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PREFACE

All the results proved in this thesis after chapter 3 are original

except where I have indicated otherwise in the text. It should be noted

that several of the results were inspired by papers of Nolan R. Wallach

[16], [17]. In particular, section (8.2) presents relevant parts of

Wallach‘s work, and interprets his work in terms of chapters 4 — 7,

while section (8.3) is a more precise and categorical description of

another part of Wallach's work. Section (8.4) is original, but section

(8.5) uses techniques developed by Hochschild and Mostow in their paper

[7] to obtain similar results to theirs. My construction in section

(8.5) is, unlike theirs, functorial and natural.

The material of chapter 3 and of sections (4.3), (u.fla), (4.5),

(H.6a) is probably well—known, but I have been unable to locate proofs

in the literature.

I wish to thank my supervisor, Doctor D.w. Barnes, for his guidance

. and for numerous suggestions about the presentation of the material in

this thesis. I also wish to thank Doctor James N. Ward for undertaking

the onerous task of reading early drafts of this thesis and suggesting

many improvements and corrections. Finally, I should like to thank

members of the Sydney Category Theory Group for their time and help in

clarifying several points for me.
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Chapter 0 — Introduction
 

Notation is explained in chapter 1. The symbol (m.n) refers to

the nth section of chapter m.

(0.1) Comparison of Induced Representations of Groups and Lie Algebras

In the theory of representations of finite groups, a construction

which often proves useful is that of the induced representation. Given

finite groups H S G, a field k, and a right kH-module M, one forms the

induced module M ®kaG and the goinduced module HomkH(kG,M), both of

which may be given the structure of right kG—modules in a natural way.

Some of the important properties of induced and coinduoed modules for

finite groups are:

(1) (Frobenius reciprocity isomorphisms) If M is a right kH—module

and N is a right kG—module, then

HomkGU’I ®kaG,N) 2 HomkH(M,N)

and

HomkG(N,HomkH(kG,M)) = HomkH(N,M);

(2) dimk(M ® HkG) = [G % H] .dimkM;
k

(3) M may be embedded in M ® kG, regarded as a kH—module, by a
kH

naturally split, natural kH—monomorphism;

(u) M ®kaG = HomkH(kG,M) as kG—modules.

These four properties of induced representations are among the

reasons why induced representations form a useful tool in the study

of finite groups and their representations.
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When we attempt a parallel construction for finite—dimensional

Lie algebras h S g over a field k and a right h—module W, difficulties

arise. The Lie—algebra analogue of the group algebra is the universal

enveloping algebra Ug of g (defined in section (1.2)). One can construct

the Ug—modules W ® Ug and HomUh(Ug,W) as before - details are given
Uh =

in chapter 3. The analogues of properties (1) and (3) above hold.

However the analogues of properties (2) and (4) above fail except

when W = (O) or g = g. This difficulty destroys most of the usefulness

of the constructions.

The aim of this thesis is to look for alternative constructions

and to determine what properties such alternative constructions may

possess.

(0.2) Suitable PrOperties for an Induced Module
 

The isomorphisms of property (1) of section (0.1) determine

M ®kaG and HomkH(kG,M) in an (essentially) unique way. The remarks

in the latter part of section (0.1) then show that we cannot expect

our alternative constructions to satisfy such isomorphism properties.

Let us denote by R the obvious restriction functor‘

R : Mod—g + Mod—h

,for Lie algebras h S g.

Bearing property (3) of section (0.1) in mind, we should like to

find, for every finite—dimensional right Uh—module W, a finite

Idimensional right Ug—module V and a Uh—monomorphism

3W : W~> RV.

Even this turns out to be impossible in general. We shall produce



two examples, in section (0.8), which demonstrate this fact.

Thus, instead, we shall try to associate with each (finite-

dimensional or infinite—dimensional) Uh—module W, a Ug~module V and a

Uh—monomorphism

jw : W+Rv.

Later, we shall investigate conditions for finite-dimensionality.

We shall make three other demands on our ”induced module" V and

the associated injection jw:

(i) we require that V depend functorially on W; that is, we

suppose that there exists a functor I : Mod—h + Mod—g

and for each right h—module an h-monomorphism jW : W + RIW;

(ii) we require that jw be natural in W;

(iii) we make a requirement which ensures that IW is not

unnecessarily large; we require that

(1m 3w) .Ug = IW.

One of the central results of this thesis (theorem (5.8)) will be to

show that these three conditions imply an important part of the

analogue of the Frobenius reciprocity isomorphisms (see property (1)

of section (0.1)).

All of the remarks about jW may be dualized. If this is done,

we find ourselves discussing a natural Uh—epimorphism kW : RIW + W;

theorem (5.16) is a dual characterization of another part of the

Frobenius reciprocity isomorphisms.

In fact, theorem (5.16) implies that if the natural map

kw : RIW + W satisfies the condition that ker kW contains no nonzero



g—modules, then there is a natural injection

Hong(V,IW) + HomUh(RV,W)

for all g—modules V and h—modules W. Compare this with the second

Frobenius isomorphism of section (0.1), number (1).

The development, in chapters u, 5 and 6, of the ideas outlined

above, will be carried out for a pair of abstract categories g and 9

together with functors

R=§+§
and Izg+g.

It will sometimes be necessary to assume that g and E have

certain properties of Abelian categories. Further, in chapters 2 to 6,

the development will be carried out in a way converse to that outlined

above. That is, we shall start with properties li§e_the Frobenius

reciprocity isomoprhisms and show that they are equivalent to certain

properties of the maps jw and kw mentioned above.

In chapter 7, we shall discuss ways of constructing a functor I

and maps jW and kw in the particular case where g = Mod-h and g = Mod—g

and h S g are Lie algebras. The discussion in chapter 7 is, however,

still theoretical. We also prove, in this theoretical setting, a

simplicity criterion for induced modules, based on a result of Wallach

[16].

In chapter 8, we discuss models of the theory developed in

chapters u - 7, including constructions of Wallach [15,16] and a

modification of a construction of Hochschild and Mostow [7].

Chapter 9 contains a report on some results in Lie structure of

ringswhich arose as an offshoot of the work described above:— an
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important part of the theory of induced representations of groups is

Clifford's theory of induced representations of group extensions. We

prove analogues of some of Clifford's theorems for Lie ideal subrings

of rings. These results are also analogous to those of Zassenhaus

[17] and Barnes and Newell [1] for Lie algebras.

(0.3) Two Examples of Lie Algebras in which Induction is,in General,

Impossible

In this section we prove a claim, made in section (0.2), that

there exist Lie algebras h S g and finite—dimensional right h—modules

W which cannot be embedded in any finite-dimensional 9—module.

We shall use the following interesting theorem of Zassenhaus:

Theorem ([17], page 252): Let g be a Lie algebra over a field of

characteristic zero and let p be an ideal of g. Then every finite—

dimensional representation of g restricts to a nilpotent representa-~

tion of? [g,g] n rad(§).

We shall now produce a (finite—dimensional) Ug—module on which

[

”o
n ,g] n rad(§) does not act nilpotently.

Example A: Let g be a 2-dimensional Lie algebra over the field 6 of

complex numbers, with basis {e,f} and multiplication determined by the

relation [e,f] = e. Let Q be the subspace of g spanned by {e}. It is

easily verified that h is an ideal of g and that [g,g] n rad(p) = g.

Let W be a one—dimensional vector space over G. Determine a

Ub—module structure on W by choosing a non—zero w e W and setting
 

defined in chapter 9.

notation is explained in section (1.”).



for some chosen A e (’1.

If A # 0, then h = [g,g] n rad(h) does not act nilpotently on W.

p [3

Remark: Because of the importance of Cartan subalgebras, that is, self—

normalising nilpotent subalgebras, in the study of semisimple Lie

algebras, and since the subalgebra h of Example A above is ngt_a

Cartan subalgebra, we present an extra example with a Cartan subalgebra

in it.

Example B: Let g = sl(2,¢) — the Lie algebra of 2X2 matrices over C

with trace zero. It is well—known that g is simple and has a Cartan

subalgebra of dimension one - spanned by {h}, say.

Define a one—dimensional h—module W by choosing a non~zero

w e W and a non—integer A 6 ¢ and setting

w .h = Aw.

Then the following reSult (quoted from Humphreys [8], Corollary 7.2

page 33) shows that W cannot be embedded in a finite—dimensional

g—module.

Proposition: Let V be any finite~dimensional g—module (g = sl(2,¢)).

Then the eigenvalues of the Cartan subalgebra h on V are all integers.

D



Chapter 1 — Notation and Assumed Results
 

(1.0) Linearity.

Many of the results and constructions of this thesis require a

check that a map is linear. Without exception, these checks are

trivial. They will therefore be omitted without further comment.

(1.1) Categorical Conventions, Assumptions, and Definitions
 

The basic notions of category, object, morphism,domain and co—

domain, functor, natural transformation, left and right adjoint and

adjunction, isomorphism, (commutative) diagram, full and faithful

functors, and duality will be aSSumed to be known. The notation used

for these concepts is set out in section (1;u). See MacLane [12] for

definitions.

We shall also require the notion of preadditive category and

additive functor (see MacLane [12], pages 28—29): any functor between

preadditive categories will be tacitly assumed to be additive. Similar-

ly, if the morphism sets in a category carry a vector space structure,

all functors and natural transformations will be assumed to be linear.

Zero Object. All Categories will be assumed to contain a zero object,

that is, an object, denoted 0, such that, for every other object A in

the category, there is exactly one morphism O + A and exactly one

morphism A + 0. Both these morphisms will be denoted by the symbol 0.

Composition of Morphisms. Morphisms will be composed on the left. In
 

particular categories where the morphisms are functions, they will be

written on the left. Thus, if f : A + B and g : B + C are morphisms

in some category, then their composition is written gf : A + C, or



8;

simply gf, or sometimes, gof. In particular, functors are written and

composed on the left.

"Factoring Through". Suppose f : A + C and g : B + C are morphisms.

We say that f factors through B via g if there exists a morphism
 

h : A + B such that gh = f.

The expression "factors through" is also used in the dual situa—

tion: if f : A + C and h : A + B are morphisms,we say f factors through

B via h if there exists g : B + C such that gh : f.

The next dozen or so definitions follow Mitchellle], pages 5-18.

Monomorphism or monic. A morphism a : A + B is called a monomorphism
 

or a monic if, for all pairs f, g of morphisms with codomain A, 

af = ag implies f = g.

Epimorphism or epi. A morphism a z A + B is called an epimorphism or

an epi if, for all pairs f, g of morphisms with domain B, fa = ga

implies f = g.

Subobjects. If a : A' + A is a monic, we shall call (A‘,a) a subobject

of A, and shall refer to a as the (natural) inclusion of A‘ in A. If

it is clear from context which monic a : A' + A is being referred to,

we may refer to A' as a subobject of A.

Isomorphic subobjects. Suppose a1 : A1 + A and a2 : A2 + A are 

subobject inclusiOns. A1 and A2 are called isomorphic subobjects of A

if there is an isomorphism 1 : A1 + A2 such that azl = a1.

Quotient objects. If a : A + A' is epi, we shall refer to (A',a) (or

sometimes just A') as a quotient object of A, and shall refer to a as

the (natural) projectiop of A onto A'.



Isomorphic quotient objects_are defined in a manner dual to the
 

definition of isomorphic subobjects.

Image of a morphism. An image of a morphism f : A + B is defined to be.
 

a subobject (I,u) of B such that

(i) f factors through I via u; and

(ii) if (J,v) is any other subobject of B such that f factors

through (J,v), then there is a monic w : I + J such that

the following diagram commutes: I ~——-§ B

That is, vw = u.

Coimage. A coimage of a morphism is defined in a manner dual to the

definition of "image".

In general, a morphism f need have neither image nor coimage.

An image of f, if it exists, is denoted by im.f,similarly cohnf.

Kernel of a morphism. A kernel of a morphism f : A + B is a subobject
 

(K,i) of A such that

(i) fi = 0; and

(ii) if (J,l) is any subobject of A such that fl = 0, then there

is a unique monic m : J + K such that im = 1, that is, the

following diagram commutes: K —~i~a A ——£—a B

r??\fl

Cokernel. The definition of a cokernel is dual to that of a kernel.
 

In general, a morphism need have neither a kernel nor a cokernel.

If, in a category A, every morphism has a kernel (respectively, a

cokernel), we say that A has kernels (respectively, has cokernels).

The kernel of a morphism f, if there is one, is denoted by ker f,

similarly coker f.
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0'

E B 3 C of morphisms and objects in agxact Seguenge, A sequence A

category is called exact at B if im f and ker g exist, and are iso-

morphic subobjects of B.

Exact Category. A category g is called exact (cf Mitchell [13], page

18) if the following four conditions hold:

(i) Q has kernels and cokernels;

(ii) every monic in é is a kernel;

(iii) every epi in Q is a cokernel;

(iv) every morphism a :A + B in Q can be written as the

composition of a monic i and an epi p, so that a - ip;

that is, so that the following diagram commutes:

A ——2—+ B

P\fl
I

(1.2) Universal Enveloping Algebras
 

The definition and elementary properties of tensor products will

be assumed to be known (cf Curtis and Rainer [2] (12.1) — (12.6)).

The notation is explained in section (1.4).

Construction: Let g be a Lie algebra over a field k. We are going to

construct an associative algebra Ug called the universal enveloping
 

algebra of g.

First we form the tensor algebra Tg on the vector space underlying

g. Define Tog = k and T1+1 = Tlg ®k g for i 2 O and set
= m .

T = {B Tlg
i=0 ’

”
0
0

I! 7x
“

69 (I
Q 6 A 0Q ® D
D V 6

II

The tensor algebra is endowed with an associative k—algebra structure

in an obvious way - see Hilton and Stammbach [6] page 230 for details.
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Next, we form the two—sided ideal R of Tg generated by all

elements of the form x 8 y — y ® x — [x,y] (where X,y e g and [x,y]

denotes Lie multiplication in g.

Finally, we form the quotient algebra

Ug = Tg/R.

Definition: Suppose A is an associative k—algebra. We define a Lie

algebra LA as follows. Let the underlying vector space of LA be the

same as that of A.- Suppose - denotes the multiplication on A. We

define a Lie multiplication [,3 on LA by setting

[X,y] = x-y — y‘x for x,y e A = LA.

It can be checked that [,] is indeed a Lie multiplication, and that L

is a functor from the category of all associative k—algebras to the

category of all Lie algebras Over k.

Remarks on Universal Enveloping Algebras
 

(1) Ug is an associative k—algebra with 1. The map g + LUg defined

by g'+ g-rR E Tg/R = Ug (for g e g) is a (natural) monomorphism of Lie

algebras. That the map so defined is injective is an immediate

consequence of the Poincaré—Birkhoff—Witt theorem — see section (1.3).

(2) Despite the construction using tensor products and quotient by

an ideal, multiplication in Ug will usually be denoted either by - or

by juxtaposition.

(3) Ug will frequently be regarded as a (right and/or left) Ug—

module via the regular representation(s) (cf Curtis and Reiner [2];

page #8).



12.

(H) There is a natural isomorphism between the category of right

g—modules and the category of right Ug—modules which preserves the

underlying vector spaces and respects the natural embedding of g in

LUg, mentioned in (1) above.

Accordingly, we use the terms ”g—module" and "Ug—module" inter—

changeably.

All modules will be either right modules or bimodules.

(5) If h S g are Lie algebras, then there is an obvious embedding

Th + Tg. The theorem described in the next section (section (1.3))

allows us to deduce that this embedding Th + Tg induces an embedding

US + Ug. Thus, in particular, Ug may be regarded as a (left and/or

right) Uh—module, by restriction of the regular representations of Ug

on Ug.

(1.3) The Poincaré—Birkhoff—Witt Theorem.

Let g be a Lie algebra over k. We retain in this section the

notation of section (1.2) above. The structure of the universal

enveloping algebra Ug of g is elucidated by a theorem of Poincare,

Birkhoff and Witt. To state this, we must make a definition.

Definition — Standard Monomial. Let {ei : i 6 J} be a basis of g
 

over k, and let J be totally ordered. For each nondecreasing sequence

8 = (il""’il) of elements of J, we define an element e of Ug
s

by
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omitting the ®—signs and the ideal R, as explained in Remark (2) of

section (1.2). Any element of Ug so constructed is called a standard

monomial (with respect to the totally ordered basis {ei : i 6 J} of g.)

Note that the empty sequence S = ¢ is allowed, and that e¢ is the

identity element of Ug; it will be denoted by 1Ug'

Theorem (Poincaré—Birkhoff-Witt): The standard monomials, with respect
 

to any ordered basis of 9, form a basis for the underlying vector space

of Ug.

For a proof, see, for example; Humphreys [8], pages 93ff.

Corollary: Let h be a subalgebra of the Lie algebra g. Then Ug is

free as a (left EE_right) Uh-module.

Proof of corollary (taken from Hilton and Stammbach [6], page 232):

Let g = h e g as a vector space — that is, choose a vector space

complement § for h in g. Let H be a totally ordered basis of h, and

let X be a totally ordered basis of §; These orderings may be extended

to a total ordering of the basis H U X of g, such that if h e H and

X e X then h < x, in exactly one way.

With respect to this total ordering of H U X, the standard

monomials which involve only elements of X form a basis of Ug as left

Uh—module, by the Poincaré—Birkhoff—witt theorem. That is

'(Equation (A)) Ug 2 (£9 Uh . x
= XS a standard

monomial in X

S as left Uh—modules.

The orderings of H and X may also be extended to a total ordering

of H U X such that if h e H and x e X then h > x, again in exactly one

way. This time, we deduce from the Poincaré—Birkhoff-Witt theorem



that, as a right Uh—module,

(Equation (B)) U

ll
0
° 12

V

XS a standard

monomial in X

The corollary now follows from the facts that Uh .XS

to Uh as left Uhjmodule, and xé .Uh is isomorphic to Uh as

module.

Corollary: If h is a subalgebra of the Lie algebra g such

exists a subalgebra § of g such that‘g = h 9 § as a vector

c: on

n C.
‘

ID
“

e C: .3
“

I
x . U§ as a left Uh—module

m :3 o. C 0"
] n 9 pl 9 C 3C 3 . Uh as a right Uh-module.

Proof. Note that § . U§ may be thought of as the subspace

spanned by all standard monomials eS for which S # ¢.I The

now follows from the proof of the previous corollary.

(1.4) Notation

(a) Categorical Notation
 

Let A, g be categories. Then

(i) by A 6 Q we shall mean that A is an object of A;

14.

6;) x' .Uh ‘ as a right Uh—module.

is isomorphic

right Ug—

that there

space, then

of U3

corollary

B

(Let

A1,A2,A € é. The notations f : A1 + A2 and A1 i A2 will

suggest that f is a morphism with domain A1 and codomain

A2. This notation serves largely as a reminder about domains

and codomains.)

(ii) 1 and 1 denote,_respectively, the identity morphism on
A A

A and the identity functor g + Q;

(iii) é(A1,A2) means the set of all morphisms A1 + A2

(iv) §(A,f) denotes the induced map

in A;



(v)

(vi)

(vii)

(viii)

15,

§(A,A1)+£:\(A,A2)

defined by é(A,f)(¢) = f 0¢ for ¢ 6 é(A,A1);

é(f,A) denotes the induced map

§(A2,A) +§(A1,A)

defined by §(f,A)(¢) = d) o f for <1> a é(A2,A);

let Al‘,A2' 6.123 and choose 0L 6 §(A{,A1) and B e g(A2,A2').

Then §(a,8) denotes the induced map

§(A1,A2) + §(AI,A2')

defined by §(a,B)(¢) = B o¢ cm for ¢ 6 é(A1,A2).

let F, G be functors g + E. Then the notation n : P ¥ G

will mean that n is a natural transformation from F to G.

The A—component of a natural transformation n : F 4 G will

be denoted by “A : FA + GA, or just HA.

Gf will denote the image of f under the morphism function

of the functor G.

(b) Set-Theoretic Notation
 

An elementary knowledge of set theory will be assumed. Let G, H

and K be sets. Then a e G means that g is an element of G, and

(i)

(ii)

(iii)

(iv)

(v)

D

G x H denotes the Cartesian product of G and H;

let a : G + H be a function and suppose K is a subset of G:

then a K denotes the function a with domain restricted to be

K;

K G means K is a subset of G;In

K C G means K is a proper subset of G;

G U H means the union of G and H;

G n H means the intersection of G and H;
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(vi) the notations f : a'+ b and a-£ b indicate that f(a) =Ib;

(thesenotations are often convenient when defining a

particular function; for example, (iv) of section (a) above

could have been written as "é(A,f) is defined by

¢**f °¢ for ¢ 6 é(A,A1).”)

(vii) a function a : G + H is injective if for all pairs

g1,g2 e G, d(g1) = anZ) implies g1 = g2; a function

a : G + H is surjective if, for all h e H, there exists

g e G such that d(g) = h.

(c) Lie Algebra Notation
 

An elementary knowledge of Lie algebras will be assumed.

All Lie algebras will be over a field k unless otherwise speci—

fied. k is also used to denote a certain natural transformation in the

second half of the thesis, but, with this warning, no confusion should

arise. Let h and g be Lie algebras. Then

(i) if x,y 6 g, the (Lie) product of x and y will be written [x,y];

(ii) h S g means h is a subalgebra of g;

2 < g means h is a proper subalgebra of g;

h 3 g means h is a (Lie) ideal of g;

(iii) [g,g] denotes the derived subalgebra of g;

(iv) rad(b) denotes the Solvable radical of h;

(v) Aut(g) denotes the automorphism group of g;

(vi) Mod—g, Mod—Ug, Homg and Hom all denote the category of

right Ug—modules.

Us
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(d) Group-theoretic Notation
 

An elementary knowledge of group theory will be assumed. Let G

and H be groups and let k be a field. Then

|
/
\

(i) H G means H is a subgroup of G;

H < G means H is a proper subgroup of G;

I
A

H G means H is a normal subgroup of G;

(ii) Aut G means automorphism group of G;

(iii) kG means group algebra of G over k;

(iv) Mod—kG, HomkG both mean the category of all right kG—modules;

(v) [G % H] means index of H in G (assuming H S G).

(8) Notation for Associative Rings and Algebras

An elementary knowledge of associative rings and algebras will be

assumed. Let A, B be either associative rings with 1 or associative

algebras with 1 over a field k. Let x,y e B. Then

(i) 1B denotesthe identity element of B;

(ii) A S B means A is a subring (subalgebra) of B and 1B e A;

A < B means A is a proper subring (subalgebra) of B and

1 e A; .

(iii) A g B means A is an ideal of B;

B/A means quotient of B by A;

(iv) [x,y] denotes the commutator xy — yx of x and y;

(V) Mod—A and A—Mod denote, respectively, the categories of

right and left A—modules.

(f) Notation and Assumed ReSults for Module Theory and Vector Space

Theory

We shall assume a fair amount of module theory: say the relevant
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parts of Hersteins "Topics in Algebra" (Blaisdell, 196%), together with

some knowledge of products and coproducts, composition series, tensor

products,

and Rotman [15].

semisimplicity, which can be found in Curtis and Reiner [2],

All modules will be unitary.

