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SUMMARY

(Eonventional reflection tomography creates an estimate of subsurface seismic

velocity structure by inverting a set of seismic traveltirne data. This is achieved by solving

a least-squares optimisation problem that finds the velocity and depth model that

minimises the difference between raytraced and measured traveltimes. Obtaining the

traveltirne data can be difficult as manual picking of reflection times is required and all

picked reflection events must be associated with the reflector depths defined in the model.

Even with good traveltirne data the optimisation problem is very non-linear and the

surface restriction of the sources and receivers makes the problem generally

underdetermined. These issues result in severe ambiguity and local minima problems.

This thesis shows that modifications to the conventional reflection tomography

algorithm can make it a more practical and reliable procedure that is less likely to be

trapped by local minima. The ray tracing procedure is changed so that reflector depths are

not necessary and automatic traveltirne interpretation can be successful. Entropy

constraints are introduced (after being justified) which prevent unwarranted velocity

structure from appearing. This feature adds significant stability and reduces the ambiguity

problems. Staged smoothing of the optimisation function helps avoid local minima.

Synthetic data examples show that the-algorithm can be very effective on noise free

data. Adding noise to synthetic data reduces the algorithms effectiveness, but inversions

of real data sets produces updated velocity fields that result in superior pre-stack depth

migrations.



§1 INTRODUCTION

lQeflection seismic surveys are conducted with the aim of imaging subsurface

geologic structures. Historically, seismic profiles have been used to aid detection of

hydrocarbon reservoirs. These are most commonly found in sedimentary basins. Seismic

profiles show reflection strength as a function of subsurface locations and acoustic

traveltirne. Ultimately, the explorationist requires an estimate of the actual depth structure.

Accurate depth imaging of seismic reflection data requires knowledge of the

subsurface acoustic velocity field. During conventional seismic data processing, this

subsurface velocity field is derived from CDP stacking velocities (see Telford et a1. , 1976)

which are based on the normal (or hyperbolic) moveout assumption (see Taner and

Koeler, 1969). The hyperbolic moveout assumption is only valid for velocity fields that

do not vary appreciably in the lateral direction (hyperbolic moveout is exact only for

constant velocity fields), but it has proved to be very successful as the sedimentary basins

under investigation generally have little lateral variation on the scale of the recording

aperture. Whenever significant lateral variations are present (for example, faulting, reef

structures, channelling and low or high velocity zones), conventional processing can

produce less than optimum results. In this case processing must be performed that is not

limited by the hyperbolic moveout assumption.

The technique known as reflection tomography was demonstrated by Bishop et a1.

(1985). The aim of this technique is to derive the subsurface velocity field (in terms of -

interval velocities and depths) directly from the traveltirnes of reflected seismic waves. No

moveout assumption is made. The algorithm requires an array of reflected energy
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traveltimes to be picked from the collected data, along with a set of reflector depths. The

algorithm then iteratively updates the subsurface model in an attempt to minimise a

constraint statistic which is basically the sum of the differences between the raytraced

(modelled) traveltimes and the measured traveltimes. Extra terms are often added to the

constraint statistic in an attempt to stabilise the inversion. The constraint statistic does not

have to be based on traveltime residuals - the only requirement is that it is a useful

measure of errors in the model.

Reflection tomography has not yet formed part of conventional processing. There

are many reasons for this. Firstly, the required reflector depths are difficult to estimate

and poor estimates can prohibit the inversion process from achieving useful results.

Finding reflecting horizons can be a difficult task in itself - especially with complex

structural geology (see Bording et al., 1987; Jacobs et al., 1992; Lailly et al., 1992).

After estimating a set of reflectors, the traveltime data then have to be picked for energy

reflected from these reflectors only. This is because the raytracing used in the inverse

procedure (two-point raytracing), finds the traveltime between a surface source, a

specified reflector and a surface receiver. Such restrictions imposed on the traveltime

picking can make this step difficult and. laborious (see Leger et al., 1989; Lailly et al.,

1992).

Even when a reliable set of traveltirnes and reflectors have been defined, a useful

inversion result is not guaranteed. The surface restriction of the sources and receivers

result in an inverse problem that is predominantly underdetermined. The iterative

minimisation of the traveltime error is prone to entrapment by local minima and many

areas of ambiguity exist (see van Trier, 1988). A solution to these problems must be

found before reflection tomography will find more widespread use. An easily obtained,
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reliable velocity field obtained from reflection tomography could be used to produce

accurate seismic images in areas of complex structural geology.

The problems with reflection tomography, outlined above, have ileee‘t‘d researchers

to develop many related algorithms to extract velocity field information from the

traveltimes of reflected energy (Biondi, 1988; van der Made and van Riel, 1988; Harlan,

1989; Sherwood, 1989; Toldi, 1989; Biondi, 1990). These algorithms have varying

degrees of success and ease of use. Most of them simplify the problem in some way (for

example, by defining velocity fields characterised by smooth spline functions only) in

order to stabilise the inversion. Also, significant research has been conducted into the use

of depth migration to simplify the traveltime data interpretation (van Trier, 1990; Harlan

e2:- 1991a, 1991b; Jacobs et a1., 1992). Bording et a1., 1987, used depth migration to help

ensure that the reflector depths were accurate, without providing any picking assistance.

The aim of this thesis is to overcome the problems of conventional reflection

tomography without limiting its potential. An algorithm will be developed that is very

simple to use and practical, yet has the potential for improving the image quality obtained

from the conventional algorithm. The reflector restrictions imposed on traveltime

interpretation will be removed. A staged smoothing procedure will stabilise the inversion,

and entropy constraints will help solve ambiguity problems and add further stability.

Sword (1986) demonstrated the advantages of removing reflector depths from the

model parameters of Bishop’s reflection tomography algorithm. This requires a raytracing

procedure that does not need defined reflector locations. When the apparent dip of a

reflection is measured on common source and common receiver gathers, it is possible to

estimate the intercept angles of the rays at the surface. With this information, raytracing

can be performed by tracing from both the source and receiver locations into the model
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until the two ends meet. Reflectors do not have to be defined but apparent dips must be

measured along with the traveltime. The advantage of this method is that there are no

restrictions on the reflections that can be picked. Automatic data picking routines are a

practical approach in this case. Fault plane reflections, diffracted energy and multiple

arrivals (see Lailly et al., 1992) all become available as valid data with this style of

raytracing. These extra data categories can provide wider angular coverage and hence

better solutions.

The use of smoothing in inverse problems is a well known method for stabilising

an inversion (Biondi, 1988; Menke, 198;, Williamson, 1990). It makes intuitive sense to

use heavy smoothing early in the inversion, but to decrease the smoothing as the inversion

improves the model - ultimately resulting in an unsmoothed velocity image. This type of

approach initially determines the required low frequency velocity changes and gradually

extracts the higher and higher frequency components of the modifications to the starting

model. Williamson (1990) applied this type of smoothing approach to reflection

tomography. Biondi (1988) used a similar approach in his beam-stack inversion. The

algorithm which employs stages of decreasing smoothing, is effectively a means of

damping the components of the inversion with small singular values (Jupp and Vozoff,

1975). Some local minima (caused by the small singular value components) are

temporarily smoothed over, allowing the inversion to avoid them. The probability of

finding the global minimum of the constraint statistic is increased.

Entropy, which plays a central role in this thesis, has a long history. Entropy

constraints are commonly used to aid in the inference of a solution for undetermined

inverse problems. Originally derived in the fields of thermodynamics (Jaynes, 1988a) and

information theory (Shannon, 1948; Khinchin, 1957), entropy has recently been applied
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in many other disciplines of science; for example, image processing, astronomy and

geophysics (Reitch, 1977; Skilling and Gull, 1985; Bassrei, 1990; Whiting, 1991b).

Maximum entropy solutions to inverse problems have the special property that they do not

contain any structure other than that needed to obtain a solution. The maximum entropy

solution is unique and,'to the extent that the data is reliable, the solution is maximally

unbiased in terms of structure. Entropy is maximised at every iteration, ensuring that no

unjustifiable decisions are made at any stage of the iterative inversion. Since spurious

anomalies are prohibited, maximising entropy has a stabilising effect on the inversion.

However, it can be difficult to associate the current reflection tomography problem with

applications of the maximum entropy principle within other disciplines. But with the aid

of the notion of contingency tables and simple tomographic problems, an instructive

association can be made (see Chapter 3).

With entropy constraints, the inverse problem becomes the simultaneous

minimisation of a constraint statistic (error function) and the maximisation of the entropy

function. The Gauss—Newton method of inversion used by Bishop et al. (1985) is replaced

by a method using local quadratic approximations to the constraint and entropy functions

within a 4 or 6 dimensional subspace of the original model space (with typically thousands

of dimensions; see Kennett and Williamson, 1988, for more on subspace methods). Such

an inversion algorithm was described by Skilling and Bryan (1984). Suitable modifications

are necessary to incorporate stages of decreasing smoothing. The inversion process can

also continuously estimate the extent of validity of the local quadratic approximations, and

adjust the iteration dependent distance limit accordingly. This ensures the most rapid

inversion possible without producing instability. The constraint statistic is the sum of the

squared errors which are weighted to approximate an L1 norm so that erroneous data do
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not have a detrimental effect on the inversion.

Synthetic data examples show that significant velocity anomalies can be resolved

with the modified reflection tomography algorithm. The maximum entropy images

obtained clearly have less spurious structure - the background noise1 is suppressed. The

strategy of decreasing smoothing successfully avoids some local minima problems.

When real seismic data is used, the interpreted traveltime data will be inherently

noisy. By adding noise to some synthetic data it was found that 10% noise (added to the

measured angles) was tolerable whereas 20% noise may restrict any useful velocity

updates from being achieved. Reflection tomographic inversions of two real data sets show

that significant improvements can be achieved in real situations. The validity of these

updates is demonstrated by improved pre-stack depth migration results.

The spatial frequency of velocity variations obtainable from conventional means

is low compared to that possible with reflection tomography. The most obvious role for

reflection tomography is to verify and extend the best velocity model obtained by

conventional means. With the modified reflection tomography algorithm proposed in this

thesis, such updated velocity models are more reliable and obtained with little manual

intervention.

Other important works relevant to this thesis are (alphabetical order) Ables (1974),

Al-Yahya (1989), Berkhout (1987), Bracewell (1978), Burg (1967), Carrion et a1. (1993),

Catlin (1989), Chin and Stewart (1987), Comwell (1983), Delprat and Lailly (1990), de

Vries and Berkhout (1984), Dusaussoy and Abdou (1991), Etgen (1988), Farra and

Madariaga (1988), Firm and Backus (1991), Frieden (1972), Gill and Murray (1974),

 

1 Since the synthetic data is noise free, the noise in the solution stems from the

underdeterrnined nature of the inverse problem.
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Good (1963), Gull (1988), Gull and Daniell (1978), Gull and Skilling (1983), Jackson

(1979), Jaynes (1957, 1982, 1984, 1985, 1988b), Justice et a1. (1989), Kennett (1988),

Kennett et a1. (1988), Kennett and Harding (1985), LaBrecque (1990), Lailly et al.

(1990), ~Landa et a1. (1989), Langan et a1. (1985), Lines (1991), Lynn and Claerbout

(1982), Marquardt (1963), McGillivray and Oldenburg (1990), Michelena and Harris

(1991), Moser (1991), Oldenburg and Ellis (1991), Phillips and Fehler (1991), Press et

a1. (1989), Reitsch (1977, 1985), Scheuer and Oldenburg (1988), Shaw and Orcutt (1985),

Shore (1984), Singh and Singh (1991), Skilling (1988), Skilling and Gull (1984), Smith

et a1. (1984), Stewart (1989), Stork (1992), Stork and Clayton (1991), Sword (1987),

Tarantola (1987), Tikhonov and Arsenin (1977), Ulrych et a1. (1990), Vidale (1989),

White (1991) and Zhou et a1. (1992).
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§2 REFLECTION TRAVELTIME TOMOGRAPHY - PRACTICALITIES

2.1 Ray tracing with triangular cells

The development of a traveltime tomography algorithm begins with

consideration of ray tracing routines. Ray tracing can easily be the most time

consuming component of the overall algorithm and generally a trade-off between

accuracy and speed is considered. One purpose of the current study is to improve

reflection tomography in general, and rather than create a possible source of error with

inaccurate ray tracing, computational speed was sacrificed for the sake of accuracy.

Bishop et a1. (1985) used a ray tracing procedure as described by Langan et al.

(1985). This procedure divides the image

 into square cells and computes

approximate linear velocity functions of

 

the form V - a+bx+cz within each cell

(a,b,c constants). The four nodes (see

Figure 2.1-1) at the corners of the square

cell will have velocities that do not

 

generally satisfy such a linear

relationship. However, a simple velocity    

Fig. 2.1-1 Four velocity nodes are used to

construct a square cell. A typical circular

raypath is shown.

structure is desired for rapid

computation. So a linear velocity field is
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approximated to fit the four corner velocities, causing velocity discontinuities at the

boundaries of the cells. Within the locally linear velocity fields, the raypaths are either

circular or straight and the velocity discontinuities cause refraction at the boundaries.

Langan et a1. (1985) made further approximations to simplify the calculations of the

circular arcs. The combination of the approximations used here may be insignificant,

but for the present study any such possible source of error is to be avoided at the

outset. More accurate ray tracing can be achieved with triangular cells.

The use of triangular instead of square cells has significant initial difficulties

due to the existence of a sloping side (see Figure 2.1—2). When searching for raypath

intersections with the sides of the cells, considerably more book keeping has to be

done to cope with the sloping sides. However, there are significant advantages as well.

Each triangular cell is defined by only three velocity nodes, uniquely specifying a

linear velocity field. Therefore all

 

velocities are continuous at cell

boundaries, and each velocity node is v1 V2

honoured exactly. The resulting rays are

circular within each cell, without

refraction at the boundaries (see Figure

2.1-2). It is also intuitively easier to fit a
 

triangular mesh to a surface than to try   and fit a square mesh.  

Fig. 2.1-2 The geometry of the triangular

The ray tracing procedure was cell configuration and some typical circular

arcs.

designed with a kernel program capable

of tracing through any given triangular cell. This kernel program, named RAYTRACE
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can be found in the appendix. The following is a summary of the flow of this program.

i)

iii)

iv)

vi)

vii)

The input data are the spatial locations and velocities of the three grid

nodes defining the triangular cell, along with the entry location and

entry angle of the ray.

Compute lateral and vertical velocity gradients by finite differencing

across the corners of the triangle.

Compute the velocity at the input ray location.

Determine the angle between the velocity gradient vector and the

reference axes and the magnitude of the gradient.

If the gradient is zero, flag the ray for straight ray tracing within this

cell.

Compute the radius of curvature for the ray’s circular are within this

cell.

If the radius is larger than a threshold value, flag the ray for straight ray

tracing‘. For the purposes of raytracing efficiently the threshold needs

to be as low as possible, but surprisingly significant errors are easily

created.

viii) Compute the centre of the circular arc.

Particular care must be taken to ensure that the circular arc is curving in

the correct direction. That is, the centre must be chosen on the correct

side of the rayz.

 

1 There will be more discussion on the required size of this threshold in a later

section.

2 The velocity at the correct centre must be zero, so it is easy to check the two

choices.
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ix) Intersect the circular arc with the sides of the triangular cell (see Figure

2.1—3), thus determining all possible exit points.

x) Determine the exit angle for each of the possible exit points3.

xi) Compute the arc length from the entry point to each possible exit point

around the circle (in the direction of energy transfer).

xii) The exit point with the shortest possible arc length is the required exit

point.

The accuracy and integrity of this ray tracing code is of paramount importance for the

traveltime inversion algorithm. Thus great care was taken to ensure that all possible

ray configurations were correctly handled.

Most of the calculations

performed by the subroutine

RAYTRACE are performed with double

precision calculations to avoid rounding

errors. Originally, a threshold of 104

metres set for circularwas rays.

However, a serious problem was

uncovered while analysing constraint

statistic derivatives (see section 2.4). It

was found that this was not accurate

enough and that the threshold had to be

increased to a radius of 10" metres.

 

 

 

 

   
Fig. 2.1-3 The arrow represents the entry

location and orientation of the ray. The

dashed curve is the circular are that the

ray must traverse. A, B and C are possible

exit points.

3 One needs to be mindful of the direction of energy transfer around the circle,

therefore being able to assign a 360° range of angles.
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One potential problem with the ray tracing scheme as defined above, is an

artificially introduced asymmetry. As can be seen from the example in Figure 2.1-2,

the four velocity nodes can be split into triangles with a diagonal line sloping upwards

to the right, or equivalently, upwards to the left. Irrespective of the sense of

triangulation, such cells can make symmetric velocity models slightly asymmetric.

However, as long as the cell size is small compared to the features being resolved, the

induced asymmetry will be negligible?

The ray tracing algorithm described above is computationally intense. Langan et

al., 1985, go to considerable lengths to avoid the evaluation of trigonometric functions.

No such compromises were made in the studies discussed in this thesis.

There are other approaches to the ray tracing problem which may prove

adequate for reflection tomography applications, while possibly being more efficient.

These approaches include finite difference traveltirne modelling (eg. Vidale, 1989) and

shortest path calculations (Moser, 1991). Currently, the ray tracing portion of the

reflection tomography algorithm is the most time consuming component, taking up to

80% of the total computation time (depending on the size of the model; see section 4).

 

4 The observations made about asymmetry here are reinforced by Bregman et al.,

1989. Later in this thesis (Figures 2.2-4, 2.2-5 and 2.5-1) some synthetic examples

display significant asymmetry even though the model and raypaths appear symmetric.

This is not a result of the triangular cell shape. The model traveltime data were derived

with exactly the same raytracing code and triangular cells. That is, the models themselves

effectively have an asymmetric velocity distribution even though the structure of the

anomalous velocity nodes is symmetric. The raypaths used for these examples are

symmetrical with respect to the extent of the model, however, this means that they sample

the edges of the (asymmetric) anomaly differently. The asymmetry of the solution is a

result of this sampling and the subsequent response of the inversion algorithm to the

underdetermined problem.
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2.2 Removal of reflectors from problem parameterisation.

The conventional reflection tomography algorithm, as introduced by Bishop et

al., 1985, requires a set of specific reflectors to be chosen and in turn, that all

traveltime data picked must be for energy that has reflected from one of these

reflectors. These restrictions were imposed to enable two-point ray tracing to compute

theoretical travel times between known source and receiver locations. However, these

restrictions introduce a lot of practical difficulties into the conventional algorithm.

Firstly, it is often difficult to define an adequate set of reflectors in areas wtere

reflection tomography could be useful (eg. structurally complex areas). It is very

difficult to ensure that travel times for these reflectors are correctly interpreted from

the pre-stack gathers. A further difficulty is that these chosen reflectors must have

depths assigned before the tomographic inversion can begin. If no well data is available

it is not easy to assign accurate depths. Leger et al., 1989, gave a graphic description

of how difficult the travel time interpretation can be; they had to repick the data many

times in order to get the correct inversion (luckily, they knew the type of results

required). Finn and Backus (1991) made similar comments regarding the difficulty of

traveltirne picking during their presentation. They found the picking so difficult, they

stopped picking travel time data for one corner of their prOSpect. Lailly et a1. (1992)

described how difficult the traveltime interpretation can be in areas with complex

structural geology.

A lot of research effort in recent years has been aimed at reducing the effort

required to extract the traveltirne information from the data and prepare the initial
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model. Here it is assumed that any algorithm designed to estimate the subsurface

interval velocity field from the travel times of reflected seismic energy, is a form of

reflection tomography. Along these lines, many researchers have developed algorithms

to achieve the results of conventional reflection tomography, but with the emphasis on

the ease of application.

Biondi (1988, 1990) developed an algorithm for subsurface interval velocity

estimation with the help of "beam—stacks". The purpose of using beam-stacks was to

remove the need to pick the traveltirne data. An inversion procedure was set up to find

the interval velocity distribution that maximised the resulting beam-stack energy.

Beam-stacking is essentially a localised slant-stacking process across a gather of traces.

Because it is localised, it is capable of resolving the non-hyperbolic moveout associated

with complex velocity fields. Since a small group of traces are beam-stacked, the

method is less troubled by noisy data, but its resolution is slightly decreased. After

performing the beam-stacks, it is possible to find the velocity model that maximises

this beam—stack energy. This velocity model is effectively a tomographically derived

velocity field, and manual data picking was not necessary.

A somewhat similar approach was made by Toldi, 1989. He used CMP

stacking semblance to derive an interval velocity model without the need for picking

any data. This algorithm simplifies the practical aspects of reflection tomography, but

its range of application is reduced. Given a proposed interval velocity model, Toldi

used computed stacking velocities to evaluate the overall stacking semblance of the

data (similar to overall beam-stack energy). Iterative changes to the velocity model

were made to maximise the overall semblance. The technique is restricted by the use

of stacking semblance values which are based on the hyperbolic moveout assumption.
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Success can only be expected for velocity models that are smooth enough to produce

roughly hyperbolic moveout.

Picking the required traveltirne data after pre—stack depth migration has been

proposed~ to simplify the conventional reflection tomography algorithm (Van Trier,

1990; Harlan et a1., 1991a; Jacobs et a1., 1992; Lailly et a1., 1992; Stork, 1992).

These researchers have acknowledged that traveltime data picking is very difficult and

laborious, but they have noticed that it becomes easier if the data has been pre—stack

depth migrated with an approximate velocity field. When picking the data from

common-offset gathers, the reflection events are easier to interpret after an

approximate migration. Accommodating traveltime data after pre-stack depth migration

requires modifications to the procedure of Bishop et a1., 1985, primarily for Frechet

derivative computation‘. In general, this type of algorithm has the computationally

expensive pre-stack depth migration process between each iteration. The bulk of this

expense can be avoided with approximate methods of residual migration (Van Trier,

1990). Traveltime data picking has not been avoided but it has been made easier.

Many other simplifications to the conventional reflection tomography algorithm

(Bishop et a1., 1985) have been published. Van der Made and Van Riel (1988) used

stacking velocity values and zero-offset traveltimes to invert for the subsurface interval

velocity field. Using stacking velocities without offset—dependent traveltimes is an

extreme case of avoiding pre—stack data picking. Similarly, Sherwood (1989) generated

hyperbolic traveltirne data directly from stacking velocities. These methods are simple

to use but they have difficulties in areas of complex velocity structure. Harlan

 

1 Although Jacobs et a1., 1992, and Lailly et a1., 1992, suggest inverse raytracing

of the picked migrated data to predict the pre—rnigration traveltimes.
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(1989,1991b) simplified the data picking by incorporating stacking velocities and

simplifying the data set to be interpreted. These research efforts demonstrate the

difficulty of traveltime data picking for the conventional reflection tomography

algorithm.

Two-point raytracing is used to compute theoretical traveltimes in ,the

conventional reflection tomography algorithm. This approach to raytracing requires

specifically defined reflectors and a fan of rays to be traced for every shot and each

reflector (Figure 2.2—1). This is why the reflector depths must be specified as

parameters of the inversion model — however, they are not known and must be allowed

to vary. These extra parameters complicate the problem of determining the interval

velocity field, introducing issues like velocity/reflector depth trade-off. Complications

such as these are avoided when it is realised that two-point raytracing is not essential.

Conventional reflection seismic data is recorded in gathers of closely spaced

traces. The array of receivers makes it possible to determine the angle of incidence of

 

 

 

N

      
Fig. 2.2-1 Two-point raytracing finds the raypath between a source, receiver and a

given reflector. A fan of rays is shot with interpolation to the actual receiver location.
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the seismic energy with the surface. If the near surface velocity is known, then the

apparent dip of some reflected energy on a common—source gather is all that is

required to compute the emergence angle of the energy at the receivers (see Figure

2.2—2). éimilarly, the apparent dip of the same energy on a common—receiver gather

gives the impingement angle at the source array. Having both surface angles, it is

possible to trace both ends of the ray back into the model until they meet (Figure 2.2—

2). Reflected traveltimes are computed without any defined reflectors. This approach to

raytracing will be called two-end raytracing in contrast to two-point raytracing.

Sword (1986) made use of two-end raytracing in reflection tomography. He also

observed that errors associated with estimating the surface angles can be detrimental to

the inversion procedure. Since the angles are given by dips measured from the data,

there will always be some measurement error. Sword (1986) found that such errors

could make the estimated traveltimes unstable - especially if the source and receiver

are relatively close together (see Figure 2.3-3). Fortunately, Sword discovered another

statistic, Xe", which is more stable than the traveltime. This new statistic is the spatial

separation of the two ends of the ray at the depth Z where the total traveltime equals

the actual traveltime. If the velocity model is correct, the two ends of the ray must

meet at this depth and X", will be zero. This statistic makes it possible to use two—end

ray tracing in reflection tomography.

The Xm statistic was compared to the traveltime statistic in a simple synthetic

reflection tomography experiment. The actual velocity model comprised grid points

with a velocity of 2000 m/s, except for one anomalous point of 2050 m/s. A set of

synthetic rays were generated in a symmetric pattern over the anomalous velocity.
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Fig. 2.2-2 The principle behind two-end raytracing.

 

 

 

t2>> t1      

Fig. 2.2-3 The X”, statistic is more stable than traveltime.
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Figure 2.2-4 shows the results of an inversion which used traveltimes as the constraint

statistic. This inversion has performed poorly. Conversely, Figure 2.2—5 displays the

successful results of the inversion of the same problem with the use of Xm as the

constraint statistic.
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. 2000 1998 2013 2017 1981 2011 1982 2005 2007 2006 2002
2000 1999 2000 2027 1988 2001 1987 2011 2008 2001 2000

2000 1999 2004 2005 2010 2004 1996 2009 2002 2000 2000

2000 2000 2005 2014 2002 2011 2004 2002 2000 2000
2000 2000 2004 2014 2020 1969 1996 2002 2002 2000 2000

2000 2000 2000 2009 2011 1966' 1 991 1995 1999 2000 2000
2000 2000 1998 2001 2026 1958 2002 1998 1996 2000 2000
2000 2000 2000 1999 2000 .2 2001 1998 2000 1999 2000 2000
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000    
Fig. 2.2-4 Inversion results using traveltimes. 43 rays were used. The marked velocity

should be 2050 m/s (2000 m/s for the rest). (See the footnote on page 15)

 

2003 1999 2004 2004 1993 2002 1993 2004 2000 2001 2003
2000 2000 2012 2000 1997 2000 1993 2001 2007 2003 2001
2000 1999 2002 2004 1933 1991 199a 2009 2010 1999 2000
2000 2000 2003 1995 2010 1990 2004 2003 2003 2000 2000
2000 2000 2003 2010 2001 '* 1997 2003 2003 2000 2000
2000 2000 2005 2017 2011 1994 1992 2005 2003 2000 2000 .
2000 2000 2000 2005 2001 1994 1992 1933 1993 2000 2000
2000 2000 1997 1995 1993 1997 1999 1994 1993 2000 2000
2000 2000 1999 1996 1999 1993 2000 1999 1993 2000 2000
2000 2000 2000 1999 2000 2000 2000 2000 2000 2000 2000
2000 , 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000  

Fig. 2.2-5 An identical inversion to that of Fig. 2.2-4 except that Xm’s were used

instead 0f traveltimes. (See the footnote on page 15)
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It has been claimed that this method of raytracing, without reflectors, will

suffer because it does not force all reflections from a single reflector to focus at the

same depth (Sword, 1986). The depth location of the ends of two adjacent rays that

reflect from the same reflector, may be slightly different due to errors in the surface

angle estimation, for example. Conventional reflection tomography forces rays like

these to reflect at the same depth. However, it is not clear whether this reflector

constraint does not cause more problems than it solves. More difficult picking and

velocity/reflector depth trade-off problems certainly appear to be very substantial

problems.

An advantage of using two—end raytracing is the increased number of data that

can be picked. Without pre—defined reflectors it is a simple matter to include any

reflected/scattered energy as data, even from very small reflectors. Diffracted energy

as well as energy that has reflected from fault planes are now naturally admissible. The

result is more data with a greater range of angular coverage (from diffracted/fault

plane energy), both of which will enhance the results of the inversion process. The

extra rays that can be defined may well compensate for the focussing issues described

earlier.

Two-end raytracing can also avoid the expenses of two—point raytracing. For

accurate two—point raytracing, more rays have to be traced than there are receivers.

That is, for each required raypath, more than one ray is traced because the final

surface location of the ray cannot be predicted. The required traveltime is interpolated

from the traced times. With two-end raytracing, exactly one ray is traced for each

required raypath. A further saving is afforded since no reflection logic is required.

-23-



2.3 Automatic data picking using complex attributes.

conventional reflection tomography requires specific events to be interpreted

and careful, manual picking is a major and laborious step. Interactive workstation

software has been proposed to make this step less arduous (Harlan et al., 1991a;

Harlan et al., 1991b). However, two-end raytracing makes it possible to let a computer

do all the work. Two-end raytracing (see section 2.2) makes traveltime data picking

virtually unrestricted. Any reflected energy1 can be picked as long as it is coherent

enough to enable its dip to be estimated (on shot and receiver gathers). Automatic data

picking is potentially simpler and more successful.

Sword (1986) used localised slant—stacks to identify reflection events and

estimate their apparent dip. This approach applies a series of time shifts to a small

number of traces from a common source or receiver gather, followed by summation.

This slant-stacking process transforms the small group of traces from the time/offset

(t—x) domain to the centre trace intercept/ray parameter2 (t—p) domain;

(N-l)

2

)XRP; - z y(1:-iijx,iAx)

#4124)

where y(t,x) is the original data set,

t is the travel time,

x is the offset from the centre trace of the group,

 

1 Including diffracted events, fault-plane reflections and multiple arrivals.

2 The ray parameter is the inverse of apparent horizontal velocity.
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N is the number of traces in the group (odd),

1: is the centre trace intercept time,

p]. is the ray parameter equivalent to one of the j dips being searched

for, and,

Ax is the spatial separation of the traces.

Once the data have been transformed in this way, the r-p traces are searched for

amplitude maxima. Each maximum defines a time on the centre trace and an apparent

dip. These results are assigned to the centre trace location and the group of traces is

rolled along by one trace, and a new ‘C-p transform is performed.

Once all traces of every common shot gather have been transformed and

picked, the data are re—ordered into common receiver gathers. The r—p transformation

and picking process is repeated on each common receiver gather. In this way, both the

apparent shot and receiver domain dips are obtained, as required for two-end

raytracing. This process is successful (Sword, 1987), but it is also very

computationally intense.

In 1988, Scheuer and Oldenburg described an algorithm that is capable of

extracting the same information as achieved with localised slant stacks. This technique

uses the complex attributes of the seismic traces. It is a simple process to compute the

instantaneous frequency and instantaneous wavenumber at any point on a gather, and

then take their ratio to give the apparent dip at that point. Obtaining the instantaneous

attributes requires a single fast Fourier transform and its inverse for each trace. Such

an algorithm will require considerably less computational effort than the previously

described slant stack approach.
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Complex trace attributes are derived from relatiVely simple theory. It can be

assumed that any recorded trace is the real projection of some complex trace. Any

imaginary component can be assigned to create such a trace, but only one particular

imaginary component retains the characteristics of the original trace. Since the

recorded trace is real and causal (zero amplitude for t<0), its Fourier transform is

hermitian. Either the positive or negative half of such a Fourier spectrum constitutes

enough information to recover the original total spectrum. It will be shown that zeroing

the negative frequencies creates a complex trace with an imaginary part that is the

Hilbert transform of the real part (the original trace). Such a complex trace allows for

the evaluation of instantaneous attributes (see Bracewell, 1978).

If the recorded seismic trace is x(t) then the complex trace, commonly referred

to as the analytic signal, is

a(t) - x(t)+i32(t)

where 12(1) is the Hilbert transform of x(t). The time domain Hilbert transform is

defined as the time domain convolution with a digital filter h(t) whose Fourier

transform is H(co) - -isgnm . It is usually more efficient to apply the Hilbert transform

in the frequency domain. Consider the Fourier transform of x(t) ,

X(w) - fx(t)e‘°'dz .

The negative frequencies can be suppressed by multiplying X(w) by the unit step

function3, U(w), and then

 

3 The unit step function is zero for co<0, unity for co>0 and a 1/2 for co -0.
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_ i a 4:»:fit) 2n £U(co).X(w)e duo

is the inverse Fourier transform. The inverse Fourier transform of U(w) is

1

i21tt
 u(t)- %6(t)+ (see Berkhout, 1987), where 6(t) is the Dirac delta function. The

convolution theorem gives“,

1

i21tt
 fit) - 6603+ )*x(t)

l l .
- —2—x(t) + Elba) *x(t)

- gm) +ii(t))-

Therefore, fit)- -;—a(t). In summary, the analytic signal is easily obtained by Fourier

transformation, zeroing the negative frequency components and inverse Fourier

transformation.

The analytic signal, or complex trace, allows the trace to be viewed as a phasor

rotating about an axis (see Bracewell, 1978). The length of the phasor is the

instantaneous amplitude and its rate of rotation gives the instantaneous frequency. The

real projection of this complex trace is the recorded signal, x(t), and the imaginary

projection is £(t) , known as the quadrature trace. The phasor is never allowed to rotate

 

“ Note that the Fourier transform of H(w) - —isgnw is h(t)- _—:.
1:
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backwards5 - frequency is always positive. These attributes of the complex seismic

trace allow for the rates of change to be evaluated in both the temporal and spatial

dimensions, and can therefore be used for the computation of the local dip of the

dominant plane wave energy.

The subroutine PICKSPCS (see the appendix) was coded to compute the

complex attributes for a common source gather and detect the apparent dips of the data

within the gather. A separate subroutine, PICKCRPS (also see the appendix), uses the

picks made in the common source domain and extracts the corresponding apparent dips

in the common receiver domain. The algorithm used by PICKSPCS is outlined below.

a) Read a common source gather of traces.

b) Convert each trace to the frequency domain (one dimensional FFT’s).

c) Zero all the negative frequency components.

d) Transform all traces back to the time domain.

e) Compute instantaneous amplitudes (\/x2(t) +1220) -A(t)).

f) Pick maxima of instantaneous of amplitudes (not too close to each other).

g) Compute instantaneous phases (tan'1{—:E—g} - (M0).

h) Extract eight nearest neighbour instantaneous phases around each maximum

of instantaneous amplitude (see Figure 2.3-1).

i) Compute instantaneous frequencies for each of the three temporal triplets. Do

this in two halves. For example, around point 2 (see Figure 2.3-1) compute(¢3—q>2)

 

5 Remember that the negative frequencies were zeroed.
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Fig. 2.3-1 The nine instantaneous phase points used to compute the apparent dip of

the amplitude maxima at node 5.

and (¢2-¢1) and compare. If these values are quite different, declare the pick made at

point 5 unstable, and discard it. Otherwise, average the two differences and divide by

At to give the instantaneous frequency.

j) If the three estimated instantaneous frequencies are similar, average them.

k) Similarly compute the apparent wavenumber by using three consecutive

horizontal points (see Figure 2.3-1). Note that the instantaneous wavenumber can be

negative. It is this property that provides the sense of the apparent dip.

1) Compute the apparent velocity by dividing the computed instantaneous

frequency by the apparent wavenumber.

m) Convert this to dip using the known surface velocity, szu"

DIP - sin-1(———VS"R’]
APPARENT

n) Output this dip angle with the time of the instantaneous amplitude maximum
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and the source/receiver locations to a file. This file will be used by PICKCRPS (see

the appendix).

0) Further consistency checks may be included before output. Such checks may,

for example, only output if similar picks have been made nearby. Such extra checks

are not always helpful.

Figure 2.3-2 shows the results of this algorithm when applied on some synthetic data.

The picks seem to be generally representative of the data on the input gather.

All the initial testing of this complex attribute picking algorithm was performed

on the synthetic data shown in Figure 2.3—2. Table 2.3—1 shows that the measured dips

 

 

 
   

 

      
 

                                                    
 

Fig 2.3-2 The dip angle picks made by the complex attribute algorithm: The picks are
displayed as small dip bars centred on the pick location.
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were clustered into groups of similar values separated by sharp jumps, whereas

regularly changing dips were expected. This problem was eventually traced to the

nearest millisecond accuracy of the synthetic trace generation program. It was

surprising that nearest millisecond rounding was clearly observed by the complex

attribute picker. The accuracy of the algorithm promises to be high. Table 2.3—1 also

records another potential problem since the picked maximum amplitude points are

output to the nearest sample period (4 milliseconds in this case). More on this later.

When the complex attribute picker is applied to real data, many more mispicks

 

 

Time Measured Dip Theoretical Dip
(radians) (radians)

#17374 03956 03667—
0.320 0.5005 0.5504
0.316 0.5895 0.5337
0.312 0.5915 0.5167
0.312 0.4126 0.4993
0.308 0.4125 0.4817
0.304 0.4952 0.4636
0.304 0.4986 0.4460

0.300 0.4155 0.4266
0.296 0.4069 0.4076
0.296 0.4133 0.3883
0.292 0.3274 0.3687
0.292 0.3271 0.3488
0.288 0.3267 0.3286
0.288 0.3275 0.3081
0.284 0.3267 0.2873
0.284 0.2441 0.2663
0.280 0.2405 0.2450
0.280 0.2453 0.2234
0.280 0.1617 0.2018
0.276 0.1588 0.1799
0.276 0.1619 0.1578
0.276 0.1630 0.1355
    

Table 2.3-1 Measured versus theoretical dip angles for the
shallowest reflection of the synthetic data example (Model 4)
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Fig 2.3-3 A common source gather (a) and

instantaneous phase (c) representations.

its instantaneous amplitude (b) and
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are made since the events are not as distinct as on the synthetic data set. Figure 2.3—3

displays an example of a common source gather and its instantaneous amplitude and

instantaneous phase representations. Figure 2.3-4 is an example of the picks made by

the complex attribute algorithm on real data. It is normal for the phase values to

change rapidly from values near +1: to values near -‘It. This is commonly known as

"phase wrap-around". One has to be very aware of phase wrapping when computing

the instantaneous frequency.

Two of the major reasons for the increased number of mispicks made on real

 

      

    
Fig. 2.3-4 A real common source gather (a) and the picks made by the complex

attribute picker (b), presented as small dipping bars. These bars are centred on the pick

location and they dip with the measured apparent dip.

-33-



 

6 Scheuer and Oldenburg (1988) preferred velocity filtering for their applications.

Velocity filtering is avoided here because it totally removes steeply dipping energy that

may provide some useful information. High cut filtering provides the opportunity for such

energy to be preserved. Velocity filtering is also avoided as it requires the added
computational expense of a 2D FFT whereas high cut filtering requires only 1D FFT’s.



data are crossing events and noise. Both of these can make the frequency and

wavenumber estimates unstable. These problems can be reduced by careful preliminary

processing of the seismic data. Filtering in the f—k domain can be used to remove

linear, coherent noise and multiple reflections. Prediction error filtering in the f-x

domain has been used in all real examples to attenuate random noise. Finally, because

maxima in instantaneous amplitude are being picked, it is imperative that the data be

processed to produce a wavelet with approximately zero phase.

With the complex attribute picker it is possible for events to be aliased. That is,

steeply dipping events may be picked with a dip opposite to the actual dip. As an

example, see the picks made on the steeply dipping coherent energy of Fig 2.3-4.

Aliasing can occur because the instantaneous wavenumber can be positive or negative

(between -1: and +1t). When the dip of an event becomes large enough so that its

instantaneous wavenumber is slightly greater than |in|, the sign and magnitude of the

computed wavenumber will be wrong. The only way to avoid aliasing, apart from

preliminary velocity filtering, is to high cut filter the input data? This reduces the rate

of change of phase between adjacent traces and helps to keep the magnitude of the

instantaneous wavenumber below 11:. Figure 2.3-5 has been high cut filtered at 35 Hz

and shows reduced aliasing compared to Figure 2.3-4. However, high cut filtering also

results in a decrease of resolution and tends to cause more problems with interfering

events.

Scheuer and Oldenburg (1988) used a 2D FFT to compute the complex traces

required for this type of data picking. It is more computationally intensive to use a 2D

FFT instead of a 1D FFT for each trace, and because only the negative temporal

frequencies are zeroed (see earlier in this section), the results will be identical. Scheuer
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data are crossing events and noise. Both of these can make the frequency and

wavenumber estimates unstable. These problems can be reduced by careful preliminary

processing of the seismic data. Filtering in the f-k domain can be used to remove

linear, c0herent noise and multiple reflections. Prediction error filtering in the f-x

domain has been used in all real examples to attenuate random noise. Finally, because

maxima in instantaneous amplitude are being picked, it is imperative that the data be

processed to produce a wavelet with approximately zero phase.

With the complex attribute picker it is possible for events to be aliased. That is,

steeply dipping events may be picked with a dip opposite to the actual dip. As an

example, see the picks made on the steeply dipping coherent energy of Fig 2.3—4.

Aliasing can occur because the instantaneous wavenumber can be positive or negative

(between -1L' and +1t). When the dip of an event becomes large enough so that its

instantaneous wavenumber is slightly greater than |11r|, the sign and magnitude of the

computed wavenumber will be wrong. The only way to avoid aliasing, apart from

preliminary velocity filtering, is to high cut filter the input data? This reduces the rate

of change of phase between adjacent traces and helps to keep the magnitude of the

instantaneous wavenumber below it. Figure 2.3-5 has been high cut filtered at 35 Hz

and shows reduced aliasing compared to Figure 2.3-4. However, high cut filtering also

results in a decrease of resolution and tends to cause more problems with interfering

events .

Scheuer and Oldenburg (1988) used a 2D FFT to compute the complex traces

 

6 Scheuer and Oldenburg (1988) preferred velocity filtering for their applications.

Velocity filtering is avoided here because it totally removes steeply dipping energy that

may provide some useful information. High cut filtering provides the opportunity for such

energy to be preserved. Velocity filtering is also avoided as it requires the added

computational expense of a 2D FFT whereas high cut filtering requires only 1D FFT’s.
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7 This simpler algorithm will actually pick the group velocity and not the phase

velocity. This distinction is in principle immaterial for the marine data being considered

in this thesis (since the near—surface is non-dispersive). However, it may be significant for

seismic data acquired on land. In this case a correction to the dips may be required. Also,

dip estimation based on amplitude may be more problematic in the presence of crossing

events.
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(a)    
Fig. 2.3—5 The data used for Fig. 2.3-4 but high cut filtered to 35 Hz before picking.

and Oldenburg made use of the f-k domain for velocity filtering at the same time. All

picks performed in this study used 1D FFT’s.

The picking required here, for reflection tomography purposes, is only

concerned with areas of maximum amplitude. Studying the rates of change of

instantaneous phase may well be more detailed than is necessary. A much simpler

approach would be to locate an amplitude maximum, search for the same maximum on

adjacent traces, and compute the apparent dip.7 The promise of such an algorithm is

further simplicity and efficiency. A program called NPCKSPC2 (see the appendix) was

coded for the purpose and the flow of this algorithm is;

a) Read a common source gather of traces.
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Fig. 2.3-5 The data used for Fig. 2.3—4 but high cut filtered to 35 Hz before picking.

and Oldenburg made use of the f—k domain for velocity filtering at the same time. All

picks performed in this study used 1D FFT’s.

The picking required here, for reflection tomography purposes, is only

concerned with areas of maximum amplitude. Studying the rates of change of

instantaneous phase may well be more detailed than is necessary. A much simpler

approach would be to locate an amplitude maximum, search for the same maximum on

adjacent traces, and compute the apparent dip? The promise of such an algorithm is

 

7 This simpler algorithm will actually pick the group velocity and not the phase

velocity This distinction is in principle immaterial for the marine data being considered

in this thesis (since the near-surface is non—dispersive). However, it may be significant for

seismic data acquired on land. In this case a correction to the dips may be required. Also,

dip estimation based on amplitude may be more problematic in the presence of crossing

events.
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b) Compute the complex traces and the instantaneous amplitudes. The

instantaneous amplitude trace defines the envelope of the input trace. When dealing

with amplitudes, it is easier and simpler to use the amplitude of the trace envelope.

c) Search for amplitude maxima (not too close to each other).

d) Extract 12 instantaneous amplitude values around the maximum (see Figure

2.3—6).

6) Use quadratic interpolation to find the exact time of the maximum detected

near sample 7. Given amplitude values, A1, A2 and A3, with A2 in the centre, the

stationary point of the quadratic function passing through these is at

(Al—A3)r2 - At——
2(A1+A3—2A2)

where t2 is the travel time of the amplitudeA2 . The stationary point is a maximum if

 

 

 

   

2A2>(A1+A3).

t) For the adjacent traces, 0‘ ,0

use quadratic interpolation to find
Ax

the maximum, but be aware that ,2 T——:.

the maximum may have moved M

out of the bounds of the three % , "O

samples. This is the reason for

extracting five sample from the g‘ ' in

adjacent traces (see Figure 2.3-6).

g) Compute the two dips .5 1:.    
Fig. 2.3-6 Thirteen instantaneous amplitude
values extracted around an amplitude maximum

detected at sample 7.

implied by the maxirna times on
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Fig. 2.3-7 (a) a common source gather, (b) the picks made by the subroutine

PICKSPCS and, (c) the picks made by the simple amplitude picker (NPCKSPCZ).

either side of the target trace. If these clips are very different, ignore the point.

h) Convert the dips to velocities with the known surface interval velocity and

average.

i) Output velocity, along with source and receiver locations, to file for use by a

similar receiver domain subroutine (NPCKCRP2).

An example of the picks made by this algorithm can be seen in Figure 2.3-7. The new

picks displayed here appear more stable than those made by PICKSPCS (Figure 2.3-

7(b))-
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2.4 Semi-analytical derivative estimates.

A key factor in the success of an inversion procedure is the accurate estimation

of the sensitivity of the constraint statistic to changes of the model parameters. Here

the constraint statistic is the sum of the squares of all the X”, (see section 2.2) values,

2C - EXmm . (2.4-1)
k

The model parameters are the discrete grid of interval velocities, Vii. The required

sensitivities are,

 

6C axerrflc)_ - 2x , (2.4-2)
avg. 2,; "'0" avg.

where the derivatives on the right hand side are commonly called Frechet derivatives.

