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CHAPTER 1

Introduction

1.1 Research Background

Increasing the penetration rate of on-demand ride services, including the ride-sourcing systems

initiates researches to utilise this technology while minimising its negative side effect on

traffic networks or increasing the ride-sourcing companies profit. In this research, we focus

on developing a holistic solution for ride-sourcing systems to reduce delay. The solution

includes three main components: vehicle-passenger matching, modelling, repositioning of

idle vehicles. In this section, we build the historical foundations of ride-sourcing systems that

originated from taxi systems. In Sections 2.1 and 3.1, we address the most recent literature

that is specifically related to the contributions of each chapter. The contributions of this

thesis not only is applicable to improve the level of service of ride-sourcing systems but also

can provide better intuition about other point-to-point services like ride-sharing, car pooling,

one-way and two-way rebalancing vehicles in carsharing, etc

In this section, we build the historical foundations of ride-sourcing systems that is the

backbone of major studies. In Sections 2.1 and 3.1, we address the most recent literature that

is specifically related to the contributions of each chapter. In Section 2.1, we focus on the

literature of ride-sourcing modeling and vehicle-passenger matching method. Section 3.1 is

devoted to the literature of repositioning/re balancing idle vehicles in a ride-sourcing systems.

The foundation of studying ride-sourcing systems originated from taxi and point-to-point

systems. The contributions of this thesis not only is applicable to improve the level of
1
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service of ride-sourcing systems but also can provide better intuition about other point-to-

point services like ride-sharing, car pooling, one-way and two-way rebalancing vehicle in

carsharing, etc. Specific research backgrounds for vehicle-passenger matching method and

ride-sourcing modeling are presented in Chapter 2. Moreover, the literature of idle vehicle

relocation in ride-sourcing systems is addressed in Chapter 3.

Modeling and control of ride-sourcing systems are interdisciplinary fields of study between

the economists, data scientists, and transport engineers. Study of ride-sourcing systems has

roots in taxi markets and point-to-point services. From the beginning of 1970, taxi regulation

has been studied in many articles. Regulation, granting of franchises or limiting the active taxi

numbers are studied in (Beesley 1973) for the first time. (Orr 1969b; Douglas 1972a; De Vany

1975) study the restriction(s) on supply of taxis and controlling the fares. The authors of (Orr

1969b) reveal that the equilibrium of the the regulated taxi market cannot adequately be

analyzed by a simple competitive cost-demand theory that is described by (Friedman 1962).

In (Douglas 1972a), cruising taxi system is studied as a market. This article concludes that the

differential impacts of regulatory price strategy can be conveniently observed in terms of the

effect on the cost of waiting or delay. The results of the article (De Vany 1975) show that the

Averch-Johnson (A-J) model as a variant of the usual static simple monopoly model , (Averch

and Johnson 1962), and the Chamberlin model as a model explains the short and long run

equilibriums that occur under monopolistic competition, , (Chamberlin 1949), are failed

for considering the value of excess capacity of consumers in taxi systems. (Shreiber 1975;

Coffman and Shreiber 1977) conclude that supplying an appealing model for determination

of price and waiting time in unregulated taxicab markets produces a large number of cabs, a

short waiting time for customers, and high fares. However, the authors in (Williams 1980)

challenge the conclusion of the (Shreiber 1975; Coffman and Shreiber 1977).

In literature of the Transport Engineering, the initial attempts in modelling the cruising of

taxis in network level is presented in (Yang and Wong 1998). This article proposes a network

model to describe how vacant and occupied taxis search for waiting passengers. The model

determine a number of system performance measures at equilibrium such as vacant taxi

movements and taxi utilization for a given road network and the customer demand pattern.
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This article assumed that each driver tries to minimize individual expected search time before

boarding the next customer. In (Xu et al. 1999), a neural network model is developed based

on taxi services that are observed in urban area of Hong Kong to model the complex demand-

supply relationship in urban taxi services. Deriving the nonlinear macroscopic model of

passenger demand, taxi utilization and level-of-services based on a taxi service situation

found in the urban area of Hong Kong is studied in (Yang et al. 2000). They assume that

(i) taxi drivers move to the customer’s destination by the shortest route and (ii) taxi drivers

after serving the customer (i.e. reach to the destination) cruise in the network to minimize

their expected search time to meet the next customer. The probability that a vacant taxi meets

a customer at a particular zone is specified by a logit model. The model is useful to obtain

regulatory information to assist with the decisions concerning the restriction over the number

of taxi licenses and the fixing of the taxi fare structure.

(Wong et al. 2001) incorporates the congestion effects and customer demand elasticity in the

model derived by (Yang et al. 2000). In (Wong et al. 2002), a sensitivity-based solution is

proposed for solving the equations of the model suggested by (Wong et al. 2001). The model

that is suggested in (Wong et al. 2001) is the advanced form of the simple network model of

urban taxi services that is published in (Yang and Wong 1998). A split model is introduced

in (Yang et al. 2002b) for prediction of taxi person and vehicle origin-destination matrices. A

survey article is published in the beginning of 21th century to review network equilibrium

based models and solution algorithms for urban taxi services (Wong et al. 2002).

In (Yang et al. 2002a), a network model is utilized to describe the demand and supply

of equilibrium of taxi services under a fare structure and fleet size regulation in an either

competitive or monopoly market. The authors of (Yang et al. 2002a) considers spatial structure

of the traffic network and customer origin-destination demand pattern. An equilibrium based

model to characterize the bilateral searching and meeting between customers and taxis on

road networks is studied in (Yang et al. 2010a). This article assumes that the bilateral taxi-

customer searching and meeting occurs anywhere in residential and commercial zones or

at prescribed taxi stands such as an airport or a railway stations. In (Yang and Yang 2011)

the authors introduce a meeting function to characterize the search frictions between vacant
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taxis and unserved customers in an aggregated taxi market. A cell-based model to predict

local customer-search movements of vacant taxi drivers is proposed in (Wong et al. 2014).

It incorporates the modeling principles of the logit-based search model and the intervening

opportunity model

In (Ramezani and Nourinejad 2018a), the authors successfully considers the interrelated

effects of taxis and normal vehicles (i.e. the influence of taxis on congestion and reversely).

The article used macroscopic fundamental diagram (MFD) as the basis of large-scale urban

traffic modelling. They develop a dynamic bimodal (cars and taxis) traffic modelling and

control strategy (i.e. taxi dispatching) to improve the urban mobility and to mitigate the traffic

congestion. The proposed model incorporates two aggregate models, (i) a taxi-passenger

meeting function that considers network conditions (i.e. average speed) and (ii) MFD-based

traffic dynamics of personal vehicles and taxis. The paper build the bases of how to incorporate

matching function with mass conservative equations and how to use MFD for controlling the

dispatched taxis.

Another approach in litterateur of the point-to-point transport is utilizing the graph theory to

solve the problems. (Santi et al. 2014) propose a taxi sharing system to balance the number

of the utilized shared taxis (as benefit indicator of taxi sharing system) and the travel time

for the passengers (as discomfort indicator of the passengers). The paper translates the

problem into finding the minimum number of the path that covers the shareability network via

graph theory. The vertices are trip information (i.e. locations of origin-destination, start and

destination times). Finding the minimum number of the taxi cabs (i.e. number of the fleet)

to serve all the given trips (specified by origin, destination and start time) without incurring

any delay to the passengers is studied in (Vazifeh et al. 2018). (Zhan et al. 2016) develops a

taxi service system (i.e. system-wide recommendation sys- tem) for minimizing the cost of

empty trips and minimizing the total number of the required taxi to satisfy all the observed

trips. Moreover, the paper studies how far is the performance gap between current system

and the optimum system by assuming the optimal performance of taxi service system can be

measured quantitatively.



1.1 RESEARCH BACKGROUND 5

The competition between different taxi drivers and different taxi fleets can be model in a

game theory framework (Gan et al. 2013; Salhab et al. 2017; Amar and Basir 2018). The

agent based pricing for considering the congestion during the peak hour is presented in (Gan

et al. 2013). The authors of (Salhab et al. 2017) show how each driver can compute a best-

response strategy to the anticipated behavior of the other drivers. This approach results in an

approximate Nash equilibrium when the number of the players are limited or not. Cooperative

territory allocation approach is studied in (Amar and Basir 2018). This study assumes that

negotiation between taxi service providers can reduce the conflict between taxi drivers.

To tackle the complexity of taxi systems, some articles in literature focus on utilizing the arti-

ficial intelligence and data-driven approaches to study taxi systems. A real-time recommender

system for taxi drivers is suggested in (Huang et al. 2017) to find a next passenger and to

start a new trip. This paper uses historical GPS trajectories of taxis. In this article, prediction

task is translated to a multi-classification problem rather than regression problem. (Lu et al.

2018) obtains a predictive regional model based on passengers’ waiting time. This article

employs recurrent neural network (RNN) and deep learning algorithms. (Wang et al. 2017a)

investigates the problem of predicting the real-time car-hailing supply-demand which is one of

the most important component of an effective scheduling system. The objective is predicting

the gap between the car-hailing supply and demand in a certain area in the next few minutes.

Although there are some similarities between taxi systems and ride-sourcing systems that

make surveying the taxi systems useful, there are some operational differences between them

that make the ride-sourcing systems a disruptive mode. The main differences of ride-sourcing

systems are (i) passengers use a third-party digital platform to request a ride, (ii) drivers

are dispatched to the passengers by a centralised system, (iii) the real-time locations of

the vehicles and passengers are known, (iv) ride-sourcing vehicles are not permitted for

street hailing, (v) drivers have flexible work schedules, and (vi) ride-sourcing drivers are

independent contractors. These differences encourage researchers to study ride-sourcing

system as a new mode of the network. There are many articles in modeling, control, and

positioning of taxi systems. In this study we focus on non-equilibrium analysis and synthesis

of ride-sourcing systems to capture the dynamic of the system for vehicle-passenger matching
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and idle vehicle repositioning. Our holistic solution enable us to have sound solution under

high variation of demand and supply. The implementation of this method in real-world

needs deep understanding of foundation of Macroscopic Fundamental Diagrams and Control

Theory.

1.2 Thesis Objective

The goal of the thesis is to develop a holistic framework to improve the service quality of a

ride-sourcing system in terms of reducing waiting and unassigned time of the ride-sourcing

vehicles and reducing waiting and unassigned time the passengers. To this end, the research

approach deals with three main intertwine problems: designing a vehicle-passenger matching

method, modeling of a ride-sourcing system in a macroscopic level, and designing a proactive

controller for repositioning of idle vehicles.

The specific objectives of this thesis are (i) designing an adaptive spatio-temporal matching

method to dynamically find optimum values for vehicle-passenger maximum matching

distance and the frequency of the matchings, (ii) developing a validated macroscopic model

with capabilities of considering vehicle-passenger matching method and repositioning of

idle vehicles to predict the evolution of the state of ride-sourcing system, and (iii) designing

a Nonlinear Model Predictive Controller (NMPC) for repositioning of the idle vehicles

proactively to the locations with higher probability of being matched to the waiting passengers.

The detailed objectives according to the structure of the chapters are:

Part I: Matching Design and Macroscopic Modelling

The key objectives of Chapter 2 are designing a matching method to assign vehicles to

waiting passengers and developing a model for formulating a a ride-sourcing system.

The matching method consider the join effects of matching frequency and maximum

matching distance and level of congestion in dispatching vehicles to passengers. The

macroscopic modeling predicts the evolution of the different status of ride-sourcing

vehicles (i.e. idle, transferred, dispatched, and occupied) and passengers (i.e. waiting,
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assigned, and on-board) in each region of the network. We validate the macroscopic

model via microsimulation.

Part II: Idle Vehicle Dynamic Repositioning

The objective of Chapter 3 is developing a dynamic method for relocating idle vehicles

proactively to balance the demand of waiting passengers and the supply of ride-sourcing

vehicles. In this Chapter, we assume that the drivers obey the ride-sourcing system

transfer commands. To this end, we design a NMPC to predict the future evolution of

the different status of ride-sourcing vehicles and passengers to minimize the predicted

total waiting time of vehicles and total predicted time of passengers over the limited

prediction horizon. By microsimulation experiments, we show that the pro-activeness in

relocating vehicles reduces the unassigned and waiting time of vehicles and passengers

simultaneously, avoids wild goose chase. Furthermore, we show that the transferring

method can be an incentive for majority of vehicles’ drivers.

1.3 Thesis Outline

In this thesis we propose a holistic framework that consist of three main subsystem: mac-

roscopic modeling, vehicle-passenger matching method, and transferring of idle vehicles.

Chapter 2 focuses on designing a spatio-temporal matching method and macroscopic model-

ling of a ride-sourcing system. In this chapter, we elaborate different status of ride-sourcing

vehicles and passengers in the ride-sourcing system. Also, we illustrate how the proposed

macroscopic model comprises dispatching (i.e. matching) and transferring (i.e. redistributor).

Furthermore, assessing the performance of the proposed adaptive-spatio temporal matching

method and illustrating the accuracy of the model using microsimulation experiments are

studied in this chapter. Chapter 2 is organized as an article submitted for publication as:

M. Ramezani, AH. Valadkhani, “Dynamic Ride-Sourcing Systems for City-Scale

Networks - Part I: Matching Design and Model Formulation and Validation,” under

review in Transportation Research Part C.
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In Chapter 3, we explain the framework of the dynamic vehicle repositioning system and

introduce the mathematical formulation of the transferring system in a state-space form. In

the following of this chapter, a discussion on estimation of the prediction of endogenous

inputs is presented to increase the controllability of the macroscopic model. We propose a

NMPC based on the developed model and estimation of the prediction of endogenous inputs

for repositioning idle vehicles proactively. We evaluate the performance of the NMPC in com-

parison with a reactive controller and with no controller with the developed microsimulation.

This chapter is organized as an article submitted for publication as:

AH. Valadkhani, M. Ramezani, Dynamic Ride-Sourcing Systems for City-Scale

Networks - Part II: Proactive Vehicle Repositioning,” under review in Transportation

Research Part C.

In Chapter 4, the thesis is concluded and the future work is presented.



CHAPTER 2

Matching Design and Macroscopic Modelling

The ubiquity of smart-devices enables the foundation for emerging fast-growing ride-sourcing

companies that challenges the traditional taxi services. Two design aspects of ride-sourcing

systems are: (i) matching mechanism between idle ride-sourcing vehicles and passenger travel

requests (i.e. vehicle-passenger matching) and (ii) repositioning mechanism of idle vehicles.

In this chapter, we propose a macroscopic non-equilibrium dynamic model of ride-sourcing

systems with capabilities of investigating the efficiency of vehicle-passenger matching and

idle vehicle repositioning method. A spatio-temporal vehicle-passenger matching method is

introduced to determine dynamically and jointly the matching time instances and maximum

matching distances to minimize passengers’ waiting time (i.e. from the travel request until the

pickup) while considering the level of congestion of the network. Designing a controller for

repositioning idle vehicles to balance vehicle supply and passenger travel demand based on

the proposed model is scrutinized in the companion chapter (Chapter 3). The accuracy of the

proposed model and the performance of the matching method under noticeable variation of

traffic congestion and passenger travel requests are investigated with microsimulation. The

microsimulation results demonstrate accuracy of the model in predicting the evolution of

the number of the ride-sourcing vehicles in different states (e.g. idle, transferred, dispatched,

and occupied) and passengers (e.g. waiting and assigned) in each region of the network.

Furthermore, the proposed matching method pinpoints its effectiveness by reducing reserved

and delay times of ride-sourcing vehicles and passengers.

9
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2.1 Introduction

Advancements in information and communication technologies result in growing trends in

using ride-sourcing services because of their convenience and affordability. Ride-sourcing

service providers like Uber, DiDi, Lyft and their competitors provide on-demand point-to-

point services for passengers through an online platform using a fleet of vehicles owned by

self-scheduled drivers. The platform requires the service provider to implement strategies

for vacant vehicle-passenger matching and transferring of idle vehicles to the travel demand

hot-spots to increase profit while ensuring a satisfactory level-of-service such as keeping the

expected passenger waiting time below a threshold. In this chapter, we introduce a dynamic

non-equilibrium macro-model, as a set of first-order differential equations, to represent

dynamics of a ride-sourcing system. Moreover, we develop a method for vehicle-passenger

matchings to obtain optimum values for matching time instances (i.e., the time instance when

the vehicle-passenger matching method is executed) and the maximum matching distance

(i.e., discarding vehicle-passenger matches whose distance is longer than the maximum

matching distance) to minimize passengers’ waiting time. Capabilities of the suggested model

for designing a controller as a dynamic spatial distributor of idle ride-sourcing vehicles is

discussed in the companion chapter (Chapter 3).

Modeling ride-sourcing systems exhibit traits of modeling cruising taxis. They are studied

extensively with the focus of equilibrium analysis which reflects the stable steady-state

behavior of the system. The initial steps were taken by equilibrium-based macroscopic

models in (Manski and Wright 1967; Orr 1969a; Douglas 1972b). Later, in (Yang and Wong

1998), a stationary model at the equilibrium point is established to formulate movements

of cruising taxis. This model is further developed by considering the effect of congestion

and passenger demand elasticity in (Wong et al. 2001). The steady-state effect of bilateral

taxi-passenger searching and meeting behavior at the equilibrium point of cruising taxi

systems is studied in (Wong et al. 2005; Yang et al. 2010a). In (Wong et al. 2015), a two-

stage equilibrium-based model is proposed to predict zonal and circulating movements of

cruising taxis. In (Yang et al. 2010b; Yang and Yang 2011), the effect of search friction

between vacant taxis and passengers on the equilibrium of the taxi system is scrutinized.
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A Ride-sourcing market is studied in (Zha et al. 2016) by proposing an equilibrium-based

macroscopic model to capture the taxi-passenger meeting dynamics with external matching

function. An equilibrium model in a hybrid market with the coexistence of cruising taxi

and ride-sourcing systems is investigated in (Qian and Ukkusuri 2017). (Ramezani and

Nourinejad 2018a) initiates non-equilibrium based modeling of cruising taxi systems and

proposes a predictive controller to relocate the vacant taxis. A non-equilibrium model for

a ride-sourcing market with predictive controller is proposed to maximize the overall profit

in (Nourinejad and Ramezani 2019).

One dominant factor for quality of service of ride-sourcing systems is vehicle-passenger

matching method. The urgency to improve the matching method requires further investigations

after imposing harshest-ever set of regulations for ride-sourcing companies by NY city. This

regulation necessitates the ride-sourcing companies to carry a passenger at least 69% of the

operating time in Manhattan below 96th St from August 2020. Among the recent studies

that address vehicle-passenger matching, (Santi et al. 2014; Vazifeh et al. 2018) focuses on

high-capacity vehicle-passenger matching, and (Zhan et al. 2016) uses bipartite matching to

evaluate the efficiency of taxi systems in terms of optimal matching and trip integration. A

driver-rider matching scheme in a ride-sharing system is proposed in (Wang et al. 2017b) to

minimize total system-wide vehicle miles. (Zha et al. 2018b) proposes an aggregate matching

model to facilitate the analysis of market equilibrium and spatial pricing. Bipartite graph

approach is utilised in (Dandl et al. 2019) to propose a static strategy to jointly matched

autonomous vehicles (AVs) to user requests and repositions AVs. In (Hörl et al. 2019), a large-

scale agent-based simulation of vehicle fleet management for dispatching and repositioning is

studied. A data-driven dispatching method for autonomous taxi systems is proposed in (Hu

and Dong 2020) to reduce empty travel distance of autonomous taxis.

