie ideal subring is our candidate for the role of "normal" subring.

Theorem A: Let R be a right Artinian ring and let S be a right Artinian
Lie ideal subring of R. Let M be an irreducible R-module which is
finitely generated as an S-module. Suppose that 2r € AnnR(M) implies

T € AnnR(M) for all r € R. Then all irreducible S-components of M are

S-isomorphic, and M is completely reducible as an S-module.

This result is a ring-theoretic analogue of (438.2) of Curtis and
Reiner [2]. It is also closely analogous to a result of Barnes and
Newell [1], page 185. Part of Theorem A is true under much weaker

hypotheses: see Proposition 1.

Theorem B: Let R be a ring and let S be a Lie ideal subring of R.
Let M be an irreducible R-module and let L be an irreducible S-submodule

of M. Set S* = {r e R : L.r ¢ L}, Then M ~ L e, R.

ofs
g%

(9.2) Examples of Lie Ideal Subrings.

(i) If I is an ideal of a ring R, then the subset

{i+mn.1_: ieI,n an integer} is the smallest Lie ideal subring of

R

R containing I. This Lie ideal subring will henceforth be referred to

as I-fZZlR.

(ii) If I is an ideal of R, then I + Z(R) is a Lie ideal subring

of R, In fact, if S is any subring of R such that
I +21R c S c I+ zR),

then S is a Lie ideal subring of R. A partial converse of this will be
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proved in (8.4) in the case where R is a right Artinian semisimple

ring.
(iii) If S is a Lie ideal subring of R, then so is CR(S).-

(9.3) Equivalence of Irreducible Components.

The result proved in this section is similar to a result of
Zassenhaus on Lie algebras, and is proved similarly: see Zassenhaus
[18] page 253. It implies one half of Theorem A, but is proved under

weaker hypotheses.

Proposition 1:; If R is a ring, and S is a Lie ideal subring of R,

and if M is an irreducible R-module which contains an irreducible
‘S-submodule, then all the irreducible S-components of M are S-

isomorphic.

Proof: Let L be an irreducible S-submodule of M., Consider the set
of S-submodules of M which contain L and have all their irreducible
S-components isomorphic to L. By Zorn's lemma, this set contains a

mximal element, K, say.

{e shall show that K = M, by showing that K is an R-submodule
of the irreducible R-module M. Suppose r e R. We must show that

Kir ¢ K. Tor all s € S and all k € K,
(kr)s = ko[r,s] + (ks)r e K +.Kr
since [r,s] € S, hence K + Kr is an S-submodule of M.
We claim that p  : K= (K + Kr)/K, defined by
kw» kr + K for k € K

is an S-epimorphism of K onto (K + Kr)/K, The surjectivity part is

obvious., If s € S and k ¢ K, then
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pr(ks) ksr + K

k.[s,r] + krs + K

krs + K since ([s,r] € S

(kr + K).s

1

pr(k).s

so p_ is an S-homomorphism as claimed. Thus (K + Kr)/K is S-isomorphic

e

to a quotient module of K, It is now easy to see that every irreducible

S-component of K + Kr is isomorphic to L.

Hence, by the maximality of K, K = K + Ke, That is, Kr < K,

Thus K is an R-submodule of M. 0

(9.4) Lie Ideal Subrings of Right Artinian Semisimple Rings.

We need Lemma 1.3 of Herstein [4]; we restate this Lemma here and

in a convenient form, for ease of reference:

Lemma 2: Let R be a ring with no nonzero nilpotent ideals, in which
2% = 0 implies x = 0., Suppose U is a Lie ideal subring of R. Then

either U ¢ Z(R), or U contains a nonzero ideal of R, O

The next result is the promised partial converse of example (ii)

of (9.2).

Corollary 3: Let R be a semisimple right Artinian ring in which 2x = 0
implies x = 0, and let S be a Lie ideal subring of R. Then there exists

an ideal I of R, such that
1+Z.1R5351+Z(R).

Proof: Let I be the unique lafgest ideal of R contained in S. Recall
that every ideal of a semisimple right Artinian ring is a direct

summand. Thus there is an ideal J of R such that R = I @ J. Let p be
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the projection of R onto J. It is easily checked that S = p(S) @ I,
and that p(8) is a Lie ideal subring of J. Since J is an ideal of R,
2% = 0 implies x = 0 in J, and furthermore, J has no nonzero nilpotent

ideals, since J is semisimple (see Lemma 1.2,2 of Herstein [5]).
Hence, by Lemma 2, p(S) c Z(J).
It follows that p(S) < Z(R).

