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Abstract

This thesis considers estimation of the parameters associated with models for

count data displaying over-dispersion relative to the Poisson distribution where the

over-dispersion is modelled using mixing. It is divided into seven chapters with

Chapters Two to Five specific to the over-dispersed Poisson problem whilst Chapter

Seven, which uses results from Chapter Six, is more general. The motivation for some

of this work was the modelling of repeat counts of the number of fibres contained

on microscopic slides as obtained by asbestos fibre counters and the subsequent

estimation of mean fibre concentrations and counter variability.

Chapter One introduces the above mentioned asbestos fibre problem and fol—

lows this with an overview of the thesis. In Chapter Two a model for repeated

measures count data over-dispersed relative to the Poisson distribution appropriate

to the asbestos problem is given. To accommodate the over-dispersion a Poisson

random variable is compounded with a positive random variable with mean equal

one and variance linked linearly, via a log function, to a set of covariates. Maxi-

mum likelihood estimators of the parameters are obtained for the case where the

compounding distribution is gamma and extended quasi—likelihood parameter esti-

mators are obtained when the compounding distribution is unspecified. These two

sets of parameter estimators are then shown to be comparable in certain circum-

stances.

In Chapter Three a special case of the general model in Chapter Two with a

gamma compounding distribution is considered. Here repeat counts for a “subject”

are taken as independent Poisson random variables with constant mean. The means

are then modelled as independent observations from a gamma distribution. Two sets

of moment estimators for the parameters of the model are obtained and generalized

variances of the limiting distribution of the moment estimators are compared with

the corresponding quantity for the maximum likelihood estimators. Also in this

chapter we derive asymptotic results that explain some of the erratic behaviour of

the moment estimators.

Chapter Four considers the estimation of the shape parameter of the negative
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binomial distribution (NBD), this distribution being a special case of the model in

Chapter Three. Here the results are given for a simulation study comparing four

estimators for the shape parameter of the NBD distribution. Two criteria are used to

compare the estimates obtained in the simulations, one being the traditional moment

based criterion whilst the other is based on a new measure termed the “percentile

measure”. This measure, based on the difference between the percentiles of the true

and estimated distribution function, is argued to be more appropriate in many cases.

In Chapter Five we continue studying the NBD and obtain some quantile

related results. First we obtain bounds for the median in terms of the mean that

are improvements on the bounds obtained by Payton, Young and Young (1989).

Second we obtain percentile related bounds for the mean and use this to obtain a

robust estimator for the mean of the NBD when the shape parameter is known.

The remaining two chapters are devoted to robust estimation in (generalized)

linear mixed models. In Chapter Six a modification to the Fellner (1991) procedure

for robustly estimating variance components in normal linear mixed models is pro-

posed and studied. Also given is a robust moment based method. These robust

methods are then applied in Chapter Seven to the generalized linear mixed model

to obtain robust parameter estimators and the behaviour of these new estimators is

studied via a simulation study.

From this simulation study in Chapter Seven it is concluded that the extension

to generalized linear mixed models of the modification to Fellner’s method has merit.

There should though be scope for improvement in the method and this could be

a subject for further research. In particular, a possible mechanism for achieving

an improvement would be to have more robust starting values for the variance

components in the iterative procedure proposed. One solution would be to develop

quantile based variance components estimates in the generalized linear mixed model

and to use these as starting values.

Another project for further research would be to obtain expressions for the

variances of the fixed effects estimates for the linear mixed model obtained using

the Fellner (1991) method. This would necessarily be an asymptotic result and
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of interest in its own right. However, once this was available the modified Fellner

method of Chapter Six and its extension to generalized linear mixed models given in

Chapter Seven could be improved. This is the case as the modification to Fellner’s

method given in Chapter Six currently uses for these values the variances of the

BLUP estimates of the fixed effects.

Finally, an alternative robust estimation procedure based on the results of

Windham (1995) could be another subject for further research. That paper, which

assumes the data are independent and identically distributed (iid), proposes an

estimation procedure that weights datum according to the value of the estimated

likelihood at that datum point. The procedure seems to have merit based on the

examples considered in Windham’s paper, which include some skewed distributions

(e.g. gamma). Further research could consider extending the results to the non it'd

case, in particular data from generalized linear mixed model problems. It may be

possible using such a procedure in generalized linear mixed model cases to reduce

some of the bias that is inherent in procedures based on Winsorization.
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Chapter 1

Introduction

The purpose of this Introduction is twofold. Firstly we outline in some detail the

problem that motivated the research project that lead to this thesis, that being the

statistical analysis of counts of asbestos fibres. Secondly, we give an overview of

the thesis together with some details of the chronological development of the work.

This chronological perspective is important because some of the work in the early

chapters has to a certain extent been superceded by the work in later chapters. Here

the critical factor causing the separation was the publication of the paper by Schall

(1991).

1.1 Asbestos fibre counting problem

The potential health consequences of asbestos fibres, primarily due to inhalation,

have been long established and well documented; see for example Anon (1978),

Anon (1984). Here the main consequence is cancer which may appear in a number

of forms. One form is lung cancer which develops from asbestosis, a progressively

disabling pulmonary fibrosis. Another is mesothelioma, a tumor made up of cells

from the pleura or peritoneum. In addition there exists evidence to suggest links

between asbestos exposure and other forms of cancer, e.g. cancer of the digestive

tract.

As a consequence health risk authorities in a number of countries, including



Australia, have implemented procedures to monitor the asbestos fibre concentration

in the Workplace. These procedures, in short, require the sampling of air from the

workplace environment, the extraction of the fibres from the sampled air and their

deposition on a filter, the mounting of the filter on a microscopic slide and finally

the determination of the asbestos fibre concentration on the filter. In order to make

the procedure reproducible reference methods have been developed. These though

do not completely eliminate the variability in the procedure, particularly in the

sampling and counting stages.

For the counting stage the current reference method is based on the procedure

documented in Anon (1988). Basically this method requires that the number of

fibres on 100 randomly chosen fields of a filter be counted, counting as a half any

fibre falling on the boundary of the field. Justification for the half modification can

be based on the results of Hall (1985) wherein it is shown that under certain as-

sumptions an estimate of the fibre loading (intensity) based on the half modification

has smaller variance than an estimate based on the count of fibre centers (assuming

the centers could be observed).

Now each randomly chosen field has an area less than 0.0001 of the total filter.

Hence, if the fibre centers were uniformly distributed over the filter, the number

of fibre centers on each field would be approximately independent and identically

distributed Poisson random variables. However, counting as halves fibres on the

boundary and rounding will give “under-dispersed Poisson” counts. This “under-

dispersion” will be compensated for to some extent by the tendency for some clump-

ing of fibres on the filter, a process leading to “over-dispersion” (see McCullagh and

Nelder (1989) p. 198). Results from empirical studies (e.g. Ogden (1982)) tend to

support the claim that repeat counts on a slide, obtained by the same counter, are

approximately Poisson.

Counts from different counters however show significant “over-dispersion” rel-

ative to the Poisson distribution. This is due primarily to the between—counter

variability which is not unexpected given that the counting rules are detailed and

contain a degree of subjectivity. For example, according to Anon (1988), §8.5.1,



A countable fibre is defined as any object having a maximum width less

than 3 micrometres and a length greater than 5 micrometres and a length/width

ratio greater than 3:1, and which does not appear to touch any particle

with a maximum dimension greater than 3 micrometers.

It is therefore not difficult to envisage situations where two counters would differ

as to whether a particular object should be counted. The situation becomes more

complicated when definitions are given for counting split fibres and for grouped

fibres. However, with experience and participation in quality assurance programs

(QAPs) the between-counter variabily decreases; see Ogden (1982).

It was therefore decided that the National Association of Testing Authorities,

Australia (NATA) would establish a National Asbestos Program within Australia

to monitor the performance of Australian asbestos fibre counters. For this program,

established in the late 19805, NATA obtained a library of slides containing various

asbestos fibre types and a range of nominal levels of asbestos fibre concentrations.

Some of these were real environmental slides whilst others were artifically prepared.

These latter slides were prepared in batches of 14 and were supposed to have nom—

inally identical fibre concentrations. The slides were then circulated among the

counters, masking a slide’s identity each time it was sent to a counter.

One of objectives of the trial was thus to monitor the performance of the

counters. To this end it was necessary to obtain estimates of the “true” fibre loadings

of slides and estimates of the between-counter variabilty. Here the between-counter

variabilty may depend on the a number of covariates such as counter experience.

Estimates of these parameters could then be used to establish criteria to identify

those counters not meeting the standards required.

The primary aim of this thesis is to consider this estimation problem.

1 .2 Overview

Chapter 2 of this thesis considers a possible model for repeated measures count data

over-dispersed relative to the Poisson distribution and appropriate to the asbestos



fibre counting problem. To accomodate the over-dispersion a Poisson random vari-

able is compounded with a positive random variable with mean equal one and vari-

ance linked linearly, via a log function, to a. set of covariates. Maximum likelihood

estimates of the parameters are obtained for the case where the compounding dis-

tribution is gamma and extended quasi-likelihood parameter estimates are obtained

when the compounding distribution is unspecified. These two sets of parameters

estimates are then shown to be comparable in certain circumstances. An example

to illustrate the procedure is given based on data taken from the National Asbestos

Program. This work has been published in van de Ven and Weber (1995).

In Chapter 3 a special case of the general model in Chapter 2 with a gamma

compounding distribution is considered. Here repeat counts for a “subject” are

taken as independent Poisson random variables with constant mean. The means of

the “subjects” are then modelled as independent observations from a two parameter

gamma distribution with unit mean. In relation to the asbestos fibre counting

problem this model is suitable for repeat counts by counters on slides from a batch

of nominally identical slides, assuming the counters are a homogeous group. Two

sets of moment estimates for the parameters of the model are given and generalized

variances of the limiting distribution of the moment estimates are compared with

the corresponding quantity for the maximum likelihood estimates. Also included in

this chapter is an alternative asymptotic theory that explains some of the erratic

behaviour of the moment estimates.

From the results of Chapter 3 we show that based on asymptotic theory the

moment estimates for the model compare favourably with the maximum likelihood

estimates. This then begs the question as to how the estimators compare for finite

samples. This is the subject of Chapter 4. Herein a very special case of the model in

Chapter 3 is studied, this being when each “subject” reports a single result. In this

case the set of results correspond to a sample from a negative binomial distribution

(NBD). Chapter 4 gives the results of a simulation study comparing the moment

estimate, the maximum likelihood estimate and two other estimates for estimating

the shape parameter of the NBD distribution for different parameter values and



different sample sizes. Here the results differ from previous studies in two ways.

Firstly, all of the four estimates considered can be compared simultaneously based

on our study. This was not possible with earlier studies as they considered different

sub-groups of the estimates and used different parameter settings, different sample

sizes and different criteria for dealing with infinite and negative estimates of the

scale parameter, thus making comparisons across studies difficult. Secondly, a new

. measure is used to compare the estimates, termed the “percentile measure”. This

measure, based on the difference between the percentiles of the true and estimated

distribution function, is argued to be more appropriate in many cases, particular

so in the asbestos fibre counting problem. The results in this chapter have been

published in van de Ven (1993).

A difficulty remains with the results given in Chapters 2, 3 and 4, this being

that it is assumed that there are no outliers in the data. When outliers are present

the estimation procedures in these chapters are not robust. In the remaining chap-

ters we therefore consider robust procedures, beginning in Chapter 5 by considering

the NBD. Here we first obtain bounds for the median in terms of the mean. These

results have appeared in van de Ven and Weber (1993). We then obtain percentile

related bounds for the mean and use these bounds to robustly estimate the mean

when the shape parameter is known. These latter results have been published in

van de Ven and Weber (1996).

The remaining two chapters are devoted to robust estimation in (generalised)

linear mixed models with the results much more general than those of the earlier

chapters. Here the basis of the work is a paper by Schall (1991), a paper that came

to our attention after much of the work of the previous chapters was completed.

Here we robustify Schall’s procedure by extending some of the ideas from Fellner

(1986), a paper considering linear mixed models. In this extension process it was

observed that Fellner’s method could be improved. Our modification to Fellner’s

procedure is the subject of Chapter 6, wherein Fellner’s method is compared with

our modified Fellner method and with a third robust method, one we have proposed

based on moment methods. This modified Fellner method is then incorporated into



the extension to robust estimation in generalized linear mixed models (GLMMs),

the subject of Chapter7. An example in Chapter 7 illustrates the application of this

robust procedure to data from the National Asbestos Program.

1 .3 Comment

Throughout the chapters that follow the material will be presented in a general

context and not specifically related to the asbestos fibre counting problem. This

is because many of the results obtained are appropriate to more general problems.

However, when examples are used to illustrate theory we will use data relating to

the specific problem where possible.



Chapter 2

Modelling mean and dispersion in

mixed Poisson regression models.

To model independent count data it is not unusual to initially assume that the

data are from Poisson distributions with means related, via a link function, to

a linear function of a set of covariates for each datum value. The model, once

the link function has been specified, can then be fitted using the techniques of

generalized linear models as developed by Nelder and Wedderburn (1972) and which

are comprehensively covered in the text by McCullagh and Nelder (1989).

In practice the data do not always fit this basic model and often show degrees

of overdispersion relative to the Poisson model. One mechanism for accommodating

this overdispersion is to fit the regression model using the quasi-likelihood method

introduced in Wedderburn (1974). This method allows the variance function to

include an additional parameter to account for overdispersion with this parameter

often taken as a simple scaling factor. An overview of this method with reference

to count data is given in McNeney and Petkau (1994). For more general models

where the overdispersion parameter is related to some linear function of a set of

covariates the extended quasi-likelihood function of Nelder and Pregibon (1987)

offers a possible procedure. Smyth (1989) also offers a solution in this more general

case utilising the Pearson residuals and method of quasi-likelihood.

An alternative to the quasi-likelihood based methods for accommodating overdis-
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persion is the fully parametric approach of assuming that, conditional on the means,

the data are from Poisson distributions but that the underlying means ate them-

selves independent random variables from some distribution specified up to a set of

parameters. Here the most commonly used distributions for modelling the means

are the gamma (e.g. Lawless (1987a), Stein (1988)), lognormal (e.g. Hinde (1982))

and the inverse Gaussian (e.g. Stein (1988), Dean et a1. (1989)).

If we now consider the related situation but with dependent count data there

exist fewer available exact modelling distributions and to overcome this a number

of approximate procedures have been developed.

When interest focuses on the regression model for the marginal mean and the

covariances are known functions of the mean, we can use the quasi-likelihood method

for dependent data, as given in McCullagh (1983), with the method allowing scope

for overdispersion in the model. In a related situation but where the correlation

matrix of the data has block diagonal form (K blocks), dependent on a vector

parameter C, we can use the generalized estimating equations (GEES) discussed

in Liang and Zeger (1986) and Zeger and Liang (1986). These GEES give Ki

consistent, asymptotically Gaussian estimators for the regression parameters for

the mean under mild regularity conditions, even when the correlation structure is

misspecified, provided C can be consistently estimated. Paik (1992) has extended

the results of Liang and Zeger (1986) to also include modelling of the overdispersion

as a function of a set of covariates.

Another method of modelling dependent count data, which is particularly use-

ful for data exhibiting overdispersion, is to use a mixed model. Here, as for the

independent case, we assume that conditional on the given mean values the data are

independent random variables. The means are then modelled as random observa-

tions (not all independent) from other distributions. Using this modelling procedure,

and under certain assumptions, approximate methods have been developed by Schall

(1991), Breslow and Clayton (1993) and McGilchrist (1994). In each case the ap-

proximation derived is an extension of the best linear unbiased prediction (BLUP)

method of Henderson (1963). Assumptions common to all three papers are that the



models are hierachical and that the random error components entering the linear

predictor are realizations of Gaussian random variables.

An alternative to the above approximate procedures in the case of dependent

data is to use exact procedures under the mixed model assumptions. This procedure

however has the disadvantage that often, though not always, it requires computer

intensive computation procedures for calculating high-dimensional integrals. For-

tunately, for some models, the integrals to obtain the marginal distributions can

be solved explicitly. Such a case is for conditionally distributed Poisson data when

the means are gamma random variables. This method has been employed to model

Poisson process data by, for example, Lawless (1987b) and Cooil (1991). van Duijn

(1992) has also used this method for count data available in contingency table form

with the row effects random and column effects fixed.

In this chapter we will use the mixed model approach to model dependent

count data that is overdispersed relative to the Poisson distribution. Here we mix

the Poisson distribution with, firstly a. gamma to obtain exact results, and secondly a

more general distribution and obtain approximate results using the extended quasi-

likelihood of Nelder and Pregibon (1987). In both cases the data will be assumed to

be in the form of repeated measures with the overdispersion introduced by the dif‘

ferent “subjects”. Also, the extent of the overdispersion introduced by each subject

will be modelled using a log-linear model which will allow the inclusion of contin-

uous covariates. In Section 2.1 we formulate the model we aim to consider in its

full generality. Section 2.2 outlines briefly the derivation of the maximum likelihood

estimating equations for the regression parameters of the model when the mixing

distribution is gamma. This is followed by Section 2.3 wherein possible starting val-

ues are proposed. In Section 2.4 the more general mixing distribution is considered

and estimates of the parameters are obtained using the extended quasi-likelihood es-

timator of Nelder and Pregibon (1987). The estimates we obtain here will be shown

to be approximations to the MLEs obtained in Section 2.2. Section 2.5 contains as

an example data from the National Asbestos Program discussed in Chapter 1. We

conclude with a discussion in Section 2.6.



2.1 General model.

Let (y;,-,x,-j,z,-) denote a sequence of observations, 1' = 1,---,K andj = 1,---,n;

where yij is the (i, j )"l response variable with associated vectors of covariates x.)- and

z,- of dimensions p and q respectively. Here x;,- and z,- may have elements in com-

mon. The model we consider in this chapter is that the data (yij) are conditionally

independent given proportionality constants 7.- with

3m '72' ~ Poissonhi Ila) ; i= 1, - - - ,K

j = 17 ' ' ' 1 ni -

We then take 7,- (i = 1, - - - K) to be independent realisations of positive random

variables having distribution functions G(x; 01;), expectations equal 1 and variances

equal a:1. Finally, we let

In My Xi,- 5 ,

Ina,- = zfin,

where B and 11 are parameter vectors of dimension p and q respectively.

It is worth noting that the constraint that the mean of G(m;a;) is 1 is not

unnecessarily restrictive. Provided the mean is independent of j, G(.1:; (1;) can be

rescaled to have unit mean and the rescaling factor incorporated into existing, or

additional, parameters in the linear regressions of In m,- and 1nd,.

Recently various versions of this model have been studied. Lawless (1987a)

and Dean et al. (1989) have considered the case n.- = 1 (i.e. independent data) for

G(.7:; 01;) gamma and inverse—Gaussian and a.- = a V i. The Power Function Model

of Stein (1988) is a special case of the above, again with independent data. Also to

have considered the independent case for G'(a:; 01,-) gamma with o,- = a V i have been

Collings and Margolin (1985) and Baran and Paul (1988). Their interest however

focused on testing hypotheses rather than estimation, with the former testing Ho :

a: co and the latter Hozpl =p2 =--- =,uK.

For the case with dependent data (i.e. not all n.- = 1) we are aware of no study

that has considered this model in its general form. Some studies have considered
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slight modifications under restricted conditions. For example, Collings and Margolin

(1985) and Lawless (1987b) have considered the restricted case a.- = 0: V i but their

models differ from the above in that In [1.3 is proportional to x2]- fl with the constant

of proportionality known and dependent on i and j. Thall (1988) on the other hand

considers a similar situation but with In My differing from x;- fl by a known constant

(offset), again depending on i and j.

We now consider estimation of the regression parameters in the above model

when G(x;a,~) is the distribution of a. I‘(a,-,l/a.-) random variable as defined in

Appendix A.

2.2 Maximum likelihood estimation under a gamma

model.

If L denotes the likelihood under the model in the previous section when G(1:; (1;) is

a gamma distribution, then

L = 51:11 iF(c:()a('-H§:Iy)ij!) (0i :ipi'yiifil (fl)W]

where a dot in the subscript indicates summation over the replaced subscript.

 

To simplify the expression for what follows we now introduce some matrix

notation. For i = l,- - - ,K let:

y.- = (yi1a"‘1yina)l

I‘.‘ = (flu.---,mn.»)’

  

Si = 3’5 — I‘.‘

l- _ (alnL 61nL)’ .

I — an“ n a ailing

A.- = diag “in," 311.3...) an n.- x n; matrix

X1. = (x51, - - - ,x;,...) a p x n.- matrix, and

V.- = A; + M uE/a; which is the variance of y.- .

11



Further, let

 

AK+l = diag (alv'uaaK);

Z, = (zl,---,zK); aqumatrix,and

alnL alnL ’= __ h f ‘=1K.” (301 , , aux) where we ave or: 1, ,K

alnL
  

 = «y. 21>z<a.+,_1>+1n(a,.:‘,,,._)+(:: 3;) . (2.1)
Note: To obtain this last expression we use the result that the digamma function

¢(z)= dln I‘(.1:)/d:1: satisfies 1/)(n + :c) — 1])(z)-—- 22:10:: + i — 1)"1 for all x > 0 and

integer n 2 1 (see Abramowitz and Stegun (1968), page 258).

Using the result that l,- = V;—1S.-, i = 1,---,K the maximum likelihood

estimates of [3 and n, B and 1‘] say, can be shown to jointly satisfy the following

equations:

K
[Xi-ANflS; = 0

' 1ZIAK+11K+1 = 0

Since the solutions for B and i) cannot be obtained explicitly from these two

equations we propose use of Fisher’s scoring method, for which we need the Fisher

information matrix.

From the equations

621111, K 71; alnL

W = Zzz‘j'x‘i" (a—M‘Jfflij “ 315,-)
i=1 j=1

K . + .
+z(—y a Z; I‘ijxijr E: #ij'xij'7’

i=1 0‘" +0”)2: j1=1

62 In L K 31,-. — pg. '

amaflr = Z(_—T)2“‘z“z"“$"" 

 

i=1 (“P + j=l

62111 L K 2 1 aln L p: + agyg.

317.817.! _ golfing", (3.- 6a,- + ai(#a- + 002 _ 1(y'>‘ 1)Z:——(aa+j- 1) ’

where 5,, 1],, 1.3, and 2;, are elements of ,6, 11, x;,— and z.- rwpectively, we obtain the

following block elements of Fisher’s information matrix:

12



2 K

E( ‘91“) = Ext-AngAgx.‘
i=1

2E(_6 lnL) = 0

K
I 2 IZ AK+1BK+1AK+1Z = E :01; bK+1,£Z£Z.- ,

i=1

 

 [‘1
1 I

32
>,
m
fl

.
1
:
V

II

where

B,- = V71 = Afl - (m. + (IO—111', i=1,---,K with 1 a vector of 1s; and

BK+1 = diag(bK+1,1,“',bK+1,K)

°° I‘(a.-)j! ( pg. )1 .
h b g= .—--—.- —— , = 1,‘ ' ' ,K-w ere K+1, £12 F(ai+]) “2+0" 1

To obtain the values of b191,,- fori = 1,- - - ,K we use the result that if y has a

negative binomial distribution with mean ;t and variance p + [3/01 then

1/ co 1 J

E(I(”21)§_(a+i-1)2) = 2—?)(z-h) (2.2)
This result was given in Fisher (1941) and has subsequently been shown by Hender—

son (1992).

If we have starting values 3(0) and 17(0) we can then, from Fisher’s scoring

method, progressively iterate between the following two equations

K -1 K

.B(S+1) = 3(3) + (Z xiAiBiAiXi) szAgvi-IS; (2.3)
i=1 {:1

f7(s+1) = {7(5)+(ZIAK+1BK+1AK+1Z)-lZlAK+llK+l (2-4)

where the second term on the right hand side of (2.3) is calculated at [3(5) and ins),

and the second term on right hand side of (2.4) is calculated at 309+” and ins).

This process is repeated until convergence to obtain ,3 and 1‘1.

Then, as K —+ 00, we have [Kl/”(B - B), K1/2(1‘7 — 11)]’ is multivariate normal

with mean 0 and covariance matrix given by

lim K( (2:21 xiA‘B‘A‘X")-l 0 )
K—wO o (Z'AKHBKHAKHZV‘
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provided this covariance matrix has a positive definite limit. Here the result follows

as the typical “regularity assumptions” of weak conditions on derivatives of the log-

likelihood and the existence of moments of the data are met. These conditions for the

general case with nonhomogeneous observations, and in particular for independent

multivariate, nonhomogeneous observations as we have here, are reviewed in a paper

by Fahrmeir (1987).

Note: It must be stressed here that this result is a limiting distribution result

and that the limiting variances of the estimates, in particular i), do not equal those

of the limiting distribution. This follows as the problem here is a. generalization of

the parameter estimation problem for the negative binomial distribution for which

the estimate of the shape parameter does have not a proper distribution. See, for

example, Anscombe (1950).

2.3 Starting values.

As starting values for 3 and i] one suggestion, provided both regression models

have been configured to contain constant terms, is to use [5(0) = (31(0), 0, - - - , 0)’ and

77(0): (771(0),0, ,0)’ with

eXP(/§1(0)) = [(2:131‘ Where 37;.=,%'.):;‘;1y;j :and

(2::=1 ”#02: . ‘

. where p = exp fl .

25:1 n?(yI _ [‘02— Zi=l "I” ( 1(0))

exP(’ii(o))

Here exp(fi1(o)) and exp(fil(o)) are moment estimators of pg, and a,- respectively when

pi,- = p and a.- = a for all i,j. (For details see Chapter 3.)

As an alternative to the above starting value 13(0) we can use an estimate

obtained from the following method which is based on the method of Breslow (1984),

but extended to dependent data. This method, in addition to giving a better starting

value, has the advantage that it does not require that the regression model for ln(,u,-,-)

contains a constant term.

Let CI}, = ln(y,-,-), or ln(y,-j + %) if ygj = 0. Using a first order Taylor approxi-
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mation we have 7",,- z ln(p.-j) + $431,,- — pm) and hence

E(T.-,-) W 130%) = King
1 l

V(T.-,-) “ —+
a; #45

Cov(T.-j,T;J-:) z & for jaéj'.

Letting T.- = (Thr'nTinJ' we therefore have V(T,~) z aiill’ + A:1 where Ail

is defined above. Denoting V(T,-) by W; we could, if we knew W5, use a w.l.s.

regression to obtain the following initial estimate of H:

‘ K ‘1 K

mo, = (:xzwrlxi) sz-wle;
i=1 i=1

1 Iwhere W,” = A.- — pin,-
a; + m.
 

using the same notation as in Section 2.2.

However, as W.- is unknown we need to replace it by an estimate W5. One

solution is to let W; equal W,- calculated at 01,71 = 0 and pi,- = max(y.-,~, §). In this

case W:1 is a diagonal matrix with diagonal elements max(yg,-, %). This will not be

the optimal starting value but should prove better than the previous starting value.

For a slightly better initial estimate we recommend using a,- = exp(fi1(o)), as given

above, when calculating W;, instead of afl = 0.

This estimate of 3(0) can now be used to upgrade the 1"“), estimate, again

assuming that a.- = a for all i, by replacing exp(fi1(o)) above by

. (xiii Iii-)2

eXp(7]1(o)) = £10k — Iii-)2 — 25:1 Iii-

where ln(fi.-.) = 2?; Xij 3(0) = l'X; [3(0)’

 

2.4 Estimation under a general model using ex-

tended quasi-likelihood.

In the situation where one is unwilling to assume that the mixing distributions

G(a:; a.) are gamma and instead wishes to leave them unspecified, except possibly

15



for the existence of cumulants up to a certain order, then there currently exist very

few methods for modelling the variances (01,71) of these mixing distributions. In

this section we derive estimates of fl and n, 3 and F) say, using the GEES of Liang

and Zeger (1986) coupled with the extended quasi-likelihood method of Nelder and

Pregibon (1987).

The extended quasi-likelihood (Q+) as defined by Nelder and Pregibon (1987)

for a single datum value y is given by

Q+ = -% (1n{27r¢Vo(y)} + ¢"Do(y;#))

where E(y) = fl, Var (y) = «mm and

D”(y”‘) = ‘21,!!-V(t)dt

Since, for the model in Section 2.1 we have 31,-. (i = 1,- - -,K) independent with

 

means [1,. and variances 11,-. + [ti/a, the extended quasi-likelihood for the totals

yl. ,---,yK. is

Q+ = Z(__1n{27r(y.+y./a.)}+/ RTE/Lid)i=1

 

K
- '= z (——ln(27l'ya) — 5111(1 +-E)+ya-ln(:—:“(3" +°")ln(2i: 0‘i=1

..

Two points need to be made now. First, since we are using (2“ to model discrete

data we have a problem when 31,-. = 0 for any i as then Va..(y,-) = 0 and hence

Q+ = 00. To overcome this we recommend that Q+ be calculated at 31,-. + c for some

small c rather than y,-. if y;. = 0.

Secondly, as the yl. ,- - - ,yK. are sufficient for 01,- - - ,aK, and therefore for

1‘), it is not necessary to extend the definition of the extended quasi-likelihood to

dependent data in order to model the full data set.

Now, if we knew 17, then from the GEES of Liang and Zeger (1986) we again

have as our estimate of fl the solution to 2,-1 X2A,Vf1S; = 0. On the otherhand,

if ,6 were known then the maximum extended quasi-likelihood estimate of 1) would

satisfy Z’AK+11,"}+1 = 0 where the 2"” element of 1}}+1, i = 1, - - - , K is given by

3Q+ _ ai‘l‘yi- yi- 0; It.

.5; — 1n( a,- )+ (201,-(01, +y;.)) +ln (0i +I‘i-) + (#E- +ai) (25)
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To solve for 3 and 1"], starting with [30 and F10, we suggest iteration through the  
following combined Fisher Scoring, Newton-Raphson method

K ‘1 K

fi(S+l) = flCS) + (Z szngAix;) ZX£A.‘VFIS; (2.6)

6:! i=1

- - -1

"(5+1) = "(S)“l' (Z,AK+1BI+(+1AK+IZ) Z'AK+11;+(+1 (2.7)

where 81.1 = diag (121.1... - - - 11.1,.) with

#31. Wind 

bK+1'' a; Ba.- 60?

62Q+ _ 11?. + aiyi- __ yi- Eli-(201i + 11:1)

80:? — 01501.: + 0102 011(0-' + W) 203(0“ + 9")2

 

using the same approach as in §2.

An interesting observation to be made here is that the estimates for ,B and 17

obtained from (2.6) and (2.7) can be considered as approximations to the estimates

obtained from (2.3) and (2.4). To see this note that the two sets of score equations

differ only in that 1K+1 for the MLE is repaced by 1}“. Comparing (2.1) and (2.5),

these two vectors differ only in that I(y;.> 1) ,'_'1(a.- + r —- 1)1 is replaced by an

approximation to it given by ln(——'-JI—) + (mg:—
‘Hh' ) )

To appreciate this approximation note that for y,-. 2 1

y.-.+1 1 1“" 1 1 ya.+l 1

——-——d < (————)<—— j ————d

/i a;+:1:—1 x-g a;+r—l ”(n+2 a;+:c—2 3

giving

  

1(CW)<Z(..+.-1)<ln(°‘;”")+mi"¢y5-
r-l

As this latter inequality holds when 31,-. = 0, provided we interpret the middle term

as zero if y,-. = 0, we have on averaging the bounds

”" 1 0i + 31:“. 311'-I...>1_..(_)____
(y _ )2 a.- + r —1 ln 0!; + (2ai(ai + y;.)

This approximation is satisfactory for a,- not too small (e.g. a.- 2 0.5) and improves

as a.- increases.
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Before ending this section we observe that if 7] is KV2-consistent for 1] given

[5 then from Liang and Zeger (1986), Theorem 2, we have K1/2(ii — fl) is asymptot-

ically (K —+ co) multivariate normal with mean 0 and covariance matrix given by

limK_.°° K(25:, X:A;B;A;X;)'1. However, as was shown by Davidian and Carroll

(1988) estimators based on the extended quasi-likelihood need not be consistent and

hence we cannot claim asymptotic normality for B. Davidian and Carroll (1988) do

claim however that the bias for estimators based on the extended quasi-likelihood

will in general not be significant if the true distribution is a member of the expo-

nential family.