These sensitivities define the local linear approximations of the n—dimensional C

surface that are critical for the iterative inversion of the data (see section 4).

In both crosswell and reflection tomography, it is common to determine the

Frechet derivatives analytically. Consider a raypath travelling through a velocity model

defined by cells of constant velocity. The traveltime of this ray is,

t ' 2 lksk ’
k

where [k is the path length of the ray in the kth cell and sk is the corresponding

slowness‘. Conventional tomography uses traveltime error as the constraint statistic,

 

. . . l
1 Slowness is the mverse of veloc1ty, sk- 7.

k
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and the Frechet derivatives are,

at
— -I

ask 1‘

In this way, if slownesses are used as the model parameters, the Frechet derivatives

are exactly the cell path lengths. However, this method assumes that the raypath does

not change as the velocities change (ie. elk/ask-O). This assumption can be justified

by invoking Fermat’s principle which states that the raypath between any fixed points

will be that with minimum traveltime. The raypath is stationary and will not change

with small changes in velocity.

With the strategy of two-end raytracing without reflectors (see section 2.2), the

reflecting surface is not defined at a fixed location and Fermat’s principle does not

apply. The reflection point is allowed to move arbitrarily and azk/as, cannot be

assumed to be zero. Analytic derivative estimates become very difficult, if not

impossible. It is important that the Frechet derivatives are accurately estimated but

computational efficiency is also paramount.

It is possible to continue with analytic derivative estimates if the range of

velocity variations is restricted. Zhou et al., 1992, used analytic derivative estimates

with a first-order surface fitted to the four nodes of a square cell. Biondi (1988, 1990)

simplified the derivative estimation by allowing only velocity fields that can be defined

by B-splines.

If analytic derivative estimates are not possible, fmite-difference estimates can

be used. This procedure requires the velocity at one of the nodes to be perturbed

slightly, after which the ray is retraced and it is observed how the traveltime (or Xm)

-39_



changes. This has to repeated for every velocity node and every ray. It quickly

becomes very expensive in terms of computation time. Sword (1986) reduced the

expense by performing fewer perturbations and propagating the results with a transfer

matrix. With the triangular cells and arbitrary velocity variations of the current study,

analytic derivative estimates are not possible, but accurate derivative estimates can be

obtained with a modified finite-difference scheme.

Consider a single ray passing near a given velocity node, as in Figure 2.4-1.

When considering the effect of a perturbation of this velocity node, it is recognised

that the travel path in a six cell area of influence will be directly affected. An efficient

method of estimating the sensitivity of Xe" with respect to velocity (axm/ 8V0.) will be

 

 

 

 
        

Fig. 2.4—1 A single raypath. If the velocity at A is perturbed, it will directly affect the

travel path within a six cell zone of influence (shaded).
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achieved if the raypath outside the area of influence is assumed to maintain its shape

and is only re-oriented by the raypath changes within the area of influence. In this way

the only extra ray tracing required will be within the six cell area of influence. The

complete raypath will not have to be retraced as is necessary for fmite-difference

estimates.

Figure 2.4—2 demonstrates the principle of the proposed Frechet derivative

estimation algorithm. The raypath shape from any cell to the end of the ray is assumed

fixed, and is effectively defined by a vector 3%. The velocity perturbation of the node

in question alters the raypath within the zone of influence, giving a new exit location

and angle. These new exit parameters can be used to re—orient 5t, enabling a neme

 

 

     
  
Fig 2.4-2 The perturbed raypath within a cell results in a re—oriented vector SR.
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to be computed. Along with the original X this value is used to estimate them,

required Frechet derivative. It is expected that these estimates will be accurate if the

perturbation of the subject velocity node is small. A small perturbation also allows

each cell of the area of influence to be handled separately with the results added

together (as indicated in Figure 2.4-2). If the velocity perturbations are too large, the

change in exit location and angle may be large enough to significantly change the

shape of the rest of the raypath.

The code written to compute these semi-analytic2 derivative estimates is called

SADE2 and can be found in the appendix. In order to make these estimates, SADE2

requires a number of values to be computed and placed in ’common blocks’ for the

raytracing subroutine XERRRT (also see the appendix). These values are;

1) upon exit of each cell - the cell number, the exit coordinates, the exit angle

and the travel time at the moment of exiting,

2) the final depth (where the total travel time matches the data travel time) -

finalz,

3) the final x-coordinates of both the source and receiver ends of the ray -

finalx] and finalx2 ,

4) the rates of change of x-coordinate with respect to depth at the end of each

half of the ray - dxdzl and dxdzZ ,

5) the rates of change of time with respect to depth at the end of each half of

the ray - dtdzl and dtdzZ, and

 

2 Called semi-analytic because only part of the ray is retraced. The rest is an

analytical approximation.
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6) the local velocity at the end of

each half of the ray - finalv] and goon“.
 

 

finale . 150° m

All of this information is used by the
 

  SADE2 subroutine for the estimation of
 

the derivative BX‘n/BV, by re-orienting  8000M  
 

the vector 93 (see Figure 24-2) and   
 

computing the new depth at which the Fig. 2.4-3 The velocities of the model
used to check the semi—analytic derivative

X”, will be evaluated. estimates. The node spacing is 50x50

metres.

A synthetic data set was used to

verify the accuracy of these semi-analytic derivative estimates. The interval velocities

of this model consist of a linear background increasing from 1500 m/s to 3000 m/s,

with a square anomaly of 2250 m/s in the centre (see Figure 2.4-3). Rays were traced

though this model with regular source and receiver locations and a range of surface

angles (see Figure 2.4-4). The ray tracing resulted in 1312 valid rays (only 184 of

these shown in Figure 2.4-4) within this model of 41x41 velocity nodes.

The most concise way to evaluate the semi-analytic derivative estimates is

through the gradient of the constraint statistic, VC. This gradient is calculated using

the Frechet derivatives and is used to drive the inversion of the data (see equation (2.4-

2)). The semi-analytic estimates are compared to fully ray traced finite-difference

estimates in Figures 2.4—5 and 2.4-6. The fmite—difference estimates were computed

using a subroutine called FRECHX (see the appendix). Figures 24-5 and 2.4—6 are

quite similar with one of the major differences being the magnitude of the derivative
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Fig. 2.4-4 A subset of the rays traced through the model of Figure 2.4—3. 192 rays

are displayed but only 184 of these were accepted as data.

estimates. The finite—difference estimates (Figure 2.4-5) are generally larger than their

semi—analytic counterparts (Figure 2.4-6), especially for the shallower velocity nodes

(small velocity node numbers). The semi-analytic estimates appear to be reasonable.

Both the finite-difference and semi—analytic estimates were used to complete an

inversion of the synthetic data described above. The final images of these inversions

are displayed in Figures 2.4—7 and 2.4—8. Surprisingly, the semi—analytic derivative

estimates have resulted in a much improved inversion. The comparison of the inversion

results can be found in Table 2.4-1. The semi-analytic derivative estimates have

resulted in a smaller final C value, in less iterations. It was expected that the semi-

analytic estimates would not be any better than the fume-difference ones; this test was

only performed to see how close the semi—analytic estimates were to the finite

difference estimates.
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Fig. 2.4-5 Gradient estimates using FRECHX, the finite-difference derivative

estimator.

 

 

6
8
f

4
8 I

2
8

 

vc '9 N»W\J\/‘VWV/ V‘WWV

«
a

-
b
B

    I l 1 1 l I L___.§le_._l

£921 4219 595 31.719 1998 1398 1MB 1 [3

Velocity Node

 

  
 

Fig. 2.4-6 Gradient estimates using SADE2, the semi—analytic derivative estimator.
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Fig. 2.4-7 The final image after an inversion with finite difference derivative

estimates.
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Fig. 2.4-8 The final image after an inversion with semi-analytic derivative estimates

(SADE2).
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—

ITERATION FINITE~DIFFERENCES SEMI-ANALYTIC

C Value / Expected C C Value / Expected C
 

1 974515 / 809486 974613 / 611467

2 846018 / 684663 611756 / 421692

3 741426 / 601354 421505 / 294016

4 598125 / 477003 292685 / 217063

5 502037 / 428042 206046 / 162009

6 432897 / 376930 159798 / 135241

7 377288 / 275676 130242 / 116015

8 280804 / 251546 117523 / 106245

9 251746 / 214859 103885 / 95554

10 217855 / 206648 97089 / 90108

11 206733 / 197700 89065 / 83378

12 197790 / 191154 84428 / 79377

13 191685 / 188650 78817 / 74132

14 188519 / 180016 75214 / 71153

15 186743 / 178709 71243 / 67595

16 178885 / 165109 68617 / 65491

17 165724 / 161598 65655 / 62735

18 161781 / 156352 63625 / 61045

19 156854 / 154517 61166 / 58806

20 154527 / 145857 59608 / 57480

21 146436 / 143476 57377 / 55394

22 147074 / 144237 56214 / 54403

23 144391 / 140852 54192 / 52495

24 141116 / 139480 53304 / 51730

25 139531 / 136425 51529 / 50060

26 136874 / 135265 50873 / 49499

27 135396 / 133137

28 133416 / 131460

Table 2.4-1 The results of the inversion based on semi-analytic derivative estimated

compared to those based on fmite—difference estimates. The expected C value is that

which the inversion predicts will be achieved in the next iteration.
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A couple of features have been introduced to the semi-analytic derivative

estimator (SADE2) that may affect its performance compared to the finite-difference

estimator (FRECHX). The first feature was introduced to guard against problems that

may arise if the vector at (see Figure 2.4—2) has to be re-oriented too far from its

original location. If the change in X8” is more than 10 metres, a zero is returned for

the derivative involving that particular ray and velocity node. The need for this was

rare with the current model, however, ignoring unstable points may have helped

stabilise the inversion. Another less important feature has been added to account for

the rare possibility of the new exit location of the ray actually being deeper than the

required depth for the evaluation of X”. Once again, these occurrences were ignored

by returning a zero derivative.

One last problem for the semi-analytic derivative estimator is the possibility of

the new exit point from the cell being a

long way from the original exit point.
 

Figure 2.4-9 demonstrates one set of

 

circumstances where this could happen.

In this case, the ray will now pass

through a cell not traversed previously.

It is difficult to maintain the assumption  

 

that the rest of the raypath can be

defined by the vector at. Once again,    
this occurrence would be rare but it Fig. 2.4_9 The new exit point, B, can be a

_ . long way from the original exit point, A.

mlght be better not to attempt estimates Even to the point of entering a cell not

previously traversed.
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in these cases.

The motivation for deve10ping the semi-analytic derivative estimator was

improved computational efficiency. The intuitive ideas underlying its implementation

seem to have worked satisfactorily in practice. The 1312 ray example described earlier

used 1700 seconds of CPU time3 per iteration with finite-difference approximations

but only 75 seconds for the semi-analytic estimates. A twenty fold reduction in run

time has been achieved. It is interesting to note that of the 75 seconds per iteration, 65

seconds were taken up by ray tracing and derivative estimation - only 10 seconds for

the inversion. Further efficiency improvements must come from the ray tracing

software. This is a rather small model though; the proportional expense changes

dramatically for larger models.

An interesting technique that may also be useful for the current problem is

"approximate inverse mapping" (Oldenburg and Ellis, 1991). This uses a relatively

simple approximate inverse mapping from the data space to the model space and

determines correction vectors to account for the approximation. Linearisation is not

necessarily required. This type of algorithm has not been tested within the current

work.

 

3 On an IBM 3090 mainframe computer, with vector facility.
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2.5 Stages of decreasing smoothing.

Once the traveltime data has been obtained, an initial velocity model is required

for the commencement of the iterative inversion of these data. There is rarely full

confidence in the initial velocity model. Usually some aspects of the model cause

concern, for example, the best velocity for a particular layer that is assumed to be

homogeneous. With such concerns, it seems inconsistent for the inversion process to

consider individual changes to each of the closely spaced, discrete velocity values. It

would seem more appropriate to change the velocities of complete geologic units

initially, and only later allow for higher spatial frequency updates. This would be

tantamount to using the data to improve the starting model before allowing the standard

inversion to begin.

Consider a synthetic velocity model consisting of an 11x11 grid of velocity

values. The velocities assigned to this grid are 2000 m/s except for the 3x3 block of

velocities in the centre which are 2050 m/s. That is, the model has a fast square

shaped anomaly in the centre. A total of 192 raypaths were traced though this model to

generate the traveltime data to be inverted. These raypaths were generated to

symmetrically span the horizontal extent of the model with a uniform range of short to

long offsets, along with a uniform range of surface angles to ensure good coverage at

all depths. An initial constant velocity model of 2000 m/s was used to begin the

inversion that resulted in the image of Figure 2.5-1. This inversion did not successfully

uncover the anomaly.

A potential problem with an inversion as described above is that the initially

-50-



 

2021 2000 1991 1998 2003 2010 2008 2003 1993 i 1998 2010.
2009 2005 1989 2004 2007 2008 2011 2002 1988 2007 2006
2002 2023 1984 1992 2012 2008 2024 1997 1991 2006 2002
2000 2014 2003 1976 2007 2008 2029 1992 1997 2008 2000

2000 2005 2020 1956 2024 2000 2015’ 1977 2008 2003 2000
2000 2003 2022 1991 1988 1989 1981 1987 2012 2001 2000
2000 2001 2013 2012 1956 1979 196 1993 2009 2000 2000
2000 2001 2007 2022 1962 1960 1954 1987 2005 2000 2000

2000 2000 2003 2009 1985 1944 1958 1992 2003 2000 2000
2000 2000 2000 2000 1995 1969 1984 1998 2000 2000 2000

20007, 2000 2000 .2000 20007 1996 1999 2000 2000 2000 2000

 

   

 
Fig. 2.5—1 An inversion of the 11x11 synthetic model data. The initial model was

2000 m/s for every grid node. The values within the rectangle should be 2050 ml5.

(See the footnote on page 15)

traced raypaths may, in some cases, be far from the actual raypaths. This is because

  
the anomaly is not defined by the initial model. Figure 2.5-2 demonstrates how the

traced and actual ray locations can differ appreciably. It makes little sense to attempt

complete correction of the velocity model based on such incorrect ray locations. An

effort must be made to improve the ray locations before the final solution can be

derived. As mentioned earlier in this section, the velocities of whole geologic units

could be changed until the best simple velocity model is found. Such a new simple

model should position the rays closer to their actual location and the high—fidelity

inversion can be allowed to proceed with more confidence. Effectively, the traveltime

data are used to improve the initial velocity model. However, as with the current

synthetic example, the existence of geologic units (in this case, a square region of fast

velocity) is not always known. It is desirable to find a procedure that will help improve

the ray locations and is independent of the velocity field.

The standard inversion will consider changes to each discrete velocity value

independently. Intuitively, high spatial frequency velocity updates will be of little use if
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Fig. 2.5-2 A schematic demonstration of how different the actual and traced raypaths

can be when the anomaly is not defined in the initial velocity model.

the rays are not near their correct locations. High spatial frequency changes will have

little effect on the location of the rays and it will be difficult for the iterative inversion

to approach the correct solution with such changes. Low spatial frequency, or smooth,

velocity changes will have more effect on the locations of the rays. One can imagine

an algorithm that allows only smooth velocity changes at first, effectively locating the

raypaths, and only then allows higher frequency changes.

One such algorithm consists of blocking the velocity values for the early

iterations (this type of procedure has been described by Williamson, 1990). Consider

the 11x11 synthetic model described earlier. If it is extended by an extra row and

column to a discrete 12x12 model, then 4x4 groups of velocity nodes can be "blocked"

together for the early iterations of the inversion. Each of the sixteen velocities within a

block will be changed equally. The sensitivities will be computed for velocity changes

-52-



of the block as a whole. The inversion initially becomes a 3x3 problem in which each

cell consists of 16 sub-cells. The initial model will still be a uniform velocity of 2000

m/s, but the early blocked iterations effectively find a better low frequency model that

will define the ray locations more accurately.

After nine iterations of such a blocked procedure, the image of Figure 2.5-3

results. Notice that each of the 4x4 blocks have the same velocity. The block

containing the anomaly now has a velocity of 2037 m/s which is approaching the true

velocity of the anomaly, 2050 m/s. Blocking has produced a noticeable improvement

over the unblocked inversion (Figure 2.5-1) even for this simple model. The raypaths

generated in the blocked inversion should be better located. A further eight iterations

were performed without any blocking (but with the model shown in Figure 2.5-3 as the

starting model), the results of which can be seen in Figure 2.5—4. The velocity values

within the marked anomalous zone are close to the required 2050 m/s but the residual

effect of the blocked zone (dashed line) is still apparent. This example has shown that

it can be very beneficial to attempt to correctly locate the rays before proceeding with

the inversion. However, there is also evidence that the blocking algorithm may not be

the best approach.

Williamson (1990) also explored this approach of blocking but referred to it as

a variable parameterisation scale-length technique. His original motivation was to force

the inverse problem to be temporarily over-parameterised, and hence stable. After

noticing similar residual velocity problems as those demonstrated by Figure 2.5—4,

Williamson developed a translation invariant approach with the same benefits as the

blocking approach. He introduced a model covariance matrix to effect smoothing of the

constraint statistic, C. The smoothed constraint statistic for the current problem can be
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Fig. 2.5-3 After 9 iterations of the "blocked" inversion procedure, the anomaly is

better defined. The anomalous zone is marked by the solid line.
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Fig. 2.5-4 A further eight iterations with no blocking does not remove the effect of

the earlier blocked iterations. The anomalous zone is marked with a solid line. The

blocked zone is marked with a dashed line.
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expressed as,

c - x;cg‘x
911’

+ (v—vo)TCn'll(v—vo) (2-5-1)

where Xe", is the column vector of Xmm values for each ray, C¢l is the data

covariance matrix (currently assumed to be the identity matrix), v are the new

velocities derived by this iteration, v(. are the current velocities and Cm is the model

covariance matrix. Williamson (1990) added two-dimensional Gaussian shaped

functions to the model covariance matrix, effectively forcing the velocity updates made

by each iteration to be as smooth as these functions. This approach treats every

velocity value equally. The velocities are not grouped arbitrarily. Smooth changes will

be enforced with limited side-effects.

The new constraint statistic of equation (2.5-1) was adopted in the inversion

process described in this thesis. The first and second derivatives of C will be needed

for this purpose. The first derivative is given by the gradient vector,

vc - 2VXLX." + 2C,;,1(v—v,,) , (25-2)

and the corresponding second derivative is,

VVC - 2VX,Z,VXerr + 2VVX,E,Xm, + 2G,;1 . (2.5-3)

Each of equations (2.5-1), (2.5-2) and (2.5-3) are identical to the conventional

expressions except for their final terms. In each case, the last term suggests that it may

be necessary to calculate the inverse of Cm. However, this computational expense is

avoided since the above vectors are in a space dual to the model space. The dual space

is the space of all linear forms of the original space (see Tarantola, 1987, section
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4.4.2). Here, the above vectors are in the dual space by the action of Cm. To obtain

the vector locations in the model space, the above forms must be operated on byCm

(see Tarantola, 1987, equation (4-68)). Therefore,

VC’ - zcmvxgxm + 2(v-vo) (2-54)

and,

WC/ _ 2cmvx;vxmcm + ZCmVVXLXmCm + 2cm , (2.5-5)

(the symmetry of the covariance matrices has been used here). The second term of

equation (2.5-5) is usually ignored (see Tarantola, 1987 (page 194), and Kennett et al.,

1988) because VVXen- diminishes as the data fit improves and not least because it is

also difficult to compute. The actual equation used is then,

T _

wc’ - 2cmvxmvxmcm + 2c,n . (2-5 6)

The Gaussian functions used by Williamson are characterised by a half-width,

L. The value of the function at a distance d from the subject point is then,

2

s-exvl—aal-
This function is calculated by the subroutine GAUSCAL3 (see the appendix) and the

results are stored in a compressed format before the commencement of the inversion.

Most of the work involved with smoothing application is controlled by the group of

subroutines that perform the inversion and which are driven by the subroutine

MEMNL$8 (see the appendix)‘.

 

1 For more on MEMNL$8, see section 4.
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Instead of arbitrarily blocking
1000 l500 2000 2500

-1000 -1000
groups of velocities, Williamson (1990)

suggested that the early iterations be

performed with Gaussian smoothers that

have a half-width of the order of the

dimensions of the model. Once these

iterations make no further C reductions,

Williamson reduced the half—width by a

factor of two and allowed the next stage

 

of the inversion to proceed. This    
approach is continued until no smoothing Fig. 2.5-5 The interval velocities and

dimensions of the model used to create the
at all is applied. The result is to initially synthetic data

extract only the very low frequency

features of the model and then slowly extract higher and higher frequency features.

The effect of this algorithm is to impose a bias towards positioning of the raypaths

early in the inversion and then gradually allowing the details of the velocity anomalies

to be extracted.

It is useful to evaluate this technique on some synthetic data. The interval

velocities and dimensions of the model to be used are shown in Figure 2.5—5. A

random number generator was used to randomly select source and receiver locations as

well as source and receiver surface angles, for a total of 800 rays. These rays were

traced through the model to derive the traveltime dataz. The velocities were defined on

 

2 Many of these rays exited the boundaries of the model. These were ignored and

another ray traced until 800 valid rays were left.
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a 50x50 metre grid. A starting velocity model was prepared with the correct velocity

for the first layer (ie. 2000 m/s) and with a linear velocity increase of 0.9 m/s per

metre from the base of this layer (see Figure 2.5-6). This starting model implies

almost total ignorance of the model. In general, if no other information is at hand, a

simple linear increase with depth would be used as the starting model.

An inversion of these data was performed using the stages of decreasing

smoothing approach described earlier. Figures 2.5-7 through 2.5—12 display the

inverted image after each of the stages of smoothing. The respective Gaussian half-

widths are 1600, 800, 400, 200 and 100 metres with the final stage having no

smoothing. The features of the model are gradually extracted, with the final image

(Figure 2.5-12) displaying a good expression of the anomaly3, especially considering

the poor starting velocity model. Fig 2.5-13 shows a graph of the decrease of the

constraint statistic during the 201 iterations required to achieve the final result. The

effect of the stages of decreasing smoothing is clear. The smoothing width is reduced

when the value of C stops decreasing. This gives Figure 2.5-13 its unusual step-like

appearance.

The same data were also inverted without any stages of decreasing smoothing.

Figure 2.5—14 shows the final image of this inversion. It is difficult to see an

expression of the velocity anomaly in these results. A graph of the change in constraint

statistic, C, is shown in Figure 2.5—15. Notice that the final C value is almost double

that of the inversion with stages of smoothing (Fig. 2.5-13). The inversion without

smoothing has undoubtedly encountered a local minimum of C and converged onto

 

3 This anomaly has a velocity that is 25% higher than the velocity of its host layer.
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Fig. 2.5-6 The starting velocity model for

the inversion of the synthetic data derived

from the model of Figure 2.5-5

Fig. 2.5-7 The image after the stage of

the inversion that used Gaussian smoothers

with 1600 metre half—widths.
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Fig. 2.5—8 The image after the stage of

the inversion that used Gaussian smoothers

with 800 metre half—widths.

Fig. 2.5—9 The image after the stage of

the inversion that used Gaussian smoothers

with 400 metre half-widths.
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Fig. 2.5—10 The image after the stage of

the inversion that used Gaussian smoothers

with 200 metre half—widths.

Fig. 25—11 The image after the stage of

the inversion that used Gaussian smoothers

with 100 metre half-widths.
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Fig. 2.5-12 The image after the final

stage of the inversion that free from

smoothing.

Fig. 25—13 The values of the constraint
statistic. The stepped appearance is caused

by the stages of decreasing smoothing.
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Fig. 2.5-14 The final image from an

inversion without smoothing stages.

that solution.

Fig. 25-15 The change in constraint

statistic values for the inversion without

stages of smoothing.

The inversion of the traveltime data consists of finding the velocity model that

reduces C to its lowest possible value. This is complicated because C is an

n-dimensional“ non—linear function. The most efficient way to search for the minimum

is to make local linear (or quadratic) approximations to this non—linear function, and

iteratively make small steps of decreasing C values. The problem with following a

path of descent is that local minima of C can trap the inversion and prevent it from

finding the global minimum (schematically shown in Figure 2.5-16).

When stages of smoothing are used in the inversion, the constraint statistic,

C-surface is smoothed during the early stages (recall equation 2.5-1). This has the

 

4 ’n’ is the number of velocity nodes in the grid.
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potential to smooth out local minima temporarily (Figure 2.5-17) and then, as the

smoothing decreases, focus on the global minimum. This schematical representation

eficcfiue
can also be used to demonstrate circumstances where tlieAsmoothing of C may not be

successful. Consider Figures 2.5-18 and 25-19. In the first case a residual local

minimum remains after smoothing and the inversion is still trapped. Heavier smoothing

would have been more appropriate. In the second case (Figure 25-19) the inversion

actually moves away from the global minimum - less smoothing may reverse this

trend. These examples demonstrate that ideal smoothing is data dependent and difficult

to define. With the assumption that the constraint surface is reasonably stable near the

global minimum and that the starting model is not too far from the actual model, then

the technique of stages of decreasing smoothing, as described by Williamson (1990)

and discussed above, will be generally successful.

Jupp and Vozoff’s (1975) paper provides the theoretical justification of the

technique of stages of decreasing smoothing. A short review of their work is useful

here.

In terms of the general inversion problem, let x represent the model

parameters, d the data values and g(x) the modelled data values. The inversion

procedure attempts to minimise,

(d - 30!!»2

This is the general constraint statistic. The truncated Taylor series expansion gives,

g(x+5x) - g(x) +J5x

a .
where, .117 - -a—g—' are the Frechet derivatives.

x
J'
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Fig. 2.5-16 Local minima (LM) can Fig. 25-17 A schematic cross—section of

prevent the inversion path from reaching the constraint statistic surface. Heavy

the global minimum (GM). SM is the smoothng in early stages can smooth out

location of the starting model in this space. local minima (LM) while later stages allow

focussing on the global minimum (GM).

 

 

    
Fig. 25-18 The constraint surface (solid Fig. 2.5-19 The inversion moves away

line) is smoothed (dashed line) but the from the global minimum (GM) even after

starting model (SM) is still trapped be 'a smoothing (dashed line). Less smoothing

residual local minimum at point A. may be more appropriate.

Heavier smoothing is required.
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This equation can also be expressed as,

6g~J6x

Using the singular value decomposition (SVD) of J, Jupp and Vozoff (1975) show that

the components of the model that have small singular values have very little effect on

5g . Changes of these components will have little effect on the constraint statistic.

Such components of the model are unstable.

The simplest way to avoid problems with small singular value components of

the model is to specify a singular value threshold. Changes of components with

singular values below the threshold are not considered. Jupp and Vozoff define this as

the truncation strategy. Rather than employ such an abrupt cutoff, Jupp and Vozoff

also considered a more gentle ’damping’ of the small singular value components. They

claim that the Marquardt method (1963) is one such damping technique but generalise

this to a parametric damping function that encompasses both the Truncation and

Marquardt approaches, along with others.

Near the end of their paper, Jupp and Vozoff actually suggest a practical

strategy of raising the threshold for the beginning of the inversion "so that only the

basic features of the model will be resolved". Reducing this threshold as the inversion

proceeds seems to be closely related to Williamson’s stages of decreasing smoothing

approach. As Jupp and Vozoff suggested, if the components with large singular values

are the smoother, or more basic, components, then the SVD and stages of smoothing

techniques are the same in principle. It can be concluded that the stages of smoothing

strategy is effectively damping the unstable components of the model.

Marquardt’s (1963) paper contains an excellent description of the ideas that led
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him to develop his damped inversion. He did not use singular values, but Jupp and

Vozoff (1975) proved that his method is equivalent to a particular type of damping

applied to the singular values. Marquardt noticed that the method of steepest descent

made very good progress at the beginning of an inversion but converged slowly at the

end, whereas the Gauss-Newton method may be slow at the start but converges rapidly

at the end. In an effort to try and get the benefits of both procedures, Marquardt added

a constant to the diagonal of the Frechet derivative matrix that resulted from the

truncated Taylor series expansion (see above),

5g - (J + AI) 6x

and showed that with A -oo one get the steepest descent algorithm and with A -O, the

Gauss-Newton algorithm. By varying A as the inversion proceeds, one can change

gradually from the steepest descent algorithm to the Gauss-Newton algorithm. Jupp and

Vozoff (1975) showed that this is equivalent to their damped singular value approach.
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2.6 Weighted least—squares.

When the surface angles are picked from real seismic data (see section 2.3)

some mispicks are unavoidable. These mispicks can result in some very largeXm

values even with an accurate velocity model. Even without mispicking, some rays can

be very sensitive and have large Xm’s for quite accurate models. Since the constraint

statistic squares the X”, values, a few such large Xm’s can stifle the inversion

process. In general, rays with smaller Xm’s are more likely to be reliable. It is

reasonable to apply a weighting to the data to bias the inversion toward rays with

smaller Xm’s.

Recall the expression for the constraint statistic (equation 2.5-1),

C - XLCd'lX , (2.6-1)
err

but here ignoring the additive smoothing term. If the data covariance matrix is

diagonal, this function can be expressed in suffix notation as,

2

KW , (2.6—2)
0?

l

 C - Z)
i

where a? is the variance associated with the ith data value. From the above

discussion it is reasonable to assume that there is a relationship between a? and the

magnitude of me. For the purposes of the current study, it is simpler to assign

weights, wi, instead of variances 0?, such that,
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2C - Z anwi (2.6-3)
1'

with W." 1/0? These weights are to be chosen such that the inversion process is biased

toward rays with smaller Xm’s.

After experimentation, the following modified Hanning function was used as a

satisfactory specification for the weights,

 

w]. - Z + Zeos[—X——'—)T for Xmm < an

'9‘ (2.6-4)

- 0.25 for me 2 an .

The parameter an is used to control the extent of the weighting. The value oanf

was originally set to somewhat arbitrary 300 metres.

The incorporation of weights into the inversion process initially seemed

straightforward. However, with the weights as defined in equation (2.6-4), there will

be changes in the weights between iterations. Changing the velocity model changes the

me
’s and hence also changes the wi’s. This means that VC and WC will have

extra terms due to the weights.

Consider the gradient of the constraint statistic,

6C axenfi) 2 i
— - 2X w. + X —j i err(i) a j x 277(1) all".

(2.6—5) 

6w.
The second term of this expression would not normally be present since 3v; is usually

i

zero. The second derivative is,
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6C _ 2 exam) mm W: + 2err(i) aXerrG) E‘fl
avkavj i avk 1 av]. avk (2.6-6)

+ ”(mm 6:?) i Emogg; ’
k j k I

. . azxeng) . . .
where the term containing —— has once agam been 1gnored (see SCCthIl 2.5). The

. k J.

complexity of these equations for the gradients of C suggest that applying weights in

the inversion process may be difficult. The second derivative has three extra terms.

The derivative of the weight vector must be evaluated. The first derivative is,

iw—i - 2 2+lc0 M -15' LX‘M‘) iaxm‘fi)

6V- 4 4 X 4 an X"! av.

 

 

1 ref 1

(2.6-7)

- a. exam) ,

3V].

where

a. _ -1: s' “Xenm 2 + l nXM‘)

‘ 2X"), X"! 4 4 an

(2.6-8)

- - siny 3 + lcosy
2X"). 4 4 ’

X
and y - 1&9. The second derivative is,

ref
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azwl. _ a dwi} axmw

avkavj axm 6v]. 6vk

_ 6X
-{ fl cosy 1‘ (3+lcosy)———err(i)

2X", an 4 4 ax av].

- 1‘ siny —lsiny— —‘—"®
2an 4 an av].

+ —+—cos03M?”’(o av" axeflfi)

4 )avav axmm avk

 

or, on simplification,

62w. _ 2 6X 6X
1 _ 1t (2my + l COSZY — lsinzy) flfl

avkavj 2X2, 4 4 4 avk av.
re 1

  

(2.6-9)
_ b‘ <9an exam)

' avk 6v]. 9

62X
where the term containing ——‘"—Q has been ignored. Using equations (2.6—7) and

k 1'

(2.6-9) the derivatives of the constraint statistic become,

 

8C aXerrG) 2— - 2w.X + a.X (2.6-10)
6v]. 2:: 6v1[ “"‘° “W1

and,

ax ax32C flflpwi + 4‘11“.) + b‘xfm] (2.6-11)
 

avkavj x avk av].

which shows that applying the weights may not be as difficult as first suggested by

equations (2.6-5) and (2.6-6). The variables (1i and bi are both simple functions of
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Xmo) , as is wi. A subroutine is called before the execution of the inversion process to

compute the values of W: , ai and bi for the current iteration. This subroutine is called

VARIAN and the code is listed in the appendix.

It is crucial that the weights do not decrease too rapidly with increasing Xmm.

If this happens it is possible that increasing me could result in a reduction of the

constraint statistic, C (see equation (2.6—3)). Such a condition would prevent the

successful inversion of the data. It is necessary that,

 

  

3C 2 aw:
- 2X w. + X —— (2.6-12)

"(1') "0
axenfi) e I e ' Xenw

be positive for all Xmfl). Therefore,

. —2 .a“? > w' (2.6-13)
axeflfl) XerrO)

must be satisfied to prevent the weights from decreasing too rapidly with increasing

Xma-

A direct comparison of inversion results without and with weights can be seen

in Figures 2.6-1 and 2.6-2. The synthetic data used were that same as described in

section 2.5 (see Figures 2.5-5 and 2.5-6). It is clear that the inversion witthm

weighting has achieved superior results.
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Fig. 2.6-1 The inversion of data described in section 2.5. No weighting applied.

 

 

 

   
 

  
 

Fig. 2.6-2 The inversion of the same data as Figure 2.6-1. This time with weighting

applied (as in equation 2.6-4).
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§3 THE ENTROPY PRINCIPLE - THEORY

3.1 Introduction

Tomographic image reconstruction in geophysical applications is generally an

underdetermined and somewhat ill-posed problem. The data are almost always

incomplete and noisy, and it is found that many different images can represent

satisfactory solutions. Since typical images consist of tens of thousands of elements, it

is too difficult to display an analysis of error bounds, and the geophysicist is compelled

to select a single image as the solution. This is not a very unusual situation as

scientific data is often given as the line of best fit through the given data values, even

though there are many such lines which would satisfy the data just as well. In

geophysical image reconstruction, the solution is generally chosen by imposing some

desirable property like smoothness (Sword, 1986), or geological feasibility (van Trier,

1988). The desirable property is generally included by adding a regularisation term to

the error function being minimised, creating a new constraint function,

F(d,m) - C(d) +AB(m)

where the vector (1 represents the data and m represents the model parameters.

Function C is typically a measure of traveltime residual and function B could be, for

example, a smoothing function. In this thesis, C is the sum of squared Xena) and a

smoothing term (see equation 2.5-1) and B is the entropy function. The parameter )\

enables trade-off between data fit and model regularisation. This construction results in

-72-



a single solution image, but the non-uniqueness of the solution has not really been

removed; it is now represented by the arbitrariness of B.

The entropy principle provides a mechanism for choosing, from the range of

suitable solution images, the image that has no unjustifiable bias relative to the data

and any prior information. Understanding this principle can be confusing as it is

possible to derive and explain it from many different viewpoints. Basically, the entropy

principle states that the solution image that should be selected is the one with the

maximum entropy value (the entropy function will be defined later). The maximum

entropy solution can be thought of as the one with a configuration that has the most

possible ways of actually occurring. It can also be thought of as the solution which

expresses the least amount of information necessary to satisfy the data. Most choices of

the regularisation function, B, will actually result in solutions that express more

information than is required to satisfy the data values and prior information. When this

happens, there is an implicit assumption that more information is used than is at hand,

and the unwarranted structure of the resulting image cannot be defended. The entropy

function guards against this possibility and provides the "common sense" solution.

The history of the entropy principle was developed in two disciplines;

thermodynamics and information theory. In thermodynamics, entropy is the basic

parameter of the Second Law of Thermodynamics. The history of entropy in

thermodynamics has been well documented by Jaynes, 1988a. The entropy function

appeared in Kelvin and Clausius’ work on heat engines as a measure of the

thermodynamic state of the system. Gibbs then showed that any given system, not in

equilibrium, will move towards a state of equilibrium that has the maximum entropy

allowed by the constraints imposed on the system. Boltzmann explained why
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thermodynamic systems approach a state of maximum allowed entropy when he found

that the entropy value was actually a measure of the phase volume of a gas with given

energy. Since the phase volume corresponds to the number of global quantum states, it

is concluded that the maximum entropy state is the one that can occur in the most ways

(see Jaynes, 1988a). In thermodynamics, maximum entropy solutions are thought of as

states which have the most ways of actually occurring. The concept of least

information did not emerge in this context.

As a very simple example, consider the release of some gas molecules into an

empty box. What will be the equilibrium distribution of the gas molecules? Common

sense suggests that a uniform distribution would result, even though no information

exists to allow this conclusion to be deduced (it depends on the initial trajectories and

velocities of all the molecules). It appears that there would be many more ways that

the gas molecules could physically scatter into a uniform distribution rather than, for

example, a distribution where the molecules tend to concentrate in the left half of the

box. This is why a uniform distribution is the common sense answer, not because it

must be correct but because it has many more chances to be correct. The number of

ways any particular distribution can be realised is quantifiable if the box is divided into

a number of discrete locations. Given N molecules and M locations, then,

W - J'— (3.1-1)
nllnzl...nM!

is the number of ways the molecules can be rearranged to give the same distribution

(nl. is the number of molecules at location i ). The value of W is greatest when all n,

equal N/M, that is, a uniform distribution. If the box is divided into just two halves
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and only fifty molecules are considered, then the number of ways a uniform

distribution could be realised is,

50!
- 1.26 x1014 ,

25l25!
 

whereas a distribution with eighty percent of the molecules in one half of the box can

only be realised in

50!

10! 40!
- 1.03 x1010

ways. Therefore, there are 12233 possible uniform distributions to every 80%-20%

distribution. It would be inconsistent (lacking any further information) to choose an

80%-20% distribution as the molecular state when there are so many more ways that

the uniform distribution could occur. Furthermore, as the number of molecules

increases the uniform distribution becomes even more likely (for 60 molecules the ratio

jumps to 84285 to 1). When the number of molecules reaches the many millions

contained in actual gases, distributions other than uniform become so unlikely that the

maximum entropy solution appears to be a law of nature rather than just the most

statistically likely solution. It actually turns out that all the classical gas laws can be

derived from maximum entropy distributions.

The mathematical link between maximum entropy and the number of ways of

realisation is given by the Stirling approximation. If N is large, the Stirling

approximation gives (see Jaynes, 1982),

1 n. n.
—lo W ~ _ ——'1n—' , (3.1-2)
N g ;N N
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which relates the classical entropy function (S - —2 3%; 111%, see next paragraph) to
i

the measure of the number of ways that a proposed solution can be realised, W- The

maximum entropy solution is not necessarily the correct answer, but it has more ways

in which it can be correct.

The other discipline to which the principle of entropy can be traced is the field

of information theory and the work of Shannon (1947/48 : for an explanation of

information theory and proofs of Shannon’s theorems, see Khinchin, 1957). The

entropy function of information theory has the same form as the right—hand side of

equation (3.1-2) and is used as a measure of either information content or the

uncertainty of a stochastic distribution. Given a random process with i possible

outcomes, each of probability pi, then Shannon defined the amount of information

gained from the realisation of outcome 1' to be -1npi. The mathematical expectation

of the information gained is then,

S - -2 pilnp‘. (3.1-3)

which is once again the classical form of the entropy function.

It would appear that the two historical sources of the entropy function are

unrelated, but an information theory analogy can be made to the gas molecule

example. Consider a random process that is unknown except for the fact that it has i

possible outcomes. What will be the probability distribution of this random process?

Common sense suggests that, without any further information, a uniform or flat

probability distribution is the best answer. In a very similar way to the gas molecule
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example, there are many more ways that the probabilities can be arranged to give a

uniform distribution. From the viewpoint of information, any probability distribution

which is non—uniform will favour some outcomes over others, but in the absence of

prior information the given data does not allow for such conclusions. The uniform

distribution represents the least amount of information that needs to be presented in

order to solve the problem. Only when further information is available can structure be

added to the probability distribution. It is interesting to note that if the mean and

variance of a continuous process are known, then the maximum entropy solution is the

Gaussian or normal distribution (see Skilling and Gull, 1984).

In a series of important papers, Jaynes (for example 1957, 1982, 1984, 1985,

1988a, 1988b) has explained the rationale and essence of the entropy principle with

reference to many disciplines. The entropy principle can be thought of as a means of

imposing common sense into difficult problems. As a further simple example, assume

that a fair coin has been tossed a million times. What percentage of heads has been

tossed? Common sense suggests that fifty percent will be close to correct. This is the

maximum entropy answer. However, there is a very slight chance that a million heads

had been tossed in a row. Since there are so many more ways that the coin could be

tossed to result in fifty percent heads, it makes sense to choose this as the solution

(assuming no further information is known). These ideas are related to Laplace’s

"Principle of Insufficient Reason" (Jaynes (1988b)). In the problems of image

reconstruction there are tens of thousands of variables and using the entropy principle

ensures that such common sense decisions are made at every step.

During the last few decades, scientists have been applying the principle of

entropy to a number of problems outside statistical mechanics and information theory.
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Some examples include deconvolution (Skilling and Gull, 1985), spectral estimation

(Burg, 1967; Ables, 1974) and various image reconstruction problems in astronomy

(again see Skilling and Gull, 1985). Recently the entropy principle has been applied to

geophysical traveltime tomography (Bassrei, 1990; Whiting, 1991b).

Image reconstruction using the entropy principle has been used successfully in

X-ray, 'y-ray and radio astronomy for a number of years (Gull and Daniell (1978);

Skilling and Bryan (1984); Skilling and Gull (1985)). The aim is to reconstruct an

image of a portion of the sky from measured radiation. The sky can be divided into

discrete cells and the intensity of radiation originating from each cell can be treated as

the outcome of a random process (the distribution of stars across the sky is effectively

random). Information theory arguments can be used to rationalise the use of entropy in

such astronomical problems (even so, there can still be conceptual problems with this,

see Comwell, 1983).

Consider now the problem of traveltime tomographic image reconstruction in

geophysics. Here, the objective is to construct an estimate of the subsurface seismic

velocity field on a grid of discrete points. It is not obvious how to associate such a

problem with any random feature such as the movements of gas molecules or the

outcomes of a random process. This introduces a difficulty in the use of entropy

constraints in such inverse problems.

One popular way to introduce the entropy principle in image reconstruction

problems has been through contingency tables (Gull and Skilling, 1983). The entries of

the table are effectively the outcomes of a random process and the application of the

entropy principle is straightforward (Good, 1963). Apart from the similar appearance

of contingency tables and images divided into regular cells, there is a conceptual
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difficulty in making a valid association between the two problems. However,

knowledge gained from contingency table analysis is directly applicable to one

particularly simple traveltime tomography problem that will be considered in the

following sections. Along with a few straightforward rules for image reconstruction, it

can be shown that the entropy principle is applicable to general traveltime problems.

This results in less spurious structure in the solutions and more stable inversions.
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3.2 Contingency tables

A two-dimensional contingency table records the number of occurrences of two

variables in a crosstabulated format. A typical example is the crosstabulation of the

type of weather against the season, as seen in Figure 3.2-1. The entries in the table are

the observed number of days of each of the types of weather in each of the four

seasons of the year. Analysing a table like this often involves estimating the degree of

association between the two variables being observed (see Press et al., 1989, section

13.6), but the primary interest here is in trying to reconstruct the table given only

partial information. This problem is ideally suited to the use of the principle of entropy

(Good, 1963) since the partial information allows for many possible solutions.

A ’marginal’ value of a contingency table is defined as the sum of a single row

or column of the table. That is, for example, it represents the total number of fine days

or the total number of days in winter. Consider solving for the values of the table

given only the eight marginal values. The solution to this problem is highly non-unique

and the best solution is not immediately obvious. The marginal distribution for the

contingency table is indicated by the arrows of Figure 3.2-1. To demonstrate the non-

uniqueness in the problem, the table of Figure 3.2-2 is presented. This reconstructed

table is obviously very different to the actual table of Figure 3.2-1. It clearly lacks

common sense as well since it suggests that every day in winter was fine and the only

days of snow were in spring. Even so, this table does satisfy the marginal distribution.

From the marginal values, it rained for 178 days and there were 90 days of winter,

however, the reconstruction of Figure 3.2-2 assumes that there were no rainy days

-79-



 

Fine

Rain

Hail

I
I
'
I
'
I
I
-
I
>
I
'
I
I
E

Snow 

SEW“

 

 

 

      
 

Spring Summ Autum Wint

50 60 20 5

40 28 60 50

O 2 2 1 5

0 0 8 20

J J J J
90 90 90 90

—>135

—9 178

—>19

—§28   
m
m
1
4
>
m
£

Fine

Rain

Hail

Snow

 

 

 

      
 

SBfiMI

Spn’ng Summ Autum Wint

0 45 0 90

43 45 90 0

1 9 O O 0

28 0 0 0

J J J J
m m m %

—>135

—§ 178

—>19

->28

 

Fig. 3.2—1 A typical contingency table

recording the type of weather and the

season, sampled over a complete year.

The marginal values are posted next to the

arrows .

Fig. 3.2-2 One of the possible
reconstructed contingency tables that

satisfy the marginal values.

actually in winter. Given just the marginal data there is no basis for making this claim.

More information is being assumed than is at hand.

The marginal data contains no information about the correlations that exist

between any particular row or column. Without any further information, the best that

can be done is to assume that the rows and columns have no association and are

statistically independent. If the row marginal shows that p% of the days are rainy,

then all that can be said without introducing unjustifiable bias, is that p%of the days

of each season are rainy. If the data are defined as,

and C].