The issue of vehicle-passenger matching with unlimited radius has been both empirically

observed and theoretically analyzed in (Castillo et al. 2017; Xu et al. 2020; Zhang et al. 2019).

The instantaneous joint effect of matching radius and matching interval in vehicle-passenger

matching is studied in (Yang et al. 2020) in a static way. In these articles, the matching interval

is considered fix and known or is obtained based on the instantaneous number of the idle
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vehicles and waiting passengers. This neglects the intertwined effects between predicted value

of the matching interval (i.e. successive matching instances), instantaneous spatial distribution

of idle vehicles and waiting passengers, and predicted value of average vehicle-passenger

matching distance/time. To get more insight into the literature of shared mobility, interested

readers can further refer to (Salanova et al. 2011; Agatz et al. 2012; Ho et al. 2018; Wang and

Yang 2019).

Equilibrium-based modeling of ride-sourcing systems which is common in literature, con-

siders only the steady-state behavior of the system and does not consider the temporal variation

of the systems’ states (e.g. the number of the vehicles and passengers). Furthermore, there

are challenges about existence, uniqueness, and finite-time reachability of equilibrium points

of nonlinear dynamic ride-sourcing models. In this study, we propose a macroscopic non-

equilibrium model with potential of considering dynamic vehicle-passenger matching and

repositioning of idle vehicles to dynamically track different states of passengers and vehicles

in a ride-sourcing system. The model is built upon the augmented Cobb-Douglas matching

function and Macroscopic Fundamental Diagrams (MFDs). Impatient passengers and drivers

are included in the model by defining stochastic cancellation threshold. Furthermore, to op-

timize expected passengers’ waiting time, a vehicle-passenger matching method is proposed

to dynamically determine (i) the next matching time instance at which the vehicles will be

matched to passengers (enabling time-varying matching frequency) and (ii) the maximum

matching distance to discard long-distance matchings (avoiding wild goose chase problem

and letting vehicles to remain idle for prospect of transferring). To fill the gap in designing

matching method, the proposed method is developed to consider the level of congestion of

the network, anticipation of the future boarding time, and joint effect of optimum match-

ing interval and maximum matching distance. In Chapter 3, a Nonlinear Model Predictive

Controller (NMPC) is designed based on the developed model of this chapter to proactively

and dynamically reposition idle vehicles to suppress the spatial imbalance between the idle

vehicles (supply) and waiting passengers (demand). The advantages of the matching method

and the validity of the model is investigated via a developed microsimulation benchmark.
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The remainder of the article is organized as follow. In Section 2.2, we elaborate different states

of ride-sourcing vehicles and passengers in the ride-sourcing system. Also, we illustrate how

the proposed model comprises dispatching (i.e. matching) and transferring (i.e. redistributor)

in Section 2.2. In Section 2.3, the proposed adaptive spatio-temporal matching algorithm

for dispatching idle ride-sourcing vehicles to waiting passengers is presented in detail. The

proposed dynamic model for tracking of different states of ride-sourcing vehicles and pas-

sengers is introduced in Section 2.4. Section 2.5 is devoted to assessing the performance of

the proposed adaptive-spatio temporal matching method and illustrating the accuracy of the

model using microsimulation experiments. Finally, the article is concluded in Section 2.6.

2.2 Preliminaries

This section defines terminologies used in this article for representing states of the ride-

sourcing vehicles and passengers. Furthermore, we depict the schema of the proposed

ride-sourcing system to demonstrate different components of the method and the interactions

between them.

2.2.1 State Definition

We design a ride-sourcing system as a centralized system for dispatching ride-sourcing

vehicles to passengers’ origin location and transferring the idle vehicles to the locations

with a higher possibility of finding passengers. Let us assume an urban network that is

partitioned to a few number of regions. We determine four states for the ride-sourcing

vehicles (i.e. idle, dispatched, transferred, and occupied) and three states for the passengers

(i.e. waiting, assigned, and on-board). The four states of ride-sourcing vehicles are as follow:

(i) Idle ride-sourcing vehicle refers to a vacant vehicle which is not assigned to any pas-

senger’s travel request. It cruises randomly until receiving a pick-up or transferring

command from the ride-sourcing system. The number of idle ride-sourcing vehicles

in Region i at time t is denoted as cI
i(t).
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(ii) Dispatched ride-sourcing vehicle is a vacant vehicle assigned to a passenger’s travel

request. It is sent to the passenger’s location through the path recommended by

the ride-sourcing system. The dispatched vehicles are not allowed to pick up other

passengers along the recommended path. The number of dispatched ride-sourcing

vehicles in Region i at time t is denoted as cD
i (t).

(iii) Transferred ride-sourcing vehicle is a vacant vehicle sent to a location with an excess

of passenger’s travel request through the path recommended by the ride-sourcing

system. Transferred vehicles are not assigned to any passenger’s travel request. They

are used to balance the vehicle supply and travel request demand in different regions

of the network. They can be assigned to passenger’s travel request by the ride-

sourcing system before reaching the hot-spot locations. The number of transferred

vehicles in Region i at time t is denoted as cT
i (t).

(iv) Occupied ride-sourcing vehicle is a vehicle servicing a passenger. We assume each

vehicle services only one passenger or one group of passengers with the same origin

and destination. The number of occupied vehicles in Region i at time t is denoted as

cO
i (t).

The three passenger’s states are as:

(i) Waiting passenger refers to a passenger who has requested a ride but she/he is not

assigned to any ride-sourcing vehicle yet. The number of waiting passengers in

Region i at time t is denoted as pW
i (t).

(ii) Assigned passenger is a passenger who is not picked up by a vehicle, but a dis-

patched ride-sourcing vehicle is assigned to her/him. An assigned passenger cannot

match with more than one ride-sourcing vehicle at a time. The number of assigned

passengers in Region i at time t is denoted as pA
i (t).

(iii) On-board passenger is a passenger picked up by a vehicle but she/he has not reached

her/his destination. The number of on-board passengers in Region i at time t is equal

to the number of the occupied vehicles in Region i at time t.
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2.2.2 State Transitions

Consider the movements of an idle ride-sourcing vehicle in a network which is divided into a

number of regions. Once a waiting passenger is matched with an idle vehicle, the vehicle

becomes dispatched and the passenger becomes assigned. Then, the dispatched ride-sourcing

vehicle starts its travel towards the passenger’s pick-up location with the path recommended

by the ride-sourcing system. Once, the dispatched vehicle reaches the location of the assigned

passenger, the vehicle and passenger become occupied and on-board, respectively. Once

the occupied vehicle reaches the on-board passenger’s destination, the state of the vehicle is

changed to idle.

An idle ride-sourcing vehicle might be requested to reposition to other region(s) with an

excess number of waiting passengers to balance the vehicle sources and passengers’ travel

demand. If the ride-sourcing system determines such region(s), a number of the idle vehicles

become transferred and will be guided to moved to that region(s). The transferred vehicles

can be assigned to a passenger if a waiting passenger will appear in a proper-distance of the

transferred vehicle. Otherwise, the transferred vehicle will reach to the recommended location

and becomes idle again.

To reflect the reality more precisely, we assume if an idle ride-sourcing vehicle remains idle

for a long period of time, the driver leaves the ride-sourcing system. In addition, if a waiting

or an assigned passenger is not picked up for a long time, the passenger cancels the travel

request and quit the ride-sourcing service for other travel choices. By canceling a travel

request by an assigned passenger, the ride-sourcing vehicle matched to the passenger becomes

idle again.

Figure 2.1 illustrates the state diagrams of vehicles and passengers in the ride-sourcing system.

The dotted lines emphasize the vehicle’s/passenger’s state changes instantaneously without

a physical trip (e.g. the state of an idle ride-sourcing vehicle becomes transferred once the

driver receives the transfer command from the ride-sourcing system.). The solid lines reflect

a physical trip in the network (e.g. the dispatched vehicle must reach to the location of the

assigned passenger to become occupied.).
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FIGURE 2.1. State diagram of ride-sourcing systems’ agents: (a) passengers
and (b) ride-sourcing vehicles. Impatient passengers cancel their trips and
go out if (i) they remain waiting more than a stochastic threshold or (ii) the
assigned vehicle does not pick up the matched passenger before their pickup
threshold. The second scenario also affects the dispatched vehicles and change
their state to idle.

2.2.3 Proposed Schema

Interconnections between plant (i.e. traffic network), model, dispatching subsystem and trans-

fer subsystem are depicted in Figure 2.2. The dispatching subsystem considers idle/transferred

ride-sourcing vehicles and waiting passengers as two independent sets that should be matched

together to dynamically find the optimal idle/transferred vehicles dispatching in the sense

of minimizing the total cruising time of dispatched vehicles considering future states of the

system. It includes optimal myopic matching and adaptive spatio-temporal filtering methods.

The former minimizes total matching distances with an assumption of maximal matching

between the two independent sets, i.e. idle/transferred ride-sourcing vehicles and waiting

passengers. The latter method obtains the result of the optimal myopic to minimize the total

passengers’ waiting time prediction for finding dynamically and jointly: (i) the optimum

next matching instance and (ii) the optimum upper bound of matching distance between

idle/transferred vehicles and waiting passengers to avoid long-distance matching.

The ride-sourcing model is a set of first order differential equations to represent mass conser-

vation dynamics of the ride-sourcing vehicles and passengers. Transfer subsystem has two
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components: Transferred Ride-sourcing Controller and Link-Level Allocation. The main com-

ponent of the transfer subsystem is a macroscopic controller that dynamically recommends

inter-regional movements of idle ride-sourcing vehicles in the network to balance the vehicles’

supply and waiting passengers in the network. We propose a Nonlinear Model Predictive

(NMPC) controller as a transfer subsystem for repositioning idle vehicles in Chapter 3 of this

study.

Link-Level Allocation translates the aggregated rate of idle vehicles in Region i that is recom-

mended to be transferred to Region j (i.e. output of the transfer controller) to disaggregated

(vehicle-level) commands. It (i) selects a subset from the idle vehicles in Region i (based on

their current location and the accumulative time that they have remained idle), (ii) assigns a

link in Region j to each selected idle vehicles based on the location of the waiting passengers

in Region j, and (iii) determines the path with the shortest distance by using Dijkstra’s shortest

path algorithm for each selected idle vehicle to reach the designated transferred link. The

frequency of triggering transfer and dispatched subsystems are independent of each other.

More details of Transfer Subsystem is investigated in Chapter 3 of this study.

2.3 Dispatching Subsystem

The dispatching subsystem which includes optimal myopic and adaptive spatio-temporal

filtering methods dynamically determines the optimum maximum matching distance and

the optimum next matching instance with respect to minimizing passengers waiting time.

The dispatching subsystem in each matching instance considers the location of the waiting

passengers and idle/transferred ride-sourcing vehicles as well as the aggregated short-term

prediction of arrival rate of new passengers and idle/transferred vehicles. In each optimum

matching instance that is obtained from the proposed method, firstly, the optimal myopic

method is applied and then the optimum maximum matching distance that is obtained from

the proposed method is used in each matching instance to filter the long-distance matchings

of optimal myopic method. In Subsection 2.3.1, the optimal myopic method is explained that

is built upon maximum matching problem of a bipartite graph. It is a classic problem and has
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FIGURE 2.2. Schematic of the proposed ride-sourcing system. Dispatching
subsystem matches the idle/transferred vehicles to the waiting passengers. The
Dispatching Subsystem obtains the required information directly from the
plant. The Model is utilised in Transfer Subsystem to predict the effect of idle
vehicle repositioning on evolution of each state of the ride-sourcing system.
The output of the transfer subsystem is the idle vehicles that are altered to
transferred vehicles and are guided to designated locations with excess of
passengers.

been widely studied in literature (Agatz et al. 2011; Zhan et al. 2016; Vazifeh et al. 2018).

Subsection 2.3.2 introduces the proposed method for finding the optimum matching intervals

and maximum matching distances.

2.3.1 Optimal Myopic matching

The optimal matching between idle/transferred ride-sourcing vehicles and waiting passengers

at every matching instance is determined by solving the minimum weighted matching problem

for a bipartite graph. It minimizes the total matching distances between idle/transferred

vehicles and waiting passengers (or equivalently pickup times). We construct the problem as

a bipartite graph by considering, (i) V1 as the set of idle and transferred vehicles, (ii) V2 as

the set of the waiting passengers, and (iii) E as the edges connecting each element of V1 to

V2. The sets of V1 and V2 are disjoint and independent. The weight of each edge, w(e), is the

distance between the idle/transferred ride-sourcing vehicle and the waiting passenger (i.e. the



2.3 DISPATCHING SUBSYSTEM 19

elements of the V1 and V2). We obtain the minimum weighted matching for the bipartite graph

using integer linear programming method:

minimize
∑
e∈E

xew(e),

s.t.
∑
e∼v

xe ≤ 1 ∀v ∈ {V1 ∪ V2} & xe ∈ {0, 1} ∀e ∈ E,
(2.1)

where, w(e) is the weight of each edge e ∈ E and e ∼ v denotes e is an incident on v. The

number of the matching is the minimum of cardinalities of set V1 and set V2. Equation 2.1

is a static optimization problem that minimizes total matching distances. It may suffer from

matching vehicles with long-distance passengers that wastes their reserved time. Also, it

considers only the current location of the idle/transferred ride-sourcing vehicles and waiting

passengers at each fixed matching interval. We consider the effect of future state of the system,

i.e. arrival of idle/transferred ride-sourcing vehicles and waiting passengers, congestion of

the network, and the joint relationship of matching intervals and discarding long-distance

vehicle-passenger matchings in the proposed method in Subsection 2.3.2.

2.3.2 Adaptive Spatio-Temporal Matching Method

The dispatching subsystem includes optimal myopic and adaptive spatio-temporal filtering

methods. It dynamically determines the maximum value for the matching distance between

idle/transferred ride-sourcing vehicles and waiting passengers as well as occurrence time of

the next matching. Changing the instantaneous maximum matching distance has immediate

and future effects on vehicle-passenger matchings. Increasing the maximum matching

distance immediately increases the average distance of vehicle-passenger matchings and

reduce the vehicles’ and passengers’ unassigned time. Regarding the future effect, increasing

the maximum matching distance increases vehicles’ and passengers’ reserved time. In optimal

myopic method, increasing the frequency of the matchings (i.e. decreasing the time between

two successive matching instances) causes assigning an idle/transferred vehicle to a waiting

passenger once they become available in the network without considering the effect of new

passengers and vehicles that might appear in the network relatively just after the matching

instance time. Hence, this might lead to matchings that are unreasonably long. In other
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words, increasing the matching frequency decreases the unassigned time but increases the

expected reserved time. Unassigned time for a ride-sourcing vehicle (passenger) is the time

between the idle (waiting) state and dispatched (assigned) state. The reserved time for a

ride-sourcing vehicle (passenger) is the time takes a dispatched vehicle (assigned passenger)

becomes occupied (on-board).

The adaptive spatio-temporal matching method aims at minimizing the expected total pas-

sengers’ waiting time (i.e. unassigned time plus the reserved time) to jointly determine the

optimum time of the next matching instance and to discard the vehicle-passenger long-distance

matchings. To this end, first, we use the optimal myopic vehicle-passenger matchings (i.e. con-

sidering the matching without discarding long-distance matchings) by solving Equation 2.1.

Subsequently, we define an expected passengers’ waiting time based on the obtained values

of the optimal myopic vehicle-passenger matchings. Then, we determine the optimum value

of next matching instance and the maximum distance for vehicle-passenger matchings with

respect to minimizing the defined expected total passengers’ waiting time. The expected

total passengers’ waiting time consists of four components: (i) estimated total reserved of

matchings, (ii) estimated total unassigned time of waiting passengers, (iii) predicted total

reserved time for matchings, and (iv) predicted total unassigned time for waiting passengers.

Figure 2.3 illustrates the relationship among these components. We assume that the average

arrival rate of new waiting passengers and idle vehicles are known.
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Reserved Time: !" #$
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FIGURE 2.3. Schematic of relation between estimated total reserved time,
Equation 2.2, estimated total unassigned time, Equation 2.3, predicted total
reserved time, Equation 2.4, and predicted total unassigned time, Equation 2.5.
Blue boxes represent the time components and black boxes illustrate passen-
gers.



2.3 DISPATCHING SUBSYSTEM 21

The expected total passengers’ waiting time, T̂ t
ι+1
m −tιm

P , between two successive matching time

instances, tιm and tι+1
m , is sum of four main parts:

(i) Estimated total reserved time of matchings at tιm is:

T̂R(tιm) =
l̄r(t

ι
m)

v̂(tιm)

(
m(tιm)− r(tιm)

)
=
l̄r(t

ι
m)

v̂(tιm)

(
min

(
cI(tιm) + cT(tιm), pW(tιm)

)
− r(tιm)

)
,

(2.2)

where, T̂R(tιm) is the estimated total reserved time for the idle/transferred vehicles

assigned to the waiting passengers at tιm. l̄r(tιm) is the average distance of optimum

vehicle-passenger matchings after discarding r(tιm) long-distance matchings from

the solution of Equation 2.1 at time instance tιm. The number of the matchings

before discarding at time tιm is denoted by m(tιm). The number of the idle vehicles,

transfer vehicles, and waiting passengers at time tιm are indicated by cI(tιm), cT(tιm),

and pW(tιm). v̂(tιm) denotes the estimated network speed at time instance tιm.

(ii) Estimated total unassigned time of the waiting passengers remaining in the network

after the vehicle-passenger matching at tιm with discarding r(tιm) long-distance

matching, T̂D(tιm), is:

T̂D(tιm) =
(
pW(tιm)−m(tιm) + r(tιm)

) (
tι+1

m − tιm
)
. (2.3)

(iii) Predicted total reserved time for matchings at tι+1
m , T̂R(tι+1

m ) is:

T̂R(tι+1
m ) =

ˆ̄lr(t
ι+1
m )

v̂(tι+1
m )

(
m(tι+1

m ) + r(tιm)
)

=
ˆ̄lr(t

ι+1
m )

v̂(tιm)

(
min

(
cI(tιm) + cT(tιm) + ρc(t

ι
m)
(
tι+1

m − tιm
)
−m(tιm),

pW(tιm) + ρp(t
ι
m)
(
tι+1

m − tιm
)
−m(tιm)

)
+ r(tιm)

)
,

with

ρc(t
ι
m) = ρen

c (tιm) + ρex
c (tιm),

(2.4)
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where, ˆ̄lr(t
ι+1
m ) estimates the average matching distance of matched pairs in a bi-

partite matching program as Equation 1. This parameter is defined for prediction

of the next matching instance, tι+1
m , and does not reflect the observed average of

matched distances. Since the exact locations of idle/transferred vehicles and wait-

ing passengers at time tι+1
m are not known, we propose a parsimonious function

to estimate the average matching distance of the optimum matching that is only a

function of the number of vehicles and passengers. Subsection 2.3.3 explains estima-

tion of ˆ̄lr(t
ι+1
m ). m(tι+1

m ) denotes the number of the matchings at time tι+1
m without

discarding at time tιm. The rates of arrival of idle/transferred vehicles and waiting

passengers during interval [tιm, t
ι+1
m ) are denoted by ρc(t

ι
m) and ρp(t

ι
m), respectively.