Let A, C be right modules over a ring or algebra R, and let

B, B1, B2 be left R—modules. Let {sz A e A}

(left or right but not a mixture), and let T be an Abelian group.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

Let V s W be vector spaces over a field k.

be a family of R—modules

Then

HomR(A,C) means the set (Abelian group, or vector space) of

all R-homomorphisms from A to C;

A 8 B denotes tensor product of A and B over R;

EndR(A) denotes the endomorphism ring of A as R—module;

an R~balanced map ¢ : A X B + T means a bilinear map ¢,

Such that for all a e A, b e B and r e R, ¢(ar,b) = ¢(a,rb);

if Y S A, then Y .R denotes the R—submodule of A generated

by Y;

if X g R, then Annx(A) = {r e X : for all a e A, a .r = O};

{EBA 6A SA means direct sum of the modules SA;

11A.6A SA means direct product of the modules SA;

~®Raneans the functor A H A ®R B;

R B means the functor B 9 A 8R

A S C means A is a Submodule of C;

A ® B;

A < C means A is a proper submodule of C;

C/A denotes the quotient of C by A (assumes A S C);

A subquotient of C is a submodule of a quotient module of C.

Much of the above notation-

applies to vector spaces.

(xiii)

_(xiv)

dimkV and dim V denote the dimension of V over k;

the gedimensiog of V in W is defined to be dimk(W/V).
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Chapter 2 — Green's Axiomatic Approach to Induced Representations
 

(2.1) Axiomatization of Induction, Restriction and Conjugation
 

Let h S g be Lie algebras.

In section (0.3), we say that it is, in general, impossible to

embed each finite—dimensional h—module in a finite—dimensional g—

module. Furthermore, the pairs of Lie algebras used in examples A

and B of section (0.3) were by no means contrived or pathological.

In this chapter, therefore, we shall change our aim. We shall

discuss wellmbehaved ways of embedding h-modules in (not necessarily

finite—dimensional) g—modules. By "well—behaved ways”, we mean ways

that obey axioms, (which we shall specify in section (2.2)) and which

have the properties outlined in section (0.2), (such as functoriality

and naturality).1

Our model of behaviour comes from the theory of induced represen—

tations of finite groups. J.A. Green, in [3], showed that the opera—

tions of induction, restriction and conjugation among the character

rings of subgroups of a finite group can be characterized by a list of

"axioms" relating induction and restriction and conjugation.

(2.2) Green's Axiom Scheme
 

We shall describe Green's axiomatization for categories of

modules over finite groups rather than character rings, since we are
 

given a pair of Lie algebras h S g and a rule for embedding h—

modulcs in g-modules, we could pose the question: "how large is the

‘class of h—modules which are embedded in finite—dimensional g—modules

by the given rule?" We shall return to this question in chapters 7

and 8 (mainly section (8.2), parts (ix) and (x)).
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interested in modules for Lie algebras.

Let G be a finite group and k a field. Let K and H be subgroups

of G. If K is a subgroup of H, we define an induction functor

IH : Mod-kK + Mod—kH

K

by

liiM = M ®. kH for M e Mod—kK.

K KK

Secondly, we define a restriction functor

H
RK : Mod—kH + Mod—kK

by

H
RKDJ = N

as a vector space, but with algebra of operations restricted to be kK,

for N e Mod-kK.

Finally, we define, for a e Aut G and M e Mod—kK, a conjugation

functor

c : Mod-kK + Mod—kK“
K,a

by demanding that the underlying vector space of CK GM be the same as

5

that of M, and defining the Ka—module product * on C

—1

m e t = m .ta

where m 6 CF aM’ t e K0c and . denotes the module product in M.

\9

We shall use CK g to denote the conjugation functor determined

9

by the subgroup K and the inner automorphism l'+ gwllg (l e G) of G.

We can now state Green's 9 axioms relating the functors I, R,

and C.

(1) Transitivity: 1K 2 identity functor and, if K S H S L, then
K

L H N ‘L

IH IK ‘ lK'
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R(2) Transitivity: RK identity functor and, if K S H S L, then
K

H L N L

RK RH RK'

(3) TranSiv1ty: CK,a = identity functor if a K = 1K and lf

a,8 e Aut G, then CKQ,BCK,Q 8 CK,aB'

(u) IHaC = c IH (for K s H and a e Aut G).
Kg K,a H,a K

H: H
_ <(5) RKaCH,a K, K (for K _ H and a 6 Ant G).

2

O 7
U

(6) Let T be a transversal of (H,K)~double cosets in G. (H,K S G).

Then

C
G G 5 X K Hg

6 HgnK H,g '

T

Rx ‘H IHgnK R
g T

(This is referred to as the Mackey axiom. Cf. Huppert [9],

page 553.)

H ~ H H g H
(7) HomkH(IK M,N) Hoka(M, RK N) and HomkH(N,IKIfi) Hoka(RK}J,M)

for N € Mod—kH and M E Mod-kK.

This result is known as Frobenius reciprocity, or Nakayama's

lemma (cf. Huppert [9], page 556). It may also be expressed by

H
saying that IH K'K is a simultaneous left and right adjoint for R

(8) If A,B e Mod—kK, and a 6 Ant G, then

CK,a(A ®kB) = CK,GA ®k CK’aB.

(9) If A,B e Mod—kH and K S H, then

H N H H
RK(A_®k B) — RKA 8k RKB.

We add another property of interest: the "cohomological axiom”:

if A e Mod—kK, and K S H, then

. H H _ , .
dimk RK IK A — [H.KJdlmkA.

Finally, we note a fact that seems to have no counterpart in
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Green‘s considerations:

if K S H and atzAut G, then

.H H .
IK’ RK and CK,a are faithful functors.

(2.3) Axioms for Induction—Restriction—Conjugation in Lie Algebras

Let h S g be Lie algebras over a field k, and let V e Mod—g.

Definition: We define a functor

g
RE Mod—g + Mod—h

by

gv _ underlying vector space of V with

Rh — operators restricted to Uh

E _ _ .
R; will be called a restriction functor, and often abbreviated to R.

Definition: We define the conjugation functor

c a : Mod—h + Mod—ha

II
I)
”

(a e Aut g) on the module w e Mod—h by

. . a
underlying vector space of W With Q ~

module multiplication * given by '
_ l a :Ch,aW — w n h w .h

_ where w e W, h e h and "." is the
h-module multiplication for W.

E
If 15 is an arbitrary functor system

= g
Ih Mod—h + Mod—g (h S g)

then it makes sense to ask if Green's axioms, (except (6), and modified

and c (h 3
0L :

where necessary), hold for the functors I

H
U
G

9 Q

II
D‘

”
0
Q

I
I
D
'
W
H
U
Q

It is easy to check that all the axioms which involve only R

and C a functors do in fact hold, so that interest centres on the
5“

:
3
"
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remaining axioms, viz. (1), (H) and (7).

It turns out that (1) and (M) are implied by (7): this will be

proved in chapter 3 (results (3.8), (3.9)).

Thus we shall devote most of the rest of this thesis to a study

of axiom (7) and weakened forms of it.
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Chapter 3 ~ Preliminary Study of W69 Ug and HomUh(Ug,W)
U12 _

(3.1) Module Structure m1ifl®nh9g and Hom (Ug,W)uh.

Let Q S g be Lie algebras over a field k and let W be a right

h—module.

Ug by regarding Ug as a leftWe can construct a vector space WiBUh

Ug—module. We shall define a right Ug-module structure on WébuhUg.

For w e W, u e Ug and g e Ug, we set

(w 8 u).g = w ® (ug).

This uniquely determines a Ug~module product on webUhUg.

We can also construct a vector space Homuh(Ug,W) by regarding

Ug as a right Uh—module.

We shall define a right Ug—module structure on HomUh(Ug,W). For

f 6 HomUh(Ug,W), u c Ug and g e Ug, we define fg e HomUh(Ug,W) by

fg(u) = f(gu).

This pairing (f,g) W fg is a Ug—module multiplication on HomUh(Ug,W).

(3.2) The embedding of W h1¥1® Ug and a dual map.0;): ‘

Lemma A: Let E S g be Lie algebras and let W be a Ug—module. Then the

map i W tw: Ug defined by’ QW UB

lw(W) = w ® 1Ug for w e W

is an embedding of Ug—modules.

Proof: We use equation (A) of section (1.3) of this thesis: this

equation tells us that, as left Uh—modules,

= E£>U§,x
xeX

U

“
0
Q
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where X is a certain set of "standard monomials" containing the identity

monomial 1U . Thus

Ug a U2 $ T

as left Uh-modules, where T = {E} Uh.x.
’ xeX\{1 }

Ug
Since W ®LH1— preserves direct:sums (see Curtis and Reiner [2]

(12.12)), it follows that, as vector spaces

we =W® Uh$W® T.
Uh UhII

OQUhU

It is easy to see that the direct sum injection from the left

hand summand in the isomorphism above is given by w ® hi+ w ® E(h), where

8 : Uh + Ug is the natural injection of enveloping algebras. Further,

by (12.1M) of Curtis and Reiner [2], the map w-+ w 8 1 is an iso«
_ Uh

morphism of vector spaces (even of thmodules) from W.to WébUhUh.

Composing these two maps, we see that the map iw : W-+¥J®UhUg,

defined in the statement of this lemma, is injective. It is easy to

check that iw is a Uh—homomorphism. D

Lemma B: Let h S g be Lie algebras and let W be a right Ug—module.

The map qw : HomUE(U§,W) + W defined by qw(f) = f(lU ) for

”
0
3

f 6 HomUh(Ug,W) is an epimorphism 0f Uh—modules.

Proof: First we prove that qW is a Uh-homomorphism. Let h e Uh and

f E HomUh(U§,W), then

I H
1

A H vqw(fh) —

).h since f 6 HomUh(U§,W)

I

,
Q

2-
: A "
h
V
”

3
"
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so k is indeed a Uh—homomorphism.

It now remains to prove surjectivity. That is, we must exhibit,

-vx ' ‘L ' \I :fol each w e W, a map fw 6 HomUQ(U§,W) s1ch that kw(fwz fw(1Ug) w.

We shall use equation (B) of section (1.3) of this thesis: this

tells us that, as right Uh-modules,

Ug 3 (£5 x.Uh
= xeX _

where X is a certain set of "standard monomials", containing the empty

monomial 1 .
Us

Now, given w 6 W, we define a linear map

fsz§+W

O .
by setting (for x e X, h e Uh), fw(x.h) 2 1f X # 1U; .

1. . :1k h if x U

u
m

‘ 1 F :Certainly ”w(1Ug) w.

By the defining property of a direct sum, this fw extends

uniquely to a vector space homomorphism Ug +-W‘ Suppose h,h e Uhg

and x e X; then

f ((x.h)h)
w

fw(x.(hh))

0 if x # 1

w.(hh) if x =

0 if X i 1

(wh).h if X =

(fw(x.h)).h.

Thus fw isra Uh—homomorphism. . U

The remainder of this chapter is devoted to proving that,

unless W = (0) or h = g,?J® Ug and Hom1h(Ug,W) are infinite—dimensional;b L



27.

that axioms (1) and (U).of chapter 2 hold for the functors —® Ug and

U2
Hom (Ug,—); and that —®Uh U; and HomUh(U§,—) are respectively the left

Uh

and right adjoints to the restriction functor R : Mod—g + Mod-h.

The proofs are straightforward but tedious.

(3.3) Proposition: If h < g are Lie algebras over a field k, and W is

a nonzero finite—dimensional right h—module, then dimkHomUh(Ug,W) : m.

Proof: By formula (B), page 14 section (1.3) above, we can write

U5 2 QB X.U}:1

x€X

as vector spaces where X is a certain set of "standard monomials",

noting as well that the set X is infinite since E < g.

Thus, as vector spaces,

Hom (Ug,W) = Hom {$9 x.Uh,w

U9 : U2 X€X —

l
2

'T_r HomUh(X.Uh,w)

xeX =

since HomUF(—,W) turns sums into products, and for each x e X
l

HomUh(x.Uh,W) = W as vector spaces, under the map f H f(x)

(f E HomUb(x.U§,W). Thus unless dimkW = 0,

dimkHomU§(U§,w) = dim [12$ W]

= w since h < g. . D

(3.H) Proposition: If h < g are Lie algebras over a field k, and W

is a non—zero right h—module, then

dikaW ® Ug) = w.
Uh :

Proof: By formula(AL page 13, section (1.3) of this thesis, we can
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write

.X

”
D
"Ug=®u

" XEX

where X is an infinite of "standard monomials". Since W 8 —
Uh

preserves direct sums, we can deduce the following vector space

isomorphism:

Also, W ®U Uh.x = W as vector spaces. Hence

II
D‘

dimk(W ®UhU§) = E dim W
= xeX

= w since X is infinite and dim W # O.

D

(3.52_Theorem: HomUh(Ug,-) is a right adjoint to the restriction

functor.

That is, if h S g are Lie algebras, W e Mod—h, V e Mod—g and if

R : Mod—g +Mod—h is the restriction functor, then there is an iso-

morphism

1 R )Hong(V, HomUhCU§,W)) + HomU§(.V,W

which is natural in V and W.

Proof: Define the map

JVW : Hong(V, HomU§(U§,W)) + HomUb(RV,W)

by, for ¢ 6 Hong(V, HomU§(U§,W)) and v 6 RV,

va(¢)(v) = (¢(v))(1ug).

Thus va(¢) is a map RV + W.'

We must Show (1) JVW(¢) is a Uh-homomorphism;

(2) va is injective;
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(3) va ls surjective;

and (4) J is natural in V and W.

(1) va(¢) is a Uh—homomorphism.
 

Let v 6 RV and h 6 U9. Then

va(¢)(v.h) (¢(V‘h)(1Ug)

¢(V)h(1Ug) since ¢ is a Uh—homomorphism

¢(v)(h.1 )
US

¢(V)(1Ug.h)I!

((¢(v))?1u )).h since ¢<v) is a m}-
g homomoEphism

((va(¢))(v)).h.

(2) Injectivity of va.

If va(¢) = 0, then for all v 6 RV,

0 = (va(¢))(v) = (¢(v))(3Ug).

Thus, fer all x e Ug,

(¢(v))(x) H <<q>(v))x)(1U )

v
”
(
I
Q

= ($(‘v.x))(1Ug since ¢ is Ug—homomorphism

= 0 since VX 6 RV.

That is, for all v 6 RV, ¢(V) = 0.

ll 0That is, ¢

(3) Surjectivity of J
VW'

  

. I“For each ¢ 6 HomUh(RV,W), we must find a ¢ 6 Hong(V, HomUh(J§,W))

such that va(¢) = w.

Given W, we define ¢ : V + Hom (Ug,w) byug

($(V))(u) = W(v.u) (for v c V, u e Ug).
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We must check that (a) ¢(v) is an h-homomorphism and that (b) ¢ is a

g—homomorphism.

(a) Let u 6 U5, h e Uh. Then

(¢(V))(u.h) = W(v.uh)

= (W(v.u)).h since ¢ is an h—homomorphism

U ((¢(v))(u)).h.

(b) If v e V, x,u E Ug, then

-(¢(v.x))(u) = vau)

= <¢(v))(xu)

= (¢(v))x(u)

¢(v.x) = M)".

Thus is a well~defined map in Hong(V’ HomUh(Ug,W)), and, for

v 6 RV

.(JVW(¢))(V) = (¢(V))(1U§)

= MV'1U5)

= WV), _

so J (¢) = w , as required.
VW

(u) va is natural in V and w.

 

(a) Naturality in V. Let f : V2 + V1 be a g-homomorphism between

V1,V2 e Mod-g.‘ We must Show that the following diagram commutes

for all W e Mod—h:

J
v w

Hom (v1, HomUh(U§,W)) ———1—-> HomUh(RV1,W)

U5

7Homug(f, HomUE(U§,h)) HomU§(Rf,W)

— va '
HomUp(V2, HomUh(U§,W)) ~—«¥L—§ HomUh(RV2:W)

3
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Suppose ¢ 6 Hong(V1, Homub(U§,W)). Then for v 6 RVZ,

[HomUE(Rf,W)(JV1w(¢))](v) = (¢(f(v)))(1ug)

while [JV2W(Hong(f’ HomUh(U§’W))(¢))](V) : (¢(f(V)))(1Ug)

so the diagram commutes.

(b) gggality in w. Let V e Mod-g, le‘t wnw2 e Mod—l; and let

g : W1 + W2 be an b—homomorphism. We must show that the following

diagram commutes:

Jvw1 '
Hong(V, HomUh(U§,Wl)) _._____§ HomU§(RV,W1)

Hong(V, Hom (Ug,g)) Hong(RV,g)U12:
J
VW '

Hong(V, HomUb(U§,W2)) ——~—»l.§ Homuh(RV,W2)

Suppose ¢ 6 Hong(V, HomUhCUg,W1)). Note that, for v e V

[Hom(V, Hom(Ug,g))(¢)](v) = g 0 ¢(v).

Thus, for V e V, va2(Hom(V, Hom(U§,g))(¢))(v) : (g o ¢(V))(1U§)

while on the other hand, for v a V,

(valwnm = ¢(v)(1ug)

SO
(Hom (RV,g)(JVW1(¢)))(v) g((¢(v))(1ug))

(g o ¢(v))(iUg)

so the diagram commutes.

This completes the proof of theorem (3.5). U

 

(3.6) Theorem: — ®UhUg is a left adjoint to the restriction functor.
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That is, if h S g are Lie al ebras, V e Mod~g and W e Mod—h, then
: g :

there is an isomorphism

. ® . 1va . Hong(W UhU§,V) + HomUh(W,RV)

which is natural in W and V.

Ug(
Proof: We define the map va as follows: for ¢ 6 Hom Ug,V),®w Uh

w 6 w, set

Ug).

Clearly va(¢) is a linear map W + RV; we must show

(va(¢))(w) = ¢(w ® 1

(1) KWV(¢) is an h—homomorphism;

(2) KWV is injective;

(3) KWV is surjective;

and (4) va is natural in W and V.

 

(1) va(¢) is an g—homomorphism.

If w 6 W and h 6 DE, then

f :(KWV\¢))(w.h) ¢(wh ® 1Ug)

= ¢(w ® h)

= ¢(w ® 1Ug)'h since ¢ is a g~homomorphism

= ((va(¢))(w)).n .

(2) Y is injective.
‘wv
  

Suppose va(¢) = 0. That is, for w E W

O = (va(¢))(w) = ¢(w ® lug).

Since ¢ is a g—homomorphism, this implies that for all x e Ug, w e W

0 = ¢(w ® 1Ug)‘x = ¢(w ® x).

So ¢ = 05 hence Kw is injective.
V
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is surjective.

Suppose W e HomUh(W,RV). We want to find a map ¢ 6 Hom (VJ® V)I

Ug Uth’

such that KWV(¢) = w.

We construct such a map using the definition of the tensor product

PJ®UhUg (cf. Curtis and Reiner [2] section (12.1)—(12.6)). Consider the

map $ : W X Ug + V defined by

$(w,u) = W(w).u for w 6 W, u 6 Ug.

This is easily seen to be a Uh—balanced bilinear map, so $ factors

through 349 Ug by a unique, well~defined map

v2

given by ¢(w ® u) = W(w).u for w 6 W and u E Ug. We shall check that

¢ is a g—homomorphism. For g e Ug, u e Ug, and w e W,’

¢((w ® u).g) W(w).ug

(W(w).u).g

¢(w 8 u).g.

f‘ 7 "' ‘
00 ¢ 6 Hong(WC9UhU§,V). finally, for an] w e W

H ¢(w e 1Ug)

IIJ(w).1Ug

(wanm)

W(w).

So KW(¢) : 111.

f ' o

(u) \a) KWV 18 natural in W.

 

Let W1,W2 be Uh~modules, and let g : W2 + W1 be an gwhomomorphism.

We must show that for all V c Mod—g, the following diagram commutes:
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g ~ -— .—

Hom(g®Ug,V) Hom(g,RV)

. Kw v2 xHong(w2 ®UhU§’V) _____..> HomU§(W2,RV)

Let (P e Homgflfll ® UhUgfl). Then, for W1 6 W1

KW1V(¢)(W1) = ¢(w1 ® lUg)

so for W2 6 W2,

(Hom(g,RV)(Kw V(¢)))(w2) (Kw V(¢) o g)(w2)
1 1

¢(g(w2) ® lUg)

e W
2

while Hom(g ® Ug,V)(¢) = <1) 0 (g 8 Ug), so for w 2,

Kw2V(Hom(g a U§,V)(¢))(w2) ¢ 0 (g ® U§)(w2 a: 1Ug)

(1‘J(g(w2 ) 60 lUg)

so the diagram commutes as required.

(1)) KWV is natural in V.

Let V1, V2 be g—modules and let f : V1 + Vzbe a g—homomorphism.

We need to Show that for any h—module W, the following diagram commutes:
v

' KWV1
HongU'J ® UQUE‘Vl ) “W‘s—y HomuhU‘I,RV1 )

Hom(w ®UhUg,f) Hom(W,Rf)

va2
 

Ug U
Horn (W® hUgflz) a...) Homuh(W,RV2)

‘ Choose qb e Horn (W Ug V1). Then for w e W,u @013

H
O
Q

Kw\,1(¢)(w)= ¢(w 8 1),

so (Hom(W,Rf)(va ((453))(w) = f(<!>(w (-3 1)) while, for w G W and u E Ug,
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(Hom(W®UhUg,f)(¢))(w ® u) = f(¢(w ® u))

so for w e w,

KW (Hom(w ®U§Ug,f)(¢))(w) =

2

(Hom(w GBUEUg,f)(¢))(W ® 1Ug)

f(¢(w 6» lugD.

Thus the diagram commutes.

This completes the proof of theorem (3.6).

(3.7) Unsuitability of Frobenius Reciprocity as an Axiom.
 

By corollary 1, page 83 of MacLane [12], any two left adjoints

to a functor are naturally isomorphic, and dually for right adjoints.

Hence any left adjoint to the restriction functor R : Mod—g + Mod—h

(

”
D
"

< g Lie algebras) is naturally isomorphic to the functor —caUhUg,

and any right adjoint to R is naturally isomorphic to Homuh(Ug,—).

Thus, in both cases, such an adjoint functor takes finite—dimensional

nonzero h—modules to infinite dimensional g—modules (by propositions

(3.3) and (3.4)).

For this reason, we shall discontinue our study of Green's

Frobenius reciprocity axioms (axiom (7) of section (2.2)) at the end

of this chapter, and study, instead, modified forms of the Frobenius

reciprocity axioms. First, however, we shall indicate how either

Frobenius reciprocity axiom may be used to prove the Lie algebra

analogues of "axioms" (1) and (M) (of section (2.2)).

(3.8) Frobenius Reciprocity Implies the Transitivity of Induction
 

Let h S g S g be Lie algebras. Let us denote the functors
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—® Ug and —®Uh U:Ug —

by the symbols II and 12 reSpectively, and let

R2 : Mod—g + Mod—g

: Mod—g t'Mod—

m
3
”

be the obvious restriction functors.

Note that Rle : Mod-f + Mod—h coincides with the natural

restriction functor Mod—f + Mod—h.