= row marginal for row i , i = 1,4

= column marginal for column 1' , j = 1,4

and with Vy. = the reconstructed value crossed by row i

and column j ,
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then the unbiased or uncorrelated reconstruction is given by,

V. - fl (3.2-1)

where N is the total number of days (see Press et al., 1989, p478). Reconstructing the

table in this way leads to the result of Figure 3.2-3. This result is also very different

from the actual table shown in Figure 3.2-1, but it represents all the information we

can extract from the marginal data alone without introducing further assumptions. This

solution shall be called the "common sense" solution.

It is possible (and usually desirable) to introduce a deliberate bias through the

use of prior information. The contingency table in question here is an example where

prior information certainly exists; for example, it is known that it is more likely to

snow in winter than in summer. To avoid complicating the current analysis the effects

of prior information will be considered later.

The usefulness of this

 

contingency table analysis becomes clear SEASON

. .
Spn'n Summ Autum Wlnt

when 1t 15 observed that the uncorrelated g

 

 

 

 

      

reconstruction (Figure 3.2-3) is actually “”9 33-75 33-75 33-75 33-75 —>135

W

the maximum entropy reconstruction E Rain 44.5 44.5 44.5 44.5 #178

T

when given only the marginal data. 2 Hail 4.75 4.75 4.75 4.75 —> 19

Frieden (1972) was one of the first to R
Snow 7 7 7 7 —D 28

relate entropy to image problems, and g g g ;

90 90 90 90   Skilling (1988) derived the entropy
 

Fig. 3.2-3 The uncorrelated image that

function particularly for image satisfies the marginal values. Created using

equation (3.2-1). This is the "common

sense" image.
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reconstruction. The entropy function for the current contingency table problem can be

written as,

s - 22 (Vij— Vvanij). (3.2-2)
i 1'

The entropy function of equation (3.1-3) is only for values between 0 and 1

(probabilities), this new form does not require normalisation of the image values and is

to be maximised directly while satisfying the constraints in the form of the marginal

values. The usual method for doing this is by introducing Lagrange multipliers (at. and

[3].) and the variational equation,

a .
—[Z2 (VU— VilanyyZ‘ «1(2 Va) +2 [542 VfiH-O. (3.2-3)
aVij i j i k j k

Solving this for one of the locations of the table we get,

—antj+ai+Bj-o (3.2-4)

or,

V_-e“1*pl_e“t.epj (3.2-5)
1]

where “.- and [5]. must be chosen such that the relevant marginal values are satisfied. It

is a simple matter to show that equation (3.2-5) is equivalent to equation (3.2-1). Thus,

maximising the entropy function (equation (32-2)) has reconstructed the unbiased,

"common sense" contingency table. The critical feature of the entropy function is the

logarithm. The logarithmic form of S directly results in the exponentials in equation

(3.2-5), thus converting the added constraints into a multiplicative term that actually

allows the multiplication of the marginal values, as required by equation (3.2-1). No

other form would be able to convert an addition to a multiplication as required.
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Statistical theory allows us to measure the correlation in the table by the use of

the covariance,

covey) - E[iJ]-E[l"JE[fl. (3-2-6)

Here, the contingency table is viewed as a two-dimensional random variable. The

expectation values are defined as,

R.
E l - i—',[1 Z) N

ED] {31% » (3.2-7)
1'

 V..
EUJ] '22 1'1?”

i 1 A

Note that the row and column numbers have been used as the values of the constructed

random variables. If the reconstructed image is to be uncorrelated then,

EliJ] - EIzlED]

V.. R. c
EEuJ-Zi—VZH
‘1 N‘NiN (3.2-8)

 

R.C
therefore, Vy- 3V} , as before. The table created by common sense (Figure 3.2-3)

and by maximising the entropy function is the only uncorrelated reconstruction given

the marginal values. Thus the "common sense", uncorrelated and maximum entropy

tables are all equivalent.

Maximising entropy (equation (32-2)) ensures that no extra information is

assumed while the contingency table is being reconstructed. It is desirable to duplicate
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this property in general tomographic reconstructions. The next section looks at a

simple traveltirne tomography problem that is very similar to the contingency table

problem. The simple model proves to be very useful later, when more general

tomography problems are considered.

-34-



3.3 A simple tomographic problem.

Skilling (1988) made use of a simple tomographic problem to demonstrate the

necessity of the logarithmic structure of the entropy function. Here, this simple

problem provides the link between the above analysis of contingency tables and more

general tomographic image reconstruction problems.

The model for this simple problem is a square with unit side length. This

square can be evenly divided into any number, M by M, of discrete square cells. The

aim is to reconstruct the image Vi]. given measurements of the kind,

1] x
1 (3 3 1)— E V.. - A. , '-1,... ' _. l ,M

1-1

where 1/M is the side length of each cell, and,

1 M .T4 21: V, - B]. , 1-1,...M. (3.3-2)

That is, there are tomographic projections along every row and down every column. In

analogy with the contingency table problem, these data are called marginal data values.

Furthermore, assume that the marginal values are normalised,

M M

2.4,. - B}. - 1. (33-3)
i-l j-l

Despite its simplicity, this is a very important problem since the desired reconstructed

image is known. From the analysis of contingency tables, the only image that does not

introduce unjustified bias is that which multiplies the marginal data values that intersect

at each cell. This image is uncorrelated and is the only one which does not assume any
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extra information.

The image can now be reconstructed by satisfying the constraints (equations

(3.3-1) and (33-2)) subject to the maximisation of the entropy function (equation (3.2-

2)). This is done by introducing Lagrange multipliers (a i and [3]) and constructing a

variational equation,

£22<Vij4fiihvfl E“:2 VJ+EBJZ% (3'34)
ij t 1 i 1'

which is essentially the same as the variational equation for the contingency table

problem (equation (32-3)). The reconstructed image for this problem is therefore,

- Ai‘Bj’ (3.3-5)

the product of the marginal data values. Just as with the contingency tables,

maximising entropy results in the desired uncorrelated image.

Therefore, given tomographic data of complete simple horizontal and vertical

projections through a square medium, it has been shown that maximising entropy

during image reconstruction will result in the unique uncorrelated image (as required).

Using any function other than the entropy function (equation (32-2)) for regularisation

may introduce unjustified structure into the image.

The model used in this section serves as the link between contingency tables

and tomographic problems. However, tomographic projections in geophysics are

curved and not evenly distributed and there are usually far too many of them to permit

each to be treated with its own Lagrange multiplier. The next section considers these

problems.
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3.4 General Traveltime Tomography Problems

The general traveltime tomography problem is represented schematically in

Figures 3.4-1 and 3.4—2. Figure 3.4—1 displays some typical raypaths that may be

encountered in crosswell problems and Figure 3.4-2 shows typical raypaths for

reflection data. Note that reflector depths are to be ignored here (see section 2.2). It

has been shown that reflection tomography can be performed without reflector depth

parameterisation (Sword, 1986; Whiting, 1991b), but combined velocity and depth

entropy functions can be constructed if necessary (see Skilling and Gull, 1984). In both

the crosswell and reflection cases, the raypaths (or projections) do not form the simple,

regular marginal data values of the example in the previous section and the desired

solution cannot be obtained by simply multiplying certain data values. The covariance

cannot even be measured in these problems as the data are not suitable.
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Fig. 3.4-1 The projections (or raypaths) Fig 3.4-2 The projections (or raypaths) of

of the general crosswell tomography the general reflection tomography

problem. problem.
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Also, as mentioned earlier, there are generally so many raypaths that it is

2
impractical to assign them individual Lagrange multipliers. Normally all of the rays are

collected together with their errors summed into a single constraint statistic,

C - 2 (‘d"m)2 (3.4-1)
k

where ‘4 is the actual data traveltime and tm is the traveltime computed by tracing the

kth raypath through the modell. Some information is actually lost by forming this

single C statistic since this statistic does not comprehend where the raypaths are.

However, with a good coverage of rays and the assumption that the derivatives, %,
ij

can be accurately computed, a useful tomographic reconstruction is still possible. Now

that the tomographic problem is specifically defined as a traveltime problem, the image

elements, V. will be referred to as velocity elements (or cell velocities).
ij’

The information at hand for the solution of this general tomographic image

reconstruction problem is simply the value of the constraint statistic, C, and its

Frechet derivatives, 55-. The aim of the tomographic inversion is to minimise C, or

ii

at least reduce it to a predefined level. Since the function C is highly non—linear, this

can only be achieved in practice by making a series of small changes through

successive iterations. However, once the predefined level is reached, it is found that a

 

2 Carrion (1991) has proposed a tomography scheme based on the assignment of a

Lagrange multiplier for each ray.

1 This is the general constraint statistic - the traveltime residual. In this study the

X "(0 statistic is used (see sections 2.2 and 2.4).
e
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large number of images can have the same C value. It is not easy to single out one of

these images as any image that reduces C sufficiently is clearly acceptable, given only

the constraint statistic and its derivatives. To help choose an image, prior information

is introduced. The prior information is supplied from prior knowledge of the medium

and is represented by a prior information model, m which is essentially the "best

guess" starting model. In practice there is always some prior information available,

even if it is just a simple velocity increase with depth.

Once the prior model is defined, all that has to be done is to choose the

solution which maximises entropy relative to this prior model. With a prior model, the

entropy function is modified to (see Skilling, 1988),

s — :32 [Vfi—mjmfi). (3.4-2)
i j mi,-

The form of entropy given in equation (3.2-2) assumed that there was no prior

information. Note that equation (3.4-2) reduces to equation (3.2—2) when all my. =1.

However, it is not obvious that maximum entropy solutions will be especially

desirable in general tomographic problems. Before a serious analysis of this can

proceed, the desirable properties of the solution must be defined. The next section

establishes some common sense rules for reconstructing satisfactory solution images.
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3.5 Least Commitment

The general tomographic image reconstruction problem requires a constraint

615—, and a prior information model, mij. The
y.statistic, C, along with its derivatives,

aim of the inversion is to achieve a predefined reduction in C by varying the

velocities, Vij’ from the prior model, mi. The simple example shown in Figure 3.5-1

will be used to help visualise some common sense restrictions to be imposed on the

reconstruction of the image. In Figure 3.5-1 the starting position portrayed assumes

that Vii: mi]. in every cell, thus resulting in Vg/mij=1 everywhere. Also, let the

derivative of the constraint statistic be the same for every cell.

There are a large number of ways

 

in which the velocity values can be

 

changed so that the required reduction of

the constraint statistic is achieved. At one
 

extreme, a single cell can be changed 1 1 1 1 1

 

enough to effect the total necessary

 reduction (see Figure 3.5—2). However

the choice of the modified cell is totally 1 1 1 1 1        
arbitrary. Such sources of arbitrariness    

Fig. 3.5-1 The starting position of an

instructive image reconstruction problem.

Vii/mu- is plotted where, at the start,

Vij=mij everywhere.

are contrary to the common sense

approach of maximum entropy methods.
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Since all of the constraint statistic

 

derivatives are equal, common sense

suggests that no cell can be singled out in
 

preference to any other cell. In this case, 1 1 1 6 1

 

the only sensible reconstruction is the one

which changes all of the cell velocities 

equally. Picking a single cell to carry the 1 1 1 1 1      
   full burden of the C reduction causes the
 

_ Fig. 3.5—2 A single cell is changed

reconstructlon to make a very strong sufficiently (to Vij/mij=6) to reduce C to

. _ _ the required level.
commitment to that cell. However, it IS

preferable to impose as little commitment to any one cell as possible while reducingC

by the specified amount. Intuitively, the reconstruction with equal changes that is

desired here, would also be the reconstruction with the least overall commitment.

On the other hand, if one cell had a larger constraint statistic derivative than the

rest, it would be desirable for this cell to bear more of the required velocity change.

At first it appears that this would increase the overall commitment level, but because

of the larger derivative, the velocity change in this cell would be more than offset by a

decrease of the change required in all the other cells. The final result would actually be

of lower overall commitment than for a uniformly changed model. Clearly, for the

concept of commitment to be evaluated further, a method of measuring the overall

level of commitment must be defined.

Assume that it is possible to measure the amount of commitment using a non-

negative function, 1|: , of V../m,. (let x.. = V../m.. for brevity). It is proposed that the
u u u u v
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following four properties suffice to define such a function (with mi]. > 0, andrlr

defined for xi]. > 0);

(a) Macy) 2 0 ,

(b) wa) - w’a) - o ,

(c) w”(xy.) > o for all xi]. ,

and (d) ‘V/(xij)"'°° as xii—>0.

Property (a) implies that any variation of Vi]. from mi]. introduces positive commitment.

Property (b) states that Vi].= mi]. is the state of zero commitment and that this is a local

minimum. Properties (c) and ((1) will require further explanation.

To help understand property (c), imagine that Figure 35-2 is an intermediate

reconstruction (even though not a very acceptable one) and all of the gradients, 5%,
i].

are equal. To reduce C to the required level assume that a further increment 6: (>0)

in velocity is required. Figures 35-3 and 35—4 suggest two of the possible ways of

doing this, either by adding the extra change to the cell already changed or adding it to

any other cell. The image of Figure 3.5-3 has greater overall commitment than that of

Figure 3.5-4, and for the function II! to reflect this,

[III(5+€)-III(5)] > [‘II(1+€)-III(1)]

or more generally,

[tlr(a+e)-¢(a)]>[¢(b+e)-¢(b)] , ifa>b21.
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Fig. 3.5-3 The extra velocity change e Fig. 3-5'4 The extra VClOCitY change 6

could be added to the cell already changed. 90““ be added to any other cell.

This inequality is fulfilled if 1|: is

convex, or III” >0 for all xii.

The above inequality is actually more powerful than it first appears. If e is to

be added to one of the cells in Figure 3.5-4 other than the cell of value 5 , then the

above inequality gives,

6 e E 6MI 51+3)-tlr(1+§)] > [Why-MD]

or,

III(1+€) > 2w<1+§>

This means that splitting the additional 6: increment into two halves and adding these

to two cells, is a state of less commitment than adding all of e to a single cell. This

argument can obviously be carried on until the a velocity increment is evenly divided

across all available cells. It can be shown that when the original 6 increment was
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made (Figure 3.5-2), the minimum commitment reconstruction would have been one

with equal velocity changes in every cell. Therefore, the simple condition of convexity

imposed on the commitment function, 1|; , is sufficient to ensure that least commitment

reconstructions will be sensible, as intuitively defined earlier.

The convexity property defined above, also has relevance for the case where

the constraint statistic derivatives are not equal. In this case, common sense requires

that more of the velocity change be carried by cells with larger derivatives. For the

moment, consider a two velocity cell example where the constraint statistic derivatives

are not equal (also assume that both derivatives are negative - similar arguments follow

for other values). The reconstruction with equal changes in velocity must not be the

least commitment reconstruction in this case. Due to the convexity of the commitment

function, an increase in the velocity of one cell will only produce lower commitment if

the decrease in the other cell is greater (how much greater depends on the degree of

convexity). The only way this can happen, and still produce the same constraint

statistic reductiOn, is if the cell with the larger derivative is the one increased.

Therefore, the convexity of the commitment function also forces more of the velocity

change to be taken up in cells with larger constraint statistic derivatives.

The fourth property, where the derivative of the commitment function is

asymptotic to —w at the x=0 axis, is specified in order to make it effectively

impossible for a zero velocity to be reconstructed. Negative and zero velocities will be

naturally avoided.

The four properties listed above define a commitment function that will enforce

apparent common sense (as intuitively described above) into the reconstruction of the

image. However, the definition is not so constrained as to disallow quite a degree of
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flexibility. The form of the required regularisation function has been defined, but not

its details. Skilling (1988) showed that if the reconstruction problem happened to be of

the form described in the simple tomographic problem section, then the regularisation

function needed to obtain the required solution is the entropy function of equation (3.4-

2). This special case implies a commitment function given by,

1|:(xij) - A[l -xij+xijlnxfi] ;A>0 , (3.5-1)

which satisfies all four properties described previously. The fact that the entropy

function is maximised in practice rather than ‘I’ minimised, means that entropy can be

thought of as a measure of non-commitment.

The entropy function (equation (3.4-2)) is schematically represented in Figure

3.5—5. It is maximum at xi]. = Vij/mij = 1 and its domain is xsz. Also, the

logarithmic form ensures that the magnitude of its derivative monotonically increases

as Vii/my. moves away from 1 (hence satisfying property (c)). Therefore, based on the

preceding discussion, maximising the entropy function will ensure that commitment to

individual cells is kept to a minimum. This in turn implies that the entropy function

will ensure sensible (or common sense) image reconstructions in both the "simple" and

"general" tomography problems.

The actual form of the maximum entropy reconstruction is most easily observed

from the variational equation. The general problem is to minimise the constraint

statistic C while maximising entropy. In practice however it is more convenient to

maximise entropy subject to an acceptable level of C. This reduces to the variational

equation,
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Fig. 3.5-5 The entropy function.(equation (34-2)) represented in graphical form for a

single cell.

_3_ _ E + - 35—2

where A is a (single) Lagrange multiplier. This leads to,

E + l-a—c - 0

mi]. 6sz

or, equivalently,

ac,1—

Z‘Z _ e aVv , (3.5-3)
mi.

1

where A is chosen so that the required reduction of C is achieved. Equation (3.5-3)

implies that all the cells with the same gradient, aClaVfi, will have exactly the same

velocity change relative to their prior values, mij. Also, the larger the value of

aC/aVij, the larger will be the relative velocity change. Some simple examples Will

now show how maximising entropy influences actual inversions.
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3.6 Simple Examples

In this section, the common sense properties (defined in the previous section) of

desirable tomographic image reconstructions will be demonstrated with the help of

some very simple examples. Maximum entropy reconstructions will be compared with

three other possible solution images. The first reconstructed image that will be

compared to the maximum entropy image is just the smoothest image that solves the

constraints. The second is the "least change" solution1 (that is, the one that minimises

E (Vij_vij?)2 Where Va? is the starting velocity), and the third is the "least change

from prior" solution (the one that minimises 2017—7157.)2 where my. is the prior

information velocity model).

The first example demonstrates the case where the reconstructed image may not

be representative of the information given by the constraint statistic derivatives, or

more simply, the sensitivities. Consider an image that is to be tomographically

reconstructed and consists of only two cells. This model could be traversed by any

number of rays but the only information that matters is the sensitivity of the constraint

statistic to velocity changes in each cell. For this example, assume that the sensitivities

are E =-1 and iC_ =-2, and that the required C reduction for an acceptable solution

6"'1 avz

is 1 unit. With a starting model equal to the prior information model of V1 =v2 =1, the

 

1 Also known as the "minimum norm" solution.
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vl=v2=l, the reconstructions are (v1,v2)=(l.1861,1.4069), (l.3333,1.3333),

(1.2,1.4) and (1.2,1.4), being respectively the maximum entropy, smoothest, least

change, and least change from prior solutions. If the sensitivities are reliable then the

smoothest solution does not honour their relative magnitudes. For this example, the

least change images and the maximum entropy image are quite similar and, considering

the sensitivities, appear to have made sensible reconstructions. If prior knowledge is

available that suggests that the image should be smooth to some degree, this can be

built into the constraint statistic and the maximum entropy principle can still be

applied.

The next example is slightly more complex and demonstrates two important

features of sensible reconstructions. Consider the nine cell, 2-dimensional problem of

Figure 3.6—1. For the required C reduction of 9 units, the 4 chosen solutions have

been generated (see Figure 3.6—2). The maximum entropy image (Figure 3.6-2(d)) is

perfectly smooth, as it should be since each cell has exactly the same sensitivity and

the prior information model is smooth. The least change solution (Figure 3.6-2(b))

actually $122232: the difference between the top right cell and the other cells. This

method is too greatly affected by earlier changes of the velocities. This is a serious

shortfall since it is common for cells to be erroneously changed by early iterations.

The top right cell may have been updated by an earlier iteration which had its rays

incorrectly placed, and the least-squares minimum change criterion (which is the

criterion used by the popular SIRT algorithm (see Stewart, 1989)) is incapable of

correcting this as the ray locations improve. Such incorrect updates will appear as

spurious additional structure on the final image. For this example, both the least

change from prior and smoothest solutions (Figures 3.6—2(c) and 3.6—2(a)) are identical
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(G)  
Fig. 3.6-1 A nine element 2D problem. (a) is the starting (or intermediate) model, (b)

is the prior information model, and (c) contains the sensitivities of the constraint

statistic. The required reduction of C is 9 units.
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Figure 3.6-2 Four possible solutions to the problem of Figure 3.6—1. (a) is the

smoothest solution, (b) is the least squares minimum change solution, (c) has the

minimum change from the prior, and (d) is the maximum entropy image.
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A further two-dimensional example is depicted in Figure 3.6—3. On this

occasion the sign of the sensitivities create negative velocity values for all

reconstructed images except the maximum entropy image (see Figure 3.6-4). The

negative values can be avoided by imposing a minimum velocity (eg. Carrion et a1.,

1993), but this would be just another source of arbitrariness. The maximum entropy

solution guarantees positivity.

In all of the above examples the prior information model was a uniform one

and so did not supply any structural information as the prior velocity of each cell was

set to unity. To see how prior information can help with the reconstruction, consider

the problem of Figure 3.6-5. The starting model here is set equal to the prior model

and suggests a velocity increase with depth (see Figure 3.6-5(a)). Given the

sensitivities of Figure 3.6-5(b), the maximum entropy image is shown in Figure 3.6-6.

Even though the cell at the bottom of the model had a larger positive sensitivity

(positive sensitivities will reduce VU)’ its final velocity is larger than that of the cell at

the top of the model because of the different prior values. One way to view the use of

prior information is to notice that the maximum entropy reconstruction is not

concerned with the actual velocity values, but rather with the ratio of velocity and

prior model velocity, V../m.. (see equation (35-3)). Alternatively, rearranging equation
:1 1;

(3.5-3),

_5£
_ 1 3V0Vi] mi]. (e ) (3.6—1)

- prior(const)"°"‘i‘iVity .

Once A is chosen to satisfy the constraints, eJL becomes a constant for the whole

image. The magnitude and sign of the cell’s sensitivity then exponentiates this
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Fig. 3.6—3 Another nine element 2D problem. (a) is the starting (or intermediate)

model, (b) is the prior information model, and (c) contains the sensitivities of the

constraint statistic, C. The required C reduction is 8 units.
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Fig. 3.6-4 Four possible solutions to the problem outlined in Figure 3.6-3. (3) the

smoothest, (b) least-squares minimum change, (c) nearest to prior, and ((1) maximum

entropy .
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constant, and the prior value is a simple multiplier. As a cell sensitivity approaches

zero (little or no information) then Va. approaches the prior value. The prior acts as

both a default value and as a relative scaler for the image values. Relevant prior

information model values can help keep the inversion in good shape through the

iterations, especially when some poor sensitivity estimates appear.

 

 

 

 

 

 

 

3 3 3 O 2 O        
 
 

(a) (b)

Fig. 3.6-5 A problem with a prior information model that suggests a velocity increase

with depth. (a) is the starting and prior model, (b) contains the sensitivities of the

constraint statistic. The required C reduction is 4 units.
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Fig. 3.6-6 The maximum entropy image for the problem
of Figure 3.6-5
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3.7 Synthetic Data Results

Figure 3.7-1 is the velocity/depth model used in a synthetic crosswell

tomography problem. Sources were located at a 20 metre spacing down the left side of

the model and receivers were similarly spaced down the right side, resulting in 676

raypaths in total. The data were initially inverted with the conventional SIRT algorithm

(see Stewart, 1989) which finds the solution image with least—squares minimum

change. The SIRT reconstruction is shown in Figure 3.7-2. The corresponding

maximum entropy reconstruction, using a constant 2000 m/s prior model, is shown in

Figure 3.7-3. Notice how all 3 anomaliesmale- more apparent in the maximum entropy

reconstruction (the maximum entropy inversion algorithm used is based on that of

Skilling and Bryan, 1984; see section 4). Also, the velocities are nearer to the correct

values. Away from the anomalies, the maximum entropy image also exhibits less
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2300         
Fig. 3.7-1 Velocity/depth model for a synthetic crosswell tomography problem.

Sources and receivers separated by 20 metres; total of 676 raypaths.
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Fig. 3.7-2 The SIRT reconstructed image for the crosswell synthetic model of Figure

3.7-1
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Fig. 3.7-3 The maximum entropy reconstructed image for the crosswell synthetic

model of Figure 3.7-1
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spurious structure since each maximum entropy iteration effectively questions the

changes made in earlier iterations. If there is no longer justification for the change, it

tends to reset the velocity of the cell back to that of the prior model.

An example of reflection tomography (Whiting, 1991b), both with and without

maximum entropy constraints, will be demonstrated using the model of Figure 3.7-4.

This model consists of three constant velocity layers with a high angle fault roughly in

the centre of the model. The starting model and the prior information model consisted

of the three layers without the fault and with a smooth velocity transition from one

layer to the next. The results of two inversions can be seen in Figures 3.7-5 and 3.7-6,

the former being the reconstruction without any entropy consideration and the latter

being the maximum entropy image. Notice that the maximum entropy image has less

unwarranted structure. The only "bumps" occurring in the layer boundaries are those

associated with the faults.

 

1600m

 

2000 m/s

1500"“ 2400 m/s

2800 m/s   A

Fig. 3.7-4 Velocity/depth model for the synthetic reflection tomography example.

800 raypaths were used with random source/receiver locations and random

reflection points.
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Fig. 3.7-5 The image reconstructed for the synthetic reflection tomography example

without entropy constraints.

 

 

 

 

 

 

  

 

     
 

Fig. 3.7-6 The maximum entropy image reconstructed for the synthetic reflection

tomography example.
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3.8 Discussion

The entropy principle has a long and successful history. The same theory as

developed in statistical mechanics and information theory can be used, with suitable

adjustments, in tomographic image reconstruction. The reason for the universality is

that the entropy principle is basically an expression of "common sense". When faced

with a range of possible solutions, entropy considerations suggest that the solution that

has the most ways of actually occurring should be chosen. If a solution is chosen that

has fewer ways of actually occurring, then it is implicit that more information is being

assumed. This notion is consistent with the concept of "least commitment" in

tomographic image reconstruction. Choosing an image with more commitment to

individual cells, or structure, implicitly assumes that more information is known.

Maximising entropy ensures that only as much information as is possible (given the

current prior information) is extracted from the data, and no more.

The entropy function (introduced in tomographic image reconstruction with the

assistance of contingency table analysis) ensures that the velocities are always positive

and that the reconstructed values reflect both the size of the constraint statistic

sensitivities and the structure of the prior information model. In this way, as long as

the sensitivities are mostly noise free and the inversion is not trapped by a local

minimum, a useful and relevant image can be reconstructed. Examples of

reconstructions of a crosswell and a reflection traveltime tomographic inversion have

demonstrated these features and the usefulness of the entropy principle in tomographic

image reconstruction.
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§4 THE ENTROPY PRINCIPLE - APPLICATION

4.1 The basic maximum entropy inversion algorithm.

Inversion of traveltirne data by the entropy principle attempts to minimise a

residual traveltirne error statistic while maintaining maximum entropy. This is a

simultaneous optimisation problem. Such a problem is of considerable complexity

because the model space is an n-dimensional space commonly of much more than

10,000 dimensions. Computational efficiency is paramount under these circumstances

and matrix techniques are not feasible. The algorithm used in this study is based on

that described by Skilling and Bryan (1984). They developed a general algorithm but

their primary objective was astronomical imaging. This section outlines the basic

strategy of this algorithm. The following sections will describe the additions and

modifications that have been made for the current study.

The general problem to be solved by the maximum entropy inversion algorithm

is to find model parameters, q, that best predict the given data, d, given a theoretical

relationship (generally non—linear) of the form,

d _ RM) . (4.1—1)

Here, d represents an m-vector of data values, q represents an n-vector of model

parameters, and R represents a mapping from model space to the data space.

Generally, this non-linear operator R is linearised and the inversion process is
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performed in an iterative fashion. In this case, equation (4.1-1) can be written as,

6d.- - Z Rgfiqj , (4.1—2)
1

a standard linear matrix equation, where the matrix R0. represents the linear

approximation of R, and the 6d,, fiqj notation implies that this linear approximation

is generally only valid for small changes of the parameters. As the problem is solved

in a series of small steps, a constraint statistic, C, is introduced to ensure that the

model parameters are continually being changed toward those that most accurately

prediCt the data. The simplest form of this constraint statistic is just the data residual,

C - (d-R(q>)Tc;‘(d-R(q)) , (414)

(which assumes Gaussian statistics) where Ccl is the data covariance matrix. The

iterative technique then attempts to reduce C at every iteration until the minimum is

located. If the number of data and model parameters are small, the matrix RU. will

have reasonable dimension and it is feasible to invert it using standard linear algebra.

The inverted matrix can then be used to give the updated model parameters for each

iteration directly,

.R-Iad - 6q (4.1-3)

However, the problem is rarely well conditioned and the matrix is often not invertible.

Also, the size of the R matrix quickly makes matn'x operations impractical.

The role of the inversion is to find the global minimum of a non-linear function

(ie. the constraint statistic, C) within an n-dimensional space, where ’n’ is very large

(> 10,000). An iterative approach to finding this global minimum begins with a set of

—109-



initial model parameters which defines a single point in this n—space. At this location,

it is necessary to estimate VC and construct a local linear approximation to the

C-surface that can be used to move to a nearby point with a (hopefully) smaller value

of C. A new local linear approximation is made and the next small step is taken. The

procedure iterates in this fashion until a minimum of the constraint statistic is located.

Optimisation algorithms that work in this way are called ’descent methods’. Commonly

used variants are the ’steepest descent’ and ’conjugate gradient’ techniques.

If the second-order gradient of C, VVC, can be estimated, the linear

approximation can be upgraded to a locally quadratic approximation. Quadratic

approximations help provide reasonable limits on the iterative step distance. With just

VC it is difficult to decide on the size of model parameter change that can be

accommodated by each iteration. It is generally difficult to compute VVC but

approximations to it also prove to be useful. The conjugate gradient technique attempts

to build up information about WC as the iterations proceed.

Most descent methods have a criterion for choosing a single search direction in

n-space based on C, VC and possibly VVC at the current location. In between each

iteration, new data estimates are computed using equation (4.1-1) and VC andVVC

must be re—evaluated. This inter-iteration computing is significant and it is more

efficient and sensible to use more than just one search direction for each iteration. This

suggests searching in a subspace rather than along a single line. Subspace. inversion

methods are not new in geophysics (see Kennett et al., 1988). The results of a

subspace search can be no worse than a linear search as the direction of linear search
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is included within the subspace. Skilling and Bryan (1984) suggest a 4 or 6

dimensional subspace.

Optimisation With the maximum entropy principle requires the minimisation of

C while maximising the entropy function, S (see section 3). Skilling and Bryan (1984)

suggest simultaneous optimisation of these functions‘. Successful simultaneous

optimisation relies on the subspace to provide reasonable approximations of both S and

C. Inspired by the conjugate gradient method, Skilling and Bryan (1984) choose the

following six vectors for the definition of the subspace,

vs, wavs, VVC.VVC.VS '
(4. 1-5)

VC, VVC.VC, VVC.VVC.VC

Even though VVC is potentially a very large matrix, each of these vectors can be

derived by vector operations only.

Note that VVS does not appear in these definitions (4.1-5). This is because

Skilling and Bryan (1984) introduce an "entropy metric". In their astronomical

application the model parameters can have very small values tending toward zero. To

help avoid some of these parameters assuming negative values Skilling and Bryan

measure distances as,

2

& (4.1-6)
1 q,-

where 5qi represents a change of the ith model parameter. This is equivalent to a

 

1 It is possible to construct a single function, H , using a Lagrange multiplier, A (ie.

H- C -).S). Skilling and Bryan (1984) claim that simultaneous optimisation is easier

because of complications in finding the required value of A.
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metric of l- which can be shown to be equal to -VVS . Skilling and Bryan call this

qi

the entropy metric. This metric is of little importance in subsurface interval velocity

imaging since the dynamic range of velocity variations is quite small. The effect of

using this metric is to modify the subspace vectors (4.1-5) to,

4(VS), 4(VVC-VS), 4(VVC-VVC.VS)

4(VC), 4(VVC-VC), qWVC-WC-VC)

(4.1-7)

where the q() notation implies component by component multiplication. Now it is

clear that q(VVS)-I and would add nothing if included in the subspace vector

definition. These six vectors (4.1-7) define the subspace to be used, however, it is

common to use only a 4—dimensional subspace with the first two vectors of each type.

The subspace vectors can be organised into an (n x r)-matrix, E, that maps

vectors from the original n-dirnensional space to the r—dirnensional subspace,

ETq _ y (4.1-8)

In the n—dimensional model space, the original image qo is to be updated to a new

image q,

'q - qo+5q , (4.1-9)

The constraint statistic, C, and the entropy, S, surfaces can be expressed as,

S - So+ bq TVS0+%15q TVVSobq +higher order terms - (4-1-10)

C - Co+ bq TVC0+%5q TVVCobq+higher order terms (4-1-11)

where C0 and S0 are the values of C and S at qo. Equation (4.1—8) provides the
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5 D5 = diag[Bl,Bz,...] where 51,52," are the eigenvalues of B.



means for mapping these surfaces to the r-dimensional subspace. If the higher order

terms of equations (4.1-10) and (4.1-11) are ignored, quadratic approximations result,

§(y) - .90 + yTa — éy TAy (41-12)

50') - C0 + Nb + —21-yTBy , (41-13)

where,

a - ETVS0 , A - ET(-VVS0)E ,

b - ETVCo , B - ET(VVC0)E

These approximations are the basis of the simultaneous minimisation of the constraint

statistic and maximisation of entropy.

The mathematical manipulation of the quadratic approximations within the

subspace (equations (4.1-12) and (41-13)) is simplified if the matrices A and B are

simultaneously diagonalised. A detailed examination of this process is left for section

4.2. As will be seen in section 4.2, a transformation is applied to the subspace such

that equations (4.1-12) and (4.1-13) become,

S—(x) - So + xTa’ — %xTx (4-1'14)

5m - C0+be/+—;—xTDpx , (4.1-15)

where x, a’ and b’ are the transformed versions of y, a and b respectively, andD|3

is a diagonal matrix? Notice that A has been transformed to the identity matrix andB

has been diagonalised. These equations simplify the mathematics considerably.

It is now possible to locate the minimum value of the quadratic approximation,

5(x), with respect to the r—dimensional subspace. Set the derivative with respect tox
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means for mapping these surfaces to the r-dimensional subspace. If the higher order

terms of equations (4.1-10) and (4.1-11) are ignored, quadratic approximations result,

§(y) - 50 + yTa - éy TAy (4.1-12)

5(y) - c0 +yTb + éyTBy , (4.1-13)

where,

a - ETVS0 , A - ET(—VVSO)E ,

b - ETVC0 , B - ET(VVC0)E

These approximations are the basis of the simultaneous minimisation of the constraint

statistic and maximisation of entropy.

The mathematical manipulation of the quadratic approximations within the

subspace (equations (4.1—12) and (4.1-13)) is simplified if the matrices A and B are

simultaneously diagonalised. A detailed examination of this process is left for section

4.2. As will be seen in section 4.2, a transformation is applied to the subspace such

that equations (4.1-12) and (4.1—13) become,

S—(x) - So + xTa/ - —;—xTx (4-1-14)

ax) - c0 + my + éxTDflx , (4.145)

where x, a’ and b’ are the transformed versions of y, a and b respectively, andD‘3

s
is a diagonal matrix. Notice that A has been transformed to the identity matrix andB

has been diagonalised. These equations simplify the mathematics considerably.

It is now possible to locate the minimum value of the quadratic approximation,
 

5 DD = diag[[31,[52,...] where [31, [32,... are the eigenvalues of B. with respect tox
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to zero ,

E - b’+Dpx - 0
6x

Therefore,

—b’
x“ - _ - —D1b/ (4.1—16)

DB 3

is the subspace location of the constraint statistic minimum. This can be substituted

into equation (4.1-15) to give the actual value of the constraint statistic minimum,

_ 'r 'r
Cmin - Co+(-b’Di) b’+—1—(-b’Dl) DB(—b’Di)

B 2 a a

- Co-bITDl b’+ lbITD1 b’ '
3 2 3 (4.1—17)

l- C0——2—b’TD%b’ .

The strategy is to now choose a value, Caim’
as the constraint statistic value to be

aimed at by this iteration. Choosing Em less than in would be foolish. Even

choosing 5M - Em is not ideal as this would leave no room for maximising entropy.

Skilling and Bryan (1984) use the value,

5....-

w
h
oEm + 31-00 , (4.1-18)

that is, two-thirds of the way towards the minimum of 5(x) .2

Within the subspace, there will be many points with the constraint statistic

 

2 Other proportions were tested in this study but this Specification generally gave the

best results.
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value of Em , but the one with maximum entropy must be found3. A new function is

constructed to help find this point,

fix) - a§(x)-E(x) ,
(4.1-19)

where a is a Lagrange multiplier. This function is to be maximised, so,

 

9E - nag—2C— - a(a’—x)—(b’+Dpx) - 0

8x 8x 6x

which gives,

1: - D 1 (aa’-b’) . (4.1-20)

5+“

As a varies, this equation defines the maximum entropy trajectory through the

subspace. Following this trajectory will always result in maximum entropy points. It is

possible to search along this trajectory until the point with value EM is found. Figure

4.1-1 schematically demonstrates the significance of the points x within the subspace.

When a-oo in equation (4.1-20), x-a’, and when a-O, x-—le’. These vectors

5

define the maximum of entropy and the minimum of the constraint statistic and

represent the ends of the maximum entropy trajectory.

Skilling and Bryan (1984). implemented a simple " a-chop" algorithm for

finding the required point on the maximum entropy trajectory. This algorithm steps

through a values until a value is found that results in a constraint statistic'very close

to CM. This is stable because C varies monotonically along the maximum entropy

 

3 It is possible for the maximum entropy point to be multi-valued (see Skilling and

Bryan, 1984). This possibility does not create any problems though.
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trajectory due to the quadratic

approximation. Even so, the quadratic

approximation will not be valid too far

away from the origin of the subspace

coordinates‘. For this reason, a distance

limit, L, is imposed. If Cm.” cannot be

 

achieved within the distance limit, then   
 

the intersection of the distance limit and . _ ,

Fig. 4.1-1 A schematical representation of

— _ the subspace showing the maximum

the smallest C value on the max1mum entropy trajectory.

entropy trajectory is chosen. A more severe problem can occur (rarely) if the current

model is poor. There may be no point on the maximum entropy trajectory within the

distance limit. This case is handled (see Skilling and Bryan, 1984) by including an

extra term to the function 1:7(x) which includes the length of x and an extra Lagrange

multiplier. The Lagrange multiplier is normally kept at a zero value and is only

increased in the rare case of having no valid points within the distance limit.

Once the required point x has been chosen in the subspace, it can be mapped

back to the full n-dirnensional space. This is done using the mapping of equation (4.1-

8) after suitable transformation to account for the simultaneous diagonalisation (see

section 4.2). The projection of x into the full space gives the updated model for this

iteration.

A very important parameter used for checking the performance of the maximum

 

4 This is the location of the current model. Recall equations (4.1-10) and (4.1-11).
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NB. In this figure, the gradient of S is pointing in the direction of steepest ascent

whilst the gradient of C is pointing in the direction of steepest descent.



entropy inversion algorithm is the TEST parameter (see Skilling and Bryan, 1984).

Figure 4.1-2 shows that the gradients of‘the entropy surface and the constraint statistic

surface must be parallel at the true maximum entropy point. The TEST parameter

measures the degree of non-parallelism and is defined as,

1vs VC2

2 |VS| |VC|
(4.1-21)

 

It is important that this parameter remains small throughout the inversion. As will be

seen in section 4.4, this parameter is useful for monitoring the stability of the inversion

as well as the suitability of the quadratic approximations and distance limits.

FORTRAN code for applying the above procedure was supplied by Steve

Brown (The University of Sydney). This code was modified as described in the

following three sections. The final code consists of a group of subroutines driven by

MEMNL$8 (see the appendix).

 

 

   
Fig. 4.1-2 The solid curves represent
contours of S. The dashed curve is the

contour of C with a value of Cam.
Maximum entropy points require parallel
gradients.

—117-



entropy inversion algorithm is the TEST parameter (see Skilling and Bryan, 1984).

Figure 4.1-2 shows that the gradients of‘the entropy surface and the constraint statistic

surface must be parallel at the true maximum entropy point. The TEST parameter

measures the degree of non—parallelism and is defined as,

1 VS VC2TEST - —— —
2 |VS| |VC|

(4. 1-21)

 

It is important that this parameter remains small throughout the inversion. As will be

seen in section 4.4, this parameter is useful for monitoring the stability of the inversion

as well as the suitability of the quadratic approximations and distance limits.

FORTRAN code for applying the above procedure was supplied by Steve

Brown (The University of Sydney). This code was modified as described in the

following three sections. The final code consists of a group of subroutines driven by

MEMNL$8 (see the appendix).

 

 

   
Fig. 4.1-2 The solid curves represent

contours of S. The dashed curve is the
contour of C with a value of Cm.

. n .
‘1--...—.-—.—. -_o_A—uv ansnfn rnniulo-o nomiinl

NB. In this figure, the gradient of S is pointing in the direction of steepest ascent

whilst the gradient of C is pointing in the direction of steepest descent.
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4.2 Simultaneous diagonalisation within the subspace.

As mentioned in the previous section, Skilling and Bryan (1984) defined an

entropy metric to assist with the large dynamic range problems that accompany

inversions of astronomical data. Using this metric affects the theory of the

simultaneous diagonalisation of matrices A and B (see section 4.1). It is not essential

to develop this theory in terms of the entropy metric. The purpose of this section is to

define precisely how this diagonalisation is to be performed.

Recall the subspace representations of the quadratic approximations (equations

(4.1-12) and (4.1—13)),

§(y) - S0+yTa — %yTAy (4.2-1)

5(y) - C0+yTb+ é—yTBy , (4.2—2)

where,

a - ETVSO , A - ET(—VVS0)E ,

b - ETVC0 , B - ET(VVC0)E

Here a and b are (r x 1)—vectors' and A, B are (r x r)—matrices. Now, —VVSo is

positive definite1 which makes A real, symmetric and positive definite, and B real

and symmetric.

 

 

-5,

62S - —'1. The entries of -VVSo1 The second derivative of S (equation 3.2-2) is

64,-qu q

are all positive.
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The aim is to find a transformation H which simultaneously diagonalises A and

B. Define the transformation as,

y-Hx

so that equations (4.2-1) and (4.2-2) become,

§(x) - s0 + xT(HTa) - %XT(HTAH)X

5(x) - Co+xT(HTb) + %XT(HTBH)X ,

(4.2-3)

(4.24)

(4.2-5)

It is now possible to invoke a well known theorem which states: if A is real,

symmetric and positive definite and B is real and symmetric then there exists a

transformation, H, such that HTAH - I,2 and HTBH is diagonal.

In particular H can be constructed from the eigenvectors of A and B. If

U - [ul,u2,...,ur] is the (r x r)—matrix of normalised eigenvectors of A, then

UTU -I and UTAU -Da where D“ is the diagonal matrix consisting of the

eigenvalues of A, (al,a2,...,a,). All the eigenvalues are positive since A is positive

definite. Now define,

 

 

G-Uni-[fi-,—“‘—,..,“r

«2 «FM/«‘2 J07,

sothat,

GTG-DLUTUDi-
DiDi-Dl

«3 fi fifi “

and,

 

2 I is the (r x r)-identity matrix.

-119-

(4.2—6)

(4.2—7)



GTAG - D;(UTAU)D; - DLDGD; - I . (42-8)
«E J8 «E «6

Also let B’ - GTBG which will remain real and symmetric. This B’ can be

diagonalised in the same way as above, with the use of the matrix of normalised

eigenvectors of B’ , namely V. That is,

VTB’V - Dla . (4.2-9)

Notice that the eigenvalues of B/ are ([31, [32,...,fir) and VTV -1. Construct,

H ' GV ' UD;V ’ (42-10)
J?

and consider,

HTAH - VT(GTAG)V - VTIV - VTV - I

and,

HTBH - VT(GTBG)V - VTB’V - D3

Therefore, the transformation H as defined by equation (42-10) is the required

transformation for the simultaneous diagonalisation of A and B within the subspace.

Application of this operator leads directly to equations (4.1-14) and (4.1-15).
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1 The second term on the right of this equation disappears when VC is evaluated at

the current model, v0, at each step of the iterative inversion.



4.3 Including stages of decreasing smoothing and weighted least squares.

The rationale and purpose of using stages of decreasing smoothing within the

inversion process was described in section 2.5. Actually including this technique

imposes a significant computational burden. Care has to be taken to ensure that the

code is as efficient as possible.

Recall the derivatives of the constraint statistic from section 25,1

VC - 2cmvx;xm + 2(v—vo) , (4.3-1)

and,

WC - 2Cmvx,_.f,vxmcm + 2c , (43-2)
in

where Cm is the model covariance matrix which is constructed with Gaussian functions

for the smoothing (see section 2.5). Without the stages of smoothing technique, these

equations would be,

r
VC - ZVXme

and,

WC - 2vx;vxm

The inclusion of the model covariance matrix, C in these expressions is significant
m!

as Cm is a (n x n)-matrix where ’n’ is the number of discrete parameters in the model.

Whenever VC or VVC is required, this large matrix must be accessed and multiplied

into the calculation. For the case of WC this multiplication is two-fold.

Fortunately Cm is symmetric and many of the entries are not independent. The
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4.3 Including stages of decreasing smoothing and weighted least squares.

The rationale and purpose of using stages of decreasing smoothing within the

inversion process was described in section 2.5. Actually including this technique

imposes a significant computational burden. Care has to be taken to ensure that the

code is as efficient as possible.