2.5 Example.

As an example we take data from the National Asbestos Program discussed in

Chapter 1. The data are given in Table 2.1. These results are for six slides containing

similar asbestos dust type and which have been counted by 113 different counters,

each identified by a unique identification code (Id). In this table the column labelled

y gives the counts whilst the column labelled CS gives the counter’s status. Here

a counter status of ‘1’ or ‘2’ identifies reference counters, a ‘3’ accredited counters

and ‘4’ non-accredited counters. Further, the counters with status ‘1’ correspond to

two automatic image analysers.

Let yij denote the 3'“ count for the 2"" counter and m,- the unconditional

expectation of ya. We use the model

7

In My = Z Iajkflk
k=1

where 15,-], = 1 if the 3'“ count for the 1'“ counter is for the kth slide, and 0 otherwise

(k =2 1, - - - , 6) whilst $.37 indicates if the counter status is ‘1’. The inclusion of this

latter covariate is to take note of the proportionately lower counts obtained by the

image analysers in previous studies (see, for example, Crawford and Cowie (1984)).

Fitting this model, assuming no difference between counters within each counter

class, we obtain the parameter estimates

18



  g» le 2.1 Counts reported by different counters for a. set of six slides.

  

 

 

 

17

30

* Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 5

cs 1d. y cs Id. y F Id. y cs 1d. y cs Id. y c‘S‘

20 1 l 13 l 4 28 2 4 18 2 4 28 2 4 24 2

19 1 3 26 2 4 26 2 4 32 2 4 36 2 4 29 2

38 2 4 35 2 4 26 2 12 27 3 4 23 2 4 20 2

26 2 4 48 2 4 30 2 17 20 3 7 l8 3 8 30 3

34 2 4 29 2 4 12 2 25 11 3 10 22 3 9 19 3

32 2 4 32 2 4 21 2 38 28 4 15 21 3 11 22 3

32 2 4 26 2 4 24 2 41 20 4 19 22 3 14 20 3

32 2 4 28 2 4 26 2 46 29 4 30 14 3 22 22 3

30 2 4 24 2 16 35 3 48 14 4 31 20 3 23 14 3

22 2 4 30 2 21 29 3 60 22 4 32 22 4 24 19 3

22 2 4 24 2 26 28 3 65 26 4 34 16 4 28 14 3

30 2 5 50 2 47 46 4 69 26 4 37 15 4 29 40 3

30 2 20 36 3 49 25 4 73 29 4 44 28 4 35 16 4

l7 3 33 29 4 51 16 4 101 38 4 54 8 4 36 12 4

21 3 39 14 4 55 28 4 57 24 4 40 33 4

19 3 46 34 4 58 38 4 60 6 4 42 20 4

24 4 50 14 4 62 27 4 65 35 4 56 18 4

12 4 52 18 4 72 19 4 66 28 4 59 22 4

15 4 58 35 4 76 26 4 73 28 4 81 15 4

38 4 61 20 4 78 35 4 74 21 4 83 22 4

47 4 64 31 4 85 26 4 82 26 4 93 24 4

19 4 67 32 4 97 26 4 92 16 4 94 15 4

38 4 71 26 4 98 34 4 104 20 4

44 4 77 22 4 99 34 4 108 11 4

58 4 84 38 4

25 4 86 23 4

31 4 87 34 4

23 4 88 41 4

10 4 90 50 4

10 4 91 24 4

10 4 95 28 4

26 4 103 43 4

16 4 105 25 4

14 4 107 47 4

17 4 110 26 4

10 4 112 30 4

29 4 113 19 ‘ 4

4

4
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fl] .32 .63 54 55 fl6 I37

Estimate 3.25 3.41 3.32 3.19 3.05 3.06 -0.45
 

with a deviance of 457.66 on 153 degrees of freedom. It is therefore clear that the

model assuming independence does not fit the data. By including a counter effect

in the model we can see that a significant proportion of the overdispersion is due to

the variability of the counter bias.

To model the extra Poisson variation introduced by the individual counters we

introduce a proportionality constant 7.- with variance 0,71 and modelled by

mm=m+mm

where 2,2 indicates if the 1'“ counter has status ‘4’. This allows the variance of the

nomaccredited counters to differ from the other more experienced counters. Here

it would be preferable to also allow the variance of the automatic image analysers

to differ from the others as their results are obtained somewhat differently from

the other counters. However, as we have only three counts here it was felt more

appropriate to include them with the experienced counters.

If we now assume that the 7,- are independently drawn from a gamma distri-

bution with unit mean and variance 01,71, estimates for the parameters in the model,

together with estimates of the associated standard errors are:

 

#91 {32 33 I34 135 ’36 .57 711 02

Estimate 3.20 3.39 3.24 3.17 3.08 3.07 -0.39 3.39 -1.01

Std. Error 0.05 0.05 0.06 0.08 0.06 0.06 0.20 0.54 0.58
 

We therefore observe, for example, that the results for the automatic image analysers

are on average estimated to be approximately g those for the other counters. Also,

the variability of the counts for the non-accredited counters exceeds (not necessarily

significantly) those for the others, as would be expected.

Using these estimates of the parameters we can obtain estimates of prediction

intervals for the assessment of future counts on these slides. Here we use the fact that

the unconditional distribution of a count for a given slide has a negative binomial
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distribution with mean m,- and shape parameter 01,-. Thus, for example, an estimate

of an approximate 95% prediction interval for a future count by an accredited counter

on slide 6 with estimated mean 21.54 would be [11, 34].

If we do not assume a gamma mixing distribution and instead estimate the

parameters using the extended quasi-likelihood method given in Section 2.4 we ob-

tain the same estimates for ,81, ~ ~ - , fly but we now obtain 17, = 3.37 and 1,2 = —l.01,

that is, only a small change in the 7,1 estimate.

Finally, because the gamma and log-normal distributions can look reasonably

similar for certain parameter values, and because in our example we have an hier-

archical model, we model the data using the procedures of Schall (1991), Breslow

and Clayton (1993) and McGilchrist (1994). Here the aim is to see how their meth-

ods, which agree for this example, compare with the exact method. The model,

conditional on the random effect 7,- which'is assumed now to be log-normal, is that

lnE (yilryg) = X.- 3 + 1 b.- where 1 is a vector of 1’s and the b.- are independent

normal random varables with zero means and variances of for counters with status

‘1’, ‘2’ or ‘3’ and a; for counters with status ‘4’. The parameter estimates, using

REML estimates for the variance components, are

 

fir fiz 33 fi-i 55 36 37 of 0:

Estimate 3.15 3.34 3.20 3.15 3.07 3.05 -0.34 0.060 0.135
 

Recalling that if ln(V) ~ N(0,02) the variance of V is exp(02) (exp(a’) — l),

we obtain the following estimates of the variances of the proportionality constants:

(311—1 = 0.066 and do? = 0.165. This would thus correspond to the values 1], = 2.8

and 172 = —0.8 in the model In a,- = 171 + 2.2172. We thus see that the fixed effects

estimates are not markedly different using this approximate inference procedure and

the exact method but there are slight differences in the estimates for the parameters

in the variance model.
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2.6 Discussion.

Using the procedures developed in this paper it is possible to estimate the parameters

of the mean model for repeated measures Poisson data with log link in the presence

of heterogeous overdispersion. This is achieved by compounding the Poisson random

variables with a second random variable, the variance of which is linearly related,

again via a log link, to a set of covariates. One immediate advantage of this pro-

cedure is that it will result in more efficient estimates than when the heterogeneity

is ignored. A second advantage is that when the degree of overdispersion is also of

interest, as in the example given above, the overdispersion can be quantified. In this

example a measure of the overdispersion is required in order to obtain estimates of

prediction intervals.

To estimate the parameters in the models the iterative procedure that is given

is the Fisher Scoring (FS) method in the case of a gamma compounding distribution

and a combined Fisher Scoring, Newton-Raphson (FS—NR) method for the more

general compounding distribution. In the two cases the FS method was used where

possible as it is generally considered superior (converges more rapidly) to the NR

method; see for example Kale (1962). However, to obtain the MLEs for the example

given this is not the case. Beginning with a slightly modified starting value to

that given in Section 2.3 and iterating until there is no further change in the third

decimal place, the FS method requires 30 iterations to converge compared with 4

iterations using a combined FS-NR method equivalent to that developed for the

extended quasi-likelihood solution. The PS method also requires 30 iterations when

beginning at the originally proposed starting value.

The reason for the slightly modified starting value mentioned in the above

comparison was because the combined FS-NR did not converge from the starting

value proposed in Section 2.3, a situation that is always possible with iterative

procedures. Unfortunately, the problem of non-convergence in this situation may go

beyond the simple exercise of choosing a new starting value. Here there is always the

possibility that one or more of the estimates of a.- will tend to zero, in which case one
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or more of the parameter estimates in the variance regression model will necessarily

tend in magnitude to infinity. In the simplest case of the model considered here,

corresponding to the negative binomial distribution, such a case corresponds to the

sample variance being less than the sample mean. For the more general case though

no such simple characterization procedure is available. Therefore, in some cases of

non-convergence of estimates, it must be borne in mind that no choice of starting

value will necessarily overcome non-convergence. However, if there is overdispersion

and the covariates in the log linear model for the variance are chosen judiciously,

this should not be a problem.
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Chapter 3

Moment estimators for a mixed

gamma-Poisson model with

repeated measures.

In Chapter 2 the maximum likelihoood estimates (MLE) were obtained for the

regression parameters for the mixed gamma-Poisson model when both the uncondi—

tional mean of the Poisson and the variance of the gamma are log linear. To obtain

these estimates an iterative procedure was given which utilised the Fisher scoring

algorithm.

We now consider a special case of that model, that being when both log linear

models each only contain a constant term. In this case we have in effect a simple

extension of the negative binomial distribution. It will therefore be more appropriate

in this case to estimate, not the parameters in the regression model, but rather the

exponentiation of these values.

In Section 3.1 We give the model together with the maximum likelihood esti-

mates of the two parameters. We then obtain, in the next section, two method of

moment estimators based on first and second sample moments. Moment estimators

based on these sample moments in general give rise to reasonably efficient estimators

whilst giving the added advantage that they can be obtained explicitly. In Section

3.3 we obtain some results for the limiting distribution of these moment estimators
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and then Section 3.4 provides a comparison of the asymptotic generalized variances

for the two moment estimators and the MLE.

In Section 3.5 we present an alternative asymptotic theory wherein we allow

the parameter values to vary with increasing sample size, in contrast to the previous

asymptotic results where the parameters were kept constant. Here the parameters

are allowed the vary in a manner not unlike situations giving rise to very variable

estimates for or and we show that the limiting distribution of the two moment esti-

mators of a can have very heavy tailed distributions with all moments infinite. We

finish the chapter with some concluding remarks contained in Section 3.6.

3.1 Model and maximum likelihood estimates.

Let Y},- denote the 3“" result for the 1'“ “subject” for i = 1, - - - , K and j = l, - - - , n,-,

where the n, are uniformly bounded. Further comment relating to this condition on

the n,- will be given later but suffice to say here that this condition is sufficient to

ensure later results.

Conditioning on a variable 7; we now assume that the K3 are independent,

Poisson random variables with mean 7,- p whilst the 7.- are assumed independent,

gamma random variables having unit mean and variance a“. In the special case

n.- = 1 for all i, the K,- are unconditionally independent negative binomial random

variables.

For this model we have the following likelihood (L)

.1: F(:i?l?:i’€ll)ij!) (71; 110+ 0)“ (n.- ##+ of] '

Denoting lnL by 11 and differentiating with respect to the parameters we

 

obtain

(91: _ K y,+a

67 " —"§"’(n_—.-p+a) (3'1)
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I(y'21)K:a+r—l)r=l

+21n<nifla+a)+i(fi-;—Z:) (3.2)
i=1 ¢=l

 

where a dot as a subcript denotes summation over the corresponding values. Again,

the leading term in (3.2) follows from the note given with (2.1).

To obtain the maximum likelihood estimators we solve g—fi = 0 and % = 0.

The standard procedure for solving these two equations is Fisher’s scoring method

for which we need the expected values of the second derivatives of (I. Here the

second derivatives are given by

62.6 K n?(y;. + a) y..

372 Z—_ —
62f, Kn-(nip—y;.-

306;; P1

6% (n.- II)’ + 0y;
302 g ( a(n.~ p + a)2

 n

'
M

Letting N: 25:1 n,- we have

62E K a 11,-}:

E (‘5?) " EFL-ml
02L

E (‘6an
WE °° r! F(a) n.- p r

E (—Efi)= Ezr21‘(a+r) (n;p+a)
i=1 r=2

 

0, and 

 

where the last equation follows from (2.2).

The MLEs are then obtained by progressively iterating between the following

two equations until the required degree of convergence is met.

,. ,. +[E(61)] l 1(3+1) = (S) — ,

6’12 “(5)6(5) 6” I“(s»&(5)

. 625 "

“(5” [E (WW -
“(5+1)'°'($)

where ELI/6;; and (911/(9a are given in (3.1) and (3.2) respectively.

, S 0,1,...

 

&(s+1)
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We then have that as K —-§ 00, [Kl/2(1) — p),K1/2(é — 0)] has a limiting

distribution that is bivariate normal with zero means and covariance matrix given

by

_ (gnaw—mm)" °1 K " "‘ . . r - ' (3'3)K1320 0 (25:1 w—(ifl—L) )‘
Here there are no restrictions required on the n,- other than that they are all greater

than or equal one as the covariance matrix is positive definite for all sequences n;

when p and 0: are both interior points of (0,00).

3.2 Method of moment estimates.

As an alternative to the maximum likelihood estimators for the parameters we now

give two method of moment estimators. These two are equivalent for the case

n; = n V i and when n = 1 correspond to the usual moment estimators for the mean

(p) and shape (0:) parameters of the negative distribution distribution denoted by

NBD(p, a).

Let a bar denote the averaging operator, so that Y,- = Y;./n,- and 17.. = Y../N .

Our two sets of method of moment estimators (MME) are:

MME-l

[‘1 = Y 9

. (N-Eiixn3/N)fii K - . 2= -——-——— h = ,- ,3—a1 Si—(K—1)f11 , wereSI §n(Y p1)

MME-2

. 1"—
#2=‘I‘{-§Yi.,

(K —1);2§ K - . 2, where S = Y;. — p .
32 — 1%) (25:11:?) it: 2 E; 2)

Here the primary difference between the two sets of estimators is that the

 

former gives equal weight to each 14,- whilst the latter gives equal weight to the

Y;.. The motivation behind the latter is to avoid giving too much weight to those

“subjects” for which we happen to have many repeat measures.
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To obtain the derivation of these two sets of moment estimators we first observe

that the Yg. (i = 1,- - - ,K) are independent NBD(n,-p,a) random variables and

hence both fin and [12 are unbiased estimators of p. To simplify the derivation of

the a estimators we let

Z; = (Yi- “ 1‘) (3‘4)

with Z’ = (Z1, - - - , ZK) and use the following two results.

Lemma 3.1

_ 1 ’5'1 -— NZAIZ ,

where A1 = {(1,9)} with a9) = n;(N — 11,-) and as) = —n,-n,- for i 9'5 j.

Proof.

 

.—1 he;
2

l K n,
= 172} (N—n;)Z. ZnJZJ

i=1 j¢i

1 K n 1 K n
= —Z—'Z’u u'Z — —Z’( 'uu')Z,

Na=1 N I ' N §N I '

where

ui’ = (uu,---,u;K) with “ii = N— n; ifz' =j ,

= —n, ifi 75 J

The result then follows.

0

Lemma 3.2

S - 1 Z’A z2 —‘ N 2 9

where A2 = {as-12)} with of?) = (K — 1) and a}? = —1 for i aé j.

Proof.

The proof here is similar to the proof of Lemma 3.1.

O
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From Lemma 3.1, we have

1 , 1 K _ ‘
E (31) = NTT(A1 E (ZZ )) = NZ’HUV — n.-) V (Yd-l , (3-5)

5:)

which, using the result V (Y;.) = n.- p + (n,- p)2/a, gives

K 2
13(51) = (K— 1) p+<N—Zn?/N)";. (3.6)

i=1

We now obtain (31 from (3.6), estimating p by [11.

Similarily, we can show that

E (52) = (K—1)(ufn:‘/K+u2/a)
t=1

and from this we obtain 072, estimating p with fig.

3.3 Properties of the method of moment esti-

mates.

We begin this section by giving the variances for the two moment estimators for p.

Theorem 3.1

 Von) =' 1+ ’22 in.- and (3.7)
N Nat-=1

2

V022) = % nfl+%. (3.8)
3:]

Proof.

Since Yg. (i = 1, - - - ,K) are independent NBD(n.~p,a) random variables we have

that the mean and variance of K. equal my and my + (n,p)2/a respectively. The

above results are thus readily obtained.

Unfortunately, in order to compare the two estimators of a (611 and d2) we

are unable to obtain results corresponding to Theorem 3.1, nor for covariances of

f1.- and 61,- , i = 1, 2. This is because, in addition to the intractability of these values,
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there is also the problem that the quantities may not exist. This would be the case if

the denominator for 61.- , i = 1, 2 could take the value zero with positive probability.

For example, for the negative binomial case (i.e. n.- = 1 V i) the denominator would

be zero if the sample variance equalled the sample mean. However, if this is not

possible, there remains the possibility that the denominator may take on extremely

small values, be it with very small probability for large K, causing the variance of

61.- ,z' = 1,2 to explode. This would then make comparisons of the two estimators

based on these quantities dubious.

With this in mind we instead obtain results below for two random variables

64‘ and (it; that differ from (311 and (32, respectively, by 0,,(K‘1). Results will then

be obtained for these two new random variables, which incidently will have the same

asymptotic distribution as their counterparts.

To obtain these we need the following results for Z,- defined in (3.4).

 

  

1 712142
2 _ , I

E (Zi) — n? ("ill + a ) a (3.9)

1 3n2p2 2n3u33 __ , . .
E (Z') —— 71—? (11,}! + a + a2 , and (3.10)

1 (30 + 7)n?p2 6(0 + 2)n?p3 3(a + 2)n:u4
E(Z'4) = E(ngp+—&—+T+—-&3— .(3.11)

These results are readily obtained from the moments of the negative binomial dis-

tribution.

Also, for the MME—l results we need the following lemmas.

Lemma 3.3

As K -—+ co, assuming the n; are bounded,

(201 + 6) 2" n? p‘ + (40 +12)Np3_ i=1 :

V091) _ a3 0:2

2 7 K 2 K
+(a—+a)-”— +}:n;1p +0(1). (3.12)

i=1

Proof.

E0312) = %E(Z'A1ZZ'A1Z)

l K K 1) K K 1

@224,- 224.9 E (zszjzkzz)
i=1 j=l k=1 (:1
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= 15—2 ($051521: (2‘ +ZZ(a‘-3’”+2(“m))E (ZN: (23)){-1 i=1 j¢i

_ (N2a+62i=lnn32)l‘4 + 2(Ka(N— zi=1nni/N)+aN+6N)#3

" a3 0:2

K2 7K 2 K

+(__9_ti +Zn:1 “4.00),

0 (:1

where the last line follows from (3.9), (3.11) and using

K K

ZnflN —— 71,-)2 = N2 Zn: + 0(K2) as the n,- are bounded.
i=1 i=1

The lemma. is complete once the above result is combined with E (51) given in (3.6).

Lemma 3.4

As K —> oo, assuming the n,- are bounded,

2 21:1"? 3+ 3Nl‘l2
 Cov 011,51) = N( + Ky) +0(K‘1). (3.13)

012 a

Proof.

00" (131,31) - E ((fil —I‘)SI)

- E lin-Z iZ’A Z— 1v..=l : t N 1

1
= N2 Zniagt )E (Z33) 7

and hence the result follows from (3.10).

Lemma 3.5

For bounded n; we have, as K —’ oo,

1 A 1' g — r 8

75011 - I1) (51 - E (51)) = 0,,(K ( + m) , (3-14)

where r and s are non-negative integers. (See Appendix A for definition of 0p and

0,, notation.)

31



Proof.

Let W; = n.- (Z.2 — E (Z?)) . Then from equations (3.4) and (3.5) and from Lemma

3.1 we have

SI " E (51)

K _ 1 _ 2 1 K
= $17,; (K. — N z: ngIYy.) — N gniuv - ni)E(Z52)

K K 3 K
= 2m (Z,- — % ; nil ,1) — %§ni(1v - n;)E(Z,-2)

= %(N£W; + C — (£11,232) , (3-15)
{:1 {:1

where C = 23:1 n? E (Z?) = 2:101:11 + nfpz/a) = 0(K).

Letting U.- = 11.2; then gives

1
K:

= quva (iv) (Niwrl-C- (flu-)2)a
i=1 i=1

= 2": str+3(s)i(_l),(11)N_J-C, E (f: U,-)r+2(j-I) (f m)” '

j=0 J (=0 i=1 i=1

E ([31 — #)r(51 "' E (5.1)).

 

 

As the U,‘ (z = 1, - - - , K) are independent random variables with zero means

and absolute moments of all order bounded uniformly in i and K, the W; also have

zero means and have absolute moments of all order, again bounded uniformly in i

and K. Therefore, from Theorem B1 in Appendix B and using N = 0(K), we have

%E (fix - msl — E (SW = 0(K“*+'>/’1-<'+‘>) ,
where [:5] denotes the integer part of 2:.

Thus the mean and variance of % ([11 — p)'(Sl — E (Sl))‘ are

0(K‘(’+‘)+[(’+‘)/2]) and 0(K‘('+‘)) respectively and hence the lemma follows from

Chebyshev’s Inequality.
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We now introduce some further notation. Let

K

m = N—an/N,

i=1

my2

0' = (K—l)[l+—a—, and

ma:2

flaky) =m (3-16)

Note: a = 13(51).

Define

a; = a + f;(;;, a). (,21 — p) + f;(p,a). (s1 — a) , (3.17)

where f;(p,0') = 6f(x,y)/6x evaluated at .1: = p, y = a and similarly for fl;(p,a).

Lemma 3.6

If the n; are bounded and a is not zero, we have

6!; = 6:1 + OAK“).

Proof.

Firstly, for K > 1,

m

K——1=N(K-1)§"‘"’

=> (m'nx{n.-})-l S Kril S (m:3.x{n,-})2 . (3.18)
 

Now, since (31 = f([11, $1), from Taylor’s theorem we have,

a: —a1 = —ZD"‘“’f(#* a*) (#1—)2_j(51‘0)j , (3.19)
2j=0

where

-- 3’f(x 1/)(2—H) * * = ___;__ . - =
D f0“ 10 ) [a32-jayj 3:“: y=a* I J 031a2°

for some p*,a* satisfying Ip" — pl 5 lit] — pl and [0* — a'l S [31 — 0| . Then letting

2 2

S: {(xay):|#_x|S%K_":fli-9|K__1- RL|< %%}1

i
l
l
"
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we have, for all (2:,y) E S,

  

 

 

 

2 _m_ 2 _L_
D(2’j'j)f(z y) = 1 . a (K-lx/(K-l . 3))

’ (K — 1): 612’16(I—{”_—1 ,

1 0(1) ___
= EC—y'T—z)‘ ,]—0,1,2.

Since for all (m,y)€8,

y > a _l m [1—2

K—l _ K—l 4(K—l)a

3 p2

‘ “Em—1):

and

1 m p2
< - ..

m — ”+4(K—1)a

wehave

2
_y _z 21 m e.
K—l 2(K—1)a

for all (:c,y) E 5 and hence, since 1%]- is bounded, D‘z‘j'j)f(m,y) = 0(K‘j) for all

(95,11) 6 5-

So, since E ([21 — p)2 and E (fiwfi —¢7))2 are both 0,,(K‘l) (see Lemma

3.5) we have

P((fi1,51)€ 5)
A 2 2

> 1‘P(l/‘1‘I‘|>%%%)—P(file—al>§K—m;%)

= 1—0(K"),

and hence obtain

D‘”"'“f(#*,0*) = 0p(K"')'- (3.20)

The lemma now follows from (3.19), (3.20) and (3.14).
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Theorem 3.2

If the n.- are bounded and a is not zero,

KNza Ka
 

 

Cov(\/1?,2,,\/17a;) = 327;? —T+0(Kl), and

i=1

“ 21:(a+1)__N__K_K ++4(a+1)02K K__3_a3 K

(2a+1)K:a3 _ K304 _

+_—N2#2_ 7,3421%,» ‘ Naps +0“ 1"

Proof.

The result follows, after substantial algebra, from

I 2 A

(My, 0)) van)

+2f;(#,a)f;(/t,a) Cov 021,51) + (f;(#,0))2 v (51) ,

Cov 011,64) = Lil/1,0)V(fi1)+f;(#,0)COV(fix,Sl),

V (a?)

where

mm) = 5‘;— (2m + (K —1)a) , (3.21)

I a2

£01,") = —m—p2 , (322)

m‘1 = N“1 + 0(K‘2) , (3.23)

together with the results in (3.7), (3.12) and (3.13).

Similarly we can derive the following results for MME—2.

Let

(K -1)752

_—KK1(Zi=l 71-1)?)

i=1

9(96, :1) =

(that is, T = E 52 ) and define

a; = a + g;(u,r). (in — u) + 9mm)- (52 - T),
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where g;(p, T) = 3g(2:,y)/aa: evaluated at a: = p, y = T and similarly for g;(,u,a).

Lemma 3.7

Provided the n.- are bounded,

 

_ 2K<a + 3w 4(a + aw " -1

2 K K

+W2n? + uE n? + 0(1) , (3.24)
i=1 i=1

2 3 3 2 K K

Cov (pg, 52) = £2 + L2n:1+ E Z 72,72 + 0(K“) . (3.25)
a K0 i=1 {:1

1 . r a - r a

75012 - It) (52 - E (52)) = 0p(K ‘ + ”2) , (3-26)

5:; = a2 + 0,,(K-1) . (3.27)

As the proof proceeds in exactly the same manner as for the proofs of Lemmas 3.3

to 3.6 it is not given.

 

 

0

Theorem 3.3

If the n; are bounded and a is not zero

2
Cov («17,2,,\/I7a;) = “7m?“ —NK,_2)+0(K-1), and

2
V («Rag = 2(a +1)a + ——-——4(“+ 1L“ N’“

(13 ((3 + 2.1mm.2 — N2“)
+ 2,u

oz4 N3 _ —2NK,_ N _ +N -

+ (“’1 31 “'2 K'a)+0(K“),p

where

1 K

NK‘, = 7?an (3.28)
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Again, as the proof corresponds to the proof of Theorem 3.2 but using the results

in Lemma 3.7 instead of the results in Lemmas 3.3 to 3.6, the proof is not given.

As a consequence of the above results we have the following corollary.

Corollary 3.1

For the case n.- = n for all i the two sets of moment estimators are equivalent

with

2

V (“17%) = 5+ 1:; ,

Cov (Wan/Rag) = 0+0(K"),
2

V (W61?) =W+ 0(K‘l) , (3.29)

for j = 1 and 2.

To conclude this section we obtain the limiting distribution of the two moment

estimators of a when both p and a are finite and not zero.

Theorem 3.4

If both p and a are finite and non zero and the n; (i = l,- - - ,K) are uniformly

bounded, then as K —> oo ,

V1703.- —- a) is asymptotically normal for i = 1, 2.

Proof.

Let a1 = gffima) and a2 = K f;(p,a), where f(z,y) is defined in (3.16). From

(3.21), (3.22) and (3.23) we therefore have that al and a; are constants uniformly

bounded for all K.

Then using (3.17), [11 — u = % 2K1 n;Z,- and (3.15) we obtain3':
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W("—a)

= V—_Z(a1n;Z-+agn.-Z-2—a2n;EZ.-2)

i=1

  

2

(120 a: K

— .‘Z,’ 3.30N “(in ) < >
i=1

= 71._2(a,n.-z.- +a2n.-z.-’-a2n.-EZ?) +o,,(1),
i=1

since 0 = 0(K) and 2:;-1 n. z.- = N021 — p) = 04%).

Now since Z; = ;(Y.-. — nip) where the Yg. are independent NBD(n.- Ina)

random variables for which all moments exist, we have letting

T,- = (a1n5Z;+a2n;Z3—a2ngEZ,-2),

that E T,- = 0 V i whilst E T? and E T,‘ are constants uniformly bounded for all i.

This latter result holds since |a1|,|a2| and n; are uniformly bounded (uniformly in

i) with n.- 2 1 and the moments of Y5. , which are functions of m, p and a, are also

uniformly bounded .

Therefore

{:1 E {71— (a1 11.- Z; + a; n.- Z-2 — a2 12,-EZ-2)}4

2 = 0(1),

{‘_1E{7-a1n.Z +a2n.Z —a2n.-EZ,-22)}}

 

and hence, from Liapounov’s theorem, mm; — a) is asymptotically normal. That

«170311 — a) is asymptotically normally distributed then follows from Lemma 3.6

and Slutsky’s theorem.

The corresponding result for MME—2 can be obtained similarily.

3.4 Asymptotic comparison of the estimates.

Although the formulae above for the variances and covariances of the different esti-

mators provide a succinct summary of their asymptotic (K —+ 00) performance they
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unfortunately give little insight, as they stand, into their relative performance. Fol-

loWing Anscombe (1950) we provide contour plots comparing the asymptotic efficien-

cies of the different estimators. As for Anscombe (1950), the large sample efficiency

is taken as the square root of the ratio of the generalised variance for the maximum

likelihood estimators and for the alternative estimators (MME—l or MME—2), where

the generalised variance is the determinant of the variance-covariance matrix for the

limiting distribution.

Here however, unlike the situation considered by Anscombe (1950), there is the

added complication of an unlimited choice of possible values for 71,-, i = 1, - - - ,K.

To overcome this we consider only the case where the n.- are iid random variables,

independent of the K)" and restrict ourselves to two forms of distributions for 111.

One form will have n] — 1 distributed uniformly on the integer values between 0

and a (inclusive), the other with n1 — 1 distributed as a truncated Poisson with

untruncated mean 1/, truncating values of 20 and above. Thus in both cases the n.-

are bounded random variables.

Before presenting the graphical comparisons though we need the following

results.

For 1' = —1,1 and 2 let

0, = E (n?) ,

Q = (94,91,02)’ 1 and

éx = (NK.—1,NK,1,NK,2)' a

where NK', is defined in (3..28) Now if

V («1321) V («1754) — (0012 (mp1, fian)’ = h1(éK) + 0(K")

then

h1(éx) =

(P + #2NK,2> (201(a+1)NK,2 + 4(¢:Ir+l)cr2 + 013ny2

NKJ a NI2(,1 lem # NKJ #2 Nlim

+(2a+ 1) a3 a:4 NK,-1 a:4 ) _ (01ng a )2
+ _ .—

#2 NR1 I13 lem #3 N13m ”13?.1 NKJ
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(Note: Here, and below, [11, 611 and (3:; are functions of K but we supress the extra

subscript for clarity.)

Theorem 3.5

If the n,- , i = 1, - - - ,K , are independent, identically distributed, uniformly

bounded random variables we have

gv (Klim «E21, Ilim @611) = 111(4),

where 9V denotes the generalized variance.

Proof.

Let XK equal V (Rd?) omitting terms of order X“, that is

2a(a + 1)NK'2 + 4(a + 1)a2
 

 

 

 

X =

K N12m I‘ NKJ

a3NK,2 (20 + 1)a3 a‘NK,_1 at4

[‘2 Niim P2 N12m [‘3 lem #3 Nlam

and

_ 2a(a +1)02 4(a +1)012

X _ 0? + p 01

01302 (2a + 1)o:3 (140-1 (1‘

+294 292 392— 393'
I‘ 1 P 1 l‘ 1 l‘ 1

Then

V (Klim V233,)

= V (Klim We?) (by Lemma 3.6)

= llim V (Rd; (See Comment 1 below)

= “till; [E V («176; I (2) + V E(\/I—(&; |é)]

_ - —1_ 131330 [E (XK+0(K ))+o]

= MOE (Xx)
= E (X) (See Comment 2 below)

= X .

Comment 1: Using an expansion for J]?a; based on (3.30) we can show, by first

conditioning on the n,- and then using the fact that the n.- are uniformly bounded,
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that all moments of J1761;, in particular the third moment, are bounded uniformly

in K. Hence V (lim1r(..(,o VI?61;) = limKnm> V (VI—(é?) using Theorem 4.5.2 of Chung

(1974).
Comment 2: Since the NK, 1» 0, V r we have, by the corollary of Theorem 2.3.3

of Lukacs (1975) that XK 1» X. Also, as the XK are absolutely bounded uniformly

in K (which follows since the n.- ,i = l, — - - ,K are uniformly bounded and hence

1 S NK', 5 (max.-n.-)') we have supK E IXKI” < 00 V p. Thus from Theorem 4.5.2

of Chung (1974), limxnm E Xf} = E XP < 00 for all positive integer values of p.