ρc(t
ι
m) has endogenous, ρen

c (tιm), and exogenous parts, ρex
c (tιm). ρen

c (tιm) captures the

rate that occupied or dispatched vehicles become idle. ρex
c (tιm) captures the rate that

idle ride-sourcing vehicles leave the network because they are not assigned to any

passenger for a long time and the vehicles leaving from or entering to the network

due to their working hours.

(iv) Predicted total unassigned time for waiting passengers remaining in the network

after the vehicle-passenger matching at tι+1
m , T̂D(tι+1

m ), is:

T̂D(tι+1
m ) =(
pW(tιm) + ρp(t

ι
m)
(
tι+1

m − tιm
)
−
(
m(tιm)− r(tιm)

)
−
(
m(tι+1

m ) + r(tιm)
))

×
(
tι+2

m − tι+1
m

)
=
(
pW(tιm) + ρp(t

ι
m)
(
tι+1

m − tιm
)
−m(tιm)−m(tι+1

m )
) (
tι+2

m − tι+1
m

)
.

(2.5)

In Equation 2.5, we assume the discarded matchings at time tιm, i.e. r(tιm), will be

matched at time tι+1
m . We update this assumption in rolling time horizon.

By assuming optimal myopic at time tι+1
m , the expected total passengers’ waiting time is:

T̂
tι+1

m −tιm
P = T̂R(tιm) + T̂D(tιm) + T̂R(tι+1

m ) + T̂D(tι+1
m ). (2.6)
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We obtain the optimum value for the next matching time, tι+1
m , and the number of discarded

long-distance matchings, r(tιm), by minimizing the total passengers’ waiting time prediction:

We obtain the optimum value for the next matching time, tι+1
m , and the number of discarded

long-distance matchings, r(tιm), by minimizing the total passengers’ waiting time prediction

as determined in Equation 7. Vehicle-passenger matches with matching distances longer than

the maximum matching distance are discarded at each matching time instance.

minimize
r(tιm),tι+1

m

(
T̂
tι+1

m −tιm
P

)
,

s.t. 0 < tιm < tι+1
m ≤ tι+2

m , tι+2
m ≤ tιm + tmax

m , 0 ≤ r(tιm) ≤ m(tιm)

, (2.7)

where, tmax
m is a predefined upper bound for the next matching time instance. To practically

solve the discrete-continues optimization problem of Equation 7, after solving the optimal

myopic matching program, we discretize the time domain, [tιm, t
max
m ], and iteratively evaluate

Equation 6 for any specific tι+1
m and r(tιm) that satisfy the criteria of Equation 7 to determine

the optimum values. Choosing tmax
m and sampling period for discretization are important

factors to reach an attainable solution computationally. The major time complexity of solving

the optimization problem is stemmed from solving the optimal myopic matchings that can be

relaxed significantly from O(|V |4) to O(
√
|V |) by adopting an approximate method instead

of exact method (Vazirani 1994). To this end, we choose tmax
m =120 [sec] and sampling period

of 5 [sec]. The performance of the proposed adaptive spatio-temporal matching method for

dispatching idle/transferred vehicles to waiting passengers is investigated in Section 2.5.

2.3.3 Estimating a Macro-Function for Average Optimal Myopic

Matching Distance

A closed-form macro-function for estimating average optimal myopic matching distance, ˆ̄l,

is needed for predicting the total reserved time, see Equation 2.4. To this end, we propose

Algorithm 1 to estimating the average optimal myopic matching distance as a function of the

number of the idle/transferred ride-sourcing vehicles and waiting passengers, independent of
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their location. Algorithm 1 generates the coordinates of idle/transferred ride-sourcing vehicles

and waiting passengers randomly with uniform distribution inside a network. Then, a bipartite

graph, G(V1, V2, E), is built in which the weights of the edges are the Manhattan distance

between idle/transferred ride-sourcing vehicles and waiting passengers. The average optimal

matching is determined by solving the matching problem on graph G to minimize the sum

of matching weights as in Equation 2.1. To tackle the stochasticity of spatial distribution of

ride-sourcing vehicles and passengers, this procedure is repeatedN itr times for each number of

idle/transferred ride-sourcing vehicles and waiting passengers. This experiment is conducted

for a range of passengers, 1 to NP, and a range of vehicles, 1 to NT, where NP and NT denote

the maximum numbers of passengers and vehicles that are considered, respectively.

We run the algorithm on a high performance computer (HPC) for N itr=100, NP=50, and

NT=50. The result, see Figure 2.4(b), reveals that the variations of average optimum matching

distance with respect to the number of waiting passengers and idle/transferred ride-sourcing

vehicles are: 
∂ˆ̄l

∂(cI+cT)
> 0, ∂ˆ̄l

∂pW < 0 if cI + cT < pW

∂ˆ̄l
∂(cI+cT)

< 0, ∂ˆ̄l
∂pW > 0 if pW < cI + cT

.

Accordingly, the following symmetric form is suggested for the average optimum matching

distance:

ˆ̄l =

θ(c
I + cT)

ζ1pWζ2 if cI + cT ≤ pW

θ(cI + cT)
ζ2pWζ1 if pW < cI + cT

(2.8)

where, θ>0, ζ1>0, and ζ2<0 are parameters that can be readily estimated using the Least

Square method. By utilizing the generated data in algorithm 1, the estimated values of the

parameters are: θ̂ = 2394.57, ζ̂1 = 0.245, and ζ̂2 =−0.724, where, R2 = 0.93. Figure 2.4

compares the simulated and estimated average optimum matching distances.
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FIGURE 2.4. (a) Estimated average of optimum matching distance and (b)
simulated average of optimum matching distance.

2.4 Model Formulation

Consider a network divided into a set of R regions. The proposed ride-sourcing model

formulates the interaction of waiting passengers, assigned passengers, idle ride-sourcing

vehicles, occupied ride-sourcing vehicles, dispatched ride-sourcing vehicles, and transferred

ride-sourcing vehicles in different regions as illustrated in the state diagrams of Figure 2.1.

We develop our model based on MFD and Cobb-Douglas meeting function.

MFD is a macroscopic relationship between the number of vehicles (accumulation) and

aggregated outflow (or weighted flow of links, production) in homogeneous regions. Existence

of this relationship is empirically presented in (Geroliminis and Daganzo 2008). The effect of

congestion heterogeneity on MFD properties is studied in (Mahmassani et al. 2013; Ramezani

et al. 2015). A three-step clustering algorithm is proposed in (Saeedmanesh and Geroliminis

2016) to partition heterogeneous networks into a few connected homogeneous regions. This

offers traffic management opportunities based on MFD modeling such as perimeter control (Li

et al. 2021; Haddad and Zheng 2020), regional routing (Ingole et al. 2020), and regional

pricing (Zheng et al. 2012), among others. Applicability of using MFD on modeling of on-

demand mobility services including cruising taxi systems, ride-sharing systems, and pricing
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of ride-sourcing systems are studied in (Ramezani and Nourinejad 2018a; Alisoltani et al.

2021; Nourinejad and Ramezani 2019).

In this study, the MFDs are used to estimate the internal and inter-regional flows 1 of occupied

and transferred ride-sourcing vehicles as well as the inter-regional flow for the dispatched ride-

sourcing vehicles. Cobb-Douglas meeting functions are utilized to model the boarding rate of

assigned passengers and the rate that dispatched ride-sourcing vehicles become occupied. The

reason for differentiating between estimating the internal flow of the dispatched ride-sourcing

vehicles and occupied/transferred ride-sourcing vehicles is their travel behaviour. The average

trip length for internal flow of the dispatched ride-sourcing vehicles is highly sensitive to the

number of the dispatched ride-sourcing vehicles and assigned passengers. If we assume the

number of the dispatched ride-sourcing vehicles is constant, the higher the number of the

assigned passengers, the less the average trip length is. Hence, we use Cobb-Douglas meeting

function to consider the number of dispatched ride-sourcing vehicles and assigned passengers

simultaneously in boarding rate. However, the average trip lengths for the internal and inter-

regional flow of the occupied/transferred ride-sourcing vehicles as well as inter-regional flow

of the dispatched ride-sourcing vehicles are independent of the number of the passengers.

That is, their travel patterns are similar to the normal vehicles. Therefore, we utilize MFDs to

estimate their trip completions.

The boarding function between dispatched ride-sourcing vehicles and assigned passengers in

Region i, bi, is defined by a Cobb-Douglas type meeting function to consider the friction and

congestion (Yang and Yang 2011; Ramezani and Nourinejad 2018a):

bi(t) = Kic
D
ii(t)

αipA
i (t)βivi(t)

γi ∀i ∈ R,

pA
i (t) =

∑
j∈{Ui∪i}

pA
ij(t) ∀i ∈ R, (2.9)

where, Ki is the total productivity factor of Region i. The number of the dispatched ride-

sourcing vehicles in Region i with pickup location in Region i at time t is denoted by

cD
ii(t). The total number of the assigned passengers in Region i and the number of the

1In MFD literature this term is typically named as transfer flow. However to avoid confusion with the
transfer state of ride-sourcing vehicles, we use the inter-region flow term in this chapter.
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assigned passengers in Region i with destination in Region j are denoted by pA
i (t) and pA

ij(t),

respectively. Ui is the set of regions that are in the direct vicinity of Region i. vi(t) is the

average speed in Region i. Considering the average speed in the boarding function reflects

the level of congestion on the meeting rate (Ramezani and Nourinejad 2018a). We show

the elasticities with respect to the number of dispatched vehicles, assigned passengers, and

average speed by αi, βi, and γi, respectively. Ki, αi, βi, and γi are constant parameters that

their values can be estimated from the field or simulated data.

By defining the boarding rate in Region i as Equation 2.9, the boarding rate in Region i with

the final destination in Region j at time t can be approximated using from the following

equation. We assume the boarding rate is proportional to assigned passengers:

bij(t) =
pA
ij(t)

pA
i (t)

bi(t) ∀i ∈ R and j ∈ {Ui, i} . (2.10)

We utilize the MFD defined by production function to obtain the inter-regional flows of

occupied vehicles, MO
ij(t), transferred vehicles, MT

ij(t), and dispatched vehicles, MD
ij(t). We

assume the inter-regional flows are proportional to the accumulations:

MO
ij(t) =

cO
ij(t)

ni(t)

Pi(ni(t))

lOij(t)
∀i ∈ R and j ∈ Ui , (2.11)

MT
ij(t) =

cT
ij(t)

ni(t)

Pi(ni(t))

lTij(t)
∀i ∈ R and j ∈ Ui , (2.12)

MD
ij(t) =

cD
ij(t)

ni(t)

Pi(ni(t))

lDij(t)
∀i ∈ R and j ∈ Ui , (2.13)

where, cO
ij(t), c

T
ij(t), and cD

ij(t) are respectively the number of the occupied, transferred, and

dispatched vehicles in Region i moving to Region j at time t. ni(t) is the total accumulation

of vehicles in Region i including normal vehicles and all types of the ride-sourcing vehicles

in Region i. Pi(ni(t)) is the production MFD in Region i that is a function of the total

accumulation in Region i. The average trip length for occupied, transferred, and dispatched

vehicles in Region i that travel to Region j are denoted by lOij(t), lTij(t), and lDij(t), respectively.
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The internal flows for the occupied, MO
ii (t), and the transferred ride-sourcing vehicles, MT

ii(t),

are:

MO
ii (t) =

cO
ii(t)

ni(t)

Pi(ni(t))

lOii(t)
∀i ∈ R, (2.14)

MT
ii(t) =

cT
ii(t)

ni(t)

Pi(ni(t))

lTii(t)
∀i ∈ R, (2.15)

where, cO
ii(t) and cT

ii(t) are the number of the occupied and transferred ride-sourcing vehicles

in Region i with destination in Region i. lOii(t) and lTii(t) denote the average trip length of

occupied and transferred vehicles in Region i with destination in Region i.

Using the above internal and inter-regional flows, we can derive the dynamics of different

states of the system as mass conservation formulations. The conservation of the number of

the occupied ride-sourcing vehicles is modeled as:

dcO
ii(t)

dt
= bii(t) +

∑
j∈Ui

MO
ji(t)−MO

ii (t) ∀i ∈ R, (2.16)

dcO
ij(t)

dt
= bij(t)−MO

ij(t) ∀i ∈ R and j ∈ Ui. (2.17)

In RHS of Equations 2.16 and 2.17, bii(t) and bij(t) are the number of the dispatched ride-

sourcing vehicles that become occupied with destination in regions i and j respectively.∑
j∈UiM

O
ji(t) reflects the rate that the occupied ride-sourcing vehicles from regions of Ui

pass the regions boundary towards Region i. The rate that the occupied ride-sourcing vehicles

complete their trips and become idle is MO
ii (t).

The evolution of the number of dispatched ride-sourcing vehicles over time is:

dcD
ii(t)

dt
= W I-D

ii (t) +W T-D
ii (t) +

∑
j∈Ui

MD
ji(t)− bi(t)−RD

ii(t) ∀i ∈ R, (2.18)

dcD
ij(t)

dt
= W I-D

ij (t) +W T-D
ij (t)−MD

ij(t)−RD
ij(t) ∀i ∈ R and j ∈ Ui, (2.19)

where, cD
ii and cD

ij respectively denote the number of the dispatched ride-sourcing vehicles

in Region i with pickup location in regions i and j. W I-D
ii (t) and W I-D

ij (t) are the rate of

idle ride-sourcing vehicles in Region i that the matching method of ride-sourcing system
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dispatches them to regions i and j at time t, respectively. W T-D
ii (t) and W T-D

ij (t) denote the

rate of transferred ride-sourcing vehicles in Region i that the matching method dispatches

them to regions i and j at time t. Variables, W I-D
ii (t), W I-D

ij (t), W T-D
ii (t), and W T-D

ij (t) are the

solution of the dispatching subsystem (see Figure 2.2) at each matching time instance. RD
ii(t)

and RD
ij(t) are the rate of the cancellation of dispatched trips at time t in Region i with final

destination (i.e., pickup location) in Regions i and j, respectively. They can represent the

cancellation of dispatched trips before and after crossing the boundary. For example, consider

a ride-sourcing vehicle that is currently in Region 1 with final dispatched destination in Region

4. If the trip is cancelled at time t before crossing the boundary, it will be considered in RD
14(t).

Otherwise, it will be considered in RD
44(t).

The number of the transferred ride-sourcing vehicles at each time is obtained from the

following equations. We assume that the transferred ride-sourcing vehicles in Region i

complete their trips within Region i:

dcT
ii(t)

dt
=
∑
j∈Ui

MT
ji(t)−MT

ii(t)−W T-D
ii (t) ∀i ∈ R, (2.20)

dcT
ij(t)

dt
= W I-T

ij (t)−MT
ij(t)−W T-D

ij (t) ∀i ∈ R and j ∈ Ui, (2.21)

where, W I-T
ij (t) is the rate that the idle vehicles in Region i are advised to transfer to Region

j by the transfer controller. This is an external manipulating (i.e. control) variable that is

the result of the transfer subsystem to balance the number of the idle ride-sourcing vehicles

and waiting passengers in the network. We propose a predictive controller in Chapter 3 to

dynamically determine the optimum values of W I-T
ij (t).

Total number of the idle ride-sourcing vehicles in Region i is evolved based on the following

equation:

dcI
i(t)

dt
=qc

+

i (t) +MO
ii (t) +MT

ii(t)− qc
−

i (t)−
∑

j∈{Ui,i}

W I-D
ij (t)

−
∑
j∈Ui

W I-T
ij (t) + wI

i(t) ∀i ∈ R,
(2.22)
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where, qc+i (t) is the rate of idle ride-sourcing vehicles exogenously enters to the network

at time t. qc−i (t) denotes the rate of idle ride-sourcing vehicles leave the network at time t

due to not being satisfied by the ride-sourcing level of service or because of finishing their

working hours. MO
ii (t) and MT

ii(t) reflect the rate of occupied and transferred ride-sourcing

vehicles completing their trips and becoming idle. Total number of the idle ride-sourcing

vehicles becoming dispatch and transferred in Region i are considered in
∑

j∈UiW
I-D
ij (t) and∑

j∈UiW
I-T
ij (t) terms. Some idle ride-sourcing vehicles prefer to stop until they are dispatched

to an assigned passenger. wI
i(t) is a stochastic term that represents the rate of the idle vehicles

that enter (or leave) Region i at time t because of their random cruising; this might happen to

non-dispatched non-transferred idle vehicles that cruise around the boundary of regions.

Based on Figure 2.1, there are three states for the passengers in the proposed ride-sourcing

system: (i) waiting passengers, (ii) assigned passengers, and (iii) on-board passengers. The

conservation of the on-board passengers over time is exactly similar to the occupied ride-

sourcing vehicles but we need to present the conservation of the waiting and assigned

passengers. The dynamics of the waiting passengers is ensured by the following equations:

dpW
ii (t)

dt
= qp

W+

ii (t)− qp
W−

ii (t)−WW-A
ii (t) ∀i ∈ R, (2.23)

dpW
ij (t)

dt
= qp

W+

ij (t)− qp
W−

ij (t)−WW-A
ij (t) ∀i ∈ R and j ∈ Ui, (2.24)

where, pW
ii (t) and pW

ij (t) denote the number of waiting passengers in Region i with destinations

in Region i and Region j at time t, respectively. The exogenous rate of waiting passenger

demand in Region i going to regions i and j are denoted by qp
W+

ii (t) and qp
W+

ij (t), respectively.

qp
W−

ii (t) and qp
W−

ij (t) are the rate of the waiting passengers in Region i with destination in

regions i and j leaving the network at time t because of their dissatisfaction by the ride-

sourcing system. The rate of the waiting passengers in Region i with destination in i and j

which become assigned at time t are denoted by WW-A
ii (t) and WW-A

ij (t). Parameters WW-A
ii (t)

and WW-A
ij (t) are the outputs of the dispatching subsystem.
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Finally, the number of the assigned passengers is:

dpA
ii(t)

dt
= WW-A

ii (t)− qp
A−

ii (t)− bii(t) ∀i ∈ R, (2.25)

dpA
ij(t)

dt
= WW-A

ij (t)− qp
A−

ij (t)− bij(t) ∀i ∈ R and j ∈ Ui, (2.26)

where, qp
A−

ii (t) and qp
A−

ij (t) are the rate of impatient assigned passengers in Region i with trip

destination in regions i and j that cancel their trips. The expiration of reserved time threshold

for impatient assigned passengers are set exogenously as stochastic parameters. qp
A−

ii (t) and

qp
A−

ij (t) are endogenous parameters that reflect one aspect of quality of the dispatching and

transfer subsystems. Desired dispatching and transfer subsystems results in lower values of

qp
A−

ii (t) and qp
A−

ij (t).