Therefore, S = I ® p(S) ¢ I + Z(R). Finally, since I ¢ S and

1_ € S, it follows that I + Z .1

R € S, g

R

(9.5) Proof of Theorem A,

For the proof of Theorem A, we need some extra notation and a

lemma.

Let R be a ring and M an R-module, and let T be a subring or

ideal of R, Noting that AnnR(M) is a two-sided ideal of R, we write
T = (T + AnnR(M))/AnnR(M);

Lemma 4: Let R be a ring and let S be a Lie ideal subring of R. Let
M be an R-module and let L be an irreducible S-submodule of M. Suppose
that ¢ € R satisfies c + AnnR(M) € Cﬁ(g) end ¢ ¢ AnnR(L). Then the

map p : L > Lec defined by & » fc is an isomorphism of S-modules.

Proof: Let c € R satisfy c +-AnnR(M) € Ci(é) and ¢ ¢ AnnR(L). For any
% ¢ L and any s € S, (Z)s = (s)c + &.[c,s]. Now [(c + AnnR(M)),

(s + AnnR(M))] = 0 by choice of ¢, hence [c,s] ¢ AnnR(M), and %Lec,s] = 0.
That is

(Lc)s = (&s)e. (=)

Clearly o is additive, and the equation (¥*) above shows that p is an

S-homomorphism. Since L is irreducible and c ¢ AnnR(L), p is injective,
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and clearly p is surjective, Thus p is an isomorphism. 0

Proof of Theorem A: We shall work modulo AnnR(M). Clearly M is a

faithful irreducible R-module, hence R is a primitive ring. R is

right Artinian, so R is right Artinian too. Thus by Theorem 2,1.4

of Herstein [5] (page 40), R is a complete matrix ring over a skewfield,
so is simple, Since 2r € AnnR(M) implies r € AnnR(M) for r € R, it
follows that 2r = 0 implies r = 0 for r € R, Also, it is easy to check

that § is a Lie ideal subring of R.
Hence, by Lemma 2, 5 < Z(R).

Since M is finitely generated as an S-module and S is right
Artinian, M has an irreducible S-submodule,L say, which is also an

irreducible S-module,

Using the fact that M is finitely generated as an S-module again,
we can find a finite irredundant list C1aCpsenesCy of elements of R,

"such that
t
! Le, = M,
i=1

By the irredundancy of C,;,C,se005Cy it follows that c. ¢ AnnR(L) for
i=1,2,...,t. Since 3 ¢ Z(R), c; ¥ Ann (M) e CR(§), for 1 = 1,244005ts

So, by Lemma 4, Lci is an S-module isomorphic to L, for i = 1,2,...,T.

For any j € 1 1,2,...,t}, LCj = [, is irreducible, so

Lec. n z Le. 210} or Le.. The latter possibility would contradict
St 5 4
the irredundancy of Cy,Cpsess,C.e Therefore, Le. n ) Le, =40}, That
. | I if
is, M = Leg. : 0
i=1

(9.6) The Proof of Theorem B.

We need a Lemma.
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Lemma 5. Let R be a ring and let S be a Lie ideal subring of R. Let
M be an irreducible R-module and let L be an irreducible S-submodule

of M, Set 8% = {r e R: Lr ¢ L}, If & ¢ L, then AnnR(zo) c s*,

Proof of Lemma 5: If £ € L, then we can write & = 20.3 for some s € S,

because L is irreducible as an S-module. Now for any a € AnnP(QO),

1

L.a = zosa Roas + Qo[s,a]

0+ Ro[s,aj e L,

since [s,a] € S, because S is a Lie ideal subring.

That is, La ¢ L, or a € S%, 0

Proof of Theorem B: We shall use the characterization of a tensor

product given in Curtis and Reiner [2], sections (12.1) (12.8),

We shall consider L as a right S*-module and R as a left

S*-module and right R-module, To prove that M is isomoprhic as an

Abelian group to L @ R, we must show that if

¢ : LXR=>A

is any S%-balanced bilinear map from the Cartesian product L x R into
an arbitrary Abelian gboup A, then ¢ factors through M by a bilinear

~ balanced map u : L X.R > M which is independent of ¢.1 That is, we
must show that there exists ¢' : M - A such that the following diagram
commutes:

L % ey
\/'