In precisely the same way we can also show that

2. . _ 1: ll 92
V(I}i§<io\/EM) — 014.010? ’

. \/—‘ . r. 0102 a

CWQHB. mm Km” 7% 01’
from which the result given in the theorem immediately follows.

 

 

.

Theorem 3.6

gv (Klim V1322, [pm Wag) =

2 4 1 29_ or" (3+2a)0- -—0Z

(#9-1+L)(2(a+1)a+ (M )a ‘+ ( 2 2 ‘)+a It It

014 03 - 29-1 9—2 + 9—3 a‘ 2
+ (1 3 ) -—,(oZ,—o_2),

I‘ It

with the result following in precisely the same manner as the previous theorem.

0

For the MLEs we have from (3.3) for given n;, i = 1,2, - - - that

[K1/2([1 — p), K1/2(d — 01)] has limiting distribution that is bivariate normal with

zero means and variance-covariance matrix

K a we ‘1

( (715 25:1 747 (mu-+0) ) 0 )

)' )4 '
lim

0 (A 2K 00 rlrlal ( "I!

K '=1 7:2 r2 l"(a+r) n.‘u+a
K—roo
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Since the limiting variance-covariance matrix is positive definite for all sequences

{11,-} we therefore have, by the strong law of large numbers, that as K —+ co ,

[K1/2([1 - p), K1/2((3: — 0)] has unconditional limiting distribution that is bivariate

normal with zero means and variance-covariance matrix given by

( {frE (fififld 0 )
0 {2712 F1973 (:.’%+“-..)'}'1 '

From here the 9V for the MLEs is readily calculated.

For the contour plots of the efficiencies we now take for the a and 11 parameters

of the uniform and truncated Poisson distributions for n1 — 1 the following values.

 

 

V(n1)

Figure a V E(n1) Uniform Trunc. Poisson

1 1 0.5 1.5 0.25 0.50

2 2 1.0 2.0 0.67 1.00

3 10 5.0 6.0 10.00 5.00

Notes:

(i) Here E m is not exact for the truncated Poisson but is correct to the decimal

places reported; and

(ii) for the case a = 0, which corresponds to n.- = 1 V i, the two moment estimators

are identical. This situation corresponds to the standard negative binomial

distribution, studied by Anscombe (1950), and hence is not considered here.

Each of the three figures (Figure 3.1, Figure 3.2 and Figure 3.3) comprises

six plots in two columns of three, with the column on the left for the plots associ-

ated with the truncated Poisson distribution for 121 ~ 1. The column on the right

corresponds to the uniform distribution for n1 — 1. Within each column the top

two plots give relative efficiency contours for the MME—l and MME—2 estimators

respectively whilst the bottom plot gives contours for the ratio of the relative effi-

ciency of MME—2 to MME—l. In addition, in the bottom right hand corner of each

plot is given the (minimum, maximum) that the plotted value took on the region

‘1 S 1°810(I‘)al°gio(a) S 2-
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Figure 3.3: Relative efficiencies when average n = 6

MME-1 tor truncated Poisson.
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From this limited graphical comparison of the two moment estimators with

the maximum likelihood estimators there appear to be a number of conclusions that

can be drawn.

0 The moment estimators are reasonably efficient provided [1 and a are approx-

imately equal and not too small and E(n1) is not large;

0 The efficiencies of the moment estimators decrease as E(n1) increases;

0 The performance of the moment estimators does not depend significantly on

the distribution of n1, at least for the two distributions considered here, and

particularily so for small E(n1) (in which case the two estimators are probably

almost equivalent);

0 From the bottom plots in each figure, for which the unit contour corresponds

approximately with the line p = a, we have that the preferred moment esti-

mator is MME—l if p S a, and MME—2 otherwise.

This latter observation is consistent with the Weighting the two moment es-

timators give to individual observations, with MME—2 downweighting results from

“subjects” with many results. The appropriateness of this downweighting increases

as 0 decreases as this corresponds to the “between subject” variability increasing.

3.5 Erratic behaviour of the moment estimates

for a.

From the previous work we have that the limiting distributions of the MLE of a and

the two moment estimators 61,- , i = 1,2 are normal as K —> 00, provided It and a

are both finite and not zero.

This convergence to normality is however not smooth and this can best be

seen for the special case when n,- = 1 (i = 1, - - - , K) corresponding to the negative

binomial distribution. For the MLE of a ((31) we have for all K that the absolute

moments of o? are infinite. This follows as a = 00 whenever K times the sample
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mean exceeds (K - 1) times the sample variance, an event that occurs with positive

probability. For the moment estimator on the other hand we obtain very large, and

possibly infinite, estimates for a when the absolute difference between the sample

variance and sample mean is small. This tendency towards large (absolute) estimates

for or increases as a increases, as will be shown in Chapter 4.

To gain some insight into the “erratic” behavior for our two moment estimators

for a in the general case we adopt the approach of Hall (1994). (Recall that these

estimators reduce to the usual moment estimator of a for the negative binomial

distribution.) Here we consider a sequence of estimators 62m; (2' = 1,2) depending

on K, the number of “subjects”, and allow the two parameters (#K, 01K) to vary

with K (hence the additional subscripts). We then let 0K increase with K, pk/01K

decrease with K, and show that the limiting distribution of d.- , i = 1, 2 depends on

the limit of Kpir/a}.

Letting AK = Kpfl/afl and A = limK_.co AK what our main result in this

section will show is that if A = 00 then the moment estimators have asymptotic

normal distributions whilst if A is finite the limiting distribution is very heavy—tailed.

Actually, in this latter case all moments of the limiting distribution are infinite and

the smaller the value of A the heavier the tails of this distribution.

We now formally state the conditions under which the results in this section

hold.

For K =1,2,--- we have

aK T 00 ,

,uK -+ p E (0, oo] monotonically,

#K/GK l 0 , and

AK —> A E [0, 00] where AK = Kiri/a}.

Also, throughout this section we use the following notation:

mK = N—KNm/N,

K2 _ K2 K

“/JKJ = 2 'IVZ’ ‘i‘l‘Kl m (NK.-1 — N) a
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m = 2NK.-2+p,-2 (NK,-3—2NK,-1NK,_2+N,=},_,), and

'pi = [gal/)Kfi i=1a29

where NK, is defined in (3.28) and n,- , i = 1,2, - - - is a sequence, uniformly

bounded for which 1p.- (i = 1,2) exist.

The remainder of the notation is as for the previous sections but with an added

subscript K, except on N. Here a subscript is omitted so as to avoid confusing it

with NKJ. Note that N = KNK’I.

Lemma 3.8

Under the conditions specified above,

 

£——1—-Kn-(Z2-—EZ2.—£ZK-) 5» N(0¢:) (331)

Nx/mxzm' K“ K" N " '

1 K c

and 22,—Ez2,—N _Z.- —» N0, , 3.32
mflK§( K, K. K. 1 K,) ( '1’?) ( )

asK—voo.

Proof.

We only show the result for the former as the proof of the latter follows in precisely

the same way.

Since E ZK; = 0 V K we immediately have

1 K

[1? #K i=1

whilst using (3.9), (3.10) and (3.11) we obtain

1 K K

V .-(Zz--EZ2,-——Z )}
{film {:1 n K" K, N K!

1 K

n,- (2,?“ — E 2}", — 52,“) = o v K ,
E N
 

 

2

n: (E 2;“ _ 2 £13 2;, _ E2 z}, + in 2,2,.) 

Ky; N N2
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+ 2 + 3H (NK,-1+3+_7_+6N#K+12N#K 3NK,2#i( 6NK.2Fi{)

 

 

[1K 0K KaK K0} 0K 0K
K 2 6N 4NK211K 2NflK ngp}__ _.._ _'___. ._ 1 __ '—
N(pK+KaK+ a} ) (+KOK+ a}

K2 N N
+— —-+ K:
N2 KpK 0K

K= 2+”? (NIL—n —N) +00),

where the last line follows as pK/aK = 0(1) , l/aK = 0(1) and NK,,/NK,, =

0(1) V r,s.

Therefore, since ,uK is bounded away from zero, we have

1 K 2 2 K 2

K y} g}? {"i (ZK,:‘ — E Zm — NZK,:')} = 0(1) . (3.33) 

On the other hand we have

1 K 2 2 K ‘ -1

K2 It} 2E {"i (ZK,£ — E ZK,£ — NZK.6)} = 0(K ) . (3.34)
i=1

To see that (3.34) holds observe that E {m (ZR,- — E Z?“ — £1,5-Z1(,,-)}4 equals the

sum of am number of terms of the form CHE (YK,.-. — n,- yK)'.E‘(YK,.-. — 72; pk)2

where the C", which are functions of n.- and K/N, are absolutely bounded, uniformly

in K, for the different values of r and 3. Here the possible values of r and s satisfy 0 S

r S 8, 0 S s S 4 and [r/2]+s S 4. Now since Y1”. ~ NBD(n,-,uK,aK) we have from

Theorem BZ in the Appendix and the relationship between the central moments and

the cumulants (see for example Kendall and Stuart (1977) page 72) that IE (Ymg. —

n.- pK)'| S [Ag/2] L, for 0 S r S 8, where L, is a constant independent of K.

Therefore, from the conditions on r and s, we have |c,,E (Yxfiz — n,- pK)'.E’(YKV,-. —

n; pK)2| S max{l,p}(} L”, where L" is independent of K, for all terms in the

expansion of E {11,- (Zk; — E Z?“ — %Z1r(,.-)}4 and hence we obtain (3.34).
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From (3.34) and (3.33) we therefore have

2

{221E {m m. - E — my}
and hence the lemma follows from Liapounov’s theorem.

= 0(1),

We are now in a position to give the main result for this section.

Theorem 3.7

If aim,- , K = 2,3, - - - is a sequence of MME—I (I = 1,2) estimators for ax based on

K “subjects” satisfying the above conditions and Z is a standard normal random

variable then, under the assumption that the n,- are bounded, we have

 

 

'lfijazg 5 % ifA=0, (3-35)
51m c 1 -0K _, m If ,\ 6 (0,00) , (3.36)

:25 (51K; 0K) i, 3 if A = 00, (3-37)

for i = 1,2.

Proof.

MM

Here we have

1 K
film = #K (1+ pr gniZKfi) , (3-38)

whilst

51m - (K - 1)fiK,1

= (SKJ " E(5K.1)) — (K " 1) (film - #K) + (E(SK,1) — (K ‘ llflK)

 

{2(22 EZ’) 0" 1(f: z)2= ”i i" ,i +'——- "i K,:'
i=1 K. K N N i=1

K—l K mxp2
-— iZ : KN §n K + 0K



K

from (3.15) and where CK = E E (n? 23(5)

i=1

  

 

 

 

K
"W #K 01K K

= 1+ m(z2,—Ez2,——z.)+

“K { "2K It}0K§ K K N K

a K 2

n.- Z . K C — ( n.-Z ;) .+mWNN; K- +m—K———N#K( K 2 K,

(3.39)

Now

K

E 201,- ZK';) = 0 and

6:1

K

V 20“ ZKJ) = NIIK + II} K Nm/ax = N#K(1+ 0(1)) K

{:1

hence 251 n.-ZK‘.- = 0,(\/K pk) and CK = 0(K #3)

From this and (3.18) we have

1 K

mganKi = 0,,(1) ,

VXK (1K 1 K _

mK II; N gmzx, — 0,,(1)

\/ AK OK

mKN/‘fi CK '— 0(1) 9

V AK ax K 2

,-Z . = 1
mKNflfl g" K OP( )

Therefore, from the above and the definition of 611m we obtain

CAYKJ = mKfiim

01K Goal-9&1 - (K - 1)/1K,1]

é (1+ o,(1))2

1 + 7T"—M 7,717“ 2:1 n.- (Zia; - E Zia; — %Zx.a) + 715%(1)

(3.40)

with the last line following from (3.38), (3.39) and the results immediately above.

Letting

w =  
K 1 ( K
—— ,z2,—Ez2,——z)
mK F—prgn K K N K
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we have

aKJ g 1+ 07(1) (3.41)
(xx 1+7§;VK+7§70,(1)
 

where, from K/mK = K/N + 0(K‘1) and Lemma 3.8, VK has variance t/nm + 0(1)

and is asymptotically N(0, 11);).

To complete the proof for MME—l we consider the three cases separately.

A = 0.

    

’¢K,1 511m é 1+o,(l) 3) _1_

AK 0‘" \//\K/*I)K,1 + VK/flm + op(1)/‘/z/:K,l Z

A E (0, 00)

Here the result follows directly from (3.41).

/\ = 00.

(311m c 1 5 VK/v XX
“X _ 1+VK/VAK— - 1+VK/x/AK

giving

 

AK (éKJ —aK) £ VK/V ll’KJ .5; Z

IPKJ 0K 1 + VK/VXK

The proof for MME—2 proceeds in precisely the same manner and hence is not

included.

To conclude this section we note that although the results obtained here are

limiting results as K —+ 00, they reflect the behaviour for finite K, as will be seen

in the simulation study in Chapter 4. There we see that for the negative binomial

distribution with finite K, the erratic behaviour of the moment estimator of 0:

increases, as measured by the number of “failed” estimators and them of

“successful” estimators, as or increases for a fixed [1 or as it decreases for a fixed

a. This then corresponds to the result that the erratic behaviour increases as AK

decreases.

52



3.6 Concluding remarks.

In this chapter we have obtained two moment estimators for the parameters of a

simple mixed gamma-Poisson model with repeated observations. The two moment

estimators are equivalent when the number of repeat observations per “subject” are

the same, in which case they correspond to the usual moment estimators for the

negative binomial distribution.

To compare the two moment estimators, both between themselves and with

the corresponding MLE, we have based comparisons on the asymptotic efficiencies.

In determining these quantities we made the assumption that the number of observa-

tions per “subject” are bounded, a condition that assures the asymptotic normality

of the two moment estimators and of the MLEs. This assumption though is most

likely much stronger than is necessary to obtain the results in Sections 3.4 and 3.5.

In practice, what is required for the result we obtain is that no “subject” domi-

nates the information. We therefore conjecture that the results in Sections 3.4 and

3.5 continue to hold provided the number of repeat observations per “subject” is

bounded in probability, that is n,- = 0,,(1), particularly for MME—l. For MME—2

we conjecture that the results hold for any n,- since it gives equal weight to means

instead of observations.

To give some credence to the above conjectures consider the results in the

example considered in Chapter 2. Now though restrict attention only to those results

reported by counters with counter status 2 or 3 (29 counters in total) and assume

that the six slides have identical fibre loadings. This assumption can be justified for

two reasons, one being that the six slides were from a batch of 14 nominally identical

slides (see Section 1.1) and second, the equality of the means is supported by the

results in Section 2.5. The model we then have for these results is that the j“ count

for the 2"” counter is Poisson with mean 7.- p with the 7.- independent gamma random

variables with mean 1 and variance l/a. Estimating the p and 0: parameters using

the two moment methods and the MLE above gives:
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A A

Estimator p a 1/61

MME—l 26.08 (3.04) 21.85 (17.75) 0.046

MME-2 23.78 (1.44) 14.87 ( 6.41) 0.067

MLE 24.05 (1.42) 15.69 ( 6.47) 0.064

 

 

where the term in brackets is the estimate of the stande error of the corresponding

estimator based on the results in Theorems 3.1, 3.2 and 3.3 and from (3.3) evaluated

at the current estimates.

We thus see that the standard errors of the MME-l estimators are relatively

large compared with MME—2 and MLE. This is brought about by the large number

of results from one “subject”, counter 4, who contributed more that 50 percent of

the results. For this example, and in all examples where a few “subjects” dominate,

we would suggest MME—2 over MME-l.
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Chapter 4

Estimating the shape parameter

for the negative binomial

distribution.

In the previous chapter a special case of a mixed gamma-Poisson model of Chapter

2 was studied which, for equal number of observations per “subject” corresponds to

a negative multinomial distribution (see Sibuya, Yoshimura and Shimizu (1964)) or,

for a single observation per “subject”, a negative binomial distribution (see Johnson,

Kotz and Kemp (1992), Chapter 5). There two moment estimators and the MLEs

were obtained for the case of unequal observations per “subject” and it was shown

that asymptotically and under certain conditions the moment estimators performed

favourably compared to the MLE.

In view of this favourable asymptotic comparison of the moment estimators

with the MLEs, in this chapter we consider a comparison of the moment estimator

and the MLEs for finite samples. Here the comparison will be based on a simulation

study and restricted to a very special case of the model in Chapter 3, that being the

negative binomial distribution with parameters mean )1 and shape a, denoted by

NBD(p,a) and with probability distribution given in Appendix A. Since the two

moment estimators MME—l and MME—2 of Chapter 3 are identical in the negative

binomial case we will refer throughout this chapter to the moment estimator as
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MME. Also, as the MME and MLE of y are both given by the sample mean, our

simulation study only considers the estimation of a. Included in the simulation

study are two alternative estimates for the shape parameter.

We begin in Section 4.1 with a review of previous studies comparing various

estimators of a and point out the limitations of these studies. Section 4.2 then

introduces a new measure, the percentile measure, that is included in our simulation

study to compare the estimators, together with a justification of this new measure.

This is followed by Section 4.3 giving details of the computer simulation. The

results of the simulation study are then reported in Section 4.4 and a discussion of

the results is given in Section 4.5.

4.1 Review of estimation of a for the negative

binomial distribution.

Because the negative binomial distribution has found wide applicability across a

field of disciplines (see Tripathi (1985) for examples) owing to its ability to model

overdispersed count data relative to the Poisson distribution, the estimation of its

parameters has been extensively studied. Further, the family of NBDs has the

advantage that it can be extended to include the family of Poisson distributions

simply by extending the domain of a to (0, 00].

To estimate the parameters of the negative binomial distribution there is lit-

tle contention regarding p, with the sample mean generally accepted as the best

choice, but the same is not the case for 0. Here a number of choices exist including

the method of moments estimator (MME), maximum likelihood estimator (MLE),

zero-class estimator, digamma estimator (see Anscombe (1950) and Pieters, Gates,

Matis and Sterling (1977) for details of these), maximum quasi-likelihood estimator

(MQLE) (Clark and Perry (1989)) and the conditional likelihood estimator (CLE)

(Anraku and Yanagimoto (1990)). Of these the asymptotic behaviour of the first

four have been studied by Anscombe (1950). Simulation studies have been un-

dertaken to study the small sample behaviour of all six (see Pieters et al. (1977);
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Willson, Folks and Young (1984); Clark and Perry (1989); Anraku and Yanagimoto

(1990); Piegorsch (1990)), with each simulation study examining only a subset of

the above six estimators.

Among the other estimators for the parameters of the NBD are minimum

x2 estimators proposed by Katti and Gurland (1962). As these have not been

specifically formulated for the estimation of a they are not discussed further here.

Based on asymptotic results given in Anscombe (1950) and the results of the

simulation study by Pieters et al. (1977) it appears to be generally accepted that the

zero-class and digamma estimators are no longer contenders for the estimation of or

leaving only the MME, MLE, MQLE and CLE from those above. Of these remaining

four it is not clear from the simulation studies available which is superior/inferior

under particular conditions for two main reasons.

First of these is a consequence of the fact that the MME gives negative esti-

mates with positive probability whilst each of the remaining three estimators give

infinite estimates, again with positive probability. To overcome the problems as-

sociated with this a number of different strategies have been employed. Of these

the most common is to discard samples giving infinite or negative estimates and

to generate replacement samples. This is the procedure employed by Pieters et a1.

(1977), Willson et al. (1984) and Anraku and Yanagimoto (1990). It should be

noted here that when using computer simulations infinite estimates are taken to

correspond to estimates exceeding a pre—specified upper bound. Only Willson et al.

( 1984) document the value they chose.

An alternative strategy is to estimate a function of a that overcomes the prob-

lems associated with infinite estimates. This second strategy was employed by Clark

and Perry (1989) and Piegorsch (1990) who considered estimation of 1/01 instead

of a and also by Anraku and Yanagimoto (1990) who considered estimation of 1/0:

and 1/(1 + a) in addition to (1. Using this latter strategy, whilst overcoming the

problems associated with infinite estimates, does not remove the problem of negative

MMEs and now gives rise to negative MQLEs and MLEs (negative estimates in this

case correspond to under-dispersion). Clark and Perry (1989) and Piegorsch (1990)
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have retained these negative estimates in their simulation. Anraku and Yanagimoto

(1990) on the other hand, when estimating 1/0 or 1/(1 + a), set the estimate to

zero for samples giving infinite or negative values for the corresponding estimate of

a.

A third strategy, used by Anraku and Yanagimoto (1990) is to compare the be-

haviour of the estimated probability distribution functions via the Kullback—Leibler

risk. The basis of this idea will be utilised in this chapter.

The second reason for difficulty associated with comparing the four estimators

based on the studies already undertaken is that none of the studies included all four

estimators. By itself this would not be a problem were it not that most of the five

simulation studies chose parameter values and sample sizes for their study which

offered only limited opportunity for comparison across studies. Piegorsch ( 1990) is

the only exception, choosing values to enable a comparison with the results of Clark

and Perry (1989).

This chapter aims to rectify this situation by reporting the results of a simu-

lation study involving the four estimators MME, MLE, MQLE and CLE. Here the

results are derived using the most commonly used procedure for comparing alterna-

tive estimators of a, that being to discard samples giving one or more estimates of

(1 outside a given interval. The ranges of parameter values a and p and sample sizes

n included were chosen to cover most of the values examined by others. In addition,

we introduce an alternative and arguably more appropriate measure whereby the

performances of the four estimators can be compared. This measure will be referred

to as the percentile measure (PM).

4.2 Percentile measure (PM).

Unlike the mean parameter of the NBD, the shape parameter in most applications

does not have an immediately obvious interpretation. Waters (1959) gives an exam-

ple where a has a physical interpretation and hence a justification of its estimation

in its own right, but generally the reason for the estimation of a is in order to quan-
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tify, via the distribution function, the random behaviour underlying the process. In

such cases the estimation of a function of a parameter rather than the parameter

itself serves no practical purpose.

Therefore, to assess the performance of the estimator it may be more appropri-

ate to compare the “distribution” of the estimated distribution functions, generally

through some metric such as Kolmogorov’s metric or the total variation metric or,

as considered by Anraku and Yanagimoto (1990), the Kullback-Leibler risk, rather

than the distribution of the parameter estimates themselves. This alternative pro-

cedure has the advantage that it provides a mechanism to overcome the problems

associated with negative MMEs or infinite MLEs, MQLEs and CLEs of a in the case

where the true underlying distribution is assumed to be a member of the extended

NBD family (extended in the sense of including the Poisson family, which is the limit

as a —) 00). In such cases an appropriate estimate of the underlying distribution is

a Poisson distribution with mean equal the sample mean. The case for assuming an

underlying Poisson for negative MMEs of a is based on a number of grounds, not

least the under-dispersion of the data relative to expectation.

Unfortunately many of the metrics available give little insight into the relative

“closeness” of distributions particularly when, as will often be the case, tolerence

intervals for subsequent observations are required. For example, it is a simple ex—

ercise to construct two distributions for which the Kolmogorov metric is less than

c (> 0) for which specified percentiles differ by more than K (> 0).

To overcome this the measure proposed in this chapter is:

PM(F, G) = sup lF"(t) — G-1(t)| (4.1)
15.4

where F and G denote distribution functions, A _= [0.01,0.99] and

F'1(t) = inf{a: : F(:r) Z t}. Here F will be taken as the true underlying NBD and

G will be taken to be the estimated distribution function, obtained by replacing the

parameters of the distribution by their estimates.

The reason for the restriction of the above measure to a set A of the form

[fi,1 — '1] for 0 < fl < 1 — 7 < 1 is twofold. Firstly, the choice A = [0, 1] has the

problem that the difference between the inverse of two distribution functions is not
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defined at 0, nor is it at l for certain distributions. The second and morepractical

reason hinges on the fact that estimates of percentiles corresponding to the extreme

tails of the distribution are rarely sought owing to the uncertainty associated with

such estimates.

The choice of A therefore needs to reflect the range of values for which per-

centile estimates may be required whilst at the same time providing a measure of

“closeness” of the distributions. The choice taken for this study is A = [.01, .99].

Scope does however exist for varying A without significantly altering the conclusions

of the study.

A point worth noting here is that although the percentile measure is not a

metric on the space of distribution functions it is a metric on the restricted space of

doubly censored distribution functions with 100fl% and 1007% censored on the left

and right respectively. Hence a percentile measure of zero corresponds to effectively

equivalent distributions in the case where the tails of the distribution beyond the B

and (1 —- 7) percentiles are of no interest.

4.3 Computer simulation.

For the Monte Carlo study, conducted on Apollo DN2500 and DN3500 workstations,

10000 samples of size n (n = 20, 30, 50 and 100) were randomly generated for each

of the 24 negative binomial distributions with parameters p = 1, 3, 5, 10, 20 and

50 crossed with a = .5, 1, 3 and 5. The four estimates of a, and the corresponding

estimates of the distribution functions, for each combination of n, a and p, were

then based on the same 10000 samples.

To generate the NBD random variables a two stage process was used. Firstly,

a gamma random variable W with parameter a was generated. Ahren’s gamma

algorithm GS, given in Atkinson and Pearce (1976), was used for a less than 1

whilst an algorithm proposed by Cheng (1977) was used for a greater than or equal

one. A Poisson random variable (X) with mean Wp/a was then generated using

the idea of mimicking the Poisson process outlined in Mihram (1972). The resultant
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random variable X has a NBD with mean p and shape parameter a.

For each sample of size n the mean 11 was estimated by the sample mean.

Denoting the sample mean and sample variance by :7: and 32 respectively the four

estimates for a are given by:

 

 

MME: aMME = 2x _

s —:r

MLE: 61”“; = the valueathat maximises

Hr”W01)“:i )"i_1I‘(a) 3;! a + 5: a + :7:

MQLE: dMQLE = the valueathat maximises

fl

2 [an-1n (3-) — —;—ln(27r) —- éln (x,- + %)

i=1

0+5: 0+3.- 1 6a+63:.-+1

—(a+x.)ln(a+zi)—ln( a )+§hi( 601+1 )i

 

 

CLE: 51ch = the value a that maximises

F(na) (n5)! " F(a + x.)

F0101 + 53)) .131 [ W0!) $6! ]

Of the four estimators, it can immediately be seen that the MME is negative for

 

52 < :i‘ and infinite for 32 = 5:, whilst Anraku and Yanagimoto (1990) note that the

CLE is infinite for 32 S 5: and is positive and unique otherwise. On the other hand,

the MLE is infinite if (n — 1)s2 S mi and is positive and unique otherwise. This

latter result, and the corresponding result for the CLE, follow from a theorem by

Levin and Reeds (1977). It follows then that the MLE is infinite whenever the CLE

is infinite which in turn corresponds to a non-positive MME. This will be borne

out in the simulations. For the MQLE, obtained from the extended quasi-likelihood

function for the NBD (see Nelder and Pregibon (1987)), no results are available as

to when the estimate is positive or infinite, nor if the estimate is unique.

To obtain the MLE, MQLE and CLE a NAG minimisation routine (E04BBF)

was used with boundary conditions on a set as 0.0001 and 10000. (Solutions for the

estimate of 0 beyond the boundary limits were assigned the corresponding boundary
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values.) These limits were chosen for a number of reasons, one being that they were

the values used by Willson et al. (1984). Another reason was that, for the values

of p considered in this paper, a negative binomial distribution with a greater than

10000 is effectively identical to a Poisson distribution with mean a. As for the lower

limit, none of the estimates of a in the study fell in the range (0, 0.0001).

In view of the above comments MMEs for 0 outside the interval (0,10000]

were reassigned the value 10000.

4.4 Results of computer simulation.

For the first stage the bias and mean square error (MSE) of the four estimators for

a were calculated from samples giving all four estimators in the interval (0, 10000).

(Unlike some previous studies, discarded samples were not replaced.) The results

of this study are given in Tables 4.1, 4.2, 4.3 and 4.4, corresponding to n = 20, 30,

50 and 100 respectively. Each table contains, for each estimator and for each p and

a combination considered, the number of times the particular estimator failed (i.e.

outside the interval (0, 10000)), the bias and the square root of the mean square

error of the estimator. Also, in the third column of each table are the number of

samples, for the particular combination of n, a and u, that had to be discarded for

this comparison because one or more of the estimators gave an estimate outside the

range (0, 10000).