2.5 Results

In this section, we investigate the performance of the proposed vehicle-passenger matching

method and evaluate the accuracy of the proposed model using a dynamic ride-sourcing bench-

mark developed in Aimsun microsimulation. In Figure 2.5, the interaction between different

modules of the developed benchmark is illustrated. The calibrated Aimsun microsimulation

model of the city center of Barcelona (Kouvelas et al. 2017) is plugged into the benchmark.

The studied network approximately covers an area of 8.21 squared kilometers containing

1570 sections and 721 junctions. The Aimsun microscopic model includes other travel modes

such as normal vehicles and public transport. While they impact the network congestion

jointly, their demands are not correlated. The Aimsun microscopic model updates the model

state (e.g. position of normal and ride-sourcing vehicles, passengers, buses) every half a

second. In the following, firstly, we scrutinize the effects of the proposed vehicle-passenger

matching method (see Section 2.3) in comparison with variants of optimal myopic method.

Subsequently, we assess the accuracy of the proposed model (see Section 2.4). The results of

the designed controller for transferring idle vehicles are presented in the companion article.
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FIGURE 2.5. Schematic interactions between the developed modules of the
ride-sourcing microsimulation benchmark.

2.5.1 Analysis of spatio-temporal filtering Method

In this section, the proposed vehicle-passenger matching method is compared with optimal

myopic and optimal myopic with greedy discarding under noticeable variation of vehicles

supply and passengers demand. In the proposed matching method, spatio-temporal filtering

method works in sequence after the optimal myopic matching to prune inefficient (long-

distance) vehicle-passenger matchings. Note that the vehicle transferring is not considered in

this part to avoid reporting the intertwined effect of transferring with matching methods.

Figure 2.6 illustrates the variation of the total number of passengers and ride-sourcing vehicles

in 10 replications by using optimal myopic matching method, without considering impatient

vehicles and drivers, with different random initialization for each replication. Furthermore,

each replication contains a considerable stochasticity in exogenous demand and supply rates.
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The exogenous demand and supply used in each replication are set to reflect time-varying

patterns and under- and over-supply periods.
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FIGURE 2.6. (a) Total number of the passengers including waiting, assigned,
and on-board passengers. (b) Total number of the vehicles including idle,
dispatched, and occupied vehicles.

Optimal myopic method dispatches vehicles to the passengers based on solving Equation 2.1 in

each matching instance without discarding long-distance matchings. This approach considers

just the current state of the vehicles and passengers and is sensitive to a predefined matching

interval. Moreover, it does not consider the effects of traffic congestion and dynamic of the

idle vehicles and waiting passengers. Figure 2.7 depicts the average of matching distances for

different matching intervals. Increasing the matching interval results in lower average and

variance of vehicle-passenger matching distances (i.e. shorter vehicle’s/passenger’s reserved

time). However, increasing the matching interval increases the unassigned time of vehicles

and passengers, see Table 2.1.
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FIGURE 2.7. Average of matching distances at each matching time using
optimal myopic method with different matching interval: (a) 15-second, (b) 30-
second, (c) 45-second, and (d) 60-second. The bars represent 95% confidence
interval.

Figure 2.8 presents the average of matching distances for matching with greedy discarding

method. The greedy method prunes the outcomes of the optimal myopic by discarding k

long-distance vehicle-passenger matching if they are above the predefined distance threshold.

This approach only takes into account the current number and location of the passengers

and vehicles. The illustrated results in Figure 2.8 are obtained by choosing k = 1 and

distance threshold of 900 [m]. Distance threshold is determined using cut off value of 99% for
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considering potential outlier machings, see Figure 2.7. Effectiveness of the greedy method is

quantified is Table 2.1.
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FIGURE 2.8. Average of matching distances in each matching time using
greedy discarding method with different matching interval: (a) 15-second,
(b) 30-second, (c) 45-second, and (d) 60-second. The bars represent 95%
confidence interval.

In the proposed vehicle-passenger matching method, the optimum value of the matching

interval and the maximum matching distance are determined by solving Equation 2.7. These

optimum values are time-varying such that at each matching instance, the optimum values

of the current distance threshold and the time for the next matching instance are obtained.

Figure 2.9 illustrates the number of waiting passengers and idle vehicles in the network by
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implementing the adaptive spatio-temporal matching method. Figure 2.10 elucidates how

matching interval and maximum number of the matching intertwined with each other in the

proposed method.
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FIGURE 2.9. (a) Total number of the waiting passengers. (b) Total number of
the idle vehicles.

To explore the results of the adaptive spatio-temporal matching method, we discuss about

the three-hour simulation results in five time periods: (i) ∆t1≈ [0 min, 12 min), (ii) ∆t2≈

[12 min, 40 min), (iii) ∆t3 ≈ [40 min, 120 min), (iv) ∆t4 ≈ [120 min, 140 min), and (v)

∆t5≈ [140 min, 180 min]. In ∆t1, the number of the waiting passengers is decreasing and is

greater than the number of the idle vehicles, see Figure 2.9. Hence, the average optimum

matching distance based on Equation 2.8 must be increasing as shown in Figure 2.10 (a).

The average matching distance has low-rate slope because the number of the idle vehicles

is much less than the number of the waiting passengers. In this time period, the number of

the discarded matching is high and increasing, Figure 2.10 (b) and (c), because the density of

idle vehicles is low while density of waiting passengers is decreasing. When the number of

the discarded matchings is increasing, the matching time interval decreases, Figure 2.10 (d),

to compensate the delay caused by discarded matchings in estimated total unassigned time

(Equation 2.3) and predicted total reserved time (Equation 2.4).
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FIGURE 2.10. Output of the adaptive spatio-temporal matching method:
(a) average of matching distances after discarding, (b) average distance of
discarded matchings, (c) number of discarded matchings, and (d) matching
interval. The bars represent 95% confidence interval and different dotted
colors show different replications.

In ∆t2 ≈ [12 min, 40 min), the number of the waiting passengers which is greater than

the number of idle vehicles starts to increase while the number of the idle vehicles does

not change significantly, see Figure 2.9. Hence, as expected based on Equation 2.8, the

average optimum matching distance decreases as in Figure 2.10 (a). The number of the idle

vehicles is less than the number of the waiting passengers so the number of the matchings

is bounded by the number of the idle vehicles. On the other side, as the number of the
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waiting passenger increases, the possibility of short-distance matchings are increased that

results in less discarded vehicle-passenger matching as illustrated in Figures 2.10 (b) and (c).

Furthermore, the optimum value of the next matching interval is increased, see Figure 2.10 (d),

to compensate the effect of increasing the number of the waiting passengers on predicted

total unassigned time (see Equation 2.5). Note that the matching method by increasing the

matching interval generate fewer discarded matches because waiting passengers are more

likely to be matched with idle vehicles in close proximity.

In ∆t3≈ [40 min, 120 min), the number of the idle vehicles and the waiting passengers are not

changed notably. Hence, the average of matching distances, number of the discarded matching,

and matching intervals are not refined significantly. The trend of the idle vehicles and waiting

passengers in ∆t4≈ [120 min, 140 min) are almost the same as ∆t1. Hence, the same explan-

ation is valid. The trend of idle vehicles and waiting passengers in ∆t5≈ [140 min, 180 min]

are similar to ∆t2 if we use use idle vehicle and waiting passengers interchangeably. Because

of symmetric characteristic of a matching problem, refer to Equation 2.8 and Figure 2.4 (b),

the explanation for ∆t2 can be applied for ∆t5.

Table 2.1 presents the quantitative comparison of different matching methods. In this table,

total delay is sum of reserved time and unassigned time for vehicles and passengers as well as

the delay of the impatient waiting/assigned passengers and impatient idle vehicle drivers that

cancel their trips or leave the ride-sourcing system. Greater matching intervals decrease the

average of matching distance that is equivalent to the reduction in the reserved time of vehicles

and passengers. However, this inflates the unassigned time of passengers and vehicles. The

proposed method shows significant improvement in reducing total delay. It is worth to point

out the unassigned time of the vehicles in 15-second optimal myopic and 15-second matching

with greedy discarding is less than the proposed method because vehicles unassigned time just

considers the vehicles that successfully are matched to the waiting passengers. Passengers’

unassigned time of the proposed method is in a same level of two other methods because

the latter methods assign idle vehicles and waiting passengers together once they become

available; however, some of these matchings are long-distance such that some assigned
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passengers leave the network before boarding that are not reflected in passengers’ unassigned

time.

The number of the (impatient) passengers who leave the network before boarding (i.e., order

cancellations) for each method is reported in Table 1. These values are obtained by averaging

over the 10 replications. The number of the order cancellations by utilizing the adaptive

spatio-temporal method is lower than greedy discarding and optimal myopic methods. Note

that, in each of the three-hour simulation replication, the total number of trip requests is 2500.

TABLE 2.1. Comparison of adaptive spatio-temporal method and variants
of optimal myopic methods with respect to reserved time, unassigned time,
total delay, and the number of order cancellations. The matching interval for
adaptive spatio-temporal method is time-varying and the reported value is the
average of the matching intervals.

Matching
Interval [sec]

Number of Order
Cancellation

Passengers’ Unassigned
Time [sec]

Vehicles’ Unassigned
Time [sec]

Vehicles/Passengers
Reserved Time [sec] Total Delay [sec]

Mean SD Mean SD Mean SD Mean SD
Optimal Myopic (No Discarding) 15 49.9 143.7 134.1 38.6 167.9 93.9 85.5 457.3 183.3
Optimal Myopic (No Discarding) 30 53.3 151.7 137.8 45.5 174.6 91.4 83.1 482.2 196.7
Optimal Myopic (No Discarding) 45 47.0 157.4 139.7 51.6 159.7 90.0 81.4 500.9 184.7
Optimal Myopic (No Discarding) 60 48.4 158.9 139.2 55.7 139.8 87.7 81.3 501.0 172.5
Matching with Greedy Discarding 15 49.5 143.4 135.2 38.2 157.8 91.8 82.7 458.0 183.5
Matching with Greedy Discarding 30 50.9 150.1 136.4 44.8 162.8 91.4 81.7 476.8 182.3
Matching with Greedy Discarding 45 42.4 155.3 138.0 51.2 157.1 88.8 79.8 489.9 181.0
Matching with Greedy Discarding 60 47.1 158.3 138.8 58.3 171.3 86.8 81.7 503.7 183.8
Adaptive Spatio-Temporal Method 34.8 (Mean) 38.8 143.0 128.1 48.1 159.0 80.6 74.3 371.2 158.4

As shown in Figure 2.6, from time 0 [min] to 130 [min], the total number of the ride-sourcing

vehicles is less than the total number of the passengers (i.e., under-supply period). The effect

of the spatio-temporal matching method during this period is investigated in Table 2.2. In

Table 2.3, the effect of the proposed matching when the total number of the ride-sourcing

vehicles is greater than the total number of the passengers, i.e. time 130 [min] to 180 [min],

is evaluated (over-supply period). The number in parenthesis represent the percentage of

changes with respect to average of performances of optimal myopic method variants. The

comparison of Table 2.2 and Table 2.3 reveals that the proposed method reduces the number

of order cancellations, reserved time, passengers’ unassigned time, and total delay in both

under- and over-supply periods. Once the market is under-supply, the vehicles’ unassigned

time is almost equal to the average of performances of optimal myopic methods; however, the

passengers’ unassigned time is reduced 7.6% and the order cancellation is reduced 20.4%.

Noteworthy, the proposed method improves the quality of vehicle-passenger matchings more



2.5 RESULTS 41

during the under-supply period. This supports the conjecture that any matching algorithms is

more effective in under-supplied markets; this is because matching algorithms enable efficient

use of resources, the supply side.

TABLE 2.2. Comparison of adaptive spatio-temporal method and variants of
optimal myopic methods with respect to reserved time, unassigned time, total
delay, and number of order cancellation for simulation time from 0 [min] to
130 [min] (i.e., under-supply period). The number in parenthesis represent
the percentage of changes with respect to average of performances of optimal
myopic method variants.

Matching
Interval [sec]

Number of Order
Cancellation

Passengers’ Unassigned
Time [sec]

Vehicles’ Unassigned
Time [sec]

Vehicles/Passengers
Reserved Time [sec] Total Delay [sec]

Mean SD Mean SD Mean SD Mean SD
Optimal Myopic (No Discarding) 15 29.0 168.4 131.2 18.4 135.1 90.7 82.8 459.0 165.9
Optimal Myopic (No Discarding) 30 36.4 172.0 135.5 27.9 162.2 87.2 80.1 486.7 181.5
Optimal Myopic (No Discarding) 45 31.1 186.1 137.8 32.7 126.1 84.9 77.9 504.6 163.8
Optimal Myopic (No Discarding) 60 29.4 185.6 138.1 39.2 118.7 84.4 75.9 509.4 163.1
Matching with Greedy Discarding 15 34.7 172.6 132.3 18.8 128.7 87.9 79.9 460.7 164.2
Matching with Greedy Discarding 30 35.8 176.7 134.5 26.9 138.3 86.9 77.1 481.0 169.2
Matching with Greedy Discarding 45 28.1 182.2 136.6 33.9 145.0 85.1 75.4 496.4 172.5
Matching with Greedy Discarding 60 29.8 184.0 138.6 40.6 138.2 85.5 74.5 510.5 173.6
Adaptive Spatio-Temporal Method 36.0 (Mean) 25.3 (-20.4%) 164.8 (-7.6%) 130.3 29.8 (0.0%) 145.6 82.9 (-4.2%) 68.6 400.8 (-17.9%) 157.3

TABLE 2.3. Comparison of adaptive spatio-temporal method and variants of
optimal myopic methods with respect to reserved time, unassigned time, total
delay, and number of order cancellation for simulation time between 130 [min]
to 180 [min] (i.e., over-supply period). The number in parenthesis represent
the percentage of changes with respect to average of performances of optimal
myopic method variants.

Matching
Interval [sec]

Number of Order
Cancellation

Passengers’ Unassigned
Time [sec]

Vehicles’ Unassigned
Time [sec]

Vehicles/Passengers
Reserved Time [sec] Total Delay [sec]

Mean SD Mean SD Mean SD Mean SD
Optimal Myopic (No Discarding) 15 20.9 8.3 6.9 114.7 122.6 111.7 94.3 372.7 144.3
Optimal Myopic (No Discarding) 30 16.9 16.5 14.0 104.0 123.9 112.4 91.8 363.6 146.5
Optimal Myopic (No Discarding) 45 15.9 24.3 16.7 108.1 129.5 114.1 92.0 376.8 148.1
Optimal Myopic (No Discarding) 60 19.0 32.3 22.2 112.2 125.8 103.1 84.0 365.7 142.2
Matching with Greedy Discarding 15 14.8 9.7 11.3 107.1 123.7 111.6 91.0 355.7 142.4
Matching with Greedy Discarding 30 15.1 17.9 15.11 102.7 131.2 113.9 88.2 367.3 151.0
Matching with Greedy Discarding 45 14.3 24.1 16.6 109.6 128.5 106.9 83.0 363.6 140.6
Matching with Greedy Discarding 60 17.3 33.4 24.2 113.9 126.1 104.8 83.7 376.8 150.4
Adaptive Spatio-Temporal Method 33.1 (Mean) 13.5 (-19.5%) 15.9 (-29.3%) 14.7 97.7 (-10.4%) 128.8 93.0 (-4.4%) 72.0 316.8 (-13.8%) 113.2

2.5.2 Model Validation

Traffic congestion is heterogeneous in the case study that results in MFDs with noticeable

scatter. As the developed formulations are based on MFDs, we need to partition the network

into homogeneous regions to achieve well-defined low-scatter MFDs. Figure 2.11 (a) depicts

the partitioning of the network into four homogeneous regions as suggested in (Kouvelas et al.

2017). To validate the proposed model, we consider inter-regional flows for ride-sourcing
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vehicles (i.e. transfer, dispatched, and occupied) and passengers (i.e. waiting and assigned)

between neighbor regions because the matching algorithm prevents long-distance (i.e. far

away regions) matchings between idle/transfer ride-sourcing vehicles and waiting passengers.

In addition, the travel requests are defined for the neighbor regions. This assumption is not

very limiting for the case study microsimulation network as Regions 1, 2, and 3 are not

directly connected. Region 4 is the central region and the other regions are peripheral. We

consider the ride-sourcing travel requests are from the central region to the peripheral regions

and vice versa. However in real practice with different topology of regions, a general form

of origins and destinations of ride-sourcing trips should be considered. This would require

defining more traffic states, which is a straightforward yet cumbersome extension of the

proposed macro model.

We excite the microsimulation model with different demand levels and initial states to obtain

the regional MFDs. Figures 2.11 (b) to 2.11 (e) illustrates the simulated and estimated MFD

functions. Different colors distinguish the results of different replications. The solid lines

represent the estimated MFDs with constrained least square method based on the simulated

data. We utilize the estimated MFDs in evaluating the proposed ride-sourcing model.
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(b)
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(e)

(a)

(a)

FIGURE 2.11. (a) Homogeneous regions of the city center of Barcelona.
Macroscopic Fundamental Diagram (MFD) for (b) Region 1, (c) Region 2, (d)
Region 3, and (e) Region 4. ni denotes the total accumulation including buses,
ride-sourcing vehicles, and normal vehicles in Region i. Trip completion
rate in Region i is denoted by Gi. The solid lines show the estimated MFD
functions. The dotted colors illustrates the simulation results of different
replications.

Figures 2.12 to 2.16 assess the accuracy of the proposed macroscopic formulation using

the adaptive spatio-temporal matching method as the dispatching subsystem. This model

validation aims to study the accuracy of macroscopic aggregation of boarding rate with Cobb-

Douglas meeting function in Equation 2.9, homogeneity assumption in Equation 10, and MFD

dynamics in Equations 2.11 to 2.15. Figure 2.12 depicts the estimated number of the waiting

passengers (Equations 2.23 and 2.24) and simulated number of the waiting passengers with

dotted red lines. Root mean square error (RMSE) of estimated waiting passengers for regions

1 to 4 are: 1.51, 0.88, 0.82, and 2.17, respectively. The estimated values closely follow the

simulated values because the exogenous terms are dominant in estimating the number of

waiting passengers in each region.
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For model validation that is reported in these figures, two sets of information are fed to the

model in addition to the exogenous inputs (i.e., the arrival rate of idle vehicles and waiting

passengers): initial values of states, and the rate of vehicle-passenger matchings. The main

sources of uncertainties of the model are (i) initial location of new arriving idle vehicles

and new passengers in each region, (ii) stochastic thresholds of patience time of passengers

and drivers, and (iii) cruising movements of idle vehicles. Figures 11 and 15 shows higher

accuracy as the evolution of the waiting passengers and idle vehicles are dominated by

exogenous inputs. In Figures 13 and 14, the abrupt variation of the occupied vehicles cannot

be capture as the evolution of these sates are estimated dominantly by MFD functions that are

more adapt for slow-varying systems.
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FIGURE 2.12. Comparison of estimated and simulated evolution of the
number of waiting passengers for: (a) Region 1, (b) Region 2, (c) Region 3,
and (d) Region 4. The black solid lines show the estimated values of regional
waiting passengers. The red dotted lines illustrate the simulation results.
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FIGURE 2.13. Comparison of estimated and simulated evolution of the
number of assigned passengers for: (a) Region 1, (b) Region 2, (c) Region 3,
and (d) Region 4. The black solid lines show the estimated values of regional
assigned passengers. The red dotted lines illustrate the simulation results.