Recall the derivatives of the constraint statistic from section 2.5,

V0 - 2cmvx;xm + 2(v-vo) , (43-1)

and,

WC - 2cmvxeffyxmcm + 2cm , (4.3-2)

where Cm is the model covariance matrix which is constructed with Gaussian functions

for the smoothing (see section 2.5). Without the stages of smoothing technique, these

equations would be,

VC - 2vxgxm

and,

WC - 2VX§,VXm

The inclusion of the model covariance matrix, Cm, in these expressions is significant

as Cm is a (n x n)—matrix where ’n’ is the number of discrete parameters inthe model.

Whenever VC or VVC is required, this large matrix must be accessed and multiplied

 

1 The second term on the right of this equation disappears when VC is evaluated at

the current model, v0, at each step of the iterative inversion.
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numerical value of the entry (Cm)? depends on the physical distance separating the grid

nodes represented by i and j (see equation (25-7)). For a discrete two-dimensional

grid with a total of n nodes, there are n different physical separations possible. The (n

x n)-matrix Cm can therefore be completely stored as a vector of n numbers.

3
Multiplying an (n x n)-matrix by a (n x n)-matrix requires n multiplications,

however, multiplying an (n x n)-matrix by an (n x 1)—vector requires onlyn2

multiplications. As n becomes large, straight matrix calculations are prohibitive.

Fortunately the inversion process described in sections 4.1 and 4.2 can be performed

without the necessity of such matrix computations. This means that every time VVC is

required in a computation, it is recalculated, but since these calculations are all matrix-

vector products, the multiplications required total much less than n3.

The FORTRAN code that performs the maximum entropy inversion is a group

of subroutines driven by a program MEMNL$8 (see the appendix). The original code

for this inversion was supplied by Steve Brown. Major modifications have been made

to the code to tailor it to seismic reflection tomography and to include the model

covariance matrix.
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4.4 Automatic inversion control.

As described in section 4.1, the inversion process is based on quadratic

approximation of both C (the constraint statistic) and S (entropy) within a 4 or

6-dimensional subspace. In general, the C surface will be more non-linear than a

quadratic function. It is important that movements within the model space are kept

within the region of acceptable quadratic approximation. The distance limit (see section

4.1), L, is used precisely for this purpose. However, it is not a simple matter to

determine the limits of acceptable quadratic approximation.

Another problem for the control of the inversion is suitable criteria for stopping

a smoothing stage (see section 2.5) and beginning the next stage with less smoothing.

A smoothing stage is to be terminated when no further significant C reductions are to

be achieved. It is not simple to determine when this occurs. It must be remembered

that C is non-linear and that it is possible for the rate of C decrease to vary

significantly. The inversion stage may be prematurely terminated at a point where a

couple of iteration produce little decrease, even though some significant decreases

could be made in later iterations. Another possibility is that the distance limit can be so

small that successive iterations result in little C reduction, even though sizeable, stable

reductions may be achieved if the distance limit is relaxed. Without more complete

knowledge of the non-linear C surface, these problems may be difficult to overcome.

Fortunately, some of the parameters available from the inversion process itself

give some insight into the success and applicability of the current inversion iteration.
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Parameters such as the recent history of C reductions, the actual length of the iteration

update compared to the distance limit, and the changing values of the TEST parameter

(see section 4.1) are all very useful for specifying the requirements for suitable control

of the inversion process. Using these parameters, the software can be coded to

automatically adapt to the changing conditions that confront the iterative inversion.

The most important parameter that needs to be adaptive for a successful

inversion is the distance limit, L (see section 4.1). This limit must have the ability to

either increase or decrease rapidly, when necessary. The structure of the C surface can

change dramatically between iterations, and especially between stages with different

smoothing. A successful distance limit in one stage may be inappropriate in the next

stage. Generally, larger distances can be traversed safely when the smoothing is

heavier.

The algorithm for the automatic, adaptive control of the inversion process was

coded into the main driver routine, METOMOS6 (see the appendix). This algorithm is

now outlined in point form.

a) The C values of the most recent 5 iterations are recorded in an array. Let

) where i ranges from 1 to 5, and C being the mostthese be known as Cmem( mem(5)1

recent value.

b) If any of Cm¢m(2) through Cmm) is more than 2% lower than Cmma), then

set a flag to signify that sufficient C reduction has been achieved in recent iterations.

This value of 2% is arbitrary but it seems to work well in practice. If less than 5

iterations have been performed, this flag is always set.

c) Now check for one of the two bad conditions.
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(1) TEST > 0.2 and TEST > TESTOLD. Here 0.2 is the (somewhat arbitrary‘)

choice of the target TEST value and TESTOLD is the TEST value from the previous

iteration. This condition implies that the current image is too far from the maximum

entropy image and that it is moving further away.

(2) Two or more of the last 5 iterations have resulted in increases of C. This condition

implies that the distance limit maybe too large and the quadratic approximation is only

valid over a smaller range.

Given either of these conditions, the distance limit is halved, the counter UCOUNT is

incremented, all Cmm) are set to me) and the execution is sent back for the next

iteration. The UCOUNT parameter records the number of times the inversion has been

detected to be unstable. Setting all C to the value of C (5) gives the nextmem(i) men.

iteration, with a smaller distance limit, a clean start. Previous problems are therefore

not allowed to plague the following iterations.

If either condition (1) or (2) is satisfied and the distance limit is already very small,

and TEST is less than 0.2, then the stage is ended as further distance limit reduction

will be pointless.

(1) Next, if the 2% flag from b) has not been set and TEST is less than 0.2,

then assume that as much C reduction as possible has been achieved and terminate the

current stage. Termination will proceed unless the current update distance is more than

90% of the distance limit and UCOUNT (the instability count) is less than 10- In this

case, the inversion may well be in a stable situation but simply stifled by a small

distance limit. The action here is to increase the distance limit by 3/2 and go onto the

 

‘ Skilling and Bryan, 1984, advocated TEST < 0.1 in their applications.
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next iteration.

The UCOUNT parameter is used to stop generally unstable inversions from getting any

more distance limit increases. If the inversion has appeared temporarily unstable more

than 9 times already (ie. UCOUNT > 10) then it is probably not worth giving it any

more chances with a larger distance limit.

e) The last check is for a stable inversion that may benefit from a slightly larger

distance limit, hopefully improving the convergence rate. Here, if there were noC

increases in the last 5 iterations, and the current update distance is more than 90% of

the distance limit, and UCOUNT is less than 10, then increase the distance limit by,

5/4. The increases suggested here and in d) have been chosen with the help of practical

experimentation.

f) If no action has been enforced by any of the above conditions, simply begin

the next iteration without any changes.

The objective of this automatic adaptive inversion control is two-fold: (i) to try

and avoid early terminations when considerable reductions were still possible, and (ii)

to avoid late terminations where large computational expense is wasted for very little

gain. It is difficult to get the balance right but practical results show that the above

algorithm works well in most cases.-

In simple terms, the procedure described above treats C increases and TEST

increases (above 0.2) as indicators of possible instability. These are indications that the

extent of valid quadratic approximation may be less than the distance limit. If these

conditions persist, the distance limit is reduced. On the other hand, the distance limit

can be increased if everything appears stable and the current iteration update is being

stopped at the distance limit. In this case, the quadratic approximation may be valid
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beyond the distance limit and faster convergence may be achieved with a larger

distance limit. The range of validity of the quadratic approximation to C will vary as

the local topology of C varies. The automatically controlled inversion, as described

above, is designed to adapt the distance limit to the changing conditions encountered as

the iterations proceed.
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§5 SYNTHETIC AND REAL DATA EXAMPLES

5.1 Tests with square-anomaly model

It is important to have a simple, yet significant, problem for the evaluation of the

algorithm described in the earlier sections. Simplicity is needed to ensure that the

algorithms success can be clearly measured. For this purpose, the model shown in Figure

5.1-1 has been developed (this model was also used in section 2.4). This model consists

of a 2 km by 2 km subsurface area with a background velocity consisting of a simple

linear increase with depth of 0.75 m/s per second. The velocity at the surface is 1500 m/s.

Within this background velocity field, a 400 x 400 metre square anomaly with a constant

velocity of 2250 m/s is centred. This anomaly velocity has a velocity increase for the top

half and a decrease for the bottom half.

The velocity of the background and the

anomaly are identical at a 'depth of 1000

metres. Figure 5.1-2 shows the model with

the velocities displayed as contours. ‘

Traveltime data were computed for

this model by tracing rays from regular

source and receiver locations and a range

schematicalof surface angles. A

demonstration of the types of rays that
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Fig. 5.1-1 The velocities and dimensions of
the model to be studied in section 5.1.
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Fig. 5.1-2 The m_ode1 of Figure 5.1-1 displayed as a contour plot. The contour interval

is 25 m/s.
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Fig. 5 .1-3 The types of rays traced to obtain the traveltime data. The true paths bend

where the velocities vary.
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1 The RMS Xe" value for the reconstruction in Figure 5.1-4 is 3.46 metres whereas

for the reconstruction of Figure 5.1—5 it is 9.95 metres. There is an apparent paradox

here, the better solution has a larger error. This comes about since the 184 traveltime
data set was unable to identify the model but was still able to vary the velocities to match

the traveltimes quite well. Consider a data set consisting of a single ray. Clearly the

velocities can be varied such the residual error will be zero, yet the solution will not be

satisfactory.



were traced is shown in Figure 5.1-3 (Figure 2.4-4 shows some of the actual raypaths).

The objective of these ray locations was to provide a uniform range of source/receiver

offsets and penetration depths.

Initially only 184 rays were traced for the traveltime data (the ones actually

displayed in Figure 2.4—4). An inversion of these data can be seen in Figure 5.1-4. The

starting model for the inversion consists of the linear background field only. This

inversion used finite-difference derivative estimates and no constraint statistic smoothing.

The value of the constraint statistic was reduced from about 140,000 to just 2197, but the

anomaly has not been resolved. Traveltime data was then obtained for 1312 raypaths (with

surface locations spaced uniformly across the extent of the model) and an identical

inversion performed. The final image of Figure 5.1-5 shows that the extra raypaths,

implying more complete angular coverage, have resulted in a reasonable image of the

anomaly. The 184 traveltime data set did not contain enough information for the inversion

to recognise the anomaly;

Section 2.4 discussed the theory behind the semi-analytic derivative estimates. This

was developed because fmite-difference derivative estimates were becoming very time

consuming when 1,312 rays were used. Inversion results with semi—analytic derivative

estimates were shown in section 2.4 and are reproduced in Figure 5.1-6. Surprisingly,

these results were an improvement over the equivalent results with finite-difference

derivative estimates. Possible reasons for this improvement were discussed in section 2.4.

Further improvements of the final image were obtained when stages of decreasing

smoothing were included in the inversion (see Figure 51-7). The stages applied here had

Gaussian half widths (see section 2.5) of 125, 67, 33 and 0 metres. This inversion has

done a good job of imaging the anomaly, however, a constant velocity of 2250 m/s within
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were traced is shown in Figure 5.1-3 (Figure 2.4-4 shows some of the actual raypaths).

The objective of these ray locations was to provide a uniform range of source/receiver

offsets and penetration depths.

Initially only 184 rays were traced for the traveltime data (the ones actually

displayed in Figure 2.4-4). An inversion of these data can be seen in Figure 5.1—4. The

starting model for the inversion consists of the linear background field only. This

inversion used finite-difference derivative estimates and no constraint statistic smoothing.

The value of the constraint statistic was reduced from about 140,000 to just 2197, but the

anomaly has not been resolved. Traveltime data was then obtained for 1312 raypaths (with

surface locations spaced uniformly across the extent of the model) and an identical

inversion performed. The final image of Figure 5.1-5 shows that the extra raypaths,

implying more complete angular coverage, have resulted in a reasonable image of the

anomaly. The 184 traveltime data set did not contain enough information for the inversion

to recognise the anomaly}

Section 2.4 discussed the theory behind the semi-analytic derivative estimates. This

was developed because fmite-difference derivative estimates were becoming very time

consuming when 1,312 rays were used. Inversion results with semi-analytic derivative

estimates were shown in section 2.4 and are reproduced in Figure 5.1—6. Surprisingly,

these results were an improvement over the equivalent results with fmite-difference

derivative estimates. Possible reasons for this improvement were discussed in section 2.4.

 

1 The RMS Xerr value for the reconstruction in Figure 5.1-4 is 3.46 metres whereas

for the reconstruction of Figure 5.1-5 it is 9.95 metres. There is an apparent paradox

here, the better solution has a larger error. This comes about since the 184 traveltime
data set was unable to identify the model but was still able to vary the velocities to match
the traveltirnes quite well. Consider a data set consisting of a single ray. Clearly the

velocities can be varied such the residual error will be zero, yet the solution will not be
satisfactory.
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Fig. 5.1-4 Inversion of 184 traveltimes. Finite difference derivative estimates and no

smoothing. Final C value of 2197.
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Fig. 5.1-5 An identical inversion to that of Fig 5.1-4 except that 1312 traveltimes were

used. Final C value is approximately 130,000.
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Fig. 5.1-6 An identical inversion to that of Fig. 5.1-3 except that semi-analytic derivative

estimates were used. The final C value is approximately 50,000.

 

the anomaly has not resulted. The synthetic traveltirne data is noise free, so the less than

perfect image reconstruction signifies imperfections in the specifications of the problem.

Inherent ambiguities exist that are not associated with noise.

All of the above inversions were initialised with the correct background velocity

field as the starting model. In general, this background velocity field would not be known

accurately. The image of Figure 5.1-8 is the result of an inversion that used an incorrect

background field as the starting velocity model. The linear velocity increase of the

background was set to 0.825 m/s per metre instead of 0.75 m/s per metre. This inversion

did not use stages of decreasing smoothing. At first glance the anomaly appears to be

imaged just as well as when the correct background starting model was used (Figure 5.1-

6). However, closer inspection reveals that the anomaly has been imaged with velocities

that are too fast and at a depth that is too deep. The inversion has been trapped by a local

-132—



 

 

    
Fig. 5.1—7 Improved inversion results when stages of decreasing smoothing are added to

the inversion used if Fig. 5.1-6. The final C value is approximately 43,000.

 

     
Fig. 5.1-8 The final image of an identical inversion to that of Fig. 5.1-6, ecept that the

background linear gradient was 0.825 m/s per metre. The final C value is approximately

59,000.
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minimum.

Incorporation of stages of decreasing smoothing into the inversion (see section 2.5)

should help to avoid local minima. Figures 5.1-9 through 5.1-12 record the progress of

an inversion with stages of decreasing smoothing. Figure 5.1-10 shows that the velocity

field has been slowed by the first stage where the smoothers had half-widths of 2000

metres; this is the type of adjustment needed to correct the erroneous starting velocity

model. The second stage, with smoothing half-widths of 1000 metres, continues the

correction (Figure 5.1-11). These first two stages have approximately corrected the errors

in the starting velocity model. The final stage of the inversion, without smoothing, has

imaged the anomaly with correct velocities and depths (Figure 5.1-12). The local

minimum that trapped the inversion of Figure 5.1-8 has been avoided.

Even though the synthetic data used in the above inversion are noise free, and

computed using the same ray tracing as used in the inversion, the best image is still not

exact and the final C value is significantly greater than zero. Either the inversion is still

being trapped by a local minimum or it has encountered a broad plateau that has slowed

convergence enough to bring the algorithm to a stop (see section 4.4). The usefulness of

reflection tomography is seriously questioned by this observation.

Consider the circumstances of Figure 5.1-13. A ray is traced across the boundary

between two layers. With the currently assigned velocities, a significant Xm value results.

The actual change required is a simple increase of v2 (see Figure 5.1—13). However, it

is clear that any increase in the velocity contrast at the boundary will bend the two halves

of the ray towards each other and reduce Xe". The velocities near the ray’s intersection

with the boundary become very sensitive. Decreases of v1 just above the boundary are
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Fig. 5.1-9 A contour plot of the erroneous background starting model. The linear

increase is 0.825 m/s per metre.
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Fig. 5.1-10 The image after the first smoothing stage with a half width 2000 metres. The

final C calue is approximately 1,700,000.
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Fig. 5.1-11 The image after the second smoothing stage with a half-width of 1000

metres. The final C value is approximately 1,000,000.

 

    
 

Fig. 5.1-12 The final image after the stage without any smoothing. C value is

approximately 49,000.
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erroneous updates may allow the inversion

 

  
 

t0 dnfi toward local mnnma. Fig. 5.1-13 Extra contrast at the boundary
of the layers can remedy the condition of

T116 sharp boundanes 0f the square non-zero Xerr.

anomaly in the synthetic model described

in this section present similar problems as the layer boundary in Figure 5.1-13. Low

velocity zones are apparent near the upper corners of the anomaly in Figure 5.1-12. Fast

velocity zones are also apparent near the lower corners. Without introducing more

traveltimes from new ray geometries, one way to help the inversion find the global

minimum is to improve the starting model. With less modification necessary, these

erroneous velocity zones will be less likely to appear. A starting model was constructed

with the velocities within the anomalous region equal to the average of the background

and true anomaly velocities at each depth. Effectively half of the anomaly has been placed

in the starting model. This starting velocity model was also used as the prior information

model (see section 3) in the inversion with the final image shown in Figure 5.1-14. It is

not surprising that this image is the best result so far. There is much less eilidence of

erroneous velocity zones around the anomaly. The final constraint statistic, C, value is

now approximately 20,000 instead of 49,000 as in the image of Figure 5.1-12. This
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confirms that the previous inversion was trapped by a local minimum quite near the global

minimum. A better starting model has avoided this local minimum. A greater multiplicity

and variety of ray paths may also avoid problems with such local minima.

The above example of superior results with improved starting models suggests

possible benefits from combining geological interpretation with reflection tomography.

After an initial tomographic inversion the image can be geologically interpreted and a new

simple starting model can be constructed. Such a model has the potential to improve the

final results. This is similar to the expected effect of the stages of decreasing smoothing.

However, the smoothing approach will inherently struggle with sharp discontinuities that

are not present in the starting model. A combined and complementary use of geological

interpretation and smoothing may be required for optimum results.

 

 

    
Fig. 5.1-14 The inverted image achieved when the starting and prior information models

consisted of 50 percent of the anomalous variation. The final C value here is
approximately 20,000.
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5.2 Tests with fault model

The model created for the tests described in this section is a realistic layered model

containing a single, high angle fault. This model was instructive in the optimum way to

specify the starting velocity model. Useful and accurate results were only obtained once

a suitable starting model was established.

The interval velocities and geometry of this fault model are shown in Figure 5.2—1.

The model consists of three simple layers containing a normal fault with 100 metres of

throw. The layer velocities are of realistic magnitude. Eight hundred rays with regular

geometries (similar to those in section 5.1) were traced through this model. These rays

produced the traveltime data used for the experimental inversions.

The starting model for the initial inversion of this synthetic data consisted of three

layers without any hint of the fault. The layer velocities were the true velocities and the

depths of the layer boundaries were the

 correct ones for the left side of the model.

The final inversion image resulting from
 

 

 

1600m

this starting model is disappointing (see
2000 m/s

Figure 5.2-2). The fault locations have A—__425
525 ——————,I

barely been imaged and the depth of the 15mm 2400"“
,’———-——— 925

layer boundaries on the right were 1025
2800 m/s’

unchanged. It appears that sharp     
discontinuities will tend not to be changed    
by a somewhat underdetermined image Fig. 5.2-1 The interval velocities and

geometry of the fault model.
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reconstruction. The main reason for this is that the required changes are very large. The

sharp layer boundary of the starting model has been placed at the wrong depth for the

right side of the model. Some velocities have to be changed from 2000 metres per second

to 2400 metres per second, an increase of 20%. Sharp discontinuities suggest substantial

prior knowledge about the velocity structure. One must be careful to ensure that

unwarranted information is not expressed in the prior information model.

Consider an inversion where the starting velocity model is a simple linear function

with depth. The prior information model (generally the starting model) does not express

any knowledge of the layer boundaries in this case. The image of Figure 5.2-3 is the

result of an inversion with such a starting (and prior information) model. The existence

of a fault is clearly revealed - at least for the shallowest layer boundary. However, the

linear starting model has not allowed precise imaging of the layer boundaries away from

the faultl.

In reality, the existence of layered geology would be known from nearby well logs

or even CDP stacking velocities. The precise depth of the layer boundaries will not be

known and the fault may not be clear, but the layers would be observed. The prior

information model should exhibit the layered geology but be rather non-committal with

respect to the depths of the boundaries. Such an approach leads to an initial model with

correct layer velocities but with a 100 metre zone of linear change from one velocity to

the next. The results of an inversion with such a starting model can be seen in Figure

52-4. The fault break has been well imaged, especially for the shallower layer boundary.

The layer boundary to the right of the fault has moved upwards - to the left of the fault

 

1 These will be harder to image in any case due to the surface restrictions of the

raypaths.

-14o-



 

 

       
Fig. 5.2-2 The final inversion image when the starting model consisted of three simple

layers with sharp boundaries.

 

 

       
Fig. 5.2-3 The final image achieved when the starting and prior information models are

simple linear increases with depth.
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Fig. 5.2-4 The inversion image obtained when the starting model changes the velocities

linearly over a 100 metre zone at the layer boundary.

it has moved downwards.

A closer look at this inversion reveals some apparent problems. The graph of the

reduction of the constraint statistic (Figure 5.2—5) and change of the TEST parameter

(Figure 5.2—6) shows disturbing oscillations and persistently high TEST values. When the

constraint statistic increases, either the quadratic approximation within the subspace (see

section 4) is poor or the distance moved within the subspace is large enough to be beyond

the limit of reasonable approximation. A close investigation of this problem revealed that

the distance limit in the inversion was allowed to be too large. The minimum of the

quadratic approximation was far from the current location in image space, but the

approximation is only valid for comparatively smaller distances. The oscillations observed

in Figures 5.2-5 and 52-6 are signals of such approximation problems. The inversion

code can be modified such that the distance limit is halved when oscillations are detected
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Fig. 5.2-5 The decrease of the constraint statistic value during the inversion resulting in

the image of Figure 5.2-4.
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Fig. 5.2-6 The value of the TEST parameter during the inversion resulting in the image

of Figure 5.2—4.
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Fig. 52-7 The image obtained when the inversion reduces the distance limit upon

detecting oscillations.

(this was discussed in section 4). Results of an inversion with this reducing distance limit

can be seen in Figures 52-7, 52-8 and 5.2—9. Notice that the constraint statistic began

to oscillate near the 55th iteration but then the resulting distance limit reductions produced

a stable convergence by the 7lst iteration. The TEST parameter also increases rapidly

when the oscillations appeared (see Figure 52—9) but decreased rapidly when the distance

limit was reduced. Oscillations of the constraint statistic and increases of the TEST

parameter, are useful indicators of deficiencies in the local quadratic approximation, and

form the basis of the automatic inversion control described in section 4.

These last two inversion results (Figures 52-4 and 52—7) effectively provide a

comparison of results with and without entropy. The final TEST parameter values in

Figures 52-6 and 5.2-9 show that the image of Figure 5.2—4 is far from the maximum

entropy image whereas Figure 52-7 is a maximum entropy image. The final constraint

-144-



 

(Thousands)
 1000

800

600

400 '

200  0

 

lllllllllglllllllll:Illllllll:ll|ll|lll:lllllllll:lIl
llllllllllllllll   

1 11 21 31 41

Iteration 51 61 71  
 

Fig. 5.2-8 The decrease of the constraint statistic for the

5.2-7.

inversion resulting in Figure
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Fig. 5.2—9 The values of the TEST parameter during the inversion resulting in Figure

5.2-7.
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statistic values are very similar (Figures 5.2-5 and 5.2—8). The maximum entropy image

(Figure 5.2-7) exhibits less structure than the image of Figure 5.2-4. This extra structure

represents the unwarranted image components that have been rejected by maximising the

entropy function (see section 3). A more striking comparison between maximum entropy

and non maximum entropy images was presented in section 3.7.
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5.3 Tests with a layered/anomaly model

A synthetic data set was prepared for a subsurface model that consisted of

simple layered geology and an anomalous rectangular area of faster velocity. The

interval velocities and depths of these features are sketched in Figure 5.3—1. The

anomalous zone has a velocity of 2700 m/s which is 20% above the velocity of the

host layer. Random ray geometry was used to generate 800 traveltime data values. The

source and receiver locations, as well as the surface intercept angles, were computed

using random number generating software. This leads to a somewhat unrealistic data

set but it should be one with a wide range of raypath geometries.

Using a simple linear velocity increase with depth as the starting model, the

image of Figure 5.3—2 results (see section 2.5 for more details on this result). The

constraint statistic values and the TEST parameter values for this inversion are shown

in Figures 5.3-3 and 5.3-4. This result

 was obtained using the stages of

 

 

 

 

   

     

decreasing smoothing as described in 1800'" m

section 2.5. The inversion has clearly 2000m 275m]

uncovered the presence of the anomaly

m... ~———»6°°m m]
without revealing the specifics of the 15mm 2700 I200"!

anomaly or layers. 2500 m/s . 4mm]

Without the assistance of stages of
aooonvs

decreasing smoothing (see section 2.5), ‘    
the inversion process is incapable of Fig. 5.3-1 The interval velocities and

depths of the layered/anomaly model.
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imaging the anomaly (see Figure 5.3-5). If entropy is not used as a constraint (see

section 3) an image with additional spurious structure results (see Figure 53-6 and

compare to Figure 5 .3-2). Notice the extra structure at the lower left of the anomaly.

The top corners of the anomaly are possibly better imaged, but the maximum entropy

results (Figure 5.3—2) indicate that this additional structure is unjustifiable given the

data provided.

With real reflection tomography problems, the state of knowledge of the

subsurface velocities will generally be more sophisticated than a simple increase with

depth. Where definite layers exist, as in the current model, the interval-velocities of

the layers will normally be estimated from nearby wells or CDP stacking velocities. In

addition, the velocity of some layers will be known quite accurately (for example, the

water layer in the marine exploration case). It will assist the inversion if such well

 

    
Fig. 5.3—2 The inversion obtained from the 800 random raypaths.
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Fig. 5.3-3 The constraint statistic values for the inversion of Figure 5.3-2
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Fig. 5.3-4 The TEST parameter values for the inversion of Figure 5.3—2
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known layers have their velocities held constant throughout the iterations. The starting

model for the above results was a simple linear increase of velocity below the initial

layer of 2000 m/s. If the velocity of this shallowest layer is not changed throughout the

inversion, the image of Figure 5.3—7 results. The image of the anomaly is considerably

sharper and the constant velocity layer around the anomaly is beginning to be properly

imaged. Removing some of the velocities from the model parameters simplifies the

inversion problem. However, if some velocities are fixed to incorrect values, the

inversion may be prevented from achieving useful results.

Consider now a starting model consisting of the actual velocities of the layers,

but without the presence of the anomaly. For the inversion of the data with this

starting model, all of the velocities will be fixed except for those of the layer that

contains the anomaly. The final image of this inversion is displayed in Figure 5.3-8.

As expected, this image is superior to all earlier images.

There are many reasons why correct starting velocities can be modified during

any given iteration of the inversion. These include noise, incorrect ray locations,

ambiguity and a lack of ray coverage. It is generally assumed that such incorrect

modifications will be insignificant when compared to the correct changes. However,

removing the possibility of incorrect velocity updates in areas of relative certainty can

help improve inversion results.

In real reflection tomography problems, the surface incidence angles will not be

known exactly. Such circumstances can be evaluated using the current synthetic data if

errors are added to the surface incidence angles of the rays. Figure 5.3-9 shows the

image obtained after 10% gaussian noise has been added to the surface incidence

angles. Figure 5.3—10 displays the results for 20% gaussian noise. With 10% noise the
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Fig. 5.3-5 The image obtained from an inversion without stages of decreasing

smoothing. (Final C value approximately 700,000)

 

 

  
       
 

Fig. 5.3-6 The image obtained from an inversion without maximum entropy

constraints. (Final C value approximately 200,000)
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Fig. 53-7 The image obtained when the velocity of the first layer is held fixed.

(Final C value approximately 200,000)
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Fig. 5.3-8 The image obtained when the correct layer velocities are used as the

starting model. All but the velocities for the anomalous layer were held constant at

there correct values.
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Fig. 5 .3—9 The image obtained when 10% gaussian noise was added to the surface

incidence angles. Compare to Figure 5.3-8

 

 

 

 

  
  
  
Fig. 53-10 The image obtained when 20% gaussian noise was added to the surface-

incidence angles. Compare to Figure 5.3-8
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results are clearly degraded but still useful. With 20% noise, the results are of little

use. The amount of surface incidence angle noise present in real data sets is clearly of

significant importance.
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5.4 Line A - Field data example

Real data examples present many problems that are not of concern with

synthetic data examples. The data must be processed such that the automatic picking

algorithm (see section 2.3) will pick reliable traveltimes and dips. Multiple energy and

other noise must be sufficiently attenuated. Even with good data quality there will

inevitably be some dip measurement errors. The examples in section 5.3 showed that

these errors do not have to be much larger than 10% to cause serious problems. Added

to these difficulties is the task of finding an adequate starting velocity model. Deep

well control can make this generally troublesome task much easier.

Pre-stack depth migration provides a means for verifying subsurface velocity

fields (see Al-Yahya, 1989). Iterative pre-stack depth migration can be used to define

the subsurface interval velocity in the absence of well control. The real data example

to be reviewed here, Line A, was the subject of exactly this type of iterative velocity

evaluation. The final pre-stack depth migration is shown in Figure 5.4-1, and the

corresponding velocity field is shown in Figure 5.4-2. This velocity field is then used

as the starting velocity model needed for reflection tomography. The aim of the

tomographic inversion is to improve this velocity model. An improved velocity model

would produce a better pre-stack depth migrated image.

Traveltime and apparent dips were picked automatically using instantaneous

frequency and wavenumber (see section 2.3). The many thousands of picks that

resulted were decimated to approximately 2000 which were inverted using the entropy

principle and stages of decreasing smoothing (half-widths of the gaussian smoothers
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Fig. 5.4-1 The pre-stack depth migrated data - Line A. The velocity

obtained from iterations of pre-stack depth migration.
model used was
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Fig. 5.4-2 The interval velocity model used for the pre-stack depth migration of

 

 



were 400, 200, 100 and 0 metres). The final velocity field is shown in Figure 5.4—3.

The inversion result (Figure 5.4-3) exhibits higher frequency structure than the

starting model (Figure 5.4-2). It is not possible to accurately infer high frequency

structure during velocity model building with iterations of pre-stack depth migration.

The rate of spatial change of velocity that is possible with tomographic inversion is

limited only by the chosen discrete node spacing and the quality of the data. Generally,

the changes made appear realistic and the subsequent pre-stack depth migration results

of Figure 5.4—4 demonstrate an improved image. Notice the stronger image of the

shallower events and the changed attitude near the major faulting toward the left.

Accurate pre-stack depth migrations require accurate interval velocity fields and

are characterised by a lack of residual moveout on the migrated common location
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Fig. 5.4-3 The final image of the tomographic inversion of approximately 2000

traveltimes.
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2.5    
Fig. 5.4-4 The pre-stack depth migrated image obtained using the tomographically

updated velocities of Figure 5.4-3

gathers (see Al—Yahya, 1989). Figures 5 .4-5 and 5.4-6 display some migrated common

location gathers using the velocity models of Figures 5.4-2 and 5.4-3. The data created

with the tomographically derived velocities (Figure 5.4-6) exhibits generally flatter

events, confirming that the updates made by the reflection tomography algorithm have

been accurate.

It appears that reflection tomography can be useful in the role of updating

previously estimated interval velocity fields. It has the potential to add higher

frequency velocity variations than are obtainable by conventional means.
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Fig. 5.4-5 Migrated common location gathers using the starting velocity model
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Fig. 5.4-6 Migrated common location gathers obtained using the tomographically
updated velocity field.
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5.5 Line B - Field data example

The example reviewed in this section was processed and evaluated in a similar

way to Line A (described in the previous section). However, some further tests were

performed on this line to explore a way of coping with the lack of precise knowledge

regarding the depths of the layer boundaries.

The interval velocity model obtained from iterative pre—stack depth migration is

shown in Figure 5.5-1, and the corresponding migrated image is in Figure 5.5-2. The

processed gathers were picked using the complex attribute picker described in Section

2.3 . Approximately 2000 of these traveltimes were supplied to the reflection

tomography software that inverted them using stages of decreasing smoothing and

maximum entropy constraints. The final velocity field image is displayed in Figure

5.5-3. The corresponding pre—stack depth migration (Figure 5 .5—4) shows improved

imaging 4‘ especially at the edges of the major faulting (around times 0.7 to 1.0

seconds). As with Line A (see section 5.4), migrated common location gathers show

generally less residual moveout (see Figures 5.5—5 and 5.5-6). It can be concluded that

the tomographic velocity updates are accurate.

It was shown, using synthetic data in section 5.2, that if the initial velocity

model has a layer boundary specified at the incorrect depth, the inversion may be

stifled. The required velocity changes may be too large to be accommodated. With

both the current data and the data of Line A in the previous section, no well control

was available so the depths to the layer boundaries were not accurately known. Only

the two-way traveltimes of the reflections are known accurately. If the initial guess of
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Fig. 5.5-1 The interval velocity model built from iterations of pre-stack depth

migration.
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Fig. 5.5—2 The pre-stack depth migrated data obtained using the velocity model of

Figure 5.5-1
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Fig. 5.5-3 The velocity field resulting from tomographic inversion using the velocities

of Figure 5.5-1 as the starting model.
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Fig. 5.5-4 The pre-stack depth migrated image obtained using the tomographically
updated velocities of Figure 5.5-3.
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Fig. 5.5-5 Common location gathers - migrated using the starting velocity model
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Fig. 5.5-6 Common location gathers - migrated using the tomographically updated

velocities (Figure 5.5-3). Generally less residual moveout here.
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the interval velocities is wrong, then the implied depths will be wrong. Such potential

problems could be avoided if the tomographic inversion updated a velocity field

relative to time instead of depth.

Velocities specified relative to depth are mandatory for the raytracing

component of the inversion process. However, it is possible to use a velocity field

specified in time coordinates if it is temporarily mapped to depth for each iteration.

Consider the following mapping strategy;

f1

v1(t) ----------- > v1(z)

l

Iteration of

tomographic

inversion

I

-1
‘fl V

v20) < ---------- v2(z)

|

V

| f2

------------ > 192(2)

|

V

Further iterations

where f1 is the first mapping from time to depth, and ffl is the inverse mapping (from
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depth to time). The starting velocity model is specified in time. This is mapped to

depth using the initial interval velocities and passed to the first iteration of the

inversion. The interval velocities are changed in this iteration but the implied layer

boundaries tend to remain at the same depths (see section 5.2). This implies that the

times to the layer boundaries are changing even though these times are known quite

accurately. An approximate way to change the depths instead of the times is to map the

depth model back to time using the inverse of the previous forward mapping (ie.

putting the layer boundaries back at the same times but with new velocities) and the

creating a new forward mapping with the updated velocities. Such mapping, if

performed between each iteration, will keep the times to the layer boundaries

approximately constant and allow the implied depths to vary.

Such a time based inversion was run successfully on the data for Line B. The

final velocity model and migrated data are displayed in Figures 55-7 and 5.5-8. Even

though the velocity model (Figure 5.5—7) has some differences to that of Figure 55-3,

the pre-stack depth migrated data is virtually unaffected. If the starting model had a

larger velocity error, this technique may have greater effect.
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Fig. 55-7 The velocity image resulting from an inversion based on a time referenced

velocity model.
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Fig. 5.5-8 The migrated image obtained with the velocity model of Figure 55-7.
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§6 DISCUSSION

The modified reflection tomography algorithm that has been constructed in the

preceding sections, not only simplifies the traveltime interpretation but at the same time

includes classes of reflected data thagzgither difficult or impossible to include in the

conventional tomographic inversion. Any event that has reflected or scattered from a

single depth horizon can be picked and included in the inversion.

Diffraction events are a very important class of data that can be used in the current

inversion algorithm. The conventional algorithm could not utilise such data since it is

difficult to get two—point raytracing to trace a point reflector. These data will be very

important in structurally complex areas. It is possible for diffracted arrivals to dominate

in such areas. This feature also helps to alleviate the need for picking from approximately

migrated traces (eg. Jacobs et al., 1992).

Fault plane reflections are another class of energy that is easily included in the

tomographic inversion. These data can be very important because fault planes are often

very steep and can provide some very high angle raypaths, enriching the angular coverage

of the data. Extra angular coverage will improve the resolution of the reconstructed image

and reduce the underdetermined nature of the inverse problem.

When the structure of the reflecting surfaces is significant, it is possible to get

more than one reflection from the same surface to be recorded at any given receiver.

These reflections are commonly called "multiple arrivals". Conventional reflection

tomography can only use one of these arrivals — generally the first. Lailly et al., 1992,

suggests that the first of the multiple arrivals is often the weakest and may not provide the
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most reliable data. The tomographic inversion algorithm developed in this thesis naturally

allows all of the multiple arrivals. Each arrival is distinguished by unique surface

incidence angles (see section 2.2) and are all treated equally.

In this thesis it was assumed that the automatic traveltime picks (see section 2.3)

will inevitably have some mispicks. Section 2.4 developed a data weighting scheme to

help reduce the influence of these mispicks. However, these weights were based purely

on the measured value of Xena ; this is not necessarily a reliable indicator of bad data.

Some useful information will generally be suppressed as well. The following section looks

at the possibility of using the entropy principle to assist in assigning more useful weights.

This procedure has not been attempted so far in practice.
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6.1 Further applications of entropy

In section 2.6 an arbitrary weighting scheme was developed in an attempt to limit

the effect of erroneous data values on the inversion. The weights were based on the size

of the individual Xm values (see equation (2.6-4)). Large Xe” values may well be the

result of valid velocity anomalies that need to be imaged. Even though these weights do

assist the inverse procedure, a alternative weighting scheme may give better performance.

The discussion of section 4 indicates that the entropy principle can be used in

problems of inference, and where more than one set of choices satisfies given constraints.

It is quite possible that the entropy principle can play a role in assigning a better

weighting scheme.

The critical information used by the inversion process is the set of partial

derivatives of the constraint statistic with respect to each discrete velocity value, % (see

1'

ame
section 3.4). This value is the sum of the values for each ray influenced by this

i

velocity, weighted by 2Xm® (see equation (2.4—2)). It is suspected that a ray resulting

6X
from an erroneous data value will consistently have ivy—fl values that differ markedly

i

from the mean value for that velocity node. Define the following function,
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err
 where there are N discrete velocities values in the model and represents the

1'

average derivative for each velocity node. It is now possible to define weights, wt. , based

on these Fi values rather than the Xena) values. Further, define the weighted Fi total,

1?" - {j «of, (6.1-2)
i

Following the arguments of section 4, the weights, ‘91-: can be specified with the

aid of the entropy principle. With an entropy function defined as,

5,. - 2(a): wilnwi), (6.1-3)i

it is possible to find weights, 0°: , that decrease 17" by some predefined amount and

maximise S0. These weights would discriminate against rays with Frechet derivatives that

consistently deviated from the average derivative of the other rays. It is possible that such

weights could damp the erroneous rays better than those based on the magnitude of Xerrfi)‘
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6.2 3D Applications

The reflection tomography algorithm described and tested in this thesis assumes

that the seismic data are collected along a straight line, and that all reflected raypaths

between the sources and receivers exist within the vertical plane passing through this

line. The algorithm comprehends energy motion in two dimensions (2D) only. When

the geological structures are complex, it becomes more difficult to approximate the 3D

world with a 2D model. Three-dimensional seismic volumes are increasingly being

collected because of this problem. It is important that the reflection tomography

technique is capable of accurately imaging 3D problems.

Raytracing without reflector depth parameterisation (see section 2.2) in three

dimensions requires surface intercept azimuths as well as angles, for both the source

and receiver ends of the ray. With 3D seismic surveys collected on land, the intercept

angle and azimuth can be determined directly if three-component receivers are used.

Offshore, such three-component receivers are not practical. Conventional marine 3D

seismic surveys are recorded as a closely spaced collection of parallel linear traverses

(2D seismic lines). The direction of these parallel lines is called the ‘inline’ direction.

It is sufficient to define inline and crossline components of the surface intercept angles,

or inline angles and the ray azimuths, for the 3D raytracing (see Figure 6.2—1). The

crossline components of the surface intercept angles are difficult to estimate. The inline

components of the intercept angles can be estimated from common source and common
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Fig. 6.2-1 Inline surface incidence angles (0’s) and raypath azimuths (o’s)

suffice to begin 3D raytracing without pre—defined reflectors.

receiver gathers in the same way as for 2D data1 (see section 2.2). The crossline

component may be estimated by gathering data from adjacent lines. If traces recorded

by the same receiver on the cable are gathered and examined, across the lines, the

crossline component of the intercept angle could be estimated. This approach is

hindered by two problems; the crossline data spacing is usually much larger than the

inline data spacing (often 50 metres versus 12.5 metres), and gathering crossline data

traces from a 3D data volume can be very computer intensive.

It may be possible to perform successful 3D reflection tomographic inversions

 

1 Cable feathering would cause some complications.
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Fig. 6.2-2 An example of 3D raytracing in plan view. Once the depth has

been reached where the total traveltime equals the measured time, X00“ is the
crossline component of Xm.

without having to estimate the crossline intercept angles from the data. If the ray

azimuths (see Figure 6.2-1) are initially assumed to be zero, then raytracing would

result in something like that shown in Figure 6.2-2. This figure is a plan view showing

that when the depth is reached where the traced traveltime equals the measured

traveltime, there will generally be a crossline component, Xcrm, of the Xm value. The

source and receiver azimuths that were assumed to be zero can now be adjusted to

remove the Xmas component of the error. Such an azimuth adjustment can be made

during every iteration. As long as the 3D starting velocity model is sufficiently close to
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the actual velocity field, it is assumed that this iterative angle adjustment will converge

to the true azimuth values.

An increasingly popular method of offshore seismic data collection consists of

placing the receiver cable on the sea floor (known as ‘ocean bottom cable’ surveys). A

major advantage of this method is that both a hydrophone and an onshore style velocity

phone can be placed in the ocean bottom cable, allowing incidence angles and azimuths

to be determined directly. This data collection scheme also detaches the sources from

the receiver lines so that full angular coverage (although surface restricted) can be

recorded. With ocean bottom cables, a 3D survey can be recorded as outlined in

Figure 6.2-3. Such data collection should present better behaved tomographic

inversions.

 

 

 

 

 

 

_
_
_
_
_
_
_
_
_
_
_
l
_
_
_
"
"
"
T
'
"
"
"
"
"

-
_
_
.
.
.
_
.
.
.
_
.
_
_
_
_
.
_
_
.
.
_
_

.
.
_
_

 Receiver llnes (on ocean bouom)

————— Source boat all llnes    
Fig. 6.2-3 A plan View of an ocean bottom cable 3D survey. The receiver

cables are laid on the sea floor (solid lines) and the source boat is sailed

(dashed lines) perpendicular to the receiver direction.
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§7 CONCLUSION

Many difficulties associated with conventional reflection tomography can be

overcome. Raytracing without pre—defmed reflector depths makes the traveltime

interpretation simple rather than laborious - even automatic traveltime interpretation

algorithms work satisfactorily. Maximising the entropy of the image plays a central role

in stabilising the inversion of these traveltime data by ensuring that unjustifiable features

are not reconstructed at any iteration. This is achieved by enforcing minimum commitment

to the velocity of any given cell. Maximising entropy also helps to avoid ambiguity

problems. Stages of decreasing smoothing applied to the constraint statistic of the

inversion process is also useful for avoiding local minima.

An additional benefit offered by unrestricted traveltime data interpretation is that

diffraction events, fault plane reflections and multiple arrivals can be picked and added

into the inversion quite naturally. Any primary reflected energy can be used. Therefore,

not only does the new raytracing approach allow many more data to be picked, it also

allows for wider and fuller angular coverage. Synthetic data examples have indicated that

wider angular coverage is more beneficial than simply having more traveltime data.

Synthetic data examples have demonstrated that stages of decreasing eeastraiat

«statistic smoothing can be extremely powerful. It can enable large anomalies (greater than

10% change from the starting model) to be imaged which went unnoticed by conventional

inversions. When noise is added to the data used in the inversions, the ability to extract

velocity anomalies is reduced. Tests with synthetic data showed that 10% surface angle

noise is tolerable whereas 20% noise is not.
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Using the entropy principle is of significant assistance to tomographic inversion.

This principle prohibits velocity features from appearing that are not needed to satisfy the

data. It should not be seen as a smoothness constraint - sharp changes can be imaged if

required by the data. Maximising the entropy of the image during each iteration has a

stabilising effect on the inversion as spurious structure is prevented from materialising.

Also, the lack of unwarranted structure in the final solution considerably assists

interpretation.

The entropy principle has a long history and has been used in many disciplines.

It can be difficult to justify its use in tomographic image reconstruction. However,

contingency table analysis and some very simple tomography problems lead to the

required justification. Other popular inversion techniques use smoothness or minimum

change constraints, and can lead to unwarranted, spurious structure in the solution image.

The popular SIRT algorithm uses a minimum change (or minimum norm) constraint and

synthetic examples have shown that more spurious structure exists on SIRT

reconstructions compared to maximum entropy ones. Maximum entropy images are clearer

and more interpretable.

Raytracing without fixed reflectors means that Fermat’s principle cannot be

invoked for Frechet derivative estimation. Initially it appeared that full re—raytracing would

be needed to obtain the Frechet derivatives, but a ‘semi—analytic’ derivative estimation ‘

scheme proved to be accurate and efficient. The scheme requires raytracing through only

a couple of discrete cells for each ray.

Raytracing without reflectors requires the apparent dips of the data on both

common source and common receiver gathers. An algorithm based on the complex

attributes of the traces has proven to be useful for this purpose, as well as being
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computationally efficient.

The successes achieved with synthetic data sets are not as easily obtained with real

data sets. The inherent noise problem with real data causes difficulties. Initially, the data

must be adequately processed to attenuate multiple reflections as well as both coherent and

random noise. Ideally, the data input to the automatic picking algorithm should consist of

primary reflections only. Even so, the unavoidable noise in the data means that the

starting velocity model for a tomographic inversion needs to be reasonably accurate.