For the second comparison none of the 10000 samples for each combination of

n, a and p were discarded. Here the estimate of a was taken as 10000 whenever the

estimate fell outside the range (0, 10000). The percentile measure was calculated for

each estimator for each sample. Then, for each combination of n, a and p, the mean

and standard deviation of the PM values were calculated. These results are given in

Tables 4.5, 4.6, 4.7 and 4.8, corresponding to n = 20, 30, 50 and 100 respectively.
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Table 4.1 Moment comparison of estimators for a for sample size 11:20

 

 

 

Total MME MLE MQLE CLE

a p fail fail bias JMSE fail bias JMSE fail bias JMSE fail bias JMSE

0.5 l 374 275 0.455 1.112 374 0.495 2.407 374 0.469 2.387 275 0.207 0.815

1.0 1 1080 759 0.805 2.033 1076 1.248 5.461 1080 1.207 5.438 759 0.429 1.591

3.0 1 3524 2766 0.211 2.900 3515 1.956 11.682 3524 1.902 11.662 2766 ~0.301 2.618

5.0 1 4488 3590 -1.201 3.501 4476 1.471 15.060 4488 1.412 15.042 3590 -1.797 3.459

0.5 3 3 1 0.236 0.542 3 0.147 0.505 3 0.134 0.497 1 0.087 0.389

1.0 3 19 15 0.510 1.513 18 0.493 2.856 19 0.474 2.851 15 0.289 1.254

3.0 3 645 477 2.158 6.249 626 4.860 29.766 645 4.837 29.768 477 1.681 5.639

5.0 3 1586 1194 2.577 8.187 1555 8.513 [46.724 1586 8.489 46.743 1194 2.012 7.572

0.5 5 0 0 0.200 0.409 0 0.105 0.308 0 0.094 0.302 0 0.062 0.272

1.0 5 1 0 0.369 1.180 1 0.414 12.306 1 0.399 12.305 0 0.192 0.971

3.0 5 114 76 1.825 5.948 111 3.325 31.114 114 3.308 31.106 76 1.464 5.461

5.0 5 553 401 3.241 9.902 546 7.944 57.296 553 7.890 55.773 401 2.754 9.251

0.5 10 0 0 0.170 0.347 0 0.080 0.243 0 0.071 0.238 0 0.047 0.221

1.0 10 0 0 0.262 0.631 0 0.184 0.527 0 0.172 0.523 0 0.116 0.474

3.0 10 3 2 1.031 3.358 3 1.170 4.245 3 1.159 4.243 2 0.802 3.115

5.0 10 51 35 2.305 8.103 50 3.419 21.864 51 3.408 21.838 35 1.992 7.632

0.5 15 0 0 0.174 0.326 0 0.076 0.221 0 0.067 0.216 0 0.046 0.202

1.0 15 0 0 0.254 0.601 0 0.175 0.491 0 0.163 0.487 0 0.113 0.446

3.0 15 1 0 0.784 2.485 1 0.850 2.806 1 0.840 2.804 0 0.587 2.271

5.0 15 9 7 1.608 6.234 9 2.115 12.490 9 2.108 12.495 7 1.366 5.932

0.5 20 0 0 0.200 0.330 0 0.082 0.216 0 0.073 0.211 0 0.053 0.197

1.0 20 0 0 0.249 0.573 0 0.166 0.466 0 0.155 0.463 0 0.107 0.425

3.0 20 0 0 0.694 2.198 0 0.745 2.381 0 0.737 2.379 0 0.515 2.014

5.0 20 0 0 1.320 4.050 0 1.585 4.500 0 1.578 4.499 0 1.111 3.811
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a

0.5
1.0

3.0

5.0

0.5

1.0

3.0

5.0

0.5

1.0

3.0

5.0

0.5

1.0

3.0

5.0

0.5

1.0

3.0

5.0

0.5

1.0

3.0

5.0
_____—_———_——___—_—————_——-——_——————

w
h
a
t
—
t
h
a
t

“
0
3
0
9
0
3

Total

fail

90

431

2504

3681

222

850
H
e
c
o

o
u
‘
c
o
o

C
O
C
O

Table 4.2 Moment comparison of estimators for a for sample size n=30

MME MLE M____Q______LE CLE

failbias :{MS failbias1 (MS failbias 1 {MS failbias 1 {MS

76 0.339 0.938 0.298 1.336 90 0.274 1.318 76 0. 168 0. 70]:

341 0.752 2.065 427 0.952 3.839 431 0.913 3.818 341 0.479 1.750

2021 0.890 3.804 2473 2.311 9.754 2504 2.255 9.733 2021 0.424 3.394

3079 ~0.430 4.043 3631 1.459 10.880 3681 1.399 10.865 3079 -0.954 3.831

0 0.152 0.359 0 0.081 0.281 0 0.068 0.274 0 0.048 0.246

1 0.310 0.869 2 0.243 0.941 2 0.224 0.934 1 0.161 0.733

161 1.810 5.934 220 2.996 19.308 222 2.973 19.306 161 1.476 5.439

690 3.282 10.153 839 7.922 41.992 850 7.896 41.974 690 2.789 9.566

0 0.132 0.289 0 0.064 0.210 0 0.053 0.205 0 0.038 0.194

0 0.220 0.565 0 0.152 0.478 0 0.137 0.472 0 0.097 0.436

15 1.129 4.379 22 1.574 16.900 22 1.557 16.890 15 0.888 4.036

131 2.845 9.817 167 5.423 44.692 171 5.406 44.671 131 2.475 9.257

0 0.120 0.257 0 0.052 0.173 0 0.042 0.169 0 0.031 0.162

0 0.180 0.483 0 0.117 0.382 0 0.105 0.378 0 0.075 0.356

0 0.580 3.088 0 0.734 12.494 0 0.723 12.474 0 0.426 2.863

3 1.381 5.683 5 2.375 75.282 5 2.277 66.503 3 1.168 5.196

0 0.129 0.250 0 0.050 0.163 0 0.041 0.159 0 0.031 0.153

0 0.168 0.450 0 0.108 0.355 0 0.097 0.351 0 0.070 0.332

0 0.479 1.488 0 0.493 1.442 0 0.484 1.440 0 0.346 1.322

1 0.941 3.965 1 1.131 5.497 1 1.123 5.495 1 0.796 3.734

0 0.164 0.260 0 0.057 0.160 0 0.048 0.156 0 0.039 0.150

0 0.180 0.431 0 0.108 0.335 0 0.097 0.332 0 0.072 0.314

0 0.398 1.297 0 0.412 1.250 0 0.404 1.248 0 0.280 1.157

0 0.727 2.629 0 0.852 2.759 0 0.845 2.757 0 0.590 2.483
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a

0.5
1.0

3.0

5.0

0.5

1.0

3.0

5.0

0.5
1.0
3.0
5.0

0.5
1.0

3.0

5.0

0.5
1.0
3.0

5.0

0.5

1.0
3.0
5.0
—_—_——___————————_——————

p
a
p
—
n
H
H
‘
:

0
3
0
3
0
3
0
3

Total

fail

97

1598

2693

39

296
C
O
C
O

C
O
C
O

N
O
O
O

C
O
C
O

Table 4.3 Moment comparison of estimators for a for sample size n=50

fail bias I {MSE

5
78

1263

2201

C
O
C
O

0
6
°
C

0
0
°
C

MME

0.183

0.543

1.594

1.039

0.095
0.161

1.069
2.921

0.082

0.131
0.584
1.874

0.078
0.108

0.319

0.680

0.097
0.102
0.267

0.485

0.139

0.123
0.229
0.458

0.516
1.796

5.169

6.270

0.231

0.469

4.524

10.009

0.206
0.388
2.782

8.027

0.188
0.341

1.122
2.312

0.182
0.315
0.984

1.865

0.199

0.306
0.918
1.663

fail bias I {MSE

5
94

1540

2625

0

0

38
289

C
O
C
O

C
O
C
O

”
C
O
O

C
O
C
O

MLE

0.131

0.633
3.090

4.470

0.047

0.113
1.994

5.250

0.035

0.083

0.625
2.999

0.029
0.063

0.313

0.763

0.030
0.060
0.267

0.547

0.040

0.064

0.225
0.511

0.620
4.793

14.413

32.634

0.172

0.399

52.277

49.650

0.141

0.314

4.616

40.697

0.121
0.258

1.055

2.354

0.114
0.240
0.920

1.846

0.115

0.235
0.842
1.630

5
97

1598

2693

0
0
0
0

C
O
C
O

MQLE CLE

fail bias 1 CMSE fail bias I {MSE

0.110 0.606 5 0.085

0.597 4.794 78 0.374

3.034 14.407 1263 1.209

4.407 32.571 2201 0.558

0.035 0.166 0 0.029

0.095 0.392 0 0.074

1.978 52.609 28 0.883
5.231 50.129 237 2.591

0.024 0.137 0 0.020

0.068 0.309 0 0.053

0.609 4.615 0 0.441

2.984 40.873 22 1.647

0.020 0.118 0 0.017
0.050 0.254 0 0.039

0.302 1.052 0 0.220

0.753 2.352 0 0.566

0.021 0.111 0 0.019

0.048 0.237 0 0.038
0.257 0.918 0 0.187

0.538 1.844 0 0.389

0.032 0.111 0 0.030

0.053 0.232 0 0.043
0.216 0.840 0 0.151
0.503 1.628 0 0.368C

O
C
O

0.403

1.588

4.743

5.863

0.162

0.372
4.256
9.592

0.135
0.297

2.433

7.569

0.117
0.247

0.994

2.179

0.110
0.230
0.873

1.737

0.110

0.226
0.803
1.540
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Table 4.4 Moment comparison of estimators for a for sample size n=100

 

 

 

Total MME MLE MQLE CLE

01 p fail fail bias JMSE fail bias \/MSE fail bias ‘/MSE fail bias JMSE

0.5 1 0 0 0.083 0.243 0 0.050 0.211 0 0.032 0.202 0 0.034 0.197
1.0 1 2 1 0.221 0.782 1 0.184 0.874 2 0.151 0.861 1 0.139 0.672

3.0 1 503 406 1.958 6.702 481 3.528 48.300 503 3.438 46.244 406 1.703 6.282

5.0 1 1576 1347 2.705 9.764 1530 6.689 74.635 1576 6.465 64.416 1347 2.346 9.311

0.5 3 0 0 0.043 0.143 0 0.018 0.104 0 0.006 0.100 0 0.009 0.101
1.0 3 0 0 0.082 0.296 0 0.053 0.242 0 0.035 0.237 0 0.035 0.233

3.0 3 0 0 0.406 1.650 0 0.416 1.765 0 0.393 1.759 0 0.324 1.557

5.0 3 17 12 1.368 5.869 17 1.618 9.560 17 1.594 9.557 12 1.227 5.551

0.5 5 0 0 0.043 0.138 0 0.018 0.092 0 0.008 0.090 0 0.011 0.090
1.0 5 0 0 0.067 0.257 0 0.040 0.201 0 0.025 0.198 0 0.026 0.196

3.0 5 0 0 0.237 0.967 0 0.234 0.923 0 0.218 0.919 0 0.175 0.885

5.0 5 0 0 0.620 2.444 0 0.663 2.487 0 0.647 2.483 0 0.522 2.310

0.5 10 0 0 0.043 0.124 0 0.015 0.080 0 0.006 0.078 0 0.009 0.079

1.0 10 0 0 0.057 0.227 0 0.031 0.169 0 0.018 0.167 0 0.019 0.165

3.0 10 0 0 0.161 0.705 0 0.148 0.640 0 0.137 0.638 0 0.105 0.620

5.0 10 0 0 0.321 1.364 0 0.338 1.327 0 0.328 1.325 0 0.252 1.279

0.5 15 0 0 0.070 0.124 0 0.018 0.078 0 0.010 0.075 0 0.013 0.076
1.0 15 0 0 0.060 0.215 0 0.030 0.159 0 0.018 0.157 0 0.019 0.156

3.0 15 0 0 0.126 0.626 0 0.121 0.559 0 0.111 0.558 0 0.083 0.544

5.0 15 0 0 0.236 1.157 0 0.264 1.107 0 0.256 1.105 0 0.191 1.072

0.5 20 0 0 0.123 0.157 0 0.029 0.079 0 0.020 0.076 0 0.024 0.077

1.0 20 0 0 0.087 0.203 0 0.037 0.151 0 0.026 0.149 0 0.027 0.148

3.0 20 0 0 0.116 0.610 0 0.112 0.540 0 0.104 0.539 0 0.077 0.527
5.0 20 0 0 0.219 1.082 0 0.238 1.015 0 0.231 1.014 0 0.172 0.986
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Table 4.5 Moment comparison of PM for sample size n=20

 

 

 

MME MLE MQLE CLE
01 p Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

0.5 1 2.887 1.757 2.981 1.909 2.996 1.937 3.090 2.103

1.0 1 1.956 1.102 2.022 1.151 2.042 1.180 2.087 1.286
3.0 1 1.431 0.680 1.444 0.696 1.457 0.712 1.515 0.777

5.0 1 1.256 0.580 1.263 0.604 1.273 0.620 1.333 0.698

0.5 3 6.845 4.764 6.749 4.870 6.787 4.946 6.899 5.214
1.0 3 4.382 2.927 4.303 2.832 4.340 2.879 4.376 3.008

3.0 3 2.420 1.412 2.419 1.376 2.431 1.389 2.452 1.449
5.0 3 2.032 1.113 2.030 1.079 2.037 1.086 2.072 1.149

0.5 5 11.080 7.845 10.807 7.804 10.847 7.915 10.992 8.253
1.0 5 6.466 4.568 6.250 4.318 6.285 4.376 6.338 4.533

3.0 5 3.222 2.033 3.180 1.931 3.192 1.943 3.221 2.030
5.0 5 2.580 1.535 2.563 1.466 2.569 1.475 2.607 1.564

0.5 10 20.410 13.706 19.653 14.272 19.729 14.472 19.929 14.979

1.0 10 11.651 8.322 11.071 7.810 11.126 7.904 11.179 8.150

3.0 10 5.523 3.615 5.387 3.433 5.399 3.448 5.418 3.558

5.0 10 4.051 2.537 4.005 2.431 4.010 2.438 4.033 2.520

0.5 15 27.072 16.831 27.264 19.117 27.346 19.324 27.511 19.809

1.0 15 16.853 11.531 15.957 11.226 16.029 11.364 16.123 11.684

3.0 15 7.679 5.290 7.416 4.930 7.436 4.956 7.454 5.113
5.0 15 5.534 3.599 5.417 3.385 5.425 3.391 5.435 3.498

0.5 20 31.565 21.974 33.559 22.990 33.572 23.142 33.605 23.477
1.0 20 20.947 13.572 20.163 14.274 20.247 14.402 20.306 14.698

3.0 20 9.864 6.750 9.454 6.286 9.473 6.307 9.520 6.485
5.0 20 7.071 4.626 6.902 4.423 6.910 4.432 6.936 4.543
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Table 4.6 Moment comparison of PM for sample size n=30

 

 

 

MME MLE MQLE CLE

a p Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

0.5 1 2.534 1.504 2.549 1.541 2.559 1.565 2.591 1.633

1.0 1 1.759 0.925 1.783 0.950 1.800 0.975 1.817 1.025

3.0 1 1.310 0.562 1.316 0.555 1.325 0.568 1.350 0.601

5.0 1 1.174 0.463 1.177 0.466 1.183 0.474 1.215 0.520

0.5 3 5.856 4.099 5.614 4.012 5.648 4.085 5.700 4.194

1.0 3 3.738 2.450 3.594 2.284 3.619 2.317 3.637 2.378

3.0 3 2.080 1.159 2.068 1.135 2.076 1.147 2.079 1.173

5.0 3 1.799 0.942 1.801 0.918 1.806 0.923 1.817 0.956

0.5 5 9.404 6.655 8.931 6.336 8.976 6.424 9.033 6.557

1.0 5 5.429 3.634 5.160 3.431 5.187 3.478 5.205 3.548

3.0 5 2.756 1.705 2.700 1.611 2.710 1.625 2.734 1.679

5.0 5 2.195 1.249 2.190 1.208 2.194 1.214 2.210 1.255

0.5 10 17.206 11.424 16.305 11.729 16.376 11.891 16.440 12.080

1.0 10 9.878 7.031 9.121 6.359 9.170 6.446 9.177 6.542

3.0 10 4.633 3.028 4.460 2.816 4.471 2.826 4.479 2.881

5.0 10 3.439 2.132 3.372 2.046 3.378 2.053 3.389 2.092

0.5 15 21.912 14.499 22.229 15.768 22.303 15.914 22.358 16.082

1.0 15 14.143 9.568 13.245 9.311 13.311 9.416 13.322 9.548

3.0 15 6.364 4.222 6.058 3.930 6.074 3.945 6.079 4.001

5.0 15 4.657 2.965 4.531 2.789 4.538 2.798 4.550 2.843

0.5 20 26.913 18.775 27.756 19.271 27.718 19.362 27.654 19.462

1.0 20 16.903 11.205 16.516 11.477 16.576 11.584 16.568 11.700

3.0 20 8.163 5.562 7.794 5.129 7.807 5.145 7.828 5.243

5.0 20 5.904 3.917 5.744 3.686 5.750 3.693 5.764 3.769
 



Table 4.7 Moment comparison of PM for samp1e size n=50

 

 

 

MME MLE MQLE CLE

a ,1 Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

0.5 1 2.146 1.216 2.101 1.205 2.113 1.226 2.128 1.248

1.0 1 1.527 0.744 1.516 0.715 1.528 0.734 1.526 0.743

3.0 1 1.193 0.431 1.196 0.431 1.203 0.440 1.210 0.449

5.0 1 1.089 0.315 1.088 0.309 1.094 0.321 1.107 0.340

0.5 3 4.807 3.255 4.523 3.044 4.552 3.093 4.560 3.126

1.0 3 3.047 1.927 2.898 1.769 2.916 1.798 2.909 1.810

3.0 3 1.772 0.950 1.744 0.900 1.752 0.906 1.752 0.914

5.0 3 1.546 0.724 1.543 0.709 1.548 0.713 1.545 0.723

0.5 5 7.621 5.235 7.048 4.908 7.082 4.992 7.089 5.016

1.0 5 4.451 2.926 4.130 2.652 4.153 2.686 4.150 2.701

3.0 5 2.288 1.323 2.231 1.253 2.240 1.266 2.241 1.284

5.0 5 1.854 0.980 1.833 0.953 1.838 0.958 1.843 0.973

0.5 10 13.646 9.047 12.644 9.004 12.725 _ 9.124 12.729 9.146

1.0 10 7.980 5.628 7.203 4.963 7.241 5.023 7.233 5.054

3.0 10 3.750 2.365 3.592 2.203 3.603 2.218 3.606 2.240

5.0 10 2.756 1.624 2.704 1.558 2.707 1.564 2.704 1.581

0.5 15 17.233 11.687 17.430 12.230 17.470 12.355 17.459 12.368

1.0 15 11.026 7.409 10.162 7.049 10.204 7.133 10.193 7.149

3.0 15 5.167 3.422 4.903 3.152 4.914 3.161 4.912 3.191

5.0 15 3.770 2.333 3.659 2.199 3.662 2.201 3.658 2.228

0.5 20 23.171 15.334 21.912 15.256 21.781 15.260 21.740 15.245

1.0 20 13.177 8.756 12.890 8.945 12.934 9.034 12.894 9.047

3.0 20 6.577 4.398 6.159 4.043 6.175 4.060 6.176 4.097

5.0 20 4.693 2.994 4.550 2.863 4.553 2.868 4.550 2.890
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Table 4.8 Moment comparison of PM for sample size n=100

MME MLE MQLE CLE

a ,1 Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

0.5 1 1.717 0.893 1.654 0.836 1.665 0.852 1.664 0.850

1.0 1 1.267 0.497 1.250 0.480 1.258 0.489 1.253 0.484

3.0 1 1.073 0.269 1.073 0.264 1.078 0.273 1.077 0.273

5.0 1 1.026 0.161 1.024 0.154 1.027 0.162 1.029 0.168

0.5 3 3.542 2.341 3.259 2.095 3.282 2.136 3.271 2.124

1.0 3 2.336 1.374 2.197 1.259 2.211 1.279 2.200 1.272

3.0 3 1.421 0.637 1.398 0.611 1.403 0.617 1.398 0.615

5.0 3 1.284 0.511 1.272 0.493 1.274 0.498 1.274 0.498

0.5 5 5.723 3.904 5.100 3.414 5.136 3.472 5.117 3.445

1.0 5 3.363 2.133 3.084 1.927 3.106 1.956 3.091 1.947

3.0 5 1.760 0.928 1.713 0.875 1.719 0.881 1.722 0.886

5.0 5 1.469 0.689 1.446 0.659 1.448 0.661 1.452 0.668

0.5 10 9.878 6.629 9.085 6.348 9.143 6.430 9.115 6.387

1.0 10 5.818 3.942 5.224 3.493 5.258 3.549 5.236 3.530

3.0 10 2.793 1.671 2.670 1.563 2.677 1.570 2.676 1.578

5.0 10 2.123 1.166 2.073 1.125 2.075 1.129 2.078 1.134

0.5 15 12.851 8.785 12.560 8.767 12.548 8.804 12.542 8.780

1.0 15 8.017 5.356 7.347 5.045 7.372 5.103 7.348 5.080

3.0 15 3.758 2.346 3.519 2.163 3.526 2.164 3.519 2.173

5.0 15 2.782 1.633 2.692 1.557 2.698 1.560 2.700 1.571

0.5 20 20.190 11.728 16.131 11.108 15.872 11.002 15.962 11.039

1.0 20 9.549 6.522 9.314 6.490 9.344 6.542 9.312 6.517

3.0 20 4.814 3.119 4.488 2.853 4.501 2.865 4.507 2.874

5.0 20 3.517 2.126 3.354 2.022 3.357 2.025 3.352 2.035
______——____—.__—._——_——

—-——_—————



4.5 Discussion of results.

An examination of Tables 4.1, 4.2, 4.3 and 4.4 shows the results obtained from

the simulation study are generally in broad agreement with the results of the other

studies when the situations are comparable. On the occasion that there is some

discrepancy (e.g. n = 100, a = 5 and p = 1 where the results here differ somewhat

from Willson et a1. (1984) but agree with Anraku and Yanagimoto (1990)) the

reason for the difference is not clear but a possible explanation is the number of

estimators considered. As was noted earlier, a sample is discarded if one or more of

the estimators of a fails for that sample. Hence, the more estimators one includes

in a study the more samples that will be discarded, inevitably altering the estimates

of the bias and MSE of the estimators. Now, of the estimators considered in this

paper, Willson et al. (1984) include only the MME and MLE in their study whilst

Anraku and Yanagimoto (1990) only exclude the MQLE. A better agreement would

thus be expected with the latter’s results.

With regard to the failure rate of the four estimators, the results obtained

here agree with the results of others, bearing in mind that here the failure count

corresponds to the number of failures in 10000 samples, not the number of samples

that failed before 10000 successful samples were observed. For the MQLE it can be

observed from Tables 4.1 to 4.4 that it failed for all samples for which the MLE and

hence for which the MME and CLE failed. This is somewhat contrary to expectation,

given that the MQLE always has smaller bias than the MLE. The reason for this

appears, from a limited examination of the individual estimates, to be because the

MQLE differs from a more than the MLE only when the latter is significantly larger

than a.

Before comparing the four estimators on the other criteria one further comment

on the failure rate is warranted in light of the results of Chapter 3. In Section 3.5 we

showed that the limiting distribution of the moment estimator for a when a and [I

change with n depends on the limit of An = np?1 /(1%, with the limiting distribution of

the estimator having no finite moments if limnqoo An < 00. This then is in agreement
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with the results observed in Tables 4.1 to 4.4, that being that the erractic behaviour

of the MME for or increases as it decreases and 01 increases. Also, for fixed p and a

the erractic behaviour decreases as n increases.

If an overall comparison of the four estimators is based on the absolute bias

of the estimators alone, over the range of parameter values considered, it would

appear that the CLE is generally superior but with the MQLE better for n = 100

and a < 1. The MME on the otherhand, which is superior in terms of ease of

computation, tends to perform worst for smaller values of a but outperforms the

MLE and the MQLE as 01 increases. These results can be readily observed from

Table 4.9 where the absolute bias of the estimators has been ranked from smallest

to largest within each parameter and sample size configuration.

Similar comparisons of the four estimators can be based on the variance, mean

square error and coefficient of variation. Again the CLE appears to generally out-

perform the other three estimators in all three categories over the range of parameter

values considered. For those parameter configurations for which it is outperformed

on a particular category it is then ranked second.

As a further comment on the specific results given in Tables 4.1 to 4.4 it can be

seen that for certain parameter values (e.g. n = 50, p = a = 5) the bias and MSE of

the MLE and MQLE are significantly worse than for the other two estimators. The

reason for this is that the MLE and MQLE have a higher tendency than the other

two estimators considered to return the occasional very extreme finite estimate for

a. The results in Tables 4.1 - 4.4 are therefore dependent on the upper limit chosen

to correspond to effectively infinite estimates of a. In practice this upper limit would

often be chosen significantly less than 10000 in which case the differences referred

to in the tables would be reduced. Hence the need for an alternative assessment

criterion.

The conclusions change when assessment is based on the second criterion, the

percentile measure, the summary statistics for which are given in Tables 4.5 to 4.8.
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. Table 4.9 Ranked absolute biases for different sample sizes.

n=100

A B C D

n=50

A B C D

n=30

A B C D

11:20

A B C D

  

p

0.5

 

1.0

3.0
5.0

0.5
1.0
3.0

5.0

0.5

1.0

3 0
5.0

q
w

10

10

10
10

0.5

1.0

3.0
5.0

l5

15
15

15

0.5

1.0

3.0

5.0

3

3

4
4

4
4

2
2

LEGEND: A-dMME; B-GMLt-J;

0.5 20

1.0 20

3.0 20
5.0 20

C-GMQLE; D-dcw

  



Table 4.10 Ranked average PM for different sample sizes.

n=IOO
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Consider the average PM values, the ranked values of which are given in Table

4.10 for the different parameter and sample size configurations. Here the MME

performs the worst of the four estimators except for the smaller values of n and p,

in which case it performs best. The MQLE and the CLE generally perform worse

than the MLE based on this criterion. Of possibly greater interest however is how

small the actual differences are between the averages for the four estimators for

most values of n, a and p using this criterion. Therefore, if ease of computation is

a consideration the MME which can be obtained explicitly, must be considered.

In terms of the standard deviations of the PM the MLE again generally tends

to perform the best of the four estimators but here, as before, the MME estimator

can not be ruled out owing to the small differences.

One may now ask if the findings based on the percentile measure would have

been the same had a different choice of A been used. To help answer this question a

limited, independent, simulation study was conducted with A = [0.1, 0.9] comprising

only 1000 simulations for the case n = 20 and for a restricted set of the a and p

values considered above. The results of this limited study gave almost identical

conclusions to those above.

As a final comment, it is difficult on the basis of the study to find any grounds

upon which to recommend the MQLE. As an estimator of a it cannot be solved for

explicitly, fails more often than the three other estimators and is generally outper-

formed by at least one of the other three estimators on either criterion.
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Chapter 5

Miscellany on the negative

binomial distribution.

In the previous chapters we considered estimation for mixed gamma-Poisson models

for which the negative binomial distribution (NBD) is a special case. In all that

work it was assumed implicitly that the sample contained no contamination, that is,

data from alternative distributions. For the remaining chapters we focus attention

on robust estimation and related matters.

In this chapter we retain our focus on the NBD and give some results associ-

ated with robustness. Firstly, given the close relationship between the median and

robustness we obtain in Section 5.1 bounds for the median of a NBD. From these

bounds it follows that the median is not necessarily an appropriate robust estimate

for the mean of a NBD and instead we will show that a quantile other than the

50”I percentile should be used. In Section 5.2 we obtain bounds for the mean in

terms of this alternative quantile which depends on a. This bound is then used in

Section 5.3 to obtain a robust estimator for the NBD mean when a is known. In the

concluding remarks, Section 5.4, we discuss briefly the robust estimation problem

for the negative binomial distribution.
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5.1 Bounds for the Median of the Negative Bi-

nomial Distribution.

For the beta. distribution Groeneveld and Meeden (1977) outlined a procedure by

which it can be shown simply that the median lies between the mean and mode,

provided that the two parameters of the distribution are strictly greater than 1.

Using this result Payton, Young and Young (1989) obtained bounds for the “median”

of the negative binomial distribution (NBD) when the scale parameter is strictly

greater than one.

Unfortunately, the value(s) treated by Payton et al. (1989) as median values

for the NBD do not, except in the case where there exists a value of x such P(X S

3:) = %, satisfy the generally accepted definition of the median of a random variable

X, that being any value (m say) satisfying P(X < m) 5 § 5 P(X S m). The

bounds thus obtained are not necessarily correct for this definition of the median

(e.g. see Payton et al. (1989), Remark 2).

This section hence has two objectives. Firstly, we modify the results of Payton

et al. (1989) so that they hold for a rigorously defined median. The definition we

employ is

Med(X) = inf{;r : P(X S :c) 2 %} . (5.1)

All reference hereafter to the median will refer to this value. Secondly, we extend the

results obtained by Payton et al. (1989) to cover the complete family of NBDs. In

achieving this we extend the results available for the median of the beta distribution.

Let Y = G'M be a beta(p, q) random variable with distribution function Gm(y)

and density function gM(y) given by

P(p + q) p—l q—l
= ._ _ - < < 1- 0, > 0 .

Theorem 5.1

If Y has a beta(p,q) distribution then

O<Med(Y)<E(Y)<§ er p<q,
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Med(Y)=E(Y)=§ e p=q,

§<E(Y)<Med(Y)<1¢> p>q.

Proof

To obtain this result we separate the parameter space into the disjoint regions p = q,

p < q and p > q. By symmetry, if p = q then Med(Y) = E(Y) = %. For the region

p < q we now show, by considering each of the following sub-regions 1 < p < q,

1=p<q,p<1 Sqandp<q<1 separately,that

0 < Med(Y) < E(Y) < % (5.2)

for p < q.

For the sub-region 1 < p < q, (5.2) immediately follows from the result of

Groeneveld and Meeden(1977) that

—1
0<p———:q_2=Mode<Y><Med<Y><E<Y><§ ; 1<p<q. (5.3)

For 1 = p < q, E(Y) = 1/(1+ q) < 1/2 and Med(Y) = 1—(1/2)° and then (5.2)

follows from (q/(l + q))" < 1/2.

For the remaining two sub-regions the approach outlined in Groeneveld and

Meeden (1977) is used, beginning with p < l S q. Let W be a continous random

variable with density and cumulative distribution h(w) and H(w) respectively, with

h(W) = 1(w E (0, m))gp.q(w) + I (w 6 (m, 2m))gm(2m - 10)

where m = Med(Y) < %. The latter inequality follows since gM(y) is decreasing on

[0,1]. Obviously h(w) depends on p and q but this dependence has been supressed.

Now, since GM(y) S H(y) V y and Gp,q(y) < H(y) for some 3/, we have

E(Y) = /o°°(1-a,,,(y»dy
> /o°°(l—H(w))dw

= E(W)
That (5.2) is thus satisfied for p < 1 S q follows as E(W) = Med(Y) by symmetry.
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For p < q < 1 we have E(Y) = i— < %. Further, for all y E (0,0.5)

 

 

 

p+q

g,,.,(0.5 — y) = (0.5 — y)“ (0.5 + y)““
gp,.,(0.5 + y) 0.5 + y 0.5 — y

> 0.5 — y ”'1 0.5 + y ‘1“
0.5 + y 0.5 — y

= 1

implying that Med(Y) < %. Equation (5.2) can then be shown to hold for this

sub—region by defining a random variable W as for the sub-region p < 1 S q above

and repeating the same argument.

Hence we have shown (5.2) holds for all p < q. That the result

§<E(Y)<Med(Y)<1e> p>q

holds then follows by symmetry and hence we have proved our result.

Now let X have a negative binomial distribution with mean [1 (> 0), shape

parameter a (> 0) and cumulative distribution function F(x) Using the result of

Patil (1960)

F<w>=Ga44+1<rm ; $20, (5.4)

where [3] denotes the largest integer not greater than 9:, together with a tightening

of the procedure employed by Payton et a1. (1989) we obtain the following result for

the median of a NBD(p,a).

Theorem 5.2

Ifn = Med(X) then for all 0: > 0 and p > 0

[(“T‘IMH S n < It iffl>a

ll‘l—l S n < (97:1)#+1ifpSa

where ]a:[ (= ——[—m]) denotes the smallest integer not less than 2:.

Proof

In the proof below use is made of the fact that, by definition, 17 is an integer.
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Consider the case p > a.

From (5.1) and (5.4) we have % _<_ F(n) = Ga,,,+1(;:—u) giving

" )<l. (5.5)MCd(Ga'n+1) S (a + [l 2
 

So by Theorem 5.1 we obtain E(Ga,,,+1) < % and hence

n>a~1 forallp>a. (5.6)

For r] 2 a we have, again by Theorem 5.1,

Memo...) s Ema.) = (#5) ,

where the last term is strictly greater than (0%“) because

% > F(r) —1)= Ga,,,(;:—u) => Med(Ga,,,) > (at—:7 .

From here we obtain the result 17 < [1 whenever 17 Z a and hence

17 < p for all p > a . (5.7)

For the case a > 1, we have, from (5.6), (5.3) and (5.5)

(Bi—i?) = Mode(Ga,,,+1) < Med(Ga,,,+1) S (j—fl)

from which it follows that

n > (fig-1);; for all 1< a < p. (5.8)

Equations (5.6), (5.7) and (5.8) can be combined to give

[(GT;1)#]+ISII</1 if p>a.
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For the case p S a the result is obtained similarly. First, since % S F(17) =

Ga,,,+1(:$7) we have

 

 

a
< .Med(Ga,,,+1) _ a + II (5 9)

whilst % > F(17 — 1) = 001.40%“) implies that

a 1
> — .Med(Ga,,,) > a + p _ 2 (5 10)

Hence, by Theorem 5.1 we have E(Gam) = fl; > %, since Med(Ga,,,) > %, and thus

17 < a forall 71301. (5.11)

For 17 S a — 1 we have E(Ga,n+1) = fl; 2 % so that by Theorem 5.1 and (5.9)

a a
_— .-= < <a + 77 + 1 E(Ga.n+l) — Med(Ga.n+l) — a + ll

 S (5.12)1

2

giving 17 2 p — 1. On the otherhand, 17 > a — 1 implies 17 > y - 1, thus giving

p—lgn<a forall 7150:. (5.13)

To tighten the upper bound note that for a > 1, using the above results and the

complementary result to (5.3) given by Groeneveld and Meeden (1977), that being,

%< E(Y) < Med(Y) < Mode(Y) = gg—l— ; 1< q <p
q — 2

that

l
a —‘1

_ <—2 < E(Ga,n) < Med(Ga.fl) -— a + 77 _ 2

since a > 17. This combined with (5.10) gives 17 < (gt—1» + 1. For a S 1 we have

by (5.11) that 17 = 0. Combining the above and using the information that 17 is an

integer gives the second part of the result in Theorem 5.2 .
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Corollary 5.1

If p < a and both p and a are integers then 17 = [1.

Proof

In this case, from (5.11) and since a is an integer we have 7] S a — 1.

Ifn=a—1wehaveansincepSa—l.

For n < a — 1, using a similar argument to (5.12), we obtain

1 a a

_ ___=Eaa MdGa <
2 < a+n+1 ( vn+1)< e ( 'n+1)— 0+}!

 

from which it follows that 7] > p — 1.

Hence 7] 2 p and thus the corollary follows from Theorem 5.2 .

Bounds for the median of the negative binomial distribution in the restricted

case of a an integer are also given in Gob (1994) using a different parametrization.

The method used to obtain these bounds is different from the method above but

the bounds are equivalent to those given in Theorem 5.2 and Corollary 5.1.

5.1.1 Remarks on Theorem 5.2 .

Let X ~ NBD(p,a) and n = Med(X).

1. pr = a then 1] = ]p[ —l.

