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Abstract
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The University of Sydney July 2021

Simultaneous Prediction and Planning in Crowds
using Learnt Models of Social Response

The ability of autonomous mobile robots to work alongside humans and animals in
real world environments has the potential to revolutionise the way in which many
routine and labour intensive tasks are completed. Whilst we are seeing increasing
applications in controlled environments, such as traffic and warehousing, robots are
still far from ubiquitous in everyday life. In unstructured environments, such as
agriculture or pedestrian crowds, where interactions between agents are not guided
by infrastructure, there exist additional challenges that need to be overcome before
we are likely to see the widespread adoption of mobile robots.

Safe navigation in shared environments requires the accurate perception of nearby
individuals using a robot’s on board sensors. Additionally, the future motion of de-
tected individuals needs to be predicted in order to plan accordingly to allow both
collision avoidance and efficient navigation. These predictions should reflect the in-
herent uncertainty of the individual’s future, including the variety of ways in which an
individual might respond to the motion of its neighbours, including the robot itself.
As such, there exists a dependency between any prediction of a nearby individual’s
motion and the planned path of the robot. This dependency needs to be accounted for
both during the prediction and planning stages in order to allow effective operation
of mobile robots alongside humans and animals.

This thesis focuses on how predictive models of agent motion can be extended to
account for the planned action of a robot, proposing an approach to path planning
in crowds and herds that uses learnt models of social response within a sampling
based path planner for simultaneous prediction and planning (SPP). Additional chal-
lenges faced in navigating shared and unstructured environments are also addressed,
including predicting the uncertain branching and multi-modal nature of agent motion
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during social interactions, and overcoming the on-board limitations of mobile robots
— such as resource and sensing constraints — in order to achieve extended autonomy.

The first contribution of this work includes the proposal of a number of predictive
models, focusing on robot interaction with pedestrian crowds and herds of livestock.
Firstly, building off recent work modelling agent relationships in spatio-temporal
graphs (STGs), a recurrent neural network (RNN) based STG approach is proposed
to learn the response of heterogeneous agents to the future action of a robot. This
approach is tested on varied real world datasets, including crowds of interacting traf-
fic agents, and livestock around a mobile robot. Secondly, an RNN encoder-decoder
(RED) based approach is proposed which models the relationship between the robot
and each agent separately. This simpler model is compared in terms of its ability to
accurately predict the response of agents to a robot planned action, validating its use
as a state transition model. Lastly, a generative adversarial network (GAN) based
RNN approach is proposed, demonstrating how existing state-of-the-art GAN models
can be extended for direct prediction of a probabilistic multi-modal output through
the use of mixture density networks (MDNs) and modal-path sampling.

The second contribution consists of the proposed SPP approach. This approach makes
use of a sampling-based Monte Carlo tree search (MCTS) planner, which has been
adapted to use a generative RNN based model of social response as a state transition
function within a single step simulation stage. The effectiveness of SPP for dynamic
path planning is validated through comparisons to state-of-the-art and traditional
planners in simulation, as well as being tested in real world pedestrian crowds.

The third contribution of this thesis involves the extension of the SPP approach to
allow extended autonomy of a resource constrained mobile robot in unstructured envi-
ronments. A hierarchical planning framework is proposed which combines a resource
efficient long term planner with a response aware online dynamic planner. Through
an awareness of both the limited resources available to a robot and the response of
nearby moving individual’s, this proposed framework allows the continuous navigation
between widespread tasks in dynamic environments, such as weeding or soil sampling
in large scale farming. The effectiveness of the approach is validated in terms of both
safety and resource efficiency through real-world trials on farms, demonstrating the
ability to adapt resource use through variation of the dynamic planner.

Finally, this work presents a perception pipeline for use on mobile robots operating in
unstructured and dynamic environments, evaluating its accuracy in terms of the abil-
ity to detect and localise nearby agents. An analysis of this detection likelihood across
the robot’s planning space is also undertaken, demonstrating how an understanding
of a robot’s perception capabilities can be used to better inform both prediction and
planning during navigation in real world environments.
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Chapter 1

Introduction

The increasing application of autonomous mobile robots to shared environments
alongside humans and animals is transforming the way in which many routine or
repetitive tasks are completed. Mobile robots are beginning to see real world appli-
cation to service-based tasks such as warehousing and logistics [1], hospitality and
cleaning of public spaces[2, 3], and domestic chores [4]. Similarly, autonomous vehi-
cles are allowing the automation of passenger travel and freight, and will continue to
share the road with human operated vehicles for the foreseeable future [5, 6]. Increas-
ingly, mobile robots are also seeing deployment in less structured environments such
as agriculture. These robots are generally required to perform labour-intensive tasks
such as weeding, soil sampling and harvesting, often in the presence of both humans
and livestock and dispersed widely over large geographical areas [7, 8].

The presence of moving individuals significantly adds to the challenge of these ap-
plications, impacting navigation efficiency as well as adding a critical requirement of
safety. Whilst applications in more structured environments can ensure safe operation
through the use of simple collision avoidance approaches and fail safe methods that
control velocity along predefined paths [1], this can lead to significant efficiency de-
creases in more complex environments [9]. In order to plan both safely and effectively
in these more interactive shared environments, the future motion of nearby individu-
als must be taken into account. Additionally, as interactions become more complex,
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these predictions of future motion must account for the individual’s response to the
motion of others nearby, including that of the robot.

Tasks such as lane merging in traffic, or navigating through oncoming crowds of
pedestrians can suffer from the ‘freezing robot problem’ [10] or result in unnecessarily
long detours when a safe path forward cannot be found. This behaviour results from
the robot’s path planner not taking into consideration how the crowd will respond to
the future motion of the robot. Similar tasks in agriculture that involve deliberate
interaction with animals, such as herding of livestock [11] or active perception for
information gathering in herds [12] require not just the ability to safely operate in
the presence of moving individuals, but the ability to understand how the robot’s
movements may impact the motion of individuals around them.

The future motion of an individual — or agent — is often dependent on the future
motion of the agent’s neighbours, including the robot itself. As such, in order to
predict the agent’s position at a future time, the robot needs to know where it will
likely be up until that point. This can result in a prediction-planning order dilemma,
in which the robot is predicting the future motion of nearby agents in order to inform
it’s path planning, however requires a planned path prior to prediction.

The challenge of robot navigation in shared environments becomes increasingly com-
plex when we consider the uncertainty of predicting agent future motion. To account
for this, predictions need to be probabilistic, producing a distribution of possible po-
sitions an agent might take at a future time. Additionally, during social interactions
there are often multiple equally valid future paths that an agent might take in order
to avoid a collision. An agent might go left or right around another oncoming agent,
but the average of these two predictions is not valid as it would result in a collision.
As such, predictive models used in interactive environments such as crowds or herds
need to probabilistically account for this branching nature of an agent’s future motion
by outputting multi-modal distributions.

A further consideration during real world robot navigation are the limitations of the
robotic platform itself. The ability of the robot to perceive the state of a crowd it
is in is dependent on the perception methods used, the field of view (FOV) of the
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(b)(a)

Figure 1.1 – Example use cases of mobile robots focused on in this work. (a) The
University of Sydney’s Swagbot agricultural robot operating around livestock; (b)
testing of an ACFR autonomous vehicle in a shared pedestrian environment on the
University of Sydney campus. Photo credits: ACFR

sensors, and any possible occlusions that might occur between agents in the crowd.
Knowledge of agent detection likelihood across the planning space of a robot is a
critical consideration during planning in crowds — limiting motion into areas of low
detection probability — as well as the training of predictive models to be used within
any planning approach. The majority of existing predictive models are trained assum-
ing full observability of a scene, and can lead to an underestimation of uncertainty
bounds on agent motion predictions in real partially observed environments [13].

Similarly, consideration of the limited on-board resources available to a robot is re-
quired in order to achieve extended autonomy. This is especially important for tasks
that require travelling over large geographic areas, such as parcel delivery or weeding
agricultural fields. When operating in shared environments and over undulating ter-
rain this consideration becomes essential as deviations from a resource optimal path
can lead to significant changes in the usage of both time and energy, which might be
critical to completion of the mission within available constraints [9, 16].

This thesis addresses a number of the outstanding challenges outlined above that
are faced during path planning, focusing on: the development of predictive models
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Robot
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Figure 1.2 – Conditioning a predictive model on a robot’s planned path can allow the
simulation of the response of agents to hypothetical robot paths [14]. Ground truth
futures are shown in purple, alongside the predicted response to simulated robot
futures in green and blue. Predictions shown are the mean of each agent’s output
distribution. Trajectories are taken from the ARATH dataset of robotic interactions
with livestock [15].

that can account for social response to a robot’s planned action; how these models
can encode the probabilistic multi-modal nature of interactions; the use of response
aware models within a sampling based tree search to address the prediction-planning
order dilemma; and how real world considerations, including perception limitations
and resource constraints, can be accounted for in order to allow extended autonomy
of mobile robots in shared and unstructured environments.

Recent works in pedestrian motion prediction have employed deep learning approaches,
such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs),
with training as generative adversarial networks (GANs) being used to allow more re-
alistic motion to be predicted. These methods, as opposed to traditional hand crafted
social force [17] or velocity obstacle [18] based approaches, are learnt from real world
observed interactions. Various methods of encoding social interactions have been
used in these deep learning based approaches, including the use of spatio-temporal
graphs (STGs) as network inputs [19, 13] or as the structure of the network itself
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[20, 21, 14], as well as pooling the hidden states of RNNs at each step of an encoder-
decoder architecture [22, 23, 24, 25, 26, 27]. Each of these methods of modelling social
interactions impacts the applicability of the model to the challenges discussed in this
work, including the ability to model responses to a robot’s actions, inform a dynamic
path planner in real time, or to predict multi-modal trajectories.

This work proposes a number of predictive models which aim to address these chal-
lenges [14, 24, 28]. A comparison of the proposed response prediction models demon-
strates the ability of deep learning based approaches to accurately predict how indi-
viduals within a pedestrian crowd will respond to the known future path or intention
of a controlled-agent, outperforming traditional motion prediction approaches. Ad-
ditionally, this thesis discusses how state-of-the-art GAN based deep learning models
can be extended to allow direct prediction of probabilistic multi-modal trajectories
during social interactions. The proposed predictive models, and a discussion of the
applicability of each to dynamic path planning, are further detailed in Chapter 3.

To address the prediction-planning order dilemma, this thesis proposes a simultaneous
prediction and planning (SPP) approach for navigation in dynamic environments.
This approach involves using a learnt model of social response as a state transition
function during a search of the robot’s state space. By including the future position of
each nearby individual within the state space, we are able to iteratively find the future
path that best navigates the scene whilst taking into account how the crowd might
respond to alternative path proposals. The proposed SPP approach uses an adapted
Monte-Carlo tree search (MCTS), a method which allows the solving of sequential
decision making problems in an anytime manner. MCTS has been adapted for use
in a single step simulation (SSS) manner, allowing parallelisation of the tree search
through direct state evaluation and termination of each rollout after simulating the
crowd’s prediction to a single action by querying a generative RNN (GRNN). This
SPP approach using MCTS-GRNN is further detailed in Section 4.1.

Deep reinforcement learning (RL) methods have also been applied to this problem,
and often make use of an approach similar to SPP. These methods generally learn a
value network that can predict the future rewards of a given state and apply this to
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a single step lookahead across the robot’s action space [29, 30, 31, 32]. Whilst these
methods have been shown to achieve state-of-the-art results in terms of collision
avoidance and path efficiency, they do not yet make use of predictive models trained
on real world interactions that can account for the response of an agent to a robot’s
motion, as discussed in Section 2.2.

In order to extend dynamic path planning to applications requiring extended au-
tonomy, this thesis also proposes a hierarchical planning framework, which integrates
online local dynamic path planning with offline longer-term objective-based planning.
This framework is adaptive in its use of dynamic path planner, allowing comparison
of resource efficiency when using the proposed SPP approach, a state-of-the-art deep
RL approach [31], a traditional potential field (PF) based planner, and when limited
to a purely reactive fail-safe (FS) planner.

A resource-aware long-term planner is used for the formation of strategic-level plans
to allow for navigation between goal locations subject to energy constraints. An on-
line response-aware local dynamic planner is utilised alongside the offline long-term
planner. This enables the updating of the strategic plan both in response to un-
foreseen static obstacles, and with consideration of the response of detected nearby
moving individuals to the robot’s motion. These planners are used in combination
with a higher-level mode switching module, allowing adaptation of the robot’s be-
haviour dependent on the detection of nearby agents and obstacles. Section 4.2
further describes this proposed framework, as well as detailing the performance of
the proposed approach as evaluated in a series of simulated and real world trials,
requiring both consideration of limited battery capacity and the presence of nearby
moving individuals. Comprehensive simulated trials have been conducted in order
to determine safety and navigation efficiency when using varied local dynamic path
planners, as outlined above. These trials involved continuous navigation between ge-
ographically widespread mission waypoints, representative of the completion of tasks
such as weeding and soil sampling in large scale farming. An offline energy efficient
path was determined and followed by the hierarchical planner in the presence of mov-
ing agents, comparing performance when using the varied dynamic planning modules
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outlined above. Real world demonstration of the proposed framework’s performance
has been conducted on the University of Sydney’s Swagbot robotic platform using the
proposed SPP dynamic planning module. An extended navigation trial has aimed to
replicate the simulated trials, validating the use of the framework for resource effi-
cient navigation in unstructured and dynamic environments for longer term missions.
Further real world testing in more densely populated environments has also been con-
ducted, featuring repeated interactions in a pedestrian crowd in order to analyse the
safety and behaviour of the robot around real dynamic agents. These trials highlight
the ability of the planning framework to allow extended autonomy of mobile robots
for the completion of repetitive and physically widespread tasks through the adap-
tation of resource usage to changing mission constraints, including energy, time and
the presence of moving individuals.

Additionally, this thesis also considers how the perception constraints of the robotic
platform impact the ability to effectively navigate dynamic environments efficiently
and safely. A novel perception pipeline used for simultaneous 3D object tracking and
static mapping is described, detailing it’s integration within the proposed hierarchical
planning framework. Evaluation of the perception pipeline in terms of the agent
detection likelihood across the robot’s field of view (FOV) has been conducted, as
well as a discussion of how this information could be used to inform planning around
moving agents and improve prediction of agent future motion.

1.1 Contributions

The primary contributions and results of this thesis have been partially published in
[9][14][16][24][28][33]. These contributions include:

1. Development of a response aware model of agent motion, allowing the predic-
tion of agents’ future trajectories in response to a robot’s planned path [14].
This work applies generative recurrent neural networks in an STG framework,
conditioned on the future motion of a controlled agent. This work has been
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applied to heterogeneous agent type interactions — including a mobile robot
in a herd of livestock, and pedestrians and cyclists in crowds — demonstrating
both the ability to achieve improved prediction accuracy of future trajectories in
certain close range interactions, and ability to determine how individuals would
likely respond to simulated actions of a controlled agent.

2. Development of direct output multi-modal probabilistic models of agent interac-
tion, using GANs for trajectory prediction [24]. This model extends recent work
in adversarial training of motion prediction models, allowing a single forward
pass prediction of a multi-modal probabilistic trajectory without the need for re-
sampling of a latent space. This is achieved through the use of mixture density
networks (MDNs) and modal path clustering of the resultant Gaussian mixture
model (GMM) during training. This model additionally proposes an extension
to graph attention networks (GATs) to include a shared vehicle feature in the
pooling mechanism as graph vehicle attention network (GVAT), allowing im-
proved pedestrian motion prediction both with and without the presence of a
single vehicle. The development of GVAT was contributed by Kunming Li as
co-author to this work.

3. Development of an SPP approach utilising a GRNN predictive model within a
MCTS for response aware path planning in dynamic environments [28]. The
predictive model makes use of RNNs within a RNN encoder-decoder (RED)
architecture, encoding each agent’s observed position alongside the robot’s rel-
ative position from the subsequent time step, allowing the generation of likely
responses to a robot’s future action. The GRNN model acts as a state tran-
sition function within the MCTS during sampling of the robot’s action space.
The MCTS has been adapted for single step simulation (SSS), allowing real
time implementation. This SPP approach has been validated against existing
approaches including a reactive PF planner and a deep RL method. Results
have shown that the SPP approach performs comparably to the state-of-the-
art RL approach in terms of collision avoidance and path efficiency, whilst also
allowing adaptive behaviour through variation of the state evaluation function
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used within the tree search. Unlike the compared methods, this provides the
ability to direct the future states of nearby individuals, and has been demon-
strated by adapting the SPP approach to limit disturbance to nearby agents
during interactions. Additionally, we have conducted preliminary evaluation of
the approach in real world applications, tested on the Swagbot robotic plat-
form within a pedestrian crowd. Simulation code and test data is available at
https://github.com/stuarteiffert/MCTS-GRNN.

4. Proposal of a hierarchical framework for the deployment of field robots in un-
structured and dynamic environments for extended autonomy [9]. This frame-
work integrates local dynamic path planning with resource aware long term path
planning. The offline generation of resource efficient plans was contributed by
Nathan Wallace as co-author to this work. Comprehensive evaluation of the
proposed planning framework has been conducted in both simulated [9, 16]
and real-world trials [16, 33] to demonstrate safety around moving individu-
als and adaptive resource usage for extended autonomy in unstructured and
dynamic agricultural environments. Simulated testing of the framework has
been conducted using varied local dynamic planners, including the proposed
MCTS-GRNN and a state-of-the-art deep RL planner, to demonstrate frame-
work adaptability and compare resource usage and tradeoffs.

5. Detailed description and evaluation of a perception module for simultaneous 3D
object tracking and static mapping of an unstructured agricultural environment
in real world trials of a mobile robot, including an analysis of agent detection
likelihood across the robot’s action space [16].

1.2 Thesis Structure

The remainder of this thesis is outlined as follows:

Chapter 2 provides a summary of related work in each of the challenges addressed
by this thesis, including: motion and response prediction during social interactions;

https://github.com/stuarteiffert/MCTS-GRNN
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dynamic path planning and sequential decision making; resource aware path planning
for extended autonomy; and perception in unstructured environments.

Chapter 3 focuses on a number of issues encountered when predicting an individ-
ual’s motion during social interactions. Section 3.1 addresses how predictive models
can be conditioned on a robot’s planned path in order to predict the response of
individuals in crowds and herds, proposing the use of generative RNNs in a STG
for this purpose [14]. Section 3.2 expands this concept for improved inference speed
via direct embedding of separate robot-agent relationships [28]. This model is then
compared in Section 3.3 against both traditional and state-of-the-art methods used
for social response prediction, analysing the accuracy of each when conditioned on
a planned future path of a controlled agent and highlighting the advantage of deep
learning based methods for use in response aware based approaches to dynamic path
planning. Section 3.4 then demonstrates how a RNN based predictive model can be
trained adversarially as a GAN to directly produce probabilistic multi-modal predic-
tions during social interactions of a pedestrian crowd and a vehicle [24].

Chapter 4 introduces the proposed SPP approach, MCTS-GRNN, as well as ex-
panding it for use within a hierarchical planning framework for extended autonomy.
Section 4.1 details the use of a learnt model of social response within an adapted
MCTS with SSS [28], comparing the method in simulation to both traditional and
state-of-the-art dynamic planners and conducting preliminary real world testing on
mobile robot within a crowd of pedestrians. Section 4.2 adapts the proposed SPP
approach for improved persistence between planning steps via reseeding of the search
tree as well as developing an integrated planning framework to allow for both response
aware dynamic planning and consideration of the limited resources available during
extended autonomy [9]. This hierarchical planning framework has been tested com-
prehensively in extended navigation trials for large-scale farming applications and
in more interactive crowd environments, analysing the interactions of varied local
dynamic path planning modules and longer term resource efficient planners on the
overall safety and efficiency of mobile robots in unstructured environments [16, 33].

Chapter 5 addresses real world perception considerations, describing the perception
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pipeline used in all real world experiments in this thesis as well as analysing its
performance in regards to object detection. This chapter also discusses how knowledge
of the perception detection likelihood across the robot’s action space can be used to
better inform both prediction models and path planning in future [16].

Chapter 6 concludes the thesis, discussing limitations of the proposed SPP approach
and model predictive path planning in crowds as well as possible areas of future
research.



Chapter 2

Literature Review

2.1 Motion Prediction in Social Interactions

The prediction of an individual’s future trajectory is a well studied topic, with the vast
majority of recent work focusing on pedestrians and road-based agents [34, 35, 36, 37].
However, there remain many open challenges in this field that are relevant to the de-
ployment of mobile robots in environments shared with moving individuals. This is
especially true in unstructured environments, where motion is not guided by infras-
tructure such as lanes or bound by rules of interaction. The motion of agents during
social interactions — such as in a crowd, herd, or traffic — is dependent on factors
such as agent behaviour and intention, relative position and velocity between agents,
semantic information such as pathways and obstacles, cultural rules and norms, as
well as any known planned paths for controlled agents such as a robot. When all
of this information is available, predictions will still need to account for the inherent
uncertainty of future motion, producing multi-modal probabilistic predictions which
reflect the variety of valid ways in which two or more individuals might avoid collision
with each other. In real world applications of mobile robots, however, the informa-
tion available in order to make predictions is often limited to that acquired from
on-board sensors. Additionally, predictions may be used in time critical tasks such
as path planning, where the need for high-speed inference can outweigh accuracy of
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predictions.

These challenges have been approached through a variety of methods, including tra-
ditional physics and force field based models of crowd dynamics [17] through to the
application of deep learning models developed for natural language processing such
as RNNs and transformers [22, 36].

2.1.1 Trajectory Prediction in Unstructured Environments

Whilst motion prediction in general can refer to aspects such as body pose and ges-
tures, most trajectory prediction works tend to focus specifically on the 2D prediction
of agent position in the ground plane. These approaches generally make use of obser-
vations of an agent’s position in the form X t = (xt, yt) across the observed sequence
t ≤ Tobs in order to predict the same agent’s position Ŷ t = (xt, yt) for a future period
Tobs < t ≤ Tpred. Approaches can be broadly grouped into traditional parametric and
learning based methods, and deep learning based approaches.

Traditional Approaches

Parametric models, such as constant velocity model (CVM), Kalman filter (KF) [38],
and sequential Monte Carlo particle filters, make use of kinematic models of agent
dynamics to predict agent motion. These models can outperform more complex
methods [39], however fail to take into consideration any interaction between agents.

Potential field based methods, such as the hand-crafted social force model (SFM)[17],
extend this approach to account for interacting attractive and repulsive forces be-
tween agents and the environment. Similarly, optimal reciprocal collision avoid-
ance (ORCA) [18] uses velocity obstacles [40] to represent the relationship between
interacting pedestrians. This approach has been extended to include autonomous
vehicles in pedestrian ORCA (PORCA) [41] and to adaptively learn parameters for
individually observed agents through Bayseian inference in BRVO [42]. Dependent
output Gaussian processes have been used in a similar manner, learning to model
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the reciprocal collision avoidance of agents whilst navigating in crowds from observed
data [10]. However, these approaches require knowledge or inference of the agent’s
intended destination. A number of other traditional approaches that are able to learn
dynamic models of agent motion from observed data have also been applied to this
problem, including conditional random fields and hidden Markov models as described
in [36]. However, these traditional methods have been shown to be outperformed by
more recent deep learning based approaches in social interactions [43].

Deep Learning Approaches:

The application of neural network based approaches to trajectory prediction has re-
ceived significant attention in recent years. Methods such as traditional feedfor-
ward multi-layer perceptrons (MLPs), long short-term memory (LSTM) based RNNs,
conditional variational autoencoders (CVAEs), temporal convolutional neural net-
works (TCNs), and attention based transformers have allowed improved learning of
agent dynamics from large datasets of interacting pedestrians and traffic agents. The
development of multiple open benchmark datasets focusing on pedestrian interac-
tions [44, 45, 11] and traffic scenes [46, 47, 48, 49, 50, 51] has additionally allowed the
acceleration of deep learning prediction accuracy.

One of the most successful recent architectures has been the RED framework, shown
in Fig. 2.1. This model, based on sequence to sequence prediction approaches in
natural-language processing (NLP), learns a ‘hidden state’ for each agent, which is
passed between time steps of the RNN module and allows the encoding of individual
agent dynamics. This approach has allowed extension into methods which aim to
capture interactions within a crowd by conducting pooling across the hidden states
of all agents between timesteps [22]. Section 2.1.2 contains a discussion of different
approaches to modelling agent-agent relationships, and how each approach relates to
the issue explored in this thesis of modelling the response of an agent to a robot’s
planned path.

Recently, adversarial training of neural network trajectory prediction models as GANs
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Figure 2.1 – RNN encoder-decoder architecture. The agent’s position X is encoded
through fully connected non-linear MLP at each timestep. Hidden states h are
learnt and passed between timesteps of the same recurrent module. During decoding,
the predicted output Ŷ , transformed by fully connected linear layers, is also used as
input in the subsequent time step.

[52] has enabled the prediction of socially acceptable trajectories in crowd motion
prediction [23, 53, 54, 55, 24]. These models train a generator, which may be a RED
framework as in [23], to output trajectory predictions and a discriminator network to
classify these predictions as either real or fake. The discriminator directly compares
each prediction to the ground truth, and so learns to differentiate between the realistic
socially acceptable trajectories and unlikely trajectories, such as predicting a collision
between agents. As such, predictions output by the generator are required to be in
the same form as the ground truth data, rather than being able to directly reflect the
uncertainty of a prediction by outputting a probabilistic distribution.

Likewise, prior work using GANs for trajectory prediction has followed the assumption
from GAN application to image synthesis that we cannot efficiently evaluate the
output distribution, and so need to sample from it in the form of the ground truth
[23, 53, 54, 55]. These works require multiple forward passes through the network with
different conditional latent noise vectors to identify the true multi-modal distribution.
However, the output distribution in trajectory prediction problems is much lower-
dimensional than image synthesis, and has been modelled previously by GMMs in
[56, 26, 27], allowing a distribution to be generated from a single iteration. Further,
the aim of these models differs from image synthesis in that they are not trying to
just generate samples in the style of ground truth conditioned on an observation,
but rather samples that mimic the ground truth exactly. Section 3.4 of this work
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demonstrates that direct probabilistic output of the generator is possible in GANs
for trajectory prediction, allowing both faster and more accurate inference.

The inclusion of semantic information to predictive models has been applied to GAN
based approaches [53, 54], which use overhead imagery as an input to the model.
A similar approach is seen in [57], which uses a pre-trained semantic segmentation
network on overhead scene imagery to pass a semantic map of static context to the
prediction network. These approaches are able to achieve significantly more accurate
predictions than when trained without the use of semantic clues, however rely on
inputs that are often difficult to capture in real world applications of mobile robots
and autonomous vehicles as discussed below in Section 2.3.2.

2.1.2 Predicting Responses to a Controlled Agent’s Planned

Motion

As discussed in Chapter 1, predictions of agent motion in social interactions must
account for the agent’s response to others nearby, including any present robot. This
ability to capture the response of an agent to a controlled agent is a critical require-
ment when using predictive models to inform path planning.

A variety of methods for capturing the relationships between interacting agents exist
in deep learning approaches, including: pooling of RNN hidden states [22, 23, 25];
using STGs [58] to encode the input to the network [19, 13] or as the framework of
the network itself [21, 59, 14, 26]; and the use of attention [60] to either weight the
pooling of RNN hidden states in GATs [54, 24], or as transformer and bidirectional
transformer (BERT) networks to analyse all relationships in a scene in a single pass,
rather than encoding and pooling hidden states sequentially [61, 62]. Whilst each
of these methods has been shown to allow improved prediction accuracy during so-
cial interactions, they are not always appropriate for conditioning a prediction on a
planned future motion of a controlled agent for use in informing path planning.
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Pooling RNN Hidden States:

Alahi et al. [22] initially introduced the concept of pooling across RNN hidden states.
A separate RNN encodes each agent’s trajectory, and pooling is applied between time
steps to alter an agent’s hidden state used in the subsequent timestep. Pooling is
weighted based on the distance between agents allowing the sharing of information
between close agents. This approach has been adapted for heterogeneous traffic agents
in [63] by learning respective weightings for each relationship. An extension of this
approach is used in [25], which refines the hidden state based on a learnt pedestrian-
wise attention function and motion-gate to select the most relevant features from
the hidden states of an agent’s neighbours during the pooling stage. This approach
allows more important relationships in a crowd to be identified during prediction
and has been shown to allow improved prediction accuracy in complex scenes whilst
maintaining fast inference speed.