Fortunately, conventional interval velocity analysis methods can lead to a reasonably

accurate starting model.

Two real data sets were considered and in both cases the starting velocity models

were constructed from iterations of pre-stack depth migration. Pre-stack depth migration

is also useful for evaluating the results of the tomographic inversion. After picking the

data automatically and conducting the inversion with all the updates described above, the

updated velocity model produced significant pre-stack depth migration improvements.

Reflection tomography has a clear role in updating and improving the best velocity models

obtained through conventional means.

Reflection tomography can, in principle, be easily extended to three—dimensions.

Raytracing without reflector parameterisation requires ray azimuth estimation which may

prove to be difficult. With conventional marine 3D recording, the azimuth can be obtained

by considering adjacent lines. However, it may be possible to perform a successful 3D

inversion without azimuth estimation. The azimuths could be iteratively obtained during

the normal inversion iterations as long as the 3D starting model is adequate. Land 3D

survey and marine ocean bottom cable 3D surveys offer the most promise in terms of 3D

angular coverage and easy azimuth estimation.
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APPENDIX

The FORTRAN subroutines listed in this appendix are described in the earlier text. The

subroutines are listed in alphabetical order with the subroutine name posted at the top

right of every page. Note that MEMNL$8 is really a collection of a number of

subroutines acting as a single routine.
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flPROCESS DC(GAUS),OPT(3),VECTOR(LEVEL(Z),REPORT(XLIST)).
SPRUCESS DIRECTIVE(’*VD:’)

c ----- trinode1,2,3 = velocity node indices of apices of current triangle

c ----- rec1 = integer variable for record numbers
c _____

c ----- R(ndat,n*m) = response matrix (frechet derivatives)
c _____
c.........................................................................

real*4 nint,mint

real*4 ray1travel,ray2travel
real*4 sloc1,tang1,sloc2,tan92

real'4 vel
real*4 datatime,xerr,neuxerr

real*4 c,ggc

real*4 lc
real*4 R
real*8 t1,t2,t3,t4,t5
logical triflag

logical affected
integer*4 i,j,k

integer*4 n,m

integer*4 bfx,bfz

integer*4 index
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c..............................................................................

c----- subroutine to compute the frechet derivatives for submission as -----
c----- the response matrix to MEM_NL """
c----- this subroutine uses finite difference perturbations """
c----- uses chuck Sword's XERR statistic """
c----- this routine is called for each ray involved in the data times -----
c..............................................................................

subroutine frechx(index,sloc1,tang1,slocZ,tangZ,datatime,xerr,R)
c..............................................................................

c ----- index = index number of ray as stored in geom file

c ----- sloc1 = surface location of ray1
c ----- tang1 = take off angle of ray1
c ----- slocZ = surface location of ray2

c ----- tangZ = take off angle of ray2
c ----- datatime actual measured time of ray
c ----- xerr = chuck Suord’s statistic
c .....

c ----- n = number of rows in velocity grid

c ----- m = number of columns in velocity grid

c ----- nint = spatial increment between grid rows

c ----- mint = spatial increment between grid columns
c .....

c ----- L = gaussian half-width (in metres)
c ----- lc = constant multiplier of the model covariance matrix (use 1.0)
c.....

c ----- bfx = (defunct variable - submit 1)
c----- bfz = (defunct variable - submit 1)
c.....

c----- nmax = maximum number of velocity nodes

c----- nnmx = maximum number of data rays
c ----- max = maximum of nmax and nnmx
c _____ .

c------- >common block /velocity/
c----- vel(n,m)= values of velocity at grid points
c.....

c------->common block ltravel/
c ----- ray1travel(n*m,6) = array that stores cell,thetaO,x,z,t for ray1’s path
_c----- num = number of points in ray1travel
c----- ray2travel(n*m,6) = array that stores cell,thetaO,x,z,t for ray2's path
c ----- numZ = number of points in ray2travel
c _____

c ----- i,j,k= temporary integer variables
c ----- t1,t2,t3,t4,t5= temporary double-precision variables
c _____

c----- tr1 = coordinate indices of the apex of the current triangle
c _____

c ----- row = the row of the current cell
c----- col = the column of the current cell



n

'FIEI3(3II)(

integer*4 L
integer*4 nmax,mmax,max
integer'é num,num2

integer*4 rou,col

integer*4 tri
integer*4 trinode1,trinode2,trinode3
integer*4 rec1
integer*4 p,mult,rem,block

parameter(n=41,m=41,nint=50.0e0,mint=50.0e0)
parameter<bfx=1,bfz=1) ' '
parameter(nmax=1681,nnmx=184,max=1681)
parameter(ndat=184)

dimension vel(n,m)
dimension rayitravel(n*m,6),ray2travel(n*m,6)
dimension C(nmax,nmax),ggC(nmax,max)

dimension R(ndat,n*m)
dimension affected<(n/bfz)*(m/bfx))
dimension tri(3,2)
common /velocity/vel
common /travel/ray1travel,num,ray2travel,num2

----- set constants and initial variables

t1=0.0d0
t2=0.0d0

t3=0.0d0
t4=0.0d0
t5=0.0d0

do 1 i=1,(n/bfz)*(m/bfx)
affected(i)=.false.
continue

----- compute all velocity nodes affected by the rays
----- begin working along path of ray1

do 1000 i=1,num

----- first compute the ‘tri’ nodes affecting this cell

p=int(ray1travel(i,1))
rem=mod(p,(2*(m'1)))
mult=(p-rem)/(2*(m-1))
rou=mult+1
if(rem.eq.0) rou=rou-1
if(rem.gt.0) then

col=int((rem-1)/2.0)+1
else

col=m-1

endif
tri(1,1)=col
tri(1,2)=row
tri(2,1)=col+1

tri(2,2)=rou+1
if(mod(ray1travel(i,1),2.0e0).eq.0.0e0) then

tri(3,1)=col+1
tri(3,2)=rou

else

tri(3,1)=col
tri(3,2)=rou+1
endif

----- compute the corresponding velocity node indices

trinode1=(tri(1,2)-1)*m+tri(1,1)
trinode2=(tri(2,2)-1)*m+tri(2,1)
trinode3=(tri(3,2)-1)*m+tri(3,1)

----- compute the affected blocks

-191-



do 500 j=1,3
rem=mod(tri(j,1),bfx)
MUlt=(tri(i.1)-rem)/bfx
if(rem.eq.0) then

col=mult
else

col=mult+1
endif

rem=mod(tri(j,2),bfz)
mult=(tri(j,2)-rem)/bfz
if(rem.eq.0) then

rou=mult
else

rou=mult+1
endif

k=(rou-1)*m/bfx+col
if(k.gt.n*m) k=n*m

if(k.lt.1) k=1
if(j.eq.1) trinode1=k
if(j.eq.2) trinode2=k
if(j.eq.3) trinode3=k

500 continue
c
c----- set the required ‘affected' flags

c
affected<trinode1)=.true.
affected<trinode2)=.true.
affected(trinode3)=.true.

1000 continue
c
c----- continue computing the velocity nodes affected by the rays
c----- now do the same for ray2
e

do 2000 i=1,nLnE
c
c----- first compute the ‘tri' nodes affecting this cell
c

p=int(ray2travel(i,1))
remFmod(p.(2*(m-1)))

mult=<p—rem)/(2*(m-1))
rou=mult+1
if(rem.eq.0) row=rou-1
if(rem.gt.0) then

col=int((rem-1)/2.0)+1
else

col=m-1
endif

tri(1,1)=col

tri(1,2)=rou
tri(2,1)=col+1
tri(2,2)=rou+1
if(mod(ray2travel(i,1),2.0e0).eq.0.0e0) then

tri(3,1)=col+1
tri<3,2)=rou

else
tri(3,1)=col
tri(3,2)=rou+1
endif

c
c----- compute the corresponding velocity node indices
c

trinode1=<tri(1,2)-1)*m+tri(1,1)
trinode2=(tri(2,2)-1)*m+tri(2,1)
trinode3=<tri(3,2)-1)*m+tri(3,1)

c
c----- compute the affected blocks
c

do 1500 j=1,3
rem=mod(tri(],1),bfx)
mult=(tri(j,1)-rem)/bfx
if(rem.eq.0) then
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C
C.....

C .....

C

3800
3700

C
C.....

C

col=mult
else

col=mult+1
endif

rem=mod(tri(j,2).bfz)
mult=<tri(j.2)-rem)/bfz
if(rem.eq.0) then

rou=mult

else

rou=mult+1

endif
k=(rou-1)*m/bfx+col
if(k.gt.n*m) k=n*m

if<k.lt.1) k=1
if(j.eq.1) trinode1=k
if(j.eq.2) trinode2=k
if(j.eq.3) trinode3=k
continue

set the required ‘affected' flags

affected(trinode1)=.true.
affected(trinode2)=.true.
affected(trinode3)=.true.
continue

now begin raytracing through the perturbed velocity fields

do 3000 i=1,(n/bfz)*(m/bfx)
if<.not.affected(i)) goto 3000

compute the top left node of the block

rem=mod(i,mlbfx)
mult=(i-rem)/(m/bfx)
if<rem.eq.0) then

col=m/bfx
rou=mult

else

col=rem

rou=mult+1

endif
col=(col-1)*bfx+1

rou=(row-1)*bfz+1

multiply affected velocities by 1.0025

do 3500 j=col,col+bfx-1

do 3600 k=rou,rou+bfz-1
vel(k,j)=vel(k,j)*1.0025e0
continue

continue

re-raytrace the ray

neuxerr=0.0e0

call xerrrt(sloc1,tang1,sloc2,tangZ,datatime,neuxerr)

divide affected velocities by 1.0025 to restore them to original values

do 3700 j=col,col+bfx-1
do 3800 k=rou,rou+bfz-1

vel(k,j)=vel(k,j)/1.0025e0
t1=t1+dble<vel(k,j))
continue

continue
t1=(t1/dble(bfx*bfz))*.0025d0

put ((neuxerr-xerr)/t1) into response matrix

R(index,i)=((neuxerr-xerr)/sngl(t1))
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c
c ----- loop back to do rest of the velocity nodes
c
3000 continue

return

end
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aPRocsss DC(GAUS),0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

aPROCESS DIRECTIVE('*VD:’)

C......

c.....

c _____

c .....

c .....

c .....

C......

C......

C .....

C .....

C .....

subroutine to compute the model covariance matrix for gaussian -----

smoothing
.....

the half-width of the gaussian is ‘L' -----

the constant weighting of the covariance matrix is ‘lc' -----

subroutine also computes first/second order derivative components -----

subroutine gauscalc(L)

nq n = number of rows in velocity grid

mq - m = number of columns in velocity grid

nint spatial increment between grid rows

mint spatial increment between grid columns

L = gaussian half~width (in metres)

lc = constant multiplier of the model covariance matrix (use 1.0)

nmaxq = maximum number of velocity nodes

maxq = maxinun nunber of data rays

maxq = maximum of nmaxq and nmaxq

C(0:nq-1,0:mq-1)=model covariance table defining the gaussian smoothing

This is the output of this subroutine.

i,j,k= temporary integer variables

t1,t2,t3,t4,t5= temporary double-precision variables

real*4 nint,mint

real*4 nint2,mint2

real". sum

real*4 C

real*4 lc

real*8 t1,t2,t3,t4,t5

integer*4 i,j,k

integer*4 i1,i2,i3,i4,zz

integer*4 L

integer*4 n,nq,m,mq,ndat,dne

integer*4 rem,mult

integer*4 icol,irow,jcol,jrow

integer*4 nmax,nmaxq,mmax,mmaxq,max,maxq

parameter(nq=90,mq=210)

parameter(nmaxq=17000,mmaxq=4200,maxq=17000)

dimension C(0:nq-1,0:mq-1)

common /conparm/n,m,nint,mint,nmax,mmax,max,ndat,dne

common /gaus/C

set constants and initial variables

lc=1.0

t1=0.0d0

t2=0.0d0

t3=0.0d0

t4=0.0d0

t5=0.0d0

sum=0.0

nint2=nint**2

mint2=mint**2

compute the model covariance table, C

first compute the constant factor that is to be scaled relative to its

distance away

if((2.0*float(L)).le.mint) then

t5=0.0d0

else
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t5=dble(exp(-D.Se0*(mint/float(L))**2))

endif

if t5 is zero, set the C matrix equal to the identity

if(t5.eq.0.0d0) then

do 90 i=0,n-1

do 95 j=0,m-1

C(i,j)=0.0

continue

continue

C(0,0)=lc*1.0

return

endif

nou loop through for possible row and column differences

do 100 i=0,n-1

do 105 j=0,m-1

calculate distance between points

t1=dble((floet(i)*nint)**2)

t1=t1+dble((float(j)*mint)**2)

t1=dsqrt(t1)

nou compute relevant value of the gaussian

if(t1.gt.10.0*L) then

C(i,j)=0.0

goto 105

endif

t2=t1/dble(mint)

t2=t2**2

C(i,j)=lc*sngl(t5**t2)

continue

continue

return

end
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aPROCESS DC(GAUS),0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
BPROCESS DIRECTIVE('*VD:')
c ______________________________________________________________________

c
c Brief Update History
c ____________________

c MEMNLSS - considerably modified jan 91, peter whiting
c MEMNL$6 - considerably modified ->dec 91, peter whiting

c MEMNL$8 - modified to read C matrix from dynamic common
c ->dec 92, peter whiting
c - also convert to ESSL subroutines for the intensive
c processing -> jan 92, peter whiting

O

The notes directly below are Steve Brown's original comments.

Maximum entropy image reconstruction subroutine.

This package implements the ME reconstruction algorithm presented in

J.Skilling and R.K.Bryan, (1984) Mon.Not.R.astr.Soc. 211, 111-124.

This routine solves for the maximum entropy image for both linear
and non-linear image reconstruction problems.

Each call to the routine MEM_NL takes one iteration from the current
image towards the maximum entropy image.

The program tries to follow the notation of Skilling and Bryan as
much as possible. All page and equation references in the program
comments refer to their paper.

Written: Steve Brown
Department of Applied Mathematics
University of Sydney
NSU Australia.

Version 1. 13-0ctober-89 (Not fully tested but works OK so far)

0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
O

O
D

subroutine MEMNL(n, m, I, D, F, dm, dn, A, chiO, Rchange,
& entropy, chiZ, test, nlin)

This routine is catled by the driving program. It advances the
solution one iteration.

Input Parameters:
n - number of image elements in the image vector I.

m - number of data elements in the data vector D.
I - array of n image values. On input I holds the current

image. I corresponds to the f of Skilling and

Bryan [Eqn 1].
D - array of m experimental data values the image is to

be fitted to [Eqn 2].
F - for non-linear problems this is an array of m model

data values corresponding to the image in I. For
linear problems F is a work array and must be
dimensioned to m or larger.

R - response matrix. It has physical dimensions (dm,dn)
with the first (m,n) containing the actual response

matrix elements. The response matrix is defined as
R(k,j) = dF(k)/dl(j)

dm - dimensioned rows of array R.

dn - dimensioned columns of array R.
A - default intensity [Page 114, Eqn 6].

chiO - the desired chi-squared fit statistic [Eqn 4].
Rchange - used only for linear image reconstruction. Rchange must

be set to one on the first call and on any subsequent
call where the response matrix, image vector or data

vector have been changed. Rchange should be set to
zero if these parameters are unchanged and the code willO

O
O
O
O
O
O
O
O
O
O
G
O
O
O
O
O
O
G
O
O
O
O
O
G
O
O
O
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MEMNL$8

execute a bit faster.
nlin - must be set to one for non-linear problems, zero otherwise.

Output Parameters:

I - updated image vector.
entropy - for linear problems entropy is set to the current image

entropy [Eqn 6]. For non-linear problems it contains the
entropy of the input image.

chiZ - for linear problems chiZ is set to the current chi-squared
statistic [Eqn 4]. For non-linear problems it contains the
chi-squared value at the start of the iteration.

test - for linear problems test is set to the entropy test
recommended by Skilling and Bryan [Eqn 37} for the current
image. For non-linear problems it contains the test value
of the initial image.

The parameter dne sets the number of search directions used.

Limits:
The number of image points n must be <= parameter nmax and the
number of data points m must be <= nnax.

Warning !!!
The parameters nmax and max are used in most of the subprograms
and you must change them all if you want to use larger image or

data vectors

End of Steve Brown's comments.

---- nxx = number of rows in discrete velocity model
---- mxx = number of columns in discrete velocity model
---- nmaxq = maximum number of velocity nodes
---- nnqu = maximum number of data rays
---- maxq = maximum of nmax and nnmx

integer n, m, dn, dm, nmax, mmax, Rchange, ne, dne, nlin
integer nmaxq,mmaxq,maxq,dneq
integer nxx,mxx,ndat
real*4 nint,mint
real*4 1(n), D(m), F(m), A, chiO, entropy,

& chiZ, test

nmax is the largest allowed image size. mmax is the largest allowed

data size. dne sets the number of search directions used.

parameter(nmaxq=17000,nnaxq=4200,maxq=17000)
parameter (dneq = 4)

real*4 gS(nmaxq), gC(nmaxq), 50, co, Itot,
8. sum, sumZ, Smu(dneq), Cmu(dneq), ganma(dneq),
& e(nmaxq,dneq), x<dneq), almin, Caim

common /conparm/nxx,mxx,nint,mint,nmax,nnmx,max,ndat,dne

The gradients and values of S and C are stored in a common so their
values are preserved between subroutine calls.

common [memficm/ 95, 9C, CO, 50, Itot

if ((n .gt. nmax) .or. (m .gt. unmx)) then
print *, 'Error in HEM: nmax or nmax are too small'
stop

endif

If first call or the response matrix R has changed it is necessary to
calculate the gradient information.

if ((Rchange .eq. 1) .or. (nlin .eq. 1)) then
call CALCGRAD(n, m, 1, D, F, dm, dn, A, nlin)
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call CALCTEST(n, test)
endif

Calculate the normalised search directions.

ne = dne
call SEARCH(e, ne, 1, n, m, dm, dn)

Now diagonalise the search subspace and construct quadratic models

for s and C.

call DIAGMOD(e, gamma, Smu, Cmu, ne, n, m, dm, dn, 1)

Calculate the constants needed by the CONTROL subroutine.

call CONSTS(gannm, ne, almin, Caim, chiO, CO, Cmu, Itot)

Now calculate the increments x to move in each of the search
directions.

call CONTROL(x, 50, CO, Smu, Cmu, gamma, Caim, almin, ne)

Update the image vector along the search directions.

call UPDATE(x, e, ne, 1, n)

Calculate the gradient information which is needed to calculate test.

if (nlin .ne. 1) then
call CALCGRAD(n, m, I, D, F, dm, dn, A, nlin)

Calculate test.

call CALCTEST(n, test)

endif

entropy = $0
chiZ = C0

return
end

SPRUCESS DC(GAUS),OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
SPRUCESS DIRECTIVE('*VD:’)

subroutine CALCGRAD(n, m, I, D, F, dm, dn, A, nlin)

integer n, m, dn, dm, nmax, j, k, l, nlin, nnmx, x, max
integer nmaxq,nnnxq,maxq
integer nxx,mxx,ndat,dne
integer*4 zz,fcb(20),rcb(20)
integer*4 i1,i2,i3,i4,vcount,cind
logical set

real*4 nint,mint
real*4 A, Iln), D(m), F(M)
real'é t1,sumpl,tol
real*4 sig,ai,bi,XXerr,XXerr2,tvar

parameter(nq=90,mq=210)
parameter(nmaxq=17000,mmaxq=6200,maxq=17000)
real*4 Am(nmaxq),R(nmaxq)
real*4 gS(nmaxq), gC(nmaxq), 50, c0, sum1, sum2,sum3

& ltot, temp(nmaxq) , C , Ctmp

real*8 la,li
dimension C(0:nq-1,0:mq-1),Ctmplnq*mq),Cind(nq*mq)
dimension tvarlnnaxq)
dimension sig(nnqu),set(nmaxq)

dimension ai(nunxq),bi(nnnxq),XXerr(nnaxq),XXerr2(mmaxq)

common /mem5cm/ 95, 9C, C0, 50, Itot
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common lbackg/Am
common /gaus/c

common /frechet/fcb,rcb
cannon lsetvel/set
connnn /var/sig,ai,bi,XXerr,XXerr2
common /conparm/nxx,mxx,nint,mint,nmax,nnax,max,ndat,dne

tol=1.0e-10

c
c----- Finds the current chi-squared value

c
sumZ = 0.0
do 30 k = 1, m

sumZ = sumZ + ((F(k) - D(k))**2)*sig(k)

30 continue
CO = sumZ

c Finds the current image entropy [Eqn 6] and gradient of s [Eqn 7a].

Itot=0.0

sum1 = 0 0
do 40 j = 1, n

la = dlog(dble(Am(j)))
= dlog(dble(I(i)))

gS(j) = real(la - li)

sum1 = sum1 + I(j)*(gS(J)+1.0)
Itot = Itot + 1(1)

40 continue
50 = sum1

c Finds the gradient of c [Eqn 8].

c----- note the Covariance term (see TN.10)

do 48 k = 1, m
tvar(k)=XXerr(k)*sig(k)*2.0+ai(k)*XXerr2(k)

48 continue

do 49 j = 1, n

temp(j)=0.0

49 continue
do 50 k = 1, m

x=(k-1)*n

call dmi014(R(1),n,x,rcb,fcb,1,zz)

if(zz.ne.0) stop 'error reading frechet'

do 60 j = 1, n

temp<i>=temND+RU)*tvar(k)
60 continue

50 continue
if(C(1,1).eq.0.0) then

call scopy(n,temp,1,gc,1)

return
endif

do 51 j = 1, n
if(set(j)) then

gC(j)=0.0

goto 51
endif

sum1 = 0.0
sum3 = 0.0
vcount=0

do 61 k = 1, n
if(set(k)) goto 61
t1=C(int((j-k)/mq),abs(mod(j-1,mq)-mod(k-1,mq)))

if(t1.eq.0.0) goto 61
vcount=vcount+1

Ctmp(vcount)=t1

cind(vcount)=k

61 continue
sum1=sdoti<vcount,Ctmp(1),cind(1),temp(1))

sum3=sasum(vcount,Ctmp(1),1)

if(abs(sum1).gt.tol) then
gC(j) = sum1/5Lnfi

else

each = 0.0
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endif
51 continue

return
end

aPROCESS DC(GAUS),0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

EPROCESS DIRECTIVE( ”VD: ’)

subroutine SEARCH(e, ne, 1, n, m, dm, dn)

integer ne, n, m, nmax, nmax, dne, j, k, l, p, dm, dn

integer nmaxq,nnqu,maxq,dneq
integer ndat,fcb(20),rcb(20)
integer x,y,z,max,v,q,zz

integer i1,i2,i3,i4,i5,i6,vcount,cind
integer*4 nxx,mxx

logical set

real*4 nint,mint,C,Ctmp
real*4 I(n)
real*4 t1,t2,t3,t4,t5,sum3

parameter(nq=90,mq=210)
parameter(nmaxq=17000,nnqu=4200,maxq=17000)
parameter (dneq = 4)
real*4 gS(nmaxq), gC(nmaxq), SO, CO, temp(nmaxq), tempZ<nnaxq),

& temp3<nmaxq),temp1(nmaxq),Itot,e(nmaxq,dneq),sum1, sumZ
real*4 sig(nnqu),R(nmaxq)

real*4 ai(mmaxq),bi(mmaxq),XXerr(mmaxq),XXerr2(nnqu)
dimension C(0:nq-1,0:mq-1),Ctmp(nq*mq),cind(nq*mq)
dimension set(nmaxq)

common /mem5cm/ 98, 9C, C0, 80, Itot
common /var/sig,ai,bi,XXerr,XXerr2
common /setvel/set

common /gaus/c

common /frechet/fcb,rcb
common /conparm/nxx,mxx,nint,mint,nmax,nnmx,max,ndat,dne

c Routine finds dne search directions according to Eqn 20 and the
c paragraph above Eqn 19.

c Finds 9C The resulting search direction is normalised.
sum1 = 0.0
call scopy(n,gC(1),1,e(1,1),1)
sum1=snorm2(n,e(1,1),1)
if (sum1 .eq. 0.0) then

sum1 = 1.0
endif

do 20 j = 1, n
e(j,1) = e(j,1) / sum1

20 continue
if (ne .eq. 1) return

c Finds 95 The resulting search direction is normalised.

sum1 = 0.0
call scopy(n,g$(1),1,e<1,2),1)
sum1=snorm2(n,e(1,2),1)
if (sum1 .eq. 0.0) then

sum1 = 1.0
endif

do 40 j = 1, n
e(j.2) = e(j,2) / sum1

40 continue

c Loops around multiplying direction p-Z by matrix 99C to get
c direction p which is then normalised.
c Need to do this in four parts now to get ggC=C.Rt.R.c

do 50 p = 3, ha
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if(C(1,1).eq.0.0) then
call scopy(n,e(1,p—Z),1,temp1,1)
goto 64
endif

do 60 k = 1, n
if(set(k)) then

temp1<k)=0.0
goto 60

endif
sumZ = 0.0
sum3 = 0.0
vcount=0

do 70 j = 1, n
if(set(i)) goto 70
t1=C(int((j-k)/mq).abs(mod(j-1,mq)-mod(k-1,mq)))
if(t1.eq.0.0) goto 70
vcount=vcount+1

Ctmp(vcount)=t1
Cind(vcount)=j

continue

sum2=sdoti(vcount,Ctmp(1),Cind(1),e(1,p-2))
sum3=sasum<vcount,Ctmp(1),1)
temp1(k) = sumZ/sum3

continue

do 61 k = 1, m
sum2 = 0.0
x=(k-1)*n
call dmi014(R(1),n,x,rcb,fcb,1,zz)
if(zz.ne.0) stop 'error reading frechet'
sum2=sdot<n,temp1,1,R,1)
temp2(k)=sum2*(2.0*sig(k)+4.0*ai(k)*XXerr(k)+

bi(k)*XXerr2(k))
continue

do 8872 j = 1, n
temp3(i)=0.0
continue

do 62 k = 1, m

x=(k-1)*n
call dmi014(R(1),n,x,rcb,fcb,1,zz)
if(zz.ne.0) stop 'error reading frechet'
call syax(n,temp2(k),R(1),1,temp3(1).1)

continue

if(C(1,1).eq.0.0) then
call scopy(n,temp3,1,temp,1)
goto 67
endif

do 63 k = 1, n
if(set(k)) then

temp(k)=0.0
goto 63
endif

sumZ = 0.0
sum3 = 0.0
vcount=0

do 73 j = 1, n
if(set(j)) goto 73
t1=C(int((j-k)/mq),abs(mod(j'1,mq)-mod(k-1,mq)))
if(t1.eq.0.0) goto 73
vcount=vcount+1

Ctmp(vcount)=t1
cind(vcount)=j
continue

sum2=sdoti(vcount,Ctmp(1),cind(1),temp3)
sum3=sasum(vcount,Ctmp(1),1)
temp(k) = sumZ/sum3

continue

sum1 = 0.0
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call szaxpy(n,2.0,tenp1(1),1,tenp(1),1.e(1,p),1)
sun1=snormZ(n,e(1,p),1)

if (sum1 .eq. 0.0) then
sun1 = 1.0
endif

do 100 j = 1, n
e(i.P) = e(j.P) / sum1

100 continue
50 cont i nue

return
and

GPROCESS DC(GAUS) ,0PT(3) ,VECTOR(LEVEL(Z) , REPORT(XLIST ) ) ,

aPROCESS DIRECTIVE( ”VD: ’)

subroutine DlAGMOD(e, ganma, Smu, Cm, ne, n, m, dm, dn , I)

integer ne, n, m, nmax, max, dne, j, k, ll, p, q, qq, trip,

& dm, dn, max
integer i1,i2,i3,i4,zz,rmaxq,maxq,maxq,dneq,vcount,cind

integer nxx,mxx, ndat ,x, fcb(20) , rcb( 20)
logical set
real“. sunf,sunf2,tqu,smB,L,L0

real": nint,mint,c,Ctnp,t1

parameter(nq=90,mq=210)
parameter(mnaxq=17000,nmaxq=A200,maxq=17000)
parameter (dneq = lo)
real*4 I(nmaxq),llog(nnaxq),temp2(maxq,dneq)
real“ length(dneq)

real”. gS(nmaxq), gcmnaxq), 80, CO, Itot, temp(nmaxq,dneq),

temp3(nnaxq,dneq),
sum1, sumZ, g(dneq,dneq), MM(dneq,dneq), Smu(dneq),

Cmu(dneq), gaIrma(dneq), e(nmaxq,dneq), V(dneq,dneq),

eigval(dneq), e2(nmaxq,dneq)
real*4 sig(maxq),R(mnaxq)
real“. ai(maxq),bi(maxq),XXerr(n1naxq),XXerr2(nmaxq)

dimension C(0:nq-1,0:mq-1),Ctmp(nq*mq),cind(nq*mq)
dimension set(nmaxq)

9
0
9
0
*
“

comnon ImemScm/ 95, 90, CO, 50, Itot
comnon /penalt/length,L,L0
common /var/sig,ai,bi,XXerr,XXerr2
comon /setvel/set

comnon lgaus/C

comnon /frechet/fcb,rcb
conmon /conparm/nxx,mxx,nint,mint,runax,mnax,max,ndat,dne

c Routine constructs and diagonalises the search subspace according to

c the procedures in Eqn 2!. and Section 3.7.1.

c Calculate the metric tensor 9 [Eqn 24b].
1000 continue

do 8 p=1,dne
do 9 q=1,dne

g(P.q)=0.0
9 continue
8 continue

do10p=1,ne
d020q=p,ne

sun1 = 0.0
do 30 j = 1, n

sun1 = sun1 + e(j,p)*e(j,q)/I(j)

30 continue

g(p.q) = sum1
g(q.p> = sum1

20 continue
10 continue
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c Diagonalise g. Eigenvectors are columns in the array V

call JACOB!(g,ne,dne,eigval,v,qq)

MEMNL$8

c If any of the eigenvalues of g are small then throw out that direction

c and repeat the calculation of 9 etc. This protects against linear

c dependence in the search directions. NOTE the factor 1.e-4 is an

o arbitrary choice.
tmp = 0

p=1
1001 continue

if (abs(eigval(p)).lt.amax1(eigval(1),eigval<2),eigval(3),

+ eigval(4))/10000.0) then

c + eigval(4),ei9val(5),eigval(6))/10000.0) then

do 40 q = p, ne-1
call scopy(n,e(1,q+1),1,e(1,q),1)
eigval(q) = eigval<q+1)

40 continue
ne = ne - 1
tmp = 1
if (p .le. ne) goto 1001

endif

P = P * 1
if (p .le. ne) goto 1001

if (tmp .eq. 1) goto 1000

c Rescale the search directions so that the metric is cartesian.

c new directions are held in the matrix e2.
do 60 j = 1, n

do 70 p = 1, ne
sum1 = 0.0
do 80 q = 1, ne

sum1 = sum1 + e(j,q)*V(q,p)
80 continue

e2(j,p) = sum1 / sqrt(abs(eigval(p)))

70 continue

60 continue

c Now calculate M (held in matrix MM) [Eqn 24d].

c Need extra work to do R.C.e
do 18 p=1,dne

do 19 q=1,dne
MM(p,q)=0.0

19 continue
18 continue

if(C(1,1).eq.0.0) then
do 66 p=1,ne

call scopy(n,e2(1,p),1,temp3(1,p),1)

66 continue
goto 67
endif

do 90 k = 1, n
if(set(k)) then

do 9191 p=1,ne
temp3(k,p)=0.0

9191 continue
goto 90

endif
vcount=0
do 110 j = 1, n

if(set(j).or.set(k)) gate 110
t1=C(int((i'k)/NQ).abs(mod(j-1.MQ>-mod(k-1,mq)))

if(t1.eq.0.0) goto 110
vcount=vcount+1
Ctmp(vcount)=t1
cind(vcount)=j

110 continue

do 100 p = 1, ne
sum1=sdoti(vcount,Ctmp(1),Cind(1),e2(1,p))

sum3=sasum(vcount,Ctmp(1),1)

temp3(k,p) = sum1/sum3
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100 continue
90 continue
67 do 91 k =

x=(k-1)*n
call dmi014(R(1),n,x,rcb,fcb,1,zz)
if(zz.ne.0) stop ’error reading frechet'

do 101 p = 1, ne
sum1=sdot(n,R(1),1,temp3(1,p),1)
temp(k,p)=sum1*(2.0*sig(k)+4.0*ai(k)*XXerr(k)+

+ bi(k)*XXerr2(k))

101 continue
91 continue

do 120 p= 1, ne
do 130 q= p, ne

sum1=sdot(m temp(1,p),1,temp(1,q), 1)
sum2=sdot(n, e2(1,p), 1 ,temp3(1,q), 1)
MM<p,q) = sum1+2.0*sum2
MM(q.P) MM(PIQ)

130 continue
120 continue

urite(6,'(2x,a14,i5)') 'ne is now (c) ',ne

c Diagonalise M. Eigenvectors are columns in the array V

call JACOB!(MM,ne,dne,gamma,V,qq)

c Rescale the search directions so that M is diagonal. The

c new directions are held in the matrix e.
do 150 j = 1, n1

do 160 p = ne
sum1 = &0
do 170 q = 1, ne

sum1 = sum1 + e2(j.Q)*V(q,p)
170 continue

e(j,p) = sum1
160 continue
150 continue

c
c----- compute lengths of these final search directions to be passed

c----- to CONTROL for correct distance penalty implementation

c
do 155 p=1,ne

length(p)=snorm2(n,e(1,p),1)
155 continue

c Calculate the final components of the quadratic models Smu and Cmu

c [Eqns 24a and 24c].
do 180 p = 1, ne

Smu(p)=sdot(n,e(1,p),1,gS(1),1)

Cmu(p)=sdot(n,e(1,p),1,gC(1),1)

180 continue

return

end
aPROCESS DC(GAUS),OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

aPROCESS DIRECTIVE<’*VD:')

subroutine CONSTS(gannn, ne, almin, Caim, chiO, C0, Cmu, Itot)

integer ne, p, dne, dneq

integer nxx,mxx,nmax,nnmx,max,ndat
real*4 chi0,chiOold
real*4 nint,mint
real*4 gamma(ne), Cmu(ne), almin, Caim, L0, CO, Itot,

& sum1, Cmin,L
real*4 dlimit

parameter(dneq=4)
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real*4 length(dneq)
common [dist/dlimit
common /penalt/length,L,L0

common /conparm/nxx,mxx,nint,mint,nmax,mmax,max,ndat,dne

c Routine calculates the constants needed by the control procedure.

c Find Cmin [Eqn 28].
sum1 = 0.0
do 10 p = 1, ne

sum1 = sum1 + (Cmu(p)**2)/samma(p)
10 continue

Cmin = C0 - 0.5*sum1

c Find Caim [Eqn 29].
c Skitling and Bryans choice of 0.667 and 0.333.

Caim = 0.667*Cmin + 0.333*C0
if (chiO .gt. Caim) Caim = chiO
if(Caim.gt.C0) Caim=CO

c Find L0 [Paragraph above Eqn 28].
*** I changed this from using Itot to using nmax, which ***

c *** I feel is a more useful limit. Peter U 13/03/91 ***
L0 = (2.0*nmax)/dlimit

D

c Find alpha min [Paragraph below Eqn 32].
almin = -gamma(1)
do 20 p = 2, ne

sun1 = -ganma(p)
if (sum1 .gt. almin) almin = sum1

20 continue
if (almin .lt. 0.0) almin = 0.0
return
end

EPROCESS DC(GAUS),0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

EPROCESS DIRECTIVE('*VD:’)

subroutine CONTROL(x, SO, co, Smu, Cmu, gamnm, Caim, almin,ne)

integer ne, q, asuc, psuc, afinished, pfinished, dne, dneq
integer nxx,mxx,nmax,mmax,max,ndat
parameter (dneq = 4)
real*4 length(dneq)
real*4 nint,mint
real*4 x(ne), 50, CO, Smu(ne), Cmu(ne), gannn(ne), Caim, L0,

& almin, alpha, p, c, Cp, L, xs(dneq), alou, plow, ahigh,
& phigh, Cainh

real*4 Lsuc,Csuc

cannon /penalt/length,L,L0
common /conparm/nxx,mxx,nint,mint,nmax,nnmx,max,ndat,dne

c Implements the control procedure charted on Page 122, Figure 3 and
c described in Sections 3.7.2 and 3.7.3.

if (C0 .lt. Caim*1.01) then
Caimh = Caim*1.01

else
Caimh = Caim

endif

p = 0.0
plow = 0.0
phigh = -1.0
psuc = 0
pfinished = 0

c Start of the P chop.
10 continue
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alou = almin

ahigh = -1.0

alpha = almin + 1.0

asuc = 0

afinished = 0

c Start of the alpha chop

continue

c Calculate C [Eqn 23b]. Cp [Eqn 35], L [Eqn 27c] and x [Eqn 34].

0C = C

Cp = CO

L = 0.0

do 1 q = 1, ne

xlq) = (alpha*Smu(q) - Cmu(q)) / (P+gamma(q)+alpha)

C = C + Cmu(q)*x(q) + 0.5*gannm(q)*(x(q)**2)

Cp = Cp + Cmu(q)*x(q) + 0.5*(p+gamma(q))*(x(q)**2)

L = L + length(q)*x(q)**2

continue

if ((Cp .gt. C0) .and. (Cp .gt. Caimh)) then

ahigh = alpha

alpha = 0.5*(alpha + alou)

elseif(L.gt.L0) then

if(Cp.le.CO) then

alou=alpha

if(ahigh.gt.0.0) then

alpha=0.5*(ahigh+alpha)

else

alpha=2.0*alpha

endif

else

ahigh=alpha

alpha=0.5*(alpha+alou)

endif

elseif(C.lt.Caim) then

if(Caimh.ge.c0) then

do 2 q = 1, ne

x5(q? = x<q)

continue

asuc=1

Lsuc=L

Csuc=C

endif

alou=alpha

if<ahigh.gt.0.0) then

alpha=0.5*(ahigh+alpha)

else

alpha=2.0*alpha

endif

else

do 4 q = 1, ne

XS(q) = x(q)

continue

asuc=1

Lsuc=L

Csuc=C

ahigh=alpha

alpha=0.5*(alou+alpha)

endif

if ((ahigh.gt.0.0) .and. ((ahigh-alou).lt.

(1.0E-3*ahigh+1.0E-10))) afinished = 1

if (alpha .gt. 1.0E20) afinished = 1

if (afinished .ne. 1) goto 20

c End of alpha chop

if (asuc .eq. 1) then

' psuc = 1

Phish = P
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p = 0.5*(plou + p)

else

plow = p

if (phigh .gt. 0.0) then

p = 0.5*(phigh + p)

else

p = 2.0*(p + 1.0)

endif

if ((psuc.eq.1) .and. ((p.eq.0.0) .or. (phigh-plou).lt.

(1.0E-3*phigh+1.0E-10))) pfinished = 1

c check for occasional bad topology (rare)

if((psuc.eq.0).and.(p.gt.1.0e20)) then

pfinished=1

urite(2,'(2x,327)') ’P chop blow-up encountered'

endif

if (pfinished .ne. 1) goto 10

c End of P chop

c Topology correction

if(psuc.eq.0) then

do 5 q=1,ne

x(q)=1.0e-2*L0*(Smu(q)-Cmu(q))

5 continue

endif

c Copy the most recent successful x (array xs) to the output increment

c array x.

3333 do 3 q = 1, ne

x(q) = xs(q)

3 continue

HRITE(2,'(2X,A36,G16.8)’)’MEM_NL$: expected Chi in CONTROL - ’,Cp

HRITE(2,’(2X,A36,G16.8)’)’MEM_NL$: expected EMT in CONTROL - ',S

HRITE(2,’(2X,A36,G16.8)')'MEM_NL$: calculated distance - ’,L

HRITE(2,’(ZX,A36,G16.8)')‘MEM_NL$: maximum distance - ',L0

HRITE(Z,'(2X,A26,G16.8)’)‘MEM_NLS: minimum alpha - ',almin

HRITE(2,’(2X,A26,G16.8)')'MEM_NL$: final alpha - ',alpha

return

end

BPROCESS DC(GAUS),OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

aPROCESS DIRECTIVE('*VD:’)

subroutine UPDATE(x, e, ne, 1, n)

integer ne, n, dne, nmax, j, p, nnmx

integer nmaxq,mmaxq,maxq,dneq

integer nxx,mxx,max,ndat

real*4 I(n),sum

real*4 nint,mint

parameter(nmaxq=17000,nnqu=4200,maxq=17000)

parameter (dneq = 4)

real*4 e(nmaxq, dneq), x(ne)

common /conparm/nxx,mxx,nint,mint,nmax,nnmx,max,ndat,dne

c Update the image vector [Eqn 25].

SUflF0.0

do 10 p = 1, ne

do 20 j = 1, n

1(1) = 1(1) + x(P)*e(i.P)

sum=sum+(x(p)*e(i.p))**2

20 continue

10 continue

write(6,'(2x,a25,g16.8)') 'actual distance of update',sqrt(sum)
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c Protect against stray negative image values.

do 30 j = 1, n

if (I(j) .le. 0.0) 10') =1.e-6
30 continue

return
end

aPROCESS DC(GAUS),OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)).

BPROCESS DIRECTIVE('*VD:')

subroutine CALCTEST(n, test )

integer n, nmax, j ,nnmx

integer nmaxq,mmaxq,maxq
integer nxx,mxx,max,ndat,dne
real*4 test
real*4 nint,mint
parameter<nmaxq=17000,nnnxq=4200,maxq=17000)

real*4 gS(nmaxq), gC(nmaxq), 50, CO, Itot, sum1, sumZ, sum3

common lmemficm/ 98, 9C, CO, SO, Itot
common /conparm/nxx,mxx,nint,mint,nmax,mmax,max,ndat,dne

c Finds Skilling and Bryans test parameter [Eqn 37].

sum1 = 0.0
sum2 = 0.0
do 10 j = 1, n

sum1 sum1 + gS(j)**2
sumZ sumZ » gC(j)**2

10 continue

sum1 sqrt(sum1)
sumZ sqrt(sum2)
sum3 0.0
if ((sum1 .ne. 0.0) .and. (sumZ .ne. 0.0)) then

do 20 j = 1, n
sum3 = sum3 + (gS(j)/sum1 - gC(j)/sum2)**2

20 continue
endif
test = 0.5 * sum3

return
end

aPROCESS DC<GAUS),0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

aPROCESS DIRECTIVE(’*VD:’)

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)

implicit real*4 (a-h,o-z)
implicit integer (i-n)
PARAMETER (NMAX=4)
DIMENSION A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX)

DO 12 IP=1,N
DO 11 10:1,"

V(IP,IQ)=0.

11 CONTINUE

V(IP,IP)=1.

12 CONTINUE

DO 13 IP=1,N

B(IP)=A(IP,IP)

D(IP)=B(IP)
Z(IP)=0.

13 CONTINUE
NROT=0

Do 24 I=1,50
SM=0.
DD 15 IP=1,N-1
DO 11. IO=IP+1,N

SM=SM+ABS(A(IP,IG))
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14
15

16

17

18

19

21
22

CONTINUE
CONTINUE
IF(SM.EQ.0.)RETURN
IF<I.LT.4)TNEN
TRESH=0.2*SM/N**2

ELSE
TRESH=0.

ENDIF
no 22 IP=1,N-1

DO 21 IO: IP+1, N
5:100. *ABS(A(IP, 10>)
IF((I. GT. 4). AND. (ABS(D(IP))+G. EO.ABS(D(IP)))

.AND. (ABS(D(IQ))+G. En.ABS(O(IO))))TNEN
A(IP,IQ)=0.

ELSE IF(ABS(A(IP,IO)).GT.TRESH)THEN
H=D(IQ)-D(IP)
IF(ABS(H)+G.EQ.ABS(H>)THEN
T=A(1p,TO)/N

ELSE
TNETA=O.5*H/A(IP,IO)
T=1./(AascTNETA)+SORT(1.+THETA**2>)
IF(THETA.LT.0.)T=-T

ENDIF
C=1./SQRT(1+T**2)
S=T*C
TAU=S/(1.+C)
N=T*A(IP,IO)
Z(IP)=Z(IP)-H
2(IO)=2(IO)+N
D(IP)=D(IP)'H
D(IQ)=D(IQ)+H
A(IP,IQ)=0.
OO 16 J=1,IP-1

G=A(J,IP)
H=A<J,IO)
A(J,IP)=G-S*(H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)

CONTINUE
OO 17 J=IP+1,IO-1

G=A(IP,J)
H=A(J.IQ)
A(IP,J)=G-S*(H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)

CONTINUE
no 18 J=IQ+1,N

G=A(IP,J)
H=A(IO,J)
A(IP,J)=G-S*(N+G*TAU)
A(IQ,J)=H+S*(G-H*TAU)

CONTINUE
no 19 J=1,N

G=V(J.IP)
H=v<J,Ta)
V(J,IP)=G-S*(H+G*TAU)
V(J,IO)=H+s*(G-N*TAU)

CONTINUE
NROT=NROT+1

ENDIF
CONTINUE

CONTINUE
OO 23 IP=1,N

a<1p>=a<1p)+z<1p)
D(IP)=B(IP)
Z(IP)=0.