2. Let M = (931)» The mode of X is ([M] V0) if M is not a positive integer

whilst the modal values are M and M —1 if M is a positive integer. From the lower

bounds in Theorem 5.2 we have 1) always bounded below by the mode. Moreover, if

M is a positive integer and a 2 p then 17 = M.

3. It is not the case that the median of X is always bounded above by the

mean of X. For example, if X N NBD(1.9,3) then 1] = 2.

4. If a and 17 both take values in (0,1] then 17 = 0.
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5. For the case p > a it can be seen from Theorem 5.2 that the bounds for

the median of X ~ NBD(p, a) are not very tight. For example, for a NBD(20, 1.4)

distribution the bounds for the median are 6 S 17 S 19, whilst the actual median is

15. However, as

9!— —d-> l"(a,%) as p—roo (afixed),
p

there would appear little scope for relative tightening if the bounds obtained by

Chen and Rubin (1986) for a gamma random variable

(a — 1/3) < Med(I‘(a, 1)) < a

are tight as these give the following bounds

_ l
(a 3) < lim median (é) <1.

a u-wo y

5.2 Percentile related bounds for the mean of

 

the negative binomial distribution.

For the Poisson and binomial distributions bounds are available for the median in

terms of the mean, where the median is defined as inf{a: : P(X S 2:) 2 0.5}. In

particular, if X has a Poisson distribution with mean A and median m, then from

Teicher (1955) we obtain the result

[A] S m < A + 1 .

The corresponding result for the binomial random variable B(n,p), obtained by

Choi and He (1991), is as above but with A replaced by np.

Reversing the above result we obtain the following bounds for the mean of the

Poisson random variable:

m—1<A< m+1, (5.14)

with an equivalent result holding for the binomial random variable. It thus follows

that in both cases the mean and median are equal when the former is an integer.
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(Note: For the Poisson case Chen and Rubin (1986) obtain the tighter bounds

m—§<A<m+1)

Using (5.14), the sample median can be justified as a. robust estimator of

the population mean for either a Poisson or binomial random variable, with the

estimator having bounded influence and finite sample breakdown point of %. The

estimator is however not very efficient and, as can be seen from (5.14), may exhibit

some bias. The sample median will though be useful for those cases where there

may be outliers or where an initial choice of robust estimator is required for the

development of a more efficient robust estimator. This second situation includes the

case when the latter estimator has influence function dependent on the initial choice

of estimator.

If consideration is now given to the negative binomial distribution having mean

u (> 0) shape parameter a (> 0), written NBD(p,a), the sample median is no

longer a satisfactory estimator for the population mean. This follows from the

result that the population median and mean may differ significantly, as can be seen

from Theorem 5.2.

To overcome this problem, we obtain equivalent bounds to (5.14) for the mean

)1 of an NBD(}£,(1). Here though it is necessary to replace the median in (5.14) with

a percentile dependent on a.

Let Y have a gamma distribution with parameter a such that Y has density

g(y) = y““e‘”/I‘(a) for y > 0 , and let

Pa = 130’ S 0t) , (5.15)

where pa > % since the median of Y is less than its mean.

Theorem 5.3

If X ~ NBD(p,a) and mo, = inf{:z: : P(X S z) 2 pa} , then

ma—1<;t< ma+1, (5.16)

with y = ma if )1 is an integer.
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Before proving Theorem 5.3 it is necessary to obtain a few minor results pertaining

to a function A(2:; )1, a) defined as

A(z;p,a) = P(X S :r) where X ~ NBD(p,a) , (5.17)

and which, using (5.4), satisfies

A(:c;p,a) = [Ia—:7Wt‘"1 (l -— t)[‘] dt , (5.18)

provided .1: is non-negative. These results, and the method of proof of the above

theorem, are in effect an extension of the result obtained by Teicher (1955).

Lemma 5.1

For fixed I (2 0) and a (> 0) the function A(:1:; ma) is monotonically decreasing

in p.

The remaining lemmas refer to the function A(:z:; :c, a) as a function in z for a.

given a. This is a piecewise continuous function and is illustrated in Figure 5.1.

Figure 5.1 A(:c; 1:,a) versus 1:
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Lemma 5.2

Define A(0; 0,0) to be 1 and let n be a non-negative integer. Then

A(n;n,0) > A(n +1;n + 1,0) .

Proof

As the result obviously holds for n = 0 we need only consider the case n 2 1.

Let

C'n. = A(n;n,a)—A(n;n+l,a)
.717 I‘(0+n+1) _1

_____________ ta __ n

/__9— F(0) n! (1 t) dt
a+n+1

and

dn = A(n+ 1;n+ 1,0) —A(n;n+1,0)

I‘(0+n+1)( 0 )°( n+1 )"+1
I‘(0)(n+1)! 0+n+1 0+n+1 .

To prove Lemma 5.2 it suffices to prove an > d" , or equivalently,

fi 1 0 °' n+1 “+1
+ —1t“ l-tndt ( ) ( ) . .1

/a ( ) > n+1 0+n+1 0+n+1 (5 9)
W

Now since t"’“(1 — t)" is decreasing on [0,1] if 0 S 1, and is unimodal with the value

 

zero at t = 0 and 1 on [0,1] if 0 > 1, the minimum of t°'1(1 — t)" on the interval

[0/(0 + n + 1), 0/(0 + n)] occurs at one of the end points of the interval. Hence the

LHS of (5.19) is greater than

0—1 n _2_

mi”{(;fh‘i) (BE-IE) L7 d“
a+n+l

(£54 (41,)" /: dt }- (5.20)
a+n+l

 
 

Using the result that (1 + x‘l)’ is an increasing function in x ensures that both

terms in (5.20) are greater than the RHS of (5.19), thus completing the proof.

Lemma 5.3

If n is a strictly positive integer then

A(n — 1;n,0) < A(n;n + 1,0).
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Proof

With cn and 41,, defined as in Lemma 5.2, the result follows if 6,. < d,._1, or equiva-

lently

  

 

(a+n) /+ t“'1(1—t)"dt < (01:72)“ (01:71)". (5.21)
c+n+1

Now, for a S n + 1 equation (5.21) follows readily by noting that t""'1 (l — t)" has

its maximum at t = a/(a + n + 1) on the interval [a/(a + n + 1),a/(a + n)]. For

a > n +1 the integrand in (5.21) attains its maximum on the interval of integration

at the point t = (a —-1)/(a + n — 1). Hence, for a > n + l the LHS of (5.21) is less

than

0—1 “‘1 n " :3:

(a+n) (a+n—1) (0+n—l) dt:fi'fi
_ a+n a+n “+"'1 (2—1 "‘1 a a n "

— (a+n+1)(a+n—1) ( a ) (a+n) (a+n)

201—1 20—1 20—2 01—1 “‘1 a a n "

( 2a ) (20—2) ( a ) (a+n) (a+n) '

This last inequality holds since n < a — 1. The lemma then follows on noting that

   

 

  

 
 

 

the last expression is less than the RHS of (5.21).

Lemma 5.4

)LQAWHW) = pa,

where pa is defined in (5.15).

Proof

The result follows directly from the result that if X ~ NBD(p,a) with oz fixed,

then

X
a— —dv Y asp—boo,

p

where Y is a gamma random variable with parameter a. See Pessin (1961).
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We are now in a position to prove main result.

Proof of Theorem 5.3

If p is an integer, then by Lemmas 5.2 and 5.4, A(p; p, a) > pa. For 11 not an integer

A([p] + 1; 11,01) > A([p] + 1; [p] + 1,a), by Lemma 5.1, which in turn is greater than

pa since [p] + 1 is an integer. Hence A([p] +1, 11, a) > pa, . Using a similar argument,

but employing Lemma 5.3 instead of Lemma 5.2 we also have A([p] - 1;;1, a) < pa.

Hence [[1] S ma < p + 1 and from this Theorem 5.3 follows.

5.3 A percentile based estimator for the mean

when a known.

Based on (5.16), the logical extension of using the median to estimate the mean of a

binomial or Poisson random variable is to use the pf,“ sample percentile to estimate

the mean of a NBD(p,a) random variable when a is known. This would then give

a robust estimator with bounded influence function and finite sample breakdown

point equal to 1 —— pa.

However, instead of using 13%, as the estimator of p we propose the following

modification which sacrifices none of the robustness properties mentioned earlier:

= a(F"'(O) — 1) if ma—= 0

= 5+ .5 if rho, > 0, (5-22)

where

. __ A _ —F(mo,— l)

f — max {0 , (mo, 1)+ _———F(pa) _ F( )}; (5.23)

F(2:) denotes the usual empirical distribution function; and

rho, = inf{a: : F(:c) 2 pa}.

(Note: The value 5, obtained by replacing estimated values by population values

in (5.23),1s thepg'percentile of F5(a:), a distribution function related to F(a:) by

Fs(:c) = F([a:]) + (a: —[:1:]) (F([.1:] + 1) — F([z])) for a: Z 0 and zero otherwise.)
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This estimator has two advantages over rha. Firstly, it avoids giving a zero

estimate, except in the case when all data values are zero. This is achieved by using

a zero-class estimator whenever m = 0. Secondly, it contains an adjustment to rho

which attempts to correct for its bias, the justification for which is based on the

following argument.

Let

A([#l;[#]+c,a) = pa (5.24)

where c, using the results in Section 5.2, can be shown to lie in the interval (0,1).

Also, approximate the continuous segments of A(z;1:,a), considered as a function

of :r, by straight line segments. We now consider the case p 2 mo, (and hence

p 5 ma, + c ) and use a geometrical argument which is illustrated with the aid of

Figure 5.2, wherein the solid lines represent the linear approximations to A(:z:; 2:, a)

Figure 5.2 Linear approximations to Agency) versus a:
 

q

12..1

 

    
ma‘l ma, [1 ma+l ma+2
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on the interval [ma — 1,mo, + 2). Since the lengths AB, BE, AC and CD are

approximately F(ma) — pa, ma + c — p, F(ma) - F(ma — 1) and 1 respectively,

where F(:c) = A(a:;p, a), we obtain the result that

p .~. {+c, (5.25)

where E is defined as above. For the case p < ma ( and hence I: > ma — 1 + c)

equation (5.25) also holds and can be shown using an equivalent argument.

It remains now to determine the value of c which satisfies (5.24). This value

is a function of both p and a but appears from examination over a wide range of

values for both parameters, some of which are given in Table 5.1, to decrease as )1

increases and as 0: decreases, quickly approaching a limit of %. Also the value of c

appears to be restricted to the range % and ln(2). Here the ln(2) upper bound is

based on Conjecture 1 of Chen and Rubin (1986) that for a Poisson random variable

X“ with mean )1, a limiting case of the negative binomial, that p— Med(X,,) < ln(2).

Hence c is set to 0.5 in (5.22).

Table 5.1 Values of c satisfying A([p]; [y] + c, a) = pa

a

0.01 0.1 0.5 l 2 5 10 50 100

0.57 0.57 0.58 0.59 0.60 0.62 0.64 0.67 0.67

0.53 0.53 0.54 0.55 0.56 0.58 0.60 0.63 0.65

0.52 0.52 0.53 0.53 0.54 0.56 0.58 0.62 0.63

0.51 0.51 0.52 0.52 0.52 0.54 0.55 0.60 0.61

10 0.51 0.51 0.51 0.51 0.52 0.52 0.54 0.58 0.60

20 0.51 0.51 0.51 0.51 0.51 0.52 0.52 0.56 0.58

40 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.54 0.56
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To determine the bias and efficiency of the estimator in (5.22) a limited

simulation study was undertaken. For each combination of a = 0.5,1,3 81. 5,

p = .5,l,3,5, 10,15 81. 20 and sample size n = 20,30,50 & 100 a total of 10000

simulations were performed. From these 10000 simulations estimates of the bias and
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efficiency were obtained, where the latter is defined as (p + §)/(nVar(fi)) . The

results of this simulation study are given in Table 5.2.

From Table 5.2 it can be seen that as the mean increases the efficiency of the

percentile based estimator is similar to the corresponding percentile estimator of the

mean of a gamma random variable. (For the gamma distribution the asymptotic

relative efficiencies of the pf," percentile estimator to the sample mean when a = .5,

1, 3 and 5 are .541, .582, .617 and .625 respectively.) This is to be expected as an

NBD(/.L, a) approaches a gamma distribution when a is fixed and u increases.

Also apparent from Table 5.2 is the fact that the estimator appears to retain

some bias under certain parameter combinations. This does appear however to

decrease in magnitude as the sample size increases.

5.4 Concluding remarks.

In this chapter a robust estimator for the mean for the NBD has been proposed and

studied when the shape parameter is known. The more general case where the mean

and shape are both unknown still needs consideration. A number of possibilities for

the joint robust estimation of the two parameters are available. One would be the

maximum likelihood estimates based on trimmed or censored samples, trimming or

censoring proportions p1 and p; from the extremes of the sample. These estimates

need to be obtained using iterative methods, solving complicated expressions.

As an alternative to this one may exploit the close relationship between the

NBD and the two parameter gamma distribution, as has been done by Guenther

(1972) and Best and Gipps (1974) when approximating cumulative probabilities.

In the first of the two papers the NBD is approximated with a gamma having the

same first two moments whilst the second paper equates second and third moments.

Using this idea it may be possible to consider a sample supposedly from a negative

binomial distribution as that from a gamma sample with appropriate parameters,

use one of the available robust methods for estimating the parameters of that gamma

(e.g. Kimber (1983), Windham (1995)) and then obtain estimates of the NBD
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Table 5.2 Estimates of Bias and Efficiency of [z

 

a

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

p

0.5

1.0

3.0

5.0

10.0

15.0

20.0

0.5

1.0

3.0

5.0

10.0

15.0

20.0

0.5

1.0

3.0

5.0

10.0

15.0

20.0

0.5

1.0

3.0

5.0

10.0

15.0

20.0

Bias

n = 20 30

0.04 0.02

0.08 0.06

0.16 0.12

0.21 0.18

0.32 0.42

0.51 0.68

0.62 0.80

0.02 0.01

0.04 0.03

0.09 0.05

0.11 0.06

0.13 —0.02

0.18 -0.08

0.28 -0.11

0.00 0.00

0.00 -0.01

0.02 0.00

0.03 0.03

0.09 0.07

0.08 0.13

0.15 0.20

—0.01 0.00

-0.03 -0.03

0.00 —0.02

0.01 0.00

0.09 0.00

0.19 0.00

0.22 -0.01

50

0.01

0.04

0.09

0.15

0.32

0.51

0.77

0.00

0.02

0.04

0.05

0.11

0.12

0.19

0.00

-0.01

0.00

0.02

0.03

0.05

0.00

0.00

-0.03

-0.02

0.00

0.00

0.02

0.00

100

0.00

0.04

0.05

0.05

0.12

0.24

0.35

0.00

0.02

0.02

0.02

0.06

0.11

0.16

0.00

-0.01

-0.01

0.00

0.00

0.04

0.00

0.00

—0.03

-0.02

-0.02
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0.00

0.03

0.03

0.71

0.65

0.61

0.60

0.61

0.59

0.60

0.89

0.72

0.69

0.68

0.62

0.63

0.63

1.02

0.73

0.68

0.67

0.65

0.65

0.64

Efficiency

30

0.60

0.57

0.56

0.54

0.53

0.51

0.53

0.70

0.65

0.60

0.60

0.63

0.61

0.61

0.93

0.71

0.68

0.65

0.63

0.63

0.62

0.96

0.76

0.67

0.65

0.66

0.66

0.65

50

0.60

0.58

0.55

0.53

0.50

0.51

0.50

0.78

0.67

0.63

0.60

0.60

0.59

0.58

0.94

0.73

0.65

0.65

0.64

0.64

0.64

0.99

0.75

0.65

0.67

0.64

0.66

0.64

100

0.68

0.57

0.57

0.57

0.54

0.54

0.55

0.86

0.65

0.61

0.60

0.60

0.59

0.59

1.00

0.74

0.63

0.63

0.63

0.64

0.65

1.01

0.76

0.67

0.66

0.64

0.64

0.63



parameters from the robust estimates of the gamma parameters. This idea could

also be used when one of the parameters is known.

This estimation problem is not pursued further here. Instead, in the next two

chapters robust estimation for more general models is developed, firstly for normal

linear mixed models and then for generalized linear mixed models (GLMMs). Using

the results for GLMMs in Chapter 7 approximate robust parameter estimates for a

NBD can be obtained as a special case. There though, instead of approximating a

NBD by a two parameter gamma as suggested above, the NBD will be approximated

by a mixed lognormal-Poisson model. This approximation should be reasonable since

the gamma and lognormal distributions have similar shaped distributions (provided

the gamma parameter is greater than 1). Also, the variance of both the NBD and

the mixed lognormal-Poisson distribution are quadratic in the mean.
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Chapter 6

Robust estimation in linear mixed

models.

To limit the influence of outlying results in the mixed-model analysis Fellner (1986)

developed a robust procedure based on the mixed-model equations of Henderson

(also referred to as the BLUP (Best Linear Unbiased Prediction) equations) com-

bined with the restricted-maximum-likelihood (REML) procedure, both of which

are detailed in Searle, Casella and McCulloch (1992). An attractive feature of the

procedure, as mentioned by Fellner (1986), is that it gives robust analogs of the

empirical Bayes estimates of the random effects. These can then be used to identify

outlying results in the random effects and to prepare diagnostic plots.

As an alternative to this procedure of Fellner, Rocke (1983) and (1991) de-

veloped moment based procedures, in particular procedures based on Henderson’s

methods 1 and 3 for estimating variance components respectively. Again, details

of Henderson’s methods 1 and 3 can be found in Searle et. a1. (1992). Unlike the

method of Fellner (1986), the methods of Rocke do not use the BLUP equations

to estimate (predict) the parameters in the regression model, rather they use the

fixed effects model approach. That is, when estimating the regression parameters

they are all considered fixed. This is unfortunate as the BLUP equations are gen—

erally considered preferable for estimating (predicting) the regression parameters to

estimates based on the fixed effects model (see Robinson (1991)). Here the term
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predict is used when referring to estimates of random effects as this seems to be a

commonly used convention.

In this chapter we have two goals. First, we propose a modification to the

procedure of Fellner (1986). The aim is to reduce the positive biasedness, signifi-

cant in certain cases, of the variance component estimates using the Fellner method

as it is currently formulated. Here the biasedness is brought about in the pro-

cedure by the use of inappropriate scaling factors for scaling predicted values of

random parameters. Our modification suggests alternative scaling factors based on

the variance-covariance matrices of the BLUP estimates of the regression parame—

ters and residuals. In the process our standardization of random components for

diagnostic purposes differs from that recommended by Fellner (1986).

The second purpose of this chapter is to give an alternative robust procedure

to that of Rocke (1991) which estimates the variance components using method

of moments. This alternative, as with the Fellner method but unlike the Rocke

procedure, estimates (predicts) the regression parameters in the model using the

BLUP procedure. But unlike the Fellner method which uses REML methods to

estimate the variance components we use method of moments estimates, in particular

Henderson’s method 3.

In summary, in Section 6.1 we give the model in the general form and sum-

marize the robust procedure as developed by Fellner (1986). In doing so we do not

restrict, as Fellner did, the 1b function associated with M estimation to the Huber-psi

function but rather leave it general. In Section 6.2 the issue of the inappropriate

scaling factor mentioned above is addressed and a modification to the Fellner method

is proposed. Some comments are then offered as to when this modification will lead

to significantly improved estimators. Section 6.3 briefly outlines the general proce-

dures for estimating the variance components using Henderson’s method 3 and then

gives a robust version of this method as an alternative to the method given in Rocke

(1991). The results of a limited simulation study for a balanced one—way random

effects model are given in Section 6.4. In Section 6.5 we reconsider the example

given in Fellner (1986). Some concluding remarks are offered in Section 6.6.
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Throughout this and the following chapter the matrix notation of Searle et. al.

(1992), Appendix M3 will be used. A summary of this notation is given in Appendix

A of this thesis.

6.1 Linear mixed-model and Fellner’s robust pro-

cedure.

Consider the model

y = Xa+U1b1+---+Ucbc+e

where y is an n x 1 response vector, X is an n x p known matrix of rank p, U.- (i =

1, - - - ,c) is an n x q.- known matrix, a is a p component vector of unknown fixed

effects and b,- (i = 1, - - - , c) is a q,- component vector of unknown random effects.

We now assume that E(b.-) = 0, i=1,--- ,c , E(e) = 0 , Cov(b,~,e) =

0, i: l,---,c , Cov(b,-,bj) =0, iaéj ,

V(bi)=Di=ai21qia (i=1,---,C) , and

V(e) =R =02In.

Now let b = {c bin-3:1, U = {, U;}f=1 and D = {d Dg}f=1. Thus y =

Xa+Ub+e, V(b)=Dand V(y)=UDU’+R.

Also, let

11'”2 X R“/2 U
C = , (6.1)

o D“’2

R—l/Z

w = y , (6.2)
D“/’ o

and 0' = (a',fi') where fi' = (fi'l,- - - ,fié) and fl,- is the realized value of b,-, i =

1, - - - , c. Here the vector 0 = (0'1, - - - , 0; ' where 0.- is a vector of q.- zeros is retained

in (6.2) to facilitate subsequent development.

Then, for a suitably chosen t/Jk function associated with M estimation (Huber

(1981)) where k a tuning constant, the Fellner (1986) robust parameter estimates
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of a, [3, a? (i = 1,- - - ,c) and 02 are given as the solutions to the following three

equations:

0’ ¢k(w — C 9) = o ; (6.3)

. V2 71/2 ‘. 2
0'2 = “D: ¢k(Dt fit)” , i=1,"',C; a‘nd (6.4)

ml: (q,- — 12,-)
. 1/2 R-i/r 2.72 = IIR m a)” (65,
 

ml: (’1 —P — 25:1(qx' - ”ill ’

where C, D, R (and T below) are evaluated at the most recent variance component

estimates,

6 = y—xa—UB. (6.6)

(11)]‘(X))’ = (114(13): ¢k(32)3 ' ' ) a

mic = / 1mm) (16(6) , and (6.7)

v,- = TT(T;,‘) ,

where T = [I + U’ R"1 U D — U' R'1 X (X’ R."1 X)"1 X’ R“1 U D]‘1 and which

is partitioned conformally with D as {m ng}f'j=l. The value ml, is chosen to adjust

for bias under normality.

Alternative ways exist to write (6.3) which enable the equations to be solved.

One is to introduce data-determined weights as in Rocke (1991). Another, used by

Fellner, is to write (6.3) in terms of pseudo-observations giving

X’ R“ x x'rr1 U a X’ 11-1 y (6 8)

U’ R-1 x D-1 + U’ 11-1 U a U’ R“ 9 + D-1 6 '

x a + U [a + R1” marl/2 a) and (6.9)

B — Dl/2 ¢k(D“/2 is) . (6.10)

with

Q
!

'
<
I

I
II

To obtain estimates of the parameters we need to iterate through equations (6.8),

(6.4) and (6.5), replacing R and D at each iteration by their most recent estimates,

until we have the required convergence.

97



For 2/)k(z) Fellner chose the Huber-psi function

t/u,(:r) = max(-k, min(a:, k)) for some suitably chosen k ;

for which Fellner suggests [a = 2 as a compromise between efficiency and robust-

ness. The method above could however be used for different choices of ¢k(2:). One

alternative is the Tukey biweight given by

172—932W): x ( k. ) I(lz | s k). (6.11)
This choice of 1/)k(a:) with k = 9 was studied by Rocke (1991), along with the Huber-

 

psi function with k = 2, for robustly estimating the variance components in the

mixed model using a different estimating procedure to that of Fellner. Based on the

results of Rocke (1991) the choice of Tukey biweight for 1/) would appear to have

merit, particularly when the data contains very extreme results.

6.2 Modification to the Fellner procedure.

We now propose a modification to the procedure of Fellner (1986) in order to improve

its robustness by further reducing the influence of outlying results on the variance

component estimates.

Consider the REML estimates of a? satisfying

*2 llfiell2 llfl; - 0ill2
a". = =

m-m m-m

 i=1,---,c

where q,- and v.- are as given in Section 6.1. That is, equations (6.3) and (6.4) with

¢k(a:) = 3:. To robustify this Fellner proposed moving the mean of ,6, that is 0,

closer to its predicted value [3 when the two are “far” apart. Here “far” is based on

a standardized value of ,3, this being D‘l/2 3. What this fails to take into account

is that 3, the BLUP estimate of fl, is a shrinkage estimator (see Robinson (1991)).

Elements of B will therefore have smaller variance than the corresponding elements

of b. Likewise, elements of E will have smaller variance than the corresponding

elements of e. Fellner does make passing mention to a related matter (see Fellner

(1986), page 55) though only in the context of modifying the unbiasing constant.
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We therefore propose replacing (6.4) and (6.5) by

. 2/2 71/2 ‘. 2
a? = w, i=1,...,c;and (612)

ml: (q; - vi)

. 1/2 —1/2~ 2

0,2 = ”L ¢k(L 5)” (613)
 

mk (n - P - 25:10]? ”0) ’

with q.- and v,- defined earlier and for K; (i = l, - - - , c) and L yet to be defined.

At first glance an appropriate choice for K,- might be Var(£‘),-) (i = 1, - - - ,c)

evaluated at the current variance component estimates and L = Var(é) evaluated

at the current estimates. This would take account of the correlation between the es-

timates. The problem here is that these matrices in general are singular. Instead we

take K,- be a diagonal matrix with diagonal elements given by the diagonal elements

of Var(fii) i = 1, - - - , c evaluated at the estimates of the variance components, thus

treating the correlations as zero. Similarly, we take L equal the diagonal matrix

corresponding to Var(é). That is, letting By (J = 1, - - - ,qg) equal the 1'“ element

dig; (1 = 1,---,c) and éj (j = l,---,n) the j"l element ofé

K5 = {(1 var(3ij)}§'i=1 (i=1,- " ,C) v and

L = {d Var(é,')};-‘=1 .

It remains to determine Var(LA'l‘-) (z' = 1, - - - ,c) and Var(é). We approximate

these by using the expression for the standard BLUP estimates given by (6.8) with

k = 00 when gbk is either the Huber-psi or the Tukey biweight. This approximation

should be reasonable provided I: is not chosen too small (e.g. k > 1.5) as the

asymptotic relative efficiency in terms of variance for M estimators is large (see for

example Staudte and Sheather (1990), Table 4.5).

The standard BLUP estimates are then

X’ R'1 X X’ R'1 U 6: X' R—1

.r = y

U’ B.‘1 X D“1 + U’ R"1 U 3 U’ R'1

With E = R + U D U’ (the unconditional variance of y), the standard BLUP

estimates of a and ,6 and the related estimate of s satisfy

(31 = (X' 2—1 X)_1X’ 2'1 y ,
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[a = DU'2-1(y—xa) and

E = Y — x a — U [3.

From these we obtain,

Var(a) = (X’ 2:“ X)" , (6.14)

Var(fi) = D U’ 2-1 (2 — x (x' E"X)"X’) E-IU D and (6.15)

Vina) = (I — U D U’ 2-‘) (2 — x (x' z-lxrlx') (I — 2-1 U D U’) .

(6.16)

To invert 2, an n x n matrix, it is sometimes easier to use the form

2-1 = (I — R-IU D(I + U’R“U D)“U’) R—1 .

To obtain the modified Fellner estimates of a, fl, 0'? (i = 1, - - - , c) and 02 we

iterate through the three equations (6.8), (6.12) and (6.13), using (6.15) and (6.16)

to obtain K.- (i = l,- - - ,c) and L and substituting for R and D at each stage of

the iterative process their most recent estimates. Iteration is continued until the

required convergence criteria are met.

Using the above modification to the Fellner procedure we can expect the vari-

ance component estimates to be at least as good as those of Fellner. Where the

modified method will perform better is in estimating variance components for which

there is only little information in the sample to predict the random parameters as-

sociated with that variance component, in particular the random error variance.

This follows as the extent of the shrinkage of the BLUP estimates depends on the

amount of information in the sample pertaining to the particular parameter, with

the shrinkage increasing as the amount of information decreases. These comments

will be supported by the simulations in Section 6.4 .
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6.3 Robust variance components estimation us-

ing method of moments.

In this section we propose a robust estimation procedure for the linear mixed model

analysis based on the BLUP method for estimating (predicting) the regression pa-

rameters combined with method of moments based estimates for the variance com.

ponents. Method of moments estimates for the variance components are worthy

of consideration as they have been shown to perform reasonably well in simulation

studies (e.g. Swallow and Monahan (1984)) when compared with more contempo-

rary methods such as REML and MINQUE, with the latter described in Rao and

Kleffe (1988). Our robust procedure is based on Henderson’s method 3.

6.3.1 Standard Henderson method 3 estimates.

The basis of the Henderson method 3 procedure for estimating variance components

associated with a linear mixed model is to equate changes in residual sums of squares

after omitting terms from the model with the expectations of these changes. Thus,

by a suitable choice of deletions a set of linear equations, not necessarily unique,

can be obtained in the variance components. We now provide a brief outline of one

possible solution. A more extensive coverage of the method can be found in Searle

et. al. (1992), Chapter 5.

For convenience of notation replace X and a by U0 and be respectively to give

y = i U.- b.- + e .
i=0

Also introduce the following notation

Usi = {rUj};=o )i=0’1,...7c )

bsi = {obj}:'=o ,i=0,1,---,c ’

Qi = U5i( ’55U5i)— [Sir i=0,"',C and

H.- I—Qg.

Here A‘ denotes any g—inverse of A satisfying A A' A = A.
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Without loss of generality we now assume that p(US,-) < p(US,-:) for all i < i’

where p(A) is the rank of A. Sequentially fitting the models y = U55 b3.- + e (i =

0, - - - ,c) We obtain the following Henderson method 3 estimates for the variance

components:

.2 SSE
a = —-— ,

n - P(U5c)
&2 = P“ (d -0‘20,

where SSE = y’ He y, 0:12, = {c 595:1:

P = {m p‘j}:.j=1 with pgj = tT(U;-H.'_1Uj) , 1 313 j S c ;

= 0 otherwise;

f={cfi}:=1 With f5 = P(U5c)"P(Ugi—1) , i: 11".,6;

d = {c dilf=1 with d; = y’ (Hg_1 -Hc)y ,i=1,--- ,6 .

To assist with the computations a useful recurrence relationship is

H0 = I— x (X’X)“ x'

H; H§_1—M5(M$Mg)-M2 for i=1,---,C

where M.- = H;_1 U,- .

This latter equation follows from equation (23) on page 450 of Searle et. a1. (1992).

6.3.2 Robust Henderson method 3 estimates.

We now propose a more robust procedure to that outlined in Section 6.3.1. Consider

the general model in Section 6.1 and assume all random components are Normal

random variables. Let

b = DI/qu'V’b),

6(5) = b—b,and

é = Rl/2¢k(R‘l/2e).
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Considering the (unobservable) random variable

~

y‘ Xa+Ub+é

we have £(b) = 0, Var(b) = m), D, £(é) = 0, Var(é) = mkR and Cov(b, é) = 0,

where mk is given in (6.7).

If y‘ was observable robust estimates of a? , i = 1, - - - ,c and 02 could then be

obtained using Henderson’s method 3 above. Here the estimates would be robust

as the elements of b and é are bounded.

In practice, since y‘ = X a + U b + é -— U 6(5) is unobservable, we replace it

by S" given by

y‘ x a + U is + 111/2 marl/2 &) — U 6

y-Ués

where y and 6 are as defined in (6.9) and (6.10) respectively.

Robust Henderson’s method 3 estimates of the variance components are then

obtained from

. SSE‘
2 - ——————— , 6.17

" mm» — MUS») ( )
0‘3 = m;1P-1 (d‘—mk¢;2f) , (6.18)

where SSE“ and d" are obtained as for SSE and d but with y replaced by 5".

Unlike the method proposed by Fellner (1986) which always gives non-negative

estimates of the variance components, the method above based on Henderson’s

method 3 can give negative estimates. A common procedure used in practice for

dealing with negative estimates, which we recommend here, is to set these values to

zero and continue with the iterative procedure. However, if any variance component

is zero then D’1 does not exist. In such cases replace (6.8) by a robust version based

on the Harville (1977) form of the Henderson mixed model equations, that being

X’ R'1 X X’ R‘1 U D 61 X’ R'1 9 (6 19)

U'R-lx 1+U'R-1UD .9 U’R‘ly+D'6 '
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where {‘3 = D u and D' is a diagonal matrix with elements the inverse of the

corresponding element of D if that element is positive and zero otherwise. We then

let 3 = D I“! and replace (6.10) by

5 = 3 - D1” MUD—)1” (3) - (5-20)

Estimates of the regression parameters and the variance components are then

obtained by iterating through equations (6.19), (6.17) and (6.18) until convergence.