Let W 6 Mod—h, U 6 Mod-g. Then, using the natural isomorphisms

of theorem (3.6), we have

HomU (IZIIW,U) z Hong(IIW,R2U)

”
H
1

l2 HomUh(W,R1R2U).

Hence 12I1 is a left adjoint to the natural restriction functor

R R :Mod—g + Mod—h But by theorem (3.6) of this thesis, the functor

-®UhU§ is another left adjoint to Rle' Hence, by MacLane [12] p.83

Corollary 1, IZI1 is naturally isomorphic to —®lflp§. Hence the fact

that the induction functors I1, 12 are left adjoints implies transitivity

of induction. D

Also — ® Uh is naturally isomorphic to the identity functorg
uh _

(see Curtis and Reiner [2] (12.14) , or use (3.6) of this thesis

together with the obvious fact that the identity functor is self-

adjoint).

Similarly axiom (1), of section (2.2), follows from the right

adjointness part of the Frobenius reciprocity axiom.
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(3.9) Frobenius Reciprocity Implies that Conjugation Commutes with

Induction.

Let h S g S f be Lie algebras, and let a e Aut f. Let C ,
had

Cg a be conjugation functors as defined in section (2.3):
S

c - Mod—h + Mod—h“
1:3,a' : :

‘ 0!.
C : Mod—g Mod—g
8:“ = :

g g“ =
Let Rg, Rig be restriction functors as defined in section (2.3):

= = g

R% Mod—g + Mod—h

é”
Rha Mod—g9 + Mod-ha.

{3 = a“
Let I— : M d—h+ Mod——g and I~u : Mod—ha 4 Mod—g“ be left adjoints to

g = gm =
R5 and Rim respectively.

We shall show that Cg,alh = IQG Ch,a'

We shall use the eaSy results that if W E Modfh, V e Mod—g, then

2.: E“
(A) HomUh(W,RgV) = HomUha(Cb,aW, Rgan,aV)

and

g“ g“
(B) HomU§“(I;“Cbfl,cg,av) = Hong(Cga,a_1IgaW,V)1

By (A), g g“
HomUh(W,RbV) = HomWa(cbflW ’Rhucg,aV)

éa - :

= HomUga(IhaChaw’ Cg,aV) (by left adjointness)
Ea :

= ong(Cga,a'1IhaCh,aw’V) by (B) above,

Ea : : —

left adjoint to R Hence, by the uniqueness

”
D
:

II
UQ

so CEau‘llhach,a is a

of left adjoints (MacLane [12] p. 83 Corollary 1),

g g”
I : Cg“,u'1Ih“Ch,a‘H

D
‘
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It follows that C I
g,“

”
3
‘

”
0
‘
0

“
S
H
”

'9
“‘1

2
”
D
"

Q

#§.10) Remarks

Thus axioms (1) and (4) of section (2.2) follow from axiom (7) of

section (2.2). The weakened forms of axiom (7) that we shall be study-~

ing from now on do not seem to imply axioms (1) and (4) (nor even

weakened forms of axioms (1) and (“)1). We shall not, however, study

axioms (1) and (4) any further in this thesis.
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Chapter u — Partial Adjoints
 

(4.1) Introduction to the Concept of a Partial Adjoint
 

Since the remarks in 3.7 show that we cannot hope to find a

finite—dimensional induced module functor which is either a left or

right adjoint to the restriction functor R : Mod—g + Mod—h where

h s g are Lie algebras, it is natural to ask if we can find a similar

but weaker property which an induction functor might satisfy.

Motivated by a paper of Wallach [17] (see Lemma 2.2), we consider

eight possible weakenings of left and right adjointness.

Let g and g be arbitrary categories and let I : H + g and

R : g + E be functors between them. Consider the following axioms:

(i) For all W e H, V e 9 there is a map

§(IW,V) + g(wgzv)

which is injective, and natural in W and V.

(ii) For all W e g, V e g, there is a map

g(1w,v) + g(w,Rv)

which is surjective, and natural in W and V.

(iii) For all W e g, V e g, there is a map

g(w,Rv) ~> g(Iw,v)

which is injective and natural in W and V.

(iv) For all W e g, V e 9: there is a map

g(w,Rv) —> g(Iw,v)

which is Eyrjective and natural in W and V.
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(i)' For all V e 9, W a g, there is a map

§(V,IW) + g(Rv,w)

which is injective and natural in V and W.

(ii)' For all V e 9, W e 5, there is a map

g(v,1w) + g(Rv,w)

which is Surjective and natural in V and W.

(This axiom has also been studied by Kainen in [11].)

(iii)'For all V e g, W e g, there is a map

g(Rv,w) + §(v,:w)

which is injective and natural in V and W.

(iv)‘ For all V e 9, W e E: there is a map

g(Rv,w) s g(v,1w)

which is surjective and natural in V and W.

 

Let h S g be Lie algebras. Put g = Mod—h and g = Mod—g and let

U
’ e the restriction functor. In the rest of this chapter, weR=§+§

shall obtain reSults which show that a functor I : E + g satisfying

any of axioms (ii), (ii)', (iii), (iii)' has a representation which

precludes it from being a finite—dimensional—induced—module functor.

Thereafter, we shall concentrate our attention on the axioms (i) and

(i)', (iv) and (iv)'.

We need four lemmas.

a
(4.3) Lemma: Suppose A + B + C is a sequence of modules and morphisms

in a category 9. Suppose that ker a, cokev B and im 8 exist in g and
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that im 8 = ker(coker 8). Finally, suppose that the induced sequence

§(A,V)M (__3(B,V) gm §(c,v)

is exact when V = A and when V = coker 8.

Then the original sequence must have been exact, too.

Proof: From exactness of §(A,A) §£Eiég §(B,A).§£Eiél §(C,A) it follows

that

a = g(a,A)(1A) e im(§(a,A))

= ker(§(B,A)),

so 0 = §(B,A)(a) = a 0 8. Thus im a g ker B. For the reverse

inequality, consider the exact sequence

9(B,coker B)§(a,coker B) §(B,Coker 8) ______."._§ §(C,coker B).§(A,coker B)

If k denotes the canonical map B + coker B, then

9(8, coker 8)(k) = k 08 = 0

so

k c ker 9(8, coker B) = im §(a, coker 8).

That is, there exists ¢ 6 §(A, coker B) such that

k = §(a, coker B)(¢) = ¢ 0 a.

_ ker(¢ 0 a)

¢
= ker k ;\\¥ 1

coker B

0Clearly ker a

= im 8 by hypothesis.

Thus ker a and im 8 are equivalent subobjects; that is, the original

sequence is exact. U

(4.”) Lemma; (Yoneda lemma). Let g be a category and let A, B e g.

Suppose that

n : §(A,~) 4 §(B,—)
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is a natural transformation. Then the morphism UA(1A) : B + A induces

n, in the sense that for all V e g,

n = gCnA(1A),V).
V

Proof: See MacLane [12], page 61. U

 

(4.4a) Corollary: ’ Let g and g be categories and let C,D : g + g be

functors. Suppose that

nWV : §(CW,V) + §(DW,V)

(W e E, V e g) is a natural transformation. Then the morphism

- ' + ‘ a - .

nW,CW(1CW) . DW CW induces n and 18 natural in W.

' ' . ” . ' - T. ' ' 1
Proof. By lemma (4 u), nW,CW(1CW) induces 1 Suppose W,W 6 g and

f 6 ¥(W,W‘). Then we know that the following diagram commutes:

nw' cw'
§(cw',cw') -——’-—~—> §(DW',CW')

§(Cf,CW') §(Df,CW‘)

nw cw'
§(cw,cw') _.._’__..i., (=3(DW,CW')

Hence, in particular,

1' = G v .

gonzo >(nw,5cw,(1cw.)) nw’cw,(:(Cf,Cw mm,»

That is _ _ _

nW',CW'(1CW') Df — nW,CW'(Cf)

: ' -\9(nw,cw(lcw)’cw )(CfJ

by lemma (4.4)

= Cf o nW,CW(1CW)

n (1 )

DW W3. cw

Thus n (1 ) is natural

Df Cf w,cw cw

in W.

DW'~—-———~—.——--—-; or

n ,) U(1
w' ,cw' cw
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a B

$9.5) Lemma: Suppose A + B + C is a sequence of modules and morphisms

in a category g. Suppose that ker B, coker a and im a exist in Q, and

that the induced sequence

§(V,A) 3932 (301,13) E9532 §(v,c)

is exact when V = A and when V = ker 8. Then the original sequence must

have been exact.

Proof: Let k denote the inclusion morphism ker B + B. Since
 

§(ker B,A) EQSELEEEQ §(ker B,B) ESSELEEEQ §(ker~B,C)

is exact, and k e ker(§(ker B ,B)), we may deduce that

k 6 im §(ker‘3,0),

hence there exists ¢ 6 §(ker B,A) such that

‘k otod).

Thus ker B = im k im(a 0 ¢) g im a.

Now we prove the reverse inequality. Since the sequence

§(A,A) 99:32 §(A,B) E9132 §(A,C)

is exact,

a = a o '1A = §(A,oc)(1A) 6 im gum)

I
I

and im §(A,a) ker §(A,B), hence

8°a=0.

That is, im a E ker 8. Thus im a = ker B as required. ‘ D

Efi;§) Lemma:r (Yoneda lemma). Let Q be a category and let A,B e g.

Suppose that

n ; §(—,A) e §(—,B)
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is a natural transformation. Then the morphism nA(1A) E §(A,B)

induces n in the sense that for all V E g

nv = g(v,nA(1A n.

Proof: Dual to that of (4.”). D

 

(H.6a) Corollary: Let g and E be categories and let C,D : E + Q be

functors. Suppose that for W E H, V e g,

n : §(v,cw) + §(V,Dw)
VW

are the components of a natural transformation n. Then the morphism

) e G(CW, DW) induces n and is natural in W.
nCW, C(1CW

Proof: By lemma (4.6), n (1) induces n. Thus it remains to prove
cw,w1cw

naturality. Suppose W,W' e g and f e §(W,W'). Then, by assumption,

the following diagram commutes:

ncw, w
G(CW, cw) ————————e g(cw,Dw)

§(CW,Cf) J §(cw,Df)

§(cw,cw')_7T_.~__+ G(CW, DW )
cw, w'

Hence, in particular,

9(Cw’Df)(ncw,w(1cw)) = ”cw,w'(§(cw’Cf)(1cw))

i.e ‘ o _ A
Df ”cw,w(1cw) — ncw’w,(Cf)

= ”cw',w'(1cw') ° CI

since ”cw' W'(1CW‘) induces ”cw W' by the first part of this corollary.

3

That is, the following diagram commutes:



 

n , (1 m)
Cw JY‘JLISL_} DW

f
Cf i Df

CW' ——*~~w~é DW'

ncw',w'(1cw')

that is, n (1 ) is natural in W. D
CW,W CW

We shall now apply these lemmas to obtain some consequences of

xioms (ii) and (iii), (ii)' and (iii)' (of section (H.1)) in theorems

(4.7), (4.8), (u.9) and (4.10) respectively.

(u.7) Theorem: Let g and g be categories and let I : E + g,

R : g + g be functors. Suppose that there exists a natural surjection

§(IW,V) + §(W,RV)

for each W 6 g and V E Q and that R has a left adjoint L : g 4* . Then

H
G
)

there is a split natural monomorphism 6W e §(LW,IW) for each W m

II
I]
:

Corollary (4.7a): Let h S g be Lie algebras and set E = Mod—
”
:
1
"

)

G = Mod—g. Let R : g t g be the restriction functor, and suppose that

there exists a functor I : E + g, and, for every W 6 E and V e g, a

linear surjection §(IW,V) + §(W,RV), natural in W and V.. Then there

is a natural Ug—monomorphism

VI®UhUg + IW for each W 6

H
z

In particular, dim IW = m unless W = {O} or b = g.

2390f of Corollarz: By (3.6), fichhUg is the left adjoint to R. So

theorem (4.7) applies, and guarantees the existence of the natural

monomorphism ¥I® + IW for each W e g. By proposition (3.H),U§U§
dim IW = w unless W = {O} or E = g. D
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Proof of theorem (u.7): By the hypotheses, there is, for every W 6 fl
 

and V 6 g, a natural subjective composition map

ewv : g(lw,Y:;:—~—:::a§(Lw,v)

§(W,RV)

where the righthand map 18 the adjunction. Set 6W = eW,IW(1IW)'

by Yoneda lemma, (4.4) and (4.ua), 6w

a e g(lw,v), ewv(a) = a 0 6w. Put v : Lw. Since 6w

there exists 6w 6 §(IW,LW) such that G

,Lw
W,LW(¢W) = 1LW' That is,

W W LW :

Hence 6W is a split, natural monomorphism.

(4.8)‘Theorem: Let g and E be categories and let R : g + 5 and

I : E + g be functors. Suppose that R has a left adjoint L : E +

and that there is a natural injection

g(w,Rv) + g(Iw,v)

for every W e g and V 6 §- Then, for each W e g, there is an epi—

morphism

6w e §(IW,Lw)

which is natural in W.

Proof: Let W e g, V 6 9. Let eWV denote the composition map

§(LW,V) : §(W,RV) + §(IW,V)

is natural in W and for any

Then

is surjective,

where the lefthand map is the adjunction map and the righthand map is

the natural injection whose existence was supposed in the statement of

the theorem. Then Bwv is injective and natural, and so for any
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a e §(LW,V), the following diagram commutes:

e
§(LW,LW)-——w-+ §(IW,LW)

§(Lw,a) §(Iw,a)

§(Lw,v) ———é——-——» §(IW,V)
wv '

. , :
Define 9w 6 9(IW,LH) by 6W ew,LW(1LW)‘ By corollary (H.4a)

ewm) = 0L 0 6w (='=)

and SW is natural in w. To see that 8w is epi, consider

SW C!

IW —-——+ LW=fif:V.

If a 0 6w = B 0 6w, then, by (*) above, it follows that

Swv(a) = 6 (8), and so, since Bwv is injective, we see a = 8. Thus
WV

W is epi. D

Corollary (H.8a): Let g = Mod~g and g = Mod—h where h S g are Lie

algebras. Let R : Q + E be the restriction functor and suppose that

there exists a functor I : g + g, and, for every W e g, V e g, a linear

injection §(W,RV) + §(IW,V) natural in W and V. Then, for all W e g

there is a Ug-epimorphism IW + Web Ug, natural in W. In particular02
dim IN = w unless W = {O} or Q = g.

Ug is the left adjoint to R. Applying (H.8) andProof: By (3.6),-—®Uh

proposition (3.4), we obtain the conclusions of the corollary. D

(4.9) Theorem: Let H and g be categories and let R : g + g, I : g + g

be functors. Suppose that R possesses a right adjoint F, and that for

all W e g and V e 9, there is a natural surjection

g(v,1w) + I(I~1V,W).
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Then for all W e B, there is a split natural epimorphism 6W : IW + FW.

Proof: Let W E H and V e Q. We have a natural surjective composition

map

J
r
I
Z

§(v,1w) + §(RV,W) §(v,rw)

which we shall denote by 6 Set 8 = 9 (1 ). Then by Yoneda
VW' W IW,W IW

lemma (4.6) and (4.6a), 6W is natural in W and for any a 6 §(V,IW),

evwm) = 6w .0 a.

Put V = PW. Since BFW W is surjective, there exists ¢W e §(FW,IW) such
, _

that BFW,W(¢W) = 1FW' That 18 6W 0 ¢W = 1FW' Thus 6W 18 a split epi~

morphism IW + FW. D

Corollary: Let h S g be Lie algebras, set E = Mod—h, g = Mod—g, and

let R : g + g be the restriction functors. Suppose that there is a

functor I : E + g and, for every W e g and V 6 g, a surjection

§(V,Iw) + §(Rv,w)

natural in V and W. Then, for every W e g there is a Ué—epimorphism

IW + HomUE(U§,W).

0

In particular, dim IW = w unless g = or W = {0}.

”
(
I
Q

,Proof: By (3.5), HomUh(Ug,—) is a right adjoint to R. Applying (4.9)

and proposition (3.3), we obtain the conclusion of the corollary. D

(4.10) Theorem} Let g and §_be categories. Let R : g 4‘5 and I : B + g

be functors, and suppose that for every W e H and V e 9 there is a natural

injection

g(Rv,w) + g(v,Iw).

If R possesses a right adjoint F : H a-g, then for every W e g there is a
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monomorphism 6 e §(FW,IW) natural in W.
W

Proof: Let W E E, V e Q. We have a natural, injective composition map

g(v,Fw) 3 g<Rv,w) + g(v,1w)

which we shall denote by GVW' Set SW = eFW,W(1FW)' By Yoneda lemma

((u.6) and (4.6a)),19w is natural in W and for every a 6 §(V,FW),

evwm) = 6w 0 on .

8
0,

Consider the following diagram: V:fi§3lfii——E9 Iw. If 9w 0 a = 6W 0 B ,

then the equation above tells us that 9Vw(a) = evw(8), so, Since GVW lS

injective, it follows that a = 8. Thus 9w is monic. ' U

Corollary (4.10a): Let h S g be Lie algebras and let H = Mod—h and

_).

g = Mod—g. Let R :

N
C
)

[
1
:
]
:

be the restriction functor and suppose that

for every W e g and V 6 9 there is a natural linear injection

E(RV,W) + §(V,Iw).

Then, for all W e 5 there is a Ug—monomorphism

Homuh(U§,W) + IW.

In particular, dim IN = w unless W = {O} or g = g.

Proof: By (3.5), Homuh(Ug,—) is the right adjoint to R“ Applying

theorem (4.10) and proposition (3.3), we obtain the conclusions of the

corollary. U

Remark: The corollaries to theorems (4.7) - (H.10) Show that functors

‘Satisfying any of axioms (ii), (iii), (ii)' or (iii)‘ are unsuitable for

producing finite—dimensional induced modules. We shall study only

axioms (i), (iv), (i)' and (iv)' in the rest of this thesis.
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Chapter 5 — The_lnjectivity Axioms
 

(5.1) This chapter studies consequences of the axioms (i) and (i)' of

section (H.l); these axioms are restated below for ease of reference.

They will dominate chapters 7 and 8.

Notation: Throughout this chapter; g and Q will be categories (with zero
 

objects) and

H

”I
I: +

H
G
)

x M
D +

u
m

will be functors.

v

The Left“ Injectivity Axiom (Axiom (i) of (4.1)) holds for I and R if,
 

for all W e g, all V e g, there exists a natural injection

ewv 2 g(Iw,v) +~§(w,RV).

The Right Injectivity Axiom ((i)‘ of (4.1)) holds for I and R if, for all
 

W e g and all V e 9, there exists a natural injection

nvw : §(V,Iw) + §(RV,W).

Remarks: In Chapter 8, we will produce functors I and R which satisfy

both the left and right injectivity axioms simultaneously. This is

something which we can't do with the left and right adjoints to the

restriction functor Mod—g + Mod—h (where h < E are Lie algebras). For

we showed, in the proofs of (3.3) and (3.4) that W 8 Ug is isomorphic

D
“

to a direct §Efl_of !XI copies of W as a vector space, while HomUh(Ug,W)

is isomorphic as a vector space to the direct product of IX'I copies of

W, where X and X' are infinite sets with the same cardinality. Thus,

if W # (O), HomUh(Ug,W) and W ®U Ug cannot be isomorphic as vector

HZ
)"

* ”left" since I resembles a left adjoint to R.
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spaces, let alone as g-modules.

In chapter 7, we shall study the special consequences of both left

and right injectivity axioms holding simultaneously. In this chapter,

we shall study these axioms individually.

'Convention; In sections (5.2) to (5.6) we shall suppose that the left

injectivity;axiom holds with respect to I and R.

   

(5.2) Definition of jW' Let W e g. Define a morphism

= 6 (1 )3w z w + RIW by jw w,1w Iw

noting that

ew,1w ‘ 9(1Walw) + g(w,RIW)_

Remark: MacLane [12] (page 81) would probably call jw the unit of the

(weakened) adjunction 6W Note that in the terminology of MacLaneV.

again, 6 has no counit, hence no "triangular identities" in the sense
WV

~of MacLane [12], page 83.

(5.3) Lemma:_ Let W 6 E, V e 9. Then jw induces eWV’ in the sense that

if ¢ eg(Iw,v) then

GWVOD) : Rd) 0 3w'

Eroof: Suppose ¢ € §(IW,V). Then certainly R¢ ° jw 6 5(W,RV), and we

have the following commutative naturality diagram:

0
g(Iw,Iw) ——H1£E> §(W,R1w)

§(Iw,¢) g(w,R¢)

‘ \ eWV -s(1w,v; -———-—~§ g(w,Rv)

Hence §(W,R¢)(6 )) = R¢ o jw, and 6 (G(IW,¢)(1IW)) = 9
WV =

\ ‘3WV<¢J aleW,Iw(1IW

equal, U
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(5,U) Lemma: j is a natural transformation from the identity functor

on g to the functor RI : g + g. That is, jw : W + RIW is natural in W,

fer w e 5.

Proof: Let W1,W2 e g and choose any w 6 §(W2,W1). By naturality of

ewv, the following diagram commutes for all V E g:

6W V
§(IW1,V) ~_*1.,,_9 g(w1,~Rv)

G(IWaV) E(WaRV)

6
g(Iw2,v) “—12% g(sz,Rv)

Putting V = 1W1 and chasing llwl around the diagram, we find that

§(¢,R1w1)(ewprlmlwln = §(¢,R1wl)(jw1)

I = jw1° 11)
while

ew2,le(§(w’leMing” = ew2,1w1(w)
2 R111; o sz'

Thus, by commutativity of the diagram above,

' ° W=RIIP°j3w] w25

that is, the diagram

j W,
W2 _-—-:-—§ RIWZ

w . RIw1 aw i
WI __—_ln~9 RIWI commutes. U

(5.5) Proposition: I is epi—preserving.

p.
..Proof: Let W1,W2 e i. We must show that if w e §(W1,W2) is epi, then

Iw is epi.

Suppose V e G and 7,5 6 §(IW2,V) are such that Y 0 1w = 6 0 1w
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It!)
 le > IW2 :%—3, v

Then, by functoriality of R, it follows that

RY 0 R111) = R6 o my,

hence RY ° RIW 0 j = R6 0 le 0 j .
W1 W1

Consider the following diagram:

12le £31., le2 —_:RI:; RV
R5

jwl T i jwz
l

w1 "—11—; w2

which commutes, by lemma (5.H).l From the commutativity of the diagram,

and the equation above it, we deduce that

01!).RY°j°1IJ=R6°

w2 2
3w

Since w is epi, it follows that RY ° jw = R8 9 jN . That is,
2 2

) = 8w2V(6), by lemma (5.3). Hence Y = 6 Since szv is injective.ewsz

80 Y 0 Iw = 5 ° Iw entails that Y = 6. That is, 1w is epi. U

$5.6) Proposition: Let g be a category with cokernels, let W e E and

V e g. If ¢ 6 §(IW,V) is a morphism with the property that R¢ factors

through coker jw via its natural projection, then ¢ = 0.

Proof; It is eaSy to check that R¢
 W--—-3 RIW

since E has Cokernels, R¢ factors \\\\i
— projection //RV

through coker 3W Vla the natural coker jw

projection only if R¢ o jw = 0.