We choose for p the restriction to L X R of the structure map

M X R >+ M of the R-module M. That is,

u(f,r) = L.r for £ € L and r € R,

We must also remark that the elements p(f,r) gpenerate M as an Abelian
group.
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It is easy to check that u is bilinear and S%-balanced., We construct
¢' as follows: pick any nonzero 20 e L ¢ M., M is an irreducible
R-module, so for any m e M there exists an r € R such that m = Ro.r.
We define ¢'(m) = ¢(20,P). We must show that this map is well-defined
- it certainly has the desired commutativity property. Suppose that
m = lo.r = Ro.f for some r € R, Thenr -1 € AnnR(Ro) c S$% by Lemma 5.
We must show that ¢(20,r) = ¢(20,5).

We kncw that

o(h_,r) = $(& ) = ¢(& ,r - T)

¢(£o(r—f),1 ) since r-r e S%

¢(0,1R) since r-r € AnnR(Ro)
= O
That is,

$(8,) = §(8,,F)

and ¢' is well-defined. Hence L @,, R = M as Abelian groups, and the

g%
isomorphism, 1 say, is given by (& @ r) = L.r for £ € L and r € R.

Finally, we must show that this is an R-homomorphism. Suppose that

£ € L and r,,r, € R. Then

1((2 ® ry).r,) = (R @ (p1,))

n

Lolryr,)

(Rer; ) o1,

1

1(2 ®r,).r, .

Thus 1 is an R-homomorphism, and hence an R-isomorphism, t
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Appendix - Weak Double Adjoint Functors

(A.0) This appendix contains work done since chapters 7 and 8 were
wpitten. It uses terminology which differs from that developed in

chapters 4-8, but which is more convenient for the concepts we shall be
dealing with.

The principal object of this chapter is to reformulate the state-
ments of (5.8), (5.9), (5.16) and (5.17) in the case where the left and
right injectivity axioms of chapter 5 and the splitting axiom of chapter
7 are all satisfied. The result so obtained is illustrated with a new

ekample.,

(A.1) Definitions of Types of Weak Adjoint Functor

Let

"

s G, be categories, and let R : G+ H, T : H~* € be functors.

We say that I is an injective weak left adjoint to R s =3

for all W e H, V € G, there exists an injection
Oy * G(IW,V) ~ H(W,RV) (1)

which is natural in W and V.

(In chapters 5, 7 and 8 this concept was expressed by saying that I and

R "satisfied the left injectivity axiom'.)

We say that I is an injective weak right adjoint to R if

for all W e H, V € G, there exists an injection

N, ¢ G(V,IW) + H(RV,W) (2)

V¥

which is natural in V and W.

(In chapters 5, 7 and 8 this concept was expressed by saying that I and

R "satisfied the right injectivity axiom'.)
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Similarly one could define surjective weak left and right adjoints

to R,
Notice that for W e H,

0 1 Clpgy) € HOW,KIW)

and an,W(ilw) € H(RIW,W).
As in chapter 5, we shall denote these two morphisms by jW and kw respect-

ively. Both are natural in W, by sections (5.4%) and (5.12),

We shall say that I is an injective weak double adjoint to R if

(1) and (2) above are satisfied, and also the follcowing condition:

for all W e H, k ° =1

W jW (83

We
Similarly, one could define surjective weak double adjoints.

Various other combinations are possible,

Double Adjoint Situations. Let H and G be categories

gnd let R:G~H be a functor,

Suppose that L:H~>¢G is a left adjoint to R,
and that F:H~>G is a right adjoint to R.
Let 1, 4 1H > RL denote the unit of L
and let e i R; > 1H denote the counit of F,

in the terminclogy of MacLane [12], page 81. Then we shall say that the

7-tuple (4,G,R,L,i,F,e) is a double adjoint situation,

Recall that if a category is exact, in the sense of Mitchell [13],
page 18, then every morphism has a kernel and a cokernel, an epimorphism
is the cokernel of its kernel, and every morphism factors as an epi

followed by a monic.