Graph Network Approaches:

STGs allow the modelling of relationships between different objects or agents in dy-
namic scenes. Jain et al. [20] has shown how this flexible representation can be
combined with RNNs to learn these relationships from observed interactions. This
approach was adopted for pedestrian trajectory prediction in [21], where nodes of
the graph — representing each pedestrian — and edges of the graph —representing
spatial relationships between neighbours and temporal relationships of an agent to
itself over time — are both represented by RNN modules. Recent works [14, 64] have
extended this idea to heterogeneous agent scenes, where the trajectories of traffic-
agents — including pedestrians, cyclists and cars — and livestock interacting with
a mobile robot are all predicted with better accuracy than both the compared RED
model and and social-LSTM [22]. Additionally, [14] has shown how this approach
can allow the prediction of an agent’s response to the planned motion of a controlled
agent, presented in Section 3.1 of this work.
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Attention Approaches:

Rather than modelling the entire prediction network as a graph, the application of
graph structure to just the data during social pooling has also been shown to allow
learning of relationships during social interactions. Veličković proposed graph atten-
tion networks (GAT) [65] to implicitly assign different importance to nodes in graph
structured data. Kosaraju et al. [54] applied this concept to multi-modal trajectory
prediction by formulating pedestrian interactions as a graph, however apply the graph
structure only within the pooling mechanism as a GAT, rather than modelling each
relationship of the graph as a separate RNN as in [21]. Graph edges correspond to
agent relationships, where edge weightings are learnt from the observed trajectories
and correspond to relationship importance. This approach can allow for faster in-
ference times, as only the edges of the graph require recomputation each time step
and has been applied to pedestrians in [54] and [66]. However, these methods do not
continue pooling through decoding steps and so are unable model the response of
agents to any future action of a robot, instead simply responding to observed motion.
Section 3.4 presents work from [24], in which this approach is extended for use with
a single vehicle in shared environments.

These attention based approaches make use of a concept adapted from NLP, in which
attention between different words in an input sentence allows for both the continuation
of longer distance relationships between inputs and the learning of correct translations
between languages where grammar difference results in the reordering of sentences. In
trajectory prediction, attention is instead being applied between different sequences,
learning which features in a neighbours hidden state to pay attention to, rather than
which features in the same sequence’s previous steps. Recently, the extension of
attention to transformers in NLP has also been applied to trajectory prediction.

Giuliari et al. [61] compare both a transformer and bidirectional transformer (BERT)
network for trajectory prediction, demonstrating comparable results to current state-
of-the-art RNN based approaches with the simpler self-attention only based networks.
Similarly, [62] adapts transformers to a spatio-temporal graph structure for trajec-
tory prediction, demonstrating the ability to better capture temporal dependencies
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Interacting Pedestrians Past Path Likely Future Path

Figure 2.2 – An example pedestrian interaction highlighting the branching nature, or
multi-modalilty, of possible futures during crowd interactions. In the middle frame
multiple valid paths are possible in order to avoid collision. Example from ETH
dataset [67].

than existing RNN approaches. Whilst transformers have only recently begun being
applied to trajectory prediction, they have become the dominant sequence prediction
method in NLP.

2.1.3 Multi-modal Predictions During Interactions

Predicting the future motion of interacting agents in crowds or herds requires consid-
eration of the multi-modal nature of these futures. As described in Chapter 1, there
are often multiple equally valid future paths that an agent might take in order to
avoid a collision during a social interaction. Fig. 2.2 illustrates this concept, where
the agent on the left, whose likely future path is shown in purple, has a multi-modal
future when approaching the other oncoming agent in the middle frame. The agent
might go left or right around the oncoming agent, but the average of these two pre-
dictions is not valid as it would result in a collision. Predictive models that output
a single trajectory, even when including uncertainty at each timestep, are unable to
model this inherent branching nature of crowd interactions.

The use of MDNs in trajectory predictions models to output GMMs has been shown
to allow the representation of multi-modal probabilistic distributions in traffic sce-
narios. In [56], he resultant GMM was shown to reflect the multi-modal nature of
vehicles travelling through intersections, learning distinct peaks in the probability
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distribution that relate to the discrete choices a vehicle might make. Similar multi-
modal predictions have been demonstrated through the use of CVAEs [27, 68], to
learn multi-modal latent representations. GAN approaches [23, 54] have also detailed
the ability to predict multi-modal outputs, however require repeated sampling from
the learnt latent space in order to allow this. Section 3.4 of this thesis presents the
work of [24], where an RNN GAN is shown to be able to directly output a probabilistic
multi-modal prediction by clustering a GMM output.

2.1.4 Robot-Animal Interaction

A similar problem to navigating through crowds can be seen in applications of mobile
robots around livestock. This problem also requires the prediction of agent’s future
motion in response to a planned robot path and so can be approached with the same
methods.

Applications of mobile robots around animals are not as widespread as for pedes-
trians or traffic, with no significant work demonstrating that the same trajectory
prediction methods are suitable for livestock. A study of the response of dairy cows
to the movements of a robotic ground vehicle [15] has however provided initial in-
sights into livestock motion around mobile robots. This study has demonstrated that
animal motion is predictable around a mobile robot, suggesting that existing pedes-
trian methods should be able to learn a predictive model of animal trajectories given
observed past motion. Section 3.1 tests a proposed trajectory prediction approach
on both pedestrian and livestock datasets. Whilst these scenarios have significant
differences, they can be used to demonstrate that a learnt social response model can
generalise between vastly different agent behaviours.

2.1.5 Trajectory Prediction Metrics

The majority of trajectory prediction methods discussed in this work deal with 2D
sequences in discrete time, where the most common measure of error between two
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paths is euclidean distance [22, 23, 21, 43, 53, 54, 69, 63]. Metrics are usually compared
in terms of the average and final distances between points at matching timesteps,
referred to as average displacement error (ADE) and final displacement error (FDE)
respectively.

However, as discussed by Zyner et al. [56], these commonly used measures penalise
misalignment in time and space equally. This can result in a prediction with an
incorrect speed profile but correct direction having a similar error as a prediction
with the completely wrong direction. Depending on the application, this is usually
a much more significant type of error. For instance, when interacting with another
oncoming individual in Fig. 2.2 it is more important to consider which direction they
will take, as opposed to the speed along this direction, in order to avoid collision.

Other considered metrics which do allow temporal misalignment include the modified
Hausdorff distance (MHD) [70] and discrete Fréchet distance (DFD) [71]. Both of
these methods consider the closest distance between a point on the first path and
any point on the second path, however DFD does not allow looping back onto earlier
timesteps on the second path than where the two paths diverged, as shown in Fig.
2.3. Both MHD and DFD are calculated from path A to B and then B to A, for each
timestep, returning the average error.

The metrics discussed so far only consider comparison of each agent’s predicted tra-
jectory to its own ground truth, without considering how these agents may be in-
teracting. When comparing predictions of interacting agents, it is also important to
consider whether the individual predictions may lead to collisions in order to deter-
mine whether a model has learnt the concept of collision avoidance. As agents in the
real world will react to each other to avoid colliding, predicted trajectories that lead
to falsely predicted collisions should result in a greater error than simply the com-
parison of each agent to its ground truth separately. Recent benchmarks such as the
‘TrajNet++’ challenge compare ‘prediction collision’ and ‘ground truth collision’ as
metrics when comparing predicted trajectories for interacting agents [72]. As simple
constant velocity models can sometimes be shown to be superior to more complex
models when only considering euclidean distance metrics [39], the inclusion of met-
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Figure 2.3 – Comparison of errors between two paths, A and B, for ADE, MHD and
DFD metrics. Paths start at t=0 and end at t=f, with errors at t=6 and t=10
demonstrating differences of each metric.

rics that penalise falsely predicted collisions can allow the development of predictive
models that better reflect the response of agents to other around them.

Sampling from Probabilistic Predictions

The output of probabilistic trajectory prediction models is usually a bivariate normal
distribution per timestep [14, 63], or a mixture of normal distributions [24, 26, 27].
Whilst negative log-likelihood is generally used in the loss function during training,
most approaches will instead usually sample from the predicted distribution at test
time. The sampled trajectory can then be directly compared against the ground
truth, using the same metrics discussed above.

This sampling approach most often uses the ‘most likely’ predicted value at each
timestep. For a bivariate Gaussian, for example, this is simply the mean values.
However, many approaches have recently tended to use a Best-of-N samples approach
during testing [23, 26, 53, 54]. This is often done when using GAN based approaches as
these models can learn a distribution but can only output a single random sample from
this at each forward pass. The Best-of-N approach compares multiple samples to the
actual ground truth and returns the error for the best sample. Whilst this approach
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is commonplace in many works, it assumes knowledge of the ground truth during
testing that is not available in real world applications. For applications in which
just a single inference is made, such as most path planning uses, the performance of
models tested in this manner will not reflect real world performance. This topic is
further explored in Section 3.4.

2.2 Dynamic Path Planning in Unstructured En-

vironments

The ability to plan collision free paths is fundamental for the operation of mobile
robots in real world environments. This challenge becomes significantly more difficult
in unstructured environments, where robots must be able to dynamically update plans
to react to unforeseen static obstacles or moving individuals. Current approaches to
dynamic path planning can be broadly categorised into whether or not they take into
consideration the response of the environment to the controlled agent’s action. That
is, whether or not the state of other non-controlled agents is included in the state-
space in which the robot plans. Whilst early approaches — such as the robotic tour
guide RHINO [73] — demonstrated safe navigation around moving individuals over
two decades ago, these methods treated other individuals as non-responsive obstacles,
assuming that they would continue on their current or predicted trajectories regardless
of what action the robot might take. As discussed by Trautman et al. [10, 74], as the
complexity of a robot’s environment grows, such as in denser crowds, this inability
to consider the interaction between a robot’s planned path and the future motion
of nearby individuals can significantly impact both efficiency and safety. As such,
the majority of mobile robot applications are still limited to structured environments
where motion is either restricted to a small set of possible manoeuvre or the presence
of unforeseen obstacles can be limited. Traditional non-response aware approaches
have also been described as ‘decoupled’ prediction and planning [75], as opposed to
‘coupled’ prediction and planning approaches, such as the SPP approach described
in this work.
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In unstructured environments, consideration of the limited resources available to a
mobile robot — including time and energy — is also critical to enable efficient naviga-
tion for long term autonomy. This is especially true in environments with non-uniform
terrain such as agriculture where deviation from an offline computed energy efficient
path can lead to significant time delays or energy expenditure. Whilst substantial
research has been separately conducted into how long term planners can optimise
mission level planning for resource efficient navigation, and how dynamic planners
can enable safe collision free local planning, little work has explored the interaction
of different levels of path planning and its impact on overall navigation efficiency. The
following sections detail current approaches to both local response aware and longer
term resource aware planning, as well as integrated hierarchical approaches.

2.2.1 Response Aware Path Planning

When navigating in crowded environments, mobile robots can be experience the ‘freez-
ing robot problem’ [10] when they do not consider the response of other individuals to
their motion and no clear path can be found based on predicted future trajectories of
the crowd. However, by understanding how a future action impacts the trajectories
of those around it, a robot can determine how individuals in a crowd are likely to
move in response to a planned path and plan accordingly.

To overcome this problem, traditional planning methods have been extended to ac-
count for interactions between agents and predict their future motion during robot
navigation, incorporating traditional predictive models described in Section 2.1. SFM[17]
has been applied to model dependencies between agents in dynamic environments for
use in a potential field based approach to dynamic path planning[76]. [10] assumes
a similar social force interaction as [17], modelling a joint distribution of robot-agent
relationships as interacting Gaussian processes in a coupled prediction-planning ap-
proach. This approach is again dependent on the assumption that agent goals are
known. Similarly, the ORCA motion model [18] is used for path planning in a coupled
prediction-planning approach, computing a preferred velocity for each agent — con-
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trolled and non-controlled — based on the assumption of a known goal, and solving
the resultant quadratic optimisation problem that arises from the interacting velocity
obstacles of all agents using linear programming. This approach is extended in [41],
which uses pedestrian ORCA (PORCA) as a state transition within a partially ob-
servable Markov decision process (POMDP) in conjunction with hybrid A* planner.

Recently, the most successful approaches to response aware dynamic path planning
have been deep RL, which approaches navigation as a sequential decision making
problem. The majority of proposed methods are model-based [30, 29, 31, 32, 77, 78],
learning a deep neural network that estimates the value function of a given robot-
crowd state. This approach is generally either restricted to using the ground truth
of training episodes for future crowd states, or assumes the availability of a dynamic
model of crowd motion that allows prediction of a future crowd state given a potential
robot action. Most model-based approaches either assume that the state will evolve
with constant velocity over short time periods [30], or that all agents follow the ORCA
model [31], however some recent works have begun looking at how learnt models of
crowd motion can instead be used for predicting state transitions [79, 78]. Other
recent approaches apply model-free RL [80] to learn navigation end-to-end without
requiring a prior known dynamic model of crowd motion, instead learning both the
robot-crowd interactions and robot navigation policy simultaneously. Similarly, [32]
and [81] apply actor-critic algorithms to learn a policy and value functions simulta-
neously, removing the need to predict the next state and it’s value across the entire
action space. However, these approaches are still dependent on simplified parametric
models of pedestrian motion in the training environment, usually using ORCA to
initialise learning before applying the learnt policy itself to other agents within the
scene, and so are unable to make use of more accurate predictive models of crowd
motion, as described in Section 2.1.

Tree Search for Solving Sequential Decision Making Problems

By framing dynamic path planning as a sequential decision making problem, coupled
prediction and planning approaches — which include the state of other non-controlled
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agents in the planning state space — are able to approach it with methods used for
solving Markov decision processes (MDPs), similarly to the deep RL approaches al-
ready discussed. Tree search approaches, such as MCTS, have been used to solve the
problem online in the form of a POMDP in a coupled prediction-planning approach
[41, 82]. These methods simulate the future states during a tree search using para-
metric models of crowd dynamics such as PORCA. [83] extends these approaches to
use the tree search as an expert to guide the simultaneous learning of a policy and
value function to imitate the expert. In online planning, the learnt policy function
is then used to guide the tree search whilst the value function allows estimation of
the future rewards of states in the tree, in a similar manner to model-based deep RL.
The approach proposed in Section 4.1 similarly applies a MCTS based solution to
dynamic path planning, however extends the simulation of future states to use learnt
models of social response.

Tree search approaches allow the solving of MDPs where we do not know the state
transition matrix but can simulate future states. This is achieved through random
sampling of the action space in a structured decision tree [84]. MCTS has previ-
ously been applied to robotic planning in tasks such as high level action selection for
autonomous driving [85], and motion planning for active perception in unknown en-
vironments [86, 87], allowing for the anytime optimisation and propagation of state
uncertainty. The search tree consists of nodes representing each state, and edges
representing actions. Upper confidence bounds applied to trees (UCT) [88] is often
applied in MCTS to balance exploration and exploitation during node selection. In
UCT, the value V of a node is determined as:

V = wi

nc
i

+ c

√√√√ lnnp
i

nc
i

(2.1)

where, after the i-th move: wi is the cumulative reward of the node considered; nc
i

and np
i are number of times the child and parent nodes have been traversed; and c is

an exploration-exploitation balance parameter.
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2.2.2 Resource Aware Path Planning

The challenge of navigating dynamic environments for extended periods of time be-
comes significantly more difficult when considering the limited onboard resources
available to a mobile robot. In off-road environments, such as large scale farms,
paths are generally not specified and normal operations might often involve travers-
ing non-uniform terrain. The average size of a farm in Australia in 2016 was 4,331 ha
[89]. As such, long-term autonomy in these environments may require a mobile robot
to travel vast distances between mission waypoints, requiring the management of
conflicting time and energy usage constraints. To best utilise mobile robotic agents—
particularly electric-powered wheeled mobile robots (WMRs)—in off-road and large
scale environments, it is necessary to be aware of the levels of onboard resources and
the anticipated costs of performing tasks and actions in the environment. This in-
cludes the energy usage required for dynamic updates to the long term planned path
required to avoid collisions with moving individuals.

The development of energy-aware and efficient long term path planning methods has
received significant interest in recent years, utilising cost models for fuel and en-
ergy use for point-to-point and coverage path planning [90, 91, 92, 93] and planning
energy efficient multi-stage paths for wheeled mobile robots in undulating off-road
environments [94]. The problem of achieving longer term autonomy under resource
constraints is often modelled as an orienteering problem in applications such as persis-
tent environmental monitoring [95] or data collection [96]. Similar work has explored
the use of resource recharging in transportation networks [97] and logistics [98].

Recent work on the orienteering problem with replenishment (OPR) [99] provides a
generalised approach intended to handle revisiting an arbitrary number of recharging
stations, while optimising for the total completion time of each task. This has been
motivated by its application to time critical tasks in agriculture, such as harvesting,
which often requires completion of entire fields within several hours to fit within lo-
gistic constraints, or the regular herding of livestock between fields at specified times.
Section 4.2 presents an approach to long term autonomy under resource limitations
in a dynamic environment, analysing the impact and trade-offs of resource usage
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between both traditional and response aware dynamic path planning approaches.

2.3 Perception in Unstructured Environments

2.3.1 3D Object Detection

Safe and efficient navigation around moving individuals requires both an accurate
estimate of the current state of the dynamic environment, and the ability to predict
the future motion of any individuals, in order to plan accordingly. To achieve this in
unstructured environments, it is necessary to both differentiate between traversable
ground and obstacles, as well as between static and dynamic elements of the unknown
environment.

In more structured environments, such as road based applications and indoor usage,
direct 3D object detection in point clouds has made significant advancements in re-
cent years [100, 101]. State-of-the-art learning-based techniques have been able to
take advantage of large scale datasets of labelled 3D scenes specific to structured ap-
plications, such as the nuScenes [50] and KITTI [46] datasets. Multi-modal 3D object
detectors such as frustum pointnets [102] have combined these approaches with more
mature 2D object detectors, however, these still require access to large datasets to
train the 3D box segmentation and regression networks. These techniques are not di-
rectly applicable to agricultural applications as there do not currently exist any large
scale labelled 3D datasets of all relevant objects, such as a livestock. Additionally,
these existing state-of-the-art 3D object detectors are generally not directly suitable
for unstructured environments where segmentation of traversable ground and static
obstacles is a non-trivial task, unlike most road-based applications where the flat
ground assumption can be safely made over local areas.

Previous work has demonstrated how ground segmentation in unstructured environ-
ments can be achieved through the use of piecewise planar surface fitting methods
[103] or conditional random fields [104]. More recent work has applied conditional
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random fields and 2D semantic segmentation to multi-modal sensor input for simulta-
neous ground plane segmentation and classwise 3D object detection [105]. The fusion
of 2D visual input with point cloud data in this approach allows for the identification
of traversable vegetation that may otherwise be detected as static obstacles when
relying only on laser input. This is especially important in agricultural applications
that require operating around weeds or long grass. These approaches to ground seg-
mentation tend to incur significant computational costs, which is an important con-
sideration for mobile robots operating under resource constrained extended missions.
Additionally, the extension of these perception pipelines for use within a dynamic
planning framework—one that accounts for the responses of these individuals to the
robot’s motion—has not yet been demonstrated in unstructured environments.

2.3.2 Real World Perception Limitations

Mobile robots and autonomous vehicles operating in unstructured environments are
generally limited to the use of on-board sensors for ego-centric perception. Whilst
recent work is looking into how infrastructure based sensing and cooperative sharing
of perception between connected vehicles can be applied in smart cities [106], this
is generally not yet the case except in structured indoor applications. In shared
environments this can lead to missed observations caused by sensor fields of view and
occlusions amongst individuals in a crowd.

The vast majority of crowd motion prediction models are trained and tested on
datasets of aerial views such as ETH [44], UCY [45], and Stanford Drone Dataset [11].
These models assume full observability of the scene and so are not representative of
real-world usage where a robot’s environment is usually only ever partially observ-
able. By not considering the presence of partially occluded individuals in crowds, this
can lead to underestimation of uncertainty bounds for an individual’s future motion.
The use of datasets based on ego-centric perception, such as nuScenes [50] or KITTI
[46] in traffic scenes, and the USyd campus dataset [51] for shared environments, has
begun to address this issue.
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Additionally, many predictive models require the use of semantic or contextual in-
formation which faces the similar problem of not always being accessible for mobile
robots. Whilst robot’s operating repeatedly in the same environment can learn or
be supplied with maps of static obstacles, traversable terrain, and guiding pathways,
this information is often not available and can be challenging to discern from on
board sensors alone, with even minor environmental variations of illumination and
precipitation greatly affecting the performance of segmentation models [107], and so
prediction model outputs. Chapter 5 analyses the perception pipeline of the mobile
robot used in the majority of this thesis, discussing how knowledge of the perception
likelihood across a robot’s action space can be used to both better inform prediction
and planning when operating in real world environments.

2.4 Summary

This chapter highlighted existing challenges faced when applying mobile robots to
unstructured and dynamic environments and summarised recent approaches to these
issues. It was shown that current approaches to motion prediction have not yet
demonstrated the ability to predict the response of an agent to a robot’s future ac-
tion from real world observations. Deep RL approaches to dynamic path planning
— which have enabled state-of-the-art collision avoidance in shared environments —
are therefore unable to be trained and implemented using learnt state transitions and
must rely on hand crafted models such as ORCA instead. Additionally, consideration
of real world limitations of mobile robots operating in shared and unstructured envi-
ronments —including perception and resource constraints — is an unsolved challenge,
relegating existing applications to be used in more structured environments such as
traffic or row crops. The next chapter provides a number of proposed approaches to
modelling agent motion during social interactions.



Chapter 3

Crowd Motion Prediction

This chapter addresses two of the main challenges identified in the introduction,
including the development of predictive models that can account for social response
to a robot’s planned action; and how predictive models can encode the probabilistic
multi-modal nature of social interactions.

As discussed in Chapter 1, mobile robots are increasingly working alongside humans
and animals in tasks such as autonomous driving and livestock herding. As such, it
is becoming more important than ever that they are able to understand how their
movements may impact those around them in order to act in a safe and effective
manner. In order to achieve this, we need to be able to link a robot’s movements
with an expected response from nearby individuals.

Section 3.1 discusses how STGs can be applied to motion prediction in response to
the planned action of a controlled agent during interactions of heterogeneous agent
types. The proposed model is applied to two real world datasets, including robot-
livestock interactions, and interacting pedestrians on a university campus. The work
presented in this section has been previously published in [14].

Section 3.2 extends this idea, applying direct robot-agent embeddings as inputs to a
GRNN in a RED framework. By modelling only the individual relationships between
the robot and each non-controlled agent, this approach allows improved inference
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speed over approaches which consider all relationships within a crowd, a crucial con-
sideration for use during planning applications. Evaluation of the proposed GRNN
approach is conducted on datasets of vehicle-pedestrian interactions, robot-livestock
interactions, and a dataset of non-controlled pedestrians crowds, including an analy-
sis of the impact of robot-agent distance and the use of controlled actions from more
distant timesteps on prediction accuracy. The work presented in this section has been
published in [28].

Additionally, Section 3.3 compares the proposed GRNN model against the traditional
SFM [17] and ORCA [18] motion models and the state-of-the-art SRLSTM [25] predic-
tion model. A comparison of inference speeds, which also includes the more complex
STG-GRNN model proposed in Section 3.1, demonstrates the applicability of each to
real time path planning, especially to sampling based planning methods. This work
directly compares the ability of each to learn the response of non-controlled agents to
the future path of a controlled agent, demonstrating the improved prediction accu-
racy of the deep learning based methods when the future path of a controlled agent is
known. The compared traditional models of motion are in fact shown to not exhibit
any significant ability to model response.

These results suggest that deep learning methods such as the GRNN approach could
be extended to inform dynamic path planners, applied as state transition models to
allow a path planning algorithm to update the future state of its environment for
any given action. By learning transitions between states, these models would allow
a planner to iteratively determine the optimal plan to reach a desired state with
consideration of the social responses of nearby individuals. This same method could
be used to ensure an environment does not enter an undesired sate, such as may occur
in autonomous driving when unnecessary braking is caused in nearby traffic. This
topic is further explored in Chapter 4.

Section 3.4 addresses how adversarial based approaches to trajectory prediction can
be extended to model the branching nature of an agent’s future motion during social
interactions. The approach proposed in this work, probabilistic crowd GAN (PC-
GAN), directly models the probabilistic multi-modal distribution of an agent’s future
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path within the model’s generator, comparing all possible branching paths to the
ground truth during adversarial training. This work is compared to existing state-
of-the-art approaches, which require repeated sampling of the GAN’s latent space in
order to determine a distribution, discussing both improvements in inference speed
and the ability to directly achieve multi-modality within the distribution.

3.1 Predicting Responses to a Robot’s Future

Motion

As discussed in Chapter 2, previous approaches to encoding the response of a crowd to
a controlled agent’s motion have used hand-crafted ‘social force models’ [17] of agent
interaction, or extended the reactive planning approach of velocity obstacles [40] for
use in optimal reciprocal collision avoidance (ORCA) systems [18]. Whilst these
methods have been shown to work well in practise, they lack the ability to learn from
observed real world interactions.

The model proposed in this section is a STG-GRNN based approach which builds
off recent work in deep learning methods for trajectory prediction of individuals in
crowds [22, 23, 43]. This approach applies spatio-temporal graphs as a framework for
the model [20, 59, 108], extending their usage to account for heterogeneous interac-
tions and future actions of a controlled agent.

Through experiments on datasets of varied interacting agents — including pedestri-
ans, cyclists and skateboarders, and livestock and a robotic vehicle – the proposed
STG-GRNN approach is demonstrated to be able to learn a distribution of the likely
response of an individual, considering the past motion of all nearby agents and a
known future action of a single controlled agent or robot. The STG-GRNN approach
is also shown to be able to generalise to both human and non-human agent interac-
tions. The presented results demonstrate that the proposed approach can result in
improved accuracy of an agent’s predicted trajectory when the ground truth future of
a nearby controlled agent is known. Additionally, it demonstrates how counterfactual
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responses can be simulated, allowing estimation of how an individual would likely
have responded had a different action been taken by the controlled agent. Fig. 1.2
illustrates this concept, showing the future trajectories of individuals to the actual
path taken, as well as predicted future trajectories to simulated paths. The following
section details the architecture of the proposed model, including the construction of
the STG from observed agent positions.

3.1.1 Generative RNNs in a Spatio-Temporal Graph

Robot
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Figure 3.1 – Spatio-temporal graph G = (V,ET , ES) modelling heterogeneous agent
type interactions. Temporal edges Et are shown by dotted lines between timesteps,
spatial edges Es are shown by arrows, and nodes V are shown by circles. Each
colour represents a different agent type k.

Problem Statement:

Given past trajectories X = [X1, X2..., XN ] for N non-controlled agents, as well as
past trajectory R and known future trajectory Rf of a controlled robot, the future
trajectories Y = [Y1, Y2..., YN ] of all agents are predicted in an unstructured environ-
ment. Each agent is of a known type k, where k ∈ K, for K total known agent types
in the training dataset.

The input trajectory for agent i is defined as X t
i = [xt

i, y
t
i ] for all t in time period

t ≤ Tobs. Similarly, the robot’s input is defined as Rt = [xt, yt] for the same time
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Figure 3.2 – Overview of the proposed STG-GRNN trajectory response prediction net-
work. For each timestep t during observation, the positions of all agents, Xt, and
the planned next action of the robot, Rt+1, are used as inputs to the spatio-temporal
graph, from which the resultant edges ES and ET , and nodes V are fed into the net-
work . During prediction, the output bivariate Gaussian distribution Ŷ is sampled
and used as input alongside the next action in the planned path. For each class of
agent k, a separate Node RNN exists per timestep, as well as separate Edge RNNs
for each combination of class.

period and Rt
f = [xt, yt] over the subsequent prediction time period Tobs < t ≤ Tpred.

The future trajectory for each agent is Y t
i = [xt

i, y
t
i ] over the same prediction time

period.

During training, the future trajectories Y are known, and used as the ground truth
for comparison to the predicted trajectories Ŷ, where Ŷ is a bivariate Gaussian
distribution over input dimensions x and y for each trajectory, in the form

Ŷ t
i = [µx, µy, σx, σy, ρ]ti (3.1)

Model Architecture:

Spatio-temporal graph:

For each observed sequence, a spatio-temporal graph G is created describing all
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present agents and relationships between agents throughout the sequence, where G =
(V,Et,Es). This is a directed graph, which, for each timestep t in the observed
sequence, is composed of a set of nodes Vt, of size N t = N t

c + N t
n, where N t

c is the
number of controlled agents (robots) and N t

n the number of non-controlled agents
present in the frame at timestep t.

Each non-controlled node is connected to every other non-controlled node in the
same timestep by symmetric edges, which represent the bi-directional relationship
from one agent to the other. All non-controlled nodes are also connected to each
controlled node by a single directed edge, representing the relationship from the non-
controlled agent to the controlled agent only, as the robot’s response to the individuals
around it is not modelled. These spatial edges are expressed by the set Et

S, of size
N t = N t

n(N t
n − 1) +N t

nN
t
c .

For each non-controlled node, if the node exists at both timesteps t and t + 1, a
temporal edge is also created from the node at t to t + 1. These temporal edges are
expressed by the set Et

T , of size N t = min(N t
n, N

t+1
n ).

During training, the graph is unrolled across each the entire sequence up until the
final prediction timestep for all t ≤ Tpred, through edges ET . At inference time, for
prediction timesteps, Tobs < t ≤ Tpred, it is assumed that all nodes and edges from
the final observation timestep Tobs remain present.