Estimated number of assigned passengers, Equations 2.25 and 2.26, and simulated number of

assigned passengers in regions one to four are compared in Figure 2.13. The initial peaks in

this Figure refer to high number of idle vehicles and waiting passengers that are considered in

matching procedure at the beginning of the simulation. The RMSE of estimated number of

assigned passengers of regions 1 to 4 are: 5.66, 2.61, 2.59, and 8.42. Cobb-Douglas matching

function that is used in Equations 2.25 and 2.26 cannot capture abrupt changes near extrema
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(e.g. time 15 [min] and 130 [min] where there are minimum and maximum extrema in total

number of the passengers as shown in Figure 2.6.
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FIGURE 2.14. Comparison of estimated and simulated evolution of the
number of occupied vehicles for: (a) Region 1, (b) Region 2, (c) Region 3,
and (d) Region 4. The black solid lines show the estimated values of regional
occupied vehicles. The red dotted lines illustrate the simulation results.

RMSE for estimated number of occupied vehicles, Equations 2.16 and 2.17, in regions 1 to 4

are: 4.86, 3.04, 3.24, and 8.57. The occupied vehicles intrinsically are slow-varying mode

of ride-sourcing systems so they can be estimated using MFDs and Cobb-Douglas functions

accurately. RMSE for estimated dispatched vehicles, Equations 2.18 and 2.19, in regions 1



48 2 MATCHING DESIGN AND MACROSCOPIC MODELLING

to 4 are: 4.20, 8.21, 1.57, and 6.31. The estimated and the simulated number of dispatched

vehicles are depicted in Figure 2.15. Similar to assigned passengers, the dispatched vehicles

are dominated by the results of dispatching subsystems that can impose high variation trends.
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FIGURE 2.15. Comparison of estimated and simulated evolution of the
number of dispatched vehicles for: (a) Region 1, (b) Region 2, (c) Region 3,
and (d) Region 4. The black solid lines show the estimated values of regional
dispatched vehicles. The red dotted lines illustrate the simulation results.
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FIGURE 2.16. Comparison of estimated and simulated evolution of the
number of idle vehicles for: (a) Region 1, (b) Region 2, (c) Region 3, (d)
Region 4. The black solid lines show the estimated values of regional idle
vehicles. The red dotted lines illustrate the simulation results.

Figure 2.16 illustrates the comparison of the estimated idle vehicles, Equation 2.22, and

simulated idle vehicles. RMSE for estimation of idle vehicles are: 3.93, 2.08, 4.06, and 4.39
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2.6 Summary and Future Research

This article has presented a dynamic macroscopic model and a matching method for ride-

sourcing systems. The macroscopic dynamical ride-sourcing model is developed based on

partitioning the network into a set of homogeneous regions and tracks the spatio-temporal

evolution of different states of ride-sourcing vehicles (i.e. transferred, idle, dispatched, and

occupied) and passengers (i.e. waiting and assigned) between regions. The model built upon

the Macroscopic Fundamental Diagrams (MFDs) and Cobb-Douglas matching function to

derive the non-equilibrium macroscopic model. Contrary to the conventional approaches, we

proposed a non-equilibrium model that overcomes the limitation of stationary and steady-state

analysis of the ride-sourcing systems. The model provides the capabilities of considering

vehicle-passenger matching scenarios and designing a controller for repositioning of idle

ride-sourcing vehicles. The proposed macroscopic model is evaluated with micro-level data

utilizing a microsimulation benchmark of ride-sourcing systems.

A Nonlinear Model Predictive Controller is developed in Chapter 3 based on the framework

and the model that is suggested in this study. Impatient passengers and drivers are considered

in the proposed model endogenously. In addition to the ride-sourcing modeling, we proposed

an algorithm to dynamically determine the optimum matching intervals and maximum match-

ing distance with respect to minimizing passengers’ waiting time. The algorithm considered

(i) the intertwine effect of matching time interval and maximum matching distance, (ii) level

of congestion of the network, and (iii) dynamics of waiting passengers and idle/transferred

vehicles to find the optimum values at each matching time instance. The validity of the

macroscopic model and the benefits of the matching method have been demonstrated with

microsimulation.

Several future research directions are envisaged. The passengers and ride-sourcing vehicles

arrival profiles can be modeled elastic (in short-term) to the market conditions (e.g. passengers’

and vehicle’s waiting time). This will lead to positive and negative short-term induced demand

and supply that requires more behavioural research on both sides of the market. Furthermore,

speed as an indicator of network congestion is considered as an exogenous factor. Integrating
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estimation of the network congestion indicator from the ride-sourcing fleet (e.g. as probe

vehicles) is another future research direction. Moreover, effects of competition between

different ride-sourcing companies on vehicle-passenger matching and repositioning is a

challenging future study. The proposed matching method relies on solving the matching

problem of a bipartite graph. Scaling of this to obtain the exact solution is a challenge that

requires further research (Bertsimas et al. 2019). Furthermore, extending the proposed

framework, method, and model to ride-splitting (ride-sharing), is a research priority.

Appendix: Nomenclature

Sets

R set of homogeneous regions

Ui set of regions in the vicinity of Region i

Functions

bij(t) vehicle boarding rate from Region i to Region j at time t

Pi total trip production (MFD) in Region i

Parameters

lOij(t) average trip length of occupied vehicles in i with destination in j at time t

lTij(t) average trip length of transferred vehicles in i with destination in j at time t

lDij(t) average trip length of dispatched vehicles in i with destination in j at time t

αi boarding function elasticity with respect to dispatched vehicles in i

βi boarding function elasticity with respect to assigned passengers in i

γi boarding function elasticity with respect to average speed of i

Ki total productivity of boarding function in i

Variables

T̂R(tιm) estimated total reserved time of matchings at tιm
T̂D(tιm) estimated total unassigned time of the waiting passengers at tιm
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T̂R(tι+1
m ) predicted total reserved time for matchings at tι+1

m

T̂D(tι+1
m ) predicted total unassigned time for waiting passengers at tι+1

m

T̂
tι+1

m −tιm
P expected total passengers’ waiting time during interval [tιm, t

ι+1
m )

m(tιm) number of matchings before discarding of long-distance matchings at tιm
l̄r(t

ι
m) average distance of optimal matchings after discarding wild goose chase at tιm

ˆ̄lr(t
ι+1
m ) prediction of average matching distance

r(tιm) number of long-distance vehicle-passenger discardings at tιm
ρc(t

ι
m) total arrival rate of idle/transferred vehicles during interval [tιm, t

ι+1
m )

ρp(t
ι
m) total arrival rate of waiting passengers during interval [tιm, t

ι+1
m )

tmax
m upper bound for the next matching time instance

cO
ij(t) number of occupied vehicles in Region i with destination in Region j at time t

cT
ij(t) number of transferred vehicles in Region i with destination in Region j at time t

cD
ij(t) number of dispatched vehicles in Region i with destination in Region j at time t

cI
i(t) number of idle vehicles in Region i time t

pW
ij (t) number of waiting passengers in Region i with destination in Region j at time t

pA
ij(t) number of assigned passengers in Region i with destination in Region j at time t

MO
ij(t) occupied vehicle inter-region flow between Region i and Region j at time t

MT
ij(t) transferred vehicle inter-region flow between Region i and Region j at time t

MD
ij(t) dispatched vehicle inter-region flow between Region i and Region j at time t

MO
ii (t) occupied vehicle internal flow in Region i at time t

MT
ii(t) transferred vehicle internal flow in Region i at time t

vi(t) average speed of Region i

v̂(tιm) estimated network average speed at time tιm
W I-D
ij (t) rate of idle vehicles in Region i that dispatches to Region j

W T-D
ij (t) rate of transferred vehicles in Region i that dispatches to Region j

W I-T
ij (t) rate of idle vehicles in Region i that transfers to Region j

WW-A
ij (t) rate of the waiting passengers which become assigned in i to j at time t

RD
ij rate of the cancellation of dispatched trips in i with destination in j at time t

wI
i(t) rate of the idle vehicles that enter/leave i at time t

qc
+

i (t) rate of idle vehicles exogenously enters to the network in i at time t
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qc
−
i (t) rate of idle ride-sourcing vehicles leave the network from i at time t

qp
W+

ij (t) exogenous rate of waiting passenger demand in i going to Region j at time t

qp
W−

ij (t) leaving rate of impatient unassigned passengers in i with destination in j at time t

qp
A−

ij (t) leaving rate of impatient assigned passengers in i with destination in j at time t



CHAPTER 3

Proactive Vehicle Repositioning

Emergence of ride-sourcing systems with internet-based platforms introduces a popular

transportation mode in recent years. The service quality of the ride-sourcing systems and their

effects on transportation networks rely on effective matching and redistributing of idle vehicles.

In Chapter 2, we introduced a vehicle-passenger matching that consider the joint effect of the

maximum matching distance and matching intervals to minimize passengers’ waiting time.

Moreover, a macroscopic non-equilibrium based model is developed to predict the evolution

of the states of the ride-sourcing system. In this Chapter, we propose a control method to

transfer idle vehicles to balance the demand of waiting passengers and supply of ride-sourcing

vehicles by positioning the idle vehicles in locations where there is a higher possibility of faster

pickups of new passengers. We develop a proactive controller in which a Nonlinear Model

Predictive Controller (NMPC) predicts the future state of the ride-sourcing system determined

by the developed non-equilibrium model of Chapter 2. The proposed NMPC implements an

optimum rolling horizon strategy as a result of solving a constrained optimization problem at

each transferring sample time. The effect of the network congestion and impatient passengers

and drivers that are considered in the model is reflected in the proposed method. We show

the effectiveness of the designed controller with respect to reducing passengers’ unassigned

and waiting times, reducing vehicles’ waiting times, reducing the number of the fleet size,

and increasing the number of the served trip requests by microsimulation experiments. We

show that the pro-activeness of the NMPC incentivises the vehicles’ drivers to follow the

transferring commands. In microsimulation experiments, the designed controller improves

the performance of the ride-sourcing system by reducing passengers’ average unassigned time

(-20.4%) and waiting times (-12.4%), vehicles’ average waiting times (-8.8%), the number of

the fleet size (-18.6%), and increasing the number of the served trip requests (9.7%).

54
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3.1 Introduction

The emergence of ride-sourcing systems unprecedentedly have changed the market of on-

demand mobility services. There has been a continuing debate/research about the effect

of dispatching methods of ride-sourcing systems on network congestion, deadheading time

of the vehicles, and waiting time of the passengers. The dispatching method is a critical

component of the ride-sourcing systems that assign idle vehicles to waiting passengers

(i.e. travel requests). However, dispatching methods have the limitation of not manipulating

the location of unmatched vacant vehicles. In this study, we propose a dynamic transferring

method for repositioning of idle vehicles to the locations with higher probability of being

assigned to new emerging passengers. A Nonlinear Model Predictive Controller (NMPC)

is designed as a proactive transferring method to reduce the (i) passengers’ unassigned and

waiting times, (ii) vehicles’ waiting times, and (iii) guided vacant cruising distances. We

utilize the developed macroscopic non-equilibrium model introduced in Chapter 2 in designing

the controller.

Ride-sourcing systems have been studied from different perspectives such as pricing of

the service (Zuniga-Garcia et al. 2020; Zha et al. 2018b; Nourinejad and Ramezani 2019;

Battifarano and Qian 2019; Zha et al. 2018a), demand or supply estimation (Wu et al. 2018; Ke

et al. 2017; Ke et al. 2018), fleet size management (Vazifeh et al. 2018), and vehicle-passenger

matching method (Yang et al. 2020; Maciejewski et al. 2016). Interested readers are referred

to (Narayanan et al. 2020; Wang and Yang 2019) for detailed reviews on ride-sourcing systems

.

A group of articles in literature study the repositioning of idle vehicles without considering dy-

namic evolution of the system (i.e., reactive repositioning) or between specific stations/nodes.

For example (Pavone et al. 2012; Zhang and Pavone 2016; Braverman et al. 2019) propose

repositioning methods by assuming stationary conditions. (Sayarshad and Chow 2017) studies

a non-myopic policy for idle vehicle repositioning between a set of stations/nodes using

queue delay as an approximation of the conditional expected cost. In (Alonso-Mora et al.

2017), a scalable method is suggested for relocating the idle vehicles to the regions with
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high instantaneous demand. A balancing method is studied in (Ramezani and Nourinejad

2018b) for a street-hailing taxi system based on macroscopic fundamental diagrams (MFDs).

Demand forecasting is incorporated into the paradigm of repositioning of the on-demand

mobility systems in (Dandl et al. 2019). One-way vehicles relocation among the fixed nodes

is studied in (Illgen and Höck 2019; Nourinejad et al. 2015).

Reactive repositioning of idle vehicles does not consider the intertwined effects among

transferring the idle vehicles at the current time, future state of vehicle-passenger matchings,

and vehicle and waiting passengers arrivals. Reactive transferring mainly suffers from

increasing the deadheading time of the idle vehicles, increasing the dead-mileage, and wild

goose chases in expense of the passengers’ waiting time. Moreover, relocating the idle

vehicles between specific nodes/stations is applicable for shared mobility systems such as

on-way car-sharing and car-pooling with limitations in ride-sourcing systems due to spatial-

varying pattern of passengers’ arrivals in the network. To fill the gap in literature, we develop

a proactive repositioning method based on NMPC for ride-sourcing systems that is beneficial

for vehicles’ drivers to follow the repositioning recommendations of the systems to reduce

the waiting time of the passengers.

In Chapter 2, an adaptive spatio-temporal matching method is proposed to dynamically

determine the optimum values of maximum matching distance (to discard long distance

vehicle-passenger matchings) and the next matching instance (to establish a time-varying

matching frequency). The developed method considers the joint effects of matching interval

and maximum matching distance to minimize passengers’ waiting time and to avoid wild

goose chase. In this Part, we focus on repositioning of the idle vehicles to curb the possible

mismatch between supply and demand in the system. To this end, we propose a NMPC

as a systematic proactive repositioning method for balancing the idle vehicles and waiting

passengers in a network that is partitioned into a number of regions. This study develop a

real-time scalable repositioning method that considers the prediction of the dynamic evolution

of the ride-sourcing system’s state (e.g. idle/ dispatched/ occupied/ transferred vehicles,

waiting/ assigned/ on-board passengers) and vehicle-passenger matching rates in each region

based on the developed model in Chapter 2. The proposed method considers variation of
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demand (i.e. passengers’ trip requests) and supply (i.e. ride-sourcing vehicles) as well as the

effect of estimated network congestion, impatient drivers, and impatient passengers. We show

that the pro-activeness of the NMPC alleviates the wild goose chase problem by reducing

dispatching distances of the vehicles that are transferred to the recommended locations. The

effectiveness of the proposed method is scrutinized with respect to reducing passengers’

and vehicles’ total delay, increasing the number of the served passengers’ trip requests, and

reducing operational fleet size.

This article is organized as follows. Section 3.2 elaborates the framework of the dynamic

vehicle repositioning system and introduces the mathematical formulation of the transferring

system in a state-space form. In Section 3.3, we propose a nonlinear model predictive

controller (NMPC) that is built upon solving a rolling-horizon constrained optimization

problem. Further, We discuss the estimation of the endogenous inputs for improving the

ride-sourcing system’s controllability. In Section 3.4, we present the microsimulation setup,

a reactive controller, and the results of the transferring method on a traffic microsimulation

model. The Chapter is summarised and the future works are discussed in Section 3.5.

3.2 Vehicle Repositioning Framework and Formulation

3.2.1 Framework

The developed ride-sourcing system has two main components: dispatching (introduced in

Chapter 2 Chapter) and transfer subsystems. We consider ride-sourcing vehicles cannot street-

hail and they should be dispatched to the waiting passengers for pickup. The dispatching

subsystem assigns waiting passengers to the vacant vehicles (i.e. idle and transferred vehicles)

in each matching instance. The transfer subsystem is based on the partitioning of the network

into a set of regions and using the developed model in Chapter 2 to predict the evolution of the

idle, transferred, dispatched, and occupied vehicles as well as waiting and assigned passengers.

It sends the idle vehicles to the regions with an excess number of waiting passengers to balance

the demand of passengers’ travel requests with idle vehicles in each region of the network. We
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consider idle vehicles cruise around (randomly) before being matched or transferred by the

ride-sourcing system. In each transfer time instance (i.e. time instances when the transferring

subsystem is triggered), the transferring subsystem selects a part of idle vehicles and transfers

them to the regions with a high possibility of finding passengers in the next matching instances.

Selected idle vehicles follow the routing recommendation of the ride-sourcing system.

The transfer subsystem determines the inter-regional movements of a set of the idle ride-

sourcing vehicles based on real-time information of the network and the developed mathemat-

ical model. To design the transfer subsystem, in each transferring time instance, we obtain

the number of (i) idle vehicles in every region, (ii) transfer, dispatch, and occupied vehicles in

Region i with the destination in Region j, (iii) waiting and assigned passengers in Region i

with destination in Region j. In addition, the transfer subsystem at each transfer time instance

requires an estimation of the rate of (i) incoming idle vehicles in each region and (ii) new

waiting passengers in Region i with destination in Region j.

The transfer subsystem utilizes the above information periodically to predict the macroscopic

behavior of the network (i.e. evolution of different state of the ride-sourcing system). The

predictions are used to determine the rate to transfer the idle vehicles to the regions with a

higher possibility of matching to the waiting passengers.

3.2.2 Model Formulation

In this part, first, the summary of the model that is developed in Chapter 2 is briefly re-

introduced. In the second part of this section, the state-space representation of the model that

is utilised to design the repositioning controller is formulated.

3.2.2.1 Summary of the Model

In this subsection, we briefly summarize the developed macroscopic ride-sourcing model

in Chapter 2. The model utilizes the Cobb-Douglas meeting function and Macroscopic

Fundamental Diagram (MFD) to represent the evolution of idle, transferred, dispatched, and

occupied vehicles as well as waiting and assigned passengers in each region of the network.
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In Equations 3.1 to 3.11, subscript ij denotes from current Region i to final destination j. Set

of the regions of the network is denoted by R and Ui is the set of regions that are in the direct

vicinity of Region i.