In the above formulation of this robust moment method it was assumed that all

random components were Normally distributed, thus ensuring that the constant m1,

used throughout was correct. However, mk should be a reasonable approximation

for the bias adjustment provided deviations from Normality are not too significant.

6.4 Simulations.

For our limited simulation studies we consider the balanced one—way random effects

modelgivenby

Yij = a+b.-+e,-,- (i=1,---,l ; j=1,---,r) (6.21)

where the b; are i.i.d. with means zero and variances 02, independent of the 6,,-

which are i.i.d. with means zero and variances 02.

For this model we have from (6.15) and (6.16), assuming a: and 02 are known,

the following approximations:

A — 7‘02
var(,3;) ((—l_l~l-)- (rig?) ) 0i , and (6.22)

var(é.-,-) = ((r_l)+l(l_1) ”2 >02. (6.23)
r r I (a2 + rag)
 

The square root of these values are the scaling factors for the modified Fellner

method. -

To link in with the simulations of Rocke (1991), we refer to the b,- as laboratory

effects and consider three distributions for the laboratory and error distributions,

these being standard normal (N), a mixture of 90% N(0, l) with 10% N(0, 32) (LT)
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and a mixture of 95% N(0, 1) with 5% N(0,102) (VLT). For choices of I and r we

let both equal five, both equal ten and finally I = 10 with r = 2. In all cases we set

a = 0 but estimate it from the data.

2Three sets of robust estimators for a, a and of are considered. These are

 

Robust method 1 (RMl) - Fellner method as outlined in Section 6.1

Robust method 2 (RM2) - Modified Fellner method as outlined in Section 6.2

Robust method 3 (RM3) - Moment method as outlined in Section 6.3
 

In all cases zfik is taken as the Hubeppsi function with tuning constant Ic = 2.

For each combination of I, r, laboratory distribution and error distribution con-

sidered a total of 500 data sets were simulated and the parameters of the model es-

timated using each of the three procedures. Initial values for iteration were taken as

the non-robust estimates obtained using BLUP equations and Henderson’s method

3 but with negative estimates of 0% set to 0.001 for RMI and RM2 and 0 for RM3.

Estimators were considered to have converged if the maximum absolute difference

between subsequent estimates of a, 0%, 0'2 and fig, 1' = 1, - - - ,I was less than 0.001.

Note here that this convergence criterion is more restrictive than that of Fellner

(1986) wherein tests for convergence are based on subsequent estimates of the vari-

ance components alone.

In the first set of simulations the combinations of laboratory and error distribu-

tions considered, together with the choice I and 7' (both five or both ten), correspond

to those of Rocke (1991), thus allowing a direct comparison. The results of the sim-

ulation are in Table 6.1 wherein are given the mean and standard deviation (the

latter in brackets) of n“ (the number of iterations to convergence), 62 and 0% based

on the 500 data sets generated.

Comparing the results in Table 6.1 for 0% with the results for the corresponding

estimators in Rocke (1991) (that is V" with Rocke’s Robust methods 1 and 2) tends

to indicate that when outliers are present in the laboratories the three estimators

considered here perform as well as, if not better than the estimators in Rocke (1991)

with respect to giving estimates for a: closer to 1 on average and with respect to

105



having smaller variance. When there are no outliers in the laboratories none of the

three estimators considered in Table 6.1 and the two Rocke estimators mentioned

above appears uniformily better than the others for estimating 02.

If we now consider them estimation of 02 and OZ for the simulations re-

ported in Table 6.1 it would appear that based on the mean and variance of these

estimates, RM2 is a better estimator than either RMl or RM3, whereas the latter

two are effectively equivalent. This claim on behalf of RM2 follows because on those

occasions when RM2 is not best with respect to a specific variance component it

easily compensates with respect the other variance component. The main disadvan-

tage of the RM2 over the other two methods based on the results in Table 6.1 is

that it requires more iterations to converge on average than either RMl or RM3,

with RM3 the preferred estimator based on this criteria.

As was mentioned in Section 6.2, where we would expect a significant improve-

ment in the modified Fellner method (RM2) over the the Fellner method (RMl) is

when there is little sample information to predict the corresponding random compo-

nents associated with the particular variance component. We can see this to some

extent in the results for 02 in Table 6.1, particularly for r = 5, but consider again

the one-way model given in (6.21). For this model we have from (6.22) that the

shrinkage of the BLUP estimates [ii (i = 1,- - - ,1) increases as 1' decreases. We

would therefore expect RM2 to be a better estimator of 0}, than RMl when r is

small. Therefore, for the second set of simulations we have considered all nine com-

binations of laboratory and error distribution together with l = 10 and r = 2. The

results are given in Table 6.2 . From this table We can see that, as expected, RM2

is the preferred estimator to either RMl and RM3 based on mean and variance of

the variance components estimates whereas once again the latter two estimators are

essentially equivalent. In fact RM2 is relatively much better in certain cases. The

one anomaly is for VLT Error distribution and N Lab distribution in which case

RM2 gives a larger (marginally) average estimate for 0% than RMl and RM3. This

is concluded to have been brought about by a large number of samples in the actual

500 data sets generated having extreme results in the Error distribution. RM2 has
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Table 6.1: Robust variance component estimates - Balanced one-way model (I = r).
 

 

 

 

RMl RM? RM3

1 Error Labs 13,-. 1;? an: n“ a" 0‘2 n“ 0:2 a}

5 N N 3.80 (3.39) 1.03 (0.34) 1.18 (0.93) 4.06 (2.95) 1.01 (0.34) 1.18 (0.93) 3.62 (1.18) 1.03 (0.34) 1.17 (0.93)

10 N N 4.24 (1.39) 1.03 (0.16) 1.04 (0.54) 4.90 (2.37) 1.02 (0.16) 1.00 (0.53) 4.04 (1.21) 1.03 (0.16) 1.03 (0.54)

5 LT N 7.11 (5.79) 1.47 (0.63) 1.02 (0.95) 7.35 (5.89) 1.41 (0.58) 1.03 (0.95) 5.40 (2.59) 1.48 (0.64) 1.00 (0.95)

10 LT N 6.49 (1.90) 1.35 (0.26) 1.08 (0.59) 7.03 (2.53) 1.33 (0.26) 1.05 (0.58) 6.03 (1.58) 1.35 (0.26) 1.07 (0.59)

5 VLT N 10.4 (8.59) 1.56 (1.04) 1.12 (0.98) 10.4 (7.81) 1.46 (0.86) 1.13 (0.97) 7.89 (4.82) 1.58 (1.08) 1.09 (0.98)

10 VLT N 8.67 (2.53) 1.31 (0.24) 1.05 (0.59) 9.61 (3.91) 1.30 (0.24) 1.00 (0.59) 7.89 (2.09) 1.31 (0.24) 1.04 (0.59)

5 N LT 4.07 (3.40) 1.06 (0.34) 1.98 (2.56) 4.34 (3.22) 1.04 (0.34) 1.98 (2.56) 3.77 (1.46) 1.06 (0.34) 1.96 (2.56)

10 N LT 5.31 (3.10) 1.02 (0.15) 1.56 (1.17) 6.19 (4.41) 1.02 (0.15) 1.47 (1.11) 5.09 (2.87) 1.02 (0.15) 1.55 (1.17)

5 LT LT 6.99 (5.40) 1.46 (0.62) 1.96 (2.70) 6.90 (4.77) 1.41 (0.58) 1.97 (2.70) 5.46 (2.56) 1.47 (0.63) 1.94 (2.70)

L
O
I

10 LT LT 7.06(2.72) 1.34(0.24) 1.73(1.51) 7.71 (3.98) 1.33(0.24) 1.62(1.41) 6.71 (2.51) 1.34 (0.24) 1.71 (1.50)

5 N VLT 3.79(2.84) 1.09 (0.37) 8.01 (26.7) 3.97 (2.27) 1.07(0.37) 8.01 (26.7) 3.62(1.31) 1.09 (0.37) 7.99 (26.7)

10 N VLT 7.14(4.89) 1.02(0.16) 2.04 (3.63) 8.04 (6.89) 1.02(0.16) 1.82 (3.21) 6.81 (4.69) 1.02 (0.16) 2.03(3.63)

5 VLT VLT 9.25(7.78) 1.49(0.97) 5.19(14.2) 9.29(7.13) 1.41 (0.86) 5.20(14.2) 7.45(4.72) 150(099) 5.16(14.2)

10 VLT VLT 11.4 (10.2) 1.31 (0.26) 2.08 (3.88) 12.0 (7.26) 1.30(0.26) 1.72 (2.85) 10.7 (10.2) 1.31 (0.26) 2.06(3.88)
 

Note: Results for robust estimation of the parameters for the balanced one-way random effects model with l groups and r = I results from each

group, based on 500 Monte Carlo replications. Here N denotes standard normal, LT denotes 90% N with 10% N(0, 32) and VLT denotes 95% N

with 5% N(0, 102). Each pair of entries under n“, 0:2, and a} is the mean (standard deviation) over the 500 replications.



8
0
1

Table 6.2: Robust variance component estimates - Balanced one-way model (I = 10, r = 2).

 

RMl RM2 RM3

Error Labs nu 0:2 0‘2 71;. 1;? a: n“ 17.2 a}

N N 4.95 (7.85) 1.05 (0.45) 1.04 (0.77) 9.04 (9.96) 0.99 (0.41) 0.99 (0.75) 3.61 (1.29) 1.06 (0.47) 1.00 (0.77)

N LT 5.23 (6.43) 1.04 (0.44) 1.81 (1.51) 9.54 (9.51) 1.01 (0.43) 1.60 (1.34) 4.45 (2.56) 1.05 (0.46) 1.76 (1.50)

N VLT 7.35 (9.20) 1.08 (0.47) 2.24 (3.22) 14.2 (32.3) 1.06 (0.48) 1.81 (2.37) 6.43 (6.84) 1.09 (0.49) 2.18 (3.20)

LT N 8.44 (10.1) 1.57 (0.84) 1.15 (0.95) 12.2 (11.1) 1.38 (0.67) 1.15 (0.90) 4.86 (2.60) 1.62 (0.99) 1.10 (0.94)

LT LT 8.35 (9.84) 1.68 (0.95) 1.60 (1.45) 13.8 (16.9) 1.51 (0.81) 1.45 (1.24) 5.13 (2.95) 1.70 (0.98) 1.53 (1.43)

LT VLT 10.6(10.6) 1.62(0.94) 2.66 (5.68) 16.1 (16.8) 1.48 (0.83) 2.16 (4.71) 7.21 (5.23) 1.65 (0.98) 2.58 (5.66)

VLT N 13.5(14.2) 2.01 (2.88) 1.15 (0.97) 15.0(11.8) 154(153) 1.19(1.o4) 7.31 (5.28) 2.15(3.29) 1.07 (0.95)

VLT LT 13.5 (13.5) 1.98 (2.25) 1.86 (2.25) 15.4 (12.1) 1.63 (1.44) 1.73 (2.07) 7.59 (4.95) 2.03 (2.28) 1.78 (2.19)

VLT VLT 14.8 (13.8) 2.03 (1.95) 3.46 (6.88) 18.9 (20.7) 1.71 (1.39) 2.51 (4.13) 10.6 (10.8) 2.10 (2.26) 3.34 (6.80)

Note: As for Note Tame 6.1 except that here l = 10, r = 2 for all simulations.



 

been better at reducing the influence of these outliers, as reflected by the estimate

of 02 but as a consequence has marginally increased the average estimate of 0%.

Also apparent from Table 6.2 as for the first set of simulations, is that RM2 requires

more iterations to converge on average than RMl which in turn requires more than

RM3.

With respect to the estimation of a all three estimators are essentially equiv-

alent. All exhibit no noticeable bias and all estimates of a have similar variances.

6.5 Example.

Here we reconsider the example included in Fellner (1986). Briefly, the results

pertain to the determination of metal content in two types of material, Types 1

and 2, from which 18 and 13 lots were respectively randomly selected. From each

lot two samples were then taken and each divided into tw0 sub-samples. Each sub-

sample was analysed by a different chemist in duplicate. Hence a nested model is

appropriate.

Let ygjklm denote the m” (m = 1,2) result for the I”1 (I = 1,2) sub-sample

from the k“ (k = 1,2) sample drawn from the j” (j = 1,-~-,n,~) lot of material

type i (i = 1,2), where n1 = 18 and 112 = 13. The model for the results is then

yijklm = II." + aij + bijk + Cijkl + Cijklm

where aij has zero mean and variance 0%, that is a;,- ~ (0,02), bijk ~ (0,a§),

cm“ ~ (0, 0%.) and egjklm ~ (0,02) with all random components uncorrelated. Here

0% denotes the variances of lots, ag- the variance of sample within lots (sample

variance) whilst 03 is a combination of variation between chemists and the variation

of sub-samples within samples and referred to as chemist variance. Finally, 02

denotes the remaining source of variability, that is analysis variance.

Fitting the model using Robust Methods 1, 2 and 3 above, taking 1/Jk(a:) in

each case as the Huber-psi function with k = 2, gave the fixed parameters and

the variance components estimates given in Table 6.3 . Also given in Table 6.3, in

brackets, are estimates of the standard errors of the fixed parameters in the model
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based on the approximation to the variance of 6: given in (6.14). This approximation

should be satisfactory as k is not too small.

From Table 6.3 we immediately notice that, to the number of figures reported,

Robust Methods 1 and 3 give the same parameter estimates. For both of these meth-

ods twelve iterations were required to achieve convergence using the same criterion

as used in the simulations. On the otherhand Robust Method 2, which required

twenty iterations to converge, gives lower variance component estimates for each

component and particularly so for the “Analysis variance” component. Based on

the observations in the previous sections it is recommended here that the estimates

obtained using Robust method 2 are to be preferred.

Table 6.3: Metallic oxide summary results.
 

 

 

Robust Method Estimates

 

Parameter RMl RM2 RM3

Type 1 mean 3.86 (0.11) 3.87 (0.10) 3.86 (0.11)

Type 2 mean 3.34 (0.13) 3.35 (0.12) 3.34 (0.13)

Lot variance 0.176 0.153 0.176

Sample variance 0.037 0.026 0.037

Chemist variance 0.034 0.030 0.034

Analysis variance 0.037 0.012 0.037

 

Also as part of the analysis we obtained the “standardized values” for each of

the random components in the model. In Fellner (1986) the recommended procedure

for obtaining the “standardized values” is to divide each element of [3 and E by

[03(1 -— 32)]1/2

where, for the matrix C defined in (6.1), 32 is the corresponding diagonal element

of C(C’C)"IC’ and 0A2 is the appropriate estimated variance. Here though, instead
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Figure 6.1: Standardized Effects for Metallic Oxide Data
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of standardizing according to the procedure given in Fellner (1986), we recommend

standardizing the elements of 3 and E based on the corresponding diagonal elements

of the variances as given in (6.15) and (6.16).

I Histograms of the standardized random components, standardized according

to the procedure recommended here, are given in Figure 6.1 . These, when compared

with the corresponding histograms in Fellner (1986), would appear to scale the values

up thus highlighting more clearly the “outlying” results. Also, the histograms in

Figure 6.1 would appear to represent standard normal distributions for the “good”

data more closely than the coresponding histograms in Fellner, particularly for the

components for which little information is available (e.g. analysis effects).

6.6 Concluding remarks.

Three sets of robust estimators were considered in this chapter of which two are new.

Of these it would appear, based on a number of criteria, that the Modified Fellner

method is the preferred estimator. Firstly, as it is based on the REML method

which is generally considered superior to moment methods for estimating variance

components (see Searle (1995)) it is preferred to RM3. It is preferred to RMl on

the otherhand because it takes into account the shrinkage, significant in certain

cases, associated with the BLUP estimates. In doing so it reduces the positive bias

associated with the variance component estimates using the Fellner method (RMl).

This is supported by the limited simulations reported above.

Finally, it is worth noting here that the moment based method (RM3) per-

formed as well in the simulations as the Fellner method (RMl).
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Chapter 7

Robust estimation in generalized

linear mixed models.

A natural extension to the linear mixed model considered in the previous chapter

is the generalized linear mixed model (GLMM). Here the model, conditional on the

random components which are assumed to be realizations from Normal distributions,

corresponds to the generalized linear model covered in the text by McCullagh and

Nelder (1989). One advantage of the inclusion of random components in the linear

regression model, for example time effects associated with repeated measures, is that

it allows for the modelling of correlations in the data.

Particular cases of GLMMs are represented in the literature: see for example

Gilmour, Anderson and Rae (1985) and Karim and Zeger (1992). It has only been

over the last few years however that more general procedures have been developed for

GLMMs, both for “subject specific” (SS) and “population averaged” (PA) models as

defined in Zeger, Liang and Albert (1988). Schall (1991) proposed an approximate

procedure based on a first order Taylor’s series approximation, with the approach

appropriate to SS models. Breslow and Clayton (1993) obtain the same solution as

Schall (1991) from a different approach which utilises the penalized quasi-likelihood.

Also given in Breslow and Clayton (1993) is an estimating procedure appropriate

to the PA model. Here the procedure is obtained using a marginal quasi-likelihood

but the procedure could equally well have been obtained using a linearization argu-
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ment as in Schall (1991) applied to the marginal model for the data. An alternative

approach is given in McGilchrist (1994) wherein the solution is obtained by approx-

imating the likelihood in the region of the maximum by a quadratic. This approach

corresponds to the method of Schall (1991) for GLMMs but can be extended to a

wider class of models. Also to have considered this problem, both for SS and PA

models, has been Wolfinger and O’Connell (1993). Their approach is based on a

(restricted) pseudo-likelihood.

For the above estimating procedures it has been implicitly assumed that all

the data correspond to the specified GLMM. In general this will not be the case and

instead it can be expected that some of the data will have arisen from an alternative

model. In such cases these outlying results may have a significant influence on the

parameter estimates for the model appropriate to the bulk of the data. Hence the

need for robust methods for GLMMs analogous to methods for normal linear mixed

models.

In this chapter we develop an approximate robust procedure for GLMMs, based

on the estimating procedure of Schall (1991) and the results from Chapter 6. We

begin in Section 7.1 by giving a representation for the generalized linear mixed

model. In Section 7.2 robust estimates of the regression parameters, both fixed and

random, are obtained for the case where the variance components and the dispersion

parameter are known. Section 7.3 considers the robust estimation of the variance

components and the dispersion parameter. A small simulation study is reported

in Section 7.4 and in the following section an example of the robust estimation

procedure is considered. This example corresponds to a data set from the National

Asbestos Program discussed in Chapter 1 with the data set containing some obvious

and some not so obvious outlying results. Again we finish off with some concluding

remarks contained in Section 7.6.
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7.1 General model.

The generalized linear mixed model (GLMM) has the form

y = u + e (7.1)

where y is an (n x 1) response vector and p and e are the systematic and random

components of the model respectively. The systematic component is linked via a

link function g() to a linear combination of fixed and random effects by

where g(-) is a differentiable, strictly monotone function with inverse denoted by

h(-). We assume X is a full column rank matrix and let a be a (p X 1) vector of

fixed effects whilst b,- , i = 1, - - - ,c is a vector of random effects of length 41,-. We

also assume that the b,- are independent with b,- ~ N(0, 0,21) , i = 1, - - - , c and that

they are uncorrelated with e.

To simplify later expressions we let q = 25:1 q,- and as in Chapter 6 let U =

{, U,-}f=1, b = {c b;}f=l, D,- = 0,21.“ , i = l,---,c and D = {d D;}f___1. Thus

g(u) 2 X0: + Ub and Var(b) = D.

To complete the model we assume that, conditional on a fixed b, the elements

of y are independent and have distributions in the exponential dispersion family of

the form

310; — K090

4’ a,-

where K() and c(-) are specific functions, a,- are known constants and 43 is the

fit-(.11; 9M) = eXP{ +C(y,¢)} (7-3)

dispersion parameter which may or may not be known. Conditional on b, we denote

the mean and variance-covariance matrix of y by u and ¢V(y) respectively, with

V04) a diagonal matrix with diagonal elements a;v(p.-) = a;f((0.~), where R denotes

the second derivative of K() Therefore

Wu) = {d ammo}

To obtain approximate estimates of the parameters for the above model we

11

t=1

can use the procedure of Schall (1991). Here the data vector y is transformed, using
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the link function, to a new dependent variable 2 = g(y) which, to a first order

approximation, is given by z = g(y) + {a {Km-”Ll (y - 11.), where g(m) denotes

the first derivatives of g(-) evaluated at pg. Hence 2, termed the adjusted dependent

variable, approximately satisfies

2 = Xa +Ub+ {a you»; 6,

Letting

anon) = (as[.<'I(#i)]2v(m))-1 , i=1,---,n ,and (75)

W01.) = {dwi(#i)}n ,
5:]

we have based on the first order approximation above, that the mean and variance

of z, conditional on b, are

E(zlb) = Xa + Ub ,

V(Z|b) = ¢W‘1(#)

which leads to

E(z) = Xa,

V(z) = ¢E[W“(u)]+UDU’

as an approximation. Further, based on a first order approximation we have

E [w-lm] = w-1 (h(X a + U 0)) (7.6)

where 0, the expectation of b, is retained for later development of robust estimators.

For the case where the link function g(-) corresponds to the canonical link (i.e.

g(p,) = 0;) we have

E[w-I(,,)] = {a a,E[v—1(,,,)]}" (7.7)
3:]

since in this case g(m) = 605/6 y,- = [v(p,~)]-l .
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From here on we denote W(u) evaluated at a realized value of u by Wu and

let

wc = (E [W_l(p)])—l. (7.8)

We now assume that 10,7101.) (2' = l, - - - ,n) changes slowly as a function of

)1; about E [wf101.)] thus allowing us to treat the conditional variance of 2 given

b = [3, that is 415 W;1, as a constant matrix which depends on the unknowns a,

the variance components (of, i = 1, - - - , c) and E(b). Here the latter may contain

elements other than zero if outliers are present in the data. Under this assumption

W: and W;1 are approximately equivalent. A variation of this slowly varying

assumption is also assumed by Breslow and Clayton (1993) in their derivation of

estimators via the penalized quasilikelihood approach. Justification of the work of

Schall (1991) is also contingent on this assumption though this is not stated.

7.2 Robust estimation of regression parameters

- variance components and 43 known.

7.2.1 Outline of a standard non-robust procedure.

Before developing robust methods for estimating the regression parameters when the

variance components and 45 are known consider the Schall (1991) procedure in the

corresponding situation. That procedure is to estimate a and fi, where the latter

is the realized value of b, via the best linear unbiased prediction (BLUP) method

of Henderson (1963). These estimates of Schall, denoted by (i and 3 are, with the

exception for one modification to be mentioned below, the least squares solutions to

the following overdetermined set of equations:

(«FM/2x «FM/2U) (a) = (WM/2.) (7.9)
0 13-1/2 p D—1/2 0

where z = g(y) is the realized vector of the adjusted dependent variable and, as in

Chapter 6, 0 = (0’1,- - - ,0’c)'. Here 0 = E(b). Alternatively, the estimates it and [3
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satisfy the following equations

¢-1 x' w,‘ x 43-1 x' Wu U .3 ¢-1 X, w” z

¢-1 U’ w, x D-1 + ¢-l U’ w” U is ¢“ U’ w" z + D-1 o

(7.10)

where, as in Chapter 6, we retain D‘l 0 to facilitate the later development of robust

estimates of the parameters.

The modification to the Schall procedure mentioned above is that in the equa-

tions for (‘1 and B the matrix W has a subscript to indicate that it is to be evaluated

at a realized value of p. This modification needs some comments. Firstly, if the

slowly varying weight assumption mentioned at the end of the previous section holds

”4d there are no outliers in the data, then the subscript on W above is superfluous

and the equations correspond to those of Schall (1992).

Secondly, the matrix Wu is used in the above equations and not We as a

consequence of the formulation of the BLUP procedure. Here, the first equation in

(7.9) is based on the mean and variance of 2 given b = fl, that is X a + U fl and

d» W: respectively whilst the second equation in (7.9) is based on the mean and

variance of the distribution of b. Now, according to our earlier assumption that

wg'1(p,-) ; (i = 1, - - - ,n) changes slowly as a function of p,- about E [mi-1&0] we

should be able to interchange Wu with We. However we retain W” because when

we later replace this weight matrix by plug in estimates, that is plugging in estimates

of a, ,6, etc. we expect estimates based on Wu to be better than estimates based on

We. This is because We is a function of E(b) where the elements of the latter will be

assumed to be zero and only modified, reluctantly at that, if the corresponding data

values are outliers. Hence, if the elements of We are not slowly varying functions

of the elements of E(b) then Wu will be more sensitive to outliers in the element b

than We.

In the situation where D is not positive definite (e.g. if some variance compo-

nents are zero), an alternative representation of (7.10) based on the form given in

118



 

 

Harville (1977), is

¢-1 x'wu x ¢-1 x'quD a _ 45-1 X’ Wuz

¢-1U'w,,x I+¢‘1U’W,,UD a ¢-1U'w,,z+D-o
(7.11)

where ,6 = D V and D' is a diagonal matrix with elements the inverse of the

corresponding element of D if that element is positive and zero otherwise. We then

let B = D fl. This form will be useful when we replace D with moment based

estimates in which case it is possible that some variance components are estimated

as zero.

7.2.2 Robustification of the standard procedure.

The procedure we now give is based on the method of Fellner (1986) as outlined in

Chapter 6 but with appropriate modification to take into account that the distri-

bution of the random error may differ significantly from a normal distribution. The

procedure will be to move those “observed” values differing significantly from their

expectation closer to the expected value. Here we include 0 in (7.10) as “observed”

as the BLUP procedure treats it as the observed value of b.

To begin with we consider b and hence it fixed and replace z by 2, where

outlying results in the former are downweighted in the latter. One way of doing this is

simply to apply the procedure of Fellner (1986) to 2. However, as g(-) is a linearizing

rather than a normalizing transformation we instead recommend replacing y by 5:,

where outlying results in y are replaced by values more in line with their expectation

whilst taking account of any asymmetry. Then we set 2 = g(y). To achieve this

we define generalized residuals r,- = r,~(y,-; pg) corresponding to the model in (7.1),

form pseudo generalized residuals by shrinking “large” generalized residuals and

then form pseudo observations to correspond to the pseudo generalized residuals.

Here the most appropriate generalized residual would appear to be the Ans-

combe residual defined below (so named following the convention of McCullagh and

Nelder (1989)), given that the generally accepted alternative, the deviance residual,
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is not appropriate in our context as the BLUP method does not correspond to

maximizing a likelihood.

Given u, the standard form of the Anscombe residual for an observation y,-

from a distribution of the form (7.3) is given by

t(ya) - We)
7101:? #5) =m (7.12)

where t(y) is the “normalizing” transformation given up to a proportionality con-

stant by the indefinite integral 1' v‘1/3(y)dy (see Barndorff—Nielsen (1978) pp 177-9)

and {(y) is the derivative of t(y). These residuals are approximately standard normal

random variables in that they have zero skewness with approximately zero mean and

unit variance. An adjusted version of the Anscombe residual, studied by Pierce and

Schafer (1986) and shown by them to approximate standard normal random vari-

ables very well, includes a second order correction for the expected value of t(Y).

This adjusted version of the Anscombe residual is given by

t(y.~) " ‘01.") — 5‘%t'(m) ”(#i)

{OHM/(l5 05001;)

where {(p) denotes the second order derivative of t(-) evaluated at p. The two

rslyimi) (7'13)

forms of the Anscombe residual, standard and adjusted, for commonly encountered

distributions in the exponential family are given in Table 7.1.

One modification recommended in practice for the Anscombe residual, in either

standard or adjusted form, is to include a correction for continuity when y is integer

valued. In this case Pierce and Schafer (1986) recommend replacing y by y :l: %,

moving towards the center of the distribution.

We now define the pseudo-observations more specifically. Let 11);;(1‘) be an odd,

bounded, not identically zero function associated with M estimation and satisfying

1/",(cx) = c rim/6(2) for all c > 0 . (7.14)

Also, let [1; = h(x£ d: + 11:. fl), the current estimate of pg, where x: and u:- are the

1'“ rows of X and U respectively. Then with rf1(y; p) denoting the inverse
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Table 7.1:

Distribution Standard form

Generalized (Anscombe) residuals

Adjusted form

 

Binomia.1(m, p) ham»;

(II = mp)

_ /3_ 2/3

Ponsson(p) ‘éflflé’I—s-

1/3_ 1

Gamma(a,fi) "517%

(/1 = afl)

Inverse 1" y '1“ “
u/A

Gaussian(p, A)

Norma.1(p,02) 15-3

t m-t + -‘/32—1 6m

(1m)1 “ls/77;

“2/3 _[“2/3 -M-1/3 [9]

2‘11 6[3

”1/3_"l/3 1-1 90

I‘m/(W0)

15/"

fl

 

For binomial, t(u) = [6‘ 3-1/3(1 _ s)'1/3ds.

Gamma.(a,fi) density: fl‘aya‘l exp(y/fl)/I‘(a) ; y > 0.

Inverse Gaussian(p,/\) density: y/A/(27r?) exp[—/\(y — p)2/(2p2y)] ; y > 0.

 



 

 

function associated with r,-(y; p), which is well defined since by definition t(y) is

non-decreasing, we define the pseudo observation ,7. as

ii = 7f] (¢k[ri(yi; [10]) (7.15)

or, if 37.- 50 defined is not realizable, then its nearest realizable value closest to y,-.

For example, if ducts) is chosen as the Huber-psi function, then 3,7,- is given as

37; = maX{yL(I3i),min{ynyv(fii)l},

where

yL(#) = maX{y = ra(y;#)S-k}, and

31110!) = min{y = ra(y;#)2k}-

An alternative choice of 11401:) is the Tukey biweight defined in (6.11).

The pseudo-adjusted dependent variable is then given by

i = 90"!) (7-15)

It remains now to modify the 0, the “observed” value of b, in (7.10) or the

alternative version (7.11). Here, as in Chapter 6, we replace 0 by 0,1with the

latter defined in (6.10) or, if D is singular, (6.20) and where ¢k(:c) satisfies the

conditions above. Here it should be noted that it is not necessary to use the same

1/) function nor the same tuning constant k when downweighting the elements of y

and fl,- (i = 1, - - - ,c). We will assume from here on though that the same function

and tuning constant is used throughout.

The outlier resistant normal equations then become,

(15“ X’ W“ X ¢'1 X’ Wu U 6: ¢‘1 X’ Wu 2

¢-1 U’ w, x D-1 + ¢-1 U’ W, U is ¢-1 U’ Wu 2 + D-1 6

(7.17)

or using the Harville form,

¢-1x'w,.x ¢-1x'w,.UD a _ ¢-1x'w,,2

¢‘1U’WuX 1+¢-1U'W,.UD o ¢‘1U’W,‘i+D‘6

(7.18)
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where B = D 0. Here the solution will need to be obtained iteratively with the

estimate of Wu given by W5 = W (h(X (‘1 + U 3)).

Two points need to be made now. Firstly, the procedure above corresponds to

the procedure of Fellner (1986) when the conditional distribution of y is Gaussian

and the link function g() is the identity. This follows as the “normalizing” transfor-

mation t() for the Gaussian distribution is simply the identity function. The second

and more important point concerns the definition of the pseudo—adjusted dependent

variable, in particular when 11);,(x) corresponds to the Huber-psi fuction, but the

comments should carry over to other 111;,(36) fuctions satisfying the required condi-

tions. For asymmetric members of the exponential dispersion family the procedure

will introduce some bias into the estimation. However, by using asymmetric Win-

sorization via the Anscombe residual, rather than symmetric Winsorization, this

will reduce this bias. Also, as the more commonly encountered members of this

family have short tails, this bias will be relatively small, provided the Winsorization

points are not too close to the mean. Examples to support this claim are given in

the following sub-section.

7.2.3 Estimation of the mean using Winsorization.

To robustly estimate the parameters of the generalized linear mixed model our pro-

cedure is to use Winsorization to reduce the influence of “outlying” results. In the

case of the data conditionally having a normal distribution, Winsorization is reason-

ably straight forward with the Winsorizing points generally chosen to be symmetric

about the mean. In this case, that is symmetric Winsorization for a normal pop—

ulation, the mean of the Winsorized population corresponds to the mean of the

underlying population.