But R¢ o jw = va(¢) and SWV is injective. Hence, if R¢ factors through

coker jw via the natural projection, then ¢ = O. D

Corollary: Let

”'
3‘ s g be Lie algebras. If H = Mod—h and g : Mod-g and

R : Mod—g + Modwh is the restriction functor, than for all W e Mod—h,
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IW = (im jw).U§.

 

PPOOf: Let V = IW/(im jw.Ug), and let ¢ be the canonical projection

IW + V.

Clearly R¢ factors through coker jw via the natural projection:

RIW-————9 (RIW/im jw) = coker jw

R¢

I

(RIW/im jw)
____~________————— 2 RIW/R(im jw.Ug).

(R(im jW.Ug)/im jw) _

Hence, by preposition (5.6), ¢ = 0. But ¢ is surjective, so

0 = im ¢ = IW/(im jw).U§.

Hence IW = (im jW)'UE' . U

(5.7) Proposition: Let g and g be categories and let R : g + g,

I : E + g be functors for which the left injectivity axiom holds. Then

I is faithful if and only if for each W e g the morphism jw defined in

section (5.2) is monic.

Progff (a) I faithful implies jw monic. Suppose that I is faithful,
 

let WNW2 e g, and let f,g e §(W1,W2) and consider the diagram

f jw,
W1:::3 w2 —m$ RIw2 .

g

We must show that if jwzo f = jwn° g, then f = g.
A

By the naturality of j (lemma (5.u)) and lemma (5.3),

j o f = RIf o ' = e (If)w2 3w1 W1,IW2

and jw2° g = R1“ ° jwl 2 Ow1.1w2(lg)

Hence jwz o f = 3W2 0 g implies 9W],Iw2(If) ‘ dW1,IWZ(Ig)
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Since 6W1,IW2 is injectlve, this implies If = Ig.

Since I is faithful, this implies f = g.

(b) jw monic implies I faithful. Suppose that jw is monic for
 

all W e 5. Let w1,w2 e g and choose f,g e §(W1,W2) such that If = Ig.

We must show that f = g.

Now If = Ig implies RIf = RIg

which implies RIg 0 j : ng c j
W1 w1

which implies szo f = jw2° g

by lemma (5.u), and, since jw is monic, this last equation implies
2

f = g. D

We sum up (5.2) — (5.4) and (5.6) in the next theorem.

(5.8) Main Theorem: Suppose that H and g are preadditive categories,

that I : g + g and R : g + g are functors, and that g has cokernels.

Then the left injectivity axiom of (5.1) is equivalent to the

following two conditions:

(a) there exists a natural transformation j : 1H 4 RI

and (b) for all W e H, V e g and all ¢ 5 §(IW,V), if Rm factors

through coker jw via the natural projection, then ¢ = 0.

Proof: (5.2) and (5.4) tell us that the left injectivity axiom implies

condition (a), and (5.6) tells us that the left injectivity aXiom implies

condition (b). Thus it remains to show that (a) and (b) tojether imply

the left injectivity axiom.

Assume that (a) and (b) hold. For all W e E and V e 9, we must

define a map

ewv : §(Iw,v) -> g(w,Rv).
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Suppose ¢ E §(IW,V). We define GWV(¢) = R¢ ° jw. It is easy to check

that ewv(¢) e §(W,RV).

Next we must Show that eWV is natural in W and V, and injective.

(1) Naturality of 9WV

Let W,W' e g and V,V' e 9. Choose any a e ECW‘,W) and any

3 e §(V,V'). We shall show that the following diagram commutes:

ewv
g(Iw,v) —-———+ g(w,Rv)

(Ia,8)i J g(a,RB)

§(IW',V‘)-§-——% B(W',RV')_ W‘V' -

H
G
)

That is, for all ¢ 6 §(IW,V), we want to show

.(d,RB)(6 (¢)) : 6w,v,(§(ld,8)(¢)).
WVll

That is, for all ¢ 6 §(IW,V), we want to show

Rae<R¢ojw>oa=mso<1>01cc>5jw

or R8 0 R¢ ° (jw 0 a) R8 0 R¢ ° (Rid ° jW‘)

using the functoriality of R.

But condition (a) tells us that

jw 0 a = RIG 0 jW"

and so, premultiplying both sides of this by R8 0 R¢, we obtain the

required commutativity condition.

(2) Injectivity. Let W E H, V e Q. We must show that for any

H¢ 6 §(IW,V), 6wv(¢) = 0 implies ¢ 0. That is, that R¢ 0 jw = 0

implies ¢ = 0. It is easy to check that since 5 has cokernels, R¢

factors through coker jw via the natural projection if R¢ o jw = 0.

Thus, using condition (b), we see that R¢ 0 jw = 0 implies ¢ = 0.
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Eemarh} Let h S g be Lie algebras. If E = Mod— , g = Mod—g and
 

R : Mod-g + Mod-h is the restriction functor, then condition (b) of

(5.8) can be replaced by:(b)' for all W 6 g, IW = (im jw).Ug.

Eroof: We must show that if W e Mod—h, V e Mod—g, and ¢ 6 Homg(IW,V),
 

then R¢ ° jw = 0 implies ¢ = 0 when (b)' holds.

Let w € W and u 6 U Then, since R¢ ° jw = O, ¢(jw(w)).u = 0.g.

But ¢ is a Ug—homomorphism, so ’

¢(jw(w).U) = 0.

That is ¢((im jw)'U§) = 0. But then, by (b)‘, ¢(IW) = O; that is,

¢ = O.

The converse - that the left injectivity axiom implies condition

(b)' — is proved in the corollary to Proposition (5.6). U

The next result is another in the series begun with theorems (4.7)

to (4.10). This time, the result gives us a representation of our

functor I z

"
:
1
:

+ g in terms of a (hypothetical) left adjoint to the

functor R : +

l
i
t
]
:

'
l
g

(5.9) Theorem; Let g and E be categories. Let R : g + g and I : E 9 g

be functors satisfying the left injectivity axiom of section (5.1) and

suppose that R has a left adjoint L : g + 9. Then, for each W e g there

exists an epimor hism u e §(LW,IW) which is natural in W.
. p w _

Erggf; Suppose W e g and V 6 §.. Then there is a natural, injective

composition map

(:3(IW,V)--—--} g(Lw,v)

/
W,RV)

l
2
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where the righthand map is the adjunction. Denote this composition map

by “WV’ and set “W = UW,IW(1IW)' By Yoneda lemma, (H.H) and (H.4a), for

any a e §(IW,V), uwv(a) = a o u and u is natural in W. Consider the
W W

._.._._) _._. O : O :diagram LW IW63V, where a ,8 e G(IW, V). a uw B 1%q%%uwv(a)

UWV(B), which implies a = 8 Since “WV 18 injective. Thus uw ls epi. U

(5.9a) Corollary: For W e g, denote the adjunction isomorphism by

KW IW : §(LW,IW) + E(W,RIW). If jw : W + RIW is the morphism defined in
, _ _

section (5.2), then

Kw,Iw(“w) : 3W'

Proof: Let w €13. In the notation of sections (5.2) and (5.9),

= u (1 ), and jw = 6 (1 ). Henceuw,Iw :Kw,1w1 ° ew,Iw’ uw w,1w Iw w,Iw Iw

u 1< ‘1(6 (1 Mw w,Iw w, Iw Iw

= Kw, Iw1(jw)

. 'KW,IW(UW) = 3w. U

(5.9b) Corollary: Let w e 5 and v e g, and let KWV denote the adjunction

§(LW,V) + §(W,RV). If W 6 E(W,RV) and there exists W 6 §(IW,V) such

.5. _ _1 __ o " .r-uthat GWV(W) - w, then va (W) — W uw. in other words, a morphism

-1
w e §(W,RV) lifts through 9 to a morphism W E §(IW,V) only if KWV ‘(W)

WV

factors through IW Via “W as shown in the commutative diagram below:

W LW HW
lw1(w)1/\\\\$ Iw
¢

RV

The converse is also true.

Proof: Suppose we are given W e E, V e 9, ¢ 6 §(W,RV) and W e §(TW,V)

'sunh that Gwv(fl) = w. The first thing we want to prove is that
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va(fl o uw) : w. Now,

R(W o uw) 0 KW,IW(1IW)’ by MacLane [12], Theorem 1,K(1T°1J)

WV W page 80,

= RN 0 Ruw ° KW,IW(1IW)’ by functoriality of R,

= Rn 0 KW,IW(UW)’ by an argument like that of (5.3),

= RF 0 by Corollary (5.9a),
3?],

= 6WV(W), by lemma (5.3),

w, by hypothesis.

To prove the converse, we must suppose that W e g, V e 9,

w e g(W,RV) and that W E §(IW,V) satisfies

0 - ’1()
1‘ uw’lhdv ‘1”

and show that Gwv(n) = w.

The argument to show this is an obvious reversal of the steps of

the proof of the first part of this corollary. U

The Right lnjectivity Axiom
 

The study of the right injectivity axiom is dual to that of the

left injectivity axiom. We carry out this dualization in detail.

Convention: In sections (5.10) to (5.14) we shall suppose that the

right injectivity axiom holds for the functors I and R. (See section

 

(5.1) for definition.)

(5.10) Definition of kw: Let W e g. We define a morphism
 

kW : RIW + W
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(1 ), noting thatby kw : an,w IW

n1w,w : §(Iw,1w) + g(RIw,w).

£§.11) Lemma: Let W e H, V e 9. Then kw induces nVW’ in the sense

that if ¢ 6 §(V,Iw) then

nvw(¢) = k 0 R¢.
W

Proof: Suppose W 5 H, V 6 Q and ¢ 6 §(V,IW).

Certainly kw ° R¢ e §(RV,W), and we have the following commutative

naturality diagram:

n
§(IW,IW) .3111; §(le,w)

§(¢,IW) §(R¢,w)

ng,Iw) ——7T——-> gCRv,w)
VW

Hence §(R¢,W)(n(w w(11w)) = kw ° R¢, on the one hand, is equal to
3

nvw(§(¢,lw)(llw)) = nvw(¢),.on the other hand. D

(5.12) Lemma: k is a natural transformation from the functor
  

RI : E + B to the identity functor on 5. That is, k is natural in W,
W

for W 6 3.

Proof: Let w1,w2 e g, V 6 g, and choose w e g(w1,w2). By the
 

naturality of n the following diagram commutes:
VW’

n .

wg(v,1w1) .__X.l9 §(RV,W1)

§(V,Iw) 5(RV,W)

§(V,IW2) ”7?——‘9 Q(RV,W2)
vw2

Put V = IWI and chase 1 around the diagram. We now findle
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‘ :Emmi’WmIWIMIUle» an1,w2(g(Iw1,Iw><1le)).

That is _
:1“?le ,w)(kwl) — anl awzmb)

or

w o k = k 0 RIw.
W1 W2

That is, the following diagram commutes:

kwRle—m—nh, w1

R111) i er
J,

RIw2-—7?-—5 wz so kw is natural in W. D
W2 .

(5.13) Proposition} I is monic—preserving.

Prooi; Suppose that W1,W2 6 g and w E §(W1,W2). We must show that if

w is monic then Iw is monic.

Suppose V 6'9 and y,6 e §(V,IW1) are such that

IW°Y=I¢°5=

Y
Vw—y—é le —I—‘P—> Iw2

6

Then, by functoriality of R, it follows that

R111) 0 Ry = R11!) 0 R6,

hence k 0 le o Ry = k 0 RI¢ 0 R6.
W2 W2

Consider the following diagram:

RY . Rnp
RV _.'—."*__, Rle-—-e~ le2

a
k k“1i . l w2

WI WZ

‘1)
By lemma (5.12), the righthand square commutes. Hence the last

equation implies
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o :10 c1P kwloRY 1,1 kw1 R6.

Since w is monic, this leads to '

k ° RY = k 0 R6
w1 w2 ,

and by lemma (5.11), this is the same as saying

n (6).(Y) vw
l

nvw1

Since nvw1 lS injective,

Thus Iw is monic.

(5.1M) Proggsition: Let g be a category with kernels, and let W e g

and V E g. If ¢ 6 §(V,IW) is a morphism with the property that R¢

factors through ker kw Via its natural inclusion, then ¢ 2 0.

Proof: Since g has kernels, R¢ R¢ kw
RV ——--) RIW -—-—-—'> W

factors through ker kw via the
inclusion

natural inclusion only if
ker kw

kw o R¢ = 0. But kw o R¢ = nvw(¢)

by lemma (5.11) and nVW is injective.

Hence, if R factors through ker kw via the natural inclusion,

then ¢ = O. D

br
-

“2
4-

.

= Mod—

ll
.

 

Corollgzlf Let h S g be Lie algebras. If , g = Mod—g, and

R : Mod-g +‘Mod—h is the restriction functor, then ker kw contains no

nonzero g—submodules of IW, for all W e Mod—h.

_Eroof: Let W G Mod-h, and let V be a Ug—submodule of IW, such that RV
 

is contained in ker k and let ¢ : V + IW be the natural inclusion.
w)

Then certainly R¢ factors through ker kw via the inclusion of ker kw



in RIW. Hence ¢ 0.

contains no nonzero g—modker kw

(5.15) Proposition:

functors for which the right injectivity axiom holds.

faithful if and only if for all W e g the morphisms kw :

defined in (5.10), are epi.

Proof: (a) I faithful implies

But ¢ is an inclusion map, so V

ules.

Let g and g be categories and

kw epi.
 

O.

T

RIW + w,

Suppose I is faithful, let W1,W2 e E, let f,g € §(W1,W2) and

consider the diagram

kw
Rle ———J+

f
W1 ::::3 w2

 

We must Show that if f o k = g o k , then f = g.
w1 W1

By naturality of k (lemma (5.12)) and lemma (5.11),

f o k = k 0 R15 = n , (If)
W1 W2 IW1,W2

gok =k oRIg:n, (lg).w1 w2 Iw1,w2

Thus f o kw1 = g o kw1 implies

n (If) = n. (lg)IW1,W2 1w1,w2

which leads to If = lg .

But then, since I is faithful,

f = g.

(b) kw epi implies I faithful.

Suppose kw is epi for all W e g. Let W1,W2 e E and choose

f,g c §(W1,W2) such that

If = Ig.

We must deduce that f = g.
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Now If = lg implies RIf = RIg

which implies k ° RIf = k ° RIg

w2 w2

which implies f ° kw1 = g 0 kwl

which implies f = g

since kw is epi. U

1

We sum up (5.10) — (5.12) and (5.14) in the next theorem.

(5.16) Main Theorem} Suppose that g and g are preadditive categories,

that I : B + g and R : g + g are functors, and that B has kernels.

Then the right injectivity axiom of (5.1) is equivalent to the

following two conditions:

(a) there exists a natural transformation k : RI 4 1 ;

and (b) for all w e H, V e g and ¢ 6 §(V,IW), if R¢ factors through

ker kW via the natural inclusion then ¢ = 02

Proof: (5.10) and (5.12) tell us that the right injectivity axiom
 

‘ implies condition (a), and (5.14) tells us that right injectivity axiom

implies condition (b).

Thus, it remains to shOw that conditions (a) and (b) together

imply the right injectivity axiom.

Assume that (a) and (b) hold. For all W e g and V E 9 we must

define a map

n §(V,Iw) + g(RV,w).
vw:

Suppose ¢ 6 §(V,IW).

We define nvw(¢) = kw o R¢.

(RV,W).
1

Clearly nvw(¢) e.

We must show that n is natural in V and W, and injective.
VW



(1) Waturalitino§_flvw.

Let W,W' e E: V,V' e g and choose a e §(W§W'), B e §(V',V). We

shall show that the following diagram commutes:

nvw§(V,IW)-—————% g(Rv,w)

g(s,1a) g(RB,a)

§(V',IW')————% §(RV',W')

nv'w'

We need to show that for all ¢ 6 §(V,IW)5

EflRBfiXnvwwn -_- nvvw.(§(6,10t)(¢)).

That is, we must Show, for ¢ 5 §(V,IW), that

a0(kwoR¢)oRB:kw'oR(Iao¢oB)

or a 0 kW 0 R¢ 0 R8 = k ' o RIG 0 R¢ 0 RB
W

using the functoriality of R.

But condition (a) tells us that

a o kw = kw, o RIa,

and so, ostmulti 1 inc b R 0 RB, we obtain the re uired commutativit'P P Y D Y q y

condition.

(2) Injectivity.

Let W e g and V e Q. We must show that for any ¢ 6 §(V,IW),

nvw(¢) = 0 implies ¢ = 0.

It is easy to check that, since g has kernels, R¢ factors through

ker kw via the natural inclusion if kw o R¢ = 0. Thus, using condition

(b), we see that kw o R¢ = 0 implies ¢ = O. U
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”
C
D

 

Remark: Let h S g be Lie algebras. If g = Mod—h, = Mod—g and

R : Mod—g + Mod—h is the restriction functor, then condition (b) of

(5.16) can be replaced by

(b)' for all W 6 g, ker kw contains no nonzero Ug—modules.

Proof: We must show that if W 6 Modwh, V 6 Mod—g and ¢ 6 Homg(V,IW),

then kw ° R¢ = 0 implies ¢ = 0 when (b)’ holds. Suppose (b)'_holds,

and kw ° R¢ = 0. Then, for all v 6 V, kw(¢(v)) = 0, so

im ¢ 5 ker kw.

But im ¢ is a Ug—submodule of IW. Thus, by assumption (b)', im ¢ : O,

i.e. ¢ = O.

The converse - that the right injectivity axiom implies condition

(b)' — was proved in the corollary to Proposition (5.1“). D

The next result is related to (4.7) — (H.10) and (5.9). It

allows us to represent our functop 1 : E + g in terms of a right adjoint

to R : g + v-
rt 1 (if such a right adjoint exists).

(5:17) Theorem: Let E and g be categories. Let R : E +'g and I : g + E

be functors satisfying the right injectivity axiom of sebtion (5.1) and

suppose that R has a right adjoint F : g + g. Then for each W e E,

there is a monic V e §(IW,FW) which is natural in W.
W

E3225; Let W e E and V e 9. Let va : §(V,FW) + §(RV,W) denote the

adjunction map, and let VVW denote the composite map which forms the

(top line of the following commutative diagram:

V
VI§(V,Iw) ‘m—j—a gum)

\ ~ flJ —1

nvw \ “/ vw
.V

§(RV,W)



In the diagram above, “vw is the map explained in (5.1). Thus va is

injective and natural in V and W. Set Vw = VIW W(1IW)' By Yoneda

lemma, ((4.6) and (4.6a)), V is natural in W and if a e G(V, IW), then

w

va(a) : vw ° “‘

a Vw

Consider the diagram V-_E—,IW -—~$ FW where a ,8 e G(V, IW).

VW 0 a = Vw 0 B ¢=>vvw(a) = vvw(a) which implies a = B Slnce va lS

injective. Thus Vw is monic.
D

In the next two corollaries and their proofs, we maintain the

notation of theorem (5.17) and its proof.

(5.17a) Corollary: For W e E, recall that

. , T

JIW,W . §(Iw,Fw) + g(RIw,h)

is the adjunction isomorphism.

If kw : RIW + W is the morphism defined in section (5.10), then

J1w, w<vw)_

Proof} Let W e E and V e 9. By definition,

 

va : va ° nvw’ and

Vw : VIw,w(11w)'

Thus’ vw : J1w,w (”Iw,w(11w))

—1 . . .

— JIW,W (kw) by def1n1t10n (5.10).

That is, k = J (V ).
U

w 1w,w w

(5.17b) Corollary: Let W e g and V e g. Let va: §(V,FW) + §(RV,W)

denote the adjunction map. If w e §(RV,W) and there exists W e §(V,IW)

such that nvw(n =w, then JW1(11)) = VW o W. In other words, a

morphism w e §(RV,W) lifts through nVW to a morphism W e §(V,IW) only
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if the morphism JVW_1(¢) factors through IW via Vw.

The converse is also true.

Proof: Suppose we are given
\\

PV v n

._1 X

w e g, v e 9, w e E(RV,W) WJ! va (w)l 26/ 1w

' w Lw w

and w e §(V,IW) such that

nvw(fi) = W. The first thing we want to prove is that JVW(\)w ° N) = W.

0 .

JIW,W(1IW) ° R(\)w N) by MacLane, [12] Theorem 1
Now va(vw ° W)

page 805

l
l

JIW,W(1IW) ° va 0 RW by functoriality of R,

J ,(v ) 0 RH by an argument like that of

1w,w w ,r
lemma (0.11)

= kw 0 RN by Corollary (5.17a)

l
l

nVW(fl) by lemma (5.11)

w by hypothesis.

To prove the converse, we must suppose that V c g, V e g, m e §(RV,W)

and that w e §(V,IW) satisfies vw o W = va-1(W), and show that

nvw(n) = w.

The argument to show this is an obvious reversal of the steps of the

proof of the first part of this corollary. U

Remarks: In chapter 7, we shall return to study the properties of

functors I : E + g and R : g + g which satisfy the right and left

injectivity axioms simultaneously.



69.

Chapter 6 — The Surjectivity Axioms
 

(6.1): Of the eight possible weak types of adjointness proposed in

section (H.1), we have now studied all but types (iv) and (iv)‘. This

~chapter is devoted to filling this gap.

We shall restate and rename axioms (iv) and (iv)' below for

convenience.

Notation: Throughout this chapter, g and 9 will be categories (with
 

zero objects) and

H

”
:
1
:

i

”
5
3

7
:
:

n
o at

”
a
:

will be functors.

The Left Surjectivity Axiom (axiom (iv) of section (4.1)) holds
 

for I and R if, for all W e 3, all V e g, there exists a natural sur~

jection

B ' §(w,Rv) + §(Iw,v).WV .

The Right Surjectivity Axiom (axiom (iv)' of section (u.1)) holds
 

for I and R if, for all W e g, all V c 9, there exists a natural sur—

jection

a ~ : g(Rv,w) + §(V,IW).

Convention: In sections (6.2) to (6.6), we shall suppose that the left
 

suriectiyity axiom holds with respect to I and R.

((6.2) Definition of bv: Let V-e Q. We define a morphism bV e G(IRV,V)
 

by

bv = BRV,V(1RV)’
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noting that

8 : §(RV,RV) + §(IRV,V).
RV,V

 

$9.3) Lemma: Let W e H, V 6 Q. Then bV induces BWV in the sense that,

if w 6 §(W,RV), then BWV(W) = bV 0 1w.

Proof: Let W 6 fl and V e g, and suppose w e §(W,RV). Then certainly
 

bV 0 1w 5 §(IW,V). By the naturality of BWV in W, the following diagram

commutes:

BRV V

g(Rv,RV) -———J_—a §(IRV,V)

§(w,RV) §(Iw,v)

§(w,Rv) T—A §(IW,V)

WV

We chase 1Rv around this diagram, and find:

H§(Iw,V)(B (1 ))
RV,V RV BWV(§(W’RV)(1RV))

that is, bv 0 1w BWV(W). U

(6.4) Lemma: b is a natural transformation IR 4 1G. That is, bV is
 

natural in V for V e g.