Evolution of the occupied vehicles, cO
ii and cO

ij , are formulated in Equations 3.1 and 3.2. The

number of dispatched vehicles that become occupied at time t is denoted by bii(t) and bij(t).

dcO
ii(t)

dt
= bii(t) +

∑
j∈Ui

MO
ji(t)−MO

ii (t) ∀i ∈ R, (3.1)

dcO
ij(t)

dt
= bij(t)−MO

ij(t) ∀i ∈ R and j ∈ Ui. (3.2)

Equations 3.3 and 3.4 show the conservation equations of dispatched vehicles, cD
ii(t) and

cD
ij(t), where W I-D

ii (t) and W I-D
ij (t) are the rate that the idle vehicles become dispatched at

time t. The rate of the transferred vehicles that become dispatched are denoted by W T-D
ii (t)

and W T-D
ij (t). Inter-regional flow of dispatched vehicles is denoted by MD

ij(t). Furthermore,

RD
ii(t) and RD

ij(t) are cancellation rates of the dispatched vehicles by impatient passengers at

time t.

dcD
ii(t)

dt
= W I-D

ii (t) +W T-D
ii (t) +

∑
j∈Ui

MD
ji(t)− bi(t)−RD

ii(t) ∀i ∈ R, (3.3)

dcD
ij(t)

dt
= W I-D

ij (t) +W T-D
ij (t)−MD

ij(t)−RD
ij(t) ∀i ∈ R and j ∈ Ui. (3.4)

The change in the number of the transferred vehicles at time t is determined by Equations 3.5

and 3.6, where MT
ii(t) and MT

ij(t) denote internal and inter-regional flows of transferred

vehicles, respectively. W I-T
ij (t) is the rate of the idle vehicle that are transferred by transferred

controller.

dcT
ii(t)

dt
=
∑
j∈Ui

MT
ji(t)−MT

ii(t)−W T-D
ii (t) ∀i ∈ R, (3.5)

dcT
ij(t)

dt
= W I-T

ij (t)−MT
ij(t)−W T-D

ij (t) ∀i ∈ R and j ∈ Ui. (3.6)
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The change in the number of the idle vehicles in each region, cI
i(t), can be obtained by

Equation 3.7. The exogenous arrival and leaving rate of the idle vehicles are denoted by qc+i (t)

and qc−i (t) respectively. wI
i(t) is the rate of idle vehicles that are close to the boundary of

the regions and might leave their current region because of random cruising behavior of idle

vehicles.

dcI
i(t)

dt
=qc

+

i (t) +MO
ii (t) +MT

ii(t)− qc
−

i (t)−
∑

j∈{Ui,i}

W I-D
ij (t)

−
∑
j∈Ui

W I-T
ij (t) + wI

i(t) ∀i ∈ R.
(3.7)

The evolution of the number of waiting passengers are:

dpW
ii (t)

dt
= qp

W+

ii (t)− qp
W−

ii (t)−WW-A
ii (t) ∀i ∈ R, (3.8)

dpW
ij (t)

dt
= qp

W+

ij (t)− qp
W−

ij (t)−WW-A
ij (t) ∀i ∈ R and j ∈ Ui, (3.9)

where, WW-A
ii (t) and WW-A

ij (t) are the rates of the waiting passengers that become assigned

at time t. The exogenous arrival rates of the waiting passengers are qp
W+

ii (t) and qp
W+

ij (t).

qp
W−

ij (t) and qp
W−

ij (t) denote the exogenous leaving rate of the waiting passengers.

The number of the assigned passengers can be tracked by Equations 3.10 and 3.11. In

these equations, qp
A−

ii (t) and qp
A−

ij (t) are the rates of order cancellation of impatient waiting

passengers.

dpA
ii(t)

dt
= WW-A

ii (t)− qp
A−

ii (t)− bii(t) ∀i ∈ R, (3.10)

dpA
ij(t)

dt
= WW-A

ij (t)− qp
A−

ij (t)− bij(t) ∀i ∈ R and j ∈ Ui. (3.11)
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3.2.2.2 State-Space Formulation

In this subsection, we introduce the mathematical formulation of the model in a standard

state-space form to design the transfer controller. The controller for repositioning the vehicles

is designed based on the developed model in Chapter 2 that assumes the network is partitioned

into a set of regions denoted by R. In the developed model, there are four groups for the

vehicles (i.e. idle, transferred, dispatched, and occupied) and three groups for the passengers

(i.e. waiting, assigned, and on-board). The state variables that correspond to each group of

vehicles and passengers are:

XXX(t)=[CCC I(t),CCCT(t),CCCD(t),CCCO(t),PPPW(t),PPPA(t)]>, XXX(t)⊂R6N+5
∑N
i=1 ‖Ui‖ (3.12)

where > is the transpose operator and R denotes the set of real numbers. Ui is the set of

the regions directly connected to Region i and ‖Ui‖ is the cardinality of Ui. The number of

the regions in the network in denoted by N . Each state of the ride-sourcing system can be

decomposed by row-wise concatenation of submatrices such as cT
iki

(t), cD
iki

(t), cO
iki

(t), cD
iki

(t),

pW
iki

(t), and pA
iki

(t) ⊂ R
(

1+‖Ui‖
)
×1, whereR

(
1+‖Ui‖

)
×1 denotes the set of real-valued matrices

with the size of
(
1 + ‖Ui‖

)
× 1. Decomposition of each state is:
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CCCT(t)=



[
cT

1k1
(t)
](

1+‖U1‖
)
×1

...[
cT
iki

(t)
](

1+‖Ui‖
)
×1

...[
cT
NkN

(t)
](

1+‖UN‖
)
×1


, CCCD(t)=



[
cD

1k1
(t)
](

1+‖U1‖
)
×1

...[
cD
iki

(t)
](

1+‖Ui‖
)
×1

...[
cD
NkN

(t)
](

1+‖UN‖
)
×1


, CCCO(t)=



[
cO

1k1
(t)
](

1+‖U1‖
)
×1

...[
cO
iki

(t)
](

1+‖Ui‖
)
×1

...[
cO
NkN

(t)
](

1+‖UN‖
)
×1


,

CCC I(t)=



cI
1(t)
...

cI
i(t)

...

cI
N(t)


, PPPW(t)=



[
pW

1k1
(t)
](

1+‖U1‖
)
×1

...[
pW
iki

(t)
](

1+‖Ui‖
)
×1

...[
pW
NkN

(t)
](

1+‖UN‖
)
×1


, PPPA(t)=



[
pA

1k1
(t)
](

1+‖U1‖
)
×1

...[
pA
iki

(t)
](

1+‖Ui‖
)
×1

...[
pA
NkN

(t)
](

1+‖UN‖
)
×1


,

(3.13)

where, ki ∈ {Ui, i}. cT
iki

(t), cD
iki

(t), cO
iki

(t), pW
iki

(t), and pA
iki

(t) are the numbers of the transfer

vehicles, dispatched vehicles, occupied vehicles, waiting passengers, and assigned passengers

in Region i with final destination in Region ki at time t. cI
i(t) denotes the number of the idle

vehicles in Region i at time t. We do not track the number of on-board passengers as a state

variable because the number of on-board passengers and occupied vehicles are equal at all

times.

To obtain the nonlinear state-space form of the model for designing the controller, we

categorize the inputs of the ride-sourcing system and the transfer controller into four types:

(i) Exogenous inputs: Arrival Rate of the new ride-sourcing vehicles (i.e. drivers who

start providing rides), qc+i (t), and the rate of idle vehicles that leave the ride-sourcing

system (i.e. drivers who finish providing rides), qc−i (t), are the external inputs of idle

vehicles in Region i. The external demand of the waiting passengers in Region i

with destination in Region j, qp
W+

ij (t), is the rate of the waiting passengers that enter

the ride-sourcing system (see Equations 22 to 24 in Chapter 2). The vector of the
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exogenous inputs is:

UUU ex(t)=[QQQc+(t),QQQc−(t),QQQpW+

(t)] UUU ex(t)⊂R3N+
∑N
i=1 ‖Ui‖,

QQQc+(t)=[qc+
1 (t), . . . , qc+

i (t), . . . , qc+
N (t)],

QQQc−(t)=[qc−
1 (t), . . . , qc−

i (t), . . . , qc−
N (t)],

QQQpW+

(t)=
[[
qp

W+

1k1
(t)
](

1+‖U1‖
)
×1
, . . . ,

[
qp

W+

iki
(t)
](

1+‖Ui‖
)
×1
, . . . ,

[
qp

W+

NkN
(t)
](

1+‖UN‖
)
×1

]
.

(3.14)

(ii) Endogenous inputs: these inputs are manipulated by the dispatching subsystem. They

are results of the proposed adaptive spatio-temporal matching method in Chapter 2.

W I-D
ij (t),W T-D

ij (t), andWW-A
ij (t), ∀i and j∈R, denote the endogenous inputs. W I-D

ij (t)

and W T-D
ij (t) are the rates of the idle and transferred vehicles in Region i that are

dispatched to Region j respectively. The rate of the waiting passengers in Region

i with destination in Region j that are assigned to the vehicles by the matching

method is denoted by WW-A
ij (t) (see Equations 3.3 to 3.11). The endogenous inputs

are vectorized as:

UUU en(t)=
[
WWW I-D(t),WWW T-D(t),WWWW-A(t)

]
UUU en(t)⊂R3(N+

∑N
i=1 ‖Ui‖),

WWW I-D(t)=
[[
W I-D

1k1
(t)
](

1+‖U1‖
)
×1
, . . . ,

[
W I-D
iki

(t)
](

1+‖Ui‖
)
×1
, . . . ,

[
W I-D
NkN

(t)
](

1+‖UN‖
)
×1

]
,

WWW T-D(t)=
[[
W T-D

1k1
(t)
](

1+‖U1‖
)
×1
, . . . ,

[
W T-D
iki

(t)
](

1+‖Ui‖
)
×1
, . . . ,

[
W T-D
NkN

(t)
](

1+‖UN‖
)
×1

]
,

WWWW-A(t)=
[[
WW-A

1k1
(t)
](

1+‖U1‖
)
×1
, . . . ,

[
WW-A
iki

(t)
](

1+‖Ui‖
)
×1
, . . . ,

[
WW-A
NkN

(t)
](

1+‖UN‖
)
×1

]
.

(3.15)

The dynamics of the endogenous inputs and how they react to the vehicle reposi-

tioning is crucial to determine the optimum rate of idle vehicles transferring. These

inputs are considered known in Chapter 2 that reduces the controllability of the

model. In Subsection 3.3.2, estimations of the predicted values of the endogenous

inputs are presented to capture the dependencies of these inputs and the model.

(iii) Control inputs: these inputs are manipulated by the transfer subsystem for dynamic-

ally balancing the number of idle vehicles in each region. W I-T
ij (t), ∀i∈R and j∈Ui,

is the control input (see Equations 3.5 and 3.6). This is the rate of the idle vehicles
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in Region i that are advised to transfer to Region j by the controller. The control

inputs, UUU co(t)⊂R
∑N
i=1 ‖Ui‖, are:

UUU co(t)=
[[
W I-T

1k1
(t)
]
‖U1‖×1

, . . . ,
[
W I-T
iki

(t)
]
‖Ui‖×1

, . . . ,
[
W I-T
NkN

(t)
]
‖UN‖×1

]
. (3.16)

(iv) Pseudo inputs: RD
ij(t) and qp

W−

ij (t), ∀i ∈ R and j ∈ Ui, are the pseudo inputs in

the developed model. RD
ij(t) is the rate of the cancellation of dispatched trips in

Region i with pickup location in Region j (see Equations 3.3 and 3.4). qp
W−

ij (t) is

the cancellation rate of the waiting passengers in Region i with destination in Region

j leaving the network at time t because of their dissatisfaction from the ride-sourcing

system (see Equations 3.8 and 3.9). The value of these memory-less variables are

affected by the vehicle-passenger matching method at each time instant. These

inputs cannot be directly manipulated by dispatching and transferring subsystems

and they are not independent from the state variable. The pseudo inputs are:

UUU ps(t)=[QQQpW−(t),RRRD(t)] UUU ps(t)⊂R2(N+
∑N
i=1 ‖Ui‖),

QQQpW−(t)=
[[
qp

W−

1k1
(t)
](

1+‖U1‖
)
×1
, . . . ,

[
qp

W−

iki
(t)
](

1+‖Ui‖
)
×1
, . . . ,

[
qp

W−

NkN
(t)
](

1+‖UN‖
)
×1

]
,

RRRD(t)=
[[
RD

1k1
(t)
](

1+‖U1‖
)
×1
, . . . ,

[
RD
iki

(t)
](

1+‖Ui‖
)
×1
, . . . ,

[
RD
NkN

(t)
](

1+‖UN‖
)
×1

]
.

(3.17)

After defining the state variables and the inputs of the system, we can formulate the nonlinear

state-space form of the model as

dXXX(t)

dt
= f

(
XXX(t),UUU ex(t),UUU en(t),UUU co(t),UUU ps(t)

)
, (3.18)

where, f(.) : R6N+5
∑N
i=1 ‖Ui‖×R3N+

∑N
i=1 ‖Ui‖×R3(N+

∑N
i=1 ‖Ui‖)×R

∑N
i=1 ‖Ui‖×R2(N+

∑N
i=1 ‖Ui‖) →

R6N+5
∑N
i=1 ‖Ui‖ is a continuous differentiable map (see Equations 16 to 26 in Chapter 2). The

transferring subsystem manipulates UUU co(t) to regulates the state variables to satisfy a defined

objective function. UUU co(t) = 0 reflects a ride-sourcing system without transferring subsystem.

In the next section, we introduce the NMPC for regulating the state variables.
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3.3 Nonlinear Model Predictive Controller Design

In this section, we introduce the NMPC as the repositioning controller of the proposed ride-

sourcing system. The interconnection between Dispatching Subsystem, Plant, and the NMPC

is illustrated in Figure 3.1. Model predictive controllers optimize the future behavior of the

system. To this end, the controller is required to predict the state variables of the system.

The prediction is determined based on the validated developed model (see Chapter 2) and

its corresponding nonlinear state-space representation (see Equation 3.18). The nonlinear

state-space model for predicting the state variables needs the pseudo inputs, estimated values

of the exogenous inputs, ÛUU
ex

(t), and estimated values of endogenous inputs ÛUU
en

(t). Estimated

values of exogenous inputs are determined by applying exponential moving average on

previous values of the exogenous inputs to clean up the noisy values. To increase the

controllability of the model, the estimated values of the k steps ahead predicted endogenous

inputs, ÛUU
en

(t+k), are determined as a function of the predicted state variables,XXX(t+k); k>0

(see Subsection 3.3.2).

The predicted values of the state variables and constraints that are defined based on the nature

of the system is fed to the optimization problem to minimize the defined cost function (see

Equation 3.19). The NMPC does not have a direct connection with Dispatching Subsystem;

hence, the designed NMPC can be integrated with any Dispatching Subsystems. The Link-

Level Allocation obtains the output of the NMPC that is the inter-regional desired rates of the

transferred vehicles to recommend hot-spot streets to reposition idle vehicles.
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FIGURE 3.1. Interaction between the Repositioning Controller and the Plant.
(Note that the focus of this Chapter is not the Dispatching Subsystem and
hence it is illustrated with lighter shades.) The exogenous demand of the trip
requests and incoming vehicles are generated in the traffic network defined by
UUU ex(t). The estimation of the predicted vehicle-passenger matchings, ÛUU

en
(t+k),

the cancellation rate of the dispatched vehicles and passengers’ trip requests,
UUU ps(t), and estimated values of the exogenous inputs, ÛUU

ex
(t), are utilised in

Nonlinear State-Space Equations to predict the state variables,XXX(t+k). The
set of controller inputs, UUU co(t), are determined by solving the constrained
optimization problem.

In the following, first, we define the cost function and constraints of the controller. In the

second part, we propose estimations of the endogenous inputs during prediction horizon to

improve the controllability and pro-activeness of the controller.

3.3.1 Cost Function and Constraints

The aim of the transfer subsystem is to reposition idle vehicles to the regions with an excess

number of passengers to increase possibility of successful matchings in the future. The NMPC

solves at every transferring time instance the finite-horizon optimal control problem. NMPC

solves Equation 3.19 to control the rate of the transferring vehicles, UUU co(t), to minimize total

predicted waiting time of the vehicles (i.e. the difference between drop-off time and the next

matching time) and total predicted waiting time of the passengers (i.e. the time that passengers
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remain unmatched in the network).

min
UUU co(t),...,UUU co(t+(nc−1)×∆tpr)

J
(
XXX(t),UUU ex(t),UUU en(t),UUU co(t)

)
= min

UUU co(ttr),...,UUU co(ttr+(nc−1)×∆tpr)

∫ ttr+np×∆tpr

ttr

[
CCC I(t),CCCT(t),PPPW(t)

]
QQQ
[
CCC I(t),CCCT(t),PPPW(t)

]>dt,

(3.19)

where QQQ = diag
(
QQQI,QQQT,QQQW

)
. QQQI ⊂ RN , QQQT, and QQQW ⊂ RN+

∑N
i=1 ‖Ui‖ are symmetric

positive semidefinite matrices for weightening of contributions of idle vehicles, transfer

vehicles, and waiting passengers in the cost function respectively. These matrices can be used

to regulate the significance of vehicles (drivers) and passengers for the ride-sourcing company.∫
CCC I(t)QQQICCC I>(t) +CCCT(t)QQQTCCCT>(t)dt formulates the weighted square of the total predicted

waiting time of the vehicles. The total predicted waiting time of the passengers is denoted by∫
PPPW(t)QQQWPPPW>(t)dt. ttr is the transfer time instance and np×∆tpr is the prediction duration.

∆tpr denotes the prediction sample and np is the prediction horizon. We can utilize the control

horizon of nc time steps to optimize only the first nc steps of the transfer actions (nc≤np).

This reduces the computational efforts for solving the optimization problem and the feasibility

of the problem.

At each transfer time instance, the NMPC uses feedback from the ride-sourcing system to

obtain the state variables,XXX(ttr), exogenous inputs, UUU ex(ttr), and endogenous inputs, UUU en(ttr).

NMPC uses these values as the initial value of the prediction and utilize the developed

model (see Equation 3.18) to make prediction of the state of the system up to time ttr+np×

∆tpr. It solves the optimization problem to find the sequence of optimum transfer actions,[
UUU co∗(ttr),UUU

co∗(ttr+∆tpr), . . . ,UUU
co∗(ttr+(nc−1)×∆tpr)

]
, to minimize the total predicted waiting

time. The solution of the optimization problem must satisfy Constraints 3.20. Afterward, only

the first step of the obtained optimum transfer actions is applied for transferring idle vehicles,
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UUU co∗(ttr).

XXX(t) ≥ 0 t ∈ [ttr, ttr+np×∆tpr], (3.20a)

UUU co(t) ≥ 0 t ∈ [ttr, ttr+np×∆tpr], (3.20b)∑
j∈{Ui,i}

(cT
ij(t)+cD

ij(t)+cO
ij(t)) ≤ njam

i −ni(ttr)−cI
i(t) t ∈ [ttr, ttr+np×∆tpr],∀i ∈ R,

(3.20c)

where, ni(ttr) is the total number of the non-ride-sourcing vehicles in Region i at time ttr.

Since the model does not track the evolution of the number of non-ride-sourcing vehicles,

we assume that this number remains fix during the prediction horizon. In each transferring

time, this number is updated by feedback from the system. Constraints 3.20a and 3.20b

ensure the positivity of all the state variables and optimum transferring rates. Constraint 3.20c

sets an upper limit on total number of the vehicles in each region. An upper-bound for each

state variables can be set easily to enforce the optimum transferring rates that are aligned

with policies of the ride-sourcing company. For more details about MPC and its use in

ride-sourcing systems and traffic control see for example (Ramezani and Nourinejad 2018b;

Yildirimoglu et al. 2018).