The following lemma is used in the proof of theorem (A.3).
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(A.2) Lemma: Let o : A > B be an epimorphism, let B :C=>Dbea
A monomorphism, and let the figure at left be a
|
€

commitative diagram in an exact category. Then

9 é———
(o]

b e e

B there is a unique map € : B » C such that the following

diagrams commute:

e
|
3

Proof: Let ker o «wké A be the kernel of o, and consider the diagram

B
£ J/S
C)—————B——')D

. %3y B
1
C>———-€—“9 D
Boyo k=8oacek by commutativity,
=800 since k is the kernel of &
=0=8-°0,

Therefore Yy o k = 0, since B is monic.
Hence, since o is the cokernel of k, there exists a unique € : B~ &
such that € o o = y. Together with the commutativity of the original

square, this implies that § ca =8 oy =8 o € o a. Buta is epi, so

§ = pf o e, The equations € o o =y and B o € = § tell us that the

B
la
D

diagrams

——¥ B

1~

¢
€

€
C *E“Y;-—9 commte., [J
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(A.3) Theorem: Let (H,

2

G,R,L,i.F,e) be a double adjoint situation, and

assume G is an exact category. If ¢ : L > F is a natural transformation,
such that
for all W e H, e, ° Rrpw o iy = L ()

then ¢ determines an»injective weak double adjoint to R.

Conversely, an injective weak double adjoint to R determines a
natural transformation ¢ : L > F satisfying (4).
Proof: Let (g,g,R,L,i,F,e) be a double adjoint situation, and suppose

that the category G is exact,

First, let us suppose that ¢ : L > F is a natural transformation
satisfying condition (4). Let W e H. Since G is exact, ¢w factors as

shown below:

im ¢w
Define an object function I ¢ H + G by IW = im ¢w. Suppose W,,W, € H
and Y e H(W,,W,). Consider
My Vy '
LW, b IW; Sty FW,
o E
LW, ———— IW, »———> FW,
M > \%
Wy Wy

This diagram can be redrawn as

My
LW, =t IW,

Fp e v

W, o Ly g
W, 1 W,

IW, >—-—;)—-—--w9 FW,
Wy
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In this form, it can be seen that Lemma (A.2) applies, so that there

exists a unique morphism, which we denote by Iy : IW, » IW,, satisfying

IY o My and

1

by, o LY

] P 1
vw2 o Iy = FY o vwl.

The uniqueness property of Iy makes it easy to verify that I : H > G is

a functor, and then clearly p : L 5> T and v : I >R are natural trans-

formations.
Define j = Ru o i : 1 3> RI
and k = e  Rv : RI 3 S,

we have the following commutative diagram:

R¢W
RLW > RFW

i :;;;\\\\*le Ny
w /
: \
w W W

Next, for W e H, V € G, define

then for W €

[fa s

ey (5)
W

N, ¢ G(V,IW) > H(RV,W)

VW

and Gwv : g(Iw,v) > H(W,RV)

by

kw ° RO

RB © Iy

nvw(a)

Oy (B

1"

where 0 € G(V,IW) and B e g(Iw,V).

We claim that Nyw and eWV are injective, and natural in V and W,

The naturality follows from that of and kw, and is proved in a manner -

I
similar to the appropriate part of the proofs of theorems (5.8) and (5.16),.
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Suppose that a,,0, ¢ G(V,IW) and

Ny (@1) = Nyyulog).
That is, kw ° Ra, = kw o Ra,.
But, by definition, kw ey e va,
S0 ey ° va ° Ro, = ey ° va ° Ra,.

Since, according to MaclLane [12], page 80, theorem 1, part (ii), the

adjunction G(V,FW) + H(RV,W) is given by X = e, o RX, the last equation

W

implies that Vg ° %y F Vi © O
But, by its definition, Vi is monic, So it follows that
a, = 0(2.

Thus Ny is injective, A similar argument shows that GWV is injective,
Finally, for W e H,

(1..) =k

g, W 1w

) = 3

and 6 ( Iy e

W, IH 1IW

Inspection of the commutative diagram (5) shows that for W e H,

k 1

w v T we
that is, condition (3) is satisfied, so I is an injective weak double

adjoint to R.

Now we prove the converse, Let (g,g,R,L,i,F,e) be a double

adjoint situation and suppose that we are given natural injections

Ny ¢ G(V,IH) > H(RV,W)

Vi
and O, : G(IW,V) > H(W,RV)

A

for all W e Hand Ve G. Set (1...) and jw = 0 (1._.),

w T Nw,w v W,IW “IW

and suppose further that for all W ¢ H
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k 1

W dw T e
That is, we are supposing that I is an injective weak double adjoint

to R,

By theorems (5.9) and (5,17), there exist natural transformations
Wy LW > IW and Vi IW - FW with components which are respectively
epi and monic. Using Corollaries (5.9a) and (5.17a) and MacLane [12],

page 80, Theorem 1, we find that

i, = Ry, o i
W W W
} (6)
and kw = ew o R\)w

V ° U is a natural transformation from L to F, and, for all W € H,

]l

ey ° R(v o© u)w °o i, (eW ° R\)w) ° (Rpw ° lw)