This is no longer the case for asymmetric (skewed) distributions as is the case

for many members of the exponential dispersion family of distributions. In such

cases, particularly with symmetric Winsorization, the mean of the Winsorized and

un-Winsorized populations will differ. Hence, use of Winsorization to limit the

influence of outlying results may introduce bias into the modelling of the mean.
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To examine the extent of this bias, let F(1:) denote the underlying distribution

with mean [1 and assume that the distribution is Winsorized at the points a and b

with (a < b). The mean of the Winsorized distribution pw is then

b-

,iw = aP(X s a) + /+ :ch(:c) + bP(X 2 b). (7.19)

The bias introduced by Winsorizing is pw — p.

Now, for a given F(2:) it will be possible to chose a and b so that my = p. The

solution though for a and b will generally be intractable and hence some approxi-

mations will be needed. One approximation that takes into account the skewness

of the distribution is to use symmetric—quantile Winsorization, that is choose a and

b to correspond to F‘1(p) and F'1(1 - p) for some p 6 [0,05]. This method will

not eliminate the bias but, by taking account of the skewness of the distribution,

should reduce it compared to standard symmetric Winsorization. Also, provided p

is not chosen too large (i.e. p not choosen near 0.5) the bias should be small rela-

tive to [l owing to the “shortness” of the tails for most members of the exponential

dispersion family. In practice, for members of this family of distributions, an ap-

proximately equivalent and simpler procedure to symmetric-quantile Winsorization

is to Winsorize according to the Anscombe residuals defined earlier.

To examine the bias introduced by Winsorization we now consider two mem-

bers of the exponential dispersion family, these being the Poisson and Gamma fam-

ilies. For both families we will consider symmetric Winsorization at the points

p :1: 2m, symmetric-quantile Winsorization with p = 0.0228 and Winsoriza.

tion based on the adjusted Anscombe residuals. In the latter case values of 1 giving

an adjusted Anscombe residual larger than 2 in absolute value are drawn in as far

as possible so that the Anscombe residual is not less than 2 in magnitude. For the

symmetric-quantile Winsorization, p is taken as 0.0228 so that all three estimators

are equivalent in the normal case.

7.2.3.1 Poisson Family: P(/\) , A > 0.

Letting F,\(:c) = P(X S 1:) with X ~ P(A) we have from (7.19) for integer a
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and b satisfying a < A < b, b 2 1

IIW = aF,\(a)+ 1(b 2 a +2) A{F,\(b- 2) — FA(a - 1)} + b{1- Fx(b— 1)} .

This result follows the result that for a member of the Poisson family and integers

n21,

/:xdF,\(z) = AF(n—1).

For symmetric Winsorizing a(p) and b(p) are [(A — 2\/:\-)] V 0 and 1) + 2x/X[

respectively, where [2:] and ]:c[ are defined in Appendix A. For Winsorization based

on the adjusted Anscombe residuals we have:

a(p) = [{(im _ i-l/s/g — 4A1/6/3) v 0}?“2 -— 0.5] v 0

My) = “(v/3 _ i-l/s/g + 4A1/6/3) }3/2 + 0.5[ .

Graphed in Figures 7.1(a) and 7.1(b) are the biases (yw -— p) for the three

Winsorization schemes for A = .001(.01)1 and A = 1(.01)10 respectively, with plots

within each figure having the same vertical scale. From these plots, for the range

of A values considered, we firstly observe that the bias is not large for any Win-

sorization scheme, except possibly relatively so for symmetric Winsorization with

small A. Secondly, the bias for symmetric Winsorization is larger in magnitude than

for the other two Winsorization schemes for almost all /\ considered. Finally, the

bias for adjusted Anscombe Winsorization is generally of the same magnitude as for

symmetric—quantile Winsorization. We therefore conclude that of the three proce—

dures Winsorization based on the adjusted Anscombe residuals would be preferred

given that symmetric-quantile Winsorization is computationally more intensive.

7.2.3.2 Gamma Family: I‘(oz,,6) , a > 0 , ,6 > 0 (B known).

Let Fa,p(:1:) = P(X S :r) for X ~ F(a,fl).

Then from (7.19)

#W = aFa.1(a/5) + 03{Fa+1,1(b/fl) — Fa+1,1(a/5)} +b(1‘ Fa,1(b/3) -
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FIGURE 7.1(a) Poisson(lambda) distribution; lambda in [.001, 1]
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FIGURE 7.1(b) Poisson(iambda) distribution; lambda in [1, 10]
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Here the result follows from the equality

[yam = aflFa+1.1(y/fl)-

For symmetric Winsorization,

aw) = fi{(a—2\/5)V0}
boo = fi<a+2¢a

whilst for Winsorization based on the adjusted Anscombe residual we have

(101) = 1664(1-1/(90r)-2/(3\/5))V0}3

50!) = 361(1-1/(9<Jr)+2/(3\/5))3

provided (1 — 1/(9a) + 2/(3fl) > 0, that is a > (fl —1)2/9 = 0.0191.

Here, since 19 is a scale parameter implying that a(/1) and b(p) will be directly

proportional to [3, the bias pw — p for a F(a, fl) population is fl times the bias for

a l"(a, 1) population. We therefore only consider the I‘(a, 1) family as the relative

bias for the three Winsorization schemes will be independent of fl.

In Figure 7.2, as for Figures 7.1(a) and 7.1(b), plots are given of the bias pw—p

against a for the three Winsorization schemes for I‘(a, 1) distributions. Again, for

similar reasons as for the Poisson case, the scheme based on the adjusted Anscombe

residuals is preferred.

7.3 Estimation of variance components and d).

So far we have assumed that the variance components 0,2 (i = l,- - -,c) and the

dispersion parameter 45 are known. In general this is unrealistic and estimates of

these values, at least the variance components, will need to be obtained.

To robustly estimate these parameters we use the methods of Chapter 6 applied

to the model

zw = Xwa+wa+nw, (7.20)
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FIGURE 7.2 Gamma(alpha,1) distribution; alpha in [.05,10]
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where zw = Winz, xw = wg/zx ,Uw = Wy’U and my = wg/zn. This model

follows from (7.4). Here we have E(nw) = 0, Cov(nw) = 91:1 and Cov(b,nw) = 0.

In practice W, is unknown as it depends on a, the variance components a? i =

1, - - - , c and E(b) and will need to be evaluated at their current estimates.

It needs to be noted here that unlike with the estimation of the regression

parameters using the BLUP procedure, when estimating the variance components

and d) we use We and not W“. This is because inference of the variance components

and ¢ is based on the marginal distribution of 2, not the conditional distribution.

Now let

E(b) = 0‘”,

2” = ¢W;1+UDU',

and 2. = ¢W;1+UDU'

where 00’) = 0 if there are no outliers in b. Assume 0(5) and E, are known where

the latter, according to the slowly varying weight assumption mentioned in Section

7.1, is approximately equivalent to )3“. We then have the following result.

Theorem 7.1

The estimates of a and fl, 6! and B say, given as the solution to the Henderson

mixed model equations (7.10) or equivalently (7.11) but with 0 replaced by 0(5) and

Wu replaced by the constant matrix W,, and with i] = z — X 6: — U [5, satisfy

Var(fx) = (X' «EC-1X)‘l , (7.21)

V0113) = D U’ E.“ (E8 — X (X’ E,“X)"X’) E.“U D , (7.22)

Var(fl) = (I — U D U’ 2;‘) (,9c — x (x' 2.-IX)-‘x') (I — 2:1 U D U') .

(7.23)

Proof.

To show this note that (‘1 and [3 are functions of z and 00’), that is & = a(z,0(b))

and 3 = ,6(z, 0(5)), which in turn satisfy 6: = a(z — U 0“”,0) and
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3 = 0(5) + fi(z — U 0“”,0). Hence we have, replacing E” with 2.,

a = (x' 2:1 X)-1x'2;1 (z — U 0‘“) ,

[a = 0(”)+DU’E,“ (z—UOm—Xc‘x)

= 0(5) + D U’ 2:1 (I — x (x' 2,-1xr‘x’ 2:1) (2 — U 00)) , and

1‘; = z — x a — U [a

= (I — U D U’ 2.“) (I — X (x’ E;‘X)“X’ 2:1) (2 — U 0(5)) .

The result then follows on noting that the unconditional variance of (z — U 0(5)),

based on a first order approximation, is 25.

In practice 0(5), the variance components and possibly (1) are unknown and

these will need to be replaced in the above by their estimates. For 00’) we propose

to use 6 defined in (6.20) whilst for estimates of the variance components and :1) we

propose estimates based on the variance components estimates given in Chapter 6,

the derivations of which are now given.

7.3.1 (Modified) Fellner estimates.

In this section we obtain robust analogues of REML based estimates of the variance

components and 45 corresponding to the procedure given in Section 6.2 .

Consider 0(5) and We, and hence Xw and Uw, as known. In practice these

will be replaced by the currently available estimates.

Let

(i)

T = (1+ ¢-1 U'Wc UD — ¢-1 U'W,x (x'W,X)-l x’ we UD)"l

(7.24)

with T partitioned conformally with D as {m ng}f‘j=1,
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(ii) K,- is the diagonal matrix with diagonal elements corresponding to Var(3,~)

i = 1,. - - ,c as given by (7.22), where 3,- corresponds to the estimate of the

realized value of b.- (i = 1,--- ,c). That is ii = (31,-- - ,32)’

(iii) Lw equals the diagonal matrix with diagonal elements corresponding to

Var(fiw) where fiw = Win 1']. Hence Lw = WW L Win where L equals

the diagonal matrix with diagonal elements corresponding to Var-(1‘1) which is

given by (7.23).

The modified Fellner robust estimates of the variance components and c5 cor-

responding to (6.12) and (6.13) but for the model (7.20) satisfy

01. H K3” mac-"’2 3.) II?
' m1. (‘1; — v.)

M” . (LEVI/2W) w
rm: (n — P — 2.21% — 0.))

llW3/2L1’2¢k(L“”fi) ”2

, i=1,---,c;and (7.25)

 (7 ,

 

m. (n — p — 25.101.- — v.9) ’ ”'26)
where 6: and ,B are the solutions to (7.10) and

zw = w;/2 z, (7.27)

fiw = zw-Xwé—Uwf‘l, (7.28)

m. = [173(3) d<I>(a:), and (7.29)

v,- = Tr('.l'.‘.-,-), (7.30)

where '1‘ corresponds to T evaluated at the estimates of the variance components

and W is as defined Section 7.2.2.

To obtain solutions (3!, fl, 7;? (i = 1, - - - , c) and d we iterate between equations

(7.18), (7.25) and (7.26), starting at initial estimates of the parameters, and updating

our estimates of 00’) and We as we proceed. Here we estimate 0(5) by 0 given in

(6.20) whilst for We we have two choices. One choice is simply to estimate Wc

using (7.6) evaluated at d and 0, that is W (h(X d + U 0)). Alternatively, for the

case where g(-) is the canonical link, an expression for We based on (7.7) can be
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used. This expression, in terms of (1, 0(5), the variance components and 45, can be

evaluated at the most recent estimates. Iteration is continued until the required

convergence criteria are met. Where (I) is known we exclude equation (7.26) from

the iteration and use the actual value of (b in the others.

An important point to note here is that we evaluate We at the estimate of

0‘” and do not simply plug 0 into the estimate. This is because the variances of

the random components in the model may vary significantly as a function of 0(5) in

which case outliers in the elements of ,3 could significantly influence the estimates.

We now note two variations on the above procedure.

(i) If maximum likelihood estimates for the variance components are preferred

to REML estimates we use exactly the same procedure as above but for the

following two changes. First we replace T above by

(I + ¢r1 U’ we U D)‘1

and second, we replace n - p by n in the divisor on the right hand side of

(7.26).

(ii) If we replace K,- in (7.25) by 031‘“ , i = 1, - - - ,c and L in (7.26) by ¢>W;1

we obtain estimates of the variance components based on the extension of the

Fellner method of Chapter 6 to the GLMM.

7.3.2 Method of moments estimates.

The method we now give corresponds to the method given in Section 6.3. Before

outlining the method for the GLMM though we begin with the following result.

Let 2.- : g(f[,~) where 3],- is defined in (7.15).

Theorem 7.2

Based on first order approximations we have, conditional on p;,

5i = g(u;)+fii (7.31)
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where E(fi,) = 0 and Var(fi,-) = mg ¢ 10,015) where mk is the unbiasing constant

given in (7.29).

Proof.

Let T,- = t(yg) where t() is the normalizing transform associated with the

random variable 31,-. Then, conditional on p,- the statistic Tg, based on a first order

approximation, is approximately N (£01,), 0%) where 0% = (ta.- [t'(p,-)]2 1204;). Hence,

~ Ts — t 3'
Ti = “#6) + 0T $1: ("—(Jfl)

UT

has, from the theory for a Winsorized normal random variable, mean t(flg) and

variance m], 0%. Now, for s(-) corresponding to the inverse function of t(-), we have

g,- z 3(7)) giving

2- : 115+ 5: am» (1‘1 — to»)

to first order. Therefore, to first order g, has mean p.- and variance m], d; a,- v(p,~),

using the result that s(t(z)) = 1/i(a:). Equation (7.31) then follows from E,- =

90"") + $70“) (371‘ — 11;), to first order, on letting fl,- = 901,-) ()7,- — [15).

To estimate the variance components and 45 using the method of moments we

let

2' = i — U 6 , and

2;, = w;/2 2* . (7.32)

where 6 is as defined in (6.20) and base our inference on the model

fly = Xw a + Uw b’ + fiw (7.33)

where b“ = b — f). We then have approximately £(b') = 0, Var(b") = mk D,

Var(fiw) = rm, (#1 and Cov(b',f1w) = O.

Robust estimates of the variance components can now be obtained based on

the mixed model in (7.33) using one of the available methods for estimating variance
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components. In particular, robust moment methods based on Henderson’s method

3 estimates of the variance components as given in Chapter 6, Section 6.3.2, can be

obtained from (6.17) and (6.18) but with y‘ replaced by 2a,, with X and U replaced

by Xw and Uw respectively and finally 02 replaced by ¢. Also, if d» is known we

omit equation (6.17) and evaluate (6.18) at the known (it.

One iterative procedure to obtain the robust method of moments estimates is

as follows. First, obtain a non-weighted least squares estimate of a and set the initial

estimates of ,3 and E(b) both to the zero vector. From these an initial estimate of

We can be obtained and then, using the moment procedure outlined in this sub-

section, initial estimates of a"? (i = 1, - - - ,c) and «15 can be obtained. The procedure

is now simply to iterate between equations (7.18) to obtain new estimates (1 and [‘1

and the equations giving estimates of the variance components based on the model

(7.33). At each stage we calculate 6 and i and upgrade Wu and We. Iteration is

continued until the convergence criteria are satisfied.

7.4 Simulations.

To obtain some appreciation of the relative performance of the robust estimators for

the GLMM considered in this chapter a simple simulation, similar to that conducted

in Chapter 6, was undertaken.

The basic uncontaminated model for the study corresponds to a “balanced”

one-way log linear Poisson model containing one random effect in the linear model.

Formally, letting yij (i = 1, - - - ,I ; j = 1, - - - ,r) denote the data, we have that the

y;,-, conditional on p;,-, are independent Poisson random variables with mean #5.

That is,

yijlll'ij ~ P01!!!) ii=1!”'vli j=13"'1r' (7-34)

We then let

log(p.-j) = a+b,- (7.35)
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where a = 2 and the b,- (i = 1, - - - ,I) are independent Normal random variables with

zero mean and variance of = 0.25. That is b, ~ N(0,0.25) , (i = 1, - - - , I).

To have notation consistent with the notation of the previous sections we let

y = (ylla"'9ylray2la'"ay2ra"' "'vyllv"'aylr)’1

l

{c {. y..- He}.-.
where the latter form is simply a nested application of the notation of Searle et. al.

(1992) and follows from the brief description given in Appendix A. We will avoid

referring specifically to the 3'“ element of y so as not to confuse the situation by

having y values with both single and double subscripts. Similarly we will not refer

specifically to the 2"” elements of z = log(y) but instead let Zij = log(y,-,-) or, if

yij = 0, 2,-1- = log(0.5).

For the model in the form (7.1) and (7.2) we have c = 1 and

and b = {c bin-=1 .
I

i=1

x ={.1}£;1 ; U ={d{.1};=.}
Further, from Section 7.1

V(u) = {d {. ¢"‘j}3=1}:=. ,
Wu = {d {d Pijl§=i}:=l 3

where ()5 = 1 but is retained in V(p) as later we will assume it is unknown. Also,

from (7.7) and (7.8) we have, using the result E(p,-'J-1) = e'“E(e"b"), that

I

W: = {d {d ea+E(bi)—a?/2};=l}

where E(b,-) is retained so as later to accommodate outlying results in the b, (i =

1, - - - , I).

For all the simulations below ¢k(-) is taken as the Huber-psi function with

tuning constant k = 2, in which case m1. = 0.921.

To obtain expressions for estimates of the parameters we first need to obtain

an expression for the pseudo variable defined in (7.15) based on the current estimate

of in]: Using the results from Section 7.2.3.1 we have
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{Iii = max{a(fi.-,-),min{y.-,-,b(;1,-,-)}} (736)

where

a(fiu) = [{((fi?,~/3- ‘7-1/3/9— 4‘3’6/3)v0}3’—o.5]vo

5010') = “([13/3— fiSl/3/9+4fiils/3)M}+0.5[.

The pseudo adjusted dependent variable is 2.3 = log(max{37.-j,0.5}).

Letting 10;, equal that diagonal element of W“ corresponding to the element

y;,- of y, that is ng = [1.5 = 6““ which is independent of j, the solutions to (7.17)

can be expressed as

~

i=1 Ci (1 21:1233— 0|)
 

a = {-1c' , (7.37)

a, = 0.-+c.-( -6—.—a); (i=1,---,I), (7.38)

where

rwu of
c,- = m , (7.39)

f).- = 3g—0'1 max{—2,min{3i/0172}}; (i=1,---,l). (7-40)

If (1) and of were known we would simply iterate through (7.36), (7.37) and

(7.38), changing ng at each stage so as to base it on the most recent estimate of

flij, and iterate until we have the required convergence. In our simulations however

we consider the more realistic situation, that being where at least of is not known.

To obtain the additional equations required for the modified Fellner estimates

of of and 9b we need approximate expressions firstly for the Var(B,-) and Var(fi.-j).

Here the result can be obtained from Theorem 7.1. Alternatively, and more simply

in this case, they can be obtained from the standard BLUP estimates given by

(7.37) and (7.38) but with 2.3 and 6,- replaced by 2,-1- and E(b.-) = 0S" respectively,

where the latter is assumed known. Note here that for this calculation we treat the

Wij as constants which, in Theorem 7.1 have been replaced by the (E(p,-'j1))-1 --
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(5) . .
ca+°- "’1/2 = wij, say. This then gives,

Var(&) = 61(1 — g) 0’:1 (i = 11" 91) r (7.41)

c’- . _ .

Varmij) = (1—:(1+1——CT—>>-1%; (1:1,...’I;]=1,...,r)

(7.42)

where

C _ 7.10:1 a: and

¢+rwi1 0i
1

cf = Zc‘ .
i=1

Two comments are worth making before continuing. First, the assumption that

11231 = pfjl is slowing changing is not unreasonable, provided that the My are not

too small and of is not too large. Second, we can see from the variance expressions

above that the standard BLUP estimates are shrinkage estimates.

In addition to the above We also need U; as defined in (7.30), which is given by

=2<1-cv{“;o12+11}
To obtain modified Fellner estimates of of and 43 in conjunction with the

   

I _ l Iwhere w_1 — 2&1 w“.

estimates of a and B.- (i = l, - - - , I) we include the following equations, corresponding

to (7.26) and (7.25) and simplified using (7.14), into the iterative procedure:

. [J6 1/)...(122 ./ws,-/¢ )1’
¢ = mk(1r_1-l+v1) ’ and (743)
A _ 5:1 [01 ¢azk(fll/al)]2of _W , (7.44)

where

k = 2 ,
 

a1 = \(1—€i(1+—1—;5)), and

 



Here the right hand sides of (7.43) and (7.44) are evaluated at the most recent

estimates of of and (it. The robust estimation procedure then requires that one

iterates through (7.36), (7.37), (7.38), (7.43) and (7.44) until convergence. For our

simulations the procedure is concluded to have converged if the maximum absolute

difference beween subsequent estimates of a, fig, (1' = l, - - - , I), a: and 43 is less than

0.001 .

For Fellner based estimates, that is ignoring the shrinkage of the BLUP esti-

mates, the procedure is as abovemthat we set a, = l and a2 = 1 in (7.43) and

(7.44) respectively.

Using moment based method as developed in Section 7.3.2 in place of the

(modified) Fellner method, we replace (7.43) and (7.44) by

~ 2

A i=1j=l wij (25.5 — % 23:1 25.7)

mk I (r — 1) ’

~ 2 A

. z._.rw:.(: 2;..(55— first—1.3: ;_,(2.-,,—0.-))—m,.(1—1)¢

mk r(w-1 _ i=1 wtl/w-I)

 (7.45)

 

(7.46)

For the situation where d) is known, that is 05 = 1, equation (7.43), or equation

(7.45), is left out of the iterative process.

The forms of contamination we consider in the simulations reported below are

as follows:

Distribution of the b; (i.e. Systematic Error)

81 b, ~ N(0,0.25) i.e. no contamination

52 b,- ~ N(0,0.25) w.p. 0.9, b.- ~ N(o, 1.0) w.p. 0.1

83 b; ~ N(0,0.25) w.p. 0.95, I),- ~ N(0,2.25) w.p. 0.05

54 6.- ~ N(0,0.25) w.p. 0.95, b; = (—3,3) w.p. (0.025,0.025) resp.

55 b,- ~ N(0,0.25) w.p. 0.90, b, = (—4,—3,3,4) w.p. (.025, .025, .025, .025) resp.

 

  
w.p. denotes “with probability”.

Here 84 and 85 represent extreme forms of contamination whilst 82 and 83 represent

more mild forms.
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To introduce contamination at the level of the individual result (i.e. Random

Error) the parameter a, which equals 2 in the uncontaminated model, was allowed

to change at random for each result according to the following regime:

Random Error contamination
 

R] a = 2 w.p. 1. i.e. no contamination

R2 a = (2,3) 10.12. (0.9, 0.1) resp.

R3 (1 = (2,3,4) w.p. (0.9, 005,005) resp.  
The estimators considered in the simulations are:

 

RMO - Non robust procedure (i.e. procedure of Schall (1991))

RMl - Fellner procedure

RM2 - Modified Fellner procedure

RM3 - Moment based method
 

For the simulations various combinations of the above contamination models

were considered. For each combination of random and systematic error contam—

ination 500 data sets were generated according to the model given in (7.34) and

, (7.35) and the parameters were estimated using each of the four methods above.

The starting values in each case for 913 and 012 were obtained using the non robust

version of the moment method above, that is Henderson’s method 3. As for the

simulations in Chapter 6, the iterative procedure for each estimator was considered

to have converged when the maximum absolute difference between subsequent esti-

mates of a, 45, of and fl,- (i = l, - - - , I) was less than 0.001 . In Tables 7.2 and 7.4 are

given the means and standard deviations (the latter in brackets) of n;,, the number

of iterations to achieve convergence, 6:, d) and d? for each of the four estimators over

the 500 data sets. For the results in Table 7.2, I = 10 and r = 2 whilst in Table 7.4,

= 10 and r = 10. The results in Tables 7.3 and 7.5 correspond to those in Tables

7.2 and 7.4 respectively except that in this case 45 was treated as known and equal

to 1.
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Table 7.2: Robust parameter estimates; 1 = 10, r = 2; ¢ estimated

2

 

Random Systematic Estimate na 02 d: ‘71

R1 81 RMO 6.42 (3.39) 1.98 (0.20) 1.14 (0.55) 0.27 (0.17)

RMl 6.90 (2.77) 1.98 (0.20) 1.16 (0.56) 0.31 (0.19)

RM2 10.5 (11.6) 1.97 (0.20) 0.92 (0.26) 0.31 (0.19)

RM3 5.10 (1.72) 1.98 (0.20) 1.26 (0.72) 0.31 (0.20)

R1 82 RMO 6.38 (3.90) 1.96 (0.20) 1.18 (0.63) 0.33 (0.23)

RMl 7.13 (3.01) 1.96 (0.20) 1.18 (0.60) 0.37 (0.24)

RM2 9.81 (6.86) 1.96 (0.20) 0.92 (0.27) 0.37 (0.23)

RM3 5.23 (1.67) 1.96 (0.21) 1.26 (0.77) 0.38 (0.27)

R1 83 RMO 6.43 (4.55) 1.96 (0.20) 1.13 (0.56) 0.37 (0.30)

RMl 7.14 (3.40) 1.95 (0.20) 1.15 (0.56) 0.39 (0.27)

RM2 10.9 (12.5) 1.95 (0.20) 0.91 (0.26) 0.39 (0.26)

RM3 5.55 (1.86) 1.95 (0.20) 1.21 (0.72) 0.43 (0.35)

721 S4 RMO 6.09 (3.14) 2.00 (0.26) 1.12 (0.51) 0.65 (0.63)

RMl 8.48 (4.32) 1.98 (0.25) 1.15 (0.63) 0.61 (0.63)

RM2 11.3 (7.88) 1.97 (0.25) 0.90 (0.28) 0.57 (0.59)

RM3 5.65 (2.01) 1.98 (0.26) 1.07 (0.68) 0.75 (0.70)

R1 55 RMO 5.76 (2.46) 2.02 (0.34) 1.09 (0.55) 1.11 (1.00)

RMl 9.41 (5.37) 1.99 (0.33) 1.09 (0.72) 0.99 (1.02)

RM2 11.2 (8.26) 1.98 (0.33) 0.84 (0.32) 0.93 (0.98)

RM3 6.04 (2.21) 1.99 (0.34) 0.85 (0.67) 1.30 (1.12)

R2 81 RMO 7.48 (4.93) 2.03 (0.19) 1.84 (1.01) 0.26 (0.16)

RMl 8.44 (5.43) 2.02 (0.19) 1.66 (0.85) 0.30 (0.18)

RM2 12.1 (8.31) 2.01 (0.18) 1.08 (0.26) 0.32 (0.18)

RM3 5.38 (1.67) 2.02 (0.19) 1.75 (1.02) 0.30 (0.20)

R2 52 RMO 6.84 (6.57) 2.03 (0.21) 1.77 (1.05) 0.34 (0.23)

RMl 7.91 (4.68) 2.02 (0.21) 1.60 (0.89) 0.38 (0.25)

RM2 12.6 (18.4) 2.01 (0.21) 1.05 (0.26) 0.39 (0.25)

RM3 5.78 (1.86) 2.02 (0.21) 1.56 (0.98) 0.40 (0.27)

R2 83 RMO 7.38 (7.48) 2.04 (0.23) 1.90 (1.24) 0.36 (0.31)

RMl 8.32 (4.40) 2.02 (0.22) 1.64 (0.89) 0.38 (0.26)

RM2 12.1 (9.37) 2.01 (0.22) 1.06 (0.26) 0.39 (0.24)

RM3 6.02 (6.25) 2.02 (0.22) 1.62 (1.05) 0.41 (0.34)
 

Table 7.2 continued on next page
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Table 7.2 (Continued)
 

 

Random Systematic Estimate nu a (b 012

R2 54 RMO 6.91 (3.47) 2.05 (0.25) 2.10 (2.07) 0.59 (0.55)
RMl 9.10 (4.48) 2.02 (0.23) 1.66 (0.94) 0.57 (0.53)
RM2 12.6 (8.96) 2.00 (0.23) 1.06 (0.27) 0.55 (0.49)
RM3 7.06 (5.26) 2.01 (0.24) 1.40 (0.88) 0.69 (0.59)

722 $5 RMO 6.96 (3.76) 2.10 (0.36) 2.66 (4.77) 1.06 (1.01)
RMl 11.7(12.o) 2.04 (0.32) 1.49 (0.96) 0.96 (1.03)
RM2 14.2(13.7) 2.02 (0.32) 0.99 (0.34) 0.90 (0.99)
RM3 9.45(20.8) 2.04 (0.34) 1.10 (0.94) 1.26 (1.12)

R3 81 RMO 8.88 (6.05) 2.18 (0.24) 4.80 (3.34) 0.28 (0.24)
RMl 13.9 (12.6) 2.11 (0.22) 3.35 (2.33) 0.29 (0.26)
RM2 17.4 (13.1) 2.09 (0.21) 1.25 (0.26) 0.35 (0.23)
RM3 6.53 (2.20) 2.11 (0.22) 2.46 (1.58) 0.32 (0.27)

kg 52 RMO 8.81 (6.28) 2.16 (0.25) 4.78 (3.34) 0.34 (0.26)
RMl 12.4(11.7) 2.09 (0.23) 3.24 (2.35) 0.36 (0.29)
RM2 19.0 (33.4) 2.06 (0.22) 1.23 (0.27) 0.41 (0.25)
RM3 6.77(2.21) 2.08 (0.23) 2.43(1.63) 0.39 (0.30)

R3 53 RMO 8.19 (5.34) 2.16 (0.25) 4.82 (3.99) 0.35 (0.33)
RMl 12.5(10.5) 2.10 (0.23) 3.20 (2.21) 0.36 (0.32)
RM2 17.2(16.3) 2.07 (0.22) 1.24 (0.26) 0.41 (0.28)
RM3 6.78 (2.24) 2.09 (0.23) 2.36(1.78) 0.41 (0.36)

R3 S4 RMO 8.43 (4.99) 2.22 (0.31) 5.84 (8.62) 0.60 (0.61)
RMl 12.8(10.8) 2.14 (0.28) 3.04 (2.31) 0.57 (0.59)
RM2 18.8 (31.2) 2.10 (0.26) 1.20 (0.28) 0.56 (0.52)
RM3 8.72(14.5) 2.12 (0.28) 2.08(1.65) 0.68 (0.63)

R3 85 RMO 9.12 (5.23) 2.25 (0.40) 9.32 (22.7) 1.13 (1.11)
RMl 14.6(16.9) 2.14 (0.34) 2.85 (2.26) 1.06 (1.10)
RM2 20.3 (22.1) 2.09 (0.34) 1.16 (0.33) 1.01 (1.04)
RM3 12.4(26.0) 2.11 (0.35) 1.61 (1.48) 1.35 (1.17)
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Table 7.3: Robust parameter estimates; I = 10, r = 2; 45 set equal 1

2

 

Random Systematic Estimate n“ a 01

R1 8; RMO 4.45 (1.01) 1.97 (0.19) 0.28 (0.16)

RMl 4.79 (1.25) 1.97 (0.19) 0.31 (0.18)

RM2 5.67 (3.22) 1.97 (0.19) 0.30 (0.18)

RM3 5.79 (1.45) 1.96 (0.19) 0.33 (0.20)

R1 5; RMO 4.52 (1.10) 1.95 (0.20) 0.36 (0.23)

RMl 5.00 (1.81) 1.95 (0.20) 0.40 (0.25)

RM2 5.79 (2.73) 1.95 (0.21) 0.38 (0.25)

RM3 6.09 (1.79) 1.95 (0.20) 0.43 (0.27)

R1 53 RMO 4.56 (1.07) 1.95 (0.20) 0.37 (0.26)

RMl 5.19 (1.99) 1.94 (0.20) 0.40 (0.24)
RM2 5.89 (2.78) 1.95 (0.20) 0.37 (0.23)
RM3 6.06 (1.88) 1.94 (0.20) 0.44 (0.31)

721 .94 RMO 4.77 (1.34) 1.98 (0.26) 0.60 (0.54)
RMl 6.56 (3.07) 1.96 (0.25) 0.56 (0.50)

RM2 7.28 (3.49) 1.96 (0.25) 0.51 (0.46)

RM3 6.62 (2.71) 1.97 (0.26) 0.70 (0.57)

R1 55 RM 5.10 (1.48) 2.04 (0.33) 1.14 (0.95)
RMl 7.79 (3.69) 1.99 (0.31) 0.99 (0.97)
RM2 8.71 (4.85) 1.99 (0.31) 0.89 (0.92)

RM3 7.27 (3.00) 2.01 (0.32) 1.31 (1.01)