The graph is then parameterised as a factor graph, in which all nodes and edges of
the same type are factorised into functions represented as RNNs. This allows for the
sharing of parameters between these nodes and edges, meaning that only a single set
of parameters for each type of node or edge is required to be learnt. This allows the
model to accommodate additional nodes without increasing in parameter size, and
scale quadratically to additional agent types. This graph representation is illustrated
in Fig. 3.1 and further described in [108]. This step is shown in Fig. 3.2 computing
the resultant nodes and edges from the inputs X and R, which are then transformed
by the non-linear embedding layer before being passed to the edge and node RNNs,
described below.
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Edges:

Each edge RNN takes as input the difference between the input features of the two
nodes it connects, a and b, for time t, given by xt

ab. For spatial edge RNNs, this is
the spatial distance between a pair of nodes at the same timestep. For temporal edge
RNNs this is the change in distance of a single node between timesteps. The edge
inputs are embedded into a fixed length vector et

ab, using a non-linear layer φ with
rectified linear unit (ReLu) activation and weights W e

u (Eq. 3.2), where u depends
on the agent types of the connected nodes, ak and bk, u ∈ K2. This vector is used as
input to an LSTM RNN cell with weights W r

u , along with the LSTM’s hidden state
and cell state from the previous time step, ht−1

ab and ct−1
ab which are initialised to zeros

at t = 0, as follows:

et
ab = φ(xt

ab;W e
u) (3.2)

ht
ab = LSTM(et

ab, h
t−1
ab , c

t−1
ab ;W r

u) (3.3)

This is done for all temporal and spatial edges of sets Et
T and Et

S for t ≤ Tpred during
training.

Nodes:

For each node v ∈ V corresponding to a non-controlled agent, an attention module is
used in the same manner as [108] to determine the inputs from each neighbouring node
(Eq. 3.4). This module takes as input the hidden state of the node v’s temporal edge
hTv and the hidden states of all connected spatial edges directed away from the node,
hSv , for m neighbouring nodes. These inputs are separately linearly transformed into
fixed length vectors of length de using weights W e

T and W e
S .

Scaled dot product attention [60] is computed between the transformed hTv and hSv

to determine weightings wv, which are passed through a softmax layer before being
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multiplied by hSv , resulting in weighted spatial edge RNN hidden states HSv .

HSv =
m∑

i=1

e
m√
de
〈hTv W e

T ,hi
Sv

W e
S〉

∑m
j=1 e

m√
de
〈hTv W e

T ,hj
Sv

W e
S〉
hi

Sv
(3.4)

For heterogeneous agent types, attention is computed across all agent types K using
the same embedding weights W e

T and W e
S, rather than different weights for each type

of edge. It is expected that each spatial edge hidden state hSv will itself enable
differentiation between agent types, based on the responses of different agent types
to each other in the training data.

The node RNN now takes the weighted spatial edge hidden states HSv , as well as
the temporal edge hidden state hTv , appended together, as input and embedded into
fixed length vector eh

v through a non-linear layer in the same manner to the edge RNN
input, with weights W h

k , where k is the agent type of the node.

The node features xt
v for the current timestep t are also taken as input, embedded into

fixed length vector ex
v with corresponding weights W x

k . These embedded vectors are
appended together and then passed to the LSTM cell with weightsW r

k , along with the
LSTM’s previous hidden state and cell state , ht−1

ab and ct−1
ab which are initialised to

zeros. The hidden state of the LSTM cell is then passed through a linear transform,
with weights W o

k and biases bo
k to predict a bivariate Gaussian distribution of the

nodes position at the next time step where

et
xv

= φ(xt
v;W x

k ) (3.5)

et
hv

= φ(concat(ht
Tv
, H t

Sv
);W h

k ) (3.6)

ht
v = LSTM(concat(et

xv
, et

hv
), ht−1

v , ct−1
v ;W r

k ) (3.7)

Ŷ t+1 = ht
vW

o
k + bo

k (3.8)

Loss Function:

The network is trained by minimizing the negative log-likelihood loss of the nodes
ground truth position Y , for the predicted bivariate Gaussian distribution Ŷ , for all
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non-controlled nodes, for all timesteps Tobs < t ≤ Tpred, where

Losspos = −
Tpred∑

t=Tobs+1
log(P (xt, yt|µt

x, µ
t
y, σ

t
x, σ

t
y, ρ

t)) (3.9)

Loss is also compared when the model is trained to output velocities of each node,
rather than position. This is achieved by redefining the output of the node RNN to
be Ŷ t

i = [µ̇x, µ̇y, σx, σy, ρ]ti and the loss function as:

Lossvel = −α
Tpred∑

t=Tobs+1
log(P (ẋt, ẏt|µ̇t

x, µ̇
t
y, σ

t
x, σ

t
y, ρ

t)) (3.10)

where α is a weighting factor, set to 1 if the agent is moving at a speed above a given
threshold (0.1m/s used) or 0.2 for stationary agents. This parameter was added to
avoid local minimums of zero velocity prediction occurring during training due to a
large presence of stationary agents observed in each dataset. Additionally, loss is not
computed for an observed agent if they were not present for a minimum number of
frames within the observed sequence, set to be 50% of the observation length.

Implementation:

All RNN modules are composed of a single LSTM cell, with edge RNNs having a
hidden state size of 128, and node RNNs having a hidden state size of 64. For
all non-linear embedding layers in the network, a transformation using ReLu non-
linearity embeds the input into a 64 dimensional vector. All parameter sizes have
been determined experimentally.

All models have been trained with a starting learning rate of 0.003 using an ADAM
optimiser for 100 epochs on a single Titan-X GPU, taking approximately 12 hours.
Global norm clipping has been implemented at a value of 10 for stability throughout
training. For all sequences, observations are made for 12, 20 and 32 timesteps, equiv-
alent to 0.8, 1.33 and 2.13 seconds, and show results for prediction periods of 8, 12
and 20 timesteps (0.53, 0.8 and 1.33 seconds).
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3.1.2 Experiment

Datasets:

The proposed method is evaluated on two distinct datasets: A Robot Amongst the
Herd (ARATH) [15], and a subset of the publicly available Stanford Drone Dataset
(SDD) [11]. These datasets both consist of real-world heterogeneous agent interac-
tions, and have been chosen as they focus on agent-agent interactions, rather than
agent-space interactions which occur in more structured environments such as traffic
datasets. The ARATH dataset has been used to demonstrate the ability of the ap-
proach to learn the response of a non-controlled agent to a planned path of a robot,
and the SSD dataset has been included to demonstrate the ability of the method to
generalise to varied agent types and environments.

The ARATH dataset has been captured at the University of Sydney’s Camden dairy
farm, from a remotely controlled robotic vehicle operating in herds of cows containing
20 to 150 individuals. This dataset was captured using a 3D LiDAR with full 360°
FOV and single forward facing 2D RGB camera with approximtaely 90° horizontal
FOV. A video describing the collection of this dataset is available at [109]. The
data has been preprocessed using the perception pipeline detailed in Section 5.1.
This pipeline consists of detection in the 2D image using a convolutional neural
network, specifically the Single Shot MultiBox Detector [110], alongside 3D point
cloud segmentation [111] and centroid tracking, performed after ground extraction.
A known transform between the two sensors allows association of predicted bounding
box classes in the 2D image to overlapping tracked clusters in the 3D pointcloud. This
results in 2D ground positions of all surrounding individuals relative to the vehicle,
limited to a radius of 15m, which are then converted to world coordinates using an
onboard navigation system.

The SDD dataset consists of multiple aerial videos from various locations around the
Stanford campus. The dataset has been limited to 3 of the 8 unique locations to
avoid environments that contain significant constraints, such as roundabouts or road
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intersections, and large areas of overhead obstruction, including trees and buildings,
as well as to use videos containing a balance of agent types. The used subset includes
bookstore 0-3, hyang 0-2, and coupa 0-3. All non-road based agents have been con-
sidered for this dataset, using sequences which only contain pedestrians, cyclists or
skateboarders, and omitting sequences with cars. 2D positions of each tracked in-
dividual are provided in frame coordinates, which have been transformed into world
coordinates using measured known landmarks for each location.

Both datasets have been preprocessed to have a frame rate of approximately 15 Hz,
and have been standardised to have a mean of 0 and a standard deviation of 1
for all dimensions, to conform better with the used ReLu activation function, as
recommended in [43]. Each dataset has been split into 5 non-overlapping sets, of
which 1 has been left out of training for testing purposes. Of the remaining sets, a
20% validation split has been used during training.

Metrics and Compared Methods:

The proposed method is compared against the following baseline approaches for both
datasets, all of which use a single model of motion for all agent types:

1. Constant turn rate and velocity (CTRV)

2. RNN Encoder-Decoder (RED)

3. Social-LSTM (SLSTM) [22]

The RED model is based on the Seq2Seq model in [43], using 2 LSTM layers with
64 hidden units each. CTRV uses a weighted average of the most recent 8 timesteps
(0.53s) as input.

The use of position (Eq. 3.9) and velocity (Eq. 3.10) is also compared as outputs of the
network, with two variants of the proposed model, the STG-GRNN ResponseRNN,
referred to as RRNN-Pos and RRNN-Vel. Both models are included to determine
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whether using position as output, as performed in SLSTM and RED, has a significant
difference to using relative velocity.

Similar to prior work in trajectory prediction [22] [108], two metrics are used to
compute prediction error:

1. Average Displacement Error (ADE): Computes the average of the L2 distance
between each predicted point and ground truth point, for all prediction timesteps.

2. Final Displacement Error (FDE): Computes the L2 distance between the final
points of the predicted trajectory, and the ground truth, at t = Tpred.

3.1.3 Results

Quantitative:

The accuracies for all tested methods on the ARATH and SDD datasets are shown
in Table 3.2. The STG-GRNN model proposed in the work, specifically the variant
RRNN-Vel, achieves the best results for the ARATH dataset, with the lowest average
and final displacement errors across most sequence lengths. RED model performs
slightly better than RRNN-Vel for most metrics on the SDD Dataset.

RRNN-Pos performs significantly worse than RRNN-Vel, a result possibly explained
by the inability of the model output to make use of the full range of -1 to 1, as the
output of this model was compared directly to the standardised input across this same
scale and so may have learnt to associate agent absolute position in the frame with
an expected output. This could be avoided in future by augmenting the image frame
for each sequence, or increasing the number of observed interactions in the dataset.

Both the RNN-Encoder-Decoder (RED) and constant turn rate and velocity (CTRV)
models perform surprisingly well on both datasets for all sequence lengths. This result
is similar to that obtained in the TrajNet evaluation [43], which demonstrated that
RED models outperformed all tested models which considered agent interactions,
including SLSTM. The reason for the improved performance of RRNN-Vel in this
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t=8 t=12 t=20
SDD ADE FDE ADE FDE ADE FDE
RRNN-Vel 0.165 0.202 0.262 0.310 0.388 0.650
RRNN-Pos 0.305 0.402 0.411 0.720 0.550 0.920
CTRV 0.189 0.366 0.313 0.663 0.446 0.930
RED 0.155 0.232 0.212 0.325 0.266 0.477
SLSTM 0.311 0.396 0.428 0.559 0.532 0.844

Table 3.1 – Quantitative results of the proposed STG-GRNN model versus benchmark
methods on the SDD [11] dataset. For each dataset, results are compared across
three prediction lengths of 8, 12 and 20 timesteps (0.53, 0.8 and 1.33 seconds),
showing both the Average Displacement Error and the Final Displacement Error in
meters. Best error is shown in bold.

t=8 t=12 t=20
ARATH ADE FDE ADE FDE ADE FDE
RRNN-Vel 0.196 0.351 0.280 0.350 0.462 0.906
RRNN-Pos 0.356 0.620 0.561 0.873 0.797 1.320
CTRV 0.245 0.472 0.654 0.93 0.691 1.450
RED 0.299 0.501 0.386 0.637 0.391 0.885
SLSTM 0.511 1.020 0.776 1.390 0.820 1.550

Table 3.2 – Quantitative results of the proposed STG-GRNN model versus benchmark
methods on the ARATH [15] dataset, as per Table 3.1.

work is possibly due to the focus of datasets containing heterogeneous agent types, a
robot and cows in ARATH, and pedestrians, cyclists and skateboarders in SDD. The
STG-GRNN model proposed in this work is the only tested model which accounts
for heterogeneous agent types. It may be possible to show that by using a different
RED model for each agent type it is possible to achieve improved results, however
this approach would remove the ability to model dependencies between agents, and
so use the model for predicting a response to a robot.

Inference time is also significantly different between tested methods, with both STG-
GRNN models taking approximately 250ms for a sequence length of 20 timesteps and
5 agents, compared to SLSTM taking approximately 300ms, RED taking 10ms and
CTRV significantly less again.
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Figure 3.3 – Qualitative results of the proposed STG-GRNN model when varying the
future robot path. There is a clear difference in the response of each non controlled
agent between the actual path taken by the robot and the two simulated paths for all
examples shown. Whilst (a)-(c) illustrate reasonable reactions from the agents to
the robot’s movement, the examples shown in (d)-(f) display responses that do not
reflect expected reactions of the agents for the given planned path. Results show the
mean of the output distribution using RRNN-Vel on the ARATH dataset.
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Qualitative:

A main purpose of this model is to determine whether the inclusion of a robot’s
planned path as an input to a predictive model enables us to model the response of
surrounding individuals for a robot’s future action.

Without being able to replicate real world crowd and herd states with non controlled
agents, it is not possible to test different actions for the same state. As such, it
is only possible to apply simulated actions to the real world data and compare the
simulated response to what we would expect, had the robot actually taken that action.
Examples of this can be seen in Fig. 3.3 which illustrates the predicted trajectories
of all agents given the real path taken by the robot alongside predictions based on
simulated paths. These comparisons have all been made using the RRNN-Vel model.

There is a clear difference in the response of each agent for each robotic path. This
suggests that it is possible to learn a dependency between a robot’s known next action
and the future trajectories of those around it, allowing the use of simulated paths to
infer how a crowd or herd may respond.

Fig. 3.3 also illustrates that many of these predicted responses reflect how we might
expect each agent to respond given the associated robot’s movements, with agents
diverting their course to accommodate the changing direction of the robot’s simulated
movement. However this is not always the case, with examples (d)-(f) showing the
agents responding in ways which do not make sense given the simulated paths. It
is unclear why the simulated predictions do not follow expectations in some cases,
however the use of a dataset including more interactions between a robot and agents
from varying angles and velocities may allow us to better model these responses.

As demonstrated in [108], the use of an attention module allows a model to learn the
relative importance of each other agent on any given agent’s motion. By applying
a similar model to a heterogeneous dataset we can see that this concept holds when
considering an agent’s response to multiple agent types at once. This is especially
relevant for the ARATH dataset, as shown in Fig. 3.4 in which we can clearly see
that the model learns the attention being shown, which is not always proportional to
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Figure 3.4 – The output of attention weights from the soft-attention module can be used
to determine who in a crowd or herd is paying attention to who else. The attention
that the agent of interest (red) is showing towards each other individual around it,
including the controlled robot (black), is visualised here by the proportional size of
each circle.

proximity. These examples demonstrate that the attention shown from each animal
towards the robot is usually more than that shown towards other animals in the herds,
and also allows us to learn which animals are being paid the most attention within
a given herd, an important aspect for actions such as herding, in which animals will
tend to follow these individuals.
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3.1.4 Discussion

The proposed approach is likely to only learn the response of a given population to a
known robot type and behaviour, due to differences in how various groups of people
and animals respond to social cues. It is also likely that these responses would change
as a group of individuals became acquainted with a robot over time, an element not
focused on in this experiment.

Additionally, understanding how the configuration space a robot is planning in changes
across the action space becomes an intractable problem when trying to evaluate all
possible paths. An approach to this problem may be sampling of the action space or
replacing the above model-based approach with a learning-based approach.

This experiment specifically focused on unstructured environments, limiting the SDD
dataset to sequences without obvious constraints on agent movement, like paths or
doorways. If these structures were encountered it is likely that the prediction error
would increase significantly for the current model, as there would be no way for the
model to anticipate the agent’s reaction to the unseen constraint.

The inclusion of a controlled agent in a predictive model has been demonstrated,
with a planned action of the agent used as input for predicting responses of other non
controlled agents to a planned path. The applicability of the proposed STG-GRNN
network to varied environments and agent types has also been shown, including learn-
ing interactions between non-human agents. Importantly, this result outlines that
such a model can be used to simulate a robot’s actions for any given state, allowing
the determination of which action is most likely to result in a desired state of the
surrounding individuals in a crowd or herd. Future work will look into further ex-
periments with controlled interactions between a robot and agents, in order to better
evaluate how well we can predict the response of an agent for varying robot actions.
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3.2 Faster Response Prediction using Direct

Embedding

In order to be used in safety critical systems and real time path planning, predictive
models of motion need fast prediction inference. In the previous section, the proposed
STG-GRNN model and compared SLSTM [22] — both of which took into account the
relationships of all agents present in the scene — took 250 ms and 300 ms respectively
to encode 8 observed timesteps and predict 12 timesteps in a scene of 5 agents.
Comparatively, the RED model, which did not account for any interactions, took less
than 10 ms. Models that do not consider interactions between all agents in a scene
have been shown to perform comparably to those which do, often outperforming them
in terms of prediction accuracy even in crowded scenes [47]. This result was similarly
seen in Section 3.1 where the simpler RED model outperformed STG-GRNN on most
pedestrian dataset metrics.

This work builds upon the previous section, aiming to determine if a simpler model
which only considers the relationship between the robot and each individual sepa-
rately can still allow response prediction whilst taking advantage of the improved
performance and speed of the RED approach. The proposed GRNN approach uses
RNNs in an encoder-decoder architecture, where the input at each timestep is the
current position of an agent and the future position of the robot. This approach al-
lows the encoding of observed sequences of agent positions and robot actions, which
can be used by the decoder stage to generate likely responses of all agents to a robot’s
action. The model is intended for use within an SPP approach, as discussed further
in Chapter 4.

The GRNN model has been evaluated on three varied datasets, including interac-
tions between pedestrians and a vehicle [47], livestock and a mobile robot [15], and
simulated interactions of pedestrians generated using the optimal reciprocal collision
avoidance (ORCA) model of motion [18]. By comparing prediction accuracy both
with and without the inclusion of the robot’s action as additional input, improved
performance over the baseline RED model is demonstrated. Additionally, compari-
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son of prediction accuracies of agents at differing distances from the controlled-agent
demonstrates that accuracy improvement is greater for closer agents, suggesting that
the direct embedding approach to conditioning does allow the modelling of responses
to a robot’s future action. Similarly, evaluation of the proposed GRNN approach
demonstrates a relationship between the use of controlled actions from more distant
timesteps and improved prediction accuracy, suggesting a delayed action-response in-
fluence. This relationship is shown for both real and simulated pedestrian datasets,
although this was not found to hold for robot-livestock interactions.

The results of this section validate the approach of GRNN, showing that by condi-
tioning separate agent predictions on the planned path of a robot it is possible to
learn a model of social response without the need to include all relationships in the
scene. The proposed direct embedding GRNN approach is shown to improve accuracy
prediction for pedestrians in near range interactions over the baseline RED model,
which was itself shown to outperform the STG-GRNN approach in Section 3.1, whilst
maintaining similarly fast inference speeds.

3.2.1 Generative RNNs in a RED

Problem Statement

This section addresses the same problem described in Section 3.1.1, where, for an
observation period t ≤ Tobs, the observed positions of N non-controlled agents Xt =
[Xt

1,Xt
2...,Xt

N ] and the known past robot positions Rt are known, and a prediction
for agent positions Yt = [Yt

1,Yt
2...,Yt

N ] across a future time period Tobs < t ≤ Tpred is
required. The input trajectory for agent i ∈ N is defined as it’s position X t

i = [xt
i, y

t
i ]

for each timestep t. Tobs is the timestep of the latest observation, and Tpred the future
timestep that prediction is performed up until.

This is achieved by training a sequence prediction model on X and R, as well as
the ground truth future positions of each agent Y and known future positions of the
robot Rf for Tobs < t ≤ Tpred.
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Approach

The predictive model of response used in this work combines the approach of Sec-
tion 3.1 — which demonstrated that the use of a known future action as input has
been shown to learn the relationship between a robot’s action and the likely next
position of nearby agents — with the RED model used as a baseline comparison in
the same work. The RED model is based on the Seq2Seq model in [43], which does
not pool interactions between agents.

Our predictive model uses a robot’s future action as an input, where the robot’s
position at timestep t + ∆t represents the action at time t. Thus, Rt+∆t is used
alongside Xt as input to the predictive model.

The experiment caried out in this section details how the use of varying ∆t impacts
prediction.

Model Architecture

The tested model uses the same architecture as the RED model compared in Sec-
tion 3.1, with the output layer altered to predict a bivariate Gaussian and the input
layer altered to accommodate a 4D vector. A comparison of the approach without
making use of any knowledge of the robot’s state is also used, in this case the input
is a 2D vector as per the original implementation.

The encoder and decoder have the same structure, comprised of a non linear embed-
ding layer that takes in the input at each timestep, followed by two stacked LSTM
[112] RNN layers. The inputs of the encoder are made up of Xt and Rt+∆t for all
t ≤ Tobs − 1. The current observation at t = Tobsis used as the first input to the
decoder.

The decoder takes the same size inputs as the encoder, however, at all timesteps after
the first decoder input, the decoder is fed zeros in place of the agent positions. This
is done for both training and inference. This zero-feed approach has been shown to
improve performance at inference time, when there are no known ground truth agent
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positions [56]. This is in comparison to other approaches that use a sample from the
output of the prior step as input to the next step. The non-linear embedding layer
uses Rectified Linear unit (ReLu) activations and the same weights for both encoding
and decoding steps. The outputs of the decoder are passed through a linear layer
that maps to a bivariate Gaussian output for each agent’s position at each predicted
timestep.

Training: Variable length encoding sequences between 8 and 20 timesteps are used.
Decoding is performed for a fixed length of 8 timesteps, and the output of each decoder
step, Ŷt, is compared to the ground truth positions of each agent Yt. Training of
the GRNN model is done so as to minimise the loss shown in Eq. 3.11, which is the
negative log-likelihood of Y given Ŷ , across all prediction timesteps.

Loss = −
Tpred∑

t=Tobs+1

N∑
i

log(P (xt
i, y

t
i |Ŷ t

i )) (3.11)

where Ŷ t
i = [µxi

, µyi
, σxi

, σyi
, ρi]t, for all agents i ∈ N , for all timesteps in prediction

period Tobs < t ≤ Tpred

3.2.2 Experimental Method

The average and final displacement errors (ADE and FDE) are compared for the
proposed model trained with varying robot action lookaheads, ∆t ∈{0,1,2,3,4,5}.
Model accuracy is also compared when no robot action is included in the input.
In this case the GRNN model uses only Xt as input, and is the same RED model
evaluated in Section 3.1, adapted for probabilistic output.

Datasets:

This experiment has been repeated using three datasets:

• Vehicle-Crowd Interaction (VCI) DUT [47]
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• ‘A Robot Amongst the Herd’ (ARATH) [15] livestock-robot interactions

• Generated ORCA trajectories

The two real world datasets have been chosen as they both contain interactions be-
tween a controlled vehicle and uncontrolled agents, and focus on agent-agent inter-
actions, rather than agent-space interactions. A description of the ARATH dataset
and the method of data collection is detailed in Section 3.1. Both datasets have been
preprocessed to have a frame rate of approximately 5 Hz, with a mean of 0 and a
standard deviation of 1 for all input dimensions. Note that this framerate is signif-
icantly slower for ARATH than the 15 Hz used in Section 3.1 to allow comparison
with the slower sampled VCI dataset.

The ORCA dataset has been included for use during planning experiments in the
ORCA environment, and includes 10,000 randomly generated scenes of between 2 to
12 agents. The positions and goals of agents were randomly generated over a 15 x
15 m square using default ORCA parameter values from the authors’ python RVO2
implementation [18].

Implementation:

Each dataset has been split into 5 non-overlapping sets, of which 1 has been left for
testing. A 20% validation split is used during training. The network is implemented
in tensorflow with Adam optimiser for 100 epochs on a single Titan-X GPU, taking
approximately 1 hour to train. Inference time per decoder step is less than 0.1 ms.

3.2.3 Results

Fig. 3.5 compares the prediction accuracy of the GRNN model trained using varying
action lookaheads, ∆t. The performance of the model when no robot action is used is
shown as ‘None’. In this case, the tested model is the same architecture as the RED
model evaluated in Section 3.1 and acts as a baseline.
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Fig. 2: Accuracy of Prediction Model on ORCA, VCI and
ARATH datasets comparing the use of no robot input
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Figure 3.5 – Comparison of prediction accuracy for varying robot lookaheads ∆t, and
when no robot input is used (∆t=None). ADE and FDE shown for all agents
(red), and limited to agents near robot (blue, cyan, teal). Correlation between ∆t
and accuracy can be seen for ORCA and VCI, though not for ARATH except when
distance limited.
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For both pedestrian datasets, VCI and ORCA, there is a clear correlation between
increased accuracy — both ADE and FDE — and increasing ∆t, for ∆t > 0. This
trend is more apparent for agents at a closer proximity to the controlled agent. For the
VCI dataset, ADE at the closest tested proximty of 1 m is significantly higher when the
model is not conditioned on any robot input ( ∆t = None), decreasing sharply when
knowledge of the robot’s current position is included, and continuing to decrease when
additional knowledge of the robot’s future action is available. Similar trends are seen
for the majority of other pedestrian metrics, where the error of models conditioned on
the robot’s position at ∆t ≥ 1 is less than the comparative non-conditioned version,
especially at closer distances to the robot. Interestingly, the non-conditioned RED
baseline attains higher accuracy on most metrics than models conditioned only on the
robot’s current position (∆t = 0), suggesting that the current position of the robot
does not add more information than is already encoded within the agent’s current
motion and perhaps only increases complexity of the model and so the ability to
train an equally accurate model on the same dataset in the same number of training
epochs.

However, models trained on the ARATH livestock dataset do not display these same
trends. The ARATH results instead only show slight improvement of prediction
when limited to distance thresholds of 2m and 1m, and in fact decreases in accuracy
when more distant robot futures are known. As the results of Section 3.1 showed
that the inclusion of a robot action at ∆t = 1 in the STG-GRNN outperformed the
non-conditioned RED model, it may be that intra-herd dependencies exist that need
inclusion within a prediction in order to make use of any known robot future.

This result confirms that embedding a planned robotic action Rt+∆t, where ∆t ≥
1, alongside the current agent position Xt as input to the GRNN model improves
prediction accuracy for close range pedestrian-pedestrian and vehicle-pedestrian in-
teractions. This result demonstrates that the model is able to accurately learn the
relationship between a robot’s known future action and the future state of a non-
controlled agent. This validates the use of such a model to predict the likely future
states of individuals when knowledge of a robot’s future state is available.
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3.2.4 Discussion

The results of this section confirm that the direct embedding of robot-agent relation-
ships without consideration of all agent-agent relationships in the scene can allow the
GRNN model to learn the relationship between a robot’s future action and the future
state of nearby agents at least for pedestrian environments. This has been achieved
by simply extending the input encoding layer of an RED model to include the 2D
robot position alongside the existing 2D agent position, allowing fast inference times
comparable to the baseline RED.

However, this experiment — and the one performed for STG-GRNN in Section 3.1
— has assumed that the robot’s ground truth future state is available. If this GRNN
model was applied as a state transition function for real world planning, this would
not be the case, and the model would instead be using a planned robot future state.
Whilst improved prediction accuracy can be shown using the ground truth future
state of the robot, this may be due to information leakage. The ground truth future
state of the robot may be itself encoding informing that makes prediction of the future
states of nearby agents easier, as the robot reacts to their motion. In order to address
this issue, an experiment that uses a future robot action that is independent of any
possible reaction to agent motion is needed. This issue is addressed in the following
section.

3.3 Comparing the Response Prediction Ability of

Various Models

Recent works have demonstrated how deep learning based approaches to trajectory
prediction, specifically RNN based models, can be conditioned on the known or
planned path of a controlled agent in order to improve the prediction accuracy of
other nearby agents [14, 27, 113]. These works have claimed that this conditioning
can allow the model to learn the likely response of an agent to a robot’s planned
action. By applying the model as a state transition function of form S ′ = P (S, a),
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where the environment’s next state S ′ is predicted from the current state S and next
action a, this would allow simulation of ‘hypothetical rollouts’ to compare potential
actions during path planning in a model-based predictive control approach.

However, a comprehenisve analysis of the ability of these proposed predictive models
to accurately learn the response of an agent to a robot’s planned action, and so for use
as state transition functions, has not yet been undertaken. Similarly, whilst many
deep RL based approaches to crowd navigation make use of traditional pedestrian
motion models such as ORCA [29, 30, 31, 32, 81], these motion models are also yet
to be evaluated in terms of their ability to be used as state transition functions.
This section conducts an analysis of a number of predictive models — including both
RNN and traditional approaches — comparing their ability to effectively predict the
response of nearby agents to the future motion of a controlled agent. This section
compares the use of both the ground truth future of the controlled agent, as well as a
planned future. This planned future is based only on the intended goal of the agent
and aims to remove any possible dependency that the robot’s future might have on
the non-controlled agent’s future, and so possible information leakage. By comparing
the accuracy of predictions when conditioned on the known future or intended goal
of a controlled agent against the same models when no future is known, it is possible
to determine to what degree the models are effectively learning the response and so
validate their use as state transition models during path planning.