CONTINUE
CONTINUE
PAUSE '50 iterations should never happen'
RETURN

END
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BPROCESS DC(GAUS),OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
aPROCESS DIRECTIVE(’*VD:’)
c..............................................................................

c..............................................................................

c----- program to perform maximum entropy reflection tomographic imaging -----

c----- utilises the ‘directional reception' method of ray tracing -----

c ----- uses Chuck Sword's XERR statistic -----

c ----- uses Steve Brown's MEM_NL subroutine for the ME optimisation -----

c ----- updates to MEM_NL for smoothing .....

c ----- all real calculations in double-precision -----

c ----- modified to use a tipex scratch file for the frechet matrix -----
c ---------------------------------------------------------

---------------------

c program metomos
c..............................................................................

c----- ndatq = maximum number of data rays used in inversion
c----- ndat = actual number of data rays
c .....

c ----- nq = maximum number of rows in velocity grid
c----- mq = maximum number of columns in velocity grid
c----- n = actual number of rows in velocity grid
c----- m = actual number of columns in velocity grid
c.....

c ----- nmaxq = maximum number of velocity nodes
c----- nmaxq = maximum number of data rays
c ----- maxq = maximum of nmaxq and nmaxq
c----- nmax = actual number of velocity nodes
c----- mnax = actual number of data rays
c ----- max = maximum of nmax and nnmx
c_____

c ----- nint = spatial increment between grid rows

c----- mint = spatial increment between grid columns
c _____

c ----- chiO = desired chi value
c_____

c ----- LL = gaussian half-width (in metres)
c.....

c ----- vel(nq,mq)= values of velocity at grid points
c----- Am(nmaxq)= the image vector storing the prior information
c----- Rray(nq*mq)= temporary vector to hold Frechet derivative values
C_____

c ----- sloc1 = source location of first ray
c ----- tang1 = take-off angle in radians (positive angle implies
c ----- in direction of increasing distance) of first ray

c----- sloc2 = source location of second ray

c ----- tangZ = take-off angle in radians (positive angle implies
c ----- in direction of increasing distance) of second ray
c ----- xerr = chuck Sword's statistic
c .....

c ----- i,j,k= temporary integer variables
c ----- t1,t2,t3,t4,t5= temporary double-precision variables
c.....

c ----- chimem(5) = vector for remembering latest iterations for
c ----- automatic stage changes, chiO determination, and

c ----- termination
c.....

c----- Image(nq*mq+5)= vector of velocity values

c ----- D<ndatq) = data travel times
c ----- zero(ndatq) = array storing zero

c ----- F(ndatq) = current model travel times
c----- chiZ = chi value at start of iteration
c----- entropy = value of entropy at start of iteration

c----- test = Skilling and Bryan's test statistic at start of iteration
c .....

c ----- raybad = logical vector to remember the rays that had Xerr’s
c----- greater than the threshold.
c----- sig(ndatq)= holds the ray weights, computed by VARIAN
c----- ai(ndatq), bi(ndatq) = assist in the application of the weights
c_____

c ----- numnull = records the number of nulled rays ie xerr>threshold in XERRRT
c----- numturn = records the number of turned rays nulled in XERRRT
c.....
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C .....

C.....

C.....

METOM056

set(n*m) = logical array set to .true. is vel node not to change

ucount = ’unstability count'. incremented when dlimit increased

real*4 sloc1,tan91,xerr

real*4 sloc2,tan92
real*4 nint,mint

real*4 ray1travel,ray2travel

real*4 Rray,D,zero,F,Fold
real*4 Image,Am
real'4 chi0,chi2,entropy,test,testold

real*4 dlimit,pctd
real*4 length,L,L0

real*4 vel
real*4 lc
real*4 sig,ai,bi,XXerr,XXerr2

real*4 t11,t12,t13,t14,t15
real*8 t1,t2,t3,t4,t5
real*8 tol,pi,pion2,tuopi
Logical raybad
logical set

integer*4 set1,set2,set3,set4,dskip,stop,maxit,form

integer*4 stopc
integer*4 i,j,k,x,dne,dneq
integer*4 n,nq,m,mq,nbym
integer'é num,num2
integer*4 numnull,numturn,ucount,iter,numtot
integer*4 ndat,ndatq
integer*4 LL,LLn,LLm
integer*4 nmax,nmaxq,nnnx,nnqu,max,maxq

integer*4 total
integer*4 rem,mult,rou,col,block,nc
integer*4 tlmage

integer*k acnm,fcb,rcb

parameter(ndatq=4200)
parameter<nq=90,mq=210)

parameter(nmaxq=17000,mmaxq=4200,maxq=17000)
parameter(dneq=4)

real*4 gS(nmaxq),gC<nmaxq),SO,C0,Itot
dimension vel<nq,mq)
dimension chimem(5)
dimension Image(nq*mq+5)
dimension raybad(ndatq)
dimension set(nq*mq)
dimension length(dneq)
dimension Am(nmaxq)
dimension tImage<nq*mq+5)
dimension ray1travel(nq*mq,6),ray2travel(nq*mq,6)
dimension Rray(nq*mq)
dimension D(ndatq),zero(ndatq),F(ndatq),Fold(ndatq)
dimension sig(ndatq)
dimension ai(ndatq),bi(ndatq),XXerr(ndatq),XXerr2(ndatq)
dimension sloc1(ndatq),sloc2(ndatq),tang1(ndatq),tan92(ndatq)
dimension C(0:nq-1,0:mq-1)
dimension acnm(2),fcb(20),rcb(20)
common /velocity/vel
common literat/iter
common /gausiz/LL,LLn,LLm

common lbackg/Am

common /constant/tol,pi,pion2,tuopi
connnn Idist/dlimit
common /lgxerr/raybad
common /var/sig,ai,bi,XXerr,XXerr2
connnn /nums/numnull,numturn
connnn /setvel/set
common lgaus/C
connnn /frechet/fcb,rcb
common /penalt/length,L,L0
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common /conparm/n,m,nint,mint,nmax,mmax,max,ndat,dne
common /mem5cm/gS,gC,C0,SD,Itot
comnon Itenp/nc

data acm/’SCRA',’TCH ’/

read variables from FT21F001
set1-set2 and set3-set4 and 'set' velocity nodes (inclusive)
dskip is the number of data cards to skip before each read
submit -1 for LL and 0 for sets and dskip to turn off
submit 1 for 'stop' to stop inversion after one iteration
'maxit' is the max iterations in a single stage

'pctd' defines the percentage drop for chi control
'form' =0 gives 5912.6 format for data, =1 gives 5915.6

read(21,1021) n,m,nint,mint,nmax,nnnx,max,ndat,dne
read(21,1022) LL,set1,setZ,set3,set4,dskip,stop,maxit,pctd,form
urite(6,1023) 'n = ',n
urite(6,1023) 'm = ’,m

urite(6,1026) ’nint = ’,nint
urite(6,1024) 'mint = ’,mint
write(6,1023) 'nmax = ',nmax
urite(6,1023) 'mmax = ',nnux
write(6,1023) ’max = ',max
Hrite(6,1023) 'ndat = ’,ndat

write(6,1023) ’dne = ',dne
urite(6,1023) ’LL = ',LL
write(6,1023) ’set1 = ',set1
write(6,1023) 'setZ = ',set2
Hrite(6,1023) 'set3 = ’,set3
Hrite(6,1023) ’set4 = ’,set4
urite(6,1023) ’dskip= ',dskip
urite(6,1023) ’stop = ’,stop
write(6,1023) ’maxit= ',maxit
urite(6,1024) 'pctd = ',pctd
urite(6,1023) 'form = ',form
if(n.gt.nq) stop 'n .gt. default maximum’
if(m.gt.mq) stop 'm .gt. default maximum'

if(nmax.gt.nmaxq) stop 'nmax .gt. default maximum’
if(nnmx.gt.mmaxq) stop ’mmax .gt. default maximum'
if(max.gt.maxq) stop ’max .gt. default maximum'
if(ndat.gt.ndatq) stop 'ndat .gt. default maximum’
if(dne.gt.dneq) stop 'dne .gt. default maximum’
if(LL.eq.-1) LL=int(mint)*(m-1)
format(2i5,2f10.2,5i5)
format(8i5,f10.2,i5)
format(2x,a7,i5)

format(2x,a7,f12.2)

set constants and initial variables

numtot=0
nc=0
stopc=0
LLn=10*int(LL/nint)+1
LLm=10*int(LL/mint)+1
numnull=0

numturn=0

iter=0
ucount=0

dlimit=1.0
lc=1.0
chi0=0.0
nbym=n*m
tol=1.0d-10
pi=4.0d0*datan(1.0d0)
pion2=2.0d0*datan(1.0d0)
twopi=2.0d0*pi
t1=0.0d0
t2=0.0d0
t3=0.0d0
t4=0.0d0
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610

611

612

613

51

t5=0.0d0
chi2=0.0e0
entropy=0.0e0
test=0.0e0
testold=0.0e0
total=0

do 6 i=1,ndat
raybad(i)=.false.
sig<i)=1.0
F(i)=9999.0
continue

do 7 i=1,nbym
if(((i.ge.set1).and.(i.le.set2)).or.

((i.ge.set3).and.(i.le.set4))) then

set(i)=.true.
else

set(i)=.false.
endif

continue

read the velocity cards

do 610 i=1,(int(n*m/10)-1)*10+1,10

read(10,'(10i6)') (tlmage(k),k=i,i+9)

urite(6,'(10i6)') (tImage(k),k=i,i+9)

continue

read(10,’(10i6)') (t1mage(j),j=int(n*m/10)*10+1,n*m,1)

do 611 i=1,nbym
Image(i)=float(tlmage(i))

continue

do 612 i=1,(int(n*m/10)-1)*10+1,10

read(12,'(10(1x,i5))') (tlmage(k),k=i,i+9)

urite(6,'(10(1x,i5))’) (tImage(k),k=i,i+9)

continue

read(12,’(10i6)’) (tImageu').j=int(n*m/10)*1o+1,n*m,1)

do 613 i=1,nbym
Am(i)=float(t1mage(i))

continue

do 100 i=1,n
do 110 j=1,m

vel(i,j)=Image((i-1)*m+j)

continue
continue

open the Frechet derivative scratch file

call opn013(fcb,1,acnm,3,0,0,0,4096,i)

if(i.ne.0) stop ’error opening scratch'

open the log files

open(unit=2,file='metlog')

open(unit=5,fiLe='metfil')

read the data times into an array

this file contains the two initial angles, the two surface locations

and the data time

do 50 i=1,ndat
if(dskip.gt.0) then

do 51 j=1,dskip
if(form.eq.0) then

read(9,'(g12.6)') t15
else

read(9,'(g15.6)’) t15

endif
continue

endif
if<form.eq.0) then
read(9,'(5912.6)') sloc1(i),sloc2(i),tang1(i),tangZ(i),D(i)

urite(6,'(5912.6)') sloc1(i),sloc2(i),tang1(i),tangZ(i),D(i)
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C.....

C .....

61

C.....

C .....

C .....

C .....

C.....

C

1000

METOMOS6

else
read(9,'(5915.6)') sloc1(i),sloc2(i),tang1(i),tan92(i),D(i)
urite(6,'(5915.6)') sloc1(i),sloc2(i),tang1(i),tan92(i),0(i)
endif

zero(i)=0.0e0
continue

reuind(9)

calculate the gaussian smoothing through the model covariance matrix
STAGE LOOPING POINT

call gauscalc(LL)
urite(2,'(2x,aZS,i6)’) 'current half-Hidth (LL) = ',LL
do 55 i=1,5

chimem(i)=0.0
continue

ITERATION LOOPING POINT

continue

numul [=0

numturn=0
do 3 i=1,ndat

FoldCi)=F(i>
continue

begin looping to ray trace for all entries in geom file

do 1000 i=1,ndat
if(raybad(i)) then

goto 1000

endif
xerr=0.0e0

zero the frechet derivative temporary vector Rray
this vector must be zero when each ray is traced

do 61 j=1,nbym
RraY(j)=0.0e0
continue

call raytracing subroutine

call xerrrt<sloc1(i),tang1(i),sloc2(i),tangZ(i),D(i),xerr)

call subroutine to calculate frechet derivatives

if(xerr.ne.0.0) then
call sade2(i,sloc1(i),tang1(i),sloc2(i),tangZ(i),D(i),

xerr,Rray)

endif

update model xerr in F array

F(i)=xerr

zero the Frechet derivatives of any set nodes for this ray

do 305 j=1,nbym

if(set(j)) Rray(j)=0-0
continue

Hrite Rray temporary vector out to direct access disc file

j=(i-1)*nbym
call dm0015(Rray(1),nbym,j,rcb,fcb,1,k)

if(k.ne.0) stop ’error writing frechet'

loop back to do rest of rays

continue
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urite(2,'(2x,a14,i10)') 'nulled rays = ',numnull
urite(2,’(2x,aZ1,i10)') 'nulled turned rays ',numturn
urite(2,'(2x,az1,i10)') 'number count SADEZ ',nc
nc=0

compute the Heights based on the rays Xerr's

call varian(F)

call the ME optimisation subroutine

call MEMNL(nbym,ndat,Image,zero,F,ndat,
nbym,0.0,chi0,1,entropy,chi2,test,1)

convert the the new Image vector into the val matrix for output

do 320 i=1,n
do 330 j=1,m

vel(i,j)=Image((i-1)*m+j)
continue

continue

write results out to log file

urite(2,'(2x,a16,g16.8)') 'Entropy = ',entropy
urite(2,'(2x,a16,g16.8)') 'Resulting chi = ',chi2
urite(2,'(2x,a16,g16.8)') 'Test value = ',test
Hri te(2’ I (2X, 316) I ) I****************l

urite(5,’(i10,3916.8)') total,chi2,entropy,test

write velocities into log file

do 333 i=1,nbym,10
urite(2,'(10(1x,i5))') (idnint(dble(Image(k))),k=i,i+9)

continue

stop after one iteration if required
if(stop.eq.1) gate 2
stopc=stopc+1
if(stop.eq.stopc) gate 2

update chi memory vector

do 7000 i=1,4
chimem(i)=chimem<i+1)
continue

numtot=numtot+numnull

chimem(5)=chi2
urite(2,'(2x,a9,i5)’) ’numtot = ',nuntot

total=total+1
if(total.gt.maxit) then

urite(2,'(2x,a37)') '-> more than MAXIT iterations in stage'
if(test.lt.0.2) then

goto 77
else

gate 2

endif

endif

check to see if chiO can be set and if stage is finished

check for oscillations and reduce distance limit if necessary
check for stability and increase distance limit if necessary

i=0
k=0

t1=pctd*chimem<1)
t2=pctd*chimem(1)
do 7010 i=2,5

if(chimem(i).lt.t1) j=1
if(chimem(i).lt.t2) k=1
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7010

7015

7016

continue
x=0
do 7015 i=2,5

if((chimem(i).gt.chimem(i-1)).and.(chimem(i-1).ne.0.0)) x=x+1
continue

if(chimem(1).eq.0.0) then

i=1
k=1
endif

if(((test.ge.0.2).and.(test.9t.testold)).or.(x.ge.2).or.

(chimem(5).gt.chimem(4))) then
if((dlimit.gt.1000.0).and.(test.lt.0.2)) goto 77 A
dlimit=dlimit*2.0
ucount=ucount+1
chi0=0.0
do 7016 i=1,5

chimem(i)=chimem(5)
continue

chimem(1)=0.0

testold=test

iter=iter+1
goto 1

endif
if((k.eq.0).and.(test.lt.0.2)) then

if((L.gt.0.9*L0).and.(ucount.le.10)) then
dlimit=dlimit*0.667
testold=test

iter=iter+1

gate 1
else

goto 77

endif

endif
if((x.eq.0).and.(L.gt.0.9*L0).and.(ucount.le.10)) then

dlimit=dlimit*0.8
testold=test

iter=iter+1
goto 1

endif

begin next iteration

testold=test

iter=iter+1
goto 1

reset smoothing stage

if(LL.eq.10) goto 2

total=0
chi0=0.0
dlimit=1.0
testold=0.0
ucount=0

LL=LL/2
if<LL.lt.int(2*mint)) LL=10
do 7020 i=1,nmax

Am(i)=Image(i)
continue

iter=iter+1
goto 10101

else close files and exit

continue
close(2)

close(5)
close(9)
close(11)
stop
end
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OPROCESS 0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)).
OPROCESS FLAG(E),
OPROCESS DIRECTIVE(’*VD:')

SUBROUTINE CMPICK(MEM,LMEM)
IMPLICIT INTEGERCA-Y)
DIMENSION MEM(1)
CALL PICKER(MEM,MEM,LMEM)
STOP
END

apkocsss 0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
apaocsss FLAG(E),
apkocess DIRECTIVE(’*VD:’)

C

80000

*

c ***

***

n
n
n

*i‘l‘

n
n
n

*i'k

n
n
n

*i'k

***

n
n
n
n

SUBROUTINE PICKER (MEM,ZMEM,LMEM)
IMPLICIT INTEGER (A-Y)
COMMON /SCRPTR/ IBSCR,NXTSCR,MAXSCR
DIMENSION ZPICKS(2000,5)
DIMENSION ZOFF(150)
DIMENSION FCB(ZO),RCB(20),TRACES(2)
DIMENSION FCBZ(20),RCBZ(20)
DIMENSION ACNM(2),ACNM2(2),ZARRAY(200*150).ARRAY(Z)
DIMENSION MEMII),ZMEM(1)
DATA ATD /’ATD '/,TRACES/’0001',’0001’/
DATA ACNM/’CRPI’,’N ’/
DATA ACNMZ/’PICK’,’ST ’/
DATA GOOD/’GOOD’/,BLNK/’ ’/
NXTSCR=1
MAXSCR=LMEM
ZTHOPI=8.0*ATAN(1.0)
ZPI=4.0*ATAN(I.0)
ZPION2=2.0*ATAN(1.0)

HRITE(6, 80000)
*FORMAT('1’,//’ NPCKCRPZ FOR LINE 0 DATA - 09 JAN 1993’,/,

------ UITH TRACE HEADER UTILISATION ---“-’,
I ........................................... I)

OPEN INPUT/OUTPUT FILE

CALL 0PN013(FCB,1,ACNM,2,0,0,0,4096,IST)
IF(IST.NE.0)GOTO 90000

OPEN INPUT PICKS FILE

CALL OPN013(FCBZ,1,ACNM2,1,0,0,0,4096,IST)
IF(IST.NE.0)GOTO 90001
CALL DMIO14(ARRAY(1),2,1,RCBZ,FCBZ,1,IST)
MINCRP=ARRAY(1)
MAXCRP=ARRAY(2)
HRITE(6,’(1X,A13,2I10)’) ’MIN/MAXCRP =’,MINCRP,MAXCRP

READ OUTPUT FILE AND MAKE SOME CHECKS

IF<(NXTSCR+320).GT.MAXSCR)GOTO 90100
CALL DMIO14(MEM(NXTSCR),320,4096,RCB,FCB,1,IST)
NXTSCR=NXTSCR-1
IF(IST.NE.0)GOT0 90010

CHECK THAT FILE IS ATD/TRACES

IF(MEM(NXTSCR+1).NE.TRACES(1))GOTO 90020
IF(MEM(NXTSCR+2).NE.TRACES(2))GOTO 90020

SET SDMIN, SDMAX, SDINC,
EDMIN, EDMAX, EDINC, TZERO , TMAX , DELT

SDMIN=MEM(NXTSCR+I32)
NSDMS=MEM(NXTSCR+133)
SDINC=MEM<NXTSCR+134)
EDMIN=MEM(NXTSCR+136)
NEDMS=MEM(NXTSCR+137)
EDINC=MEM(NXTSCR+138)
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TZERO=MEM(NXTSCR+152)
NAMPS=MEM<NXTSCR+153)
DELT=MEM(NXTSCR+149)
LTH=MEM(NXTSCR+150)*64
LTA=MEM(NXTSCR+151)*64
TRLEN=(LTH+LTA)
SDMAX=(NSDMS-1)*SDINC+SDMIN
TMAX=(NAMPS—1)*DELT+TZERO
LINTV=NSDMS*NEDMS
SDBHDR=NXTSCR
NXTSCR=NXTSCR+320
URITE(6,’(2X,A10,I10)’) ’SDMIN =',SDMIN
HRITE(6,'(2X,A10,I10)') ’SDMAX =',SDMAX
HRITE(6,’(2X,A10,I10)') ’SDINC =‘,SDINC
HRITE(6,'(2X,A10,I10)’) ’EDMIN =',EDMIN
HRITE(6,’(ZX,A10,I10)') ’NEDMS =’,NEDMS
URITE(6,’(2X,A10,I10)') 'EDINC =’,EDINC
NR1TE(6,'(2X,A10,I10)') ’TZERO =’,TZERO
HRITE(6,’(2X,A10,I10)') ’TMAX =’,TMAX
HRITE(6,’(2X,A10,I10)’) 'DELT =’,DELT
HRITE(6,’(2X,A10,I10)') ’LTH =’,LTH
HRITE(6,’(ZX,A10,I10)’) ’LTA =’,LTA
ZDELTT=FLOAT(DELT)

C
C *** GET IV’S
C

IF((NXTSCR+LINTV).GT.MAXSCR) GOTO 90100
CALL DM!014(MEM(NXTSCR),LINTV,8192,RCB,FCB,1,IST)
XF(IST.NE.0)GOTO 90030

C
C *** CHECK ENOUGH ROOM
C

HRITE(6,’(2X,A10)’) ’ '
HRITE(6,’(2X,A10,I10)’) ’MAXSCR =',MAXSCR
HRITE(6,’(2X,A10,I10)’) ’NXTSCR =’,NXTSCR
HRITE(6,'(ZX,A10,I10)’) 'LINTV =’,LINTV
HRITE(6,’(2X,A10,I10)’) ’NAMPS =',NAMPS
IF((NXTSCR+LINTV+3*NAMPS*NEDMS).GT.MAXSCR)

+ GOTO 90100
TRSCR=NXTSCR+LINTV+LTH
IF(MOD(FLOAT(TRSCR),2.0).E0.0.0) TRSCR=TRSCR+1
HRITE(6,’(2X,A10,I10)’) ’TRSCR =’,TRSCR

C *** MAIN LOOP

SHTEND=TRSCR+NAMPS*NEDMS
DO 900 I=1,NSDMS,1

HRITE(6,’(2X,A18,I5)’) ’PROCESSING CRP NO.',SDMIN+(I-1)
Do 905 J=1,NAMPS*NEDMS

MEM(TRSCR+J-1)=O
905 CONTINUE
C *** READ IN COMPLETE SDOM

DO 950 J=1,NEDMS,1
C *** GET 1v OF NEXT TRACE

K=NXTSCR+<I-1)*NEDMS+(J-1)
IV=MEM(K)
IF(IV.LE.0) THEN

Do 951 K=1,NAMPS
MEM(TRSCR+(J-1)*NAMPS+(K-1))=0.0

951 CONTINUE
GOTO 950

ENDIF
IV=IV+4096

c *** GET TRACE HEADER ONLY
CALL DNTO14<MEN<TRSCR-LTH>,LTH,TV,RCB,EC3,1,IST)
ZOFF(J)=NINT(ZMEM(TRSCR-LTH+16))

C *** GET TRACE DATA ONLY
CALL 0N1014(MEN(TRSCR+(J-1)*NAMPS),NANPs,Tv+LTH,

+ RCB,FCB,1,IST)
TF<1$T.NE.O)GOT0 90050

950 CONTINUE
C
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C----- READ ALL THE PICKS FOR THIS CRP
C

TMP=200+(SDMIN*(I-1)'MINCRP)*150*200
CALL DMIO14(ZARRAY(1),150*200,TMP,RCBZ,FCBZ,1,IST)
IF(IST.NE.O)GOTO 90150

C
C----- LOOP THROUGH EACH OF THE PICKS
C

NUMPCK=O
DO 100 L=1,(NEDMS-1)*ZOO,4

ZXSRC=ZARRAY(L)
ZXRCV=ZARRAY(L+1)
ZTIME=ZARRAY(L+Z)
ZANGRC=ZARRAY(L+3)
IF(ZXSRC.LT.0) GOTO 100
IF(ABS(ZXSRC-ZXRCV)-LT.50.0) GOTO 100
IF((ZTIME.LE.0.0).OR.(ZTIME.GT.3.0)) GOTO 100
CRPTR=INT(FLOAT(L-1)/200.0)+1
NUMPCK=NUMPCK+1
IF<<CRPTR.EO.1).OR.(CRPTR.EQ.NEDMS)) GOTO 100

c***** COMPUTE PHASE VELOCITY
K=(CRPTR-1)*NAMPS
KN=((CRPTR-1)‘1)*NAMPS
KP=((CRPTR+1)'1)*NAMPS
J=NINT((ZTIME*1000.0)/ZDELTT)
ZA=ZMEM(TRSCR+KN+J-1)
ZAP=ZMEM(TRSCR+KN+J-Z)
ZB=ZMEM(TRSCR+KN+J)
ZC=ZMEM(TRSCR+KN+J+1)
ZCP=ZMEM<TRSCR+KN+J+2)
ZD=ZMEM(TRSCR+K+J-1)
ZE=ZMEM(TRSCR+K+J)
ZF=ZMEM(TRSCR+K+J+1)
ZH=ZMEM(TRSCR+KP+J-1)
ZHP=ZMEM(TRSCR+KP+J-Z)
ZI=ZMEM(TRSCR+KP+J)
ZJ=ZMEM(TRSCR+KP+J+1)
ZJP=ZMEM(TRSCR+KP+J+2)

C
C----- CALCULATE THE TIMES OF THE MAXIMA (QUADRATIC INTERP.)
C

ZT2=ZDELTT*((ZD'ZF)/(2*(ZD+ZF-2*ZE)))+(J-1)*ZDELTT
C
C----- COMPUTE FIRST TRIPLET TIME (TRACE LESS THAN TARGET TRACE)
C----- IF THE ADJACENT TRIPLET DOES NOT SURROUND A MAXIMUM
C ----- CHECK THE BEST TRIPLET ONE UP OR ONE DOWN
C

IF((ZA.GT.ZB).OR.(ZC.GT.ZB)) THEN
IF(ZA.GT.ZC) THEN

ZT1=ZDELTT*((ZAP-ZB)/(2*(ZAP+ZB-2*ZA)))+(J-2)*ZDELTT
ELSE

ZTI=ZDELTT*((ZB-ZCP)/(2*(ZB+ZCP-2*ZC)))+J*ZDELTT
ENDIF

ELSE
ZT1=ZDELTT*((ZA-ZC)/(Z*(ZA+ZC-2*ZB)))+(J-1)*ZDELTT
ENDIF

C
C ----- COMPUTE FIRST TRIPLET TIME (TRACE GREATER THAN TARGET TRACE)
C ----- IF THE ADJACENT TRIPLET DOES NOT SURROUND A MAXIMUM
C ----- CHECK THE BEST TRIPLET ONE UP OR ONE DOUN
C

IF((ZH.GT.ZI).OR.(ZJ.GT.ZI)) THEN
IF(ZH.GT.ZJ) THEN

ZT3=ZDELTT*((ZHP’ZI)/(2*(ZHP+ZI‘2‘ZH)))+(J-Z)*ZDELTT
ELSE

ZT3=ZDELTT*((ZI-ZJP)/(2*(ZI+ZJP-2*ZJ)))+J*ZDELTT
ENDIF

ELSE
ZT3=ZDELTT*((ZH—ZJ)/(2*(ZH+ZJ-Z*ZI)))+(J-1)*ZDELTT
ENDIF

C
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C ----- COMPUTE THE THO DIPS AND COMPARE (COMPUTE AS VELOCITIES)
C

IF(ABS((ZT3~ZT2)'(ZTZ-ZT1)).GT.4.0) THEN
GOTO 100
ENDIF

ZV1=(ZOFF(CRPTR+1)-ZOFF(CRPTR))/(ZT3-ZT2)
ZVZ=<ZOFF(CRPTR)-ZOFF(CRPTR'1))/(ZT2-ZT1)

C
C ----- AVERAGE VELOCITIES, CONVERT T0 ANGLES AND SAVE

C
ZANGLE=(ZV1+ZV2)/2.0
IF(ABS(2ANGLE).LT.1.50) THEN

GOTO 100
ENDIF

ZANGLE=ASIN(1.50/ZANGLE)
HRITE(5,6000) ZXSRC,ZXRCV,ZANGLE,ZANGRC,ZTIME

100 CONTINUE
HRITE(6,'(2X,A25,I10)’) 'TOTAL PICKS CONSIDERED -',NUMPCK

900 CONTINUE
5000 FORMAT<1X,ZG16.8,216,ZG16.8)
6000 FORMAT(SG15.6)

c
c *** CLOSE INPUT FILE
c

CALL CL0074(FCB,0,1,IST)
IFCIST.NE.0)GOTO 90070
CLOSE(4)
CLOSE(5)

c
c

URITE(6,80010)
80010 FORMAT(’ ',//,' NORMAL COMPLETION')

STOP
0
C
90000 HRITE<6,90005)
90005 FORMAT(’ ’,//,’ PICKER - ERROR OPENING TRACES FILE’,/,

* ’ ENSURE ACNM 0F INPUT FILE IS CRPIN’)
GOTO 99999

C
90001 HR!TE(6,90006)
90006 FORMAT(’ ’,//,' PICKER - ERROR OPENING PICKS1 FILE’,/,

* ’ ENSURE ACNM OF PICKS FILE IS PICKS1')

GOTO 99999
C
90010 URITE(6,90015)
90015 FORMAT(' './/.' PICKER -ERROR READING SUBFILE HEADER')

GOTO 99999
C
90020 HRITE(6,90025)
90025 FORMAT(’ ’,//,’ PICKER - ERROR INPUT FILE NOT ATD/TRACES’)

GOTO 99999
C
90030 HRITE(6,90035)
90035 FORMAT(’ ',//,' PICKER - ERROR READING INTERVAL VECTORS’)

GOTO 99999
C
90040 URITE(6,90045)ERRCNT
90045 FORMAT(’ ’,//,’ PICKER - ERROR DUTPUTTING CRP NO. ',18)

GOTO 99999
C
90050 HRITE(6,90055)
90055 FORMATC' ',//,’ PICKER - ERROR READING TRACE DATA’)

GOTO 99999
C
90070 HRITE(6,90075)
90075 FORMAT(’ ’,//,’ PICKER - ERROR CLOSING OUTPUT FILE')

GOTO 99999
C

90100 HRITE(6,90105)
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90105 FORMAT(’ ’,//,’ PICKER - ERROR - LTP PARAMETER TOO SMALL’)
GOTO 99999

C
90150 HRITE(6,90155)
90155 FORMAT(’ ',//,' PICKER - ERROR READING PICKS1 DATA')

GOTO 99999
99999 STOP 15

END
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DPROCESS 0PT(3),VECTOR(LEVEL(2).REPORT(XLIST)),

OPROCESS FLAG(E),

aPROCESS DIRECTIVE<'*VD:')

SUBROUTINE CMPICK(MEM,LMEM)

IMPLICIT INTEGER(A-Y)

DIMENSION MEM(1)

CALL PICKER(MEM,MEM,LMEM)

STOP

END

DPROCESS OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

OPRDCESS FLAG(E).

aPRDCESS DIRECTIVE(’*VD:')

SUBRDUTINE PICKER (MEM,2MEM,LMEM)

IMPLICIT INTEGER (A-Y)

COMMON ISCRPTR/ IBSCR,NXTSCR,MAXSCR

COMMON [CMPPTR/ TRSCR,RADIX,SHTEND,NEDMS,NAMPS,AHPSTR,SPC,ZDELTT,

+ CRP1,STRT,INC,RECNUM

COMMON ICRPOFF/ CRP,CRPTR,ZOFF

COMMON [PICKS1/ FCBZ,RCBZ,NEXT,MINCRP,MAXCRP,NUMPCK

DIMENSION FCB(20).RCB(20),TRACES(2)

DIMENSION FCBZ<20),RCBZ(20>

DIMENSION ACNM(2),ACNH2(Z)

DIMENSION MEM(1),ZMEM(1)

DIMENSION CRP<150),CRPTR(150),ZOFF(150)

DIMENSION NEXT(2000,150>

DATA ATD /'ATD ’/,TRACES/’0001’,'0001’/

DATA ACNM/’INPU','T I/

DATA ACNMZ/‘PICK’,’S1 1/

DATA GOOD/'GOOD'/,BLNK/' 1/

NXTSCR=1

MAXSCR=LMEM

MINCRP=O

MAXCRP=O

NUMPCK=0

DO 16 1:1,2000

DO 17 J=1,150

NEXT(I,J)=0

17 CONTINUE

16 CONTINUE

C

URITE(6,80000)

80000 FORMAT(’1’,//’ NPCKSPC2 FOR LINE D DATA - 11 DEC 1992’,/,

* ’ ---- HITH TRACE HEADER UTILISATION ----',

* I ....................................... I)

C

C *** OPEN INPUT/OUTPUT FILE

C

CALL OPN013(E03,1,ACNM,2,0,0,0,4096,IST)

IF(IST.NE.0)GOTO 90000

*** OPEN FILE TO STORE THE PICKS

n
n
n

CALL OPN013(FCBZ,1,ACNM2,6,0,0,0,4096,IST)

IF(IST.NE.0)GOTO 90000

*** READ OUTPUT FILE AND MAKE SOME CHECKS

n
n
n

IF((NXTSCR+320).GT.MAXSCR)GOTO 90100

CALL DM1014(MEM(NXTSCR),320,4096,RCB,FCC,1,IST)

NXTSCR=NXTSCR~1 -

IF(IST.NE.0)GOTO 90010

*** CHECK THAT FILE IS ATD/TRACES

n
n
n

IF(MEM(NXTSCR+1).NE.TRACES(1))GOTO 90020

IF(MEM(NXTSCR+Z).NE.TRACES(Z))GOTO 90020

*** SET SDMIN, SDMAX, SDINC, '“

*** EDMIN, EDMAX, EDINC, TZERO , THAX , DELT

n
n
n
n

SDMIN=MEM(NXTSCR+13Z)
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NSDMS=MEM(NXTSCR+133)
SDINC=MEM(NXTSCR+134)
EDMIN=MEM(NXTSCR+136)
NEDMS=MEM(NXTSCR+137)
EDINC=MEM(NXTSCR+138)
TZERO=MEM(NXTSCR+152)
NAMPS=MEM(NXTSCR+153)
DELT=MEM(NXTSCR+149)
LTH=MEM(NXTSCR+150)*64
LTA=MEM<NXTSCR+151)*64
TRLEN=(LTH+LTA)
SDMAX=(NSDMS-1)*SDINC+SDMIN
TMAX=(NAMPS‘1)*DELT+TZERO
LINTV=NSDMS*NEDMS
SDBHDR=NXTSCR
NXTSCR=NXTSCR+320
NR1TE(6,’(2X,A10,K10)’) ’SDMIN =’,SDMIN
HRITE(6,’(2X,A10,I10)') 'SDMAX =',SDMAX
HRITE(6,’(ZX,A10,I10)') ’SDINC =’,SDINC
URITE(6,’(ZX,A10,I10)’) ’EDMIN =’,EDMIN
HRITE(6,’(2X,A10,I10)’) ’NEDMS =’,NEDMS
waTE(6,'(2x,A10,x10)I) ’EDINC =’,EDINC
HRITE(6,’(2X,A10,I10)') 'TZERO =',TZERO
HRITE(6,’(2X,A10,I10)') ’TMAX =',TMAX
HRITE(6,'(2X,A10,I10)’) ’DELT =',DELT
HRITE(6,’(2X,A10,I10)') 'LTH =',LTH
HRITE(6,'(2X,A10,I10)') ’LTA =',LTA
ZDELTT=FLOAT<DELT)

C
c *** uRITE ZERO'S To THE PICKS FILE
C

CALL 20A060(Fc32,RC32,0,(N50MS*4)*150*200,1,TST)
C
c *** GET IV’S
C

IF((NXTSCR+LINTV).GT.MAXSCR) GOTO 90100
CALL DMIO14<MEM(NXTSCR),LINTV,8192,RCB,FCB,1,IST)
IF(IST.NE.0)GOTO 90030

c----- COMPUTE THE TEMPORAL RADIX TO USE

RADIX=256
IF(NAMPS.GT.250) RADIX=512
IF(NAMPS.GT.500) RADIX=1024
IF(NAMPS.GT.1000) RADIX=2048
IF(NAMPS.GT.2000) RADIX=4096
IF(NAMPS.GT.4000) GOTO 90200

*** CHECK ENOUGH ROOM

C
O
O

URITE(6,’(2X,A10)’) I '
HRITE(6,'(2X,A10,I10)’) 'MAXSCR =',MAXSCR
URITE(6,'(2X,A10,I10)’) ’RADIX =',RADIX
HRITE<6,'(2X,A10,I10)’) ’NXTSCR =’,NXTSCR
HRITE(6,’(2X,A10,I10)’) ’LINTV =’,LINTV
HRITE(6,’(2X,A10,I10)’) 'NAMPS =’,NAMPS
IF((NXTSCR+LINTV+2*RADIX*NEDMS+3*NAMPS*NEDMS+80000).GT.MAXSCR)

+ GOTO 90100
TRSCR=NXTSCR+LINTV+LTH
IF(MOD(FLOAT(TRSCR),2.0).E0.0.0) TRSCR=TRSCR+1
uRTTE(6,'(2x,A10,x10)') ’TRSCR =',TRSCR

C *** MAIN LOOP
C

SHTEND=TRSCR+Z*RADIX*NEDMS
no 900 I=1,NSDMS,1

URITE(6,’(2X,A18,IS)’) 'PROCESSING spc NO.',$DMIN+(I-1)
no 905 J=1,2*RADIX*NEDMS

MEM(TRSCR+J-1)=0
905 CONTINUE
c *** READ IN COMPLETE soon

00 950 J=1,NEDMS,1
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C *** GET IV OF NEXT TRACE
K=NXTSCR+(I-1)*NEDMS+(J-1)
IV=MEM(K)
IF(IV.LE.0) GOTO 950
IV=IV+AO96

C *** GET TRACE HEADER ONLY
CALL DMIO14(MEM(TRSCR-LTH),LTH,IV,RCB,FCB,1,IST)
CRP(J)=MEM(TRSCR-LTH+40)
CRPTR(J)=MEM(TRSCR-LTH+41)
ZOFF(J)=NINT(ZMEM(TRSCR-LTH+16))

c HRITE(6,’(411D,G16.8)’) I,J,CRP(J),CRPTR(J),ZOFF(J)
C *** GET TRACE DATA ONLY

CALL DMI014(MEM(TRSCR+RADIX+(J-1)*Z*RADIX),LTA,IV+LTH,
+ RCB,FCB,1,IST)

lF(XST.NE.0)GOTO 90050
950 CONTINUE
C
C ----- IF THIS Is THE FIRST SHOT, DETERMINE MIN CRP
C

[F(MINCRP.EQ.0) THEN
IF(CRP(1).LT.CRP(NEDMS)) THEN

MINCRP=CRP(1)
ELSE

MINCRP=CRP(NEDMS)
ENDIF

ENDIF
C
c----- ADJUST THE TRACE AMLITUDES TO SIMULATE COMPLEX DATA
C

00 960 J=1,NEDMS,1
DO 970 K=1,RADIX,1

MEHTTRSCR+(2*(K-1)>+(J-1)*2*RADIX)=
+ MEM(TRSCR+RAD[X+(J-1)*2*RADIX+(K-1))

ZMEM(TRSCR+RADIX+(J-1)*2*RADIX+(K-1))=0.0
ZMEM(TRSCR+(2*(K-1)+1)+(J-1)*RADIX)=0.0

970 CONTINUE
960 CONTINUE
C
C ----- CALL SUBROUTINE TO DO COMPLEX NORK
C

SPC=SDMIN+I~1
CALL CMPLEX(MEM,MEM,MEM,LMEM)

C
C *** HRITE OUT THE INSTANTANEOUS PHASE SHOT RECORD

ERRCNT=SDMIN+(I-1)*SDINC
DO 980 J=1,NEDMS,1

C *** GET Iv OF NEXT TRACE
K=NXTSCR+(I-1)*NEDMS+(J-1)
Iv=HEH(K)
IF(IV.LE.0) GOTO 980
Iv=Iv+4096

C *** NRITE TRACE DATA ONLY
CALL DMOO15<MEH<AHPSTR+(J-1)*RADIX),NAHPS,IV+LTH,

+ RCB,EC3,1,IST)
IF(IST.NE.0)GOTO 90040

980 CONTINUE
C
900 CONTINUE
C
C *** CLOSE OUTPUT FILE
C

CALL CLOO?4(FC3,0,1,IST)
IF(IST.NE.0)GOTO 90070
CLOSE(4)

C
C

NRITE<6,80010)
80010 FORMAT(’ ',//,' NORMAL COMPLETION')

STOP
c
C
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90000
90005

C
90001
90006

C
90010
90015

C
90020
90025

C

90030
90035

C
90040
90045

C
90050
90055

C

90070
90075

C
90100
90105

C

90200
90205

C
90300
90305

C

C
99999

NPCKSPC2

NRITE(6,90005)
FORMAT(’ ’,//, PICKER - ERROR OPENING TRACES FILE’,/.I

* ' ENSURE ACNM OF INPUT FILE IS INPUT’)
GOTO 99999

NRITE(6,90006)
FORMAT(' ',//, PICKER - ERROR OPENING PICK51 FILE’,/,I

* ’ ENSURE ACNM OF SCRATCH FILE IS PICKSI')
GOTO 99999

HRITE(6,90015)
FORMAT(' ’,//,' PICKER 'ERROR READING SUBFILE HEADER')
GOTO 99999

HRITE(6,90025)
FORMAT(’ './/.' PICKER - ERROR INPUT FILE NOT ATD/TRACES')

GOTO 99999

URITE(6,90035)
FORMAT(’ ’,//,’ PICKER - ERROR READING INTERVAL VECTORS’)
GOTO 99999

HRITE(6,90045)ERRCNT
FORMAT(' ’,//,' PICKER - ERROR OUTPUTTING SPC NO. ’,18)
GOTO 99999

HRITE(6,90055)
FORMATI’ ’,//,’ PICKER - ERROR READING TRACE DATA’)
GOTO 99999

uRITE<6,9oo75)
FORMAT(’ ',//,I PICKER - ERROR CLOSING OUTPUT FILE’)
GOTO 99999

HRITE(6,90105)
FORMAT(’ './/,' PICKER - ERROR - LTP PARAMETER T00 SMALL’)
GOTO 99999

HRITEI6,90205)
FORMAT(' ’,//,’ PICKER - MORE THAN 4000 SAMPLES/TRACE ')
GOTO 99999

uRITE<6,9o305)
FORMAT(’ ',//,' PICKER - MORE THAN 490 TRACES/SDOM ')
GOTO 99999

STOP 15
END

OPROCESS OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
OPROCESS FLAG(E),
OPROCESS DIRECTIVE(’*VD:’)

SUBROUTINE CMPLEX (MEM,YMEM,ZMEM,LMEM)
IMPLICIT INTEGER (A-X)
IMPLICIT COMPLEX*8 (Y)
COMMON [SCRPTR/ IBSCR,NXTSCR,MAXSCR
COMMON ICMPPTR/ TRSCR,RADIX,SHTEND,NEDMS,NAMPS,AMPSTR,SPC,ZDELTT,

+ CRP1,STRT,INC,RECNUM
COMMON [CRPOFF/ CRP,CRPTR,ZOFF
COMMON /PICKS1/ FCBZ,RCBZ,NEXT,MINCRP,MAXCRP,NUMPCK
DIMENSION FCBZ(ZO),RCBZ(ZO)
DIMENSION MEM(1),YMEH(1),ZMEM(1)
DIMENSION ZPICKS(150,50,6)
DIMENSION CRP(150),CRPTRI150),ZOFF(150)
DIMENSION NEXT(ZOOO,150),2ARRAY(4),ARRAY(2)

NUMPCK=0
ZTUOPI=8.0*ATAN(1.0)
ZPI=4.0*ATAN(1.0)
ZPION2=2.0*ATAN(1.0)
ZPION8=O.5*ATAN(1.0)
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c ----- PERFORM FORHARD FOURIER TRANSFORMS

TRSCR2=(TRSCR+1)/2
SHTENDZ=SHTENDI2+2
IF<(SHTEND+120000).GT.MAXSCR) GOTO 90100
CALL SCFT(1,YMEM(TRSCR2),1,RADIX,YMEM(TRSCRZ),1,RADIX,

+ RADIX,NEDMS,1,1.0,YMEM(SHTENDZ),20000,
+ YMEM(SHTENDZ+20000),20000)

CALL SCFT(0,YMEM(TRSCR2),1,RADIX,YMEM(TRSCR2),1,RADIX,
+ RADIX,NEDMS,1,1.0,YMEM(SHTENDZ),20000,
+ YMEMISMTENOZ+20000>.20000)

C ----- ZERO THE NEGATIVE FREQUENCIES

DO 100 I=1,NEDMS,1
ZA=TRSCR2+(I-1)*RADIX
DO 200 J=RADIXI2+1,RADIX

YMEM(ZA+J)=CMPLX(0.0,0.0)
200 CONTINUE

YMEM(ZA)=YMEM(ZA)/2.0
100 CONTINUE

c----- PERFORM INVERSE ZD FOURIER TRANSFORM

CALL SCFT(1,YMEM(TRSCR2),1,RADIX,YMEM(TRSCR2),1,RADIX,
+ RADIX,NEDMS,-1,1.0/FLOAT(RADIX),YMEM(SHTENDZ),20000,
+ YMEM(SHTENDZ+20000),20000)

CALL SCFT(0,YMEM(TRSCR2),1,RADIX,YMEM(TRSCRZ),1,RADIX,
+ RADIX,NEDMS,-1,1.0/FLOAT(RADIX),YMEM(SHTENDZ).ZOOOO,
+ YMEM(SHTENDZ+20000),20000)

c----- COMPUTE INSTANTANEOUS AMPLITUDE

AMPSTR=SHTEND+80100
IF((AMPSTR+NEDMS*RADIX).GT.MAXSCR) GOTO 90100
21:0.0
00 300 I=1,NEDMs

K=(I-1)*RADIX
DO 400 J=0,NAMPS-1

ZMEM(AMPSTR+K+J)=SQRT(REAL(YMEM(TRSCR2+K+J))**2+
+ IMAG<YMEM<TRSCR2+K+J))**2)

IF(ZMEM(AMPSTR+K+J).GT.Z1) Z1=ZMEM(AMPSTR+K+J)
400 CONTINUE
300 CONTINUE
C

c----- EINO MAXIMUM AMPLITUDE POINTs
C

VELSTR=AMPSTR+NEDMS*RADIX
XF((VELSTR+NEDMS*RADIX).GT.MAXSCR) GOTO 90100
00 700 I=2,NEDMS-1,1

K=(I-1)*RADIX
KN=((I-1)-1)*RADIX
KP=((I+1)-1)*RA0Ix
DO 800 J=1,NAMPS-2,1

IF(ZMEM(AMPSTR+K+J).LT.0.01*Z1) THEN
ZMEM(VELSTR+K+J)=0.0
GOTO 800
ENDIF

IF((ZMEM(AMPSTR+K+J).LT.ZMEM(AMPSTR+K+J-1)).OR.
+ (ZMEM(AMPSTR+K+J).LT.ZMEM(AMPSTR+K+J+1))) THEM

ZMEM(VELSTR+K+J)=0.0
GOTO 800
ENDIF

c----- PICK LARGEST AMPLITUDE HITHIN 200 MSEC ONLY
00 850 JJ=-12,-1,1

IF((J+JJ)-LT.O) GOTO 850
IF((ZMEM(VELSTR+K+J+JJ).NE.0.0).AND.