R2 5; RMO 4.48 (1.17) 2.02 (0.21) 0.31 (0.18)

RMI 4.94 (1.48) 2.01 (0.21) 0.34 (0.19)

RM2 5.74 (2.63) 2.01 (0.21) 0.32 (0.19)

RM3 5.69 (1.40) 2.01 (0.21) 0.35 (0.21)

R2 82 RMO 4.56 (1.10) 2.01 (0.22) 0.37 (0.22)

RMI 5.15 (1.83) 1.99 (0.22) 0.40 (0.23)

RM2 5.86 (2.90) 1.99 (0.22) 0.38 (0.23)

RM3 5.92 (1.52) 1.99 (0.22) 0.42 (0.25)

R2 83 RMO 4.47 (0.98) 2.03 (0.23) 0.38 (0.29)

RMl 5.30 (1.86) 2.01 (0.22) 0.39 (0.27)

RM2 5.86 (2.46) 2.02 (0.22) 0.38 (0.26)

RM3 5.95 (1.80) 2.01 (0.22) 0.44 (0.34)
 

Table 7.3 continued on next page
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Table 7.3 (Continued)
 

2

 

Random Systematic Estimate n“ a 01

R2 84 RMO 4.77 (1.37) 2.04 (0.27) 0.66 (0.54)

RMl 6.95 (4.12) 2.01 (0.25) 0.61 (0.51)

RM2 7.80 (4.84) 2.01 (0.25) 0.56 (0.49)

RM3 7.18 (3.98) 2.02 (0.26) 0.76 (0.57)

R2 55 RMO 4.96 (1.42) 2.08 (0.34) 1.14 (1.01)

RMl 9.66 (12.5) 2.04 (0.31) 0.98 (1.03)

RM2 10.4 (12.5) 2.03 (0.31) 0.90 (1.00)

RM3 9.31 (12.5) 2.05 (0.33) 1.30 (1.05)

R3 51 RMO 4.27 (0.92) 2.12 (0.21) 0.41 (0.24)

RMl 6.70 (2.72) 2.07 (0.19) 0.36 (0.21)

RM2 7.43 (3.09) 2.07 (0.19) 0.35 (0.21)

RM3 6.77 (2.14) 2.07 (0.19) 0.38 (0.24)

R3 52 RMO 4.33 (0.91) 2.12 (0.23) 0.46 (0.28)

RMl 6.85 (3.31) 2.06 (0.22) 0.42 (0.26)

RM2 7.68 (4.31) 2.06 (0.22) 0.40 (0.25)

RM3 6.99 (2.40) 2.06 (0.22) 0.44 (0.29)

R3 33 RMO 4.40 (0.91) 2.10 (0.23) 0.47 (0.33)

RMl 6.73 (2.64) 2.04 (0.21) 0.43 (0.29)

RM2 7.62 (3.63) 2.04 (0.21) 0.41 (0.28)

RM3 7.04 (2.16) 2.04 (0.21) 0.48 (0.37)

R3 54 RMO 4.58 (1.23) 2.14 (0.27) 0.73 (0.56)

RMl 10.3 (12.1) 2.06 (0.25) 0.60 (0.50)

RM2 11.0 (11.9) 2.06 (0.25) 0.55 (0.47)

RM3 10.4 (14.0) 2.07 (0.25) 0.72 (0.56)

R3 85 RMO 5.00 (1.55) 2.15 (0.35) 1.22 (0.98)

RMI 15.9 (33.6) 2.07 (0.32) 1.01 (0.98)

RM2 15.8 (30.1) 2.07 (0.31) 0.91 (0.93)

RM3 15.9 (37.2) 2.08 (0.33) 1.30 (1.00)
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Table 7.4: Robust parameter estimates; 1 = 10,r = 10; ¢ estimated

2

 

Random Systematic Estimate n“ 0: ¢ 01

R1 51 RMO 3.34 (0.48) 1.93 (0.18) 1.16 (0.21) 0.29 (0.14)

RMl 5.86 (1.12) 1.93 (0.18) 0.99 (0.17) 0.31 (0.15)

RM2 6.61 (1.95) 1.93 (0.18) 0.97 (0.10) 0.30 (0.15)

RM3 3.62 (1.22) 1.93 (0.18) 1.25 (0.24) 0.31 (0.15)

R1 S4 RMO 3.46 (0.53) 1.96 (0.26) 1.12 (0.22) 0.66 (0.53)

RM1 7.37 (2.36) 1.94 (0.25) 0.87 (0.25) 0.58 (0.50)

RM2 8.14 (4.26) 1.94 (0.24) 0.88 (0.17) 0.53 (0.48)

RM3 4.64 (2.27) 1.95 (0.25) 1.04 (0.36) 0.70 (0.60)

R1 85 RMO 3.52 (0.55) 1.98 (0.34) 1.07 (0.21) 1.19 (1.00)

RMl 8.21 (2.76) 1.94 (0.32) 0.72 (0.29) 0.98 (0.98)

RM2 8.87 (5.68) 1.94 (0.31) 0.78 (0.23) 0.90 (0.95)

RM3 5.31 (2.76) 1.97 (0.33) 0.80 (0.41) 1.31 (1.19)

R2 81 RMO 3.40 (0.57) 1.98 (0.16) 1.64 (0.33) 0.27 (0.14)

RMl 6.60 (1.21) 1.96 (0.16) 1.31 (0.27) 0.29 (0.15)

RM2 9.16 (2.75) 1.96 (0.16) 1.10 (0.10) 0.29 (0.15)

RM3 4.19 (1.02) 1.96 (0.16) 1.47 (0.32) 0.30 (0.15)

R2 84 RMO 3.59 (0.69) 2.01 (0.24) 1.83 (0.79) 0.63 (0.53)

RMl 8.07 (2.44) 1.97 (0.22) 1.19 (0.35) 0.52 (0.48)

RM2 9.70 (3.93) 1.97 (0.22) 1.04 (0.16) 0.48 (0.44)

RM3 5.17 (2.75) 1.99 (0.23) 1.25 (0.43) 0.66 (0.59)

R2 55 RMO 3.85 (0.96) 2.05 (0.36) 2.28 (1.91) 1.19 (1.00)

RMl 8.83 (2.71) 1.99 (0.34) 0.99 (0.45) 1.00 (1.04)

RM2 10.0 (5.33) 1.99 (0.33) 0.93 (0.26) 0.93 (1.02)

RM3 5.84 (2.98) 2.02 (0.34) 0.95 (0.51) 1.31 (1.16)

R3 81 RMO 4.01 (0.57) 2.11 (0.17) 3.83 (1.19) 0.28 (0.15)

RMl 9.98 (2.22) 2.03 (0.17) 2.01 (0.63) 0.29 (0.16)

RM2 13.2 (3.08) 2.01 (0.17) 1.21 (0.10) 0.30 (0.16)

RM3 5.74 (1.21) 2.03 (0.17) 1.83 (0.45) 0.30 (0.16)

R3 84 RMO 4.41 (1.10) 2.15 (0.27) 5.04 (3.76) 0.64 (0.55)

RMl 10.8 (2.71) 2.04 (0.25) 1.83 (0.74) 0.55 (0.53)

RM2 13.0 (4.12) 2.03 (0.25) 1.17 (0.14) 0.52 (0.50)

RM3 6.51 (2.55) 2.05 (0.26) 1.53 (0.57) 0.68 (0.60)

R3 85 RMO 5.18 (2.50) 2.19 (0.38) 8.38 (10.9) 1.16 (0.97)

RMl 11.5 (2.85) 2.04 (0.34) 1.55 (0.75) 0.95 (0.96)

RM2 12.7 (4.89) 2.03 (0.33) 1.09 (0.20) 0.88 (0.93)

RM3 7.21 (4.00) 2.06 (0.35) 1.17 (0.66) 1.27 (1.12)
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Table 7.5: Robust parameter estimates; I = 10,r = 10; (15 set equal 1

 

Random Systematic Estimate n“ a of

R1 81 RMO 2.90 (0.34) 1.93 (0.18) 0.29 (0.14)
RMl 3.39(1.11) 1.93 (0.18) 0.31 (0.16)
RM2 3.73(1.61) 1.93 (0.18) 0.30 (0.16)
RM3 3.57(1.08) 1.93 (0.18) 0.31 (0.16)

7e, 34 RMO 3.00 (0.62) 1.95 (0.25) 0.62 (0.55)
RMl 5.30 (3.22) 1.94 (0.23) 0.54 (0.51)
RM2 5.73 (4.16) 1.94 (0.23) 0.50 (0.48)
RM3 4.44 (2.62) 1.95 (0.24) 0.66 (0.61)

R1 85 RMO 3.15 (0.72) 1.96 (0.33) 1.17 (1.02)
RM] 6.44 (3.73) 1.93 (0.31) 0.99 (1.03)
RM2 7.18 (5.46) 1.93 (0.30) 0.92 (1.00)
RM3 5.09 (3.45) 1.96 (0.32) 1.28 (1.17)

R2 51 RMO 2.90 (0.32) 1.98 (0.18) 0.28 (0.13)
RMl 3.53(1.24) 1.97 (0.18) 0.29 (0.14)
RM2 3.84 (1.84) 1.97 (0.18) 0.28 (0.14)
RM3 3.68 (1.35) 1.97 (0.18) 0.30 (0.14)

122 s4 RMO 2.97 (0.62) 2.00 (0.25) 0.61 (0.53)
RMl 5.52 (3.29) 1.97 (0.23) 0.51 (0.47)
RM2 6.03 (4.67) 1.97 (0.23) 0.47 (0.43)
RM3 4.62 (2.62) 1.98 (0.24) 0.63 (0.57)

R2 35 RMO 3.07 (0.75) 2.05 (0.33) 1.22 (1.01)
RMl 7.38 (5.07) 1.99 (0.30) 0.94 (0.99)
RM2 7.99 (5.80) 1.99 (0.30) 0.87 (0.96)
RM3 5.36(3.11) 2.03 (0.31) 1.29 (1.15)

R3 81 RMO 2.81 (0.40) 2.09 (0.18) 0.32 (0.17)
RMl 4.44(1.37) 2.01 (0.18) 0.31 (0.16)
RM2 4.79 (1.70) 2.01 (0.18) 0.30 (0.16)
RM3 4.40(1.42) 2.01 (0.18) 0.32 (0.16)

R3 84 RMO 2.96 (0.67) 2.11(0.27) 0.69 (0.58)

RMl 6.38 (3.22) 2.02 (0.24) 0.57 (0.55)
RM2 6.81 (4.07) 2.02 (0.24) 0.53 (0.52)
RM3 5.45 (3.19) 2.03 (0.25) 0.68 (0.63)

R3 85 RMO 3.08 (0.77) 2.13 (0.33) 1.13 (0.96)
RMl 7.53 (3.79) 2.01 (0.29) 0.89 (0.89)
RM2 8.43 (6.10) 2.01 (0.29) 0.82 (0.85)
RM3 5.89 (3.39) 2.05 (0.31) 1.22 (1.07)
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The results of the simulations are summarized below:

. When there is no contamination in the model all four estimators are approx-

imately equivalent w.r.t. the estimation of a. For estimating (b in this case

RM2 appears to exhibit a negative bias whilst RMO and RM3 exhibit positive

biases, with the magnitude of the bias smallest for RM2. The standard error

of the RM2 estimate of 43 is also less than each of the other three estimators.

To estimate of when there is no contamination it would appear that RMO is

the preferred estimator as it has the smallest positive bias. The bias for each

of the other three estimators though is not large and is smallest for RM2.

. The moment method (RM3) breaks down with respect to the estimation of 012

whether 4) is estimated or known. This can be seen in that RM3 gives estimates

of of with positive bias generally larger than even the non robust method RMO.

Exactly why this is the case is not clear at this time but it may be related

to the starting values for d) and a; (see further comments below) and to the

“unbalance” introduced by contamination in the systematic components. In

a simulation study by Swallow and Monahan (1984), moment based methods

for estimating variance components were concluded to be adequate except in

certain cases when the data are severely unbalanced.

RM3 appears to have merit over RMO w.r.t. estimation of 0 and/or 45 under

some forms of contamination but in view if its performance in estimating of

it would appear to be unsuitable in the GLMM case, at least with non robust

starting values for the variance components.

. For RMl and RM2 it would appear that for estimating a there is not a big

difference between the two procedures based on bias and standard error but

when there is a difference, RM2 is generally the preferred estimator. For

estimating d) on the otherhand there is a significant difference. From the

simulations we see that based on the magnitude of the bias, RM2 is generally

preferred to RMl, giving major gains particularly when there is contamination

in the random component. For those few incidences when RMl is better than
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RM2 for estimating rt, the difference is not large or else the worse performance

of RM2 for estimating 45 is compensated for by its superior performance w.r.t.

estimation of 0?.

Considering the estimation of of using RMl and RM2 based on the simula-

tions conducted, the conclusions drawn from the summary statistics in Tables

7.2 to 7.5 depend on whether 4) is known or not known and on the form of

contamination. Beginning with the case ¢ known to be 1 we see that RM2 is

always preferred to RMI. This is also the case if (13 is estimated from the data

and the systematic contamination is heavy (i.e. the distribution of b,- is either

84 or 55). Only when 43 is estimated and the systematic contamination is not

heavy is RMl better than RM2 at estimating of and then only marginally bet-

ter. In this case though the superiority of RMI over RM2 is lost if estimation

of ¢ is also taken into account.

Thus, based on the estimation of a and the joint estimation of 43 and of, RM2

is concluded to be preferable to RMI.

. It therefore remains to compare RM2 and RMO. For estimating a the two

estimators are roughly equivalent when there is no contamination in the ran-

dom component whereas RM2 is generally better than RMO otherwise. For

estimating 45 the conclusions are the same as for the conclusions when com-

paring RM2 and RMl, except that now RM2 gives an even more significant

improvement over RMO than it did over RMl.

For estimating 0?, based on the summary statistics in Tables 7.2 to 7.5, RM2

is preferable to RMO if the distribution of the 6;, (2' = l, - - - , I) is either 84 or

85, this corresponding to the more extreme forms of systematic contamination

considered. The RM2 estimate of a? is also better than the RMO estimate

when ¢ is known and the random contamination distribution is R3, again

the extreme form of contamination considered. Otherwise the average RM2

estimate of of is approximately the same as for the RMO estimate except for

a slightly larger positive bias. This would tend to indicate that the RM2
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method is not very sensitive to outliers in the b5, (i = 1,- - - ,1) when non

robust estimates of 45 and of are used as starting values but that it can reduce

the influence of gross errors in the b.-, (i = 1, - - - , I).

We now illustrate that using the RM2 method as in the simulations, that is

with non robust staring values for ()3 and of, the estimate for a: can break down.

In Figure 7.3 we have six plots each associated with the case I = 10,r = 2

and ¢ astimated. On each plot are plotted the RM2 versus the RMO estimates

of the a: values for the 500 data sets generated according to a particular

contamination model. The six contamination models considered correspond

to the combinations of random contamination either R1, R2 or R3 and the

systematic contamination either 54 or 55. On each of these six graphs the plot

can be broken into three regions, particularly so for no random contamination

and decreasingly so as the random contamination increases. Towards the left

hand region of each plot, corresponding to no outliers in the b,- (i = 1, - - - ,I),

RMO and RM2 estimates are approximately equivalent. In the middle region

the RM2 estimates are generally better (smaller) than the RMO estimates and

this region corresponds to 1 or 2 outliers in the b,- (i = 1, - - - ,1). Finally, in

the right hand region, generally corresponding to 3 or more outliers in the

b,- (i = 1,- - - ,1), the RM2 estimate breaks down and performs comparably

with RMO.

This property of the RM2 estimator when using non robust starting values is a

general property of robust procedures (see, for example, Staude and Sheather

(1990), Remark 2, page 255). It would therefore be of benefit to obtain better

starting values in which case RM2 would be expected to perform even better

than RMO. RM3 may even perform better in such cases.

In the absence of improved starting values, RM2 is still preferable to RMO

based on the earlier conclusions and should perform reasonably well provided

that there are not too many gross errors.
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Figure 7.3: Plots of RM2 versus RMO systematic variance estimates
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5. As with the simulations in Chapter 6, when the dispersion parameter is un-

known RM2 takes more iterations on average to converge than either of the

other three estimators. The variability of the number of iterations in this case

is also greatest for RM2. This is also generally the case when ¢ is taken as

known to be 1 but in this case the difference is not so large.

6. The one reservation we have concerning RM2 is that it exhibits a negative

bias when estimating 45 if there are no outliers in the random error. For most

of the simulations performed this bias is less in magnitude than for either

of RMO and RM2 but when estimating variances we would prefer a positive

rather than a negative bias. This negative biasedness of the d) estimate using

the RM2 method may be a consequence of the approximations inherent in the

method. For example, if the approximation for the variances of the elements

of 17 as given by the diagonal elements of (7.23) are negatively biased, this

would give rise to under estimates of d).

In summary we then have the following. When 45 is known there is no hesitation

in recommending RM2. From the simulation results when 45 is unknown RMZ tends

to exhibit better mean square error than the other estimates but has the potential

drawback of underestimation of 4) when no outliers are present. This is compensated

to some extent by a. positively biased 0} estimate. More robust starting values of d:

and 0% than the Henderson method 3 estimates would be preferred and such should

lead to improved RM2 estimates. This latter point will not be pursued here.

7.5 Example.

For an example we again consider data from the National Asbestos Program. The

data, given in Table 7.6, are the results reported by 75 counters on a set of 11 slides.

As for Table 2.1, Id. is a unique identification code given to each of the 75 counters

reporting results on these slides. Each counter’s status (CS) is also given in Table

7.6 with M denoting an automatic image analyser, R a registered counter and O
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5
1

Table 7.6: Counts reported by different counters on a set of eleven slides
 

 

 

 

Slide Slide

Id. CS 1 2 3 4 5 6 7 8 3 10 11 Id. CS I 2 3 4 5 6 7 8 9 10 11

I M 9 7 5 4 11 44 U 12

2 M 13 9 16 10 11 45 O 13

3 O 86 46 O 32 24

4 O 12 47 O 8

5 0 17 48 O 8

6 0 10 49 O 21

7 O 12 16 50 O 12 13

8 0 15 51 0 13

9 O 13 11 52 0 l4

" 0 11 53 O 10

10 0 12 54 O 26 25

11 O 9 9 55 0 62 52

12 O 29 56 O 6

13 0 10 13 57 0 l2

l4 0 188 10 58 O 12

15 0 13 59 O 10

16 0 12 14 16 60 O 10

17 O 10 61 O 6

18 O 36 62 O 9

19 O 17 14 63 O 8

20 O 6 ” 0 16

21 0 17 64 O 10

22 O 28 65 O 9 5

23 0 15 66 O 12 11

24 0 7 67 O 12

25 O 12 68 O 10 17

26 O 18 69 R 8

27 O 10 6 16 70 R 18 12

28 0 14 ” R 12

29 O 7 71 R 7 10

30 O 13 72 R 12 6 14 17 10 14 19 15 19 10 17

31 O 10 ” R 10 16 14 22 10 18 8 17 14 14

32 O 15 18 ” R 19 21 7 12 10 8 12 19 12

33 O 20 14 ” R 16 8 14

34 O 10 ” R 13

35 0 16 10 ” R 26

36 O 28 18 26 ” R 22

37 O 22 ” R 22

38 O 3 ” R 10

39 0 9 6 ” R 12

40 O 14 73 R 48

41 O 13 74 R 14

42 0 14 75 R 18

43 0 l6
 

Note: Id. is the counter’s identification number, CS denotes the counter’s status.



for other counters. Here the correspondence with the categorization given in Table

2.1 is that M and O are equivalent to 1 and 4 respectively whilst R is equivalent to

2 and 3.

The notation we now use to formulate a model for the data in Table 7.6 differs

from that given in Chapter 2 and instead corresponds to the notation of this chapter

except that here we use multiple subscripts.

Let ygjk denote the 1:“ count by the 1"” counter on the j"I slide (1' = l, - - - , 75;

j = 1,- - - ,11; k = 1,- - - ,nij). The model we use for a given counter’s results is

that the results, conditional on the given means, are independent Poisson random

variables with means I‘v’jln that is,

yijk ~ P(p.~_,-k) independently for j = 1, - ~ - ,11 ; k =1, - - 0 ,n,,-.

We now assume that the conditional means can be model as follows:

ln(#ijk) =-‘ Olj + 1‘; 012 + bi

where a,- is the effect for j“ slide (j = 1, - - - ,11), b,- is the effect of the 1'“ counter

(i = 1, - - - , 75) and 1:.- equals 1 if the counter’s status is M or 0 otherwise. Thus an is

a bias adjustment parameter for automatic image analyser counts (see corresponding

parameter in the example in Chapter 2). We then assume that

b.- ~ N(0, of) independently for i E {1, 2, 69, - - - , 75} independently of

b,- ~ N(0,a§) independently for i E {3,- - - ,68} .

Thus we are allowing the variation of the counters with status M or R to differ from

those with status 0, expecting a? to be less than 0%.

For the above model we then have that the conditional variance of yiJ-k is given

by

Var(y.-,-k|p.-jk) = 43%)]; where (15:1. (7.47)

Before fitting this model it is worthwhile making some brief comments on the

difference between the model employed here and the model employed in the exam-

ple of Chapter 2. First, in the example in Chapter 2 the model corresponds to a

153



population average (PA) model since it is the unconditional mean that is linked

to the regression model. The model employed in this example on the otherhand

corresponds to a subject specific (SS) model. The fixed parameters in the regres-

sion models will therefore have slightly different interpretations. Second, the basic

difference between the two modelling approaches is in the underlying distribution

assumed for the counter effects. If instead of assuming that the 7,- in the example

in Chapter 2 were gamma random variables with unit mean it was assumed that

they were lognormal the model used in that example could be expressed in the form

given in the example we are currently considering. However, given that for a gamma

distribution with unit mean there is a similarly shaped lognormal distribution, pro-

vided the variance of the gamma distribution is less than 1, the conclusions drawn

using the two methods should not differ significantly.

Fitting the model above, with 45 = 1 in (7.47), using the modified Fellner

method (RM2) detailed in Section 7.3.1 for estimating the variance components,

gives the following estimates for the fixed regression parameters and the variance

components:

 

al a2 as a4 a5 a6 07 as as am an an

Estimate 2.58 2.63 2.63 2.62 2.69 2.52 2.66 2.42 2.73 2.53 2.70 -0.41

Std. Err. 0.12 0.15 0.11 0.10 0.11 0.10 0.09 0.11 0.14 0.10 0.10 0.28
 

2
“1

0.12 0.14

2
02

The standard errors for the estimates of the 0;, 2' = 1, - - - , 11 are approximations

based on the expression for the variance for the standard BLUP estimate of a as

given in (7.21).

In addition to estimating the parameters the standardized values of the ran-

dom components in the model were also calculated. Here the estimates of the re-

alized counter effects (fl;, 1' = 1, - - - , 75) are standardized based on the correspond-

ing diagonal elements of the Var(B) given in (7.22) whilst the (pseudo) residuals
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i1 = ln(y) — ln(i£) are similarly standardized based on the Var(fi) given in (7.23).

Histograms of these standardized random components, counter and residual, are

given in Figures 7.4(a) and 7.4(b) respectively.

Here the “outliers”, basing judgement of “outliers” on the criterion that the

absolute standardized random component exceeds 3, are:

 

Random component Standardized random component

Counter 3 5.06

Counter 55 3.91

Counter 73 3.95

Counter 14, Slide 5, result 1 12.09

Counter 38, Slide 10, result 1 -4.31

Counter 72, Slide 2, result 1 -3.50
 

To conclude the above analysis of the data let us make a few comments. First,

given that the 11 slides are from a nominally identical batch of 14 artificially pro-

duced slides (see Section 1.1) it would be difficult based on an examination of the

slide effects (0;, i = l, - - - ,11) and their approximate standard errors to reject the

assumption that all slides have the same mean fibre loadings. Second, the estimate

of the extent of proportionately lower counts obtained by the automatic image anal-

ysers is consistent with the example in Chapter 2. The final comment concerns the

estimates of the variances of the counter effects. Here the estimate of the variance

for the effects for counters with status 0 (i.e. 0.14) is consistent with the results

for the corresponding counters (non-accredited counters) in the Chapter 2 example.

There is however a difference in the estimate of the corresponding value for the M

and R counters in the example here and the equivalent counters (coded 1, 2 and 3)

in the example of Chapter 2. This difference is conjectured not to be significant as

the estimate of of here will have a large standard error associated with it given the

small number of counters classified as either M or 0.

Before leaving this example estimates of the parameters in the model are given

when ()5 in (7.47) is not assumed to be 1. Using the same procedure as above, that
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is the modified Fellner method, we obtain the following estimates:

 

011 02 03 014 as as 017 018 09 0110 an 0112

Estimate 2.59 2.65 2.61 2.66 2.69 2.54 2.67 2.42 2.72 2.53 2.74 —0.43

Std. Err. 0.13 0.17 0.12 0.10 0.12 0.10 0.10 0.13 0.15 0.11 0.10 0.23
 

0303 45
0.07 0.13 1.40

Histograms of the standardized random components are given in Figures 7.4(c)

and 7.4(d) whilst the random components now identified as “outliers”, using the

same criterion as above, are:

 

Random component Standardized random component

Counter 3 5.36

Counter 55 4.12

Counter 73 3.06

Counter 14, Slide 5, result 1 9.80

Counter 38, Slide 10, result 1 -3.69

Counter 72, Slide 2, result 1 -3.06

Counter 73, Slide 4, result 1 3.02
 

Note here that the result reported by Counter 73 is now identified as an “out—

lier” with respect to both the systematic (counter effect) and the random compo-

nents whereas in the case (13 = 1 above it was only identified as an “outlier” with

respect to the systematic component. The extent of the deviation of the systematic

component here though is not as marked as for the case 4) = 1, so that in the two

cases the combined systematic and random components are comparable.

Based on this analysis the 43 estimate indicates that there is overdispersion

in the data relative to the Poisson but without some indication of the variability

of the ()5 estimate it is difficult to determine if this is significant. Including this
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overdispersion parameter in the model though we obtain estimates of the counter

variances more in line with those obtained using the Schall method in the example

of Chapter 2, that is of = 0.060 and 0% = 0.135. This agreement of the counter

variabilities is what we would expect as the same population of counters is sampled

for both examples.

7.6 Concluding remarks.

The three robust estimators considered in this chapter correspond to the three esti-

mators in Chapter 6. Unlike the situation in Chapter 6 where the differences between

the three estimators was not too large, here they perform very differently. This is

considered in part to be caused by the differences in sensitivity of each method to

changes in the weight matrix due to “outliers” in the data.

Of the three methods the robust method based on the modification of the

Fellner procedure, identified as RM2, is considered the best. More work though needs

to be undertaken to improve its performance. One possible way of achieving this goal

would be the development of more robust starting values for the variance components

than the moment based methods used in the simulations. For example, development

of variance components estimates based on quantiles, whilst not efficient, should give

good robust starting values for the RM2 method.
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Appendix A

Notation

Notation concerning functions

I(a: E 5) denotes the indicator function taking the value 1 if a: E S and 0 otherwise.

[1:] denotes the largest integer not greater than x.

]m[ denotes the smallest integer not less than x.

Notation concerning probability distribution and density functions (pdf)

NBD(p, (1) denotes a negative binomial random variable with pdf

Pr(X = 1) = w (3%)“ (0:11):

forz=0,1,2,-~; (1)0; p>0.

 

F(a, ,3) denotes a gamma random variable with pdf

x ta-l et/fi

P(X<a:) = I(a:>0)/o mat

fora>0andfl>0.

¢(a:) denotes the standard normal density, “/5134 exp(—.1:2/2) , —00 < a: < oo.

<I>(:c) denotes the cumulative normal distribution, [in ¢(t) dt , —00 < a: < 00.
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Notation concerning little 0 and big 0

For two non—stochastic sequences {an} and {bu} we have:

a,l = o(b,.) => "1320 I an/bfl | = 0

a,' = 0(1),.) 4:) lim sup Ian/I)fl | < oo
71-.”

For a stochastic sequence {Xn} and a non-stochastic sequence {bu} we have:

X" = op(b,.) 4:) nlggPfl Xn/bn | > 5) = 0 for all 5 > 0

X" = 0,,(bn) 4:) For all 5 > 0 there exist M and N

such that P(| Xn/bn | > M) < a for all n > N.

Notation concerning matrices

The following notation is taken from Searle et. al. (1992).

If A is an m by n matrix with elements ag,ji=1,---,m; j = 1,---,n then we

have

A = {m “£32113; a

which can also be shortened to {m ail-ha. or even {m aij} when there is no chance

of misunderstanding. Here the subscript m on the first curly brackets denotes that

the array is a matrix.

This notation is easily extended to column vectors (e.g. {c b;}?=1) and row vectors

(e.g. {, CALI). For a diagonal array U with diagonal elements 11.- (i = 1, - - - ,n)

the notational form is {d 11,-};1.

The notation is also useful for matrices with block structure. In such cases the rules

above apply except that elements are replaced by matrices.
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Appendix B

Miscellaneous results

Theorem B1.

Let X,- (i = 1, - - - ,n) be independent random variables and let 95 (j = 1, - - - ,m) be

functions such that, for non-negative integers rJ- (j = 1, - ~ - , m)

Egj(X.') = 0

Elgj(X,-)|2’1' < Bi

for all i = 1, - - - ,n and j = 1, - - -,m where the bounds BJ- are independent of i and

n. Then for

F(X,,...,x,,) = fi(§n)gj(x.~))rj
J=l i=1

we have

E F(X1, . . . ,X;) = 0(nIr-l2l)

where r. = 3:1 rj and [x] denotes the integer part of :5.

Proof.

Let

k

3ng = {b:(b1,...,bk) : bIEN; b12"'2bk>0; Zbl=rj}

I=l

jzl,...,m

In]: = {i=(i1,---,ik) : iIEN; iISn;i17éierl-7£ll}
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where N denotes the set of positive integers.

Then, provided n 2 max{r1, - - - , rm},

Minus)” = f1 2 Z Z flex/m)“
i=1 i=1 i=1 k=1 besj’k 1'61” 1:1

This latter expression, upon expansion, contains a finite number of terms,

independent of n, of the form

111

H 2 ii (gJ-<X:~...))“
j=l gel-”'5 1:1

= Z Z (fifi(gj(x.~,—.))"") (13.1)
i,eI,.,.., inter”... i=1 ’=1

corresponding to the different sets of possible values for {k1,- - ~,km} and for all

b,- 6 3-,,” (j = 1,---,m).

Each of these terms in turn contains a number of terms, each of which has

bounded absolute expectation (less than [1:17;] Bj). Hence the order of the expected

value of (B.1) is equivalent to the number of terms in this expression that have

non—zero expectation. This quantity in turn is less than or equal to the number

of terms, N say, that have ij > 1 for all j,l or have i“ = ii”; for some j gé j'

whenever b“ = 1. Since N is independent of g, j = 1, - - - ,m we can take these

functions to be the identity function. Hence N corresponds to the number of terms

in the expansion of

m n '1' n r~

11 (m) = (2....)1:1 1:1 3:1

that have all X,- raised to at least the power 2. This is easily shown to be nl'fl] and

hence the proof is complete.

Note: Above it was assumed that the functions 9,- do not depend on i. This

assumption is not necessary and the results continue to hold provided the B,- do not

depend on the i.
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Theorem B2.

If Xx ~ NBD(;1K,01K) with cumulants Kim, (r = 1,2,---) and pK/aK 10 then

IICK'J S pg Mr for all sufficiently large K

where M, is a constant depending only on r.

Proof.

To find the cumulants of XK we introduce an alternative parameterization for the

negative binomial distribution where we keep ax but let fix = (aK+pK)/ax. Then,

from Johnson and Kotz (1969) we have

’CIm = CYK09K—1)

8K: ,

’CK,r+1 = [3K(/3K-1) K'
53K

Hence ICK', = 01K fix (fix —- 1) h(;9K) where h(flx) is a polynomial in fix with

constant coefficients.

Now fix =1+pK/ax hence there exists aK* such that l 5 fix S 2VK 2 K”.

r21. 

From this we have that |h(flK)| is bounded with the bound only depending on r.

Also, since ax fix (fix — l) = pg (1+ pK/ax), this implies that ax fix (fix — 1) S

2 fix V K 2 K*.

The result then follows immediately.
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