3.3.1 Experimental Method

Each compared model has been tested in three different ways:

1. Not conditioned: No future information is known of the controlled agent.

2. Conditioned - Whole path: The ground truth future position of the controlled
agent is known for the entire predictive period.

3. Conditioned - Goal only: The ground truth future position of the controlled
agent is known only for final predictive timestep.
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Figure 3.6 – Non-conditioned (a) versus Conditioned (b) testing methodologies for
predictive model comparison. At the first prediction timestep t = Tobs, both meth-
ods take as input the observed position of all non-controlled agents Xt

NC and the
ground truth position of the controlled agent Xt

C as well as any encoded or learnt
information passed between steps of the predictive model Et, such as the hidden
state of an RNN or the desired velocity and intended goal of ORCA. The model
output is split up for non-controlled and controlled agents as Ŷ t+1

NC and Ŷ t+1
C , re-

spectively. In (a), both Ŷ t
C and Ŷ t+1

NC are used in place of ground truth inputs Xt+1
C

and (Xt+1
NC )respectively in the subsequent predictive step. In (b), the ground truth

or planned position of the controlled agent Xt+1
C is used rather than the previous

timestep’s prediction, whilst Ŷ t+1
NC is used for all non-controlled agents.

Fig. 3.6 illustrates the difference between the non-conditioned (1) and conditioned
(2 and 3) methods. In Fig. 3.6 (a), the controlled agent is treated the same as all
non-controlled agents, with no knowledge of it’s future trajectory. In this case, the
predictive model takes the previously predicted position of all agents as inputs for all
timesteps after the last observation time t = Tobs. In (b), controlled agent’s future is
instead known. In this case, the known — or planned — position of the controlled
agent is passed to the model alongside the predicted positions of all non-controlled
agents from the previous timestep.

In method 3, only the ground truth position of the controlled agent at the final
timestep Tf is known, referred to as the goal, Gf . The positions of the controlled
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agent for all other prediction timesteps Tobs < t < Tf are instead inferred based on
the position and velocity of the controlled agent at t = Tobs and Gf . This is done
using the ORCA motion model, without taking into account the positions of any
non-controlled agents, resulting in a smooth curve. Additionally, the goal passed
to ORCA for this purposes is actually caulcuated as a position twice the distance
beyond Gf from the controlled agent’s position at Tobs to account for the tendency
of ORCA to slow down when near to the goal. ORCA is then implemented for twice
the number of predictive timesteps compared in testing, with only the positions up
until Tf being used. Method 3 is used in order to ensure that there is no information
leakage from the controlled agent’s ground truth future to any prediction. As the
controlled agent’s ground truth future motion is actually dependent on the future
motion of all non-controlled agents, there is likely to be information regarding the
unseen motion of non-controlled agents embedded in the controlled agent’s response
to them. By instead using a ‘planned’ path based only on knowledge of the final goal,
most of this dependence can be removed for a better comparison.

Comparison has been made in terms of the metrics of ADE, FDE and MHD for each
test. In all three testing methodologies, the position of the controlled agent has been
removed from calculation of all metrics.

Compared Motion Models:

This comparison is undertaken for the GRNN model proposed in section 3.2 of this
work, the state-of-the-art SRLSTM approach [25], and the traditional ORCA [18] and
SFM [17] models of motion.

Prior to undertaking the analysis, a comparison of inference times for different pre-
dictive models has been completed, shown in Fig. 3.7. The STG-GRNN model
proposed in section 3.1 is significantly slower than all other methods, with inference
time increasing linearly with additional agents. The intention of this analysis is to
determine the best predictive model approach to use within the simultaneous plan-
ning and prediction (SPP) method proposed in this thesis, in which speed is a critical
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Figure 3.7 – Comparison of inference time per prediction timestep against the number
of agents present in the scene. The more complex RNN method SRLSTM takes
significantly longer per prediction than the simpler GRNN, however both are much
less than STG-GRNN, which scales linearly with increasing agents. STG-GRNN
has not been included in further comparison due to the large inference time. Testing
was done on a on a GTX 1080 Ti GPU and Intel Xeon(R) CPU E5-2630 v4 @
2.20GHz×20.

consideration. As such, STG-GRNN has not been included for further comparison as
it would not be suitable for use within any real-time planning approach that required
the comparison of multiple simulated rollouts. Instead, the state-of-the-art SRLSTM
[25] has been included which similarly encodes information between all agents present
in the scene, however uses a state-refinement module on the RNN hidden states al-
lowing for significantly faster inference speeds than is achieved in STG approaches.

Datasets:

This experiment is conducted on two publicly available datasets of real world inter-
acting pedestrian crowds, ETH [44] and UCY[45]. These datasets have been split
into a total of 5 independent subsets, ETH-Univ, ETH-Hotel, UCY-Zara01, UCY-
Zara02, and UCY-Hotel. Each dataset contains pedestrian positions in real world
coordinates with an observation frequency of 2.5 Hz. Similarly to [25], every 6 frames
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of ETH-Univ are used as 0.4s rather than 10 frames for framerate compatibility be-
tween subsets. In order to allow comparison of traditional pedestrian motion models,
analysis is limited to pedestrian only datasets where a single agent per sequence is
designated as the controlled agent, rather than using datasets of crowd-robot or ve-
hicle interactions. The controlled-agent per sequence is then simply defined as the
agent at the first index, kept consistent for all tests.

Implementation:

Testing has been completed separately on each data subset, after training or optimi-
sation has been completed on the 4 remaining subsets. The results shown are the the
average across all subsets, weighted dependent on the respective size of each subset.
Overlapping sequences are used during both training and testing, with an observed
length of 8 timesteps (3.2 s) and prediction length of 12 timesteps (4.0 s).

The parameters of ORCA and SFM have been optimised on the training sets for
each test. Optimisation was done using a discrete grid search across the following
parameters, minimising ADE. ORCA: (1) maximum neighborDist; (2) response time-
Horizon; (3) agent radius; (4) agent maxSpeed. SFM: (1) repulsive exponent σ; (2)
repulsive scalar V 0; (3) relaxation time τ ; (4) agent max-speed-mult V max.

Both ORCA and SFM require knowledge of each agent’s intended goal during predic-
tion. In order to include future information only from the controlled agent, these goals
have been infered using only the observed sequence for each non-controlled agent. A
kalman filter [38] has been applied to the observed 8 timesteps for each agent, and
the estimated position after twice the prediction period (2 x 12 timesteps) is used as
the goal. This doubling of goal distance is done as both ORCA and SFM will slown
down as they approach the goal, whereas the actual ground truth final position of
each sequence may not be where the pedestrian comes to a stop.
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3.3.2 Results:
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Figure 3.8 – Comparison of prediction errors for different methods when conditioned
on a controlled agents future path. Both RNN based methods, SRLSTM [25] and
GRNN, demonstrate the ability to improve prediction accuracy of nearby agents to
a controlled agent when the future path or intended goal of the controlled agent is
known. This is improvment is significantly greater in SRLSTM. The traditional
methods, ORCA and SFM, do not show any significant response prediction ability.
Additionally, the traditional approaches score less than either RNN approach in all
metrics except for ORCA at extrememly clost proximity to the controlled agent.
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The results illustrated in Fig. 3.8 demonstrate that only the RNN based approaches
are able to learn any response of a crowd to a controlled agent’s planned path, with the
traditional ORCA and SFM based approaches showing no significant improvement in
prediction accuracy when supplied even with the ground truth future motion of the
controlled agent.

SRLSTM [25] takes into account all crowd relationships, rather than the simple direct
embedding used in GRNN which only looks at individual relationships between the
controlled agent and each other agent separately. As expected, this allows the model
to better model response, significantly outperforming GRNN in prediction accuracy
when conditioned on either the entire ground truth, or just the controlled agent’s
goal. However, as shown in Fig. 3.7, this increased complexity leads to increased
inference time per prediction step, a critical consideration in most real time planning
applications.

Both SRLSTM and GRNN show improved performance in method 2 (Conditioned -
Whole Path) compared to method 3 (Conditioned - Goal Only) as expected, however
still exhibit significantly improved accuracies when compared to method 1 (Non-
conditioned). Additionally, it is clear that even without any knowledge of the con-
trolled agent’s goal, the learnt RNN models outperform both traditional models in
all metrics, except for the final error of ORCA at very close proximity of just 1 m
from the controlled agent.

Fig. 3.9 illustrates how improved accuracy resulting from conditioning on a known
future path increases at more distant timesteps for SRLSTM. A comparison of the
results from methods 1 and 2 on SRLSTM shows that when conditioned on a known
path, the prediction at timestep 10 (4.0 s) can achieve a similar accuracy as a non-
conditioned prediction two timesteps previous at 3.2 s at the closest proximity of
1 m to the controlled agent. The accuracy improvement as a percentage of the
total non-conditioned error at proximity of 1 m increases approximately linearly each
timestep, from negligible improvement at the first timestep (0.32 %) to 27.5% error
improvement at the final timestep.
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Figure 3.9 – Prediction error of SRLSTM at different prediction timesteps (2.5Hz),
comparing when conditioned on a controlled agent’s known future and when not.
Improved prediction is seen both with increasing future horizon and closer proximity
to the ‘robot’. By using knowledge of the planned path, error at timestep 10 (4.0 s)
can match non-conditioned error at timestep 8 (3.2 s) at the closest proximity to
the ‘robot’. However, minimal improvement is seen at a single timestep prediction.
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3.3.3 Discussion:

Whilst SRLSTM [25] has been shown to effectively learn the response of a crowd
to a controlled agents known or planned future path, it has not been validated for
use as a singlestep state transition function. As shown in Fig. 3.9, there is minimal
improvement in accuracy at all proximities at a single prediction timestep (0.4 s). The
approach used in most model-based deep RL approaches [29, 30, 31, 32, 77] applies a
learnt value function to the predicted states from a singlestep search across the action
space. Further verification would be required to ensure that any minimal differences
in predicted states possible at a single step into the future even using models such as
SRLSTM can result in significant differences in value function output, otherwise this
result suggests that additional steps into the future are required in model-based deep
RL approaches to dynamic navigation. The approach proposed in this thesis — SPP
using a learnt model of social response within a MCTS, described in Section 4.1 —
would not suffer from this singlestep accuracy issue as the adapted MCTS is able to
consider states at more distant timesteps where greater difference in predicted state,
and improved accuracy of response, is possible.

The results of this comparison have shown only the deep learning based models ex-
hibiting any significant learnt social response, validating the use of either RNN model
over the compared traditional methods in the proposed SPP approach for social re-
sponse prediction. While better social pooling has allowed better learning of response,
simple direct embedding has allowed for increased inference speeds. As the proposed
SPP approach is a sampling based method where speed is critical, the improved speed
may compensate for the lower response prediction accuracy and will need further test-
ing as part of the entire planning approach.
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3.4 Multi-Modal Motion Prediction

The motion of individual members of a crowd is dependent on the motion of others
nearby, including any vehicles, and contains significant uncertainty during interac-
tions. In order to better predict pedestrian motion we need to be able to model this
uncertainty, which is often multi-modal due to the variety of ways in which individuals
can interact and avoid each other. Recent works that aim to capture this multi-modal
and probabilistic nature of crowd interactions have attempted to do so through re-
peated sampling of generative models, often using RNN-based autoencoders trained
as generative adversarial networks (GANs) [23, 54]. Due to the nature of adversar-
ial training, where generated trajectories must match the form of the ground truth
for comparison by the discriminator, these methods are limited to generating non-
probabilistic outputs. Instead, they require repeated sampling with use of a random
latent variable to identify the true multi-modal distribution during inference.

Additionally, in applications involving the use of a single-vehicle around pedestrians,
such as the example of autonomously navigating a university campus shown in Fig.
3.10, accurate prediction of nearby pedestrian motion requires inclusion of vehicle-
pedestrian interactions in any predictive model. Recent work [54] has shown that
the use of graph attention networks (GATs) [65] can improve the modelling of social
interactions between pedestrians, as compared to previously used social pooling layers.

The method proposed in this section, probabilistic crowd GAN (PCGAN), allows for
the direct prediction of probabilistic multi-modal outputs during adversarial training.
An MDN is used within the GAN’s generator to output a GMM for each pedestrian,
demonstrating how clustering of each component of the GMM allows the finding of
likely modal-paths, that can then be compared to ground truth trajectories by the
GAN’s discriminator. Additionally, the use of GATs for modelling crowd interactions
is extended to include heterogeneous interactions between a vehicle and pedestrians,
as a graph vehicle-pedetrian attention network (GVAT) used for modelling social in-
teractions in the proposed method. This approach is validated on several publicly
available real world datasets of pedestrian crowds, as well as two datasets which in-
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Figure 3.10 – Visualisation of Probabilistic Crowd GAN with a Graph Vehicle-
Pedestrian Attention Network (PCGAN) in a shared environment on the USyd
Campus Dataset (USyd) [51]. Observed trajectories are shown in black. The most
likely modal path of the multi-modal probabilistic prediction are shown in green
against ground truth in blue for detected pedestrians. Predictions use the vehicle’s
motion as a feature input on the USyd Campus dataset [51].

clude crowd-vehicle interactions. The main contributions in this work include: (1)
achieving direct multi-modal probabilistic output from a GAN for trajectory predic-
tion; (2) an extension of GATs to include a shared vehicle feature in the pooling
mechanism; (3) improved pedestrian motion prediction both with and without the
presence of a single vehicle.

3.4.1 Probabilistic Crowd GAN

Problem Definition

This section address the problem of pedestrian trajectory prediction in crowds both
with and without the presence of a vehicle. Given observed trajectories X, and the
vehicle path V, for all time steps in period t ≤ Tobs, where Xt = [Xt

1,Xt
2...,Xt

N ]
for N pedestrians within a scene, the aim is to predict the likely future trajectories
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Figure 3.11 – Network architecture of PCGAN. Observed pedestrian trajectories are
passed to the generator’s encoder LSTM, whilst the relative position of all agents,
including any vehicle, are passed to the GVAT Pooling module. The generator
outputs a GMM for each agent, from which the MultiPAC module finds the likely
modal paths, which are compared to ground truth paths by the discriminator.

Ȳt = [Ȳt

1, Ȳ
t

2..., Ȳ
t

N ] for each pedestrian in N , across a future time period Tobs < t ≤
Tpred. The input position of the ith pedestrian at time t is defined as Xt

i = (xt
i, y

t
i)

and the vehicle as Vt = (xt
v, y

t
v). Y denotes the ground truth future trajectory, with

the position of the ith pedestrian at time t defined as Yt
i = (xt

i, y
t
i) and predicted

position as Ȳt

i = {(x̄t
i, ȳ

t
i , w̄i)M

m=1} for all predicted modal paths m ∈ M , where w̄m
i

is the likelihood of the predicted modal path m for agent i. Ȳt

i is found from the
probabilistic output Ŷt

i, a Gaussian mixture model (GMM) detailed in Eq. 3.25.

Model Architecture

Our approach consists of two networks, a generator and a discriminator trained adver-
sarially. The generator is composed of an RNN encoder, the proposed GVAT module,
an RNN decoder, and an MDN. The discriminator is composed of the multiple pre-
diction adaptive clustering algorithm MultiPAC module [56] — a module for modal
path clustering described below — an RNN encoder, and a multilayer perceptron
(MLP). Fig. 3.11 illustrates the overall system architecture.

Generator:

The generator is based on an RED framework using LSTM modules, where the GVAT
pooling module is applied to the hidden states between the encoder and decoder
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LSTMs. The input to the encoder LSTM at each timestep t < Tobs is the observed
position of each pedestrian i ∈ N , which is first passed through a linear embedding
layer φe as follows:

et
i = φe(xt

i, y
t
i ;W e

emb) (3.12)

ht
ei = LSTM(ht−1

ei , et
i;Wenc) (3.13)

where Wemb is embedding weight of φe. All pedestrians within a scene share the
LSTM weights Wenc. The decoder’s initial hidden state at t = Tobs is composed of
the encoder’s final hidden state, concatenated with the transformed output of GVAT
pooling for each agent, detailed further below. The first input to the decoder at
t = Tobs is again the observed pedestrian positions, passed first through a linear
embedding layer φd in the same form as φe with separate weights. However, as the
decoder outputs are a distribution, rather than a single point, the prediction from
the prior timestep is not simply passed as input to the decoder’s current timestep.
Instead, for all prediction timesteps Tobs < t ≤ Tpred the decoder inputs are zeros.
This is done as opposed to other probabilistic approaches which feed a sample from the
prior output as current input to the decoder. This zero-feed approach is performed
for both training and inference, and has been shown to improve performance for
probabilistic outputs [56].

gt
i = GV AT (Xt,Vt, ht

e) (3.14)

ht
di = LSTM(MLPdec(ht−1

di , g
t
i), dt

i;Wdec) (3.15)

dt
i =


φd(xt

i, y
t
i ;W d

emb), t ≤ Tobs

0, t > Tobs

where hTobs
di = hTobs

ei and ht
e is the combined output of Eq. 3.13 for all agents in the

scene. MLPdec is an MLP with ReLu non-linearity andWdec is the embedding weight.
The outputs of the decoder are passed through a linear embedding layer φmdn with
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weights Wmdn that maps to a bivariate GMM output Ŷ t
i for each agent’s position at

each predicted timestep. Ŷ t
i is then passed to the MultiPAC module to determine the

set of likely modal paths Ȳ t
i :

Ŷ t
i = φmdn(ht

di;Wmdn) (3.16)

Discriminator:

The discriminator is comprised of a MultiPAC module, and an LSTM encoder of the
same form as the generator’s, with separate weights. The output of generator Ŷ t

i

is first passed to MultiPAC, from which set of likely modal paths Ȳ t
i is computed,

as detailed below. This produces trajectories in the same form as the ground truth,
allowing comparison by the discriminator’s encoder. The encoder is applied across all
timesteps 0 < t ≤ Tpred, with inputs first passed through a linear embedding layer.
Outputs of the encoder are passed to an MLP with ReLu activation, classifying the
path as either a real or fake.

Loss:

Training of the network is achieved using two loss functions Llh and Ladv. Llh is the
negative log-likelihood of the ground truth path Y given the generator G’s output Ŷ,
across all prediction timesteps, for all pedestrians:

Llh = −
Tpred∑

t=Tobs+1

N∑
i

log(P (Y t
i |Ŷ t

i )) (3.17)

Ladv is the adversarial loss, determined from the binary cross entropy of the discrim-
inator D’s classification of the modal paths Ȳ produced from Ŷ by MultiPAC:

Ladv = E[log(D(Xi, Yi))] +
M∑

m=1
E[log(1− wm

i D(Xi, Ȳi)] (3.18)

where the first term refers to D’s estimate of the probability that the ground truth
trajectory Yi is real, and the second term is the sum of weighted estimates for each
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modal path in the set Ȳi being real. The losses are combined to find the optimal
discriminator D∗ and generator G∗, with weighting α applied to Llh:

G∗, D∗ = argmin
G

argmax
D

[Ladv + αLlh] (3.19)

Graph Vehicle-Pedestrian Attention Network

The novel graph vehicle-pedestrian attention network (GVAT) is introduced, which
extends upon the use of GATs [65] for trajectory prediction by [54], allowing the mod-
elling of social interactions between all pedestrians in a scene, and accommodating
the inclusion of a vehicle if present. As opposed to [54], where only agent hidden
states form the GAT input features, GVAT also utilises distance between agents, so
that vehicle distance to agent i can be included to allow the attention module to
account for the impact that the vehicle’s motion has on each ped-ped relationship.
Fig. 3.12 details the input features of a single node in the graph.

For the ith pedestrian, the input to the softmax layer is formulated across all other
pedestrians j ∈ N \{i} by embedding the distance from pedestrian i to the neighbour
pedestrian j and the vehicle. The softmax scalar at

i,j is then used to scale the amount
agent j’s hidden state influences agent i. The summed output across all other agents,
gt

i , is then concatenated with i’s original state to form the output of GVAT pooling
ht

gi. φr, φu and φgat are linear embedding functions, Wr, Wu and Wgat denote their
parameters respectively:

rt
i,j = φr(xt

i − xt
j, y

t
i − yt

j, z
t
i ;Wr) (3.20)

zt
i =


(xt

i − xt
v, y

t
i − yt

v), vehicle present

(0, 0), no vehicle

ut
i,j = φu(concat(rt

i,j;ht
ej;ht

ei);Wu) (3.21)

at
i,j =

exp(ut
i,j)∑

k∈N\{i}
exp(ut

i,k) (3.22)
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Figure 3.12 – Formation of node features for a given agent in GVAT. The distance
from agent i (shown in red) to the vehicle is appended to each other ped-ped distance
input before encoding to account for the impact of the vehicle on i’s relationships
within the graph. The input to softmax layer is ut

i,j as per Eq. 3.21

gt
i =

∑
j∈N\{i}

φgat(at
i,j · ht

ej;Wgat) (3.23)

ht
gi = concat(ht

i, g
t
i) (3.24)

Mixture Density Network

An MDN is used to allow the generator to propose a multi-modal solution for each
agent’s future trajectory, with assigned relative likelihoods for each Gaussian compo-
nent of the mixture model. To achieve this, the output of the generator’s decoder is
passed through a MLP to produce output Ŷ t in the form:

Ŷ t = [π, µk
x, µ

k
y, σ

k
x, σ

k
y , ρ

kK

k=1]t (3.25)

where K is the total number of components used in the mixture model, π is the
weight of each component in the mixture, µ is the mean and σ the standard deviation
per dimension, and ρ is the correlation coefficient, for each timestep Tobs < t ≤ Tpred.
This is performed separately for each agent i ∈ N , which has been left off for clarity.
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Modal Path Clustering

In order to allow the training of the discriminator, the output of the generator must
be converted to the same form as the ground truth trajectories Y. This requires
extracting individual tracks from the GMM Ŷ, whilst preserving the multi-modality
of the distribution. This is achieved by adapting the multiple prediction adaptive
clustering algorithm (MultiPAC) proposed by Zyner et al. [56] to allow backpropa-
gation for use during training. MultiPAC finds the set of likely modal-paths Ȳ, for
each pedestrian from Ŷ. It achieves this by clustering the components of the GMM
at each timestep using DBSCAN [114], determining each cluster’s centroid from the
weighted average of all Gaussians in the mixture. Clusters in subsequent timesteps
are assigned to parent clusters, forming a tree of possible paths with an upper limit
of children at each timestep being the number of mixtures used within the GMM.
This tree is computed from a single forward pass of the model, resulting in a forked
trajectory when diverging possible paths are predicted for a single agent, passing
each branch of the fork separately to the discriminator. The paths from each leaf to
the root are returned as the set of modal paths Ȳ for each pedestrian with assigned
likelihoods w. In order to allow backpropagation through the module, required for
adversarial training, the clustering approach used does not edit the outputs in place,
instead duplicating any shared nodes within the computed tree for individual modal
path outputs.

Implementation

The LSTM encoder and decoder of the generator both have a hidden state size of
32, whilst the discriminator’s LSTM encoder hidden state size is 64. The linear
embedding layers applied to all inputs of both encoders, and the first input of the
decoder at t = Tobs, produce a 16-dimensional vector from the input coordinates. The
linear embedding layer at the decoder’s output produces a vector of 6×K, where K is
the number of components in the GMM, set as 6 for all experiments. Both MLPs have
a hidden layer of size 64 and use ReLu activation. The network is trained initially for
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10 epochs using only the negative log-likelihood loss Llh, before training adversarially
using both loss functions for a further 90 epochs. This initial training is implemented
in order to encourage the generator to produce sensible results before comparison
to the ground truth by the discriminator, and also allows training to converge in
significantly fewer iterations. All training is performed using Adam optimiser [115]
with a batch size of 32 and initial learning rate of 0.001. The α weighting applied to
Llh in Eq. 3.19 is chosen as 0.1.

3.4.2 Experiments

Three experiments are conducted in this section. The first two aim to validate the
proposed approach for use in real world implementations, whilst the third experi-
ment compares the models performance when using the ‘Best-of-N’ approach used in
existing state-of-the-art works [23, 54] and discussed in this thesis in Section 2.1.5.

1. Pedestrian only environment

2. Vehicle-pedestrian interactions

3. ‘Best-of-N’ approach

Experiments 1 and 2 aim to validate the method’s effectiveness both with and without
a vehicle feature input. Experiment 1 evaluates the model without any vehicle feature
input on two publicly available datasets of real world interacting pedestrian crowds,
ETH [44] and UCY [45]. Experiment 2 verifies the model using a vehicle feature
input on two datasets of interacting pedestrian crowds and vehicles. These include
the publicly available dataset, Vehicle-Crowd Interaction DUT dataset (VCI) [47],
and the USyd Campus Dataset (USyd) [51]. Experiment 3 evaluates the model on
the same pedestrian only datasets as experiment 1, however applies the ‘Best-of-N’
sampling based approach to choose the best result from the model as described below.
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Best-of-N Sampling

This approach uses knowledge of the ground truth during evaluation, and so has not
been applied in the prior experiments as it does not reflect how the model is intended
for use in the real implementation, when this information is not available and has
been included here only to allow comparison with existing work. The ‘Best-of-N’
involves sampling multiple times from the model and choosing the prediction with
the best error when compared to the ground truth trajectory. In order to compare
the proposed model to these results, it is evaluated using a similar approach. From
the multiple modal paths generated by MultiPAC for each prediction, only the modal
path with the best error when compared to the ground truth trajectory is used. This
is as opposed to the testing approach used in experiments 1 and 2, where only the
most likely modal path — the modal path with the highest predicted likelihood w̄ —
is used for comparison to the ground truth in evaluation.

The modal clustering algorithm MultiPAC makes use of a hyperparamter ε, which
determines the proximity of points before they are considered part of the same cluster.
This value acts as a branching factor, where a lower value leads to increased branching
in the MultiPAC algorithm. Experiments 1 and 2 have used a value of ε = 0.5,
chosen experimentally to limit the number of modal paths found per GMM. This
was determined in order to limit the iterations of the discriminator and so decrease
training time. In this experiment, the proposed model is additionally compared when
using varying ε values in DBSCAN of 0.5, 0.3 and 0.1.

Both PSGAN and PCGAN are evaluated against Social GAN (SGAN) [23], where
SGAN is sampled k = 20 times and returns only the error of the best prediction
when compared to the ground truth. The same metrics as experiments 1 and 2 are
used, outlined below, namely ADE, FDE and MHD. Testing is performed on the same
datasets as experiment 1, ETH [44] and UCY[45].
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Datasets

ETH and UCY contain 5 crowd scenes: ETH-Univ, ETH-Hotel, UCY-Zara01, UCY-
Zara02, and UCY-Hotel. Each dataset is converted to world coordinates with an
observation frequency of 2.5 Hz, similar to [23]. The ETH-Univ frame rate issue is
addressed similarly to [25] by treating every 6 frames as 0.4s rather than 10 frames,
and retraining all comparative models for this scene.

USyd is collected on a weekly basis by [51] from March 2018 over the University of
Sydney campus and surroundings. The dataset contains over 52 weeks of drives and
covers various environmental conditions. Since this research work primarily focuses on
predicting socially plausible future trajectories of pedestrians under the influence of
one vehicle, 17 scenarios are selected from the dataset in an open large area with high
pedestrian activity. Pedestrians are detected by fusing YOLOv3 [116] classification
results and lidar point clouds from the vehicles onboard sensors, as illustrated in Fig.
3.10. The GMPHD [117] tracker is used to automatically label the trajectories of
pedestrians. To increase the diversity of training data, data augmentation is applied
by flipping 2D coordinates randomly. Due to limitations regarding the length of time
agents are observed in this dataset, an observation frequency of 10 Hz is used, rather
than downsampling to be comparable to experiment 1.

VCI [47] contains two scenes of labelled video from a birds eye view of vehicle-crowd
interactions, recorded at 24 Hz. This dataset is downsampled to 12 Hz in order to
make results comparable with the USyd dataset. Sequences which contain more than
one vehicle are additionally removed.

Evaluation Metrics and Baselines

Metrics:

Similar to prior work [22, 23] two error metrics are used: ADE and FDE. However,
as discussed in Section 2.1.5, these simple euclidean measures do not account for
misalignments in time and penalize varying speed profiles to the same degree as spa-
tially diverging paths, which is usually a significantly worse result. As such, modified
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Hausdorff distance (MHD) [70], which does not suffer this issue, is also included as
an evaluation metric.

The metrics used are as follows:

• ADE: Average Euclidean distance between ground truth and prediction trajec-
tories over all predicted time steps.

• FDE: Euclidean distance between ground truth and prediction trajectories for
the final predicted time step.

• MHD: A measure of similarity between trajectories, determining the largest
distance from each predicted point to any point on the ground truth trajectory.

Baseline Comparisons:

In both experiment 1 and 2, the model is compared against the following baseline
and state-of-the-art methods:

• Lin: A linear regression of pedestrian motion over each dimension.

• CVM: A simple constant velocity model proposed by [39].

• Social GAN (SGAN) [23]: LSTM encoder-decoder with a social pooling layer,
trained as a GAN.

• SRLSTM [25]: LSTM based model using a state refinement module.

Additionally, experiments 1 and 2 perform an ablation study of the proposed method,
comparing the model proposed in this work using the social pooling layer proposed
in [23] (PSGAN), and the model trained instead using the proposed GVAT module
for social pooling (PCGAN).