.C

Proof: Let W e g, V1,V2 e g and let ¢ 6 §(V1,V2). By the naturality oi
 

BWV in V, the following diagram commutes:

Bwv
§(w,Rv1) —————l—g §(IW,V1)

g(w,R¢) g(Iw,¢)

§(w,Rv2) __l.__lll_i §(IW,V2)
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We now put W = RV1 and chase 1RV around the resulting commutative diagram,
1

and find that:

§(1Rv1,¢)(BRV1,V1(1RV1)) = BRV1,V2(¥(RV13R¢)(1RV1)).

+ ' _Tha- 18, ¢ 0 bVI BRV1,V2(R¢)

bV ° IR¢ by lemma (6.3).
2

In other words, the following diagram commutes:

bV1va ..__L_, v1

IR¢J ¢
1 dz

1sz —b———> v2
V2

so bV is natural in V for V 6 g. ' D

(6.5) Proposition: Let W e g and V e g, and suppose ¢ 5 §(IW,V). Then

¢ factors through IRV via bV.

Proof: Let W 6 g, V e g, ¢ 6 §(IW,V). By the left surjectivity axiom,

there eXists w c @(W,RV) such that BWV(W) = ¢. But, by lemma (6.3),

BWV(¢) = bv 0 1w.

30 ¢ = bV-° IV,

i.e. the following diagram commutes:

IW'~———&—é V

/up / bv

IRV

so ¢ factors through IRV via bV. U
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'(§.6).Lemma: If R is full, then for all V,V' e g and 6 a §(IRV,V'),

there exists ¢ 6 §(V,V') such that 5 = ¢ 0 bv; that is, such that the

following diagram commutes:

6
IRV ——-¥V'

M
Proof: Let V,V' e g and 6 e §(IRV,V'). We have a surjective map

8 : gCRV,RV') + §(IRV,V'),RV,V'

hence there exists w e B(RV,RV') such that BRV V,(111) = 6. Since R is
_ 9

full,

R : §(V,v') + g(RV,RV')

is surjective, so there exists ¢ 6 §(V,V') such that

R¢:¢o

That is, BRV,V‘(R¢) = 6. But, by lemma (6.3),

BRV,V'(R¢) = bV' ° IR¢

: o 'r b¢ bV by naturalit3 of V

(lemma (6.4))

So 6 z ¢ 0 bv as claimed. U

Remark: Suppose h S g are Lie algebras. The natural restriction

functor R : Mod—g + Mod—h is not full.

(go?) Theorem: Let I : g + g be a full functor. Then the left sur—

jectivity axiom of (6.1) is equivalent to the following pair of

conditions:

(a) There is a natural transformation b : ZR ; 1G

and (b) For W e g and V a g, every morphism ¢ 6 g(1w:v) factors

through IRV via bV.
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2329:: (6.2) and (6.4) tell us that the left surjectivity axiom implies

condition (a), and (6.5) tells us that the left surjectivity axiom

implies condition (b). It remains to prove that conditions (a) and (b)

together imply the left surjectivity axiom, provided I is full.

Assume that (a) and (b) hold, and let W e g, V e Q. We must

define a map

8 : g(w,RV) + §(IW,V)
WV

Suppose w e §(W,RV). We define BWVCW) = bV 0 Iw. It is easy to check

that Bwv(w) e g(Iw,V).

Now we must show that BWV is natural in W and V, and surjective,

provided I is full.

' J:(1) Naturality oi BWV'

Let w,fi a g and v,v e g. Choose y e §(W,W) and 6 e g(V,V). We

need to show that the following diagram is commutative.

B
g(w,Rv)-————lflL———a §(IW,V)

g(y,R5) g(Iy,5)

I

B(W,RV)'—-—z;:rt-*9 §(IW,V)
‘ wv

That is, we must show that for all w c §(W,RV)

V§(IY,6)(BWVCW)) = Bwv(g(Y,R6)(W)).

That is, for all w e g(w,RV)

6 0 (bv ° IW) 0 IY = bV ° I(R6 o w o y)

or 5 o bv ° Iw ° IY = bV ° 1R5 ° Iw < IY,

Now condition (a) tells us that



6 ° bV = bv 0 IRS.

If we multiply on the right by Iw o Iv, we obtain the desired conclusion.

0 . . .
(2) ourjectiV1ty of BWV

Let W e g and V e g, and suppose I is full. Suppose ¢ 5 §(IW,V).

We must find a morphism w e §(W,RV) such that Bwv(¢) = ¢.

By condition (b), ¢ factorizes as ¢ = b 0 x for sone
V

X e §(IW,IRV): IW‘—-—§V

Since I is full, there x1, bV

exists w e g(W,RV) such IRV

that Iw = X.

Then BWVCW) = bV ° IW

= bV o X

= ¢ , as requiredo D

Next we pay a visit to the sequence of results begun with (H.7)—(H.10),

.(5.9) and (5.17).

$6.8)Theorem: Let I and R satisfy the left surjectivity axiom, and

suppose that R has a left adjoint L : g + g. Then, for all w e g, there

is a split monomorphism 8w 6 §(IW,LW) such that 8W is natural in W.

Proof: Suppose W e g, V e g, and let va : QCLW,V) + §(W,RV) denote

the adjunction isomorphism.

A

Let S emote the composition map

8
KWV"§(W,RV) ~—19L9 g(Iw,V).

WV d

 §(Lw,v)

A

is sur’ective since , is sur'ective8WV 3 Bwv 3 ‘

Hence, by Corollary (4.Ha), the morphism Bw e §(IW,LW) defined by
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8w : BW,LW(1LW)

A

is natural in W. Also, since 8W IW is surjective, there exists

3 -=‘

“W 6 §(LW,IW) such that

Bw,1w(”w) : 1Iw'

By (4.4a) and (u.u), this means

“ ° 8W = 1Iw‘

Thus SW is a split manic. U

Convention: In sections (6.9)«(6.13) we shall assume that the right

 

(6.9) Definition of av: Let V e G. We define a morphism av e §(V,IRV)
 

by

C ),
av = O‘v,RV 1RV

noting that

- _ ‘7 -‘r- TaV,RV . §(RV,Rx) g(v,iRV).

(6.1Ql Lemma: Let W 5 fl and V 6 9. Then aV induces a in the sense
._wl.

VW

that, if w e §(RV,W), then avw(¢) = Iw 0 av.

2323:: Suppose W e g, V e g and w e §(RV,W). Then certainly

Iw 0 aV e §(V,IW). By the naturality of an in W, the following diagram

commutes:

g<RV,Rv) -——~Xi5E~—e §(V,IRV)

g<Rv,W) j g(v,1¢)

§(RV,W) 7““‘Ef"‘"'* '§(V,Iw)

VW
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We chase 1RV around this diagram, and find:

9(V’I‘WO‘V,RV(1RVD = “VV.;(§(RV,1P)(1RV)).

That is, 1w 0 aV = avw($). D

(6.11) Lemma: a is a natural transformation 1G i IR. That is, av is

natural in V (V e g).

Proof: Let W e g, V1,V2 e g and let ¢ 6 §(V2,V1). By naturality of

GVW in V, the following diagram commutes:

”v w
g(Rv1,w) —-—-—-1——-—) gmnzw)

§(R¢,W)l . 1§(¢,IW)

1:1.(RVZ,W) T—a §(v2,1w)
VZVI

Now put W = RV1 and chase lPV around the resulting diagram to
‘1

obtain:

_. 7 = 1r 1‘ og(¢,IRx1)(och,Rv1(1RV1)) OLVZ,RV1(§(‘21>,RV1)(1RV1))

That is

- d = , (8V1 ° . 0‘VZ,R‘J1‘R¢’)
= IR¢ 0 av , by lemma (6.10)

2

So the following diagram commutes;

av

v1 -—--—-—-1——-‘,> 1va

¢ T TIM.)

v2 -—-—--—-5 1sz
av 2 .

hat is, a is natural in V for V e g. D
V

(6.12) Proposition; Let W e g and V 6 g, and suppose ¢ 6 §(V,IW). Then

¢ factors through IRV via I.

Proof: Let w e E, V e g and ¢ e §(V,IW). By the right surjectivity

 



axiom, there exists w e H(RV,W) such thatavw(W)-— ¢

But, by lemma (6.10), avw(W) = I¢ 0 av. Thus

¢=I¢°aw

that is, the following diagram commutes:

V --—-—-’9IW

\A
80 o factors through IRV via av. D

(6.13) lemma: Suppose R is full, and let V,V' e 9. For all 6 e §(V',IRV),

there exists ¢ e §(V‘,V) such that 6 = aV 0 ¢; that is, such that the

following diagram commutes:

V' ""—-9 IRV

\/
Proof: Let V,V‘ e g and choose 5 e QCV',IRV). We hawe a surjective

map
o‘v',Rv : §(RV',RV) + §(V',IRV)

so there exists ¢ 6 5(RV',RV) such that

“v' ,RVW) = 6‘

Since R is full,

R : (:S(V',V) + 13(RV‘,RV)

is surjective, so there exists.¢ e §(V',V) such that R¢ = w. Hence

VRV(R¢)-- 6.

]:R<1> 0 av ,But, by lemma (6.10), OLV',RV(R¢)

:avod)
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by the naturality of a in V (see lemma (6.11)).
V

Thus 6 = aV 0 ¢. This completes the proof. U

SEZEfELLEEZEEEE‘ Let I : E + g be a full functor. Then the right sur-

jectivity axiom of (6.1) is equivalent to the following pair of condi—

tions.

(a) There is a natural transformation a : 1G 4 IR;

and. (b) For W e E: V e g, every nnrphism ¢ c §(V,Iw) factors

through IRV via av.

Proof: (6.9) and (6.11) tell us that the right surjectivity axiom

implies condition (a), and (6.12) tells us that the right surjectivity

axiom implies condition (b). It remains to prove that the Conditions

(a) and (b) together intly the right surjectivity axiom, provided I is

full. .

Assume (a) and (b) hold, and let W e E, V 5 ~. We must define a

map

avw : gCRV,W) t gCV,IW)

Suppose $ 6 §(RV,W). We define

“vw(¢) = 1w ° aV’ '

It is easy to check that anfiw) E gCV,IW).

Now we shall show that a is natural in V and W and that, provided
VW

I is full, 6 is surjective.
VW

1 . —(l) Naturality of aVW

Let w,W e g and V,V e g. Choose y e g(w,fi) and 5 e gcv,v . We

need to show that the following diagram is commutative:
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0‘VW
§(Rv,w) -——-——-4> §(V,Iw)

$116,101 [§(6,Iy)

H(RV,W)‘”"-—“-+ g<v,1w)
_ 0"ng _

To show that the diagram commutes, we must prove that for all w e E(RV,W),

§(5, IY)(GVW(W)) = avw(§(R5,Y)(¢)).

That is, we must prove that for all w e §(RV,W),
l
lIY°(II_IJ°aV)°5 I(yow0R6)oav

w
- .e. IYOIIJJOaOév IY o 1w o 1R6 o a- ,

V

by functoriality of I.

IMW,CNMifion(a)thsustmn

aV°6=IR6°aV,

and premultiplying both sides of this equation by 1y 0 1w (where

w 5 §(RV,W)), we obtain the desired conclusion.

(2) Surjectivity of “VW

Let W e g, V e g, and suppose I is full. For each ¢ €-§(V,IW),

we must find a w e ECRV,W) such that avw(W) I ¢.

By condition (b), each ¢ §(V,IW) may be factorized as ¢ = X 0 av,

where x e gCIRV,IW):

V'----9 Iw Since I is full, there exists

av\\N ///7X w 6 §(RV,W) such that

IRV Iw = X

Then avw(¢) 2 1w 0 aV = X 0 aV = ¢, so we have found a morphism w with

the required property. U
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Next we conclude the series of results begun with (4.7)—(4.10),

(5.9) and (5.17), and (6.8).

(6.15) Theorem; Let I and R satisfy the right surjectivity axiom, and

suppose that R has a right adjoint F : g + g. Then, for all W e g,

there is a split epimorphism aw e §(FW,IW) such that aw is natural in W.

Proof: Suppose W e g, V e g, and let

JVW : §(V,Iw) + gCRV,w)

denote the adjunction isomorphism.

Let a W denote the composition map
V»

J - avw
§(V,FW)——JDL9§(RV,W) -—-+ §(v,1w).

A

uVW is surjective since a is surjective.
VW

Hence, by corollary (4.6a), the map aw e §(FW,IW) defined by

0‘w : o‘Fw,w(1Fw)

is natural in W.

Also, since & is surjective, there exists “W e §(IW,FW) such
IW,W

that
A

o‘Iw,w(“w) = llw‘

But by (4.6) and (4.6a),
A

O‘Iw,w(“w) = 0‘w ° “w‘

80 a o “W = llW’ and a is a split epimorphism. D
W W
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Chapter 7 — The Injectivity Axioms Revisited
 

(7.1) Let g and g be categories, and let

_ be a faithful functorH

"
:
3
:

+

I
C
)

3. a functor.m :
1

a

.
P
U

H
G
) +

In this chapter, we shall investigate the consequences of assuming that

I and R satisfy both the left and right injectivity axioms. These

axioms, it will be recalled, were first investigated separately in

chapter 5, and we shall naintain the notational conventions introduced

there; in particular, we shall maintain the notation jw, (W e g)

introduced in section (5.2) for a certain morphism in §(W,RIW), and

the notation kW (W e g) introduced in section (5.10) for a certain

morphism in §(RIW,W);

We shall use the reformulations of the injectivity axioms given

in theorems (5.8) and (5.16).

In most of this chapter, we shall be dealing with specified

categories g and Q.

 

(7.2) The Splitting Axiom. '

Definition: Let g be an exact preadditive category. An object W e g

is said to be simple, if the only subobjects of W are 0 and W.

In the usual way, we have

Schur's Lemma: If g is an exact preadditive categpry and W is a simple

object of g, then H(W,W) is a division ring.

We shall use the definition and lemma above to make plausible an

axiom which we are going to state at the end of this section, and shall

call the S littinv Axiom.P o



81a.

Suppose g, g are categories, that I : E + Q and R : g + H are

functors, and that j : 1H 4 RI and k : RI + 1H are natural transforma—

tions. Choose W,W e g and f e E(W,W), and consider the following

 

 

diagram:

j k

w w > RIW W 4% w

f 1 lel if

- W . ='RIW 4; W

3w kw

The outside rectangle commutes because the inside squares commute, i.e.

k 0 j : 1H ; 1H is a natural transformation.

Hence, if E is an exact, preadditive category and w is a simple

object in B, then kw ° jw is invertible or zero.

Suppose that for all W E a, kw ° jw is invertible, and denote

this composition map by Ew. It is easy to check that for W E E: jw ° Egl

is natural in W. It is also easy to check that, for all W e g, if jw

'has the property expressed in condition Cb) of theorem (5.8), then so

_ —1

does 3w ° gw '

. . . -1 .

Thus, by theorem (5.8), for all W e g, V e 9, 3W 0 CW induces a

natural injection

§(IW,V) + §(W,RV).

Finally, for all W e g,

. —1 _
kw 0 (3w 0 Ew ) — 1w.

Definition: Let E and g be categories, and let I : E + Q, R : g + g

be functors. Suppose j : 1H ; RI and k : RI ; 1H are natural transforma—

tions.

We shall say that j and k satisfy the splitting axiom if, for each
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W E E:

If I and R satisfy both left and right injectivity axioms, and

hence, by (5.4) and (5.12), give rise to natural transformations

j : 1H + RI, k : RI $‘1H, then we shall say that I and R satisfy the

splitting aXiom if, for each W e E, kW 0 3w = 1W.

(7.3) ProEosition: Let g and g be categories of modules, and let

I : H +

II
CD , R : g + §.be functors satisfying the left and right injectivity

axioms and the splitting axiom. Choose W1, W2, W3 5 H and a e E(WI,W2),

B e g<w2,w3). If

Rle W RIw2 Ti? le3

is an exact sequence, then the original sequence

a B,w,-—-——>w2————)wa

must have been exact. That is, RI "reflects" exactness.

Proof: We know that im(RIa) = ker(RIB), and that the following diagram

is commutative:

 

 
 

Rle R1“ >RIW2 RIB >RIw3

J'WITJ'kw1 jWZkaz 3'sz kw3

w1 a 4 W2 6 : w:

We also know that kwi o jwi = 1wi for i = 1,2,3.

(1) First, we shall show that ker B Cim a.

If b e ker B, then 8(b) = 0, so jw (8(b)) 2 0, so RIB(jW (b)) = O
3 2

by naturality of j. Hence jw (b) e ker RIB = im Rla. That is, there
2

exists a* e RIW1 such that RIa(a*) = jw (b).
2
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’3
' I— szfijw2(b))

kw2(RIa(a*))

a(kw (a*)) by naturality of k
1

6 im a.

(2) Next we prove im a sker B.

Let b e im a, so that there exists a_£ Wlsuch that b = a(a).

Then

8(b) BCaCa)) = B(a(kw1(jwl(a)))

8(kw (Rla(jw (a))) by naturality of k
2 1

kw (RIB(RIa(jw (a))) by naturality of k
3 1

and RIB ° RIa = 0 since im RIa = ker RIB, so B(b) = 0. That is,

b e ker B. D

Convention. The following conventions will be in force until the end

of section (7.14). We shall suppose that h S g are Lie algebras, and

'write 5 = Mod-h, g = Mod—g. We shall denote by R the restriction functor

Mod—g + Modeg. I : Mod-h + Mod—g will be a functor.

{7.31; Suppose that I and R satisfy the left injectivity axiom. Then

theorems (5.9) and (3.6) guarantee the existence of a natural epimorphism

of g—modules

0 Q «11W . W Uh UE'> IW.

The following proposition identifies this map quite precisely.

(7.4) Proposition: In the above notation, and for W 6 g, w E E, and

uEUg,

® :"uw(w u) Jw(w).u

where the multiplication referred to on the righthand side is the module

multiplication in IW.
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Proof: By Corollary (5.9a), we have that

.. “1 .:

uw ” Kw,1w (Jw)‘

From the definition of K (see proof of theorem (3.6)), it may be seen that

for any V e g and w e HomUH(W,RV),

,1 ’ _ ’
(KWV (V))(w 8 u) — v(w).u.

Hence, in the case V = IW, W = jW’

Duww a u) = (Kw,Iw—l(jw))(w a u) = jw(w).u .

(7.5) Next, we shall identify the morphism VW of Theorem (5.17) in a

sindlar fashion to section (7.4). Suppose I and R satisfy the right

injectivity axiom. Let W e B. Theorems (5.17) and (8.5) guarantee the

existence of a natural injection vw: IW + HomUh(Ug,W) .

(7.5) ProEosition: In the above notation, and for W 6 E: v e IW, u E Ug,

(Vw(v))(u) = kw(vu),

where the multifilication referred to on the right hand side is the module

multiplication in IW.

Proof: By Corollary (5.17a),

From the definition of J (see the proof of theorem (3.5)) it may be seen

that for any V e g, and any w e HothRV,W), v e V and u e Ug

—1
: l 1((va (¢))(V))(U) V(V.d).

Thus, when V = Iw and w = kw, we find that for v e IW, u e Ug,

(VW(V))(u) = kw(v.u). D

(7.6). Suppose I : g + g and R : g + g satisfy hoth left and right
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injectivity axioms. For W e E, v will denote the g—module monomorphism
W

VW : IW + HomU§(U§,W)

defined by the equation in Proposition (7.5).

(7.6) Proposition: With notation as above, and with W e E, w e W,

x e Ug, u e Ug, the embedding

. T + IVw . IW Hom§(U§,W)

is completely deterndned by the equation

(vw(jw(w).x))(u) = kw(3w(w).xu)

where the multiplication on both sides of the equation is the nodule

multiplication in IW.

Proof: By the corollary to proposition (5.6), IW = (im jw).Ug. Thus,

if v 6 IW, v can be written as

.n

v = Ei=1 jW(wi)‘xi

for suitable w1,...,wn 6 W and X1,...,Xn e Ug., Thus, by (7.5)

for any u e Ug,

(Vw(v))(u) kw(v.u)
1'1

= kw((2.1:1 jw(wi)'xi)'U)
n

Xizl kw(jw(wi).xiu).

The proposition now follows from the fact that VW is linear in v.

(7.7) Proposition: Suppose that I and R satisfy the right injectivity

axiom. Let W e E, and let e : R(HomUh(Ug,W)) + W be the "evaluation”

map, defined by

e(¢) = ¢(1Ug) for w e R(HomU§(U§,W)).

Then, with the notation of (7.5), the following diagram commutes:
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R(Homh(U§,W))

N

Proof: If v e RIW, then

e((va)(v)) = (vw(v))(1Ug)

= kW(V'1Ug)

= kw(v).

Thus e o va = kw. U

(7.8) Pro ositign} (cf Wallach [16], theorem 3.1). Let I and R satisfy

both left and right injectivity axioms. If i : Mod—g + Modég is a

functor, and 3 : 1H ; Rl, E : Rl ; 1H are natural transformations

satisfying

(i) for all W e H, im §W°U§ = lW;

(ii) for all W e E, ker EW contains no non—zero g—modules,

and (iii) for all W e E, w e W, and u 5 U5,

kw(]w(w).u) = kw(jw(w).u)

then for all W 6 fl

H
I

2

l
l

IW as g—modules.

Egggf: Let W e g. Define vW : IW +*Homh(Ug,W) as in (7.6). Define

vw : IW + HomE(U§,W) analogously, by (Vw(3w(w).x))(u) = kw(jw(w).xu)

for w e W, x e Ug, u e Ug. (We have implicitly used condition (i) in

this definition.) By theorems (5.8), (5.16), (5.17) and proposition

(7.6), 6W is a g—monomorphism.
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with codomain restricted to im v .Let v] be vw W
V

Let 6W be 6W with codomain restricted to im 5w.

Clearly, condition (iii) implies that

imv =imv.
W w

Hence (GW)_1 o 6W : TW + IW is an isomorphism of Ug—modules. U

(7.9) ProBosition: (This result was originally proved by N.R. Wallach

in [17] - Proposition 3.1, for a Earticular functor I, which will be

described in the next chapter.) Let I and R satisfy the left and right

injectivity axioms, and the splitting axiom. Let W be a simple Uh—

module with the property that ker k contains no subquotients Uh~
W

isomorphic to W. Then IW is a simple Ug—module.

Proof: Suppose IW is not simple: let M be a proper non—trivialrg—

submodule of IN. Write 2:M +‘IW for the inclusion map.

Then Rl — jw 0 kW 0 Rfi is an h—monomorphism. For certainly
 

RR — jw o kw 0 R2 is an h-homomorphism, and if m # O, m e M and

m - ' (k (m)) = 0 then m 6 im j , so that, by the simplicity of W
jww ’ w

and the facts that jw is an h—homomorphism, and m # 0,

im jw = m.UQ.

But then, by Corollary (5.6), whieh says that 1w = im jw.U§, we see that

m.Ug = im jW’U§ = IW.

Hence IW = m.U

1
n
g E M C IW, a contradiction. 80 R2 — jw 0 kW 0 R2

is monic, as claimed.