+ (ZMEM(AMPSTR+K+J+JJ).LE.ZMEM(AMPSTR+K+J))) THEN
ZMEM(VELSTR+K+J+JJ)=0.0

ELSEIF((ZMEM(VELSTR+K+J+JJ).NE.0.0).AND.
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(ZMEM(AMPSTR+K+J+JJ).GT.ZMEM(AMPSTR+K+J))) THEN

ZMEM(VELSTR+K+J)=0.0
GOTO 800
ENDIF

850 CONTINUE
ZA=ZMEM(AMPSTR+KN+J-1)
ZAP=ZMEM(AMPSTR+KN+J-Z)
ZB=ZMEM(AMPSTR+KN+J)
ZC=ZMEM(AMPSTR+KN+J+1)
ZCP=ZMEM<AMPSTR+KN+J+2)
ZD=ZMEM(AMPSTR+K+J-1)
ZE=ZMEM(AMPSTR+K+J)
ZF=ZMEM(AMPSTR+K+J+1)
ZH=ZMEM(AMPSTR+KP+J-1)
2HP=ZMEM(AMPSTR+KP+J-2)
ZI=ZMEM(AMPSTR+KP+J)
ZJ=ZMEM(AMPSTR+KP+J+1)
2JP=ZMEM(AMPSTR+KP+J+Z)

C
C ----- CALCULATE THE TIMES OF THE MAXIMA (QUADRATIC INTERP.)

C----- FOR THE CENTRAL TARGET TRACE

C
ZT2=ZDELTT*((ZD-ZF)/(2*(ZD+ZF-2*ZE)))+(J-1)*ZDELTT

C
C----- COMPUTE FIRST TRIPLET TIME (TRACE LESS THAN TARGET TRACE)

C ----- IF THE ADJACENT TRIPLET DOES NOT SURROUND A MAXIMUM

C----- CHECK THE BEST TRIPLET ONE UP OR ONE DOUN

C
IF((ZA.GT.ZB).OR.(ZC.GT.ZB)) THEN

IF(ZA.GT.ZC) THEN
ZTI=ZDELTT*((ZAP-ZB)/(Z*(ZAP+ZB-2*ZA)))+(J-2)*ZDELTT

ELSE
ZT1=ZDELTT*((ZE-ZCP)/(2*(ZB+ZCP-2*ZC)))+J*ZDELTT
ENDIF

ELSE
ZT1=ZDELTT*((ZA-ZC)/(2*(ZA+ZC-2*ZB)))+(J'1)*ZDELTT
ENDIF

C
C ----- COMPUTE FIRST TRIPLET TIME (TRACE GREATER THAN TARGET TRACE)

C----- IF THE ADJACENT TRIPLET DOES NOT SURROUND A MAXIMUM

C----- CHECK THE BEST TRIPLET ONE UP OR ONE DOUN

C
IF((ZH.GT.ZI).OR.(ZJ.GT.ZI)) THEN

IF(ZH.GT.ZJ) THEN
ZT3=ZDELTT*((ZHP-ZI)/(Z*(ZHP+ZI-2*ZH)))+(J-2)*ZDELTT

ELSE
ZT3=ZDELTT*((ZI-ZJP)/(Z*(ZI+ZJP'Z*ZJ)))+J*ZDELTT
ENDIF

ELSE
ZT3=ZDELTT*((ZH-ZJ)/(2*(ZH+ZJ-2*ZI)))+(J-1)*ZDELTT
ENDIF

C
C----- COMPARE THE TIMES OF THE MAXIMA

C
IF((ABS(ZT1-ZT2).GT.14.0).OR.(ABS(ZT2-ZT3).GT.14.0)) THEN

ZMEM(VELSTR+K+J)=0.D
GOTO 800
ENDIF

C
C----- COMPUTE THE THO DIPS AND COMPARE (COMPUTE AS VELOCITIES)

C
IFIABS((ZT3-ZT2)'(ZT2-ZT1)).GT.4.0) THEN

ZMEM(VELSTR+K+J)=0.0
GOTO 800
ENDIF

ZV1=(ZOFF(I+1)‘ZOFF(I))/(ZT3-ZT2)
ZV2=(ZOFF(I)‘ZOFF(I-1))/(ZT2-ZT1)

C
C ----- AVERAGE VELOCITIES, CONVERT TO ANGLES AND SAVE
c

.

ZMEM(VELSTR+K+J)=(ZV1+ZV2)/2.0
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IF(ABS(ZMEH(VELSTR+K+J)).LT.1.50) THEN

ZMEM(VELSTR+K+J)=0.0

GOTO 800

ENDIF

ZARRAY(4)=ASIN(1.50/ZMEM(VELSTR+K+J))

ZARRAY(1)=(401-SPC)*25.0

ZARRAY(3)=J*0.004

ZARRAY(2)=ZARRAY(1)+ZOFF(1)

IF<ZXRCV.GT.10000.0) GOTO 800

TMP=NEXT(CRP(I)-MINCRP,CRPTR(I))

IF(TMP.GT.196) THEN

HRITE(6,'(1X,A22)') ’MAX PICKS/TR EXCEEDED'

5010 800

END IF

TMP=TMP+200+(CRP<I)-MINCRP)*150*200+(CRPTR(I)-1)*200

CALL DM0015(ZARRAY(1),4,TMP,RCBZ,FCBZ,1,IST)

IF(IST.NE.0) GOTO 90110

NEXT(CRP(I)‘HINCRP,CRPTR(X))=NEXT(CRP(I)-MINCRP,CRP
TR(I))+4

800

IF(CRP(I).GT.MAXCRP) MAXCRP=CRP(I)

NUMPCK=NUMPCK+1

CONTINUE

700 CONTINUE

ARRAY( 1)=MINCRP

ARRAY(2)=MAXCRP

HRITE(6,'(2X,A12,I10)') ’NUMPCK =’,NUMPCK

HRITE(6,'(2X,A12,ZI10)’) ’MIN/MAXCRP =’,M1NCRP,MAXCRP

CALL DMOO15(ARRAY(1),2,1,RCBZ,FCBZ,1,IST)

IF(IST

RETURN

.NE.0) GOTO 90120

90100 HRITE(6,90105)

90105 FORMAT( ' ’,//,' CMPLEX ERROR LTP PARAMETER T00 SMALL')

GOTO 99999

C

90101 HRITE(6,90106)

90106 FORMAT( ’ ’,//,’ CMPLEX ERROR - TOO MANY PICKS ON TRACE’)

GOTO 99999

C

90110 HRITE(6,90115)

90115 FORMAT( ’ ’,//,’ CMPLEX

| ERROR NRITING TO PICKS1 ’)

GOTO 99999

C

90120 HRITE(6,90125)

90125 FORMAT< ’ ',//,’ CMPLEX ERROR - HRITING PICKS1 HEADER ’)

GOTO 99999

C

C

99999 STOP 15

END
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aPROCESS OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
QPROCESS FLAG(E),
aPROCESS DIRECTIVE('*VD:’)

SUBROUTINE CMPICK(MEM,LMEM)
IMPLICIT INTEGER(A-Y)
DIMENSION MEM(1)
CALL PICKER(MEM,MEM,LMEM)
STOP
END

aPROCESS OPT(3),VECTOR(LEVEL(Z),REPORT(XLIST)),
OPROCESS FLAG(E), ‘
BPROCESS DIRECTIVE(’*VD:’)

SUBROUTINE PICKER (MEM,ZMEM,LMEM)
IMPLICIT INTEGER (A-Y)
COMMON /SCRPTR/ IBSCR,NXTSCR,MAXSCR
DIMENSION ZPICKS(2000,5)
DIMENSION ZOFF(150)
DIMENSION FCB(20),RCB(20),TRACES(2)
DIMENSION ACNM(2)
DIMENSION MEM(1),ZMEM(1)
DATA ATD /'ATD ’/,TRACES/’0001’,’0001'/
DATA ACNM/'CRPI',’N ’/
DATA GOOD/’GOOD’/,BLNK/’ ’/
NXTSCR=1
MAXSCR=LMEM
ZTUOPI=8.0*ATAN(1.0)
ZPI=4.0*ATAN(1.0)
ZPION2=2.0*ATAN(1.0)

C
HRITE(6, 80000)

80000 FORMAT('1’, //’ PICKCRPS FOR LINE C DATA - 15 AUG 1992’,/,
* ------ HITH TRACE HEADER UTILISATION ------ ’,
'k I ........................................... I)

C
C *** OPEN INPUT/OUTPUT FILE
C

CALL OPN013(FCB,1,ACNM,2,0,0,0,4096,IST)
IF(IST.NE.0)GOTO 90000

*** READ OUTPUT FILE AND MAKE SOME CHECKS

D
O
G

IF((NXTSCR+320).GT.MAXSCR)GOT0 90100
CALL DMIO14<MEM<NXTSCR),320,4096,RCB,FCB,1,IST)
NXTSCR=NXTSCR-1
IF(IST.NE.0)GOTO 90010

*** CHECK THAT FILE IS ATD/TRACES

n
n
n

IF(MEM(NXTSCR+1).NE.TRACES(1))GOTO 90020
IF(MEM(NXTSCR+2).NE.TRACES(2))GOTO 90020

*** SET SDMIN, SDMAX, SDINC,
*** EDMIN, EDMAX, EDINC, TZERO , TMAX , DELT

n
n
n
n

SDMIN=MEM<NXTSCR+132)
NSDMS=MEM(NXTSCR+133)
SDINC=MEM(NXTSCR+134)
EDMIN=MEM(NXTSCR+136)
NEDMS=MEM(NXTSCR+137)
EDINC=MEM(NXTSCR+138)
TZERO=MEM(NXTSCR+152)
NAMPS=MEM(NXTSCR+153)
DELT=MEM(NXTSCR+149)
LTH=MEM(NXTSCR+150)*64
LTA=MEM(NXTSCR*151)*64
TRLEN=(LTH+LTA)
SDMAX=(NSDMS-1)*SDINC+SDMIN
TMAX=(NAMPS-1)*DELT+TZERO
LINTV=NSDMS*NEDMS
SDBHDR=NXTSCR
NXTSCR=NXTSCR+320
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HRITE(6,’(2X,A10,I10)') ’SDHIN =’.SDMIN
HRITE(6,'(2X,A10,I10)') ’SDMAX =',SDMAX
HR!TE(6,’(2X,A10,!10)') ’SDINC =',SDINC
uRITE(6,'(2x,A10,110)’) ’EDMIN ='.EDMIN
URITE(6,’(2X,A10,I10)’) ’NEDMS =’,NEDMS
URITE(6,’(2X,A10,I10)’) ’EDINC =I,onuc
URITE(6,’(2X,A10,I10)’) ’TZERO =',TZERO
HRITE(6,'(2X,A10,I10)') ’TMAX =’.TMAX
URITE(6,'(2X,A10,I10)') 'DELT =’,DELT
HRITE(6,’(2X,A10,I10)') ’LTH =',LTH
HRITE(6,'(2X,A10,I10)’) 'LTA =’,LTA
ZDELTT=FLOAT(DELT)

c
c *** GET IV'S
c

IF((NXTSCR+LINTV).GT.MAXSCR) GOTO 90100
CALL DMIO14<MEM<NXTSCR>,LINTV,8192,RCB,Fc3,1,IST)
IF(IST.NE.O)GOT0 90030

c
c *** CHECK ENOUGH ROOM
c

HRITE(6,’(2X,A10)') I I
uRITE(6,'(2x,A10,I10)') 'MAXSCR =',MAX$CR
HRITE(6,'(2X,A10,I10)') ’NXTSCR =',NXTSCR
HRITE(6,'(2X,A1D,I10)’) 'LINTV =',LINTV
HRITE(6,’(2X,A10,I10)') ’NAMPS =’,NAMPS
IF((NXTSCR+LINTV+3*NAMPS*NEDMS).GT.MAXSCR)

+ GOTO 90100
TRSCR=NXTSCR+LINTV+LTH
IF(MOD(FLOAT(TRSCR),2.0).EQ.0.0) TRSCR=TRSCR+1
HRITE(6,’(2X,A10,I10)') 'TRSCR =’,TRSCR

c *** MAIN LOOP
c

SHTEND=TRSCR+NAMPS*NEDMS
D0 900 I=1,NSDMS,1

00 1200 J=1,2000
ZPICKS(J,5)=0.0

1200 CONTINUE
URITE(6,’(2X,A18,15)’) 'PROCESSING cap ND.',SDMIN+(X-1)
D0 905 J=1,NAMPS*NEDMS

MEM(TRSCR+J-1)=O
905 CONTINUE
c *** READ IN COMPLETE soon

00 950 J=1,NEDMS,1
c *** GET 1v OF NEXT TRACE

K=NXTSCR+(I-1)*NEDMS+(J-1)
IV=MEM(K)
IF(IV.LE.0) THEN

DO 951 K=1,NAMPS
MEM(TRSCR+(J-1)*NAMPS+(K-1))=0-0

951 CONTINUE
GOTO 950

ENDIF
IV=IV+4096

c *** GET TRACE HEADER ONLY
CALL DMIO14<MEM(TRSCR-LTH),LTH,IV,RCB,FCB,1,IST)
ZOFF(J)=NINT(ZMEM(TRSCR-LTH+16))

c *** GET TRACE DATA ONLY
CALL DMID14(MEM(TRSCR+(J-1)*NAMPS),NAMPS,IV+LTH,

+ nca,rca,1,lsr)
IF(IST.NE.O)GOTO 90050

950 CONTINUE
c
c----- LOOK THOUGH PICKSPC FILE FOR chxs uxrnru THIS cap
c

coun1=1
REHIND(4)

100 REA0(4,5000,EN0=1000) ZXSRC,ZTIME,CRP,CRPTR,ZXRCV,ZANGRC
IF(CRP.EQ.SDMIN+(I-1)) THEN

IF((CRPTR.EQ.1).0R.(CRPTR.EQ.NEDMS)) GOTO 100

c***** COMPUTE PHASE VELOCITY
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K=<CRPTR-1)*NAMPS
KN=((CRPTR-1)-1)*NAMPS
KP=((CRPTR+1)-1)*NAMPS
J=INT((ZTIME*1000.0)/ZDELTT)+1

c HRITE(6,’(2X,A3,1X,I10)’) ’-J-’,J
ZA=ZMEM<TRSTR+K+J+1)
ZM=ZMEM(TRSCR+K+J)
ZB=ZMEM(TRSCR+K+J-1)
ZC=ZMEM<TRSCR+KP+J)
ZD=ZMEM<TRSCR+KN+J)

c----- CALCULATE DIFFERENCES
CALL DIFF(ZA,ZM,ZU1)
CALL DIFF(ZM,ZB,ZU2)
CALL DIFF(ZC,ZM,ZL1)
CALL DIFF(ZM,ZD,ZL2)

C ----- IF THO HALF DIFFERENCES ARE VERY DIFFERENT, IGNORE POINT
ZT=ZU1/ZU2
IF((ZT.LT.0.25).0R.(ZT.GT.4.00)) GOTO 100
2T=ZL1/ZL2
IF((ZT.LT.0.25).OR.(ZT.GT.4.00)) GOTO 100

C ----- COMPUTE AVERAGE DIFFERENCES
ZU=(ZU1+ZU2)/Z.0
ZL=(ZL1+ZL2)/2.0

C----- CHECK TO SEE IF DIP IS NEGATIVE AND CORRECT IF SO
IF(ZL.GT.ZPI) ZL=ZL-ZTHOPI
ZPVEL=ZUIZL
ZDELTX=ABS(ZOFF(CRPTR+1)‘ZOFF(CRPTR-1))/2.0
ZPVEL=-1.0*ZPVEL*ZDELTXIZDELTT

C***** CONVERT PHASE VELOCITIES TO ANGLES AND HRITE TO OUTPUT FILE
IF(ABS(ZPVEL).LT.1.48) THEN

GOTO 100
ENDXF

ZANGSC=ASIN(1.48/ZPVEL)
ZPICKS(COUNT,1)=ZXSRC
ZPICKS(COUNT,2)=ZXRCV
ZPICKS(COUNT,3)=ZANGSC
ZPICKS(COUNT,4)=ZANGRC
ZPICKS(COUNT,5)=ZTIME
COUNT=COUNT+1
ENDIF
0010 100

c
c----- OUTPUT VALUES
c
1000 no 1110 J=1,2000

ZTIME=ZPICKS(J,5)
IF(ZTIME.EQ.0.0) 0010 900
uRITE(5,6000) ZPICKS(J,1).ZPICKS(J,2),

+ ZPICKS(J,3),ZPICKS(J,4),ZPICKS(J,5)
1110 CONTINUE
C
900 CONTINUE
5000 FORMAT(1X,ZG16.8,216,ZG16.8)
6000 FORMAT(SG15.6)
c V

c *** CLOSE INPUT FILE
0

CALL cL0074<ch,0,1,151)
lF(IST.NE.0)GOT0 90070
CLOSE(4)
CLOSE(5)

c
c

URITE(6,80010)
80010 FORMAT(’ ',//,I NORMAL COMPLETION’)

STOP
0
c
90000 HRITE(6,90005)
90005 FORMAT(’ ’,//,’ PICKER - ERROR OPENING TRACES FILE’,/,

* ’ ENSURE ACNM OF INPUT FILE IS CRPIN’)
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90010
90015

90020
90025

GOTO 99999

HRITE(6,90015)
FORMAT(’ ',ll,’ PICKER
GOTO 99999

HRITE(6,90025)
FORMAT(’ ’,//,' PICKER
GOTO 99999

90030 HRITE(6,90035)
90035 FORMAT(’ ’,//,’ PICKER

GOTO 99999

90040 HRITE(6,90045)ERRCNT
90045 FORMAT(' ’,//,’ PICKER

GOTO 99999

90050 URITE(6,90055)
90055 FORMAT(’ ’,//,’ PICKER

GOTO 99999

90070 HRITE(6,90075)
90075

90100
90105

FORMAT(’ ',//,’ PICKER
GOTO 99999

HRITE(6,90105)
FORMAT(’ ',//,’ PICKER
GOTO 99999

99999 STOP 15
END
SUBROUTINE DIFF(ZA,ZM,ZU1)
REAL ZA,ZM,ZU1,ZTUOPI
ZTHOPI=8.0*ATAN(1.0)

PICKCRPS

-ERROR READING SUBFILE HEADER')

- ERROR INPUT FILE NOT ATD/TRACES’)

- ERROR READING INTERVAL VECTORS')

’ ERROR OUTPUTTING CRP N0. ’,I8)

- ERROR READING TRACE DATA’)

- ERROR CLOSING OUTPUT FILE')

- ERROR - LTP PARAMETER T00 SMALL')

IF(((ZA.GE.0.0).AND.(ZM.GE.0.0)).OR.
+

IF(ZA.GE.ZM) THEN
ZU1=ZA-ZM

ELSE
ZU1=ZTHOPI-(ZM-ZA)
ENDIF

ENDIF

((ZA.LT.0.0).AND.(ZM.LT.0.0))) THEN

IF((ZA.GE.0.0).AND.(ZM.LT.0.0)) ZU1=2A-ZM
IF((ZA.LT.0.0).AND.(ZM.GE.0.0)) ZU1=ZTHOPI-(zH-ZA)
RETURN
END
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EPROCESS OPT(3),VECTOR(LEVEL(Z),REPORT(XLIST)),
BPROCESS FLAG(E),
aPROCESS DIRECTIVE(’*VD:’)

SUBROUTINE CMPICK(MEM,LMEM)
IMPLICIT INTEGER(A-Y)
DIMENSION MEM(1)
CALL PICKER(MEM,MEM,LMEM)
STOP
END

aPROCESS OPT(3),VECTOR(LEVEL(Z),REPORT(XLIST)),
aPROCESS FLAG(E),
aPROCESS DIRECTIVE('*VD:’)

SUBROUTINE PICKER (MEM,ZMEM,LMEM)
IMPLICIT INTEGER (A-Y)
COMMON ISCRPTR/ IBSCR,NXTSCR,MAXSCR
COMMON /CMPPTR/ TRSCR,RADIX,SHTEND,NEDMS,NAMPS,PHSSTR,SPC,ZDELTT
COMMON ICRPOFF/ CRP,CRPTR,20FF
DIMENSION FCB(20),RCB(20),TRACES(2)
DIMENSION ACNM(2)
DIMENSION MEM(1),ZMEM(1)
DIMENSION CRP(150),CRPTR(150),ZOFF(150)
DATA ATD /’ATD ’/,TRACES/’0001’,’0001’/
DATA ACNM/’INPU',’T '/
DATA GOOD/'GOOD'/,BLNK/’ ’/
NXTSCR=1
MAXSCR=LMEM

c
uRITE<6,80000)

aoooo FORMAT(’1',//’ PICKSPCS FOR LINE c DATA - 15 AUG 1992',/,
* . ---- wITH TRACE HEADER UTILISATION ----I,
* I ....................................... I)

c
c *** OPEN INPUT/OUTPUT FILE
c

CALL OPN013(FCB,1,ACNM,2,0,0,0,4096,IST)
IF(IST.NE.0)GOTO 90000

C
C *** READ OUTPUT FILE AND MAKE SOME CHECKS

C
IF((NXTSCR+320).GT.MAXSCR)GOTO 90100

CALL DMIO14(MEM(NXTSCR),320,4096,RCB,FCB,1,IST)
NXTSCR=NXTSCR~1
IF(IST.NE.0)GOT0 90010

C
C *** CHECK THAT FILE IS ATD/TRACES
C

IF(MEM(NXTSCR+1).NE.TRACES(1))GOTO 90020
IF(MEM(NXTSCR+2).NE.TRACES(2))GOTO 90020

*** SET SDMIN, SDMAX, SDINC,
*** EDMIN, EDMAX, EDINC, TZERO , TMAX , DELT

n
n
n
n

SDMIN=MEM(NXTSCR+132)
NSDM5=MEM(NXTSCR+133)
SDINC=MEM(NXTSCR+134)
EDMIN=MEM(NXTSCR+136)
NEDMS=MEM(NXTSCR+137)
EDINC=MEM<NXTSCR+138)
TZERO=MEM(NXTSCR+152)
NAMPS=MEM<NXTSCR+153)
DELT=MEM(NXTscn+149)
LTH=MEM<NXTSCR+150)*64
LTA=MEM(NXTSCR+151)*64
TRLEN=(LTH+LTA)
SDMAX=<NSDMS-1)*SDINC+SDMIN
TMAX=(NAMPS-1)*DELT+TZERO
LINTV=NSDMS*NEDMS
SDBHDR=NXTSCR
NXTSCR=NXTSCR+320
HRITE(6,’(2X,A10,I10)') 'SDMIN =’,SDMIN
HRITE(6,'(2X,A10,I10)') ’SDMAX =’,SDMAX
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c ***
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HRITE(6,'(2X,A10,I10)') 'SDINC ='.SDINC
uRITE<6,'(2x,A10,I10)I) ’EDMIN =',EDMIN
uRITE(6,'(2x,A10,I10)') 'NEDMS =’,NEDMS
HRITE(6,’(2X,A10,I10)’) 'EDINC =',EDINC
HRITE(6,’(2X,A10,I10)’) 'TZERO ='.TZERO
HRITE(6,’(2X,A10,I10)') 'TMAX =',TMAX
HRITE(6,’(2X,A10,X10)’) 'DELT =',DELT
HRITE<6,'(2X,A10,I10)’) 'LTH =',LTH
HRITE(6,'(2X,A10,I10)’) 'LTA =’,LTA
ZDELTT=FLOAT(DELT)

GET IV’S

IF((NXTSCR+LINTV).GT.MAXSCR) GOTO 90100
CALL DMIO14(MEM(NXTSCR),LlNTV,8192,RCB,FCB,1,IST)
IF(IST.NE.0)GOTO 90030

COMPUTE THE TEMPORAL RADIX TO USE

RADIX=256
[F(NAMPS.GT.250) RADIX=512
IF(NAMPS.GT.500) RADIX=1024
IF(NAMPS.GT.1000) RADIX=2048
IF(NAMPS.GT.2000) RADIX=4096
IF(NAMPS.GT.4000) GOTO 90200

CHECK ENOUGH ROOM

HRITE(6,’(2X,A10)’) I '
HR!TE(6,’(2X,A10,I10)’) ’MAXSCR =',MAXSCR
HRITE(6,’(2X,A10,I10)') ’RADIX =’.RADIX
uRITE<6,'<2x,A10,110)I) luxrsca =’.NXTSCR
NRITE(6,'(2X,A10,I10)') 'LINTV =’,LINTV
HRITE(6,'(2X,A10,I10)') 'NAMPS =’.NAMPS
IF((NXTSCR+LINTV+2*RADIX*NEDMS+3*NAMPS*NEDHS+80000).GT.MAXSCR)

+ GOTO 90100

c ***

905
c *‘k'k

c *i*

c ***

c *i*

TRSCR=NXTSCR+LINTV+LTH
IF(M00(FLOAT(TRSCR),Z.0).EQ.0.0) TRSCR=TRSCR+1
HRITE(6,’(ZX,A10,I10)’) ’TRSCR =’,TRSCR
MAIN LOOP

SHTEND=TRSCR+Z*RADIX*NEDMS
00 900 I=1,NSDMS,1

HRITE(6,’(2X,A18,IS)’) ’PROCESSING spc NO.',SDMIN+(I-1)
00 905 J=1,2*RADIX*NEDMS ’

MEM<TRSCR+J-1)=0
CONTINUE

READ IN COMPLETE SDOM
00 950 J=1,NEDMS,1

GET IV OF NEXT TRACE
K=NXTSCR+(I-1)*NEDMS+(J-1)
IV=MEM(K)
IF(IV.LE.0) 0010 950
Iv=1v+4096

GET TRACE HEADER ONLY
CALL DMI014(MEM(TRSCR-LTH),LTH,IV,RCB,FCB,1,IST)
CRP(J)=MEM(TRSCR-LTH+40)
CRPTR(J)=MEM(TRSCR-LTH+41)
ZOFF(J)=NlNT(ZMEM(TRSCR-LTH+16))

GET TRACE DATA ONLY
CALL 0M1014(MEM(TRSCR+RADIX+(J-1)*2*RA01X),LTA,IV+LTH,

+ RCB,FCB,1,IST)

C
C .....

C

IF(IST.NE.0)GOTO 90050
CONTINUE

ADJUST THE TRACE AMLITUDES TO SIMULATE COMPLEX DATA

00 960 J=1,NEDMS,1
DO 970 K=1,RADIX,1

MEM(TRSCR+(Z*<K-1))+(J-1)*2*RADIX)=
+ MEM<TRSCR+RADIX+(J-1)*2*RADIX+(K-1)3
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ZHEM(TRSCR+RADIX+(J-1)*2*RADIX+(K'1))=0.0
ZMEM(TRSCR+(2*(K'1)+1)+(J-1)*RADIX)=0.0

970 CONTINUE
960 CONTINUE
C
C ----- CALL SUBROUTINE TO DO COMPLEX WORK
C

SPC=SDMIN+I-1
CALL CMPLEX(MEM,MEM,MEM,LMEM)

C
C *** HRITE OUT THE INSTANTANEOUS PHASE SHOT RECORD

ERRCNT=SDMIN+(I-1)*SDINC
DO 980 J=1,NEDMS,1

C *** GET IV OF NEXT TRACE
K=NXTSCR+(I-1)*NEDMS+(J-1)
IV=MEM(K)
IF<IV.LE.0) GOTO 980
1V=IV+4096

C *** WRITE TRACE DATA ONLY
CALL 0M0015(MEM(PHSSTR+(J-1)*RADIX),NAMPS,IV+LTH,

+ RCB,FCB,1,IST)
IF(IST.NE.0)GOTO 90040

980 CONTINUE
C
900 CONTINUE
C
C *** CLOSE OUTPUT FILE
c

CALL CL0074(FCB,0,1,IST)
IF(IST.NE.0)GOT0 90070
CLOSE(4)

c
c

URITE(6,80010)
80010 FORMAT(’ ',//,' NORMAL COMPLETION’)

STOP
c
c
90000 URITE(6,90005)
90005 FORMAT(’ I,//,' PICKER - ERROR OPENING TRACES FILE’,/.

* , susuns ACNM or INPUT FILE IS rupurl)
0070 99999

90010 HRITE(6,90015)
90015 FORMAT(’ ’,//,’ PICKER -ERROR READING SUBFILE HEADER’)

GOTO 99999

90020 HRITE(6,90025)
90025 FORMAT(' ’,//,’ PICKER - ERROR INPUT FILE NOT ATD/TRACES’)

GOTO 99999

90030 HRXTE(6,90035)
90035 FORMAT(’ ’,//,’ PICKER - ERROR READING INTERVAL VECTORS’)

GOTO 99999
C
90040 HRITE(6,90045)ERRCNT
90045 FORMAT(’ ',//,’ PICKER - ERROR OUTPUTTING SPC NO. ’,18)

GOTO 99999

90050 HRITE(6,90055)
90055 FORMAT(’ ’,//,’ PICKER - ERROR READING TRACE DATA’)

GOTO 99999

90070 HRITE(6,90075)
90075 FORMAT(’ ',//,' PICKER - ERROR CLOSING OUTPUT FILE’)

0070 99999

90100 HRITE(6,90105)
90105 FORMAT(' ’,//,' PICKER - ERROR - LTP PARAMETER T00 SMALL’)

GOTO 99999
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90200 HRITE(6,90205)

90205 FORMAT(’ ’,//,’ PICKER - MORE THAN 4000 SAMPLES/TRACE ’)

GOTO 99999

C

90300 URITE(6,90305)

90305 FORMAT(’ ',//,’ PICKER - MORE THAN 490 TRACES/SDOM ')

GOTO 99999

C

C

99999 STOP 15

END

BPROCESS OPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

aPROCESS FLAG(E).

aPROCESS DIRECTIVE('*VD:’)

SUBROUTINE CMPLEX (MEM,YMEM,ZMEM,LMEM)

IMPLICIT INTEGER (A-X)

IMPLICIT COMPLEX*8 (Y)

COMMON [SCRPTR/ IBSCR,NXTSCR,MAXSCR

COMMON ICMPPTR/ TRSCR,RADIX,SHTEND,NEDMS,NAMPS,PHSSTR,SPC,ZDELTT

COMMON ICRPOFF/ CRP,CRPTR,ZOFF

DIMENSION FCB(20),RCB(20),TRACES(2)

DIMENSION MEM(1),YMEM(1),ZMEM(1)

DIMENSION ZPICKS(150,50,6)

DIMENSION CRP(150),CRPTR(150),ZOFF(150)

ZTHOPI=8.0*ATAN(1.0)

ZPI=4.0*ATAN(1.0)

ZPION2=2.0*ATAN(1.0)

c ----- PERFORM FORWARD FOURIER TRANSFORMS

TRSCR2=(TRSCR+1)/2

SHTENDZ=SHTENDIZ+Z

IF((SHTEND+120000).GT.MAXSCR) GOTO 90100

CALL SCFT(1,YMEM(TRSCR2),1,RADIX,YMEM(TRSCR2),1,RADIX,

+ RADIX,NEDMS,1,1.0,YMEM(SHTENDZ),20000,

+ YMEM(SHTEND2+20000),20000)

CALL SCFT(0,YMEM(TRSCR2),1,RADIX,YMEM(TRSCR2),1,RADIX,

+ RADIX,NEDMS,1,1.0,YMEM(SHTENDZ),20000,

+ YMEM(SHTENDZ+20000),20000)

C----- ZERO THE NEGATIVE FREQUENCIES

no 100 I=1,NEDMS,1

ZA=TRSCR2+(I-1)*RADIX

D0 200 J=RADIX/2+1,RADIX

YMEM(ZA+J)=CMPLX(0.0,0.0)

200 CONTINUE

YMEM(ZA)=YMEM(ZA)/2.0

100 CONTINUE

c----- PERFORM INVERSE 2D FOURIER TRANSFORM

CALL SCFT(1,YMEM(TRSCR2),1,RADIX,YMEM(TRSCR2),1,RA
DIX,

+ RADIX,NEDMS,-1,1.0/FLOAT(RADIX),YMEM(SHTEND2)
,20000,

+ YMEM(SHTENDZ+20000),20000)

CALL SCFT(0,YMEM(TRSCRZ),1,RADIX,YMEM(TRSCR2),1,RA
DIX,

+ RADIX,NEDMS,-1,1.0/FLOAT(RADIX),YMEM(SHTENDZ)
,ZOODO,

+ YMEM(SHTENDZ+20000),20000)

c ----- COMPUTE INSTANTANEOUS AMPLITUDE

AMPSTR=SHTEND+80100

IF((AMPSTR+NEDMS*RADIX).GT.MAXSCR)
GOTO 90100

21:0.0

no 300 I=1,NEDMS

K=(I-1)*RADIX

no 400 J=0,NAMPS-1

ZMEM(AMPSTR+K+J)=SORT(REAL(YMEM(TRSCR2+K+J))**2+

+ IMAG(YMEM(TRSCR2+K+J))**2)

IF(ZMEM(AMPSTR+K+J).GT.Z1) Z1=ZMEM(AMPSTR+K+J)
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400 CONTINUE
300 CONTINUE
C

C----- COMPUTE INSTANTANEOUS PHASE

PHSSTR=AMPSTR+NEDMS*RADIX
IF((PHSSTR+NEDMS*RADIX).GT.MAXSCR) 0070 90100
00 500 I=1,NEDMS,1

K=(I-1)*RADIX
00 600 J=1,NAMPS-2,1

IF(ABS(REAL(YMEM(TRSCRZ+K+J)))-LT.1.E-10) THEN
IF(IMAG(YMEM(TRSCRZ+K+J)).LT.0.0) THEN

ZMEM(PHSSTR+K+J)=-1.0*ZPION2
ELSE

ZMEM(PHSSTR+K+J)=ZPION2
ENDIF

0070 600
ENDIF

ZA=ATAN(XMAG(YMEM(TRSCR2+K+J))lREAL<YMEH(TRSCR2+K+J)))
IF(REAL(YMEM(TRSCR2+K+J))-LT.0.0) THEN

IF(ZA.LT.0.0) THEN
ZA=ZPI+ZA

ELSE
ZA=-1.0*ZPI+ZA
ENDXF

ENDIF
ZMEM(PHSSTR+K+J)=ZA

600 CONTINUE
500 CONTINUE

c----- COMPUTE PHASE VELOCITY

VELSTR=PHSSTR+NEDMS*RADIX
IF((VELSTR+NEDMS*RADIX).GT.MAXSCR) GOTO 90100
DO 700 l=2,NEDMS-1,1

K=(I-1)*RADIX
KN=((I-1)-1)*RADIX
KP=((I+1)-1)*RADIX
00 800 J=1,NAMPS-2,1

IF(ZMEM(AMPSTR+K+J).LT.0.05*Z1) THEN
ZMEM(VELSTR+K+J)=0.0
GOTO 800
ENDIF

IF((ZMEM(AMPSTR+K+J).LT.ZMEM(AMPSTR+K+J-1)).0R.
+ (ZMEM(AMPSTR+K+J).LT.ZMEM(AMPSTR+K+J+1))) THEN

ZMEM(VELSTR+K+J)=0.0
GOTO 800
ENDIF

C----- PICK LARGEST AMPLITUDE HITHIN 200 MSEC ONLY

DO 850 JJ=-12,-1,1
IF((J+JJ).LT.0) 0010 850
IF((ZMEM(VELSTR+K+J+JJ).NE.0.0).AND.

+ (2MEM(AMPSTR+K+J+JJ).LE.ZMEM(AMPSTR+K+J))) THEN
ZMEM(VELSTR+K+J+JJ)=0.0

ELSEIF((ZMEM(VELSTR+K+J+JJ).NE.0.0).AND.
+ (ZMEM(AMPSTR+K+J+JJ).GT.2MEM(AMPSTR+K+J))) THEN

ZMEM(VELSTR+K+J)=0.0
core 000
ENDIF

850 CONTINUE
=ZMEM(PHSSTR+K+J+1)

ZM=ZMEM<PHSSTR+K+JJ
ZB=ZMEM(PHSSTR+K+J-1)
ZC=ZMEM(PHSSTR+KP+J)
ZD=ZMEM<PHSSTR+KN+J)

c----- CALCULATE DIFFERENCES
CALL DIFF(ZA,ZH,ZU1)
CALL DIFF(ZM,ZB,ZU2)
CALL DIFF(ZC,ZM,ZL1)
CALL DIFF(ZM,ZD,ZL2)

c----- IF THO HALF DIFFERENCES ARE VERY DIFFERENT, IGNORE POINT
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ZT=ZU1/ZU2
IF((ZT.LT.0.50).0R-(ZT.GT.1.50)) GOTO 800
ZT=ZL1/ZL2
IF((ZT.LT.0.50).0R.(ZT.GT.1.50)) GOTO 800

C----- COMPUTE AVERAGE DIFFERENCES
ZU=(ZU1+ZU2)/2.0
ZL=(ZL1+ZLZ)/Z.D

C----- CHECK TO SEE IF DIP IS NEGATIVE AND CORRECT IF SO

IF(ZL.GT.ZPI) ZL=ZL-ZTHOPI
ZMEM(VELSTR+K+J)=ZU/ZL
ZDELTX=ABS(ZOFF(I+1)‘ZOFF(I-1))/2.0-
ZMEM(VELSTR+K+J)=-1.0*ZMEM(VELSTR+K+J)*ZDELTX/ZDELTT

800 CONTINUE
700 CONTINUE
C
C ----- CONVERT PHASE VELOCITIES T0 ANGLES AND SAVE IN ZPICKS

C
00 900 I=2,NEDMS-1,1

K=(I-1)*RADIX
COUNT=1
DO 901 J=1,25

ZPICKS(I,J,Z)=0.0
901 CONTINUE

D0 1000 J=1,NAMPS°2,1
IF(ABS(ZMEM(VELSTR+K+J)).LT.1.48) THEN

ZMEM<VELSTR+K+J>=0.0
GOTO 1000
ENDIF

ZMEM(VELSTR+K+J)=ASIN(1.48/ZMEM(VELSTR+K+J))
ZXSRC=(472-SPC)*25.0
ZTIME=J*0.004
ZXRCV=ZXSRC+ZOFF(I)
ZANGRC=ZMEM(VELSTR+K+J)
IF<ZXRCV.GT.11780.0) GOTO 1000
ZPICKS(I,COUNT,1)=ZXSRC
ZPICKS(I,COUNT,2)=ZTIME
ZPICKS(I,COUNT,3)=FLOAT(CRP(I))
ZPICKS(I,COUNT,4)=FLOAT(CRPTR(1))
ZPXCKS(I,COUNT,5)=ZXRCV
ZPICKS(I,COUNT,6)=ZANGRC
COUNT=COUNT+1

1000 CONTINUE
900 CONTINUE
C
C ----- CHECK ZPICKS AND OUTPUT ONLY CONSISTENT PICKS

C
00 1100 I=3,NEDMS-2

00 1110 J=1,25
ZTIME=ZPICKS(I,J,2)
IF(ZTIME.ED.0.0) 0010 1100
00 1120 K=1,25

IF<Aas<2P10KS(1-1,K,2)-211ME).L1.5.000) THEN
KK=K
0010 1130
ENDIF

1120 CONTINUE
0010 1110

1130 00 1140 K=1,25
IF(ABS(ZPICKS(I+1,K,2)-ZTIME).LT.5.000) THEN
KKK=K
0010 1150 ‘
ENDIF

1140 CONTINUE
0010 1110

1150 ZK=ZPICKS(I,K,6)/((ZPICKS(I-1,KK,6)+ZPICKS(I+1,KKK,6))/2.0)
HRITE(4,5000) ZPICKS(I,J,1),ZPICKS(I,J,2),

+ INT(ZPICKS(I,J,3)).INT<ZPICKS(I,J,4)),
+ ZPICKS(I,J,5),ZPICKS(I,J,6)

1110 cou11uua
1100 CONTINUE
5000 FORMA1(1X,2016.8,216,2016.8)
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RETURN
90100 HRITE(6,90105)
90105 FORMAN’ ’,//,’ CMPLEX - ERROR - LTP PARAMETER T00 SMALL’)

GOTO 99999
C
C
99999 STOP 15

END
SUBROUTINE DIFF(ZA,ZM,ZU1)
REAL ZA,ZH,ZU1,ZTHOPI
ZTHOPI=8.0*ATAN(1.0)
IF(((ZA.GE.0.0).AND.(ZH.GE.0.0)).OR.

+ ((ZA.LT.0.0).AND.(ZM.LT.0.0))) THEN
IF(ZA.GE.ZH) THEN

ZU1=ZA-ZM
ELSE

ZU1=ZTHOPI-(ZM-ZA)
ENDIF

ENDIF
IF((ZA.GE.0.0).AND.(ZM.LT.0.0)) ZU1=ZA-ZM
IF((ZA.LT.0.0).AND.(ZM.GE.0.0)) ZU1=ZTHOPI-(ZM-ZA)
RETURN
END
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apnocess DC(GAUS),0PT(3),VECTOR(LEVEL(2),REPORT(XLIST)),

aPROCESS DIRECTIVE('*VD:')

L

c ----- this subroutine traces a ray through a single cell

'-

 

 

subroutine raytrace(x,theta0,z,t,triflag,tri,triloc)
c..............................................................................

c ----- nq = maximum number of rows in velocity grid

c ----- mq = maximlm number of columns in velocity grid

c ----- n = actual number of rows in velocity grid

c----- m = actual number of columns in velocity grid

c ----- nint = spatial increment between grid rows

c ----- mint = spatial increment between grid columns

c .....

c----- vel(nq,mq)= values of velocity at grid points
c .....

c----- tol = 1.0d-10

c ----- pi,pion2,twopi = value of pi, pi divided by 2 and pi times 2

c ----- i,j,k= temporary integer variables

c----- t1,t2,t3,t4,t5= temporary double-precision variables

c----- triflag = .true. if triangle flat on top, .false. otherwise

c ----- tri(3,2)= grid points of current triangle

c----- - 1st dimension for the three corners

c-*--- - 2nd dimension for the column/row

c ----- triloc(3,2)= grid point locations of current triangle (in metres)

c ----- - 1st dimension for the three corners

c ----- - 2nd dimension for the column/row

c----- v0 = initial velocity in cell

c ----- x,z = coordinates of the ray (in metres)

c ----- t = cumulative travel time of the ray

c ----- vx,vz= lateral and vertical components of the velocity gradient

c ----- for the current cell
c ----- velang: angle the velocity gradient makes with the reference axis

c----- gradient: magnitude of the velocity gradient

c----- radius: radius of circular are within current cell

c ----- radiusZ= the square of the radius

c ----- straight: .true. if ray is determined to be straight

c----- s,e = parameters of straight ray, z=s.x+e
c .....
c .....

c ----- a,b = parameters of the local circular arc

c ----- a2,b2= the squares of the above quantities

c----- slope,c = parameters of sloping interface of triangle, z=slope.x+c

c----- slopeZ = the square of slope

c ----- intpoints= array of possible ray intersection points with cell boundary

c ----- - first entry is the x location, second is the 2 location

c ----- rslope,d = parameters of local reflector line segment, z=rslope.x+d

c----- rslopeZ = the square of rslope

c ----- clockwise= 1.0 if ray travelling clockwise on arc, -1.0 otherwise

c ----- outangle = array holding exit angles at the intersection points

c ----- pathlength = array holding path lengths of arcs to exit points

c ----- exitpoint = flagged index of the exit point from cell

c.....
c.........................................................................

real*h nint,mint

real*4 vel
real*8 pi,pion2,twopi
real*8 tol
real*8 x,z,t
real*8 triloc
real*8 v0,vx,vz
real*8 theta0,velang,gradient
real*8 radius,radiusZ
real*8 a,b,a2,b2
real*8 slope,c,slopeZ
real*8 s,e

real*8 intpoints
real*8 rslope,d
real*8 t1,t2,t3,t4,t5
real*8 val1,val2
real*8 clockwise

real*8 outangle,pathlength
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logical triflag,straight

integer*4 loop

integer*4 i,j,k
integer*4 n,m,nq,mq,nmax,nnnx,max,ndat,dne
integer*4 tri

integer*4 exitpoint

parameter(nq=90,mq=210)

dimension vel<nq,mq)
dimension tri(3,2),triloc(3,2)
dimension intpoints(8,2)
dimension outangle(8),pathlength(8)

common Ivelocity/vel
common /constant/tol,pi,pion2,tuopi
common /conparm/n,m,nint,mint,nmax,mmax,max,ndat,dne

--- set constants and initial variables

t1=0.0d0
t2=0.0d0
t3=0.0d0
t4=0.0d0
t5=0.0d0
straight=.false.