As SGAN requires a random noise input for generation, this method is sampled 10
times, returning the average error of all samples in experiment 1 and 2, as opposed to
[23], where the sample with the best error compared to the ground truth was used.
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For experiment 3, comparison is performed only against SGAN, using the same
methodology of the original paper [23].

Methodology

In experiment 1 and 2 MultiPAC is applied to the output of the generator for both
PSGAN and PCGAN to find all modal paths, using the predicted path with the
highest probability to compute the error. Experiment 3 instead uses the model path
with the best error when compared to the ground truth.

Experiments 1 and 3:

Similar to [22], training is performed on four datasets with evaluation being done on
the remaining one. An observation period of 8 timesteps is used for each trajectory
(3.2 seconds), predicting for the next 8 (3.2 seconds) and 12 (4.8 seconds) timesteps.

Experiment 2:

Each dataset is split into non-overlapping train, validation and test sets in ratios of
60%, 20% and 20%. An observation period of 8 timesteps is again used for each
trajectory (0.67 seconds (VCI) and 0.8 seconds (USyd)) with prediction being done
for the next 12 timesteps (1.0 second (VCI) and 1.2 seconds (USyd)).

3.4.3 Results

Experiment 1

Quantitative Evaluation:

Tables 3.3 and 3.4 compare results for all methods on the ETH and UCY datasets at
8 and 12 prediction timesteps respectively. These results show that the proposed ad-
versarial approaches PSGAN and PCGAN clearly outperform the previous sampling-
based adversarial approach [23], demonstrating that the use of a direct probabilistic
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Proposed
Metric Dataset Lin CVM SGAN SRLSTM PSGAN PCGAN

ADE

ETH Uni 0.50 0.48 0.51 0.43 0.45 0.43
ETH Hot 0.35 0.28 0.55 0.24 0.52 0.59
UCY Uni 0.56 0.34 0.56 0.38 0.34 0.49
UCY Zar1 0.41 0.28 0.46 0.28 0.25 0.25
UCY Zar2 0.56 0.23 0.35 0.24 0.27 0.22

FDE

ETH Uni 0.88 0.87 0.95 0.80 0.84 0.81
ETH Hot 0.60 0.40 0.49 0.45 1.13 1.10
UCY Uni 1.01 0.71 1.20 0.81 0.71 0.89
UCY Zar1 0.74 0.57 0.99 0.60 0.53 0.53
UCY Zar2 0.95 0.47 0.75 0.51 0.56 0.45

MHD

ETH Uni 0.48 0.40 0.44 0.38 0.40 0.38
ETH Hot 0.33 0.20 0.22 0.22 0.45 0.51
UCY Uni 0.52 0.31 0.48 0.34 0.30 0.41
UCY Zar1 0.39 0.24 0.40 0.26 0.23 0.23
UCY Zar2 0.47 0.23 0.31 0.22 0.25 0.20

Prediction Length = 8 timesteps (3.2 secs)

Table 3.3 – Quantitative results comparing PCGAN and PSGAN to baseline meth-
ods on all non-vehicle datasets. For each dataset, results are compared across two
prediction lengths of 8 and 12 timesteps (3.2 and 4.8 secs), showing Average Dis-
placement Error (ADE), Final Displacement Error (FDE), and Modified Hausdorff
Distance (MHD) in meters.

generator output can improve performance in the problem of trajectory prediction.
Additionally, PCGAN and PSGAN achieve comparable or improved performance in
17 out of 30 metrics compared to all prior methods suggesting that the probabilistic
GAN approach can improve prediction performance in certain crowd interactions.

Even when used without vehicle feature input, it is clear that the inclusion of the
GVAT for social pooling in PCGAN improves the performance in the majority of
tests compared to PSGAN. However, on both ETH-Hotel and UCY-Univ PSGAN
outperforms PCGAN. On these two datasets, CVM also performs well, suggesting
that there may be fewer pedestrian interactions involved allowing more linear models
to achieve improved results. Schöller et al. [39] demonstrated the effectiveness of
CVM, and the results of this work show that this result still holds even when limited
to prediction periods of 8 and 12 timesteps.
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Proposed
Metric Dataset Lin CVM SGAN SRLSTM PSGAN PCGAN

ADE

ETH Uni 0.79 0.70 0.81 0.65 0.68 0.65
ETH Hot 0.39 0.33 0.67 0.42 0.64 0.64
UCY Uni 0.82 0.56 0.78 0.53 0.55 0.57
UCY Zar1 0.62 0.46 0.63 0.43 0.43 0.40
UCY Zar2 0.77 0.35 0.56 0.32 0.37 0.34

FDE

ETH Uni 1.57 1.34 1.72 1.26 1.34 1.25
ETH Hot 0.72 0.62 1.71 0.90 1.45 1.40
UCY Uni 1.59 1.20 1.70 1.17 1.23 1.24
UCY Zar1 1.21 0.99 1.38 0.93 0.87 0.89
UCY Zar2 1.48 0.75 1.21 0.73 0.76 0.77

MHD

ETH Uni 0.66 0.57 0.66 0.54 0.59 0.55
ETH Hot 0.33 0.27 0.69 0.37 0.56 0.55
UCY Uni 0.76 0.48 0.67 0.45 0.49 0.50
UCY Zar1 0.55 0.40 0.52 0.36 0.37 0.35
UCY Zar2 0.71 0.31 0.49 0.31 0.33 0.31

Prediction Length = 12 timesteps (4.8 secs)

Table 3.4 – Quantitative results comparing PCGAN and PSGAN to baseline methods
on all non-vehicle datasets, as per Table 3.3, for a prediction length of 12 timesteps
(4.8 secs).

SGAN [23] performs poorly for all tested datasets when limited to using the average
error over multiple samples, as opposed to using the best sample error compared to
the ground truth. This result is similar to that obtained in [25], where SGAN was not
found to perform well when limited to a single sample. Whilst this may be a result
of SGAN sampling between multiple future modal paths, the comparison method
proposed in this work PSGAN, which extends SGAN for direct probabilistic output,
demonstrates that by being able to estimate the likelihood of each modal path, it is
possible to greatly decrease the error of the adversarially trained method obtained
for all metrics. Unlike both SGAN and the proposed methods, SRLSTM [25] pools
across the pedestrian hidden states found from the most recent observation. This
method performs well for all datasets, confirming the importance of using the most
recently available information for predictions.
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Proposed
Metric Dataset Lin CVM SGAN SRLSTM PSGAN PCGAN
ADE USyd 0.16 0.13 0.16 0.11 0.11 0.11

VCI 0.11 0.09 0.12 0.08 0.12 0.08
FDE USyd 0.30 0.24 0.31 0.22 0.21 0.21

VCI 0.23 0.18 0.22 0.16 0.20 0.15
MHD USyd 0.12 0.09 0.12 0.09 0.08 0.09

VCI 0.09 0.07 0.09 0.07 0.09 0.07
Prediction Length = 12 timesteps (1.0 secs)

Table 3.5 – Quantitative results comparing PCGAN and PSGAN to baseline meth-
ods on both vehicle dataset. Results are compared using a prediction length of 12
timesteps (1.0 second (VCI) and 1.2 seconds (USyd)). ADE, FDE and MHD are
shown in meters.

Qualitative Evaluation:

Fig. 3.13 demonstrates realistic behaviours between pedestrians, producing results
that reflect the actual probabilistic and multi-modal nature of crowd interactions.
(a) and (b) both reflect the ambiguity expected during an interaction between two
pedestrians. The two possible trajectories that can be taken to avoid an oncom-
ing pedestrian are clearly displayed in the modal paths of example (a), where one
branch of the modal path tree matches the actual trajectory taken. This situation is
again seen in Fig. 3.15 (a), where PSGAN (dark green) and PCGAN (light green)
are able to accurately predict the turning of oncoming pedestrians with branching
modal paths, whilst both SRLSTM (pink) and CVM (yellow) do not account for this
ambiguity. Likewise, example (b) in Fig. 3.13 reflects the possibility that the two
pedestrians might continue turning together, or instead travel forwards beside each
other. Additional examples extend these ideas to more crowded scenes, with mul-
tiple pedestrians displaying the similar multi-modal and uncertain interactions. In
Fig. 3.13 (b), whilst there exists clear dependency between the two predicted forking
modal path trees, the proposed model does not currently have the ability to deter-
mine this relationship, and so cannot predict which branch an agent will take even
with knowledge of the true path of a neighbouring agent.
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Figure 3.13 – Qualitative results of PCGAN on non-vehicle datasets. The predicted
modal path trees of MultiPAC are shown in a different colour for each pedestrian,
over the probabilistic output of the generator. Example interactions are from the
ETH and UCY datasets, using PCGAN trained without vehicle feature input. Mul-
timodal output is clear in examples in which pedestrians may take one of multi-
ple possible future paths to avoid the collision. Example (a) displays two likely
paths that the yellow agent might have taken as the pedestrians approach each
other. Example (b) similarly shows multi-modal possibilities, including the pedes-
trians continuing to turn, or to start travelling forwards. Examples (c) through (f)
demonstrate similar behaviour in larger pedestrian crowds.
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Experiment 2

Quantitative Evaluation:

Table 3.5 outlines the performance of all compared methods on the VCI and USyd
datasets, both of which contain pedestrian-vehicle interactions. These results again
highlight how using a probabilistic output during adversarial training can improve
prediction results, with both proposed methods, PSGAN and PCGAN, improving
upon SGAN. Importantly, by including the vehicle feature input in GVAT pooling,
PCGAN achieves significant improvements on the VCI dataset, outperforming PS-
GAN, and outperforming or equalling SRLSTM on all metrics. CVM and PSGAN
score well for the MHD metric, suggesting that these methods are likely incorrectly
predicting the speed profile of pedestrian trajectories, but correctly predicting the
direction.

Qualitative Evaluation:

The extension of PCGAN to include a vehicle allows the modelling of interactions
in shared pedestrian-vehicle environments, predicting crowd response in the presence
of a vehicle as shown in Fig. 3.14. Experiment 2 uses a shorter timestep, of only
0.1 second on the USyd, and 0.083 seconds for VCI. Less significant interactions are
expected over this shorter time, reflected in near-linear ground truth in both Fig. 3.14
and Fig. 3.15 (b). However, clear multi-modal predictions can still be seen in certain
interactions, including when the vehicle is approaching pedestrians from behind as
in Fig. 3.14 (a), where the closest pedestrian responds by beginning to move to the
side. This interaction is reflected in the predicted modal paths, although the sideways
direction is predicted in the wrong direction. Fig. 3.15 (b) also demonstrates how only
PCGAN accounts for the vehicle’s influence on the pedestrians, correctly predicting
the possibility that the pedestrians will return to their original motion once the vehicle
has passed.
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Figure 3.14 – Qualitative results of PCGAN trained with vehicle feature input on the
VCI dataset. Example (a) illustrates a scene of a vehicle approaching pedestrians
from behind, displaying expected multi-modal reactions of the pedestrians to either
continue forwards at increased speed or move aside. Examples (b) and (c) further
illustrate this concept, showing how the direction of the vehicle approach can impact
the pedestrians’ reaction.

Experiment 3

Quantitative Evaluation:

Tables 3.6 and 3.7 show the results of the ‘Best-of-N’ comparison. The proposed
methods, PCGAN and PSGAN, outperform the compared method SGAN for the
majority of metrics, even when the sampling based SGAN is allowed to return the
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Figure 3.15 – Comparison of methods, showing the entire modal path tree for both
PSGAN and PCGAN with and without a vehicle present on UCY-Zara01 (a) and
VCI (b). Whilst CVM and SRLSTM outperform the proposed methods on some
datasets, the multi-modal output of the proposed method better represents uncer-
tainty in crowd interactions, demonstrated in example (a) where the possibility
that oncoming pedestrians could avoid each other in two different ways is reflected
in the branching modal path trees. Example (b) illustrates how PCGAN improves
predictions in the presence of a vehicle compared to PSGAN, accounting for the
impact of the vehicle’s motion on pedestrians’ motion.

best of k = 20 samples. At a prediction length of 8 timesteps, the best performing
method is either PSGAN or PCGAN for 12 out of the 15 metrics. Similarly, at a
prediction length of 12 timesteps, the best performing method is either PSGAN or
PCGAN for 11 out of the 15 metrics.

Additionally, there is a clear relationship between lower ε and decreased error for
both PSGAN and PCGAN. This result is expected, as a smaller ε results in more
modal paths returned by MultiPAC across the generated probabilistic output, and so
greater likelihood that one of those paths follows the ground truth path. Interestingly,
PSGAN performs comparably to PCGAN for all metrics. This may be a result of the
datasets used not containing any pedestrian-vehicle interactions.
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SGAN PSGAN PCGAN

Metric Dataset 0.5
ε
0.3 0.1 0.5

ε
0.3 0.1

ADE

ETH Uni 0.40 0.46 0.46 0.46 0.41 0.39 0.39
ETH Hot 0.37 0.35 0.34 0.33 0.47 0.46 0.45
UCY Uni 0.33 0.37 0.36 0.36 0.48 0.46 0.46
UCY Zara1 0.21 0.24 0.24 0.24 0.25 0.24 0.24
UCY Zara2 0.21 0.20 0.20 0.20 0.20 0.19 0.19

FDE

ETH Uni 0.72 0.84 0.83 0.81 0.71 0.66 0.61
ETH Hot 0.72 0.71 0.69 0.68 1.00 0.95 0.95
UCY Uni 0.70 0.73 0.68 0.65 0.87 0.84 0.83
UCY Zara1 0.42 0.42 0.42 0.42 0.50 0.48 0.47
UCY Zara2 0.42 0.37 0.37 0.37 0.39 0.36 0.35

MHD

ETH Uni 0.45 0.41 0.41 0.41 0.35 0.32 0.32
ETH Hot 0.45 0.29 0.27 0.27 0.49 0.48 0.47
UCY Uni 0.38 0.33 0.32 0.31 0.41 0.40 0.39
UCY Zara1 0.29 0.21 0.21 0.21 0.23 0.22 0.22
UCY Zara2 0.28 0.18 0.18 0.18 0.18 0.17 0.17

Prediction Length = 8 timesteps (3.2 secs)

Table 3.6 – Comparison of prediction errors between SGAN [23], PCGAN and PSGAN
when choosing the best prediction against the ground truth error. The best modal
path is selected for PSGAN and PCGAN, and the best prediction of k-samples is
selected for SGAN. Results are additionally shown when varying the ε term of the
modal clustering algorithm, for ε ∈ 0.5, 0.3, 0.1 . Results are shown for all non-
vehicle datasets across 8 timesteps.

Qualitative Evaluation:

Figs. 3.16 and 3.17 compare the output of SGAN and PCGAN on a scene from UCY-
Zara01 and ETH-Univ respectively. These figures illustrate the output of SGAN when
k = 20 samples are generated, compared to the single probabilistic output generated
by PCGAN.

Whilst the best-sample result for SGAN was comparable to PCGAN in Tables 3.6 and
3.7, these illustrative examples demonstrate that this performance is most likely sim-
ply due to the high variance of the SGAN output. The chances of one of the samples
matching the ground truth are relatively high for higher values of k. Additionally,
Fig. 3.16 and 3.17 do not demonstrate clear multi-modality in the SGAN output. For
instance, Fig. 3.16 example (c) does show that SGAN produces a probabilistic output
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SGAN PSGAN PCGAN

Metric Dataset 0.5
ε
0.3 0.1 0.5

ε
0.3 0.1

ADE

ETH Uni 0.56 0.67 0.67 0.67 0.61 0.61 0.6
ETH Hot 0.48 0.47 0.45 0.45 0.49 0.47 0.47
UCY Uni 0.56 0.53 0.52 0.51 0.82 0.81 0.81
UCY Zara1 0.34 0.40 0.39 0.39 0.38 0.38 0.38
UCY Zara2 0.31 0.31 0.29 0.29 0.31 0.30 0.29

FDE

ETH Uni 1.08 1.25 1.24 1.24 1.15 1.14 1.14
ETH Hot 1.02 1.06 1.03 1.00 1.02 0.99 0.98
UCY Uni 1.18 1.06 1.03 1.02 1.70 1.67 1.66
UCY Zara1 0.69 0.81 0.79 0.76 0.80 0.76 0.76
UCY Zara2 0.64 0.56 0.56 0.56 0.60 0.57 0.56

MHD

ETH Uni 0.66 0.57 0.57 0.57 0.50 0.49 0.49
ETH Hot 0.60 0.40 0.39 0.39 0.40 0.38 0.38
UCY Uni 0.61 0.47 0.43 0.43 0.69 0.68 0.68
UCY Zara1 0.46 0.33 0.33 0.33 0.32 0.31 0.31
UCY Zara2 0.46 0.26 0.25 0.25 0.26 0.25 0.25

Prediction Length = 12 timesteps (4.8 secs)

Table 3.7 – As per Table 3.6 for a prediction length of 12 timesteps (4.8 secs).

with higher likelihood that the two pedestrians will continue to turn, but does not
appear to apply significant weighting to the likely possibility that the two pedestrians
instead being walking forward, as is shown by the two modal paths in example (f).
Additionally, in examples in which the pedestrian simply continues forward with a
constant velocity, such as Fig. 3.17 (b) or stays stationary as in Fig. 3.17 (c), SGAN
continues to predict a spread of trajectories, rather than converging on the linear or
stationary ground truth as PCGAN is able to in (e) and (f) respectively.

3.4.4 Discussion

The work proposed in this section shows how a direct multi-modal probabilistic out-
put can be generated in an adversarial network for pedestrian trajectory prediction,
outperforming existing methods including sampling-based approaches. Additionally,
it shows how the presence of an autonomous vehicle can be considered through the
introduction of a novel GVAT pooling mechanism. Through a comparison to [23],
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(a) (b) (c)

(d) (e) (f)

Figure 3.16 – Comparison of SGAN ((a) to (c)) and the proposed method PCGAN ((d)
to (f)) on UCY-Zara01 dataset, highlighting differences in probabilistic multi-modal
outputs. SGAN has been sampled 20 times, with each sample plotted to display the
accumulated distribution.

(a) (b) (c)

(d) (e) (f)

Figure 3.17 – Comparison of SGAN ((a) to (c)) and the proposed method PCGAN
((d) to (f)) on ETH-Univ dataset, as per Fig. 3.16.
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a non-probabilistic GAN used for trajectory prediction, the proposed probabilistic
approach has been shown to clearly benefit adversarial training for the problem of
trajectory prediction. This work focuses on how a single vehicle can operate away
from the lane-based structure of a road, examining crowd interactions to enable safer
decisions, however could in future be extended for use with multiple vehicles through
inclusion of all vehicles as nodes, removing the z term from Eq. 3.20 and replacingWr

and Wu with a different set of weights for each agent type pair to learn relationship
dynamics.

3.5 Summary

This chapter has addressed a number of challenges faced in the use of predictive mod-
els of motion for mobile robot navigation in shared environments. Section 3.1 sum-
marised the requirement of using predictions that take into account the response of
agents to a robot’s future action, proposing the STG-GRNN for use in heterogeneous
agent interactions. This model was shown to be able to both improve prediction accu-
racy in pedestrian crowds and livestock herds when knowledge of a controlled agent’s
planned path was available, as well as provide the ability to predict the hypothetical
response of the crowd and herd to the planned path.

Section 3.2 expanded upon this work, demonstrating how the simpler direct embed-
ding of separate robot-agent relationships in the proposed GRNN model could also
allow response aware predictions. These predictions were shown to improve with
accuracy when conditioned on robot’s actions from more distant future timesteps
in pedestrian crowds, as well as when limited to nearby interactions, however these
relationships were not found to hold in the livestock experiment. Section 3.3 then
compared the proposed GRNN approach to a state-of-the-art deep learning model
and traditional motion models, highlighting the improved ability of deep learning
based methods to learn the ability to model response of non-controlled agents to a
controlled agent’s ground truth or planned future path. This experiment validated
the use of deep learning based models for prediction of social response in sampling
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based dynamic planners, such as the SPP approach proposed in this thesis.

The challenge of modelling multi-modal futures during crowd interactions was ad-
dressed in Section 3.4. Recent GAN based approaches, which allow the learning of
socially acceptable and valid trajectories of interacting agents, have been extended
for direct multi-modal probabilistic output, removing the need for repeated sam-
pling of the learnt latent space. Additionally, this work has shown how self-attention
based social pooling mechanisms can be extended to account for the presence of an
autonomous vehicle in shared pedestrian environments.

In Chapter 4 the response aware models developed in this chapter are included within
a sampling based dynamic path planner in order to allow response aware planning
around moving individuals.



Chapter 4

Dynamic Path Planning in

Unstructured Environments

The application of mobile robots to real world environments often requires operating
alongside dynamic agents such as humans, livestock or other self-driving vehicles.
Chapter 1 introduced the prediction-planning order dilemma, in which a prediction
of the future motion of nearby agents is required to inform path planning for robots
navigating through crowds or herds, however the predicted motion of those agents
is dependent on the planned path of the robot itself. This chapter presents the
proposed approach to this dilemma, the use of learnt models of social response within
an adapted MCTS for simultaneous planning and prediction (SPP). Additionally,
the extension of this approach for use within a resource aware planning framework
is described, demonstrating how mobile robots can achieve extended autonomy in
shared and unstructured environments.

Section 4.1 details the MCTS-GRNN approach to SPP, which extends the predic-
tive model presented in Section 3.2 for use within a sampling based planner. The
predictive model encodes the observed motion of all nearby agents, and then acts as
a state transition, allowing the robot to determine the likely response of each agent
during a tree search across the action space. The search is conducted using a MCTS
adapted for single step simulation (SSS), terminating the rollout stage of the MCTS
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Figure 4.1 – University of Sydney’s Swagbot agricultural robotic platform used in all
real-world testing within this thesis [28, 33, 16]. (a) Robotic platform with actuated
weeder extended at the extended navigation trial location. (b) Top-down illustration
of sensor FOV with obstruction of the lidar by the robot’s chassis, demonstrating
missed detections resulting from both sensor blindspot and crowd occlusions.

after a single predictive simulation per selected node. This allows the parallelisation
of the tree search and so significantly faster planning speeds for use in real world
applications. The proposed approach to dynamic path planning has been evaluated
both in simulation — where it has been compared to existing approaches including a
reactive potential field (PF) and deep RL – and in a real world trial. This work has
been previously published in [28].

Section 4.2 describes a proposed hierarchical framework that integrates a local dy-
namic path planner with a longer term objective based planner. This framework acts
to achieve extended autonomy of mobile robots through awareness of both the dy-
namic responses of individuals to a robot’s motion, and the limited resources available.
This section includes a comprehensive description of the hierarchical approach and
its integration on the Swagbot robotic platform. An extension to the MCTS-GRNN
approach is also described, allowing improved persistence of paths between planning
steps. This method compares the new observed state of the robot’s environment to
all prior predicted states, seeding the tree search with prior values in appropriate, as
published in [9].
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Evaluation of the framework has been conducted in a number of simulated and real
world trials. The simulated trials include comparison of the proposed framework
when using varied local dynamic planners, including traditional PF and fail safe (FS)
based approaches, and state-of-the-art deep RL dynamic path planning. These trials
demonstrate the ability of the framework to adapt resource use through variation
of the local dynamic planner module, allowing adaptive behaviour in changing en-
vironments. Two real world trials have been undertaken, evaluating the framework
when applied to the continuous navigation between distant objectives in the presence
of moving individuals, and when operating in more densely populated pedestrian
crowds. Results of all trials have shown that the robot is able to operate both safely
and efficiently in unstructured shared environments. These considerations are both
critical for extended autonomy applications, allowing deployment of mobile robots
to real world applications such as weed spraying in large-scale farming. The work
presented in this section has been previously published in [9, 16, 33].

4.1 Simultaneous Prediction and Planning using a

Learnt Model of Social Response

State-of-the-art methods for robotic path planning in dynamic environments, such
as crowds or traffic, rely on hand crafted motion models for agents. These models
often do not reflect interactions of agents in real world scenarios. To overcome this
limitation, this section details the proposed SPP approach, which uses GRNNs as a
learnt model of social response within a MCTS.

This approach uses a learnt model of social response to predict crowd dynamics during
planning across the action space, extending the work detailed Section 3.2, which
uses generative RNNs to learn the relationship between planned robotic actions and
the likely response of a crowd. This section proposes an integrated path planning
framework using the proposed GRNN prediction model and a MCTS adapted for
single step simulation (SSS). The generative model is used within the MCTS to
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Figure 4.2 – System overview for SPP using MCTS-SSS and a GRNN. SPP uses a
learnt model of social response within a tree search based planner. After training
(blue), the GRNN encoder’s final hidden state for a given observed sequence is
used alongside the latest observation Xt as the root state of the planner (red). The
GRNN decoder can then be used in a single step to simulate state transitions of the
MDP for a given action A and node state S.

simulate state transitions for sampled actions during a tree search of the robot’s
action space.

The performance of the proposed path planning method is compared to existing
approaches including a reactive PF and deep RL. Performance is also compared
when the social response model is replaced by a simple constant velocity model for
each agent. The results demonstrate that not only does the planning algorithm
perform comparably to state-of-the-art methods for collision avoidance, but more
importantly, it is able to direct the future states of nearby individuals using a motion
model learnt from real world data, allowing application to tasks such as planning
paths that manoeuvre nearby individuals, or herding of livestock towards a goal.
Additionally, preliminary real world tests have been conducted on a robotic platform
around moving pedestrians.
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4.1.1 Generative RNNs within a Monte Carlo Tree Search

Overview

Given observed trajectories X, and robot path R, for all timesteps in period t ≤ Tobs,
where Xt = [Xt

1,Xt
2...,Xt

N ] for N non-controlled agents, a path Rp is required that
optimises an objective function based both on the state of the robot and all other
agents across a future time period Tobs < t ≤ Tpred. The input trajectory for agent
i ∈ N is defined as it’s position X t

i = [xt
i, y

t
i ] for each timestep t. Tobs is the timestep of

the latest observation, and Tpred the future timestep to which prediction takes place.

This is achieved by first training a sequence prediction model on X and R, as well as
the ground truth future positions of each agent Y and known future positions of the
robot Rf for Tobs < t ≤ Tpred. This step is detailed in Section 3.2. The trained model
is used within an adapted MCTS of the robot’s action space across future timesteps,
applied recursively within a receding horizon planner.

Fig. 4.2 illustrates the overall architecture of the proposed approach, outlining the
use of the predictive model to first encode the observed trajectories for t ≤ Tobs − 1.
The state of the root node of the MCTS Sroot is formed from the final encoded
state ht−1 and the current observation Xt. During the creation of the search tree,
the predictive model is again used at each expanded node to predict the next state
S ′, given the state-action pair (S, a) in the MCTS simulation step. The integrated
predictive planner is summarised in Alg. 1.

Tree Search Planner

MCTS is applied using UCT and adapted for parallel single step simulation (SSS).
Alg. 1 details the steps involved in the adapted MCTS planner. The K best nodes
are selected, according to the node value determined by the UCT in Eq. 2.1. Each
node is then expanded, randomly choosing an action from its set of valid moves A.
SSS is then performed in parallel for all chosen nodes, using the predictive model’s
decoder, as shown in Fig. 4.2. This returns the predicted node’s state S ′, given the
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node’s parent state S = [h,X]. The cost of the node is then calculated according to
the state evaluation function and propagated up through the tree. This process is
repeated for a time budget, returning the best action from the root node.

Algorithm 1 SPP using MCTS-GRNN
1: A ← Actions . discretised action space
2: B ← Budget . time in nsecs
3: C ← CostFunction() . State Eval function
4: function MCTS-SSS(root, A, B, C)
5: Tree = createTree(root) . Create Tree with root state as first node
6: while time < B do . planning budget
7: K = Tree.select(root) . select K best nodes
8: a = Tree.expand(K, A) . choose valid actions
9: . parallel single step simulation
10: if first iteration then
11: h′, Ŷ ′ = RNN-Decoder(X t, a, h)
12: else
13: h′, Ŷ ′ = RNN-Decoder(0, a, h)
14: end if
15: U =

√
det(cov(Ŷ ′)) . uncertainty

16: r = C(Ŷ ′,U ) . reward dependent on U
17: Tree.backup(K, r) . update node values
18: end while

return Tree
19: end function
20: while not at destination do
21: X0:t, R0:t−1 ← observe()
22: . encode observed tracks
23: ht, Ŷ t = RNNEncoder(X0:t−1, R0:t−1, h0 = 0)
24: Sroot = (ht, X t) . create root node
25: . perform MCTS with SSS
26: Tree = MCTS-SSS(Sroot, A,B,C)
27: Rp = Tree.bestPlan() . Yield best current path
28: end while

Parallel Single Step Simulation:

The simulation stage of MCTS is adapted to terminate after a single step. This differs
from normal implementation in which the episode plays out until a terminal state is
reached, selecting random actions each iteration. This is made possible by designing
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state evaluation functions capable of directly evaluating the value of any observed
state. Details of the state evaluation functions used are outlined in Section 4.1.2.
Similar truncation of the simulation stage has been shown to improve performance in
game-theoretic applications such as GO [118] and Amazon [119], when the value of
a state can be directly evaluated.