 

*Wallach‘s statement and proof of this result contain an error. His

proof does not, of course, use the injectivity axioms.
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By the corollary to (5.14), M g ker kw, so we can choose an

element v e M such that v e ker kw. Set W =' W ~ jw(kw(V))}.Uh. W is

a Uh—submodule of RM, and it is easy to check that W e ker kw, using

the splitting axiom.

Since every element of W may be written in the form v.h — jw(kw(v.h))

for some h e Uh and with the element v chosen as above, we may define a

map E : W + W as follows:

Let h e Uh. Set £(v.h _ jw(kW(v'h))) = kw(v.h).

We must check that E is well—defined. Since Ri — jw 0 kW 0 RX is

monic,

v.h — jw(kw(v.h)) = 0

implies that vh = O which implies that kw(vh) = 0. Thus E is well—

defined, and obviously an h—homomorphism. Also, since v ¢ ker kW’

im E ¢ {0}. Hence, by the simplicity of W, im g = W. That is, I

W / ker E = W

as an h~module. But W / ker E is a subquotient of ker k This contra-W“

dicts a hypothesis of the proposition. Thus the supposition that

there existed a proper nonzero subnwdule of IW must have been false. U

§§£§E£3 This result is, in a sense, an analogue of the Mackey axiom —

axiom (6) of chapter 2. For the Mackey isomorphism is used in the theory

of induced representations of groups, to prove a rather similar simplicity

criterion: see Huppert, [9], page 553 ff.

(7.10) Discussion: Let W be an h—module. Suppose that we have a

natural Uh—monomorphism

0

VW . W + R HomU§(U§,W).
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Let W be another Ug—module, let f e HomUh(W,W), and let ¢ 6 HomUh(Ug,W).

We can define a functor

0GI : Mod—h + Mod—

'1

by

IW = (im v§).U§ g HomUQCU§,W)

and

(If)(¢) = f 0 ¢ 5 HomUh(U§,W).

It is easy to verify that I is, in fact, a functor.

It is easy to check that there are natural h—homomorphisms

jw : w + le

and kw : RIW + w

given by jw(w) = V§(W) for w e W

( :and kW‘¢) ¢(1Ug) for ¢ 6 RIW.

Clearly jW is injective, and (im jw)‘U§ = IW. So by Theorem (5.8),

.I and R satisfy the left injectivity axiom. It is not clear, from the

assumptions we have made so far, that kw need be surjective, nor that

ker kW need contain no nonzero g-modules. Thus we don't know whether

I satisfies the right injectivity axiom (cf Theorem (5.16)). We don't

know whether j and k satisfy the splitting axiom, either.

However, we can clearly hope to derive some benefit from the study

of natural h—monomorphisms

W + HomUh(U§,W)

for W e Mod~h.

Let U be a left Ug—, right Uh—module, and let W e Mod—g. Then

HomUh(U,W) may be given the structure of a g—module as follows.
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Let ¢ 6 HomUhCU,W), let E e U, let x 5 Ug. Define ¢x e HomUh(U,W)

(19%?) = ¢(x.fi).

Now let Y : Ug + U be a right Uh—homomorphism.y induces a linear map

Ho (6 m-fii’flML-wom (Ug w)mug ’ uh :’

and it is of interest to know when Hom(Y,W) is an injective g—homomorphism,

and when HomUh(U,W) contains a copy of the h—module W in a natural way.

(7.11) Lemma: In the notation used above,Hom(y,W) is a g—homomorphism

if and only if Y is a left Ug—homomorphism.

  

Proof: (1) Hom(Y,W) a Ug—homomorphism for all W e Mod—h implies Y a

 

 

left Ug—homomorphism.

Let W = U. We are supposing that Hom(Y,U) is a Ug—homomorphism.

Let g e Ug. Let us consider the action of HomCY,U) on 1—, and on 1%.
U

For all u e Ug,

(HomCY,U)(1§))(u) = <1§)(y(u))

= 16(g.Y(u))

= g.Y(u)

while

‘{Hom<y,i)(1fi)}g(u> = 16(Y(gu))

= y(gu).

Since Hom(Y,U) is a Ug-homomorphism, it follows that

g.Y(u) = y(gu).

That is, Y is a left Ug—homomorphism.
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(2) Y a left Ug—homomorphism implies Hom(Y,W) a g-homomoyphism

for all W e Mod-b.

Suppose Y is a left UE—homomorphism. Let ¢ e HomUh(U,W),

g,u e Ug, and W e Mod—h. Then

{Hom(Y,W)(¢)}gCU) fiiom(Y,W)(¢)}(gu)

¢(Y(Vgu))

¢(g.Y(u))

¢g(Y(u))

Ii

mom(y,w)c¢g)}<u).

Thus Hom(Y,W)(¢g) =’{Hom(y,W)(¢)}g. D-

(7.12) Lemma: In the notation explained just before lemma (7.11),

Hom(Y,W) is injective for all w e Mod—h if and only if Y : US + U is

surjective.

Proof: Suppose Y is surjective, that W is any right h—module, and

-¢, ¢‘ 6 HomUh(U,w) are such that the following diagram commutes:

Y _ ¢
Ug——5U ‘-’____.,w

Then, by the surjectivity of Y, ¢ = ¢‘. That is,

¢ 0 v = ¢' 0 Y implies ¢ = ¢'.

HomCY,W)(¢)But ¢ 0 Y

and ¢'o Y Hom(Y,W)(¢').

Thus, Hom(Y,W)(¢) = Hom(Y.W)(¢') implies ¢ = ¢', so HomCY,W) is injective.

Conversely, suppose HomCY,W) is injective for all W e Mod—Q.

Let W E Mod—h and choose ¢, ¢‘ 6 HomUh(U,W). Then Hom(Y,W)(¢) =

Hom(Y,W)(¢') implies ¢ = ¢'. That is, ¢ 0 Y = ¢' 0 Y implies ¢ = ¢'.

That is, Y is surjective. D
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(7.13) Lemma: Let U be a fixed right h—module, and let W be a right

h—module.

The natural Uh—monomorphisms from W to Ho (6 W) are in bijective'_ mug ’

correspondence with the Uh—epimorphisms from 6 to Uh.

Proof: Let XW : W + HomUh(fi,W) be a natur“l h—monomorphism. There is

a natural h—isomorphism

u T -ew . HomU§(Uh,h) + W

given by ew(¢) = ¢(1U§) for ¢ 6 HomUQCU§,W), so XW corresponds to a

natural Ug—monomorphism

Xw o ew : HomUh(U§,W) + HomUh(fi,W).

The result now follows from MacLane [12], p.89, Lemma. D

Discussion: The gist of the last three lemmas is that one way to

construct an induction functor from Mod-h to Mod~g is to look for a

left Ug-, right Uh—module U and a pair of maps

YngtU,

6 : U + ”S

where Y is a left Ug—, right Uh-epimorphism and 6 is a right UE—epi—

morphism.

It should perhaps be mentioned that the case where Y = 1 and 6
U 0'

is a map constructed using the Poincare—Birkhoff~Witt theorem (0"

section (1.3)) has already been discussed in sections (3.5) and (3.3).

At the other extreme, some progress can be made with the case U = Uh:

see section (8.5).

Returning to the general case, a left Ug—, right Uh—epimorphism

Y : Ug + 0 has for kernel a left Ug—, right Uh—suhnwdule A of Ug, by
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the homomorphism theorems: that is U = Ug/A.

Before embarking on a detailed study of these ideals, we shall

conclude this discussion with a result which suggests yet another way

of constructing induced module functors. An analogous result is well—

known in the theory of group representations.

(7.14) Theorem: (cf Mitchell, p. 143, Theorem 3.1). Let W,W e Mod—h.

Then there is a natural isomorphism

l
l \

Uh Ug),W,.HomU§(W,R(HomUQ(Ug,W))) HomUh(R(W s

Proof: HomUh(W,R Homuh(Ug,W)) fl Hong(W ®Uh Ug, HomUh(Ug,W))

by theorem (3.6)

I
!

HomUb(R(W e Ug),w)

U?
by theorem (3.5).

Discussion: We are actually interested in the case w = W. The result

tells us that looking for h~homomorphisms

W t RCHomUh(Ug,W)) (W e Mod—Q)

is equivalent to looking for h—homomorphisms

R(w ®Uh Ug) + W. a .

 

We now return to the study of left Ug—, right Uh—submodules.

1?.152Definition: Let h s g be Lie algebras. The symbol (Modwhlmonics)

 

will denote the category of all right h—modules and all h—monomorphisms

between them. (Mod—glmonics) is similarly defined. The symbol

 

Sub(Ug,Uh) will denote the (lattice) category of all left Ug—, right

Uh—submodules of Ug, and all submodule inclusions between them.
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SE22§EIEE§1= For the rest of this chapter, h s 5 will be Lie algebras.

We shall set E = (Modmhlmonics), g = (Mod—glmonics), R : (Mod—glmonics) +

(Modehlmonics) the obvious restriction functor, and I will be a functor

from (Mod—hlmonics) to (Mod-glmonics) except where otherwise noted.

Discussion: The original aim of this thesis was to find finiteudimensional

induced modules. With this in mind, suppose that A e Sub(Ug,Uh) has the

property that Ug/A is of finite rank as a Uh—module.

That is, there is an epimorphism M + Ug/A of h—modules, where M

is a free Uh—module of finite rank. Let W e Mod—h. There is an

induced h—monomorphism HomUh (Ug/A,W) + HomUh(M,W) like that used in

the proof of lemma (7.12).

|/
\We can deduce that dim HomUh(Ug/A,W) dim HomUhCM,W)

IA dim W X rank M.

AThus, if dim W < m, then dim HomUh(Ug/A,W) m. If we could find a

suitable funCtor

H 0
0 Mod~h + Mod-g

such that IW E HomUh(Ug/A,W) whenever dim W <W, then we would have

achieved the original aim of this thesis.

However, the two examples in section (0.3) of this thesis show

that such a functor I cannot be found.

We therefore modify our aim a little.

Aim: We shall seek a contravariant functor A : (Mod—hlmonics) + Sub(U§,Uh),

and a functor I : (Mod—hlmonics) + (Mod—glmonics) such that for every

W e (Mod—himonics)‘

IW g HomUh(Ug/AW,W) ,

such that I and R satisfy the left injectivity axiom.
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Now, the argument above leads to the conclusion that dim IW < m

provided that Ug/AW is of finite rank as Uh—module and dim W < m.

Remark: It seems to be impossible to demand that A and I be defined

on domains larger than (Mod—hlmonics) and still prove the main result

(7.21) below. The reason for this is embodied in the proof of the next

proposition, and in lemma (7.18).

(7.16) Proposition: Let A : (Mod—Elmonics) + Sub(Ug,Uh) be a contra—

variant functor, and let W,W e (Mod—h monies). Let YW : Ug + Ug/AW

denote the obvious projection map. Let f : W + W be an g—monomorphism.

Then it is possible to define a nap

fk : HomUE(U§/AW,W) + HomU§(U§/AW,W)

so that the following diagram commutes:

Hom(YW,W)

Hom (Ug/AW,W) -———-—-——-—9 HomUh(U§,W)

f..vn HomUh(U§,f)

(
I
-
'
—
-
—
—
”

HomUh(U§(Aw,w) ——-—-—-————:—-a HomUh(U§,W)
_, HomCYW,W) —

In fact, f* can be defined so that it is also a Ug-homomorphism.

Proof: Let u,u' e Ug, ¢ 6 HomUh(Ug/AW,W).

Define f* by

(f*(¢))(u + AW) = f(¢(u + AW)).

There are several items to check.

#1. Is f* a well—defined mapping?
 

Suppose u + AW = u' + AW.

Then u — u' 5 AW, and since there is a Uh—monomorphism f : W + W,

Af : AW g AW is an inclusion, by our hypothesis about A, so

u - u' 6 AW .
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Therefore u + AW = u' + AW,

so f(¢(u + AW))= (f(¢(u' + AW)).

That is, (f*(¢))(u + AW) : (f*(¢))(u' + AW)

and so f=2 is a well—defined mapping.

#2. Is f*(¢) e HomUh(Ug/AW,W)?
 

That is, is f*(¢) a Uh-honpnmrphism? Let h e Uh. Then

(f*(¢))(uh + AW) f(¢(uh + AW))ll

f(¢(u + AW)).h

((f*(¢))(u + AW)).h .

Thus f*(¢) ii an h—homomorphism.

#3. Is f* a right g~module homomorphism?
 

Let x G Ug.

ll(f*(¢x))(u + AW) f(¢x(u f AW))

f(¢(xu + Aw))

ll (f*(¢))(xu + AW)

(f*(¢))x(u + AW)

80 f* i§_a right g—module homomorphism.

#4. Does the diagram in the statement of the Proposition commute, with

f* defined as above?

 

Hom(Ug,f)((Hom(Yw,W)(¢))(u))

(f 0 ¢ o YW)(u)

f(¢(u + AW))

while Hom(Y W)((f*(¢))(u))W:

(f*(¢) o YW)(u)

f*(¢)(u + AW)H
II f(¢(u + Aw)).
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Thus the diagram commutes. B

Let W be a right Uh—module, and let A be a contravariant functor

from (Mod-hlmonics) to SubCUg,Uh). The next proposition answers the

following question: What restriction does the condition that IW be

embedded in HomUh(Ug/AW,W) place on the submodule AW of Ug?

(7.17) ProEosition: Let A and YW be as in.(7.16). Let V be any

g—submodule of Ho (U ,W). Then V C im Hom( .,W) if and onl if
"‘ mUh g " Yv] y

0}.AW g'{ u e Ug : for all V e V, v(u)

Proof: It is easy to check that

Hom(Yw,W)(HomU§(U§/AW,W))

is the set of maps ¢ 5 HomUh(Ug,W) which factor through Ug/AW via YW'

That is, ¢ 5 im Hom(yw,W) if and only if there exists x‘e HomUh(Ug/AW,W)

such that the following diagram commutes:

U5 -—EL—-9 W

YR /x
Ug/AW

'This condition holds if and only if the map

x : UE/AW -> W

"defined" by (for u e Ug)

xh1+AW)=¢Ufl

is wellndefined and in fact x.is well—defined if and only if

u 6 AW inplies ¢(u) : 0.

Thus v g Hom(YW,W)(HomUh(Ug/AW,W)) if and only if

AW 5’ {u c Ug : for all v e V, v(u) = O}. U



(7.17a2_§g§2l33315 Let W e (Mod—hlmonics). If I is an induction

*functor (Mod—hlmonics) + (Mod-glmonics) arising from natural transforma-

tions j : 1 3 RI, k : RI ; 1 as outlined in proposition (7.6), and if

there is a contravariant functor A : (Mod—glnmnics) + Sub(Ug,Uh) such

that

IW g HomUh(U§/AW,W)

then AW 3 {'u e Ug : for all w e W, x e Ug, kw(jw(w).xu) = 0}.

Proof: This follows from Proposition (7.17) above, together with

Proposition (7.6). D

(7.18) Construction of the functor B: Suppose that there exist

 

natural transformations j : 1H ; RI, k : RI ; 1H, and let W, W be right

h—modules.

Define

l
l

BW '{ u e Ug : for all w e W, x 6 Ug, kw(jw(w).xu) = 0}.

Then BW is a left Ug—, right Uhmsubmodule of Ug: this is easy to verify.

Suppose that there exists an h—monomorphism f : W + W. We shall

show that in this case, BW g BW, and we shall denote the inclusion map

by the symbol 3:, It is here that we use the naturality of j and k.

Suppose u 6 BW. Then for all x e Ug and all w E W, f(w) e W, so

0

H kW(jW(f(w)).xu)

kW(RIf(jw(w)).xu) by naturality of j

kW(RIf(jw(w).Xu)) since RIf is an Ug—homomorphismu

f(kw(jw(w).xu)) by naturality of k.

But f is monic, hence, for all x e Ug and all w e W,

0 : kWCjWW) .Xu) .
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That is u 6 BW.

So BW 5 BW. D

Proposition: B is a contravariant functor (Mod—himonics) + Sub(Ug,Ub).

(7.20)Proposition: Let I and R satisfy left and right injectivity

axioms. Let W be a right h—module. If dim IW < W, then

dim HomUh(Ug/BW,W) < m.

Proof: Suppose dim IW < m.

1) Ann” (Iw) E BW.

For, let u E AnnU (IW). Then for all w e W, for all X e Ug,
g :

jW(w).xu = 0 (since jw(n).x e IW). ience, a fortiori, for all w e W

and x E Ug

kw(jw(w).xu) = 0.

Thus u 6 BW.

2) IN is a faithful Ug/AnnUg(IW)—module. Thus Ug/AnnUg(IW)

may be embedded, as a k-algebra, in the finite dimensional k—algebra

Endk(IW). So Ug/AnnUgCIW) is of finite dimension over k.

3) Since AnnUg(IW) 5 BW, it follows from (2) that Ug/BW is also

‘

, of finite dimension over k.

u) Since W is embedded in RIW (by jw), W is finite-dimensional.

Thus Homk(Ug/BW,W) is finite—dimensional. Hence, a fortiori,

HomUh(Ug/BW,W) is finite—dimensional.

 

(7.21) Construction and Theorem: Let A : (Mod—g monies) + Sub(Ug,U§)

be a contravariant functor. Let W, W be right hemodules, and let

f : W + W be an h—monomorphism. Let TW : W + R HomUh(Ug/AW,W) be a

m is defined as in Proposition (7.16),Uh-monomonphisnxsuch that, if f
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then the following diagram commutes:

 

Tw
w -——_-—-——a HomUh(Ug/AW,W)

W f%-w9 HomUh(U§/AW,W)

Suppose that W = E inr'fiw(w)}.
weW

Define I : (Mod—E monies)+ (Mod—g monies) by setting IW : (im TW)Ug

and defining, for w e W and x e Ug,

(If)(TW(w).X) = Tfi(f(W)).x

and extending this definition of If to all of IW by linearity.

Then I is a functor and I and R satisfy the left injectivity

axiom. Furthermore, IW is finite—dimensional whenever AW is of finite

codimension in Ug and W is finite-dimensional.

Proof: (1) Functoriality of I. First we shall Check that If is well—
MW

defined. Suppose X1""’Xn e Ug and w1,...,wn e W, and that

n

.2 Tw(wi).xi = 0.
1—1

Then, for all u e Ug,

n
((If)( X Tw(wi).xi))(u + AW)

i=1

n
= 2 (T (f(w.)).x.)(u + AW) by definition of If,

. W l 1
1:1

n O“

= z (fh(T (w.)).x.)(u + AW) by commutativity,1:1 « w l 1
n

= 2 f((Tw(w.).xi)(u + AW)) by definition of f,.:
i=1 1 (see Propn. (7.16)5

n
= f((__ Tw(wi).xi)(u + AW))

1—1

= f(0) = O.
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It is also easy to verify that (If)(Tw(w).X) is always a Uh—

homomorphism, for w E W and x e Ug. Further, If is a Ug-homomorphism,

since, if w e W and x,y,u e Ug, then

((If)(Tw(w).x))y(u + AW)

((If)(Tw(w).X))(yu + AW)

(TW(f(w)).x)(yu + AW)

(TW(f(w))).(xyu + AW)

while ((If)(Tw(w).xy))(u + AW)

(Tw(f(w)).xy)(u + AW)

Tw(f(w))(xyu + AW).

Finally, If is injective, since, if w1,...,wn e W and

X1""’Xn e Ug,

n

(If)( 2 Tw(wi).xi) = 0,

i=1

then for all u e Ug,

n

o = 2 (Tw(f(wi)).xi)(u + AW) by definition of If

i-l

n ‘ '-

= X (f%(T (w.))(x.u + AW) by commutativity
. ‘ W 1 1 . .

1:1 hypothesis

H ~

= Z f(T (w.)(x.u + AW)) by definition of f*
i=1 W 1 1

I1

= f( 2 (Tw(wi).xi)(u + AW)).

i=1

Since f is injective, this forces

n

0 = .2 (Tw(wi).xi)(u + AW) for all u e Ug.

1-1

n

That is '2 Tw(wi).xi = 0.

1:1

Thus I is a well—defined functor from (Mod—h!mcnics) to (Mod—g'nmnics).
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(2) Left injeptivity axiom. We shall show that I and R satisfy
 

the left injectivity axiom. By theorem (5.8), it is sufficient to

show that there exists a morphism jW of (Mod—hlmonics) such that

jW : W + RIW is natural in W and (im jw).Ug = IW.

We define jW to be T with codomain restricted to RIW. That jw is
W

a morphism of (Mod—hlmonics) and (im jw)Ug = IW are trivial. It remains

to prove that jw is natural in W.

_ 3'
Recall that W, W are right W ‘—-—-lL—-§ RIW

Uh—modules and f is a right Uh- fl lhlf

monomorphism. Thus, for w e W, W "—‘-3:f‘—‘9 RIW
W

(le o jW)(w) = (le)(jw(w))

= (RIf)(Tw(w)) by definition of jw

= (If)(Tw(w))

= TW(f(w) by definition of If

: (jw o f)(w) by definition of jW'

So jw is natural in W.

(3) Qimension of IW. The proof that, if W is finite-dimensional

and Ug/AW is finite—dimension, then IW is finite~dimensional, is trivial.

D
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Chapter 8 — Models of the Axiom Systems

(8.1) Convention} In this chapter h S g will be Lie algebras of various

special types, and R : Modng + Mod—h will denote the obvious restriction

functor.

(8.2) Induction from Cartan—type subalgebras I — Wallach‘s Functor

In his papers [16], [17], Wallach constructs an induction functor

for a certain type of subalgebra h of g, which in fact satisfies the

left and right injectivity axioms. Wallach proves that his functor

satisfies the injectivity claim of the right injectivity axiom. He

ignores all questions of naturality.

y We shall describe Wallach's functor and show that it satisfies both

left and right injectivity axioms by verifying the conditions of theorems

(5.8) and (5.16) of this thesis.

Recall that h S g..

Let g have subalgebras 31, n2 such that g = n1 6 h 9 n2 as a vector

I
nspace, and such that [91,h] 91,

[925E] —n ”:
3 2n

‘ Wallach calls such a Lie algebra a ”Lie algebra with decomposition”.
 

We shall write t = n1 6

11
':

(i) Definition of the functor I . Let W e Mod~h. Wallach constructs
 

his module1 IW as follows. Define a functor2

: Mod—h + Mod—E

W » fi

 
 

1. Wallach uses the symbol W for what w§_have called fig Wallach uses

the symbol " for another purpose.

2. Wallach calls his induced module W*, not IW.
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by requiring that the underlying vector space of W be the same as that

of W, that h acts on W as it does on W, and that 91 acts trivially on W.

This functor acts as an identity map on morphisms, and we shall not

distinguish between a morphism and its image under the functor.

Recall from section (1.3)(second corollary) that

Ug = U; e U22.g2.UE

as a right Ut—module. Since [h,22] g 32, it is easy to check that the

summands are also left Uh-modules. Hence, the projection nap Y : Ug + U:

onto the first summand (above) is a left Uh—, right Utumodule homomorphism.

Thus we can define a map

jw : W + R(HomU:(U§,W))

by A

jw(w)(u) = w.y(u)

where w 6 w and u e Ug, and it is easy to verify that jw is an h—mono—

morphism.