Optimization problem of Equation 3.19 is solved by using interior method for nonlinear

programming that combines line search and trust region steps. In this method, the primary

step is line search step using direct linear algebra. If the problem is not convex or there is

singularity in Jacobian and Hessian then the primary step will be replaced by trust region

step. This replacing of trust region step guarantees progress of the optimization when the

line search step fails. In this method, Karush–Kuhn–Tucker (KKT) approach is used to

consider the equality and inequality constraints (Waltz et al. 2006). This solver is available

in KNITRO (Byrd et al. 2006) and MATLAB and computational efficiency of this solver is

well-studied in (Wächter and Biegler 2006).
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3.3.2 Estimation of the Endogenous Inputs

We consider three sampling times in the system: matching, transfer, and prediction clocks. As

depicted in Figure 3.2, the matching frequency, ∆tmi , is time-varying. The frequency of the

matching in this Chapter is determined from the proposed adaptive spatio-temporal matching

method in Chapter 2. In this study, we assume the frequency of transferring is time-invariant.

To set the transferring frequency, taking into account the average number of rejection that

is determined from the adaptive spatio-temporal filtering is crucial. The higher the number

of rejections shows the higher necessity of transferring execution. This is to have sufficient

imbalanced idle vehicles available in the network. The prediction frequency is introduced to

discretize the continuous model (Equation 3.18) for the prediction of the state variables. At

each transfer time, ttr, we assume prediction sampling time, ∆tpr, is time-invariant.

Δ"#$

Δ"%&$ Δ"%&'

Δ"#'

…

……

…

Prediction Time

Transfer Time

Matching Time

Δ")& Δ")& Δ")&

Δ")& Δ")&
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FIGURE 3.2. Comparison between matching, transfer, and prediction sample
times.

The transfer subsystems is executed at time ttr. The endogenous inputs (e.g. the rate of the

idle/transferred vehicles to be matched to the waiting passengers) and pseudo inputs are

known at any time before t ≤ ttr. The pseudo inputs are not dominant inputs to change

the operating point of the system and intrinsically are stochastic processes because they

reflect human preferences. Hence, we consider them as disturbances in designing NMPC.

The endogenous inputs that are dominant factors are not known during the prediction time,

t ∈ (ttr, ttr +np×∆tpr]. In addition, the evolution of the state variables of the model is a

function of the endogenous inputs and availability of them is necessary for prediction of the

state variables. Our experiments show that by assuming fix values for these inputs during the
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prediction interval, the state-space model formulation becomes uncontrollable. The reason

is that the effect of manipulating control inputs, UUU co(t), cannot be reflected on rate of the

vehicles-passenger matching during the prediction interval. To address this issue, let us denote

mmyopic(t) = min
(∑
i∈R

cI
i(t) +

∑
i∈R

∑
j∈{Ui,i}

cT
ij(t),

∑
i∈R

∑
j∈{Ui,i}

pW
ij (t)

)
t ∈ [ttr, ttr+np×∆tpr],

(3.21)

r =
mplant(ttr)

mmyopic(ttr)
, (3.22)

where, mplant(ttr) represents the number of the vehicles-passenger matching at time ttr (with

considering rejection) andmmyopic(t) denotes the number of the matchings without considering

rejection. r that is the rejection ratio is assumed to be constant during the prediction interval.

The endogenous inputs during the prediction interval can be estimated as Equations 3.23-3.25.

At each transfer time instance, the NMPC uses the feedback from the system to update

mplant(ttr) and mmyopic(ttr) to update the rejection ratio.

Ŵ I-D
ij (t) =

∑
i∈{Uj ,i} p

W
ji(t)∑

i∈R
∑

j∈{Ui,i} p
W
ij (t)

cI
i(t)∑

i∈R c
I
i(t) +

∑
i∈R
∑

j∈{Ui,i} c
T
ij(t)

× r × mmyopic(t)

∆tpr
,

(3.23)

Ŵ T-D
ij (t) =

∑
i∈{Uj ,i} p

W
ji(t)∑

i∈R
∑

j∈{Ui,i} p
W
ij (t)

∑
j∈{Ui,i} c

T
ij(t)∑

i∈R c
I
i(t) +

∑
i∈R
∑

j∈{Ui,i} c
T
ij(t)

× r × mmyopic(t)

∆tpr
,

(3.24)

ŴW-A
ij (t) =

pW
ij (t)∑

i∈R
∑

j∈{Ui,i} p
W
ij (t)

× r × mmyopic(t)

∆tpr
, (3.25)

where, t ∈ [ttr, ttr+np×∆tpr]. Ŵ I-D
ij (t) and Ŵ T-D

ij (t) respectively denote the estimated rate of

the idle and transferred vehicles with current location in Region i that become dispatched in

Region j (the origin of the passenger is in Region j) at time t. ŴW-A
ij (t) is the estimated rate

of the waiting passengers with pick up location in Region i and drop off location in Region

j at time t who become assigned. The first terms in RHS of Equations 3.23 and 3.24 are

the total number of the waiting passengers in Region j that is normalised with respect to

total number of the waiting passengers in the network. This ratio reflects the portion of the
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dispatched vehicles to Region j. The second terms in RHS of Equations 3.23 and 3.24 reflect

the portion of the idle and the transferred vehicles, respectively, that the dispatched vehicles

are selected from. The last two terms in RHS of Equations 3.23 to 3.25 estimate the rate of

matchings with rejection.

3.4 Microsimulation Experiments

In this section, we introduce the traffic microsimulation case study and illustrate results of

applying three scenarios. In the first scenario, there is no transferring subsystem. In the

second scenario, we use a reactive controller as in Section 3.4.2. The reactive controller

is developed based on transferring the vehicles to the regions with a higher instantaneous

number of waiting passengers. The third scenario uses NMPC as the transferring subsystem

that considers the effect of the transferring on future evolution of the state variables. In all the

scenarios, we utilise the adaptive spatio-temporal matching that is introduced in Chapter 2 as

the dispatching subsystem. Hence, the discarded vehicles that is obtained by execution of the

matching method and new idle vehicles arrival are considered as potential idle vehicles for

transferring to neighbor regions. In these experiments, the only difference between all the

scenarios is the transferring subsystem. In the following, we compare the evolution of the idle,

transferred, dispatched, and occupied vehicles as well as waiting and assigned passengers for

each transferring scenario. Moreover, we compare all the scenarios with respect to passengers’

and vehicles’ unassigned time, passengers’ and vehicles’ waiting time, the number of trip

cancellations, and the number of the impatient drivers who leave the system because of not

being matched to passengers for an excessive time.

3.4.1 Case Study

We scrutinize the efficiency of the proposed transferring controller with a traffic microsim-

ulation. To this end, we develop a ride-sourcing testbed in Aimsun in which ride-sourcing

vehicles and travel demands fully interact with other modes of traffic (private vehicles and

buses). This microsimulation setup includes point-to-point routing of ride-sourcing vehicles,
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assigning vacant vehicles (i.e. transfer and idle vehicles) to waiting passengers, managing

generation of emerging ride-sourcing vehicles, and simulating passenger’s travel requests.

Routing of the vehicles is determined by finding the shortest travel time path between desig-

nated origin and destination. In this study, we utilize the adaptive spatio-temporal matching

method that is described in Chapter 2 for assigning vacant vehicles to waiting passengers and

60 [sec] and 5 [sec] are set as the upper and lower bounds of this matching method. New

idle ride-sourcing vehicles and waiting passengers join the network in a streamline fashion.

A stochastic time threshold is considered for all the idle ride-sourcing vehicles and waiting

passengers to model impatient characteristic of them. If a driver remains vacant or a waiting

passenger is not picked up before their threshold time, they leave the ride-sourcing system or

cancel their trip request because of an unsatisfactory quality of service.

To investigate the effectiveness of the NMPC as the transferring subsystem, we apply the

proposed controller on the calibrated traffic microsimulation model of part of Barcelona

that is partitioned into four regions as in (Kouvelas et al. 2017). To this end, we set the

transfer cycle equal to 60 [sec] to assure there are sufficient idle vehicle candidates for

transferring. Unbalance supply-demand scenario is created by setting the the exogenous

rate of the travel requests (i.e. arrival of waiting passengers) and the exogenous rate of the

arrival of new ride-sourcing vehicles as in Figure 3.3. In this figure, during [1800, 4500] and

[6300, 10800], most of the travel requests have origins and destinations in Region 3 and Region

2 respectively. While majority of the new idle vehicles appear in Region 2 and Region 3

respectively. Since Region 2 and Region 3 are far from each other (see Figure 3.1), the distance

between the majority of idle vehicles and waiting passengers are greater than the maximum

matching distance that is obtained from the adaptive spatio-temporal matching method. In

each transfer time instance, the exogenous inputs are estimated during the prediction horizon

with exponential smoothing. The weight is set to 0.7 and the initial condition of the smoothed

value is set to the initial value of the exogenous inputs at the beginning of each transfer time

instance.
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FIGURE 3.3. Arrival rate of new (a) waiting passengers and (b) idle vehicles
who join the ride-sourcing system.

3.4.2 Reactive Transferring

In this part, we introduce a model-free reactive controller as a benchmark method to scrutinize

the pro-activeness of the NMPC. The reactive controller uses the instantaneous number of idle

vehicles and waiting passengers at each transferring time to determine the desired number of

idle vehicles in each region. Then, it calculates the repositioning rates of idle vehicle between

regions to achieve the desired number of idle vehicles in each region. The desired number of

idle vehicles in Region i at time t, c∗I
i(t), is obtained by solving the following constrained

optimization:

min
c∗I

1(t),...,c∗I
N (t)

(∑
i∈R

(
c∗I
i(t)−

∑
j∈{Ui,i}

pW
ij (t)

))2

s.t.
∑
i∈R

c∗I
i(t) =

∑
i∈R

cI
i(t).

(3.26)

Equation 3.26 determines the number of desired idle vehicles such that the difference between

idle vehicles and waiting passengers becomes minimum in all regions. This is to avoid

long-distance matchings (i.e. reducing the rejection rate of vehicle-passenger matchings).
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The constraint is that the total number of the desired idle vehicles must be equal to the total

number of idle vehicles in the ride-sourcing system at time t.

To reach the desired spatial distribution as in Equation 3.26, a subset of idle vehicles in

each region are advised to transfer to other regions. To this end, we need to determine the

transferring origin (i.e. choosing designated idle vehicle for transferring) and the transferring

destination for each of the idle vehicles. Transferring origins and destinations are obtained by

solving an integer optimization problem heuristically that is equivalent to finding a subset of

a maximum matching of a bipartite graph. In this problem, each side of the bipartite graph is

partitioned to a set of disjoint subsets (i.e., supply and demand) (see Figure 3.4). A subset is

defined as supply region if there is excess number of idle vehicles, c∗I
i(t)− cI

i(t) < 0, and is

defined as demand region if there is shortage of idle vehicles, c∗I
i(t)− cI

i(t) > 0. If current

number of the idle vehicles in each region is equal to the desired number of the idle vehicles,

the reactive controller does not send in or send out any idle vehicles.

The bipartite graph as depicted in Figure 3.4, G(U, V,E), has two set of vertices (i.e. supply,

U , and demand, V ) and one set of edges E. Each edge e= (u, v)∈E, u∈U, v ∈ V has a

weight, w(e). The set of supply vertices, U , is partitioned into κ disjoint subsets that κ is the

number of supply regions, U1, . . . , Uκ. The set of demand vertices, V , is partitioned into κ′

disjoint subsets that κ′ is the number of supply regions, V1, . . . , Vκ′ .
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FIGURE 3.4. The bipartite graph for transferring idle vehicles to candidate
locations that is obtained from the reactive controller.
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The cardinality of each subset is

‖Ui‖ = cI
i(t) i ∈ {1, . . . , κ}; ‖Vi‖ = c∗I

i(t)− cI
i(t) i ∈ {1, . . . , κ′}. (3.27)

Each supply region has cI
i(t) − c∗I

i(t) excess of idle vehicles that must be transferred to

locations in demand regions. Each demand region needs c∗I
i(t) − cI

i(t) idle vehicles to be

transferred from supply region. Nodes in Figure 3.4 in the demand regions are candidate

locations (i.e. destination of transferring path). The candidate locations can be chosen

randomly around the geometric center of available waiting passengers of the demand region.

Nodes in Figure 3.4 in supply regions are the current location of idle vehicles (i.e. origin

of transferring path). The weights, w(e, v), of the graph are negative of shortest travel time

between the idle vehicles in supply regions and the candidate locations in the demand regions

that are determined by Dijkstra algorithm. The maximum matching in each supply subset, Ui,

is cI
i(t)− c∗I

i(t). By solving subsets of maximum matching of G (Barketau et al. 2015), we

determine pairs of origins and destinations for transferring idle vehicles at each transferring

time.

3.4.3 Evolution of State of the Ride-sourcing System

In this part, the evolution of the number of different groups of vehicles (idle, dispatched,

occupied, and transferred) and passengers (waiting and assigned) are depicted for the center

region (Region 4) and the surrounding regions (Regions 1, 2, and 3). The center region

has borders with all the surrounding regions but the surrounding regions have not borders

with each other. We investigate the effect of transferring subsystem by using no transferring,

reactive controller, and NMPC. The ride-sourcing system in all scenarios utilises the adaptive

spatio-temporal matching method. The frequency of the transfer subsystem is fixed at 60

[sec]. The results of the NMPC is reported by setting nc = 2, np = 30, and ∆tpr = 15 [sec].

Choosing a proper value for the prediction and control horizons depends on the dynamic of

the system. There is a trad-off in choosing proper value for prediction horizon: choosing a

very low value for the prediction horizon results in a reactive controller; however, choosing a

very large value for the prediction horizon results in missing regulating the transient behavior
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of the system. The control horizon manipulates the complexity of the optimization problem.

We set the control horizon equal to 2 to reduce the complexity.

Figure 3.5 shows the evolution of the number of the waiting passengers and idle vehicles

by using no transferring, reactive controller, and NMPC. At the start of the test, there is an

excess number of idle vehicles and waiting passengers simultaneously that shows the high

number of long-distance rejections in the center region (i.e. Region 4). The high number of

the long-distance rejections stems from the fact that the majority of the travel requests are

generated in the center region but the idle vehicles are distributed uniformly in the center and

surrounding regions (see Figure 3.3). Based on Figures 3.5.a, 3.5.b, and 3.5.c, the number

of the waiting passengers at the beginning of the tests are the same despite the transferring

scenarios. However, the number of the idle vehicles by using a reactive controller or NMPC

is smaller than no transferring scenario (see Figures 3.5.d, 3.5.e, and 3.5.f) because some of

the idle vehicles become transferred.

During [0, 1500] (sample 0 to 100), the number of the waiting passengers decreases in the

center region (i.e. Region 4) in all scenarios because of two reasons (i) more ride-sourcing

vehicles join the system and (ii) Region 4 is at the center of the network and has a border

with other surrounding regions and vehicles in the surrounding regions can be matched to

waiting passengers in the center region with a higher possibility. The rate of the decreasing of

the number of the waiting passengers in the center region by using the suggested NMPC is

higher than the reactive controller and the no transferring scenarios (see Figures 3.5.a, 3.5.b,

and 3.5.b) that is the result of well positioning of the vacant vehicles by the repositioning

subsystem.

Figure 3.5 shows that there is an excess number of the waiting passengers in Region 2 and idle

vehicles in Region 3 after time 6150 [sec] (sample 410) because (i) there is an abrupt change

in passengers’ trip requests in Region 2 with a destination in Region 2 (see Figure 3.3.a) and

(ii) the rate of exogenous idle vehicles increases drastically in Region 3 after time 4500 [sec]

(sample 300) as depicted in Figure 3.3.b. We see that in Figures 3.5.a and 3.5.d after time

6150 [sec] (sample 410), the number of the waiting passengers is mainly higher than the

number of the waiting passengers by using reactive controller and NMPC because Region
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3 and Region 2 are far from each other and the adaptive spatio-temporal matching method

discards majority of vehicle-passenger matchings between the waiting passengers in Regions

2 and the idle vehicles in Region 3. Figures 3.5.b, 3.5.c, 3.5.e, and 3.5.f illustrate that the

reactive controller and NMPC shrink the unbalance between waiting passengers and idle

vehicles by reducing the number of the waiting passengers in Region 2 and idle vehicles in

Region 3. Figure 3.6 show the number of the transferred vehicles in each region at time t.

This figure depicts that the excess idle vehicles in Region 3 and Region 4 are transferred to

increase the probability of being matched to the waiting passengers in Region 2.
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FIGURE 3.5. Evolution of the number of the waiting passengers and idle
vehicles by using different transferring methods. Waiting Passengers (a)
without transferring, (b) with reactive transferring, and (c) NMPC transferring.
Idle vehicles (d) without transferring, (e) with reactive transferring, and (f)
NMPC transferring.
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FIGURE 3.6. Evolution of the number of the transferred vehicles by utilizing
the (a) reactive controller and (b) NMPC. Each curve represents the number
of the transferred vehicles at each region. For example blue curve depicts the
number of transferred vehicles in Region 1 independent of their origins and
destinations.

Figure 3.7 shows the non-zero transferring rates of the idle vehicles by the NMPC. The total

numbers of the repositioning trips with the reactive controller and NMPC are 422 and 526

respectively. The NMPC transfers the vehicles from the surrounding regions (i.e. Regions 1,

2, and 3) to the center region (i.e. Region 4). In this figure, during [0, 3750] (sample 0 to 250),

the rate of the vehicles that is transferred from Region 2 to the center region increases because

in time [0, 1800] (samples 0 to 120) the exogenous rate of the waiting passengers from Region

4 to Region 2 is relatively high (see Figure 3.3.a) that results in accumulation of the idle

vehicles in Regions 2 (ride-sourcing vehicles pickup passengers in Region 4 and drop off

them in Region 2 and become idle in Region 2). Furthermore, at time 1200 [sec] (sample 80)

the rate of new (exogenous) idle vehicles in Region 2 increases significantly (see Figure 3.3.b)

and remains relatively high till 4500 [sec] (sample 300). It amplifies the accumulation of

the idle vehicles in Region 2. After sample 460 in Figure 3.6 (time 6900 [sec]), the rate of

the transferred vehicles from Region 3 to Region 4 increases to compensate (i) the excess of

waiting passengers in Region 2 that is a result of the exogenous rate of the waiting passengers
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from Region 2 to Region 2 (see Figure 3.3.a) and (ii) excess of idle vehicles in Region 3 that

is a result of the exogenous rate of the idle vehicles in Region 3 (see Figure 3.3.b).
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FIGURE 3.7. The non-zero transferring rates implemented by NMPC.