This also allows parallelisation of the simulation stage, as all simulations now run for
the same number of iterations and use the same decoder model. The selection stage
is altered to find the K best nodes to expand in the tree. This is implemented by
updating the number of traversals ni across each node in between selections, before
simulation. This results in a temporarily decreased value of the node as determined
by the UCT method in Eq. 2.1, and so a decreased likelihood of selecting a node
from the same branch.

Simulation is then conducted across allK nodes in parallel, where the selected actions
A, and associated parent states S are passed to the decoder, returning the state of
all expanded nodes S ′ = (h′, Ŷ ′), as shown in Alg. 1 line 10.

Uncertainty:

The use of a bivariate Gaussian distribution as output of the predictive model provides
a measure of uncertainty for each state estimation. Uncertainty U is represented using
the square root of the determinant of the covariance matrix, Σ, of each output. This
provides a measure of the volume of the ellipse defined by 1 standard deviation from
the mean in all dimensions. This is denoted as U =

√
det(Σ), used in the state

evaluation function to discount the reward computed for each simulated future state.
This approach was chosen over the use of another common measure trace, which is
the sum of the lengths of the ellipse, without considering correlation. Whilst trace
was found to be slightly faster to compute, important in the parallel MCTS approach,
it is not as robust to near-singular ellipses where the determinant of Σ will be near
zero.
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4.1.2 Experiments

An evaluation of the proposed planner has been undertaken in a simulated pedes-
trian environment, comparing performance to traditional and state-of-the-art base-
line approaches. Additionally, a preliminary test of the proposed approach has been
conducted in a real world environment around moving pedestrians.

Simulated Planner Comparisons

Performance of the proposed MCTS-GRNN approach is compared to the following
methods:

• LM-SARL (Local Map Self-Attention RL) [31]

• Reactive Potential Field (PF)

• MCTS-CV

MCTS-CV refers to the proposed MCTS-GRNN method when the predictive model
is replaced by constant velocity motion for each agent. Performance of MCTS-GRNN
is also compared when using a second SEF, referred to as SEF2 in Table 4.1.

State Evaluation:

The following two SEFs are compared:

Cost = (Rt −G)2 +
N∑
i

U t
iα (4.1)

Cost = (Rt −G)2 +
N∑
i

U t
iα(1 + |Ẍ t

i |), (4.2)

α =


1

Xt
i−Rt , if X t

i −Rt ≤ d

0, otherwise
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where Rt is the robot position, G is the goal, X t
i is agent position and U t

i is prediction
uncertainty for each agent i ∈ N . All testing uses d = 2m.

Both SEF1 (Eq. 4.1) and SEF2 (Eq. 4.2) apply a cost dependent on the distance of
the robot to the local goal G, and the scaled distance α between the robot and each
agent X t

i for all observed agents i ∈ N at the current timestep t. The uncertainty
U t

i of the prediction for agent i is used to scale α, and is set to zero when the
distance between robot and agent exceeds a value of d, which is set to 2 m for all
trials. U t

i reflects the area of the ellipse formed by 1 standard deviation from the
mean prediction. The major radius of this ellipse can in theory exceed the value of
d, meaning that an agent may be predicted to come within the distance threshold
without any cost being considered. However, as the uncertainty tends to grow with
prediction horizon length, this would likely only occur at longer prediction timesteps
and has not been observed to occur at timesteps less than 3 s, and so not significantly
influence the MCTS planner.

In SEF2 an additional term scales the cost based on the agent’s acceleration when
it is near the robot. This term aims to limit the impact of the robot on the current
velocity of each agent, and is referred to as disturbance in the results. SEF2 has been
chosen to demonstrate the ability of the proposed path planner to influence agents’
future states without retraining the predictive model.

Planner comparisons have been performed in a simulated environment, where agents’
motion is modelled using ORCA. LM-SARL has been trained as per [31]. GRNN,
described in Section 3.2, is used as the predictive model within the MCTS approach
with robot future lookahead ∆t = 1. In all simulated trials, the version of this
model trained on generated ORCA trajectories, as described in Section 3.2.2, is used.
For the preliminary real world trial, the version trained on vehicle-crowd interaction
(VCI) DUT dataset [47] is instead used to better represent the ability of the approach
trained on real world data. Additionally, the real world trial only makes use of the
cost function described by Eq. 4.1.
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Success
%

Collision
%

Avg
Len
(m)

Avg
Comp
Time (s)

Disturbance
(% Agent
acc >x m/s2

Method 1.0 0.5 0.25
Ours 98.0 0.0 20.08 0.3* 2.5 9.0 15.2
Ours (SEF2) 96.0 0.0 22.52 0.3* 1.8 5.8 11.0
MCTS-CV 93.0 2.6 20.48 0.3* 2.8 8.0 14.5
LM-SARL 98.0 0.0 19.26 0.196 2.2 9.5 15.0
PF 50.0 5.0 30.76 0.01 2.3 11.0 16.0

Table 4.1 – Quantitative results for SPP using two different SEFs against baseline
methods. Average shown for 500 ORCA simulations with non-controlled agent
numbers ranging from 2-12. Disturbance represents the change of agent velocity
caused by the robot’s motion. (*Methods use time budget of 300ms by design)

The comparison is implemented with the following realistic assumptions: a time
threshold of 300ms is used for all MCTS based planners based on the observation
frequency used in the real world trial; discretisation of action space is conducted
over acceleration and yaw rate, based on real constraints of the Swagbot robotic
platform, with acc ∈ [-0.05, -0.01, 0, 0.01, 0.05] m/sec/timestep, and yaw-change ∈
[-20,-5,0,5,20] deg/timestep. For all experiments, 50 parallel streams are used for SSS.
For any agents that have not been observed for the complete period, their history is
extrapolated using a constant velocity model. The MCTS exploration constant c has
been chosen experimentally as

√
2/2.

4.1.3 Results:

Performance has been compared in terms of rate of success at reaching the goal, rate
of collisions with agents, average path length, computation time, and disturbance of
nearby agents. Success is determined as a simulation that reaches the goal within
the 25 timestep limit and without collision. The quantitative results in Table 4.1
demonstrate that the proposed MCTS-GRNN planner is comparable to the state-of-
the-art methods for collision avoidance around dynamic agents.

Disturbance was measured based on the rate that a nearby agent’s absolute accel-
eration exceeded thresholds of 1, 0.5 and 0.25 m/s2. The use of SEF2 (Eq. 4.2)
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allowed MCTS-GRNN to alter its behaviour, planning a path that minimally dis-
turbed nearby agents without the need for retraining. As expected, the reactive PF
performs poorly, failing to reach the goal within the time limit 45% of the time and
resulting in a collision 5% of the time.

Qualitative results in Figs. 4.3 and 4.4 compare the behaviour of each planner in 2
test cases. These include driving towards an oncoming group of 3 pedestrians, and a
circle crossing scenario with 10 pedestrians respectively. Whilst substituting constant
velocity model for GRNN performed surprisingly well, both cases makes it clear that
using a learnt predictive model clearly allows for better planning with consideration
of agent responses. This figure also highlights that whilst the RL method was able
to find shorter paths on average, its behaviour was not always as understandable as
the MCTS-GRNN method, occasionally displaying oscillatory movements as shown
in the top case. The ‘freezing-robot’ problem is clearly displayed by the reactive PF
planner in both cases, failing to find a path through either the oncoming group, or
the circle of agents.

Real-world Experiments

The proposed MCTS-GRNN has also been tested in a preliminary real-world experi-
ment on a robotic platform moving through a crowd of pedestrians, instructed to walk
towards chosen goals similar to the circle crossing scenario shown in Fig. 4.4. The
pedestrians were instructed to treat the robot as if it were being operated by a human.
A video of these experiments is available at https://youtu.be/vBPKiqtCYRU. Some
issues were experienced during this testing, including perception issues resulting in
delays in pedestrian position estimation. This led to some planning errors and near
collisions when both the robot and pedestrians were travelling at high speeds. Due
to time constraints, real world comparisons of each planner have not been performed
in this work, and are left for future work.

https://youtu.be/vBPKiqtCYRU
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(a) MCTS-GRNN       (b) MCTS-CV

(d) PF(c) LM-SARL

Figure 4.3 – Qualitative comparisons of the proposed MCTS-GRNN SPP approach
and baselines in simulated environment. The robot attempts to pass from right to
left, through an oncoming group of three pedestrians travelling left to right. MCTS-
GRNN demonstrates ability to plan a path through the oncoming group that takes
into consideration their likely response without deviating as significantly as MCTS-
CV or displaying the oscillatory behaviour of LM-SARL. The potential field method,
which does not consider agent responses, displays the ‘freezing-robot’ problem when
encountering the group and decides the best plan is to retreat. All non-controlled
agents are simulated using the ORCA motion model [18].
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(a) MCTS-GRNN       (b) MCTS-CV

(d) PF(c) LM-SARL

Figure 4.4 – Additional scenario, as per Fig. 4.3, in which the robot and 10 other
agents all attempt to pass to the other side of a 15m wide circle. The proposed
method (SPP using MCTS-GRNN) is again seen to be able to effectively navigate
the crowd more efficiently when the response model (GRNN) is used, compared
to the CV version. In this example, LM-SARL [31] is shown to take a wider
and potentially safer route which results in faster travel time than either MCTS
version. The potential field method again demonstrates the ‘freezing-robot’ problem
when encountering the group. All non-controlled agents are simulated using the
ORCA motion model [18].
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4.1.4 Discussion and Failure Cases

Section 3.2 demonstrated that the inclusion of a planned robot action to a predictive
model can allow for more accurate prediction of agent trajectories in close range
interactions. In this section, it has been demonstrated how this learnt model of social
response can be used within a dynamic path planner to achieve results comparable to
state-of-the-art deep RL approaches in simulation without the need to interact with
the environment during training, a requirement which currently limits the application
of RL approaches to the real world. Additionally, this work has demonstrated that the
proposed planner’s behaviour can be altered by simply changing the state evaluation
function, without the retraining that reinforcement learning approaches require. This
has been applied to minimising disturbance of nearby agents, and could be extended
to any goal that aims to direct the future state of agents.

The predictive model used in MCTS-GRNN does not encode interactions between
all agents in the scene, nor between agents and the environment. The inclusion of a
more complex model, such as STG-GRNN presented in Section 3.1, or SRLSTM [25]
would allow for increased accuracy when predicting future states, however requires
a trade off in terms of inference speed. As the sampling based approach proposed
in this work is heavily dependent on inference speed, it is not clear whether a faster
but less accurate, or slower but more accurate model would perform better. Future
work will need to focus on both comparisons of varied predictive models, as well as
extensive real world comparisons of the approach to existing methods.

The adapted MCTS used in this section replans completely every timestep, building
a new search tree. As shown in the video of the preliminary real world trial under-
taken in this section https://youtu.be/vBPKiqtCYRU, this can result in unstable
behaviour, where the robot will oscillate between two equally valid paths around an
object or agent. In order to address this, reseeding of the search tree with prior
values is required and is described in the following section. This work additionally
builds upon the work presented in this section by integrating it with higher level path
planning for response and resource aware extended autonomy.

https://youtu.be/vBPKiqtCYRU
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4.2 Resource Aware Dynamic Path Planning for

Extended Autonomy

Consideration of the limited resources available to a mobile robot—including time
and energy—is critical to enable applications that take place over long periods of
time or across vast distances, such as package delivery, cleaning public spaces, or
weeding agricultural fields. However, optimisation may require a trade off between
conflicting resources, especially in dynamic environments like crowds of pedestrians
or herds of livestock. A more time efficient path through a crowd may require the
robot to travel greater distances, and so use more energy. In order to achieve efficient
long-term autonomy in real-world environments, a planning framework that is aware
of both the limited resources available to a robot and the response of nearby moving
individuals, is required.

Of particular interest in this work are applications of mobile ground robots in agricul-
ture and large-scale farming. These applications demand completion of a large variety
of essential tasks such as soil sampling, weeding, crop observation, and recharging,
which are often dispersed widely over large geographic areas. Additionally, these
agricultural tasks are frequently carried out in the presence of humans and livestock.
In these applications, consideration of resources available to a robot is required both
during the formation of long-term mission plans and in any dynamic updates to this
plan. Operating in unstructured environments often requires the balancing of on-
board energy against total mission time. A typical example of this is planning through
undulating terrain, where the fastest route is not always the most energy-efficient.
Similarly, navigating through a crowd of agents—such as a herd of livestock—requires
an understanding of how online deviations from an energy optimal reference path can
impact the robot’s resource usage; a crucial consideration during the completion of
time-critical tasks such as harvesting or herding.

This section proposes a hierarchical path planning framework to enable the long-term
autonomy of mobile ground robots in unstructured and dynamic environments, sub-
ject to resource constraints of energy and time. This framework uses a resource-aware
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long-term planner for the formation of strategic-level plans to allow for navigation be-
tween goal locations subject to energy constraints. An online response-aware local
dynamic planner is utilised alongside the offline long-term planner. This enables the
updating of the resource aware strategic plan to account for both unforeseen static
obstacles and the response of detected nearby moving individuals to the robot’s mo-
tion. These planners are used in combination with a higher-level mode switching
module, allowing adaptation of the robot’s behaviour dependent on the detection of
nearby agents and obstacles.

In addition, this section describes the integration of a perception pipeline, detailed
in Section 5.1, within the hierarchical planning framework. Whilst previous work
has demonstrated the simultaneous detection and mapping of static and dynamic
elements in unstructured environment, the extension of these perception pipelines for
use within a dynamic planning framework for long term autonomy has not yet been
demonstrated.

The performance of the proposed approach is evaluated in a series of simulated and
real world trials. Simulated testing has included comparison of performance with
varying local dynamic planners and highlights the ability of the planning framework
to adapt its resource usage to changing constraints. A comparison of four different
dynamic planning strategies is undertaken to outline how each version can be used
to optimise for either time or energy efficiency in varying crowd densities. These
planners include": the response-aware MCTS-GRNN planner proposed in Section 4.1
of this thesis; LM-SARL [31], a state-of-the-art deep RL planner; a traditional PF
planner; and a purely reactive FS planner. The analysis of these simulated trials
indicates the potential of the proposed approach to allow adaptive robot behaviour
through varied dynamic planning approach, dependent on both changing resource
constraints and the presence of moving individuals during extended operation.

Real world demonstration and validation of the proposed hierarchical planning frame-
work’s performance is conducted on the University of Sydney’s Swagbot robotic plat-
form, shown in Fig. 4.1; a robot designed for use in extended agricultural tasks,
including the weeding of pastures alongside moving individuals. Evaluation includes



4.2 Resource Aware Dynamic Path Planning for Extended Autonomy 106

the continuous navigation between sets of long-term goals throughout an unstruc-
tured agricultural field —in this scenario, representative of the locations of weeds to
be sprayed using Swagbot’s actuated weed sprayer. The robot was required to plan in
an energy-efficient manner whilst in the presence of moving individuals and unknown
obstacles. Further empirical evaluation in a more densely populated environment
is also presented, featuring repeated interactions in a pedestrian crowd. The real-
world performance in terms of both safety and resource efficiency has been directly
compared to the results of the same MCTS-GRNN framework version in simulation,
underscoring differences between simulated and real implementation. A video sum-
marising all trials and illustrating additional examples of robot behaviour is available
at https://youtu.be/DGVTrYwJ304.

The results confirm that the proposed hierarchical planning framework is able to
allow long-term autonomy of a mobile robot in unstructured environments. Through
a combination of resource and response-aware path planning, the safe and efficient
navigation of dynamic environments with consideration of resource constraints has
been achieved.

4.2.1 Hierarchical Framework

The proposed hierarchical planning framework combines a local online dynamic plan-
ning module with a long-term offline planner, in order to allow extended autonomy
in unstructured and dynamic environments. Fig. 4.5 illustrates how each module is
used and communicates within the hierarchical framework.

A hierarchical mode switcher takes input from the long-term planner and dynamic
planner, and determines which reference path to pass to the path tracking module,
which directly controls the robot’s motion. This is decided based on proximity to
detected agents and to the local goal. When no dynamic agents or obstacles are
detected within an 8 m radius of the robot, the local goal from the long-term planner is
used directly as reference. Otherwise, the output of the dynamic planner, which tracks
the local goal whilst avoiding dynamic agents and obstacles, is used instead. The

https://youtu.be/DGVTrYwJ304
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Figure 4.5 – System overview of the hierarchical framework for resource aware planning
of ground robots in dynamic environments. The hierarchical mode controller (red)
takes input from each planning module (yellow), including the long-term resource-
aware planner, the local dynamic response-aware planner and the FS collision mod-
ule. Mission objectives are provided externally to the long-term planner. The local
dynamic planner module is shown here implementing the proposed SPP MCTS-
GRNN planner [28].

hierarchical mode switcher also takes input from the FS collision avoidance module,
which stops all robot motion when an agent or obstacle is detected within a 2 m radius
of the robot. Mission objective waypoints and information regarding the operating
environment, such as terrain data and no-go areas, are provided to the long-term
planner from an external source. The perception module used in this framework is
described in detail in Chapter 5.

Long-term Planning

The long-term planner generates a strategic level mission plan that acts as the global
reference path for the robot to track during operation. This mission plan is updated
offline from sets of externally provided objective waypoints which the robot is required
to visit in order to complete tasks such as weeding, soil sampling or —in the future—
recharging.

The mission plan is developed by first learning a traversability roadmap through the
unstructured environment. The minimum energy path between each pair of objective
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waypoints is then determined in the roadmap, using the robot’s energy cost of motion
model developed in [120] and the known topography of the environment. Finally, a
resource optimised path that visits all waypoints is found by solving the resultant
traveling salesman problem. The implementation details of the long-term planner are
based on the work of [94, 120, 121], and are described in full in Appendix A.

Replanning is also possible using this method, as the roadmapM+ is persistent, al-
lowing alternate routes to be found by re-querying the roadmap in instances where
the local planner has deviated significantly from the reference path. However, in the
case where the environment state is inconsistent with the original map, or in cluttered
environments where persistent dense crowds or similar phenomena inhibit progress
along the nominal path, Eobs would need to be updated to reflect the intraversable
area. As recomputing the entire roadmap would be a very expensive operation to per-
form online, the existing roadmap can instead be pruned of any states and connections
coincident with the new Eobs, and then replanning can be conducted as normal on the
modified roadmap. Replanning was not tested in the experiments conducted in this
paper, but will be implemented as an item of future work.

Local Dynamic Planner

The local planner is responsible for adapting the long-term plan based on the pres-
ence of both nearby moving individuals and unexpected obstacles. In order to do this
effectively, an understanding of the relationship between the motion of nearby indi-
viduals and the robot’s motion is required, as discussed in Section 2.1.2. As such, this
work makes use of the MCTS-GRNN approach to SPP as described in Section 4.1.

The local planner module takes as input the tracked positions of all nearby agents,
the current robot’s state, a 2D occupancy map from the static mapping module,
and the current local goal generated by the long-term planner, outputting a planned
path to the hierarchical mode controller as illustrated in Fig. 4.5. Whilst only the
MCTS-GRNN local planner is considered in the real-world trials carried out in this
work, the local dynamic planner module within the proposed hierarchical framework
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is agnostic with regards to the used planner, as shown in the comparisons carried out
during the simulated trials. The MCTS-GRNN approach makes use of a predictive
model trained on robot-pedestrian interactions and has been adapted for persistency
between planning steps, as described below.

All experiments in this section applying the MCTS-GRNN planner as the local dy-
namic planner, both simulated and real world, make use of the version from the
preliminary real world trial undertaken in Section 4.1, as outlined in Alg. 1. This
version uses the model trained on the vehicle-crowd interaction (VCI) DUT dataset
[47] of human vehicle interactions and has been chosen as it best reflects the use case
of the experiments carried out in this work, in which a wheeled mobile robot navigates
around pedestrians.

The applied MCTS-GRNN approach has been extended to make use of a 2D occu-
pancy map centred on the robot, output by the perception module as shown in Fig.
4.5. This occupancy map is updated each planning timestep and is used to constrain
the action space during the sampling based search. Valid actions are determined as
those that do not cause a collision between the robot and the map — dilated by
the robot’s radius — or the robot and the position of each agent dilated by the sum
of the robot’s radius and the average agent radius. This is extended by comparing
the straight line path connecting the robot position in parent and child nodes of two
subsequent timesteps, ensuring that this line does not intersect either the contour
of a static obstacle, or any other line connecting the predicted positions of dynamic
agents in the same two timesteps.

Reseeding MCTS for Planning Persistency

The MCTS-GRNN approach detailed in Alg. 1 has additionally been extended for
improved persistence of plans between timesteps by reusing the values of the previous
tree when applicable, as detailed in Alg. 2 below. Before each planning step, the
computed tree from the prior step is checked to determine if it can be reused to seed
the current search. A comparison is made between the current observed state, and
the child node from the last tree’s root node which best matches the actual action
taken by the robot over the last timestep.
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Algorithm 2 Persistent Planning in MCTS
1: function ReSeed(lastRoot, newRoot)
2: . Compare latest actual action to prior simulated actions
3: Ss = min(Sp.action - newRoot.action) for Sp in {lastRoot.childs}
4: . Compare predicted positions of Ss to actual obs as per (Eq. 4.3)
5: if (Ss.agents - newRoot.agents) < ε then
6: newRoot.values = γSs.values
7: end if

return newRoot
8: end function

If the positions of all nearby agents within a distance threshold of d of the robot’s
position in the root node are within an error ε, equal to twice the expected sensor
noise standard deviation (0.25m), the values of the node’s tree are reused to seed
the current root. The reused values are scaled by a factor of γ, determined by Eq.
4.3. γ is the normalised difference between the current observed agent positions X t

i

for i ∈ M , where M is the number of agents within 2d radius of the robot’s current
position, and the predicted agent positions P t

i for the chosen prior state.

γ = (
M∑
i

ε− |X t
i − P t

i |
ε

)/2M (4.3)

Hierarchical Mode Switcher

Based on the robot’s proximity to detected dynamic agents and static obstacles,
a hierarchical mode switching module —detailed in Alg. 3— determines whether
to source the local reference trajectory from the dynamic planner, or to follow the
online update of the global path provided by the long-term planner. This represents a
crucial element in the integration of the global optimal planner and the local dynamic
planner within this framework.

In the absence of obstacles, the default path tracking behaviour will compute a ref-
erence based on the robot’s progress along the global path and the specified nominal
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speed. If a dynamic agent or static obstacle is detected within the dynamic planning
area, the local dynamic planner will then be engaged. Depending on the type of local
dynamic planner being used, there will be up to a 300 ms planning delay between
detection of the need to dynamically plan and the plan being finalised. In this time,
the hierarchical switcher will send an update to the RHEC tracker to decrease ve-
locity over the next 300 ms (or known planning delay) along the current path. The
expected new velocity and future position are passed to the dynamic planner to use
as the state from which to begin planning. In the case of the MCTS-GRNN planner,
this requires predicting the response of nearby agents to the robot’s expected state
for use in the MCTS root node. In the case of LM-SARL, which is compared as an
alternative planner in Section 4.2.2, agent positions are simply propagated forward
using the same constant velocity model used to predict future states passed to the
value network [31].

The dynamic planning mode is latching for 2 s, ensuring that the hierarchical switcher
does not rapidly oscillate between dynamic and long term modes when an obstacle is
on the edge of the dynamic planning area resulting in unstable behaviour. This area
is defined as the union of a forward facing semicircle 4 m in radius centred on the
robot’s centre, and a similarly forward facing circular sector with subtended angle of
135◦ and radius of (4 + 2v) m, where v is the robot’s current speed.

Due to possible planning delays of the local planner, a FS collision avoidance module
is also used, ensuring that the robot is able to reflexively react to rapid changes in
its environment without having to wait for the local planner to complete planning.
This module simply stops the robot in case of a potential collision and waits for the
path to clear, rather than planning a path around obstacles. It makes use of the lidar
input directly after ground plane segmentation and removal, as shown in Fig. 5.1 for
faster reaction time. To determine if a collision is imminent, the FS module checks
a safety area in front of the robot for obstacles in a similar manner to the dynamic
planning area, however with a semicircle radius of 2 m and circular sector defined by
an angle of 90◦ and radius of (2 + v) m.
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Algorithm 3 Hierarchical Mode Switcher
1: waypoints ← External Mission Objectives
2: LT ← LongTermPlanner()
3: LT.computeOptimalPath(waypoints)
4: LDP ← LocalDynamicPlanner()
5: PathTracker ← RecedingHorizonEstimatorController()
6: while not at LT.terminalWaypoint do
7: while not at LT.currentWaypoint do
8: if FailSafe.active then PathTracker.stop()
9: else
10: if LDP.required then . Check dynamic planning area
11: . If expecting planning delay, immediately slow and get expected
12: . robot state after delay
13: expectedState = PathTracker.slow(LDP.planningDelay)
14: . Plan from expected end state
15: latestDynamicPlan = LDP.getPlan(expectedState)
16: dynamicLatch.resetTimer() . Reset latching timer
17: end if
18: if dynamicLatch.timer < 2 s then . Avoid oscillating between modes
19: path = latestDynamicPlan . Use latest dynamic path
20: else
21: path = LT.localGoal . Use latest long term plan local goal directly
22: end if
23: PathTracker(path) . Send to Path Tracking module
24: end if
25: end while
26: PathTracker.stop()
27: Weeder.actuate() . Stop and weed
28: end while

4.2.2 Experiments

The proposed planning framework has been evaluated in both real-world and sim-
ulated experiments. Simulated trials have been used to allow comparison of varied
local dynamic planners within the hierarchical framework during extended naviga-
tion. Subsequent real world trials have been used to validate performance on physical
hardware deployed in a real operating environment.

During simulated trials, the framework has been compared in varying densities of
agent crowds, and when using different local dynamic planner modules. Compared
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methods include the MCTS-GRNN approach, a state-of-the-art deep RL planner LM-
SARL [31], a PF-based approach, and when relying only on the FS collision avoidance
module. The real-world testing of the proposed approach was conducted on the Uni-
versity of Sydney’s Swagbot agricultural robot platform, shown in Fig. 4.1. Testing
was performed at the University’s Arthursleigh Farm and involved two separate tri-
als. The first trial involved extended navigation between mission waypoints across an
unstructured field 2 ha in size for the purposes of weeding, whilst in the presence of
dynamic agents and unknown obstacles. The second trial focused exclusively on the
robot’s interaction with dynamic agents and was conducted on a smaller scale with
denser crowds in order to comprehensively evaluate the behaviour of the proposed
framework during crowd and herd interactions. An overview of the real world trials
is shown in Fig. 4.6, detailing the extent of the extended navigation trial (a) and
crowd interaction trial (b). Additionally, an evaluation of the perception pipeline’s
ability to accurately detect the location of nearby agents was also carried out. This
was performed using a comparison between the output of the object detection and
tracking module and footage from an overhead drone, described in Section 5.2.

Experimental Platform

The Swagbot robotic platform was used in all trials conducted during this work.
This platform is a wheeled omnidirectional electric ground vehicle designed for use
in uneven terrain such as grazing livestock farms. The platform has a limited bat-
tery capacity of 1.97 kWh with expected drive time of approximately 3 hours before
requiring recharging. As shown in Fig. 4.1 (a), the robot includes an actuated arm at-
tached to the underside of the chassis, intended for use in tasks such as weed spraying
and soil sampling. The localisation system includes a Trimble BD982 GNSS Receiver
and Orientus V3 IMU, which provide estimates of the position and orientation of
the robot. A forward-facing Point Grey Grasshopper GS3-U3-51S5C-C and Velodyne
VLP-16 lidar are mounted on the front of the robot for use in obstacle detection and
mapping. The configuration of these sensors results in a limited FOV and rear blind
spot, as shown in Fig. 4.1 (b). Additionally, a downwards facing RealSense D435
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Figure 4.6 – Aerial map of the University of Sydney’s Arthursleigh Farm used for all
real world trials, illustrating the location and topography of the extended navigation
trial (a) and the crowd interaction trial (b).

camera is mounted below the lidar for use in active perception during weeding. As
the accuracy of the active perception system was not evaluated in this work, this
camera was not utilised during the trials.

Methodology

Simulated Trials

Simulated testing involved a number of repeated trials requiring the robot to navigate
between a set of mission waypoints through an unstructured environment, taking into
consideration the presence of nearby individuals and a limited energy budget. Each



4.2 Resource Aware Dynamic Path Planning for Extended Autonomy 115

Figure 4.7 – Simulated environment used for testing, illustrating crowd densities of
10m2 (a) and 25m2(b) on a 1× 1 m grid. The long-term planner’s reference path
is shown in yellow with the current waypoint as a target. Simulated ORCA agents
are shown as red arrows, with green bounding boxes highlighting agents that the
robot is currently tracking.

trial iteration involves the robot departing from and returning to a recharging station,
while being externally provided with a set of mission objective waypoints. The robot
was required to initially plan a long term path offline that visits every waypoint, whilst
ensuring that the energy constraints of the robot are adhered to by returning to the
recharging station as required. Real-world aerial terrain data from the University of
Sydney’s farm at Bringelly was supplied alongside mission waypoints to the robot in
order to compute an offline reference path as per Section 4.2.1.