Next, Wallach sets

IW = (1m 3w).U§.

Let W e Mod—h, and choose ¢ 6 Homh(W,W). Wallach defines a nap

1d) : 1w —> 174 by

(1¢)(f) = ¢ 0 f

for f e IW g HomUt(Ug,W). It is easy to verify that, with this definition,

I is a functor Mod—h + Mod-g.

  
A

3. Wallach calls his h~monomorphism m, not jw.
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h

 

(ii) _Proof that I is faithful. Suppose that ¢ e Homh(W,W), and I¢ = 0;

0. That is, for allthen, in particular, for all w e W, (I¢)(3w(w))

w 6 W, ¢ 0 jw(w) = O, and so for all w e W, ¢(w) = (¢ 0 3w(w))(1ug) = 0.

That is, ¢ = 0.

(iii) Definition of the natural transformation j + RI. Let

 

1Mod—1:1

W € Mod-h. We define the nap jw : W + RIW to be 3W with codomain

restricted to be RIW. I claim that jw is natural in W. For, suppose

that ¢ 6 Homh(W,W). Then, for w e W and u e Ug,

jw RI¢(jw(w))(u)

<¢ o jwcw))<u>

<
3

z
n
+
_
_
_
~

'
W H -e

n

j— E PlW = ¢(w.Y(u))

W = ¢(w).Y(u)

= (jfi(¢(w)))(u).

Thus RI¢ ° jW = jW 0 ¢.

 

(iv) I and R satisfy the left injectivity axiom. We use theorem (5.8)

and the Remark following it. We have verified condition (a) of theorem

(5.8) above, and condition (b)' (see the Remark) is a trivial consequence

of the definition of jW'

(v) Definition of the natural transformation k : RI ; lNod—h’ Let

f e RIW. Thus f E HomUh(U§,W), since RIW E HomUh(U§,W). We define a

map

kw : RIW + w

by
kw(f) = f(1Ug).

It is easy to check that kw is'a Uh—homomorphism. Note that for w e W,
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kw(jw(w)) = (jw(w))(1Ug)

ll 2 H

n 2

Thus V k : 1
w°3w

We deduce from this that kW is an epimorphism of Uh—modules. As

a side—product:

(vi) I and R satisfy the splitting axiom of section (7.2)
 

 

(vii) EW '8 natural in W, and ker kw contains no nonzero Ug—modules.

Suppose W is a Uh—module and ¢ 6 HomUh(W,W). Let f c RIW, Then

(¢ o kw)gf> kw
= ¢(f(1U )) w “““‘"‘ R1“= 4 is

while kW(Rl¢(f))
W 4 k RIW

7- kfi(¢ O f) W .

(¢ 0 f)(1Ug)

¢(f(1ug)).

Thus kW is natural in W.

Next we show that ker kw contains no nonzero Ug‘modules. Suppose

that ker kW does contain a nonzero g—module: then ker kw contains a cyclic

g—module, m.Ug, say, where m e HomUh(Ug,W) and m ¢ 0.

We shall show that m.Ug g ker kW implies m = O, and this contra—

diction will establish what we want to prove.

If m.U§ g ker k then for all u e Ug, kW(mu) = 0. That is, for
w,

all u 6 Ug, mu(1U ) = 0. That is, for all u e Ug, m(u) = 0. That is,

”
O
"

m = O.
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(viii) I and R satisfy the right injectivity axiom, This follows from

theorem (5.16), the remark following it, and (vii) above.

Wallach proves two results about his functor I which are inter—

esting for us:

(ix) (Wallach [16] Theorem 3.1): Let g = $1 e h 9 n2 be a triangular

decomposition of the Lie algebra g : — that is, a decomposition of the

type explained at the start of section (8.2) of this thesis, but with

the additional property that n1 and 92 must both act nilpotently on

every finite—dimensional g—module.

If W is a simple h—module, then HomUt(Ug,W) (see Section (1)

above) contains at most one non—zero finite—dimensional simple g—module.

Such a non—zero finite—dimensional simple g—module exists if and only

if dinkIW < m, in which case IW is the simple g—module.

(X) (Wallach [17], Proposition (4.1)). Consider the case where g is

a semisimple Lie algebra over an algebraically closed field k of

characteristic zero. Such a Lie algebra has a triangular decomposition

where h is a Cartan subalgebra of g, and 91, n2 are respectively the

suns of weight spaces for the negative and for the positive roots in

the root system of g with respect to h. (More details and references

are given in Wallach [17] page 16”.)

If W is a simple finite-dimensional (i.e. one-dimensional) Uh-

module, then IN is a simple (not necessarily finite—dimensional)

g~module.
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(8.3) Induction from Cartan—type subalgebras II ~ An adjunction
 

related to Wallach's Functor.
 

Convention: In this section, I will be the functor defined in section

(8.2), and g will thus be a ”Lie algebra with decomposition”, as in

(8.2). That is, g has subalgebras 2, g1, 92 such that

5:916”;
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n_ n and [92,h] E g2. We shall write
1

Introduction: Since the functor I is not (necessarily) a left adjoint

to R, we can ask if I has a right adjoint (or a left adjoint, for that

matter).

Wallach [17], in his Lemma 2.1 and Theorem 3.1, proved some

results in this direction. In this section, we shall extend his work

by defining a functor J, closely related to I, and describing a functor

which is a two—sided adjoint to J.

(1) Definition of the functor C : Mod—g + Mod—h. Let v e Mod—g.

Define, first of all, the set

EV ='{ V E V : v.g2 = (0)}. .

Let v 6 Mod—g and suppose f e HomU (V,V). Then fl~ : EV + V is an

= .3 lCV

Q-homomorphism with image contained in EV, since

. if h e Uh and v 6 EV, then for all n 6 n2,

(vh)n (vn)h + v.[h,n]I
I

= 0 since vn = O and [h,n] e

I
I
D

so v.[h,n] = 0

thus vh a CV
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and . if V 5 EV and n e g2,

f(v).n = f(v.n) = f(0) = 0

so f(v) 6 EV, i.e. im f ~ 5 EV .

CV

Thus, if we define Ef to be f with domain restricted to EV and codomain

restricted to EV, then it is easy to check that E is a functor from

Mod-g to Mod—h.

(ii) Definition of the category g. Let g be the full subcategory of

Mod—g whose objects are all V e Mod-g such that

(1) (Ev).U§ = v

(2) v.g1n EV = (0)

(3) V.n1 contains no nonzero g—modules

where v.91 denotes the subspace of V (considered as a vector space)

spanned by all elements of V of the form v.n where v e V and n e 21.

It is easy to check that V.§1 is an h-submodule of RV.

(iii) Definition of the functor C : g + Mod—h. We define C to be the

restriction of the functor E of part (i) to the category 9.

 

(iv) Definition of the functor J : Mod-h + g. Wallach, in [17], lemma

2.1, proves that if W e Mod—h, then IW e Q. We shall write J for the

functor I with codonain restricted to G.

(v) Adjointness of J and C; definitions and calculations. Wallach also

states that W = CJW. If jW : W + RIW is the Uh—monomorphism defined in

section (8.2) above, then the nap

sw : w + CJw,

defined to be jw with codomain restricted to CJW, is such a Uhuisomorphism.

It is easy to check that SW is natural in W, using the naturality of jW'
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Another result of Wallach [17], his theorem 3.1, shows that if

V e Q, then V = JCV. It is necessary to outline his proof, in order to

specify the isonwrphism. We shall then show that this isomorphism is

natural in V.

Let V e g. The conditions (1) and (2) of part (ii) above

guarantee that

RV = CV e V.g1

as an h—module.

Let pV : RV + CV be the projection onto the first summand. We

define a map

: V + JCV

by

(tv(v))(u) = pV(v.u) for v e V, u 6 U5.

A

(Recall that JCV E HomUt(Ug,CV), from (8.2) part (i) and definitions

of J and C.)

It is easily verified that for v e V, tv(v) is a UE—homomorphism,

that tV is a gwhomomorphism, and that, because of condition (3) of

part (ii) above, tV is injective.

We shall now prove that t is surjective.
V

Observe that pv(v.u) = v.y(u) for v 6 CV and u 6 Ug, and where

Y : Ug + U; is the projection defined in part (i) of section (8.2).

It follows that

t

ch

so that, using condition (1) of part (ii) above,

: jc‘JQ

im(tv) (im t ).Ug

V CV '

= (1m 30V).U§

JCV by definition of J.l
!
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Thus tV is surjective and hence an isomorphism.

Next, we check the naturalitv of tV in V. Let V,V e G, and let
 

o e §(V,V). Consider the diagram

tvv -——————9 JCV

(bl 1J0¢ ‘

v -————-—-§ va
tv

Let v e V, u e Ug: (JC¢ 0 tV)(v) = C¢ o (tV(v)), hence

(C¢ ° (tV(v)))(U) = C¢(pv(v.u))

while tv(¢(v))(u) pv(¢~(v).u)

ll pv(¢(v.u))

So, the diagram above will commute if and only if

Pv o R¢ = C¢ o Pv»

that is, if and only if the following diagram commutes for all

q: 6 §(V,\7):

pvRV -———————> cv

P451 10¢

RV --—---> CV
pi?

As was noted by Wallach [17], in the proof of this theorem 3.1, if

V e g and v e V, we can write

v = 5.g

for some 5 e CV and some g 6 Ug, because of condition (1) of part (ii)
~1-

above.

Thus, with this notation

pv(v) = '7'.‘{(g).
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A similar remark applies to V. Thus, in our case, for v e V and g e Ug,

¢(v) = ¢(5.g) = ¢(V).g

and so pv(¢(v)) = ¢(3).Y(g). But, on the other hand,

¢(G.Y(g))¢(pv(v))

H ¢(§).Y(g).

Thus the diegrams above do commute, and tV is natural in V.

(vi) Adjointness of J and C; conclusions. By part (v), there exist
 

natural isonprphisms

sw : W + CJW for W e Mod—h

tV : V + JCV for V e 9.

Thus, by MacLane [12] page 91, Theorem 1, C is both a left and a right

adjoint for J, and the categories Mod—h and g are equivalent.

Since MacLane's roof is indirect we shall write down theP ’

adjunction isonorphisms.and their inverses:

Let V e 9, W e Mod—h.

(A) Define va : homU§(CV,W) + §(V,Jw) as follows:

let w e Homh(CV,W), and set

TVW(¢) = Jw 0 tv.

The inverse va is defined as follows:

let ¢ 6 §(V,JW), let v eCV and set

-1
(va (¢))(v) = ((C¢)(V))(1Ug).

(B) Define G, : §(JW,V) + HomUH(W,CV) as follows:
NV

let ¢ e §(JW,V) and set

\ : ova(¢/ Cf!) SW.
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Define GWV as follows:

let w e HomUL(W, CV), let w1,...,wn e W,

(w.)x. 6 JW, and set
1 1

let X1""’Xn e Ug, so that in1:1 jw

(¢(wi)).xi).
n D

(owlwntg jWCWi).Xi) = j t (jcv
1-1 1:1

J a
Mod—h ‘ g is an equivalence of categories.

C
Theorem:

(8.4) Induction from Cartan—type subalgebras III — a dualization of

Wallach's construction.
 

Conventions: In this section, g will be a "Lie algebra with decomposi-
 

tion", as in (8.2) and (8.3). That is, g has subalgebras h, n1,§

such that

We shall write

Recall from section (1.2) of this thesis that

Ug = U; o 0:.g2.Ug2

as a left Ut—module. Since [n2,h] g 92’ it is easy to check that the

summands are right Uhmmodules. Let § : Ug + U: denote the projection

onto the first sunmand; V is a left Ut-, right Uh-module homomorphism.

Note that ? is a different map from the map Y introduced in

section (8.2).

 

introduction: We are going to define a functor I : Mod—h + Mod-g and

show that it satisfies the left and right injectivity axioms. We shall

define it in much the same fashion as we defined Wallach's functor (in

section (8.2)) but we shall use the tensor product functor — ®UhU§

in place of the functor HomUh(U§,~).
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(i) Definition of the functor T : Moduh + Mod—g. Let W e Mod—h.
 

Define a functor

as follows. The underlying vector space of W is the same as that of W,

and g acts on W as it does on W. n1 acts trivially on W. Since 3 = 31 $ II
D‘

this specifies the module W. This functor is defined to act trivially

on morphisms (i.e. it does not change them) and we do not distinguish

between a morphism and its image under the functor. That is, if

W1,W2 E Mod—h,

HomU:(W1,W2) = HomUh(W1,W2).

Next define an h—epimorphism

Q : R(W aW Ug) + W
U:

«1

as follows: for w e W and u e Ug, set

fiw(w ® u) = w.?(u)

and extend this definition to all of W ®Ut Ug by linearity. fiW is

well-defined, because the map W X Ug +-W defined by

(w,u) + w.?(u) (for w e W, u e Ug)

is Ut~balanced and bilinear (cf Curtis and Reiner, sections (12.1) to

(12.6).

A:

Consider the h—submodule ker fiw of W ® Ug. ker EW contains a
U; :

unique largest g—module, namely the sum of all the g—modules contained

in ker EW' Call this unique largest g—module Y(W) g ker kw. Clearly

EW factors through R(W ®Ut Ug/YCW)) via the natural projection — by a

map
EW : MW ®Ur {lg/31m) + 14,

say.
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We define our functor

l : Mod-h + Mod—g

as follows: first, on objects.

~

Set lW = (W Ug)/Y(W) and give it the quotient gamodulea
U: _

structure. Now we must define the action of l on morphisms. Let

W1,W2 e Mod—2, and let w e Homh(W1,W2). Suppose w 5 W1, u e Ug, so that

w a u + Y(W1) e lWl.

Define (lW)(w ® u + Y(W1) = W(w) 8 u + Y(W2), and extend this definition

to all of lWl by linearity.

We must check that lw is well—defined. Note firstly that the map

W®u»¢(w)®u (W6.fi1,u€Ug)

is well—defined by the functoriality of - ®Ut Ug. Suppose that

w1,...,wn 6 W1 and u1,...,un e Ug, and that

n
f w. ® u. e Y(w ).
.1 1 1 1
i=1

A

Then, since Y(W1) is a g~module contained in ker kw , for all x e Ug
:

1 _.

n
: ®0 kW1(-Z wi uix)

1—1

H —

= .X wi'Y(uix)
i=1

n
.°. 0 = w( E wi.?(uix))

i=1
n

= E w(wi).§(uix)
1—1

A n
= kw ('2 ¢(wi) ® uix).

2 1:1
n

That is, for all x e Ug, ( Z W(w:) ® u.)x 6 ken Q
: j=1 .1. 3. W2
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n
t ' 'But tJlS forces (.2 w(wi) ® ui)U§

n A

or (.2 w(wi) ® ui).U§ g ker sz. 1-1
i=1

n —

g Y(W2), so, in particular, 2 W(wi) ® ui e Y(W2); Hence Iw is well—
i=1

defined. It is easy to check that T has the homomorphism property of

a functor.

(ii) Naturality of EW’ and the Right Injectivity Axiom. Let W e Mod—h.

_We now show that the UQ—epimorphism E : RTW + W, defined in part (i),
W

is natural in W. Let W1,W2 5 Mod—g, and let w e HomUh(W1,W2). We must

show that the following diagram commutes:

— Ew
RIw1 ..__.l._s W1

16% ' 1w

k
W2

,Let w 6 W1 and u e Ug. It is sufficient to check commutativity

on a generator w 8 u + Y(W1) of RTWI:

¢(EW1(W ® u + YCW1))

w(w.?(U))

¢(w).?(u)

while Ew (RIw(w a u + Y(W1)))
2

Ew2(w(w) e u + Y(W2))ll

¢(w).§(u).

So the diagram commutes as required. By its definition, ker EW

contains no nonzero g—modules. Thus theorem (5.16) of this thesis

tells us that l and R satisfy the right injectivity axiom.

 

(iii) Definition and naturality of the nap 3w. Let W e Mod—h, let

w e W. We define a map

3w : w + Riw

Ug + Y(w).by §w(w) = w e 1
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It is easy to check that 3W is an h—homomorphism, and since

= 1w’ 37w is injective. Also, clearly, (im 3w).Ug = IW.

Let www2 e Mod—1:1 and suppose 1p 6 HomUh(W1,W2). I claim that 'j'w

is natural in W. To see this, we must check that the following diagram

commutes:

iW _

w1 .______1......, RIwl

w2 ”‘7‘“? le2
3w

2

Let w :1 wl. Then (Ennfiw (w)) = (Riww e lug + mm)
1

Mw) :8 lug +I Y(w2)

while'fiw (¢(w)) = ¢(w) ® lUg + Y(W2).
2 :

Thus the diagram does indeed commute, and so 3W is natural in W.

(iv) Left Injectivity Axiom. By part'(iii) above and theorem (5.8) of
 

this thesis, I and R satisfy the left injectivity axiom.

Also, by part (iii) above, I satisfies the splitting axiom of

,section (7.2) of this thesis.

 

(8.5) Induction from Complemented Ideals.

Hochschild and Mostow, in their paper [7], pp. 937—939, described

a way of inducing from a complemented ideal. Their induced module

construction was not, however, on the face of it, functorial.

The modification of their construction described in this section

is functorial, and the functor we shall construct satisfies the left

injectivity axiom.

Egnygntioni: In this section, h 9 g will be a complemented ideal — that

is, an ideal h of g for which there exists a subalgebra s in g which is
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a vector space complement to h:

g = h e s as a vector Space.

Hochschild and Mostow define a left g—module structure on Uh,

which we shall presently describe. Uh will be assumed to bear this

module structure "*" throughout this section.

(i) g—module structure on Uh. Since g = h e g, for any g e g there

exist a unique h e h and a unique 3 6 s such that

g = h + 5.

Thus, if u e Uh, we can set

g * u = (h + s) * u = hu + (su—us).

It can be proved, by induction on the length of standard monomials,

that su—us e Uh, and it is then easy to verify that the above equation(s)

determine a g—module structure on Uh.

(ii) Definition of the maps §W’—jW’ and the object function of the
  

functor I. Let W e Mod—h. We can construct a vector space Homk(Uh,W)

and we put a g—module structure on Homk(Uh,W) by defining, for

f e Homk(Uh,W) and g 6 g, u e Uh

fgm) = f(g u).

If we define a map

jw : W + Homk(Uh,W)

by (for w E W and u e Uh) setting

§w(w)(u) = w.u,

then it is easy to check that 3W is a well—defined h-monomorphism.
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We define a g—submodule IW of Homk(Uh,W) by setting

IN = (1m 3W).U§.

We define jw : W +-RIW to be 3W with codomain restricted to RIW. Clearly

jw is still an h—monomorphism and

(1m 3W)U§ = IW.

(iii) Action of I on morphisms; naturality of jW' Let W,W e Mod—h, and

let w 6 Ho (W,W). Let f e IW thus f may be written as a sum
mug ’

j (w.).x.
1 W l 1

with wl,...,wn e W and x1,...,xn e Ug. Let u e Uh. We set

H
1

n

n
u
n
s

i

((I¢)(f))(u) = (w o f)(u).

We shall show that (I¢)(f) e IW.

((IW)(f))(u)

n

(w o 2 jw(wi).xi)(u)

i=1 ”

n

WCiélwi.(xi * u))

n

E WCWi).(xi * u)

i

l
l

1

n

(Eljw(¢(wi)).xi)(u).

So (I¢)(f) e 1W. Thus Iw e Homg(IW,lW)3 Clearly, I satisfies

the homomorphism property of a functor.

Next, I claim that jw is natural in W° We must show that the

following diagram commutes:

-—-—-E-—) RIWW

J. is,
WM RIW
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Choose u e Uh and w e W. Then

«RI-a») o ijwxu) = (up o jw(w))(u)

ll ¢(w.u)

WCw).u

(jW(¢(w))(u)

(jW ° ¢)(w)(u).

ll

Thus jfi o w = RIW c jw as required.

(iv) Conclusions: Injectivity Axiom and Faithfulness of I. By theorem
 

(5.8) and the results of parts (ii) and (iii), it follows that I and R

satisfy the left injectivity axiom.

Further I is a faithful functor.

For, if Iw : 0, then, in particular, for all w E W,

(I¢)(jw(w)) = 0.

So for all w e W, (1w)(jW(W))(1Ug) = 0.

That is w(w) = O for all w 6 W. That is w = 0. Thus I is faithful.

(v) Theorem. (of. Hochschild and Mostow [7] and Zassenhaus [18].)

Let g be a finite—dimensional Lie algebra over a field k of

characteristic zero, and let h be a complemented ideal of g with comple—

mentary subalgebra

“
U
! 5%.

Let W be a finite—dimensional h—module on which [h,§] acts nil—

potently. Then 1W, as defined in part (ii) above, is a finite—dimensional

g—module.

Remark: It may be seen that this result is a form of converse to the

theorem of Zassenhau: cited in section (0.3);
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The proof is rather close to that of the analogous result of

Hochschild and Mostow, mentioned above.

Proof of theorem:

(1) Definition of 8(W), and of d.
 

Let W e Mod—h. Let

be a composition series for W. We write

8(w) = (§} (wi/wi_ )

i=1 1

and call 8(W) the semisimple h—module corresponding to W.
 

By the Jordan—Holder theorem (see, for example, Curtis and Reiner

[2] (13.7), p.79) 8(W) is determined up to isomorphism. A subalgebra of

h acts nilpotently on W if and only if it acts trivially on SCW).

Note that a composition series for W can have length (n) at most

dimkW. Write d = dimkW.

(2) The formulas (A) and (B) and the core of the proof.
 

AnnUh(W) — (A)

I
n

C d
(AnnUE(o(W)))

I
n AnnUE(S(W)) - (B)

Since, by hypothesis, [§,§] g AnnUh(S(W)), it follows that AnnUh(S(W))

is a g—submodule of Uh. Hence CAnnUh(S(W)))d is a g—submodule of U2.

If f e Homk(Uh,W), and

f(AnnU§(W)) = (0),

then for all x e Ug

= , d
f(x\AnnU§(S(W))) )

f(AnnUh(W

I
n

X . . d

f ((AnnUg(S(W))) )

I
n )) by (A) above

:0.
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Now im jw annihilates AnnU (W), so IW = (im jw).Ug annihilates

I
i

"
:
3
"

(AnnUh(S(W)))d. Let us write J (AnnUh(S(W)))d. It is easy to see

that IW is embedded in Homk(Uh/J,W) (cf proposition (7.17) of this

thesis.)

Since w is finite-dimensional, AnnUhCW) is of finite codimension

in Uh. Hence, by inequality CB), above, AnnUh(S(W)) is of finite

. . .
1

codimenSion in Uh. Now we need a lemma of Zassenhaus°

Lemma: If X and Y are ideals of Uh of finite dimension, then so is XY.

 

We deduce from this lemma that J is of finite codimension in Uh.

Thus

dimk Homk(Uh/J,W) < w

and so, since IW g Homk(Uh/J,W),

dimk(IW) < m. D

 

1 Cf [18] page 263
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Chapter 9 — Lie Ideal Subrings and Clifford‘s Theorem
 

(9.1) Introduction. The reader should note that the theorems, proposi-

tions and lemmas of this chapter are labelled in a different way from

those of chapters 1 to 8.