Figure 3.8 illustrates the evolution of the numbers of the dispatched vehicles, occupied

vehicles, and assigned passengers in the system with no transferring method, reactive control-

ler, and NMPC. During samples between 0 to 100, there are excess numbers of the waiting

passengers and idle vehicles in Region 4 (see Figure 3.5). During this time, the total number

of the dispatched vehicles, Figures 3.8.a, 3.8.b, and 3.8.c, (equivalent to the total number of

assigned passengers, Figures 3.8.g, 3.8.h, and 3.8.i) of reactive controller is relatively higher

than no transferring and NMPC. However, During samples 60 to 200, the total number of

the occupied vehicles by using NMPC is relatively higher than no transferring and reactive

controller. During this period, the mean values of the occupied vehicles with no transferring,

reactive controller, and NMPC are 54.3, 60.2, and 64.3, respectively. It shows NMPC is effect-

ive for reducing deadheading time/mileage. Moreover, after sample 400 when the transferring

methods reduce the unbalance between idle vehicles in Region 3 and waiting passengers in

Region 2, the mean values of the total number of the occupied vehicles with no transferring,

reactive controller, and NMPC are 70.4, 73.6, and 80.2 respectively. This is 13.9% and 8.9%

improvements in occupation rate of vehicles by using the NMPC in comparison with no

transferring and the reactive controller.
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FIGURE 3.8. Figure 8: Evolution of the number of the dispatched vehicles,
occupied vehicles, and assigned passengers by using different transferring
methods. Dispatched vehicles (a) without transferring, (b) with reactive trans-
ferring, and (c) NMPC transferring. Occupied vehicles (d) without transferring,
(e) with reactive transferring, and (f) NMPC transferring. Assigned passen-
gers (g) without transferring, (h) with reactive transferring, and (i) NMPC
transferring.
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3.4.4 Served Passengers and Fleet Size Evaluation

In this part, we compare the three scenarios with respect to fleet size of the ride-sourcing

and the number of the order cancellations. The stochastic impatience time threshold of each

driver is randomly generated from a normal distribution with mean value of 1200 [sec] and

variance of 600 [sec]. Microsimulation with no controller, reactive controller, and NMPC

result in 193 [veh], 178 [veh], and 157 [veh] unique ride-sourcing vehicles required to serve

the same demand of trip requests (average of five microsimulation runs). It is equal to

7.7% and 18.6% reduction in required fleet size by using the reactive controller and NMPC

respectively. Figure 3.9.a represents the cumulative number of outgoing vehicles for one

simulation replication (the vehicles that leave the system because of not being matched to

passengers before drivers’ impatience time threshold). This figure illustrates that by using

NMPC, a smaller number of ride-sourcing vehicles are needed to serve the passengers.

Hence, a reduction in unnecessary search trips is expected that decreases the overall network

congestion level.

On the other hand, the total number of the served passengers by getting the average of five

simulation replications is 1337, 1407, and 1467 by using no controller, the reactive controller,

and the NMPC respectively. This shows 5.2% and 9.7% increase in the number of served

passengers by using the reactive controller and NMPC respectively. Figure 3.9.b depicts

the cumulative number of order cancellations. We adopt stochastic time-invariant values for

passengers’ impatience time threshold. In these experiments, we choose a normal distribution

with a mean value of 600 [sec] and variance of 135 [sec] for the impatience time of passengers.

As shown in Figure 3.9.b, the number of order cancellations by using NMPC is less than using

the reactive controller or with no transfer subsystem. If we focus on the reactive controller

and with no transfer scenarios, we see that after sample 120 (7200 [sec]) when the imbalance

between idle vehicles and waiting passengers widens, using reactive controller reduces the

number of unserved passengers. Before sample 120, by using the reactive controller, the

number of unserved passengers is higher than with no transfer subsystem. However, pro-

activeness of NMPC reduces the number of unserved passengers during all time instances.
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FIGURE 3.9. Cumulative number of (a) outgoing vehicles and (b) order
cancellations because of not being matched before passengers’ patience time.

Table 3.1 presents the summary of the comparison of using no controller, the reactive control-

ler, and NMPC with respect to the number of served passengers and fleet size. The results

are obtained by averaging five microsimulation replications. As illustrated in Table 3.1, the

average number of served passengers by each vehicle increased 14.0% and 34.7% by using

the reactive controller and the NMPC.

TABLE 3.1. The number of served passengers and operational fleet size for
different scenarios of transfer subsystem. Averages of five microsimulation
replications is reported. Numbers in parenthesis show percentage of the
variation with respect to no transferring method.

Average Number of Served
Passengers

Average
Fleet Size

Average Number of
Served Passengers per Vehicle

No Transfer Subsystem 1337 193 6.93
Reactive Controller 1407 (5.2%) 178 (-7.7%) 7.90 (14.0%)
NMPC 1467 (9.7%) 157 (-18.6%) 9.34 (34.7%)

3.4.5 Delay Comparison

Table 3.2 lists the performance of different transfer subsystems with respect to the passengers’

unassigned time (time that is elapsed so waiting passengers become assigned), vehicles’

unassigned time (time that is elapsed so idle vehicles become dispatched), passengers’ waiting



3.4 MICROSIMULATION EXPERIMENTS 83

TABLE 3.2. Unassigned and waiting delays with no controller, the reactive
controller, and NMPC. Results are obtained by averaging five microsimulation
replications. Numbers in parenthesis show the percentage of variation with
respect to the no transferring method. Lower standard deviations indicate more
equitable systems.

Passengers’ Unassigned
Time [sec]

Passengers’ Waiting
Time [sec]

Vehicles’ Unassigned
Time [sec]

Vehicles’ Waiting
Time [sec]

Mean SD Mean SD Mean SD Mean SD
No Transfer Subsystem 36 57 166 124 161 337 749 1200
Reactive Controller 34 (-5.5%) 56 151.2 (-8.9%) 122 228 (40.7%) 501 736 (-1.9%) 1102
NMPC 28 (-20.4%) 47 146 (-12.4%) 116 174 (7.8%) 316 685 (-8.8%) 970

time (time that is elapsed so waiting passengers become on-board), and vehicles’ waiting time

(time that is elapsed so idle vehicles become occupied) for successful pick ups. By using the

reactive controller and NMPC, the vehicles’ unassigned time increases because transferring

trips postpone immediate matching of the (excess) number of the idle vehicles in favor of

proactive balancing between new arriving waiting passengers and idle vehicles. Noteworthy,

the passengers’ and vehicles’ waiting time decrease. Because, instead of instantaneous

matching, the transfer subsystem recommends vehicles to reposition to other regions that are

suitable for future matching (i.e. vehicles being closer to new arriving waiting passengers).

NMPC results in lower standard deviations of the reported measures that indicates the higher

equity of the ride-sourcing system among drivers and among passengers. NMPC results in

lower standard deviations of the reported measures that indicates the higher equity of the

ride-sourcing system among drivers and among passengers.

Ultimately, the NMPC has better performance in terms of reducing the number of the waiting

passengers and increasing the rate of occupied vehicles in comparison with the reactive

controller because the NMPC (i) considers current location and future destination of different

modes of vehicles and passengers and (ii) incorporates the effect of transferring for reducing

the predicted number of the waiting passengers and transferred vehicles.

3.4.6 Drivers Incentives

In this part, we focus on the effect of the reactive controller and NMPC on travelled distance

of the transferred and dispatched vehicles. We show that drivers (contractors) by following
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the transferring commands of the ride-sourcing system reduce their Guided Vacant Cruising

Distance (GVCD), that is the sum of the transferred and dispatched cruising distances.

Figures 3.10.b and 3.10.c depict the normalised histogram of the GVCD of the trips that the

vehicle has been transferred prior to being matched. Figure 3.10.a illustrates the histogram of

the GVCD with no transferring. In this figure, GVCD is reported for trips of the vehicles that

has received at least one transferring command in NMPC scenario. (This is to compare the

vacant trips of transferred vehicles in days when the transferring subsystem is active versus

days transferring is not active.)

Figures 3.10.b and 3.10.c depict the mean values of the GVCD for the reactive controller and

NMPC are 534 [m] and 475 [m]. Hence, pro-activeness of NMPC reduces the GVCD of the

trips of the transferred vehicles by 12.4%. Moreover, by using the reactive controller and

the NMPC, 95% of the trips has GVCD less than 1094 [m] and 920 [m] respectively. This

is equal to 13% improvements in reducing the matching distances without considering the

effects of outliers. With no transferring scenario, Figure 3.10.a, the standard deviation of the

GVCD of the trips increases by 62.2%, which demonstrates existence of the wild goose chase

problem. In addition, the mean value of the GVCD with no transferring increases by 17.4%

in comparison with the NMPC.
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FIGURE 3.10. Normalised histogram of GVCD of trips of (a) the vehicles
that at least have received a transferring command by NMPC controller;
however, they operate in no control scenario, (b) the vehicles that at least
receive a transferring command by the reactive controller, and (c) the vehicles
that at least receive a transferring command by the NMPC.

Figure 3.11 illustrates the normalised histogram of the GVCD of all the trips whether the

vehicle receives transferring command or not. We can see the distribution of the GVCD is

skewed to right by using NMPC as the transferring method in comparison with no controller

and the reactive controller. The mean value of the GVCD is 573 [m], 508 [m], and 491 [m] by

using no controller, the reactive controller, and the NMPC respectively. It is equal to 14.3%
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and 3.35% reduction of GVCD by using NMPC in comparison with no controller and the

reactive controller. These results demonstrate that the drivers by following the transferring

recommendations reduce their total GVCD which is their personal (selfish) gain. Accordingly,

it can be expected that rational drivers would follow the repositioning recommendations over

time.

(A) (B)

(C)

FIGURE 3.11. Normalised histogram of GVCD of trips of all the vehicles
whether they receive the transferring command or not with (a) no controller,
(b) the reactive controller, and (c) the NMPC.
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3.5 Summary and Future Work

This article has proposed a model-based nonlinear model predictive controller (NMPC) to

proactively reposition the idle vehicles in the network to balance the demand of waiting

passengers and the supply of vehicles in ride-sourcing systems. The proposed NMPC is

designed based on the model in Chapter 2 to reposition the vehicles to the regions with a

higher probability of being matched to new passengers. To increase the controllability of

the model and pro-activeness of the transferring, closed-form formulations are suggested to

estimate the rates of vehicle-passenger matchings during the prediction horizons. The NMPC

utilises the estimated values of the vehicle-passenger matchings and the model in a state-space

form to predict the evolution of the ride-sourcing vehicles (i.e. idle, transferred, dispatched,

and occupied vehicles) and passengers (i.e. waiting and assigned passengers). The NMPC

determines the optimum transferring rates by solving a constrained finite-horizon optimal

control problem to minimize the total unassigned time of the vehicles and passengers.

The effectiveness of the NMPC as the transferring method has been compared with no

controller and a reactive controller scenarios using traffic microsimulation experiments. We

have demonstrated that utilizing the proposed NMPC for repositioning the idle vehicles

improves equality of the ride-sourcing system for both passengers and drivers. We showed

that the NMPC has (i) increased the total number of the served passengers by a smaller fleet

size, (ii) reduced the passengers’ unassigned and waiting times, and (iii) reduced the vehicles’

waiting times. In addition to the network-level improvements, we have shown that using

NMPC incentivises the drivers by reducing their guided vacant cruising distance.

A future research direction is to consider the effect of transfer frequencies on (i) transferring

rates, (ii) matching distances, and (iii) matching frequencies. Incorporating the transferring

frequencies in modeling is a possible solution that results in a hybrid or a switching system

in which the transfer frequencies can be obtained dynamically as a function of the evolution

of the vehicles and passengers. Another challenging research is extending the proposed

matching and transferring methods for ride-splitting and ride-sharing systems. In addition,

transferring of idle vehicles can be considered integrated with surge pricing methods to
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curb the supply-demand mismatch. In this Chapter, arrival rate of waiting passengers is a

time-varying exogenous factor. Considering elasticity of this factor to repositioning, total

delay, average passengers’ unassigned time or other long-term variables is a research priority.

In addition, taking into account the supply elasticity can be utilised for investigating detailed

monetary incentivization of individual drivers and their compliance rate in following platform

transferring recommendations. Furthermore, studying the effect of competition between multi-

homing contractors on supply of vehicles is another future research direction. Integration of

ride-sourcing fleet information as probe vehicles data to estimate region-level traffic speed

based on MFD and incorporating such traffic dynamics into the model and controller is also a

research direction for further studies.

Appendix: Vehicle Repositioning and Matching without

Discarding

To isolate the effect of the proposed proactive transferring method from the proposed adaptive

spatio-temporal matching in Chapter 2, we employ the optimal myopic method with fixed

matching interval of 30 [sec] and no discarding. This would let scrutinize the transferring

method in isolation. Note that any transferring methods requires a pool of idle vehicles that can

be potentially transferred to balance the supply and demand in different parts of the network.

Thus, a matching method such as optimal myopic that exhausts all the supply resources

of idle vehicles for shorter passengers’ matching times, in expense of wild goose chase of

long-distance matchings, would do a disservice to any transferring method (i.e. reducing the

number of the idle vehicles reduces the effectiveness of the transferring method).

Table 3.3 shows the effect of the transferring subsystem on average number of served pas-

sengers and average fleet size (i.e., ride-sourcing vehicles). Table 3.4 lists the performance

of the 3 transferring scenarios on vehicles’ and passengers’ delay. The numbers in these

tables are obtained by using optimal myopic matching method with fixed matching interval

of 30 [sec] and no discarding. As shown in Table 3.3, repositioning mildly increases the

average of number of served passengers and reduces the fleet size that is required to serve the
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passengers. The reason is that the optimal myopic matching method consumes all the supply

resources (i.e., idle vehicles). By comparing Table 3.4 and Table 2.1, using optimal myopic

with no discarding matching method instead of the proposed adaptive spatio-temporal method

increases the passengers’ and vehicles’ unassigned times and waiting times. Furthermore,

these results demonstrate that optimal myopic matching method with no discarding reduces

the performance of the transferring subsystem.

TABLE 3.3. The number of served passengers and operational fleet size for
different scenarios of transfer subsystem and using optimal myopic matching
method with fixed matching interval of 30 [sec] and no discarding. Averages
of five microsimulation replications is reported. Numbers in parenthesis show
percentage of the variation with respect to no transferring method.

Average Number of Served
Passengers

Average
Fleet Size

Average Number of
Served Passengers per Vehicle

No Transfer Subsystem 1097 218 5.03
Reactive Controller 1101 (0.4%) 212 (-1.8%) 5.19 (3.2%)
NMPC 1105 (0.7%) 212 (-1.8%) 5.21 (3.6%)

TABLE 3.4. Unassigned and waiting delays with no controller, the reactive
controller, and NMPC using optimal myopic matching method with fixed
matching interval of 30 [sec] and no discarding. Results are obtained by
averaging five microsimulation replications. Numbers in parenthesis show the
percentage of variation with respect to the no transferring method.

Passengers’ Unassigned
Time [sec]

Passengers’ Waiting
Time [sec]

Vehicles’ Unassigned
Time [sec]

Vehicles’ Waiting
Time [sec]

Mean SD Mean SD Mean SD Mean SD
No Transfer Subsystem 40.4 54 197.0 137 148.0 329 793 1021
Reactive Controller 39.5 (-2.2%) 51 192.2 (-2.4%) 134 153.0 (3.3%) 339 779 (-1.7%) 1009
NMPC 39.1 (-3.2%) 51 189.9 (-3.6%) 131 155.1 (4.8%) 337 777 (-2.0%) 1005



CHAPTER 4

Conclusion and Future Work

In this thesis, we proposed a holistic framework that contains three components: vehicle-

passenger matching method, modelling for predicting the evolution of the ride-sourcing

system’s state (i.e. idle vehicles, transferred vehicles, dispatched vehicles, occupied vehicles,

waiting passengers, assigned passengers, and on-board passengers) in each region, and

repositioning idle vehicles to the locations with higher probabilities of being matched to the

waiting passengers. Besides, the detailed interactions between the aforementioned subsystems

have been elaborated. The ride-sourcing companies can utilize the holistic ride-sourcing

solution or each individual component to improve the level of service of their system. Besides,

the proposed model can be used by transport decision makers to predict the effect of ride-

sourcing companies matching/transferring policies on traffic congestion.

In the proposed framework, three clocks have been run in parallel for executing vehicle-

passengers matching method, triggering transferring subsystem, and prediction of the state

of ride-sourcing system. At each matching frequency, a subset of the idle and transferred

vehicles that are selected by the adaptive spatio-temporal matching method is dispatched to

the waiting passengers. At each transferring time, the remaining idle vehicles are relocated

to the locations with higher probabilities of being dispatched to the waiting passengers to

minimize the total waiting time of the vehicles and passengers up to the defined prediction

horizon that is discretized with respect to prediction sample time.

The proposed model was developed based on macroscopic fundamental diagrams and Cobb-

Douglas meeting functions to simulate the ride-sourcing system behavior without getting

feedback for correcting the model mismatch. The model has been introduced to predict the

evolution of the different status of vehicles and passengers in each region of the network. The
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non-equilibrium based model is valid under high variation of exogenous inputs (i.e. rate of

new idle vehicles and the arrival rate of waiting passengers) and it overcomes the limitations

of steady-state modeling. The proposed model considers manipulating variables (i.e. control

inputs) for repositioning idle vehicles, impatient passengers and drivers, and rate of the

vehicle-passenger matching method. The model can be utilised as a stand-alone subsystem

for the initial evaluation of the vehicle-passenger matching method or repositioning method

without using microsimulation. The validity of the macroscopic model has been evaluated

with microsimulation experiments.

Another subsystem of the holistic ride-sourcing framework is the vehicle-passenger match-

ing method. We proposed an adaptive spatio-temporal matching method to dynamically

determines optimum next matching interval and maximum matching distance with respect

to minimizing expected passengers’ waiting time. The joint effect of the matching intervals

and the maximum matching distance and the level of congestion is reflected in the proposed

method. The microsimulation experiments reveal that the adaptive spatio-temporal matching

method reduces vehicles’ and passengers’ delay in comparison with the perfect and greedy

matching methods.

The third component of the holistic ride-sourcing framework is transferring subsystem. A

nonlinear model predictive controller (NMPC) was proposed for reposition idle vehicles

to balance the supply of vehicles and the demand of the waiting passengers in each region

of the network. The NMPC that is designed based on the model relocates idle vehicles

proactively to minimize the cost function that is defined based on a definite integral of

waiting time of vehicles and passengers with an upper bound equal to the defined prediction

horizon. Microsimulation reveals that the NMPC has increased the total number of the served

passengers with a smaller fleet size, reduced the passengers’ unassigned and waiting times,

and reduced the vehicles’ waiting times. Furthermore, we have shown utilizing the NMPC

incentives for majority of vehicles’ drivers by reducing guided vacant cruising distance of the

vehicles that at least received a transferring command.

This thesis has proposed a model-based nonlinear model predictive controller (NMPC) to

proactively reposition the idle vehicles in the network to balance the demand of waiting
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passengers and the supply of vehicles in ride-sourcing systems. The proposed NMPC is

designed based on the model in Part I to reposition the vehicles to the regions with a higher

probability of being matched to new passengers. To increase the controllability of the model

and pro-activeness of the transferring, closed-form formulations are suggested to estimate

the rates of vehicle-passenger matchings during the prediction horizons. The NMPC utilises

the estimated values of the vehicle-passenger matchings and the model in a state-space

form to predict the evolution of the ride-sourcing vehicles (i.e. idle, transferred, dispatched,

and occupied vehicles) and passengers (i.e. waiting and assigned passengers). The NMPC

determines the optimum transferring rates by solving a constrained finite-horizon optimal

control problem to minimize the total unassigned time of the vehicles and passengers.
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