Between 5–12 waypoints were supplied to the robot each iteration, with average
spacing of 25 m between each. The robot was required to visit each waypoint within
the resource budget. Perception of dynamic agents and localisation was simulated to
reflect real-world sensors available on the Swagbot platform, including sensor noise
and FOV limitations. The simulated environment is shown in Fig. 4.7, illustrating
simulated agents as red arrows, with detected agents shown in green boxes.

This simulated trial was repeated using four different framework implementations, in
which the local dynamic planning module was using either: (1) MCTS-GRNN-based
planner described in Section 4.1 and adapted for use with a static occupancy map
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and reseeding of the search tree; (2) LM-SARL [31], a state-of-the-art reinforcement
learning based dynamic path planner which uses attention based mechanisms to cap-
ture both robot-agent and agent-agent based interactions; (3) a PF-based approach
as per Section 4.1; or (4) FS collision avoidance only, with no dynamic planner, as
shown in Fig. 4.5.

This was repeated 3 times per planner version with varying required positional ac-
curacy at the mission waypoints, of 5 m, 2 m and 1 m. Additionally, this testing
was conducted in two different agent crowd densities, of 10 m2 (dense) and 25 m2

(sparse) per agent, illustrated in Fig. 4.7. Each test was undertaken in real-time,
taking approximately 2.5 hours to reach all supplied waypoints, depending on the
type of dynamic planner and agent density used. Agents were simulated in these
trials using the ORCA [18] pedestrian motion model with speeds between 0.1–1.5
m/s and maximum neighbour distance of 1.5 m. This term has been edited from the
original implementation [18] to refer to the distance between agents excluding radii,
rather than centre to centre distance, to accommodate heterogeneous agent sizes. All
simulated trials used an agent radius of 0.5 m, and a robot radius of 1.5 m.

Extended Navigation Trial

The real-world extended navigation trial aimed to replicate the methodology used
in the simulated testing, involving continuous navigation between updated sets of
externally provided mission waypoints across an unstructured pastoral field. At each
waypoint the robot was required to reach a positional accuracy of 1 m in order to
spray a pre-located weed, operating in the presence of both moving individuals and
unknown obstacles. Each iteration of the trial began at a base waypoint, where a set
of 5-8 objective waypoints were supplied to the robot.

An offline resource-efficient path was again determined based on a prior terrain map
generated from aerial lidar survey, and used as the reference path for online local
planning during navigation to each objective. Upon returning to base, a new set of
waypoints were supplied and the trial repeated. A total of 3 sets of waypoints were
reused, with testing continuing until the robot exhausted its energy resources. An
overview map of the testing area, showing a single example iteration of the extended
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Figure 4.8 – Example iterations of the extended navigation trial (a) and the crowd
interaction trial (b) showing differences in scale, agent density, and relative time
spent in each planning mode. Note that the right map is shown at 1:4 scale of
the left. The reference path (dark blue) is shown alongside the actual taken path,
differentiating between when the long-term mode (light blue) and dynamic mode
(purple) were each being used. The location of all detected agents throughout each
trial lap are shown as green triangles.

trial, is illustrated in Fig. 4.8 (a). The hierarchical planning framework was imple-
mented using the same MCTS-GRNN local dynamic planner used in simulated trials
and the perception pipeline as described in Section 5.1. Total time of the trial was
2 hr 44 mins, covering a distance of 5.49 km, including 37 separate interactions with
groups of moving agents.

Crowd Interaction Trial

The second real-world trial involved the continuous tracking of a reference path whilst
navigating through a sparse crowd of pedestrians. The reference path was a circuit of
approximately 85 m in length as shown in Fig. 4.8 (b), computed using the long-term
planner but not requiring the robot to stop at any waypoints. This trial used the
same MCTS-GRNN local dynamic planner as the extended navigation trial. Eight
pedestrians were involved, who were instructed to begin outside the perimeter of the
robot’s reference path and to choose a goal point on the other side of the circuit which
they aimed to walk towards. Upon reaching their goal, pedestrians would again choose



4.2 Resource Aware Dynamic Path Planning for Extended Autonomy 118

another point, continuing back and forth for the duration of the trial. Pedestrians
were not instructed to give way to the robot, instead being told only to treat the
robot as if it were being driven by a human operator. This trial lasted a total of 21
minutes, in which time the robot completed six laps of the reference circuit.

Metrics

Performance in all trials, both real-world and simulated, has been compared based on
metrics of: (1) distance to closest agent; (2) energy usage per metre gained towards
the goal; (3) velocity towards the goal; and (4) deviation from the reference path.
Metrics 2,3 and 4 have all been calculated in varying crowd densities to determine
the impact of more complex environments on resource efficiency.

Metric 1 represents the ability of each planner to effectively navigate through crowds,
providing a measure of the safety of the system around moving individuals and the
number of potential near-collisions. Metric 2 represents the energy expenditure of each
trial, and has been normalised for comparison between trials as J/m gained towards
goal. This was chosen over the average energy usage per trial as it allows direct
comparison of energy usage in varying crowd densities. Power usage is calculated
using the learnt energy cost of motion model outlined in Eq. 4.7, derived below:

P = F · v +
∑
s∈S

ςs(t) (4.4)

= F · v +
∑
s∈S

qsςs (4.5)

= (mig sin (ε) + µiN) · v +
∑
s∈S

qsςs (4.6)

= (sin (ε) + µi cos (ε)) ·migv +
∑
s∈S

qsςs (4.7)

where P is the instantaneous power draw of the robot, F is the force acting in the
direction of motion, v is the speed of the robot in meters per second, ε is the slope
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of the terrain along the robot’s path of motion in radians, mi is the mass of the
platform at the time of run i, g is the acceleration due to gravity, N is the normal
force acting perpendicular to the ground, µ is the coefficient of rolling friction at the
site of the run, ςs(t) and ςs are the dynamic and static power draw of subsystem
s ∈ S, respectively—where S is the set of computers, sensors and actuators—and
qs ∈ {0, 1} is a binary variable with a value of 1 if a given subsystem is active, or 0
if it is not. For the experiments conducted in this work, mi = 220.6 kg, µi = 0.0767,
and the static power draw of the system is ∑

s∈S
qsςs = 203 W. Further details can be

found in [120].

Metric 3 represents the navigation time efficiency of each trial. Similarly to metric 2,
velocity towards goal was chosen over total experiment time — a more intuitive metric
for time efficiency — as it can be determined at every timestep to allow comparison
in varying agent densities. For the resource usage analysis done in Section 4.2.3, the
average velocity across every 1 second period during each trial was used against the
maximum number of agents detected within the same period.

Metric 4 represents the ability of the planner to accurately follow the energy efficient
path, a crucial consideration in environments with large elevation changes that may
lead to significant energy usage to return to the reference path after a minor deviation.

Implementation

During the real-world trials carried out in this work, the output of the static mapping
module was not utilised by the local dynamic planner. This was done for clarity, al-
lowing testing to focus on the performance of the planning framework around moving
individuals only, and relying on the FS collision avoidance module to ensure safety
around static obstacles.

Due to the limited sensor FOV, as indicated in Fig. 4.1 (b), the robot was constrained
to operate in forward-only Ackermann configuration during the simulated tests. This
was done to restrict motion in directions without adequate perception coverage for
safety precautions. In the real-world trials, an alternate approach was used, where
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this FOV safety constraint was instead enforced in the local path planning step, which
would only generate paths in the region covered by the robot’s sensors. This change
was taken after observing that operation in forward-only Ackermann configuration
often made direct and precise visitation of goal locations in the presence of numerous
moving agents difficult, due to the mobility constraints it imposes.

The nominal path tracking module used in the simulated tests utilised a slip-com-
pensating receding horizon estimation and control (RHEC) framework—which uses
model-based localisation and predictive control to minimise cross-track and speed
tracking error [122, 123]. This strategy utilised a forward-only Ackermann motion
model. In the real-world tests, however, a pure pursuit path tracker in conjunction
with a holonomic motion model was used instead; employing a PID controller to drive
the robot’s positional error relative to a moving target point to zero via linear and
angular velocity control of the motion base. The change in path tracking strategy
for the real-world runs was chosen as it did not artificially restrict the holonomic
motion capabilities of the platform—as the Ackermann-based RHEC strategy would
have—thereby allowing more direct motion towards the goal locations to be realised.
Both trackers otherwise worked to maintain constant speed, and control orientation
to face the direction of travel along the reference path.

During operation, the long-term planner outputs an online local goal which moves
along the computed global reference path 10 m in front of the robot’s position to-
wards the next waypoint. This local goal is tracked by either the local dynamic
planner, described in Section 4.2.1, or directly by the nominal path tracking module
described above, depending on the mode dictated by the hierarchical mode controller
module. The local planner additionally generated plans which forbid reversing, in
order to restrict the robot from moving into areas in its blindspot. For generation of
the long-term energy-efficient path plans, the probabilistic roadmap (PRM) strategy
introduced in Section 4.2.1 was used for roadmap generation, using a connection ra-
dius rconn = 4 m and a maximum curvature constraint value corresponding to a max
Ackermann steering angle of 35◦.

For the purposes of all trials in this work, pedestrians—rather than livestock—were
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used as dynamic agents. This was decided for a number of reasons, including com-
patibility with simulated trials, available response prediction models, and safety of
agents. As discussed in Section 2.1.4, the use of mobile robots around livestock is not
as widespread as for pedestrians or traffic, with little work done to explore how best to
model livestock motion, especially in response to a robot. Whilst Section 3.1 showed
that it is possible to attain improved prediction accuracy on the livestock ARATH
dataset [15] using a spatio temporal graph generative RNN (STG-GRNN) compared
to constant velocity models, Section 3.2 showed that when using the simpler GRNN
model — required for use in the MCTS-GRNN due to faster inference speed than
STG-GRNN — the motion prediction accuracy for livestock was significantly worse
than for pedestrians. This was likely due to the motion of livestock being dependent
both on animal orientation and relationships within a herd, which were not captured
in the GRNN model used in this work. Due to the unavailability of a livestock mo-
tion model, all simulated trials make use of ORCA pedestrian motion model [18] for
dynamic agents. Similarly, pedestrians have been used in all real-world trials due to
the availability of a response prediction model of person-robot interactions, presented
in Section 3.2 and to allow comparison to simulated results. Additionally, the use
of pedestrians in all trials, as opposed to livestock, allows better comparison of the
proposed framework to prior state-of-the-art path planners designed for use in pedes-
trian crowds. Finally, safety of agents is a concern when testing planning approaches
in real world trials. The Swagbot robotic platform is a large vehicle weighing over
200 kg and can cause serious bodily injury when travelling at speed, necessitating the
use of willing participants until safety around moving individuals can be proven.

4.2.3 Results

Combined results from the simulated testing, extended navigation trial and crowd
interaction trial allow a comprehensive evaluation of the performance of the proposed
framework in a variety of scenarios. This allows the evaluation of performance with
regards to both the ability to safely and effectively navigate through dynamic envi-
ronments in the presence of moving individuals, and the ability to efficiently follow a
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Figure 4.9 – An example planning step of the MCTS-GRNN dynamic planner during
the crowd interaction trial, illustrating the full search tree in green and the chosen
best path in purple as the robot attempts to navigate to the next supplied position
along the reference path. The predicted bivariate Gaussian response of each pedes-
trian considered during planning is shown as a heatmap extending over 2 standard
deviations, based on the observed prior positions. The chosen path and predictions
are both shown across 8 timesteps.

reference path during resource constrained navigation. The following sections describe
performance in terms of the metrics outlined in Section 4.2.2 as well as illustrating
the behaviour of the robot during social interactions.

Dynamic Planning and Collision Avoidance

Fig. 4.9 illustrates a single planning step of the navigation framework during the
crowd interaction trial, in which the robot is navigating towards the current local
goal along the reference path output by the long-term planner, whilst accounting for
the nearby observed agents. This example shows the chosen path of the robot in
purple and the predicted responses of each considered agent as a bivariate Gaussian
heatmap over each future timestep. The tree search, shown in green, illustrates the
exploration of the robot’s action space and its consideration of actions that better
follow the reference path. As expected, the local dynamic planner takes into account
the predicted future motion of the individual moving into the robot’s path, choosing
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t=0.0s t=1.0s t=2.0s

Figure 4.10 – Subsequent time steps to Fig. 4.9 during the crowd interaction trial.
The robot’s best path found using the MCTS-GRNN dynamic planner is shown in
yellow as it tracks the reference path (dark blue). The mean predicted path of each
agent in response to this chosen path is shown in purple. Step 1 shows the robot
choosing a path behind the approaching agent. In step 2, when the agent stops
rather than following the predicted motion, the robot updates its plan accordingly.
In step 3, the robot returns to the reference path, avoiding the new agents. Only
agents tracked by the robot each timestep are highlighted.

a path that will drive the robot behind the predicted travel of the individual to better
reach the next local goal in fewer planning steps.

Fig. 4.10 expands on this example, showing 2 subsequent timesteps of the same
interaction. For clarity, these examples are shown at 1 second intervals, rather than
the actual planning timestep. The initial step (left) shows the same path as Fig. 4.9,
restricted to 5 planning steps. However, by the next timestep (middle) the motion of
the individual ahead of the robot has slowed, resulting in the local dynamic planner
updating its proposed plan to travel in front of the individual. The third timestep
(right) shows the robot rejoining the reference path once it has effectively navigated
through the interaction, again avoiding the newly approaching individuals in the right
of the frame.

Further examples of robot crowd interaction are illustrated in Fig. 4.11, with each
column showing a single example over a longer time period in 4 second timesteps. The
robot’s history is shown in either purple or blue depending on whether it was using
the dynamic or long term mode respectively at that time. These examples further
demonstrate robot behaviour in the presence of moving individuals, demonstrating
how the interplay between each planning mode allows for both efficient navigation
through crowds and the return to the reference path when possible. Additionally,



4.2 Resource Aware Dynamic Path Planning for Extended Autonomy 124

(a) (b)

Dynamic agents (current)Reference path Long term mode Dynamic modeRobot (current) 

t=0.0s

t=4.0s

t=8.0s

t=12.0s

t=16.0s

t=0.0s

t=4.0s

t=8.0s

t=12.0s

t=16.0s

N
o
rt

h
 (

m
)

East (m) East (m)

t=4.0s

t=8.0s

Figure 4.11 – Example scenarios from the crowd interactions trial, illustrating the
behaviour of the robot around dynamic agents. Both examples (a) and (b) demon-
strate collision avoidance ability of the system when using the MCTS-GRNN local
dynamic planner module, as well as the preference to return to the resource effi-
cient long term plan when clear of any agents. Please refer to the supplementary
video for more examples.

these examples also demonstrate the latching behaviour of the hierarchical mode
switcher described in Section 4.2.1. This ensures that the dynamic path is used
for a period of time after clearing an interaction to avoid oscillating back and forth
between planning modes due to noisy perception of an agent on the edge of the
dynamic planning area.
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Figure 4.12 – A comparison of the distance to the closest agent throughout all trials,
simulated and real, illustrates the ability of each implementation to effectively avoid
collisions with moving agents. Distances are show as a histogram of occurrence
percentage for all times an agent was within 8 m. Combined results for the extended
navigation trial and crowd interaction real-world trials are shown in red. Whilst
all simulated planner implementations demonstrate similar ability to avoid collision
with agents, there is a significant difference between the real world and simulated
results using the same MCTS planner implementation, suggesting differences in
agent behaviour in the presence of the robot.

A quantitative comparison of the results from the real-world tests and the simulated
testing is illustrated in Fig. 4.12. This histogram illustrates the minimum distance
between the robot and all surrounding agents, shown as a percentage of occurrence
of each distance for all times in which an agent was detected within an 8 m radius of
the robot. This distance excludes an additional 1.5 m radius from the robot’s cen-
tre, which accounts for the physical extent of the robotic platform. This comparison
highlights both the safety of the proposed hierarchical approach whilst also indicat-
ing differences between the simulated trials and real-world trials in terms of agent
behaviour. The real-world results, shown in red, combine both the extended navi-
gation trial and crowd interaction trial. These results demonstrate that the robot is
able to effectively maintain a safe distance from agents, keeping an average minimum
distance of 3.48 m to the nearest agent.
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As described in Section 4.2.1, the FS collision avoidance module ensures that all
robot motion is stopped whenever an obstacle or agent is detected within 2.0 m of
the robot (3.5 m from the robot’s centre). A single instance of distance less than 1.5
m occurred during real-world testing, where the robot turned on the spot without
realising that a person was in its blind spot, as shown in Fig. 4.1. This was a result
both of the limited sensor FOV, and a discrepancy between the holonomic dynamics
of the real-world robotic platform and the non-holonomic Ackermann assumptions
of the dynamic path planner. The simulated results demonstrate significantly less
distance maintained between the robot and dynamic agents during testing for all
compared framework versions, with average minimum distances of 3.24 m, 3.17 m,
3.20 m, and 3.25 m for the MCTS, LM-SARL [31], PF, and FS methods respectively.
Additionally, notable peaks are observed for all versions at the FS limit of 2m. All
tested versions were still able to maintain a safe distance from agents, highlighting the
safety of the proposed approach even when using local dynamic planner versions that
attempt to navigate around agents, and the response aware MCTS-GRNN version
which plans with the expectation that agents will respond to its actions.

A comparison of peaks between the results of real-world and simulated MCTS trials
indicates a difference in agent behaviour. Eq. 4.1 describes the state evaluation
function used in all MCTS tests, where d = 2. This value means that no cost is applied
when the robot approaches an agent up to a distance of 2 m, and was used in both real-
world and simulated MCTS trials. As all simulated agents used a maximum neighbour
distance of 1.5 m (excluding agent or robot radii), as described in Section 4.2.2, the
peaks at 2 m observed in simulated trials matches expectations, as the agents approach
the FS robot limit. Comparatively, the real pedestrians maintain a greater distance
on average. While the results show safe distances were maintained during all tests,
it may still be preferable to increase the value of d in future experiments to better
reflect the preferred distance of real humans for less intrusive robot behaviour.
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Figure 4.13 – Energy efficiency in varying crowd densities, represented by energy
used to move 1 m towards the goal (J/m). MCTS and LM-SARL [31] are able to
effectively navigating through denser crowds, using the least energy. The FS version
uses significantly more energy than any other tested dynamic planning module as
crowd density increases. Median values are shown as well as Q1 and Q3 ranges.

Resource Efficient Navigation

The primary resources considered in this work include energy and overall time usage
during navigation. In real-world applications—such as deployment on agricultural
properties for weeding—additional quantities, such as herbicide, would also need to
be managed. The results again demonstrate that the hierarchical framework can
achieve varying resource efficiencies through the use of different dynamic planning
modules, and that agent density greatly influences both energy and time efficiency.

Performance is again compared between the real-world tests—the extended navigation
and crowd interaction trials—and the simulated trials, with each using either the
MCTS-GRNN dynamic planning module, LM-SARL [31], the PF dynamic planner,
or the FS only. Fig. 4.13 illustrates the energy usage of the robotic platform in all
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Figure 4.14 – Deviation from the optimal energy efficient path in varying crowd den-
sities for each framework implementation. This is an important consideration in
environments with large changes in elevation, where deviating from the reference
path can lead to significantly large energy use. FS version does not deviate from the
reference path at all. PF deviates significantly less than both MCTS and LM-SARL
[31] versions. Median values are shown as well as Q1 and Q3 ranges.

trials for increasing crowd densities. This is shown as the energy required to reach a
waypoint, normalised for comparison between trials as J/m gained towards goal.

Whilst energy usage is similar between all framework versions when not in the pres-
ence of any moving agents, there is significant difference in usage in increasingly dense
crowds. The increase in energy usage at a density of 5 agents within 8m as a percent-
age of energy usage at a density of zero for MCTS and LM-SARL versions are just
33.5% and 58.0% respectively, whereas PF increases 178% and FS version 1,230%.
The immense increase in FS is a result of it sitting stationary for extended periods
of time waiting for agents to move and the base power draw of 203W for the robotic
platform, detailed in Section 4.2.2 . The real world MCTS version uses 148% of its
baseline energy usage, significantly more than the simulated version, suggesting a
greater tendency to rapidly change velocity. This may be a result of the real world
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Figure 4.15 – Navigation time efficiency in varying crowd densities, represented by ve-
locity towards the goal. Both the crowd response aware MCTS and LM-SARL [31]
implementations of the planning framework are better able to continue navigating
towards the goal as the crowd density increases compared to the FS and PF ver-
sions in simulation. The FS version approaches a velocity of 0 m/s in density=2,
spending the majority of it’s time stationary. Median values are shown as well as
Q1 and Q3 ranges.

perception not detecting agents until they are much closer to the robot, as discussed
in Section 5.2.

All trials undertaken in this work use environments with less than 5 m maximum
elevation change and no slopes with a gradients over 6 ◦. However, in environments
with significantly steeper slopes, deviation from the optimal reference path can lead
to much greater changes in energy use. Fig. 4.14 shows the ability of each tested
framework implementation to accurately track the reference path in increasing crowd
densities. Whilst the FS and PF versions use more energy in the simulated trials
than MCTS or LM-SARL, they also deviate significantly less in denser crowds, with
the FS version never deviating more than 0.2 m from the reference path. As the FS
implementation demonstrates expected minimal deviation, these results are consid-
ered a baseline for comparison. This results suggests that in more difficult terrain,
the simpler planners may lead to decreased energy usage.
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Fig. 4.15 compares the robot’s navigation time efficiency against crowd density, in
terms of velocity (m/s) towards the goal. All tested methods achieve a similar veloc-
ity towards goal of between 0.8 and 0.9 m/s median value when there are no agents
present. However, a large drop in performance of 80.7%—a reduction in goal ap-
proach velocity from 0.88 to 0.17 m/s—is seen in the baseline FS version when only
a single agent is introduced. A similar drop in performance of 77.8% is seen with
the non response-aware PF approach. Comparatively, decreases of just 23.0% and
38.3% are seen when using the MCTS and LM-SARL [31] versions respectively in the
same simulated environment. This result is reflected in the real-world trials where a
decrease of just 43.0% is seen for MCTS. Additionally, the FS version approaches a
velocity of 0 m/s with just 2 agents within an 8 m radius of the robot. Whilst the
PF and MCTS versions deviate significantly from the optimal path in the presence
of increasing crowd density, they are able to continue making progress towards the
goal even in the most dense tested crowd of 5 agents within the robot’s vicinity.

These results suggest that resource efficiency tradeoffs are dependent both on the
choice of module used within the framework, and the expected environment. Whilst
the use of a local dynamic planner better able to navigate crowds can greatly decrease
the total time taken, resulting in significant energy savings, it also has the potential
to greatly increase energy usage in uneven terrain.

4.2.4 Discussion

Offline Crowd Density Consideration

The results in Section 4.2.3 highlight the influence of nearby agent density on both the
energy and time efficiency during navigation. This suggests that the expected crowd
or herd density that the robot will be operating within should be a consideration
during the initial offline planning step. Prior knowledge of areas in the environment
where energy efficient motion may be compromised due to the presence of crowds—
which often necessitate deviation from the optimal path to navigate safely—would
allow for better estimates of the energy expenditure for a given plan. Over extended



4.2 Resource Aware Dynamic Path Planning for Extended Autonomy 131

missions this will better allow the robot to determine when it needs to return to
charging stations, and should also be a consideration alongside terrain in the energy
cost of motion model used to compute the optimal path. Alternatively, it would allow
for the inclusion of a factor of safety in resource usage when operating in areas with
unknown possible crowd densities.

Online Adaptive Framework

In all trials undertaken in this work the hierarchical framework was deployed using
a single type of local dynamic planner module in each implementation. However,
the hierarchical mode switcher is currently structured to take input from multiple
planners simultaneously. By allowing the type of dynamic planner used to vary during
operation, the framework could allow changing behaviour, optimising for different
resource constraints as required. A common example would be when it is desirable
for a robot to use its resources efficiently while also meeting a deadline. While the
simpler FS and PF planners would reduce energy costs from path deviation in the case
of undulating terrain, this comes at the cost of time, and in many circumstances—
such as in crowded environments—this trade-off can quickly become unfavourable. By
switching to a dynamic planner better able to navigate crowds, such as the MCTS-
GRNN or LM-SARL versions, the behaviour of the robot could be easily changed
to take a faster path away from the energy optimal path, at the possible expense of
energy due to variations in terrain.

Predictive Model Limitations

The predictive model used within the tested MCTS-GRNN local dynamic planner was
trained on a dataset of robot-pedestrian interactions obtained in a semi-structured
shared road environment. Additionally, it was clear to the neighbouring pedestrians
that the vehicles used in the dataset were all human-operated. Whilst the pedestrians
in this work were instructed to treat the mobile robot as though it were also human-
operated, it is unlikely that their behaviours and responses to the robot’s motion
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would have remained the same as the pedestrians in the training dataset, leading to
inaccuracies in the predictions of the local dynamic planner. Due to different social
cues and norms between groups of humans and animals it is likely that any predictive
model will only learn the response of the training population to the observed robot
type and behaviour, and would experience distribution shift even as the training
group became acquainted with the robot throughout testing. To overcome this, an
online version of the predictive model would be required, which can update based on
observed differences between the predicted and actual motion of nearby agents during
interactions.

4.3 Summary

This chapter focused on two main challenges encountered during mobile robot nav-
igation in unstructured and dynamic environments: the need for response aware
dynamic path planning; and the need to consider on-board resource limitations in
order to achieve extended autonomy.

MCTS-GRNN was proposed as a solution to the prediction-planning order dilemma,
an SPP approach that applies a learnt model of social response within an MCTS
planner adapted for single step simulation (SSS), allowing for response aware path
planning around moving individuals. This approach makes use of the GRNN pre-
dictive model proposed in Section 3.2 in order to simulate the response of nearby
individuals to a robot’s action, during a search of the robot’s action space. Eval-
uations conducted both in simulation and a real world crowd have validated this
approach for dynamic path planning, demonstrating the ability to safely and effec-
tively navigate crowds whilst also allowing for adaptive behaviour through varying
the MCTS state evaluation function.

Section 4.2 extended this planning approach to account for resource limitations of a
mobile robot operating over extended periods of time. A hierarchical planning frame-
work was proposed, integrating response aware local planning with a longer term
energy efficient planner. This framework was comprehensively tested in simulation
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with varied local planners, highlighting the importance of response aware planning
on both safety and efficiency whilst also validating the MCTS-GRNN planner in a
complete planning framework for extended autonomy. Real world evaluation was
conducted in two trials, demonstrating the ability to continuously navigate between
updated waypoints in an unstructured dynamic environment — validating usage in
large scale farming applications such as weeding pasture — and also demonstrating
effective navigation in a denser crowd interaction trial. A description of the per-
ception pipeline and evaluation during the crowd interaction trial is presented in the
following chapter, including a discussion on how consideration of real world perception
limitations can be accounted for in the prediction and planning stages of navigation.



Chapter 5

Perception for Planning and

Prediction

The consideration of perception limitations is crucial for mobile robots operating in
real world environments. These limitations result from the FOV restrictions of on-
board sensors, potential occlusions between objects in the sensor frames, accuracy of
detection and tracking methods, and limited computational resources. Dealing with
these limitations becomes increasingly challenging when operating in unstructured
environments where uneven terrain, clutter, and variable lighting can make the de-
tection and segmentation of traversable ground, dynamic objects and static objects
from one another more difficult.

The ability of a robot to perceive the state of a crowd or herd in which it is navigating
directly impacts both its ability to predict the motion of nearby agents and to plan
paths effectively. As discussed in Chapter 3, the modelling of social interactions
between agents allows for a more accurate prediction of the future motion of an
individual agent. When a robot does not have full observability of its surroundings,
predictions will become less accurate as nearby agents respond to the motion of other
unseen agents. This in turn would lead to a decrease in performance of coupled
prediction-planning based navigation, such as the SPP approach proposed in this
work.
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Similarly, incorrect assumptions about the ability of the robot to actually detect
nearby agents can impact navigation. Whilst missed detections and false positives
directly impact the behaviour of a robot adversely, an accurate understanding of
the agent detection likelihood across the robot’s planning space can be used to better
inform a path planner. This understanding of detection likelihood can allow biasing of
actions towards areas of greater detection likelihood and so avoiding both potential
collisions and inefficient motions as previously undetected agents now impede the
planned motion of the robot after new observations.

Section 5.1 of this chapter outlines the perception pipeline used in all real world trials
undertaken in this thesis. An evaluation of the pipeline’s ability to allow accurate
detection of nearby dynamic agents has been carried out in Section 5.2, providing an
analysis of both recall and precision across the robot’s planning space. This evaluation
was conducted against ground truth agent location determined from labelled overhead
drone footage obtained during the crowd interaction trial detailed in Section 4.2. This
trial was conducted on the Swagbot robotic platform, which has a limited sensor FOV,
as illustrated in Fig. 4.1. The results of this evaluation demonstrate the limited
ability of the robot to accurately observe its surroundings, highlighting the need
for consideration of agent detection likelihood both during the training of predictive
motion models and the planning of paths in shared environments. The work presented
in this chapter has been previously published in [16].