In [14], M.A. Rieffel remarks that there is ”one very important

part of the theory of induced representations of groups which [he does]

not a present see how to generalize to rings, namely Clifford's theory

of induced representations of group extensionsU.

He then notes that the difficulty lies in finding a satisfactory

concept of "normal" subring of a ring.

In this chapter, we present a possible candidate for the-role of

"normal" subring. It is shown that, with this concept of normal

subring, the analogues of at least two of the main results of Clifford's

theory of induced representations of group extensions hold, with some

‘restrictions on the rings and nodules involved.

Throughout this chapter, all rings considered will be assumed

to have identity elements. The identity element of a ring R will be

denoted by 1 By a subring S of a ring R, we shall mean a subset of
R'

R closed under subtraction and multiplication, and containing 1R. All

modules will be assumed to be unitary. All modules will be right

modules or bimodules. The symbols [s,r] will be used to denote the

commutator sr — rs of two elements s and r of a ring. CR(S) will

denote the subring {r e R : V s e 8 rs = sr} and Z(R) the centre

of a ring R 3 S. If M is an R—module, and X is a subset of M, then

AnnR(X) will denote {r e R : X.r = b}}. By an R-conponent of an

R—module M, we shall mean a quotient module V/W, where W E V and w

and V are R—submodules of M.
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Definition: A Lie ideal subring S of a ring R is a subring of R which

is also a Lie ideal of R, that is, a subring with the following property:

V s e S V'r e R [s,r] e S.

The Lie ideal subring is our candidate for the role of "normal" subring.

Theorem A: Let R be'a right Artinian ring and let S be a right Artinian

Lie ideal subring of R. Let M be an irreducible R—module which is

finitely generated as an S—module. Suppose that 2r 6 AnnR(M) implies

r e AnnR(M) for all r e R. Then all irreducible S—components of M are

S—isomorphic, and M is completely reducible as an S-module.

This result is a ring—theoretic analogue of (49.2) of Curtis and

Reiner [2]. It is also closely analogous to a result of Barnes and

Newell [1], page 185. Part of Theorem A is true under much weaker

hypotheses: see Proposition 1.

Theorem B: Let R be a ring and let S be a Lie ideal subring of R.

Let M be an irreducible R—module and let L be an irreducible S—submodule

ofM. Sets='== {reR:L.rgL}. ThenMiLe R.0'.Sr-

(9.2) Examples of Lie Ideal Subringsc
 

(i) If I is an ideal of a ring R, then the subset

{ i + n.1 : i e I, n an integer} is the smallest Lie ideal subring of
R

R containing I. This Lie ideal subring will henceforth be referred to

as I +-ZZlR.

(ii) If I is an ideal of R, then I + ZCR) is a Lie ideal subring

of R. In fact, if S is any subring of R such that

I +2111 3 s g I + 2m),

then S is a Lie ideal subring of RB A partial converse of this will be
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proved in (9.4) in the case where R is a right Artinian semisimple

ring.

(iii) If S is a Lie ideal subring of R, then so is CR(S).-

(9.3) Equivalence of Irreducible Components.
 

The result proved in this section is similar to a result of

Zassenhaus on Lie algebras, and is proved similarly: see Zassenhaus

[18] page 253. It implies one half of Theorem A, but is proved under

weaker hypotheses.

Proposition 1: If R is a ring, and S is a Lie ideal subring of R,

and if M is an irreducible R—module which contains an irreducible

‘S—submodule, then all the irreducible S—components of M are S—_

isomorphic.

Proof: Let L be an irreducible S-submodule of M. Consider the set

of S—submodules of M which contain L and have all their irreducible

S~components isomorphic to L. By Zorn's lemma, this set contains a

maximal element, K, say.

is shall show that K = M, by showing that K is an R—submodule

of the irreducible R-module M. Suppose r e R. We must show that

K.r E K. For all s e S and all k e K,

(kr)s = k.[r,S] + (ks)r e K +‘Kr

since [r,s] e S, hence K + Kr is an S-submodule of M.

We claim that pr : K + (K + Kr)/K, defined by

k 9 kr + K for k e K

is an S—epimorphism of K onto (K + Kr)/K. The surjectivity part is

obvious. If s e S and k c K, then



ksr + KI!pPCkS)

k.[s,r] + krs + K

krs + K since [s,r] e 8ll

(kr + K).sH

pr(k).s

so on is an S—nomomorphism as claimed. Thus (K + Kr)/K is S—isomorphic

to a quotient module of K. It is now easy to see that every irreducible

S-component of K + Kr is isomorphic to L.

Hence, by the maximality of K, K = K + Kr. That is, Kr S K.

Thus K is an R—submodule of M. D

(9.4) Lie Ideal Subrings of Right Artinian Semisimple Rings.

We need Lemma 1.3 of Herstein [4]; we restate this Lemma here and

in a convenient form, for ease of reference:

Eemma 2: Let R be a ring with no nonzero nilpotent ideals, in which

2x = 0 implies x = 0. Suppose U is a Lie ideal subring of R. Then

either U E Z(R), or U contains a nonzero ideal of R. U

The next result is the promised partial converse of example (ii)

of (9.2).

Corollary 3: Let R be a semisimple right Artinian ring in which 2x = 0

implies x = O= and let S be a Lie ideal subring of R. Then there exists

an ideal I of R, such that

I+Z.1R_C_SEI+Z(R).

Proof: Let I be the unique largest ideal of R contained in S. Recall

that every ideal of a semisimple right Artinian ring is a direct

sunmnnd. Thus there is an ideal J of R such that R = I ® J. Let p be
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the projection of R onto J. It is easily checked that S = 9(8) Q I,

and that 9(8) is a Lie ideal subring of J. Since J is an ideal of R,

2x = 0 implies x = 0 in J, and furthernmre, J has no nonzero nilpotent

ideals, since J is semisimple (see Lemma 1.2.2 of Herstein [5]).

Hence, by Lemma 2, 0(8) 5 Z(J).

It follows that 0(8) 5 Z(R).

Therefore, 8 = I $ p(S) g I + Z(R). Finally, since I g S and

1 6 8, it follows that I + ZZ.1R g S. D

R

(9.5) Proof of Theorem A.

For the proof of Theorem A, we need some extra notation and a

lemma.

Let R be a ring and M an R—module, and let T be a subring or

ideal of R. Noting that AnnR(M) is a two—sided ideal of R, we write

T = (T + AnnR(M))/AnnR(M);

Lemma 4: Let R be a ring and let S be a Lie ideal subring of R. Let

M be an R—module and let L be an irreducible S—submodule of M. Suppose

that c e R satisfies c + AnnR(M) 6 C§(§) and c ¢ AnnR(L). Then the

map 9 : L + Lc defined by 2 9'2c is an isomorphism of S—modules.

Erggfiz Let c e R satisfy c + AnnR(M) e CR(§) and c ¢ AnnR(L). For any

2 e L and any s 5 S, (2c)s = (£3)c + £.[c,s]. Now [(0 + AnnR(M)),

(s + AnnR(M))] = O by choice of c, hence [c,s] e AnnR(M), and £Ec,s] = 0.

That is

(RC)S = (£s)c. (*)

Clearly P is additive, and the equation (*) above shows that p is an

S—homomorphism. SinCe L is irreducible and c d AnnR(L), p is injective,
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and clearly p is surjective. Thus p is an isomorphism. D

Proof of Theorem A: We shall work modulo AnnR(M). Clearly M is a

faithful irreducible i—module, hence R is a primitive ring. R is

right Artinian, so fi is right Artinian too. Thus by Theorem 2.1.4

of Herstein [5] (page HO), fi is a complete matrix ring over a skewfield,

so is simple. Since 2r 6 AnnRCM) implies r e AnnR(M) for rye R, it

follows that 25 = 0 implies E = 0 for E 6 fi. Also, it is easy to Check

that § is a Lie ideal subring of §.

Hence, by Lemma 2, § 5 Z(§).

Since M is finitely generated as an S-module and S is right

Artinian, M has an irreducible S-submodule,L say, which is also an

irreducible §—module.

Using the fact that M is finitely generated as an S-module again,

we can find a finite irredundant list c1,02,...,ct of elements of R,

Asuch that
t
izchi = M.

By the irredundancy of c1,c2,...,ct it follows that ci ¢ AnnR(L) for

i = 1,2,...,t. Since § 2 Z(§), ci + AnnR(M) e CR(§)’ for i = 1,2,...,t.

So, by Lemma H, Lei is an S—deule isonwrphic to L, for i = 1,2,...,t.

For any j E,{ 1,2,...,t}, LCj = L is irreducible, so

LC. 0 E Lci é {O} or Lc.. The latter possibility would contradict

the irredundancy of c1,c2,...,ct. Therefore, Lc. n z Loi 5 {0}. That

t a 3 176:]

1s, M =@ Lci. ' D
i=1

(9.6) The Proof of Theorem B.
 

We need a Lemma.
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Lemma 5. Let R be a ring and let S be a Lie ideal subring of R. Let

M be an irreducible R-module and let L be an irreducible S—subnmdule

of M. Set 3:2 = {r e R : Lr _c_ L}. If 20 e L, then AnnR(%o) g. s='-=.

Proof of Lemma 5: If k e L, then we can write i = £0.s for some 5 e S,

because L is irreducible as an Sumodule. Now for any a e AnnP(£O),

ll2.a = kosa loas + £O[s,a]

0 + £O[8,a] e L,

since [s,a] e S, because 8 is a Lie ideal subring.

That is, La 5 L, or a e 8*. U

Proof of Theorem B: We shall use the characterization of a tensor

product given in Curtis and Reiner [2], sections (12.1) — (12.6).

We shall consider L as a right S*—module and R as a left

S*—module and right R—module. To prove that M is isomoprhic as an

Abelian group to L ®S* R, we must show that if

¢:LXR+A

is any S*-balanced bilinear map from the Cartesian product L X R into

an arbitrary Abelian group A, then ¢ factors through M by a bilinear

, balanced nap u : L X.R + M which is independent of ¢.1 That is, we ‘

must show that there exists ¢' : M + A such that the following diagram

commutes:

L X R -”-——*“"*9 M

¢\A/'

We choose for u the restriction to L x R of the structure map

M X R + M of the R—module M. That is,

u(%,r) = 2.r for R e L and r e R.

 

We must also remark that the elements u(V,r)pnrratc M is an Abelian

group.
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It is easy to check that u is bilinear and Sfi—balanced. We construct

¢‘ as follows: pick any nonzero £0 e L g M. M is an irreducible

R—module, so for any m e M there exists an r e R such that m = £O.r.

We define ¢'(m) = ¢(Ro,r). We must show that this map is well—defined

— it certainly has the desired commutativity property. Suppose that

m = £O.r = 10.5 for sone E e R. Then r — 5 e AnnR(20) g 8* by Lemma 5.

We must show that ¢(£O,r) = ¢(£O,§).

We know that

«2,0,1» — «5105) ¢(£O,r - E)
II ¢(£o(r—r),1 ) since r—5 5 8*

¢(O,1R) Since r—r e AnnR(£o)

:0.

That is,

Mom) = M1091?)

and ¢' is well—defined. Hence L ® R = M as Abelian groups, and the
S 2':

isomorphism, 1 say, is given by 1(R s r) = 2.r for i e L and r e R.

Finally, we must show that this is an R—homomorphism. Suppose that

l e L and r1,r2 e R. Then

1((£ 8 r1).r2) 1(2 3 (r1r2))

£.(r1r2)

(£.r1).r2

I1 1(2 ® r1).r2 .

Thus 1 is an R—honpnorphism, and hence an R—isomorphism. D
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Appendix ‘ Weak Double Adjoint Functors

(A.Ol This appendix contains work done since chapters 7 and 8 were

written. It uses terminology which differs from that developed in

chapters u~8, but which is more convenient for the concepts we shall be

dealing with.

The principal object of this chapter is to reformulate the state—

ments of (5.8), (5.9), (5.16) and (5.17) in the case where the left and

right injectivity axioms of chapter 5 and the splitting axiom of chapter

7 are all satisfied. The result so obtained is illustrated with a new

example.

(A.1) Definitions of Types of Weak Adjoint Functor

Let

H
m , g, be categories, and let R : g + g, I : §,+ g be functors.

We say that I is an injective weak left adjoint to R if:
 

for all W e g, V e g, there exists an injection

6W : g(Iw,V) + §(W,RV) (1)

which is natural in W and V.

(In chapters 5, 7 and 8 this concept was expressed by saying that I and

R "satisfied the left injectivity axiom".)

We say that I is an injective weak right adjoint to R if
 

for all W e H, V e 9, there exists an injection

n : §(V,Iw) + I21(RV,W) (2)

VW

which is natural in V and W.

(In chapters 5, 7 and 8 this concept was expressed by saying that I and

R "satisfied the right injectivity axiom".)
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Similarly one could define surjective weak left and right adjoints
 

to R.

Notice that for W e g,

ewalwum) e I:1'(W,RIW)

and nIW,W(1IW) c E(RIW,W).

As in chapter 5, we shall denote these two morphisms by jw and kw respect—

ively. Both are natural in W, by sections (5.4) and (5.12).

We shall say that I is an injective weak double adjoint to R if
 

(1) and (2) above are satisfied, and also the following condition:

. .I o ' =

for all w e g, kw 3w 1w. (3)

Similarly, one could define surjective weak double adjoints.

Various other combinations are possible.

 

Double Adjoint Situations. Let g and g be categories

and let R : g + g be a functor.

Suppose that L : g + g is a left adjoint to R,

and that F : g + g is a right adjoint to R.

Let i :ilH ; RL denote the unit of L

and let e : Rf 4 1 denote the counit of F,

in the terminology of MacLane [12], page 81. Then we shall say that the

 

7-tuple (fi,§,R,L,i,F,e) is adouble adjoint situation.

Recall that if a category is efact, in the sense of Mitchell [13],

page 18, then every morphism has a kernel and a cokernel, an epimorphism

is the cokernel of its kernel, and every morphism factors as an epi

followed by a monic.

The following lemma is used in the proof of theorem (A.3).
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(A.2) Lemme} Let a : A + B be an epimorphism, let 6 : C + D be a
~MW...»

A ——~———e¢ B monomorphism, and let the figure at left be a

Y 16 commutative diagram in an exact category. Then

C>—*‘7;—¢ I) there is a unique map 8 : B + C such that the following

diagrams commute:

A ———9"—->>B B

Yi/ e 16

C CP—é—+D

Proof: Let ker a ““34 A be the kernel of a, and consider the diagram

k
ker a -———$ A -—--—%§B

B

B 0 Y 0 k = 6 0 a o k by commutativity,

= 6 ° 0 since k is the kernel of a

20:800.

Therefore Y o k = 0, since 8 is monic.

Hence, since a is the cokernel of k, there exists a unique 8 : B + C

such that e o a = Y. Together with the commutativity of the original

llsquare, this implies that 6 o a B 0 Y = B o E o Q. But a is epi, so

6 = B o E. The equations 8 o a Y and B o 8 = 5 tell us that the

B

15
D

diagrams

A—q—->7B

C

e

C *_~E_‘$ commute. U



134.

(A.3) Theorem: Let (g$§,R,L,i,F,e) be a double adjoint situation, and

assume 9 is an exact category. If ¢ : L ; F is a natural transformation,

such that

for all w e a, eW o Maw o 1w = 1W, (4)

then ¢ determines an injective weak double adjoint to R.

Conversely, an injective weak double adjoint to R determines a

natural transformation ¢ : L ; F satisfying (Ll)o

Proof: Let (§,§,R,L,i,F,e) be a double adjoint situation, and suppose

that the category 9 is exact.

First, let us suppose that ¢ : L + F is a natural transfornation

satisfying condition (4). Let W e 3. Since 9 is exact, ¢w factors as

shown below:

Define an object function I : E + g by lW = im ¢ Suppose W1,W2 e g

and w e g(W1,W2). Consider

u

Lw1 via) le >——-—-——-v) le

m 1 1w
sz -————-——>> 1wp >-—-———-——-a sz

u - VW
WZ 2

This diagram can be redrawn as

uwLw1 .___.l_.g» le

“W o Lw Fm o VW
2 1

1W2 *-*;*--t> sz

W2
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In this form, it can be seen that Lemma (A.2) applies, so that there

exists a unique morphism, which we denote by 1w : IW1 +~IW2, satisfying

1w 0 “W and
1

“wz °W
v o Iw : Fw o v .w2 WI

The uniqueness property of Iw makes it easy to verify that I : E + g is

a functor, and then clearly u : L ; I and v : I ; R are natural trans-

formations.

Define j = Ru 0 i : 1H $ RI

and k = e 0 RV : RI ; 1,,

then for W e we have the following commutative diagram:

":
1:

RLW —-——_—_—9 RFW

wm/
ww/_\ww

Next, for W 6 Ii, V e (:3, define

(5)

n : §(v,Iw) + §(Rv,w)
VW

and eWV : §(IW,V) + g(W,RV)

by

kw 0 Ra

R8 0 jw

nvw(a)

64V(B) H

where a e §(V,IW) and B 6 §(IW,V).

We claim that nVW and eWV are injective, and natural in V and W.

The naturality follows from that ot and kw, and is proved in a manner*
jw

similar to the appropriate part of the proofs of theorems (5.8) and (5.16).
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Suppose that a1,a2 a gCV,IW) and

nvw(a1) = nvw(a2).

That is, kW 0 Ral = kW 0 Raz.

But, by definition, kW = ew o va,

so ew o RVW o Ron1 = ew o va o Raz.

Since, according to MacLane [12], page 80, theorem 1, part (ii), the

adjunction §(V,FW) + §(RV,W) is given by X W e o Rx, the last equation
W

implies that Vw 0 a1 = Vw 0 a2.

But, by its definition, VW is monic. So it follows that

(11 7- 062.

Thus nVW is injective. A similar argument shows that eWV is injective.

Finally, for W e E,

(1 ) = k
nIw,w IW

) = 'and 9 ( 3W .
w,1w 11w

Inspection of the commutative diagram (5) shows that for W e g,

: 1w,

that is, condition (3) is satisfied, so I is an injective weak double

adjoint to R.

Now we prove the converse. Let (§,§,R,L,i,F,e) be a.double

adjoint situation and suppose that we are given natural injections

n : §(V,1w) + §(RV,W)
vw

and 6wV : §(IW,V) +-g(w,RV)

for all W 6 fl and V e g. Set k = ),
w n1w,w(11w) and 3w = e (w,Iw 1W

and suppose further that for all W e B
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k 1w ° 3W = w’

That is, we are supposing that I is an injective weak double adjoint

to R.

By theorems (5.9) and (5.17), there exist natural transformations

11w : LW -> IW and VW : IW + PW with components which are respectively

epi and monic. Using Corollaries (5.9a) and (5.17a) and MacLane [12],

page 80, Theorem 1, we find that

j =Ru oi
W W W

} (6)
and kw = ew o va

V ° U is a natural transformation from L to F, and, for all W e 111,

ew o R(\) o 10w 0 1W = (ew o va) o (Ruw 0 1w)

= kw ° 3w
: 1W.

Thus condition (4) is satisfied (with (1) = \) ° 11), and the proof of the

theorem is complete. I]

(AM) Example: Letg— be a ring with identity element 1, and letll be a

subring such that 1 6 TH . Let e :fl+§ denote the inclusion map, and

suppose that there is an (f(,]-()—bimodule epimorphism Y If +f/ such that

Y o e = it”. I

Let R : Mod—g ~> Mod~fl denote the change—of-rings functor. R has

a left ad'oint L = -« ® and a ri ht ad'oint F = Horn (6 —- ‘ Let WJ I/g g j ”J a )

be a rightfl—module. Define a map

A

jw : w -> H(>I\ni/((f,W)

by . §WCW)(r) : w.Y(_r) for w e W, r 65 .

Set 3W 2 (im 3"”ng . lW is agmmodule. Let WUWZ e Mod—f/and let
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1]) e Hom (WHWZ). Define, for f 6 iwl _C_ Homjfgml)

(TIPMf) = ll} 0 f .

n
f may be written as f = 2 jw (w.).r.'for suitable w. e W and r. e g”

i=1 1 l 1 l 1

i = 1,...,n, and calculation shows that
n

(111))(f) : igljwzfi’KwiNmi e TWZ

and that ill) is a5 ~1'1omomorphism. Thus

Exp 5 Hoxry/(TWI ,TWZ)

and T : Mod—j/-> Mod»; is a functor.

Define jw to be 3W with codomain restricted to be RTW, and define

kw:RIw+Wby

for‘ f E RIW CEO.“ ( W)..— #5,

It is routine to verify that jw and kw are natural in W, and that

w jW = 1w, so that jw is monic and kw is epi.

Define a map 5w : W X5 + Horrk’gfl) by

5W(W,g)(8) = w.y(gs) for w 6 W, and g,s sf .

It is easy to Check that 6W is bilinear and that for h ej-l

5w(w.h,g) = $w(w,hg)

so 6W induces a map

¢W : w «3&5? " Honyfffl)

given by

¢w(w ® g)(s) = w.y(g8).
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It is easy to check that ¢w iszag—honmmorphism and natural in W.

We claim that the natural transformation ¢ satisfies condition (H) with

respect to the double adjoint situation

(Mod—fl,Mod—§,R,—®flg, i,Horrlfi(j,—), e)

(where i and e are defined below), and so induces an injective weak

double adjoint to R, by theorem (A.3).

After verifying this claim, we will show that the injective weak

double adjoint I induced by ¢ is, in fact, the functor l defined above.

'The unit i : W + W ® is iven bw 1/5 g 3’

iw(w) = w 8 1 for w e W

and the counit e : HOUL(£,W) + W is given by
W 446

ew(f) = f(1) for f e Hom g;,w).

Thus, for w a W,

(e o R¢w o iw)(w) (e o R¢w)(w ® 1)
W W

ew(R¢w(w ® 1))

(R¢W(w 8 1))(1)

ll w.Y(1)

w.Y(e(1))

w.1

w .

So condition (u) is satisfied.

By the proof of theorem (A.8), IW = im ¢w for W e Q. But, by

inspection of the definitions of ¢w and 3w,

6im ¢w = im jw.d,/
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so 1w = 1m qbw = 1m 3“”; = IW.

Thus the object functions of I and I coincide.

By lemma (A.2) and the proof of theorem (A.3), the morphism

function of I is uniquely deternfined by the fact that if W1,W2 e Modal]

Hand w 6 Homfi(W1,W2), then Iw is the unique §;—homomorphism which makes

the diagram below commute:

“wl vww1 ®flf _...____...) le ..__.__.1._..; Hog/(3M1)

111%; 1/ II!) J’ Hom(§,1,b)

W2 fig T“) 1W2 T Horrigflawz)

where u is the natural projection onto im ¢w = IWi and v is the
lW.1

natural inclusion of im ¢w into the codomain of ¢W , i-= 1,2.i .

It is trivial to check that the diagram above actually does

commute with Iw in place of 1w, hence Iw = Iw. Thus I = I.

Thus, by theorem (A.3), I is “n injective weak double adjoint to R.

It is possible to calculate that jw and kw, as defined in this

present section, coincide with the maps jw and kw which arise from ¢w

in the proof of theorem (A.3).
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