"
~
o

Thus condition (4) is satisfied (with ¢ = v o u), and the proof of the

theorem is complete. t

(A.4) Example: Leté,- be a ring with identity element 1, and letCH be a
subring such that 1 e ¥ . Let e :1{-*5 denote the inclusion map, and
suppose that there is an (#,H)-bimodule epimorphism 7y :g’ -*j/ such that
Y o e = jﬂ' v

Let R : Mod«g # Mod~j/ denote the change-of-rings functor., R has
a left adjoint L = - 8}/5 and a right adjoint F = Hor&{(g,—), Let W

be a right }f-module. Define a map

~

fo 8 W Ho%(i W)
by gw(.w)(r) = w.y() For we W, v e§ .

Set IW = (im jw).((;, . IW is ag-—module. Let Wi,W, € Mod-f/and let
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Y € Hom (W,,W,). Define, for f e IW, ¢ Homj;(g,wl)
(TYI(E) =¥ o £

n
f may be written as f = }: jw (w.).r. for suitable w, € W and r, ¢ g :
soW it i 3l
i=1,...,n, and calculation shows that
n
I = Y3 W Tw.
(TY)(£) izlng(u(win.ri e Iw,

and that I¥ is ag ~homomorphism, Thus
Iy € Hon}(fwl ,IW,)
and T : Mod-Jf~ Mod~g’, is a functor.
Define j to be :j\w with codomain restricted to be RIW, and define
ky RIW - W by
kw(f) = £(1)
for £ € RIW cHom (g,W).
H
It is routine to verify that jw and kw are natural in W, and that
W jW = 1w, so that jw is monic and kw is epi.
Define a map &fw H | X(? > Hon}q(g,w) by
5w(w,g)(s) = woy(gs) forw €W, and g,s Eg .
It is easy to check that (BW is bilinear and that for h e K&
5W(w.h,g) = <$w(w,hg)

so ¢.w. induces a map

given by
¢w(w e g)(s) = woy(gs).



139,
It is easy to check that ¢w iszag—honmmorphism and natural in W,
We claim that the natural transformation ¢ satisfies condition (4) with

respect to the double adjoint situation

(Mod—]l,Mod—g ,R,—@;tg, i,Horr};i(g,—), e)

(where i and e are defined below), and so induces an injective weak

double adjoint to R, by theorem (A,3).

After verifying this claim, we will show that the injective weak

double adjoint I induced by ¢ is, in fact, the functor I defined above,
"The unit i, : W > W ® is given b
iw(w) =w®l for welW

and the counit e : Hom, (£,W) » W is given by
W Hd

ew(f) = £(1) for £ ¢ Hom g?,W).
Thus, for w € W,

(ew ° Ry ° iw)(w) = (ew ° R¢w)(w ® 1)

e (R (w @ 1))

(Rg, (v ® 131}

wey(1)

w.y(e(1))

w.l

W o
So condition (4) is satisfied.
By the proof of theorem (A.3), IW = im ¢w for W ¢ H. But, by
L
Iy

inspection of the definitions of ¢w and

im ¢, = im jw.d&
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N
SO IW = im ¢W = im j

& = Ty,
¢

W’

Thus the object functions of I and I coincide.

By lemma (A.2) and the proof of theorem (A.3), the morphism
function of I is uniquely determined by the fact that if W,,W, € Mod-Jf{

and ¥ ¢ Hom, (W,,W,), then Iy is the unique §>—homomorphism which makes
. J

{

the diagram below commute:

M, VW,
W, élff ity By il Horzxy(i,wl)

111!8; i 1Y J’ Hom(g,d,))

W, %M(’ ey W, e Honi‘((’ng)

vl
W, W,

where 11, is the natural projection onto im ¢w = IWi and Vy is the
i

W. i

3

natural inclusion of im ¢w into the codomain of ¢W , 1= 1,2,
i i

It is trivial to check that the diagram above actually does

commte with I in place of Iy, hence Iy = Iy Thus I = I,
Thus, by theorem (A.3), I is an injective weak double adjoint to R.

It is possible to calculate that jw and kw, as defined in this
present section, coincide with the maps jw and kw which arise from ¢w

in the proof of theorem (A.3).
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