5.1 Perception Pipeline

Perception of static obstacles and dynamic agents in the robot’s environment is
achieved through multiple sensor modalities, combining 2D object detection in an
RGB camera with 3D object segmentation and tracking from a lidar point cloud. Fig.
5.1 illustrates the steps involved in this process, resulting in classified and tracked 3D
objects and a map of non-traversable static obstacles for use by the local dynamic
planner. This perception pipeline has been used in all real world experiments using
the Swagbot robotic platform described in this thesis.
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Figure 5.1 – Perception pipeline used for 3D object detection and tracking. 2D object
detection is performed synchronously with 3D point cloud ground plane segmen-
tation, object segmentation, and tracking. The tracked 3D objects are projected
onto the 2D frame and associated with 2D detections to determine object class as-
signment. All non assigned 3D objects are passed to the OctoMap [124] module
to update a static map, from which a 2D ground plane projection is used during
dynamic path planning. Tracked 3D objects that have not yet been seen by the 2D
camera but fit within a size threshold are included both as dynamic agents (shown
in yellow in the bottom right) and static obstacles in the 2D occupancy map.

5.1.1 3D Segmentation and Tracking

Input point cloud processing is performed to identify and track distinct objects in 3D.
It also identifies traversable regions both for use by the FS collision avoidance module
and for generating a 2D occupancy grid, as shown in Fig. 5.1. This is performed in
the following steps: (1) ground plane extraction; (2) segmentation of the point cloud
into candidate clusters; (3) and tracking of the clusters in subsequent frames.

Ground plane segmentation is achieved by initially thinning the input point cloud to
25% before creating a 1 m grid voxel map. The lowest point in each voxel is determined
using only the z-axis value, assuming the lidar has been mounted upright and that
any roll and pitch experienced by the robot reflects the local ground plane alignment.
This assumption that sensor z-axis will be normal to the local ground plane is only
valid for short distances when operating on non-planar ground. If the robot is on non-
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planar terrain, ground further away from the robot will be labelled as non-ground and
only identified as being traversable as the robot approaches it and the robot’s z-axis
approaches normal to the surface. This approach to ground segmentation has been
chosen due to the restrictions of on-board computation, as opposed to more complex
methods which allow non-planar ground, described in Section 2.3.

The set of thinned points is iterated over, computing the height differences between
each point and the lowest points in both its parent and the directly adjacent voxels. If
this height difference is less than 0.2 m, the point is labelled as ground. The resulting
non-ground point cloud set, shown in blue within the ground plane segmentation
block of Fig. 5.1, is then passed both to the object segmentation and tracking block
and the FS collision avoidance module. The non-ground points are then grouped into
clusters using the clusters-all method described in [111]. Points are partitioned only
by local voxel adjacency, for which a local neighbourhood size of 0.3 m in x and y
dimensions, and 0.5 m in z dimension is used, with a minimum cluster size of 20 points
and minimum density of 2 points for each voxel. The segmented clusters are then
tracked between frames based on centroid location. This is performed using Kuhn–
Munkres association [125] and Kalman filtering [38] in 3D. Each track maintains both
a confidence score which is increased when the track is associated with a new detected
cluster and decreased if not. If the confidence drops below a threshold, the track is
deleted. This allows for the continuation of tracks when an object is briefly obstructed
by other individuals or when a detection is otherwise missed. The output tracked-
non-ground point set is then combined with 2D detections, as per Section 5.1.3.

5.1.2 2D Object Detection

Object detection in the camera frame is performed using the single shot multi-box
detector (SSD) CNN [110]. This network has been initialised using the the pretrained
weightings from the VOC2012 dataset [126] and then fine-tuned on a data set of
labelled images relevant to agricultural applications. This dataset includes scenes
from a number of Sydney University farms, as well as from the publicly available
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ImageNet dataset [127], focusing on the classes of cows, sheep, horses and humans in
order to improve detection performance in agricultural settings. The output of the
2D detector—a series of classified 2D bounding boxes—is then combined with the
output of the 3D segmentation and tracking module, described below.

5.1.3 3D and 2D Fusion

The output tracked-non-ground point cloud set is then associated with the output of
the 2D object detector to determine class types by projecting the 3D point cloud onto
the 2D camera frame. This step requires knowledge of the extrinsic transform between
the two sensors and intrinsic parameters of the 2D sensor. The extrinsic transform is
initially estimated, then refined using an unsupervised calibration between a camera
and a lidar as per [128]. The 3D and 2D detections are associated by assuming that
each detected 2D bounding box corresponds only to a single object, assigning the
detected class label to the matched point cluster. This is determined by computing
the intersection over union between the detected 2D bounding box, and a projection
of the 3D detection onto the 2D plane. The Kuhn–Munkres algorithm [125] is again
used to determine the best match for each detection. Additionally, 3D bounding boxes
are filtered using geometric thresholds based on the expected range of dimensions of
the class to which the current 2D detection belongs. Class confidence is updated for
each assigned cluster based on output of the 2D CNN.

The entire point cloud is then transformed into the world frame using the known
robot transform, resulting in a geo-referenced point cloud segmented into ground,
unknown-non-ground, and known-non-ground classes, with tracked centroid posi-
tions for each cluster within known-non-ground. The relative centroid positions of
all tracked objects within the known-non-ground set, as well as all tracked objects
within the unknown-non-ground set that pass the geometric threshold filter of the
largest expected class, are then passed to the local dynamic planner.
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5.1.4 Static Mapping

The unknown-non-ground set is passed to the static mapping module in which a
probabilistic OctoMap framework [124] is used to continuously update a map of static
obstacles and traversable terrain. During each planning step, the output of this
module is projected onto a 2D ground plane and resolved into a 60 × 60 grid of 0.5
m resolution centred on the robot’s current position for use as an input to the local
dynamic path planner, as shown in Fig. 5.1.

5.2 Real World Perception Analysis

An evaluation of the accuracy of the object detection and tracking module was carried
out during the crowd interaction trial, described in Section 4.2. This involved a
comparison of the classified and tracked 3D objects output by the perception pipeline
to the ground truth positions of all nearby agents, obtained from an aerial drone video.
Aerial images were labelled at 24 fps using initial manual detection of both the robot’s
location and each pedestrian in the 2D aerial image. Kernelized correlation filter [129]
based visual tracking was used to automatically label subsequent frames, with manual
re-initialisation of tracks as required. 2D pixel position of each pedestrian in polar
coordinates, relative to the robot’s location, was saved each frame.

Tracked positions were then transformed into global scale relative to the robot’s ori-
entation. Global scale was estimated each frame using the known geometry of the
robot and visible features on the robot as fiducial markers. This included identifying
the outline of the red chassis and the location of the two white aerial enclosures each
frame through the use of colour based thresholding and contour detection within the
tracked 2D bounding box of the robot. These features are visible in the top-down
image Fig. 4.1 (b). These centres of each marker were tracked between frames using
Kalman filtering [38], and used to determine both the orientation of the robot, and
the pixel-to-metre scaling for each frame. An example labelled frame is shown in Fig.
5.2, illustrating both the tracked 2D boxes and scaling markers.
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Figure 5.2 – Example labelled overhead image used for comparison of perception
pipeline and ground truth agent locations. Agent distances (r) and bearings (th)
shown relative to robot’s position and orientation as determined by visual identifi-
cation of antennae and chasis locations and size for scale.

Comparison of the ground truth labels to detection output was done at 2 Hz using a
total of 2420 frames. Each ground truth labelled position was marked as ‘detected’ if
a detection was made within a 1 m radius of the label with up to 0.5 s difference in
timestamp. The following section summarises the results of this trial, describing the
recall and precision of the perception pipeline across the robot’s sensing space.

5.2.1 Results

Fig. 5.3 illustrates ability of the tested perception pipeline to correctly detect the
location of nearby agents. Recall—representing the probability that a present agent
will be detected—is shown up to a range of 15 m across the robot’s sensing space. As
shown in Fig. 4.1, the robot’s sensor FOV is limited, with the 2D camera covering
only part of the forward-facing quadrant, from −38◦ to +38◦ and the lidar partially
obstructed beyond ±140◦ by the robot’s frame and legs. Whilst the angular distri-
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Figure 5.3 – Probability of detecting a present agent (recall) within a 15 m radius
of the robot, based on the output of the perception pipeline evaluation as per Sec-
tion 5.2. The robot’s sensor FOV is shown around the heatmap perimeter, with the
2D camera covering ±38◦ and the lidar partially obstructed beyond ±140◦.

butions of Fig. 5.3 match expectations based on the FOV, there exist a number of
missed detections directly in front of the robot within a range of 5 m. Out of a total
of 1406 missed detections, 1 occurred within 2.5 m, and 15 occurred within 5 m in the
robot’s forward-facing quadrant. This result emphasises the importance of using a FS
collision avoidance system which is not reliant on synchronised association between
lidar and 2D camera, nor on 2D detections of objects. Instead, it directly uses the
output of the lidar after removal of the ground plane, as shown in Fig. 5.1.

Table 5.1 summarises both precision and recall across the sensing space. Whilst recall
gives an indication of the safety of the system, precision provides a measure of how
often false positives occur — important when considering the efficiency of the overall
system. As shown in Section 4.2.3, efficiency in terms of both time and energy usage
decrease in the presence of more dynamic agents for all tested planner versions. As
such, a minimisation of false detections will lead to more efficient resource usage
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Recall Precision
Quadrant 0-4m 4-8m 8m+ 0-4m 4-8m 8m+
Front 0.850 0.720 0.057 1.00 1.00 0.77
Sides 0.642 0.510 0.033 0.974 0.982 0.72
Rear 0.097 0.168 0.00 0.031 0.424 N/A

Table 5.1 – Recall and precision of the perception pipeline across the robot’s sensing
space, based on distance (0-4m, 4-8m and 8m+) and quadrant (front: |φ| ≤ 45◦;
sides: 135◦ ≥ |φ| > 45◦; rear: |φ| > 135◦, where φ is as per Fig. 5.3). Note that
no detections exist in the rear quadrant at distances beyond 8m.

as the robot does not have to react to non-existent obstacles. The precision of the
tested perception pipeline is greater than 0.97 up to 8m in both the front quadrant,
where 2D and lidar sensing is available, and the side quadrants, with only lidar, but
drops significantly in the rear quadrant. This suggests that the decision to limit
consideration of detections to just the forward and side facing areas described in
Section 4.2.1 for both the fail safe module and dynamic planners was beneficial to
resource efficiency.

Additionally, Fig. 5.3 highlights the limitations of the robot’s ability to accurately
observe the state of any crowd or herd it is within. This limitation should be con-
sidered both during planning around moving individuals and during the training of
any predictive model of agent motion that will use the robot’s current observed state
during real-world inference. A better understanding of agent observation probability
across the robot’s planning space could be used to inform a robot when planning in
crowded environments. In both simulated trials and real-world trials carried out in
Section 4.2, the robot’s motion was restricted to the forward quadrant due to sensor
FOV. However, Fig. 5.3 demonstrates relatively high observation likelihood extend-
ing beyond this quadrant into planning space covered only by lidar, suggesting that
movement in these directions should also be allowed by the local dynamic planning
module. A consideration of detection likelihood across the robot’s action space would
also directly allow biasing of motion into areas of high likelihood in sampling based
planners, such as the MCTS-GRNN proposed in this work. By including the detec-
tion likelihood as a weighting in the state evaluation function the cost associated with
travelling into a space in which we currently have less confidence of the presence of a
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static obstacle of dynamic agent would increase. This could both allow safer naviga-
tion, as the robot would be less likely to encounter previously unseen obstacles whilst
travelling at speed, as well as potentially leading to more efficient resource usage by
avoiding dynamic plans that have a higher chance of being invalid and so undertaking
less unnecessary actions.

5.2.2 Discussion

Whilst predictive models such as that used by the MCTS-GRNN dynamic planner
are generally trained using full knowledge of nearby individuals, this is not the case
in real-world implementations in which the input to these models is limited to only
the robot’s observations. These observations are limited by the FOV of the robot’s
on board sensors and possible occlusions in a crowd, as shown in Fig. 4.1. As these
models are intended for use in predicting the response of an agent to a robot’s motion,
they will invariably be incorrect when the agent is reacting to other unobserved agents.
Similarly, the models will be incorrect when unable to observe the complete history
of an agent due to missed detections. By instead training these models using only the
position of agents observable to the robot as input, they will better reflect real-world
usage. As the ground truth motion of each agent will still reflect its response to other
unobserved agents, these models may better learn to predict the motion of agents in
partially observed crowds or herds and assign greater uncertainty in situations without
full observability of a crowd, as will be experienced in real robotic implementations.
Whilst recent work has begun focusing on using datasets of interacting pedestrians
and vehicles limited to ego-centric perception [13], a more complete analysis of the
impact of training predictive models on full versus partial observability of crowds is
still required.
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5.3 Summary

This chapter has presented a comprehensive description of the perception pipeline
used for all real world testing conducted in this thesis. This pipeline uses multiple
sensor modalities to detect and track dynamic agents in unstructured environments,
whilst also identifying unknown and static obstacles and creating a map of traversable
terrain for use during navigation.

Additionally, an analysis of this perception pipeline has highlighted the limited ability
of the mobile robot to detect the presence of nearby agents. The importance of
recognising this limitation and its impact on both trajectory prediction and planning
in dynamic environments has been discussed, with suggestions made regarding the use
of ego-centric perception datasets required during the training of predictive models
in order to better reflect real world usage. A comparison of detection precision and
recall against sensor field of view across the robot’s planning space has also allowed
a re-evaluation of the current restrictions on the robots action space, suggesting that
motion into the side quadrants could be allowed in future. Similarly, an understanding
of detection likelihood across the entire action space could be used to directly bias
sampling based planners towards safer paths.



Chapter 6

Conclusion

Mobile robots — including autonomous vehicles — are yet to become ubiquitous in the
real world. This is especially true in environments in which they must operate along-
side moving individuals. This thesis has explored a number of significant challenges
relating to perception, prediction, and planning that remain before mobile robots can
operate both safely and efficiently around pedestrians or livestock in unstructured en-
vironments. In Chapter 3, an analysis of existing crowd motion prediction methods
compared against both state-of-the-art and proposed approaches has demonstrated
the improved ability of deep learning based methods to model the social response of
individuals within crowds and herds when conditioned on a mobile robot’s planned
path. Additionally, this thesis has shown how these deep learning based methods
can be extended to model the multi-modal branching nature of crowd interactions
through direct probabilistic output of GANs, which allow for the generation of more
socially acceptable trajectories.

Chapter 4 has demonstrated how these learnt models of social response can then
be used within sampling based planners in the proposed SPP approach, allowing for
response aware dynamic path planning in a coupled prediction-planning approach.
This approach has been directly compared to state-of-the-art deep RL based methods,
demonstrating comparable ability to safely and effectively navigate crowded environ-
ments as well as having the additional benefit of being able to adapt the planner’s
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behaviour through the use of a varied state evaluation function without needing to
retrain a policy.

The extended autonomy of mobile robots in unstructured and dynamic environments
was also demonstrated in Chapter 4, through the use of response and resource
aware hierarchical planning framework. This framework combines the SPP approach
for local dynamic planning with a longer term resource efficient planner, allowing the
application of mobile ground robots to large scale unstructured applications, such as
for the weeding of pasture in agriculture.

Finally, Chapter 5 provided a description and evaluation of the perception pipeline
used in all real world experiments. This analysis addressed the real world percep-
tion considerations of mobile robots in unstructured environments, discussing how
knowledge of the perception capabilities of a robot should be used in the training of
trajectory predictive models and to better inform sampling based planners.

6.1 Summary of Contributions

The primary contributions of the thesis include:

• Development of multiple response aware prediction models, demonstrating im-
proved prediction accuracy in close range social interactions of pedestrians and
traffic agents, and a robot and livestock. These models have been validated in
terms of their ability to allow prediction of the response of non-controlled agents
when conditioned on a robots planned path, outperforming existing traditional
parametric based methods commonly used in the training of both model-based
and model-free deep RL.

• Extension of existing state-of-the-art GAN based predictive models of crowd
motion to enable direct output of multi-modal probabilistic predictions during
social interactions. Additionally, an extension of a self-attention based social
pooling mechanism has been proposed to account for vehicle-pedestrian inter-
actions.
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• Proposal of an SPP approach using learnt models of social response within an
adapted MCTS sampling based planner for dynamic path planning in crowds.
This approach is shown to perform comparably to state-of-the-art model-based
deep RL whilst also demonstrating the ability to control future states of nearby
individuals for tasks such as disturbance minimisation in crowds.

• Extension of the SPP approach for use within a hierarchical framework, allowing
response and resource aware path planning for long-term autonomy of ground
robots in unstructured and dynamic environments. The approach is evaluated
in real-world trials on farms, requiring both consideration of limited battery
capacity and the presence of nearby moving individuals. These trials addition-
ally demonstrate the ability of the framework to adapt resource use through
variation of the local dynamic planner module, allowing adaptive behaviour in
changing environments.

• Comprehensive description and evaluation of a perception pipeline for use on
ground robots in unstructured environments, including a discussion of the need
for consideration of the detection likelihood of dynamic agents across the robot’s
planning space both during the training of predictive models of agent motion
and the planning of paths in shared environments for real world deployment of
mobile robots.

6.2 Limitations of Model Predictive Planning in

Crowds

The simple problem of predicting the direction of a snooker ball after just nine colli-
sions requires consideration of the interaction of every object in the room, including
the gravitational impact of the person standing beside the table [130]. A person
walking through a crowd after nine seconds is undoubtedly a more complex problem.
The expectation that predictive models of crowd motion can maintain any degree
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of accuracy at this horizon, or even at shorter times of up to 4 seconds as used in
Section 4.1, bears consideration.

The approach to planning with consideration of social response proposed in this thesis
is only as good as the predictive capabilities of the learnt model of social response
itself. The development of predictive models of agent motion that can account for
a planned path of a controlled agent is a recent field of study and it is likely that
improved conditional models will be developed that better learn social responses
than those proposed in this work. Alternatively, it may be found that the approach
of planning based on a predictive model of crowd dynamics is inferior to model-
free approaches such as those explored in recent deep RL, although currently these
methods are still limited to training in simulated environments which themselves use
simplified models of agent motion.

However, the SPP approach proposed in this work has been shown to work experi-
mentally and the predictive models of social response used within the planner have
been validated in terms of their ability to learn the social response of a crowd to a
robot’s planned future. It is clear that predictive models can be learnt from observed
data that outperform any traditionally engineered models of social interaction. Ad-
ditionally, this thesis makes it clear that the use of these models in sampling based
planners for dynamic path planning in the presence of moving individuals can allow
comparable performance to model-based RL whilst also allowing the adaptation of
behaviour without retraining, through the use of varied state evaluation functions.
One example of this has been shown in the limiting of disturbance to nearby agents
during navigation.

6.3 Future Work

6.3.1 Improving SPP

The MCTS-GRNN approach to SPP proposed in this work could directly be adapted
for use with similar models of social response that output bivariate Gaussian predic-



6.3 Future Work 149

tions per agent, such as SRLSTM [31]. By improving inference speeds of these models
via additional computation or optimisation of code it may be possible to significantly
improve the navigation performance of the proposed planner in social interactions.
A more difficult challenge would be adapting MCTS-GRNN to accommodate multi-
modal predictions of future states. Whilst the probabilistic crowd GAN (PCGAN)
approach proposed in Section 3.4 has shown the ability to directly model the branch-
ing nature of crowd interactions, producing multiple valid paths per agents, it has not
yet been extended for response prediction allowing conditioning of prediction on the
planned path of a robot. It is possible that the multiple modes of an agent interacting
with the robot will collapse to a single mode when the robot’s future is known, how-
ever this has not yet been shown. Additionally, the multi-modal predictions resulting
from agent-agent interactions nearby to the robot will likely remain even when the
robot’s future is known. It may well be possible to apply the existing approach used
in MCTS-GRNN, where each agent’s encoded hidden state is used as the node state
and simply accept that the state itself is now multi-modal. However the computa-
tion of state uncertainty, which is currently based on the bi-variate output for each
agent, will now need to account for the entire mixture of Gaussian distributions. Ad-
ditionally, collision checking and state evaluation will need to account for the entire
probability distribution function as well.

6.3.2 Extension of Model-Based Reinforcement Learning

As discussed in Section 3.3, many existing deep RL approaches make use of ORCA
[18] as a state transition function to model the future state of a crowd given its current
state and a proposed robot action. This is true of both model-based and model-free
approaches which both require training in a simulated environment. Section 3.3 has
shown ORCA to not effectively model the response of a crowd to a controlled agent’s
motion, suggesting it’s limitation when used as a state transition function. Whilst
some recent model-based RL approaches have begun looking at how learnt models
of social response can be used instead of traditional models [78, 79], these proposed
predictive models have not been validated as state transition functions.
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The work conducted in Section 3.3 supported the use of SRLSTM [25] over ORCA as
a state transition model within a deep RL approach to crowd navigation, suggesting
that its use would allow for improved inference in model-based RL approaches, which
are heavily reliant on accurate predictions of future responses to a robot’s action.
However, the majority of model-based approaches currently only conduct a single
step look-ahead across the action space before applying the learnt value function.
As shown in Section 3.3, the response of agents at even just 1 m proximity to the
controlled agent is not significant at a single timestep into the future. This suggests
that model-based approaches need to conduct deeper searches into the action space,
similar to the MCTS-GRNN approach SPP proposed in this work. A combination of
both methods may be the best strategy.

6.3.3 Agricultural Applications

In order to apply the SPP approach proposed in this work to agricultural applications
requiring navigation around moving livestock, improved models of herd motion are
required. Section 3.1 demonstrated how livestock motion is heavily dependent on
intra-herd relationships, resulting in poor performance when the simplified direct
embedding model proposed in section 3.2 was applied to the same livestock dataset.

This poor result was further impacted by the non-holonomic motion of livestock,
where orientation plays a significant influence on future motion. As the predictive
models were using only the 2D position of each agent as input, the were unable to
accurately model the impact of orientation on agent motion.

By applying faster predictive models that can capture agent-agent relationships —
such as SRLSTM — as well as developing improved perception pipelines to allow the
inclusion of orientation as model input, it would be possible to achieve significantly im-
proved livestock motion prediction. These models could be applied in similar manner
to the pedestrian based models used in Chapter 4 for SPP in agricultural applications.
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Appendix A

Long-Term Planning for Resource

Aware Dynamic Path Planning

This appendix describes the details of the long-term planner used in Section 4.2. The
planner provides the reference path that the local dynamic planner follows through
the unstructured environment and is based on the work of [120, 94, 121].

The long-term plan is developed in two main stages: the learning of a traversability
roadmap through the environments; and querying of the roadmap to find a resource
efficient path between all provided mission objective waypoints. The initial stage
is conducted through the use of a PRM algorithm to generate a roadmap over free
space Efree, describing a set of kinematically feasible paths through the unstructured
environment. This step requires the provision of real world terrain data The roadmap
generation captures the traversability of the environment, as outlined in Alg. 4. The
second stage of the development of the long-term plan involves the finding of the
optimal solution through the roadmap that visits all waypoints and is described in
Alg. 5.

Problem Definition:

The environment in which the robot will operate, E ⊂ R3, is considered to be a
2D manifold embedded in 3D space, where (x, y) 7→ z. Let the intraversible—or
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Algorithm 4 Probabilistic Roadmap Generation
1: function GenerateRoadmap(Efree, U , ρP RM)
2: ns, rconn, v, εmin, εmax ← ρP RM

3: V ← Sample(Efree, ns, rconn) . Sample Efree using chosen strategy
4: V ← V ∪ U . Append goal nodes
5: A ← GenEdges(V , rconn)
6: Acoll ← CollisionCheck(A, Efree, εmin, εmax)
7: A ← A \ Acoll

8: M← V ,A
9: C ← CalcEnergyCost(M) . Using ECM model
10: returnM, C
11: end function
1: function Sample(Efree, ns, rconn, K)
2: V ← ∅
3: while |V| < ns do . Iterative rejection sampling
4: χ← Rand(1, Efree × [0, 2π])
5: (χ, z, φ, θ,C)← RKP(χ, K)
6: if IsStable(χ,C) ∧ ¬IsCollision(C) then
7: V ← V ∪ (χ)
8: end if
9: end while
10: return V
11: end function

obstacle—regions of this environment be denoted Eobs, such that E \ Eobs is an open
set. It is therefore implied that the freely traversible region of this environment is
the closed set Efree = cl (E \ Eobs). Additionally, let In

m denote the set of all integers
from m to n inclusive, where m ≤ n : m,n ∈ Z. A set V of ns states χi ∈
V : i ∈ Ins

1 are randomly sampled from Efree—each state consisting of the 3DOF
robot pose (x, y, ψ)—thereby discretising the continuous state space. Each sampling
action involves solving an optimisation problem—namely, the relaxation of a 6DOF
kinematic model of the robot onto E—and the resultant pose is then checked both
for collisions with Eobs, and for static stability.

A path through the environment is defined by a continuous mapping ζi,j : [0, 1]→ R3

such that 0 7→ χi and 1 7→ χj. Each state χi is connected to its neighbours by
paths in Efree to generate a roadmap M = {V ,A}, where A ⊂ V × V is the set of
arcs aij ∀ i, j ∈ V , i 6= j, dist(χi, χj) ≤ rconn connecting all vertices which are less
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than rconn metres away from each other, with dist(χi, χj) representing here the 3D
Euclidean distance between sample points χi, χj.

For each candidate connecting arc aij, the CollisionCheck routine is invoked at
line 6 of Alg. 4. A minimum-curvature Clothoid curve connecting the two poses is
generated, dilated by the maximum radial width of the robot, and subsampled along
its length to check for both stability and collisions with Eobs. If an unstable pose or
collision is detected at any point along the path, or if the maximum curvature of the
clothoid path exceeds a given threshold, the candidate arc is excluded from A.

The long term energy efficient path planning problem can thus be denoted by the
tuple (M+, χ, χg), where χg = I

ns+ng

ns+1 is the set of ng goal nodes, χg,1 is the initial
state, χg,ng is the terminal o goal state, andM+ is the roadmapM augmented with
the goal vertices and associated arcs connecting these to the roadmap.

By construction, a path π through M+ will be feasible, and Σ shall denote the
set of all possible paths. The optimal path planning problem is therefore to find
a path π∗, assuming (M+, χ, χg) and an arc cost function c : Σ → R≥0 such that
c(π∗) = min{c(π)}, or to report failure. The optimal path π∗ is considered to be
δ-robustly feasible if every point along the path trace is at least δ distance away from
Eobs.

As the learning process of the roadmap generation is an iterative one, it can be
performed until an arbitrary number of samples are obtained of the environment. In
more cluttered environments, for example, it may be desirable to sample densely to
ensure feasible paths amongst the obstacles can be found reliably, whereas it may be
desirable to sample more sparsely over large uncluttered environments to reduce the
size of the roadmap, and thus the cost of querying it for paths.

Solution Generation:

This roadmapM+ is subsequently queried using Dijkstra’s algorithm, searching over
the resultant graph to generate connecting routes between the provided objective
waypoints. The minimum energy paths between all pairwise combinations of locations
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Algorithm 5 Goal connection graph generation
1: function GenerateGoalConnGraph(M, C, U)
2: V ,A ←M
3: P ← ∅
4: for all i, j ∈ U do
5: Pij ← ShortestPath(M, χg,i, χg,k)
6: P ← P ∪ Pij

7: end for
8: L ← GenEdges(U , ∞)
9: G ← U ,L
10: return G,P
11: end function

are determined using the energy cost of motion model developed in [120] and the
known topography of the environment.

For extraction of the optimal motion plan from the roadmap, first let the goal con-
nectivity graph G = {U ,L} be defined as the graph encoding travel costs between
goal nodes, where U = V \ Inv

1 are the goal nodes, and the set of arcs L ⊂ U × U are
defined such that lij ∈ Pij,min : i 6= j, i, j ∈ U , where Pij,min ⊂ A is the set of arcs
describing the minimum cost path throughM+ from χi to χj.

Pij,min is determined by querying the PRM; performed by running Dijkstra’s algo-
rithm onM+ with start and goal points χi and χj respectively. All Pij,min are stored
along with their associated path cost cij = ∑

aij∈Pij,min
wij for later retrieval once the

optimal tour T ∗ is found.

If the specified endpoint of the tour is not coincident with the start point, then the
following arc weights are modified to enforce the precedence constraint: ci1 =∞ : i ∈
U \{ng}, cngi =∞ : i ∈ U \{1}, cng1 = 0. This assigns an infinite cost to all incoming
edges to the start node, and all outgoing edges from the end node. Then, the edge
connecting the end to the start node is given a weight of zero, and ignored in the final
solution, to obtain a Hamiltonian path through the goals, where each vertex in the
graph is visited exactly once. This procedure is outlined in Alg. 5.

An asymmetric traveling salesman problem is then solved over G to yield the optimal
ordering of waypoint visits. The energy-optimal path Pij,min is then extracted via
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reference to M+, thereby producing an energy-minimising plan suitable for use as
the global reference path for the local planner. Through the use of Clothoid paths for
connection of poses inM+, not only will the resulting motion plan by comprised of
smooth, continuous motions, but by appropriate selection of the curvature rejection
threshold parameter, it is possible to ensure that the path is feasibly trackable by
a wide variety of vehicle classes. Combined with collision and stability checks along
these paths, the feasibility of any resultant plans are guaranteed by construction.
Further details of the above methods can be found in [121].
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