--- check to see if ray is passing through a grid point and if so,
--- shift it by one tenth of a millimetre

if((dmod(x,dble(mint)).eq.0.0d0).and.
+ (dmod(z,dble(nint)).eq.0.0d0)) then

x=x+.0001d0
endif

--- compute x and 2 components of the velocity gradient

vx=(dble(vel(tri(2,2),tri(2,1))-vel(tri(1,2),tri(1,1))))
+ /dble(mint)

if(triflag) then
vz=(dble(vel(tri(3,2),tri(3,1))-vel(tri(2,2),tri<2,1))))

+ /dble(nint)

else
vz=(dble(vel(tri(1,2),tri(1,1))-vel(tri(3,2),tri(3,1))))

+ /dble(nint)
endif

--- compute initial velocity in cell

v0=dble(vel(tri(1,2),tri(1,1)))+(x-dble(tri(1,1)-1)*dble(mint))*vx
+ +(z-dble(tri(1,2)-1)*dble(nint))*vz

--- compute angle velocity gradient makes with reference axes and

--- the magnitude of the velocity gradient

if(dabs(vz).lt.1.0d-10) then
velang=dsign<pion2,vx)

elseif(dabs(vx).lt.1.0d-10) then
velang=pion2-dsign(pion2,vz)

elseif(vz.gt.0.0d0) then
velang=datan<vxlv2)

else
velang=dsign<1.0d0,vx)*(pi-datan(dabs(vx/vz)))
endif

gradient=dsqrt(vz**2+vx**2)

--- if the gradient is zero then flag the ray for straight-ray tracing

if(gradient.lt.tol) then
straight=.true.
goto 11
endif
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C

C ......

C ......

C ......

C......

C ......
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compute radius of ray in cell

if(dabs(theta0-velang).gt.tol) then

radius=v0ldabs(gradient*dsin(theta0-velang))

else
radius=1.0d10
endif

radius2=radius*radius

if the radius of the ray is very large, flag it as straight

currently, larger than 1.0d6 means double precision cannot perform

the required calulations for curved rays

if(radius.lt.1.0d6) goto 12
straight=.true.

jump to here if ray flagged straight
compute straight ray parameters, z=s.x+e

if(theta0.eq.0.0d0) goto 12

s=1.0d0/dtan(theta0)
e=z-s*x
continue

here only if ray is curved

compute parameters of the circle (x-a)**2+(z-b)**2=rad**2

if(straight) goto 13
---- convert thetaO from range -pi to pi to range -pion2 to pionZ

---- this removes sense of direction of ray
t2=theta0
if(theta0.gt.pion2) t2=thetaO-pi
if(theta0.lt.-1.0d0*pion2) t2=theta0+pi

---- need to be careful of location of centre of circle

val1=dcos(t2)
val2=dsin(t2)

check first of the two possible ray circle centres. Is vel zero?

t1=1.0d0
a=x+t1*val1*radius
b=z-t1*val2*radius
t3=(a-x)*vx+(b-z)*vz+v0
if(dabs(t3).lt.1.0d0) goto 4

check other possibility if the first was no good

t1=-1.0d0
a=x+t1*val1*radius
b=z-t1*val2*radius
t3=(a-x)*vx+(b-z)*vz+v0
if(dabs(t3).ge.1.0d0) stop 'no suitable centre for ray’

continue on
a2=a*a
b2=b*b
continue

find the exit point of the ray

check the horizontal side of triangle for intersections

if(straight) then
if(theta0.eq.0.0d0) then

t3=x
t4=-1.0d0

else
t3=(triloc(1,2)-e)/s
t4=-1.0d0
endif

goto 14

endif
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t1=radiusZ-(triloc(1,2)-b)**2

if(t1) 20.10.10
t2=dsqrt(t1)
t3=a+t2
t4=a-t2
if((t3.lt.triloc(1,1)).or.(t3.gt.triloc(2,1))) then

intpoints(1,1)=-1.0d0
intpoints(1,2)=-1.0d0
else
intpoints(1,1)=t3
intpoints(1,2)=triloc(1,2)

endif
if((tb.lt.triloc(1,1)).or.(t4.gt.triloc(2,1))) then

intpoints(2,1)=-1.0d0
intpoints(2,2)=-1.0d0

else
intpoints(2,1)=t4
intpoints(2,2)=triloc(1,2)
endif

goto 30
intpoints(1,1)=-1.0d0
intpoints(1,2)=-1.0d0
intpoints(2,1)=-1.0d0
intpoints(2,2)=-1.0d0
continue

check the vertical side of triangle for intersections

if(straight) then

if(thetao.eq.0.0d0) then
t3=-1.0d0
t4=-1.0d0
goto 15

endif
t3=s*triloc<3,1)+e
t4=-1.0d0
goto 15

endif
if(triflag) then

t1=radius2-(triloc<2,1)-a)**2
else

t1=radiusZ-<triloc(1,1)-a)**2
endif

if(t1) 60,40,40
t2=dsqrt(t1)
t3=b+t2
t4=b-t2
if(.not.(triflag)) goto 50

if((t3.lt.triloc(2,2)).or.(t3.gt.triloc(3,2))) then
intpoints(3,1)=-1.Dd0
intpoints(3,2)=-1.0d0
else

intpoints(3,1)=triloc(2,1)
intpoints(3,2)=t3
endif

if((t4.lt.triloc(2,2)).or.(t4.gt.triloc(3,2))) then
intpoints(4,1)=-1.0d0
intpoints(4,2)=-1.0d0
else

intpoints(4,1)=triloc(2,1)
intpoints(4,2)=t4
endif

goto 70
if((t3.gt.triloc(2,2)).or.(t3.lt.triloc(3,2))) then

intpoints(3,1)=-1.0d0
intpoints(3,1)=-1.0d0
else
intpoints(3,1)=triloc(1,1)
intpoints(3,2)=t3
endif

if((t4.gt.triloc(2,2)).or.(t4.lt.triloc(3,2))) then
intpoints(4,1)=-1.0d0
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intpoints(4,2)=-1.0d0
else
intpoints(4,1)=triloc(1,1)
intpoints(4,2)=t4
endif

goto 70
intpoints(3,1)=-1.0d0
intpoints(3,2)=-1.0d0
intpoints(4,1)=-1.0d0
intpoints(4,2)=-1.0d0
continue

check the sloping side of the triangle. First find the parameters of the

of the line z=slope.x+c, then solve quadratic similarly to above.

if(triflag) then

slope=(triloc(1,2)-triloc(3,2))/(triloc(1,1)-triloc(3,1))
else
slope=(triloc(2,2)-triloc(3,2))/(triloc(2,1)—triloc(3,1))
endif

c=triloc(3,2)-slope*triloc(3,1)

if(straight) then
if(thetaO.eq.0.0d0) then

t3=x
t4=-1.0d0
goto 16
endif

t3=(c-e)/(s-slope)
t4=-1.0d0
goto 16
endif

slope2=slope**2
t1=(slope*(c-b)-a)**2—(slope2+1.0d0)*(aZ+(c-b)**2-radiusZ)
if(t1) 90,80,80
t2=dsqrt<t1>
t3=((a-slope*(c-b))+t2)/(slope2+1.0dO)
t4=((a-slope*(c-b))-t2)/(slope2+1.0dO)

if((t3.lt.triloc(1,1)).or.(t3.gt.triloc(2,1))) then

intpoints(5,1)=-1.0d0
intpoints(5,2)=-1.0d0

else
intpoints(5,1)=t3
intpoints(5,2)=slope*t3+c
endif

if((t4.lt.triloc(1,1)).or.(t4.gt.triloc(2,1))) then

intpoints(6,1)=-1.0d0
intpoints(6,2)=-1.0d0
else
intpoints(6,1)=t4
intpoints(6,2)=slope*t4+c
endif

goto 100
intpoints(5,1)=-1.0d0
intpoints(5,2)=-1.0d0
intpoints(6,1)=-1.0d0
intpoints(6,2)=-1.0d0
continue

compute exit angles for all the possible intersection points

need to determine sense of rotation of the ray (clockwise or not)

flag anticlockwise rays with a negative sign

if(straight) goto 18
if(theta0.eq.0.0d0) then

if(a.lt.x) then
clockwise=1.0d0

else
clockwise=-1.0d0
endif

goto 145
endif

if(dabs(theta0).eq.pi) then
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if(a.lt.x) then
clockwise=—1.0d0

else
clockwise=1.0d0

endif
gate 145

endif
if(dabs(theta0).eq.pion2) then

if(b.lt.z) then

clockwise=dsign(1.0d0,-1.0d0*thetaO)
else

clockwise=dsign(1.0d0,theta0)
endif

goto 145

endif
if((a.ge.x).and.(b.ge.z)) then

clockwise=dsign<1.0d0,theta0)

goto 145
endif

if((a.ge.x).and.(b.lt.z)) then

clockwise=dsign(1.0d0,-1.0d0*theta0)
gate 145
endif

if((a.lt.x).and.(b.ge.z)) then

clockwise=dsign(1.0d0,theta0)
gate 145
endif

if((a.lt.x).and.(b.lt.z)) then
clockwise=dsign(1.0d0,-1.0d0*theta0)

endif
do 140 i=1,6

if(intpoints(i,1).eq.-1.0d0) gate 140
if(a-intpoints(i,1)) 170,160,150
outangle<i)=dasin((intpoints(i,2)-b)/radius)

goto 146

outangle(i)=pion2
goto 146
outangle(i)=dasin((b-intpoints(i,2))/radius)
if((a.gt.intpoints(i,1)).and.(b.9t.intpoints(i,2))) then

if(clockuise.gt.0.0d0) outangle<i)=outangle(i)+pi
elseif((a.gt.intpoints(i,1)).and.(b.lt.intpoints(i,2))) then

if(clockuise.gt.0.0d0) outangle(i)=outangle(i)-pi

elseif((a.lt.intpoints(i,1)).and.(b.gt.intpoints(i,2))) then

if(clockuise.lt.0.0d0) outangle(i)=outangle(i)-pi
elseif((a.lt.intpoints(i,1)).and.(b.lt.intpoints(i,2))) then

if(clockuise.lt.0.0d0) outangle(i)=outangle(i)+pi

elseif(a.eq.intpoints(i,1)) then
outangle(i)=dsign(pion2,-1.0d0*clockuise)

elseif(b.eq.intpoints(i,2)) then
if(clockuise.lt.0.0d0) outangle(i)=outangle(i)-pi
endif

if(outangle(i).lt.0.0d0) outangle<i)=tuopi+outangle(i)

outangle(i)=clockuise*outangle(i)

continue
continue

compute path lengths to each of the intersection points
remembering to compute length in direction of travel
also find nearest intpoint and set its pathlength to 1.0d20

t1=thetao
t3=1.0d70
k=0
if(theta0.lt.0.0d0) t1=tuopi+theta0
do 180 i=1,6

if(intpoints(i,1).eq.-1.0d0) then
pathlength(i)=1.0d20

elseif(straight) then
pathlength(i)=dsqrt((intpoints(i,1)-x)**2+

(intpoints(i,2)-z)**2)
else

if(outangle(i).lt.0.0d0) then
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t2=dabs(0utangle(i))-t1

else

t2=t1-outangle(i)

endif

if(t2.lt.0.0d0) t2=tuopi+t2

pathlength(i)=radius*t2

endif

t6=(x-intpoints(i,1))**2+(z-intpoints(i,2))**2

if(t4.lt.t3) then

t3=t4

k=i

endif

continue

pathlength(k)=1.0d20

choose shortest pathlength left and flag that exit point

exitpoint=0

t1=1.0d20

do 195 i=6,1,-1

if(pathlength(i).lt.t1) then

t1=pathlength(i)

exitpoint=i

endif

continue

compute time through this cell and add to ray’s total time

if<straight) then

t1=((intpoints(exitpoint,1)-x)*vx)+

((intpoints<exitpoint,2)-z)*vz)+v0

nb: harmonic mean

t1=(1/t1+1/v0)/2

t1=pathlength(exitpoint)*t1

t=t+t1

else

t2=dabs(outangle(exitpoint))

if(t2.gt.pi) t2=t2-tuopi

t4=dabs(velang-t2)

t5=dabs(velang-theta0)

if(t4.gt.pi) t4=dabs<t4-tuopi)

if(t5.gt.pi) t5=dabs(t5-tuopi)

t1=(1/dabs(gradient))*dlog(dtan(t4/2.0d0)/dtan(t5/2.0d0))

t=t+t1

endif

reset necessary parameters for completion of this triangle

x=intpoints(exitpoint,1)

z=intpoints(exitpoint,2)

if(.not.(straight)) then

thetaO=dabs(outangle(exitpoint))

if(theta0.gt.pi) theta0=thetaO-tuopi

endif

straight=.false.

check to see if ray is passing through a grid point and if so,

shift it by one tenth of a millimetre and compute new cell

if((dmod(x,dble(mint)).lt.tol).and.

(dmod(z,dble(nint)).lt.tol)) then

if(triflag) then

if(((x-triloc(1,1)).lt.tol).and.((z-triloc(1,2)).lt.tol))
then

x=triloc(1,1)

z=triloc(1,2)+0.0001d0

tri(1,1)=tri(3,1)-1

tri(1,2)=tri(3,2)

tri(2,1)=tri(1,1)+1

tri(2,2)=tri(1,2)

tri(3,1)=tri(1,1)

tri(3,2)=tri(1,2)-1

triloc(1,1)=triloc(3,1)-dble(mint)
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triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)
triloc(2,2)=triloc(1,2)
triloc(3,1)=triloc(1,1)
triloc(3,2)=triloc(1,2)-dble(nint)

elseif(((x-triloc(2,1)).lt.tol).and.((z-triloc(2,2)).lt.tol)) then
x=triloc(2,1)
z=triloc(2,2)+0.0001d0
tri(1,1)=tri(3,1)
tri(1,2)=tri(3,2)
tri(2,1)=tri(1,1)+1
tri(2,2)=tri(1,2)
tri(3,1)=tri(1,1)
tri<3,2)=tri(1,2)-1
triloc(1,1)=triloc(3,1)
triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)

triloc(2,2)=triloc(1,2)
triloc(3,1)=triloc(1,1)
triloc(3,2)=triloc(1,2)-dble(nint)

elseif(((x-triloc<3,1)).lt.tol).and.((z-triloc(3,2)).lt.tol)) then
x=triloc(3,1)
z=triloc(3,2)-0.0001d0
tri(1,1)=tri(3,1)
tri<1,2)=tri(3,2)

tri(2,1)=tri(1,1)+1
tri(2,2)=tri(1,2)
tri(3,1)=tri(1,1)
tri(3,2)=tri(1,Z)-1

triloc(1,1)=triloc(3,1)
triloc(1,2)=triloc(3,2)

triloc(2,1)=triloc(1,1)+dble(mint)
triloc(2,2)=triloc(1,2)
triloc(3,1)=triloc(1,1)
triloc(3,2)=triloc<1,2)-dble(nint)

endif
else

if(((x-triloc(1,1)).lt.tol).and.((z-triloc(1,2)).lt.tol)) then
x=triloc(1,1)+0.0001d0
z=triloc(1,2)
tri(3,1)=tri(2,1)
tri(3,2)=tri(2,2)+1
triloc(3,1)=triloc(2,1)

triloc(3,2)=triloc(2,2)+dble(nint)
elseif(((x-triloc(2,1)).lt.tol).and.((z-triloc(2,2)).lt.tol)) then

x=triloc(2,1)-0.0001d0
z=triloc(2,2)

tri(3,1)=tri(2,1)
tri(3,2)=tri(2,2)+1
triloc(3,1)=triloc(2,1)
triloc(3,2)=triloc(2,2)+dble(nint)

elseif(((x-triloc(3,1)).lt.tol).and.((z-triloc(3,2)).lt.tol)) then
x=triloc(3,1)
z=triloc(3,2)+0.0001d0
tri(1,1)=tri(3,1)-1

tri(1,2)=tri(3,2)
tri(2,1)=tri(1,1)+1

tri(2,2)=tri(1,2)
tri(3,1)=tri(2,1)
tri(3,2)=tri(2,2)+1
triloc(1,1)=triloc(3,1)-dble(mint)
triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)
triloc(2,2)=triloc(1,2)

triloc(3,1)=triloc(2,1) -
triloc(3,2)=triloc(2,2)+dble(nint)
endif

endif
triflag=.not.(triflag)
goto 1000

endif
if((exitpoint.eq.1).or.(exitpoint.eq.2)) then
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if(triflag) then
tri(3,1)=tri(3,1)-1
tri(3,2)=tri(3,2)-2
triloc(3,1)=triloc(3,1)-dble(mint)

triloc(3,2)=triloc(3,2)-2.0d0*dble(nint)
else

tri(3,1)=tri(3,1)+1
tri(3,2)=tri(3,2)+2
triloc(3,1)=triloc(3,1)+dble(mint)
triloc(3,2)=triloc(3,2)+2.0d0*dble(nint)
endif

triflag=.not.(triflag)

endif
if((exitpoint.eq.3).or.(exitpoint.eq.4)) then

if<triflag> then

tri(1,1)=tri(3,1)
tri(1,2)=tri(3,2)
tri(2,1)=tri(1,1)+1
tri(2,2)=tri(1,2)
tri(3,1)=tri(1,1)
tri(3,2)=tri(1,2)-1
triloc(1,1)=trilo¢(3,1)
triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)
triloc<2,2)=triloc(1,2)
triloc(3,1)=triloc(1,1)
triloc(3,2)=triloc(1,2)-dble(nint)

else
tri(1,1)=tri(3,1)-1
tri(1,2)=tri(3,2)
tri(2,1)=tri(1,1)+1
tri(2,2)=tri(1,2)
tri(3,1)=tri(1,1)+1
tri(3,2)=tri(1,2)+1
triloc(1,1)=triloc(3,1)-dble(mint)

triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)
triloc(2,2)=triloc(1,2)
triloc(3,1)=triloc(1,1)+dble(mint)

triloc(3,2)=triloc(1,2)+dble(nint)
endif

triflag=.not.(triflag)

endif
if((exitpoint.eq.5).or.(exitpoint.eq.6)) then

if(triflag) then
tri(1,1)=tri(3,1)-1

tri(1,2)=tri(3,2)
tri(2,1)=tri(1,1)+1
tri(2,2)=tri(1,2)
tri(3,1)=tri(1,1)
tri(3,2)=tri(1,2)-1
triloc(1,1)=triloc(3,1)-dble(mint)
triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)
triloc(2,2)=triloc(1,2)
tritoc(3,1)=triloc(1,1)
triloc(3,2)=triloc(1,2)-dble(nint)

else
tri(1,1)=tri(3,1)
tri(1,2)=tri(3,2)
tri(2,1)=tri(1,1)+1
tri(2,2)=tri(1,2)
tri(3,1)=tri(1,1)+1
tri(3,2)=tri(1,2)+1
triloc(1,1)=triloc(3,1)
triloc(1,2)=triloc(3,2)
triloc(2,1)=triloc(1,1)+dble(mint)
triloc(2,2)=triloc(1,2)
triloc(3,1)=triloc(1,1)+dble(mint)
triloc(3,2)=triloc(1,2)+dble(nint)
endif

triflag=.not.(triflag)

-249—

RAYTRACE



RAYTRACE

endif

1000 return
end
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SAJDEZ

aPROCESSqDC(GAUS),DPT(3),VECTOR(LEVEL(2),REPORT(XLIST)),
aPRocsss DIRECTIVE(’*VD:’)
c______________________________________________________________________________

c----- subroutine to compute the frechet derivatives for submission as -----
c----- the response matrix to MEM_NL -----
c----- this subroutine uses SEmi-Analytic Derivative Estimate no 1 -----
c ----- uses Chuck Suord’s XERR statistic -----
c ----- this routine is called for each ray involved in the data times -----
c..............................................................................

subroutine sade2(index,sloc1,tang1,sloc2,tangZ,datatime,xerr,R)
c..............................................................................

c ----- index = index number of ray as stored in geom file

c ----- sloc1 = surface location of ray1
c----- tang1 = take off angle of ray1
c ----- sloc2 = surface location of rayZ
c ----- tangZ = take off angle of rayZ

c ----- datatime= actual measured time of ray
c ----- xerr = Chuck Sword's statistic
c.....

c ----- nq = maximum number of rows in velocity grid
c----- mq = maximum number of columns in velocity grid

c ----- n = actual number of rows in velocity grid
c----- m = actual number of columns in velocity grid
c----- nint = spatial increment between grid rous
c ----- mint = spatial increment between grid columns
c.....

c ----- nmaxq = maximum number of velocity nodes
c----- mmaxq = maximum number of data rays

c----- maxq = maximum of nmaxq and mmaxq
c----- nmax = actual number of velocity nodes
c ----- nmax = actual number of data rays

c ----- max = maximum of nmax and nnmx
c_____

c----- vel(nq,mq)= values of velocity at grid points
c.....

c----- ray1travel(nq*mq,6) = array that stores cell,theta0,x,z,t for ray1’s path
c ----- num = number of points in ray1travel
c ----- rathravel<nq*mq,6) = array that stores cell,theta0,x,z,t for rayZ's path
c----- num2 = number of points in rathravel
c_____

c ----- i,j,k= temporary integer variables
c----- t1,t2,t3,t4,t5= temporary double-precision variables
c .....

c ----- tri = coordinate indices of the apex of the current triangle
c_____

c----- rou = the row of the current cell
c----- col = the column of the current cell
c ----- trinode1,2,3 = velocity node indices of apices of current triangle
c----- rec1 = integer variable for record numbers
c.....

c ----- R(nq*mq) = temporary frechet derivative array
c.....
c.........................................................................

real*4 nint,mint

real*b ray1travel,ray2travel
real*A sloc1,tangi,sloc2,tangz

real*4 vel

real*4 datatime,xerr,neuxerr
real*4 R

real*8 triloc,tmptriloc
real*8 thetav,lenv
real*8 xout,zout,thetaout,timeout
real*8 finalx1,finalx2,finalz,dtdz1,dxdz1,dtd22,dxd22

real*8

logica

finalv1,finalv2
neuthv,neux1,neHx2,neuz,neudxdzi,neudxdzZ
neudtdz1,neudtd22
t1,t2,t3,t4,t5

l triflag,tmptriflag
integer*4 i,j,k,ndat,ndatq
intege

intege

r*4 n,m,dne,nq,mq
r*4 index
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integer*4 nmax,nnax,max,nmaxq,mmaxq,maxq
integer*4 num,num2

integer*4 rou,col
integer*4 tri,tmptri

integer*4 trinode

integer*4 rec1
integer*4 p,mult,rem,block,nc

parameter(nq=90,mq=210)
parameter(nmaxq:17000,nnqu=4200,maxq=17000)
parameter<ndatq=4200)

dimension vel(nq,mq)
dimension ray1travel<nq*mq,6),ray2travel(nq*mq,6)
dimension R(nq*mq)
dimension tri(3,2),triloc(3,2)
dimension tmptri(3,2),tmptriloc(3,2)
dimension trinode(3)
common [temp/no

connnn [velocity/vet
common [travel/ray1travel,num,ray2travel,num2
common /sade/finalx1,finalx2,finalz,dtdz1,dxdz1,dtdzZ,dxdz2,

finalv1,finalv2
common /conparm/n,m,nint,mint,nmax,nnnx,max,ndat,dne

set constants and initial variables

t1=0.0d0
t2=0.0d0
t3=0.0d0
t4=0.0d0
t5=0.0d0

compute all velocity nodes affected by the rays
begin working along path of ray1

if(num.lt.2) Soto 22222
do 1000 i=1,num-1

if(ray1travel(i+1,4).ge.finalz) goto 1000

first compute the ‘tri' nodes affecting this cell

p=int(ray1travel(i,1))
rem=mod(p,(2*(m-1)))
mult=<p~rem)/(2*(m-1))
rou=mult+1

if(rem.eq.0) rou=row~1
if(rem.gt.0) then

col=int((rem-1)/2.0)+1
else

col=m-1
endif

if(mod(ray1travel(i,1),2.0e0).eq.0.0e0) then
tri(1,1)=col
tri(1,2)=rou

tri(2,1)=col+1

tri(2,2)=rou

tri(3,1)=col+1
tri(3,2)=rou+1

else
tri(1,1)=col
tri(1,2)=rou+1
tri(2,1)=col+1
tri(2,2)=rou+1
tri(3,1)=col
tri<3,2)=row
endif

triloc(1,1)=dble((tri(1,1)-1)*mint)
triloc(1,2)=dble<(tri(1,2)-1)*nint)
triloc(2,1)=dble((tri(2,1)-1)*mint)
triloc(2,2)=dble((tri(2,2)-1)*nint)
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triloc(3,1)=dble((tri(3,1)-1)*mint)

triloc(3,2)=dble((tri(3,2)-1)*nint)

if(tri(1,2).lt.tri(3,2)) then

triflag=.true.

else

triflag=.false.

endif

c----- compute the corresponding velocity node indices

trinode(1)=(tri(1,2)-1)*m+tri(1,1)

trinode(2)=<tri(2,2)-1)*m+tri(2,1)

trinode(3)=<tri(3,2)-1)*m+tri(3,1)

c----- compute derivatives for these nodes and add to R matrix

c----- first re-trace through cell with perturbed velocity to find

c ----- the effect on exitangle and time

c----- do this for each of the 3 trinodes

c----- compute parameters of the vector V

t1=dble(ray1travel(i+1,3))

t3=dble(ray1travel(i+1,4))

thetaV=datan((finalx1-t1)/(finalz-t3))

lenV=dsqrt((finalx1-t1)**2+(finalz-t3)**2)

do 1010 k=1,3

tmptri(1,1)=tri<1,1)

tmptri(1,2)=tri<1.2)

tmptri(2,1)=tri(2,1)

tmptri(2,2)=tri(2,2)

tmptri(3,1)=tri(3,1)

tmptri(3,2)=tri(3,2)

tmptriloc(1,1)=triloc(1,1)

tmptriloc(1,2)=triloc(1,2)

tmptriloc(2,1)=triloc(2,1)

tmptriloc(2,2)=triloc(2,2)

tmptriloc(3,1)=triloc(3,1)

tmptriloc(3,2)=triloc(3,2)

tmptriflag=triflag

t1=dble(ray1travel(i,3))

t2=dble<ray1travel(i,2))

t3=dble(ray1travel(i,4))

t4=dble(ray1travel(i,5))

t5=0.0d0

vel(tri(k,2),tri(k,1))=vel(tri(k,2),tri(k,1))*1.0025

call raytrace(t1,t2,t3,t4,tmptriflag,tmptri,tmptriloc)

vel(tri(k,2),tri(k,1))=vel(tri(k,2),tri(k,1))/1.0025

xout=t1

zout=t3

thetaout=t2

timeout=t4

c----- adjust thetav and compute new end point

t\=(thetauut-dbletrayltravelti+\.2)))

newthV=thetaV+t1

newx1=xout+lenv*dsin(newthV)

newz=zout+lenV*dcos(newthV)

c----- compute new deriv's and allow for time/depth correction and

c----- then compute partial frechet deriv for this node

newdxdz1=dtan(datan(dxdz1)+t1)

if(dabs(1/(finalv1*dtdz1))-9t.1.0d0) then

newdtd21=1/(finalv1*dcos(t1))

else

newdtdz1=1l<finalv1*dcos(dacos(1/(finalv1*dtd21))+t1))

endif

t5=dsqrt((xout-dble(ray1travel(i+1,3)))**Z+(zout-

+ dble(ray1travel(i+1,4)))**2)

if(t5.gt.1.0d0) then

newz=newz+<timeout-ray1travel(i+1,5))/newdtdz1

endif

t2=(newz-finalz)*dtdzz+(timeout-ray1travel(i+1,5))

newx2=(newz-finalz)*dxdzZ+finalx2
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t3=-1.0d0*t2/(neudtdz1+dtdzZ)
t4=((t3*dxd22)+neux2)'<(t3*neudxdzi)+neux1)
if(dabs(t4-dble(xerr)).lt.10.0d0)
R(trinode(k))=R(trinode(k))+sngl(t4-dble(xerr))/

(vel(tri(k,2),tri(k,1))*0.0025)
if(dabs(t4-dble(xerr)).ge.10.0d0) nc=nc+1

continue

continue

now do the same for rayZ

if(num2.lt.2) goto 99999

do 2000 i=1,num2-1
if(rathravel(i+1,4).ge.finalz) goto 2000

first compute the ‘tri’ nodes affecting this cell

p=int(ray2travel(i,1))

rem=md(p,(2*(m-1)))
mult=(p-rem)/(2*(m-1))
rou=mult+1
if(rem.eq.0) rou=rou-1
if(rem.gt.0) then

col=int((rem-1)/2.0)+1
else

col=m~1
endif

if(mod(ray2travel(i,1),2.0e0).eq.0.0e0) then

tri(1,1)=col
tri(1,2)=rou
tri(2,i)=col+1

tri(2,2)=rou
tri(3,1)=col+1

tri(3,2)=rou+1

else
tri(1,1)=col

tri(1,2)=rou+1
tri(2,1)=col+1

tri(2,2)=rou+1
tri(3,1)=col

tri(3,2)=rou
endif

triloc(1,1)=dble((tri(1,1)-1)*mint)
triloc(1,2)=dble((tri(1,2)-1)*nint)
triloc(2,1)=dble((tri(2,1)-1)*mint)

triloc(2,2)=dble((tri(2,2)-1)*nint)
triloc(3,1)=dble((tri(3,1)-1)*mint)
triloc(3,2)=dble((tri(3,2)-1)*nint)

if(tri(1,2).lt.tri(3,2)) then
triflag=.true.

else
triflag=.false.
endif

compute the corresponding velocity node indices

trinode<1)=(tri(1,2)-1)*m+tri(1,1)
trinode(2)=(tri(2,2)-1)*m+tri(2,1)
trinode(3)=(tri(3,2)-1)*m+tri(3,1)

compute derivatives for these nodes and add to R matrix

first re-trace through cell with perturbed velocity to find
the effect on exitangle and time

do this for each of the 3 trinodes

compute parameters of the vector V
t1=dble<ray2travel(i+1,3))
t3=dble(ray2travel(i+1,4))
thetaV=datan((finalx2-t1)/(finalz-t3))
lenV=dsqrt((finalx2-t1)**2+(finalz-t3)**2)
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do 2010 k=1,3
tmptri(1,1)=tri(1,1)
tmptri<1,2)=tri(1,2)
tmptri(2,1)=tri(2,1)

tmptri(2,2)=tri<2,2)
tmptri(3,1)=tri(3,1)
tmptri<3,2)=tri(3,2)
tmptriloc(1,1)=triloc(1,1)

tmptriloc(1,2)=triloc(1,2)
tmptriloc(2,1)=triloc(2,1)
tmptriloc(2,2)=triloc(2,2)

tmptriloc(3,1)=tritoc(3,1)
tmptriloc(3,2)=triloc(3,2)
tmptriflag=triflag
t1=dble(ray2travel(i,3))
t2=dble(ray2travel(i,2))
t3=dble<ray2travel(i,4))

t4=dble(ray2travel(i,5))
t5=0.0d0
vel(tri(k,2),tri(k,1))=vel(tri(k,2),tri(k,1))*1.0025
call raytrace(t1,tZ,t3,t4,tmptriflag,tmptri,tmptriloc)
vel(tri(k,2),tri(k,1))=vel(tri(k,2),tri(k,1))/1.0025
xout=t1
zout=t3
thetaout=t2
timeout=t4

c----- adjust thetav and compute neu end point
t1=(thetaout-dble(rathravel(i+1,2)))

neuthV=thetaV+t1
newx2=xout+lenv*dsin(neuthV)
neuz=zout+lenV*dcos(neuthV)

c----- compute new deriv's and allow for time/depth correction and
c----- then compute partial frechet deriv for this node

2010
2000

99999

can

return
and

neudxdzZ=dtan<datan(dxd22)+t1)
if(dabs(1/(finalv2*dtd22)).gt.1.0d0) then

neudtdzZ=1/(finalv2*dcos(t1))
else

newdtdzZ=1/(finalv2*dcos(dacos(1/(finalv2*dtd22))+t1))
endif

t5=dsqrt((xout-dble(rathravel(i+1,3)))**2+(zout-
dble(ray2travel(i+1,4)))**2)

if(t5.gt.1.0d0) then

newz=neuz+<timeout-rathravel(i+1,5))/neudtdzZ
endif

t2=(neuz-finalz)*dtdz1+(timeout-rathravel(i+1,5))
neux1=(neuz-finalz)*dxdz1+finalx1
t3=-1.0d0*t2/(neudtd22+dtdz1)
t4=((t3*neudxdzZ)+neux2)-((t3‘dxdz1)+neux1)
if(dabs(t4-dble(xerr)).lt.10.0d0)
R<trinode(k))=R(trinode<k))+sngl(t4-dble(xerr))l

(vel(tri(k,2),tri(k,1))*0.0025)
if(dabs(t4-dble(xerr)).9e.10.0d0) nc=nc+1
continue
tinue
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BPROCESS DC(GAUS),OPT(3),VECTOR(LEVEL(Z),REPORT(XLI$T)).
QPROCESS DIRECTIVE("VD:')
c..............................................................................

c----- subroutine to compute the Heights based on the Xerr's for each ray -----

c----- currently the Xerr threshold is 300 metres -----
c..............................................................................

subroutine varian(F)
c..............................................................................

c.....

c----- the preliminary comments in METOM056 describe the variables in this

c ----- subroutine
c.....
c-------------------------------------------

-----------------------------------

real*6 F,sig,ai,bi,XXerr,XXerrZ
real*6 pi,pi6,pi18,t1,ts,tc
real*4 nint,mint

integer*4 ndat,ndatq

integer'k i,j,k,n,m,nmax,mmax,max,dne

parameter<ndatq=6200)

dimension F(ndatq),sig(ndatq)
dimension ai(ndatq),bi(ndatq),XXerr(ndatq),XXerr2(ndatq)

common /var/sig,ai,bi,XXerr,XXerr2
common /conparm/n,m,nint,mint,nmax,mmax,max,ndat,dne

c
c ----- set constants and initial variables
c

pi=4.0*atan(1.0)
pi6=-1.0*pi/600.0
pi18=-1.0*(pi**2)/180000.0

c
c----- compute the sig(k) values using a modified Hanning window function

c-----also compute the ai's, bi's, and set Xerr and Xerrz (see T.N.26)

c
do 100 k=1,ndat

t1=pi*F(k)/300.0
ts=sin<t1)
tc=cos(t1)
ai(k)=pi6*ts*(0.75+0.25*tc)
bi(k)=pi18*(0.75*tc+0.25*tc**2-0.25*ts**2)

XXerr(k)=F(k)
XXerr2(k)=F(k)**2
if(F<k).ge.300.0) then

sig(k)=0.25
ai(k)=0.0
bi(k)=0.0
gate 100

endif
sig(k)=0.75+0.25*tc
sig(k)=sig(k)**2

100 continue

return
end
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aPROCESS DC(GAUS),OPT(3).VECTOR(LEVEL(2),REPORT(XLIST)),
BPROCESS DIRECTIVE(’*VD:’)
c______________________________________________________________________________

c----- subroutine to trace two rays through medium divided into triangles -----
c----- both traces have known starting locations and initial angles -----
c----- traces both rays through depth levels until data time is exceded -----
c ----- so that chuck Sword's 'xerr' statistic can be calculated -----
c ----- all real calculations in double-precision -----
c..............................................................................

subroutine xerrrt(sloc1,tang1,sloc2,tangZ,datatime,xerr,ray)
c..............................................................................

c----- sloc1 = source location of first ray
c----- tang1 = take-off angle in radians (positive angle implies

c ----- in direction of increasing distance) of first ray
c ----- slocZ = source location of second ray
c ----- tangZ = take-off angle in radians (positive angle implies
c ----- in direction of increasing distance) of second ray
c ----- datatime = actual travel time of configured ray

c ----- xerr = Chuck Sword's statistic
c _____

c ----- nq = maximum number of rows in velocity grid
c----- mq = maximum number of columns in velocity grid
c ----- n = actual number of rows in velocity grid
c ----- m = actual number of columns in velocity grid
c ----- nint = spatial increment between grid rows

c ----- mint = spatial increment between grid columns
c _____

c ----- vel(nq,mq)= values of velocity at grid points
c.....

c ----- ray1travel(n*m,6) = array that stores cell,theta0,x,z,t for ray1's path
c----- num = number of points in ray1travel
c ----- rathravel(n*m,6) = array that stores cell,theta0,x,z,t for ray2's path
c ----- numZ = number of points in rathravel
c_____

c ----- raylocs = array containing locations of first ray for graphing

c----- raylocsZ= array containing locations of second ray for graphing
c.....

c----- i,j,k= temporary integer variables
c ----- t1,t2,t3,t4,t5= temporary double-precision variables
c _____

c ----- storage parameters:
c ----- ray1x,ray2x = x values
c----- ray1z,ray22 = 2 values
c----- ray1time,ray2time = time values
c ----- ray1theta0,ray2theta0 = thetaO values
c ----- ray1tri(3,2),ray2tri<3,2) = tri values
c ----- ray1triloc(3,2),ray2triloc(3,2) = triloc values
c----- ray1triflag,ray2triflag = triflag values
c .....

c ----- ray1exit = .true. if ray1 has exited the model area
c _____

c ----- oldtime = total time at last level
c ----- oldxerr = xerr at last level
c----- oldray1x )
c ----- oldrany )
c----- oldz )----- parameters of last level; used in computations
c ----- oldtimei ) for sadeZ

c ----- oldtimeZ )
c _____
c.........................................................................

real*4 sloc1,tang1
real*k sloc2,tangZ

real*4 datatime,xerr

real*4 nint,mint
real*k vel
real*8 ray1x,ray2x,ray1z,ray22

real*8 ray1time,ray2time
real*8 ray1triloc,ray2triloc
real*8 ray1theta0,ray2theta0
real*4 ray1travel,ray2travel
real*8 oldtime,oldxerr
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real*8 oldray1x,oldray2x,oldz,oldtime1,oldtimeZ
real‘8 finalx1,finalx2,finalz,dtdz1,dxdz1,dtdzZ,dxdzZ
real*8 finalv1,finalv2
real*8 t1,t2,t3,t4,t5
logical ray1triflag,ray2triflag
logical ray1exit

logical raybad

integer*4 i,j,k

integer'4 ray,ndat,nmax,nnax,max,dne

integer*4 n,m,nq,mq,ndatq
integer'b ray1tri,ray2tri
integer*4 num,num2

integer*4 numnull,numturn,iterat

parameter(nq=90,mq=210)
parameter<ndatq=4200)

dimension vel(nq,mq)
dimension raybad<ndatq>
dimension raylocs(2,nq*mq)
dimension raylocsZ(2,nq*mq)
dimension ray1tri(3,2),ray2tri(3,2)
dimension ray1triloc(3,2),ray2triloc(3,2)

dimension ray1travel(nq*mq,6),rathravel(nq*mq,6)
common [velocity/vel
cannon literat/iter
connnn /travel/ray1travel,num,ray2travel,numZ
common Isade/finalx1,finalx2,finalz,dtd21,dxd21,dtdzZ,dxdzZ,

finalv1,finalv2
common /lgxerr/raybad
common /nums/numnull,numturn
common /conparm/n,m,nint,mint,nmax,mmax,max,ndat,dne

set constants and initial variables

t1=0.0d0
t2=0.0d0
t3=0.0d0
t4=0.0d0
t5=0.0d0
ray1exit=.false.
num=0

num2=0
do 10 i=1,n*m

ray1travel(i,1)=0.0e0
rathravel(i,1)=0.0e0

continue

put parameters for first ray into storage

ray1x=dble<sloc1)
ray1theta0=dble<tang1)

rayiz=0.0d0
ray1time=0.0d0
ray1triflag=.true.
ray1tri(1,1)=dint(dble(sloc1/mint))+1
ray1tri(1,2)=1
ray1tri(2,1)=ray1tri(1,1)+1
ray1tri(2,2)=1
ray1tri(3,1)=ray1tri(2,1)
ray1tri(3,2)=2
ray1triloc(1,1)=dble(ray1tri(1,1)-1)*dble(mint)
ray1triloc(1,2)=0.0d0
ray1triloc(2,1)=ray1triloc(1,1)+dble(mint)
ray1triloc(2,2)=0.0d0
ray1triloc(3,1)=ray1triloc(2,1)
ray1triloc(3,2)=dble(nint)

put parameters for second ray into storage

ray2x=dble(sloc2)
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rathhetaO=dble<tan92)

ray22=0.0d0

rathime=0.0d0

rathriflag=.true.

ray2tri(1,1)=dint(dble(slocZ/mint))+1

ray2tri(1,2)=1

rathri(2,1)=ray2tri(1,1)+1

rathri(Z,2)=1

rathri(3,1)=ray2tri(2,1)

rathri(3,2)=2

rathriloc(1,1)=dble(ray2tri(1,1)‘1)*dble(mint)

rathriloc(1,2)=0.0d0

rathriloc(2,1)=rathriloc(1,1)+dble(mint)

rathriloc(2,2)=0.0d0

rathriloc(3,1)=ray2triloc(2,1)

ray2triloc(3,2)=dble(nint)

load initial points into graphing array and "raytravel's"

num=1

ray1travel(1,1)=float(ray1tri(1,1)*2+(ray1tri(1,2)-1)*(m-1)*2)

ray1travel(1,2)=tang1

ray1travel(1,3)=sloc1

ray1travel(1,4)=0.0e0

ray1travel(1,5)=0.0e0

ray1travel(1,6)=0.0e0

num2=1

rathravel(1,1)=float(ray2tri(1,1)*2+(ray2tri(1,2)-1)*(m-1)*2)

ray2travel(1,2)=tan92

rathravel(1,3)=sloc2

rathravel(1,4)=0.0e0

rathravel(1,5)=0.0e0

ray2travel(1,6)=0.0e0

trace ray1 through to the next level

oldtime=ray1time+ray2time

oldxerr=ray2x-ray1x

oldray1x=ray1x

oldray2x=ray2x

oldz=ray1z

oldtime1=ray1time

oldtime2=ray2time

call raytrace(ray1x,ray1theta0,ray1z,ray1time,ray1triflag,

ray1tri,ray1triloc)

load results into ‘ray1travel' memory array and graphing array

num=num+1

if(num.gt.n*m) goto 88888

i=0

if(.not.ray1triflag) i=2*(m-1)+1

ray1travel(num,1)=float(ray1tri(1,1)*2+(ray1tri(1,2)—1)*

(m-1)*2-i)

ray1travel(num,2)=sngl(ray1theta0)

ray1travel<num,3)=sngl(ray1x)

ray1travel(num,4)=sngl(ray1z)

ray1travel(num,5)=sngl(ray1time)

ray1travel(num,6)=0.0d0

check to see if rayl has left the model

if not check to see if the next level has been reached

if(<ray1tri(1,1).lt.1).or.(ray1tri(2,1).gt.m).or.

(ray1tri(3,2).lt.1)) then

ray1exit=.true.

xerr=0.0e0

return

endif

if(ray1z.le.ray1travel(num-1,4)) then

numturn=numturn+1
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xerr=0.0e0
return
endif

if<dmod(ray1z,dble(nint)).ne.0.0d0) goto 11111

trace ray2 through to the next level

call raytrace(ray2x,ray2theta0,ray22,ray2time,ray2triflag,
ray2tri,ray2triloc)

load results into ‘ray2travel’ memory array and graphing array

num2=num2+1
if(num2.gt.n*m) goto 88888
i=0
if<.not.ray2triflag) i=2*(m-1)+1

ray2travel(num2,1)=float(ray2tri(1,1)*2+(ray2tri(1,2)-1)*
v (m-1)*2-i)

ray2travel(num2,2)=sngl(ray2thetaO)
ray2travel<num2,3)=sngl(ray2x)
ray2travel(num2,4)=sngl(ray22>
ray2travel(num2,5)=sngl(ray2time)
ray2travel(num2,6)=0.0d0

check to see if ray2 has left the model
if not check to see if the next level has been reached

if((ray2tri(1,1).lt.1).or.(ray2tri(2,1).gt.m).or.

(rathri(3,2).lt.1)) then
xerr=0.0e0
return
endif

if(ray22.le.ray2travel(num2-1,4)) then
numturn=numturn+1

xerr=0.0e0

return
endif

if(dmod<ray22,dble(nint)).ne.0.0d0) goto 22222
if(ray1exit) goto 99999

check to see if the data time has been surpassed

if((ray1time+ray2time).ge.dble(datatime)) goto 99999

check to see if the last level has been reached
otherwise loop back to trace to next level

if(idnint(ray1z/dble(nint)).eq.(n-1)) then
xerr=0.0e0

return
endif

goto 1000

if n*m intersection points exists, write to screen and output zero

write(2,'(2x,340)') '******* number of int points exceeded ’
xerr=0.0

return

calculate ‘xerr' (linearly interpolating between levels)

t1=ray2x-ray1x
t2=ray1time+ray2time

t3=((dble(datatime)-oldtime)/(t2-oldtime))
t4=t3*(t1-oldxerr)
xerr=sngl(oldxerr+t4)

if(abs(xerr).gt.350.0) then
xerr=0.0
raybad(ray)=.true.
numul l=numul l+1
return
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endif
c
c ----- compute 2, final x's and the four derivatives
c

finalx1=otdray1x+<ray1x-oldray1x)*t3
finalx2=oldray2x+(rany-oldrany)*t3
finalz=oldz+t3*dble(nint)
dtdz1=(ray1time-oldtime1)lnint
dxdz1=(finalx1-oldray1x)/(t3*nint)
dtdzZ=(rathime-oldtime2)/nint
dxdzZ=(finale-oldrany)/(t3*nint)
finalv1=dmax1(dble(vel(ray1tri(1,2),ray1tri(1,1))),

+ dble(vel(ray1tri(2,2),ray1tri(2,1))),
+ dble(vel(ray1tri(3,2),ray1tri(3,1))))

finalv2=dmax1(dble(vel(ray2tri(1,2),ray2tri(1,1))),
+ dble(vel(ray2tri(2,2),ray2tri(2,1))),
+ dble(vel(ray2tri(3,2),ray2tri(3,1))))

return
end
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