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SYNOPSIS

This thesis deals with three inter-related topics. The first topic is concerned with the solution

of a cracked transversely isotropic—orthotrOpic composite laminate of finite thickness. The

transversely isotropic sublaminate which is sandwiched between orthotropic outer sublarninates

contains a central crack or an array of periodically distributed cracks which are perpendicular

to the interfaces between the two media. When the crack is wholly within the sublaminate,

solutions are obtained for the stress intensity factors and the crack-induced interfacial stresses

in three loading modes. When the crack tips touch the interfaces, the stress singularities are no

longer the usual square-root type but are determined by the mechanical properties of the media.

In this case, solutions are obtained for stress singularities and the corresponding stress intensity

factors. The degenerate case when the outer sublarninates are also isotropic but dissimilar from

the central sublaminate is also solved.

The second topic concerns the application of the above fracture mechanics solutions to crack

problems of laminates composed of unidirectional fibre-reinforced composites. In view of the

fact that unidirectional fibre-reinforced composites are prone to transverse cracking and that

laminates made from unidirectional plies are prone to delamination, a cracked [(il9),,2 /(900)n1 ]s

symmetric laminate is studied with a view to examining the mutual constraining effect of plies

on transverse cracking and the role of transverse cracks in causing delamination. The fracture

mechanics framework is used to reveal the mechanisms behind the enhancement of the so-

called in situ strengths ofunidirectional laminae in multidirectional laminates. When the tips of a

transverse crack touch the interfaces, the effect of the properties of the constraining sublarninates

on the stress singularities and stress intensities at the tips of the crack is investigated.

The third topic is concerned with two types of optimum strength design of composites lami-

nates. First, for a fibre-reinforced antisymmetric [(:l:0°)n2 / (90°)n1 / (2120),,2] angle-ply laminate,

the design variables of the laminate, viz. the ply angle 0 and relative ply thickness, are chosen in

such a way as to minimize the stress intensity factor at the crack tip in the (900),“ lamina without

exceeding the interfacial maximum principal tensile stress. Secondly, based upon the extensive

fracture mechanics analysis (from topics one and two), a set of in situ strength parameters for

unidirectional laminae in a multidirectional laminate is proposed. The in situ strength parame—

ters take into account the influence of adjacent laminae and thickness of a particular lamina upon

its transverse tensile and in-plane shear strengths when it is used in a multidirectional laminate.

These strength parameters are then employed to calculate a stress norm which determines how

close the stress state in the lamina is to its failure state. The stress norm is incorporated into

the formalism of an optimization problem in order to enhance the load bearing capacity of

multidirectional laminates.
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Chapter 1

Introduction
 

1.1 Introductory Remarks

In this Thesis composite materials refer to those heterogeneous materials which are composed

of more than two homogeneous solids. These materials are nonhomogeneous and macro—

scopically anisotropic. Particularly, we are concerned with those fibre-reinforced composite

materials which have been widely used in various structures in civil, mechanical, aeronautical

and aerospace engineering. The primary function of the composite materials used in structures

or substructures in engineering applications is to carry loads safely and reliably.

In order to fulfill the requirements arising from modern industry, advanced composite ma-

terials of more subtle and complicated compositions than hitherto are being developed. These

compositions are made possible by the achievements of chemical industry and improvements

in manufacturing techniques. The diversity of the compositions raises two difficulties in the

design and application of these materials. The first is that the analysis of the mechanical re-

sponse of the nonhomogeneous and anisotropic composite materials is very complicated. The

high strength and high stiffness of these advanced composite materials usually means that they

are highly prone to cracking under loading, so that we inevitably have to solve complicated

boundary-value problems of a cracked body. Moreover, the many interfacial areas between the

constituent phases in a composite can be sources of defects but can also serve as crack arrestors,

depending on how we design the microstructure of the composite. The second difficulty is that

when there are so many choices of compositions available, the materials technologists are faced

with the difficult task of designing these materials without any sound guidelines. They often

resort to empirical rules of thumb or design the material to suit a specific application utilising

one of the performance indicators, e.g. high strength. In order to exploit the full potential

of composite materials in different applications, guidelines based upon sound mechanical and

mathematical knowledge are needed to assist the materials technologist.



It is the primary aim of this Thesis to develop such guidelines based on the analysis of cracked

laminates and on mathematical optimization techniques. We begin with a brief overview of the

materials and of the techniques found in the literature confining ourselves to only those materials

and techniques which will be needed in achieving the aim of the Thesis.

1.2 Fibre-Reinforced Composite Materials

A fibre-reinforced composite material is composed of scattered fine fibres embedded in a

continuous matrix. Because of their high strength, high modulus and low mass, fibres act

as reinforcement in the composite materials. Matrices used today are mainly plastics (epoxy,

polyester and resin, etc.), metals and ceramics. Obviously, the unconstrained sparse fibres neither

have firm shapes nor bear compressive and bending loads from the standpoint of engineering

application, so matrices are needed to play the part of adhesive and constraint material to the

fibres. On the other hand, matrix materials, such as plastics, ceramics etc., generally have low

strength and modulus, as well as small strength to weight ratio. However, the composition

of fibres and matrices makes new materials which demonstrate unique mechanical properties.

More important is that the diversity of the composition forms makes it possible to design the

material properties suitable for various objectives.

A fibre-reinforced composite is macroscopically nonhomogeneous and anisotropic in nature.

In addition, there are interfacial areas between the matrix and fibres. Strictly speaking, the

properties of the interfacial areas are different from those of the constituents and the overall

composite. These factors make the accurate solution of a boundary-value problem ofa composite

structure quite tedious. Thus, when we concentrate on one aspect of the behaviour of the material,

we have to resort to some simplification and idealization of the material properties. Although

the bonding condition of the interfacial areas has an important bearing upon the mechanical

properties of the composite, it will not be discussed in this Thesis. However, the essential

fact that the interfacial area is weak and prone to cracking when subjected to tensile and shear

stresses will be accepted without further elaboration.

Most of the fibre-reinforced composite materials are used in the form of laminates consisting

of unidirectional laminae with different fibre orientations. They are widely used as plate and

shell substructures because of their high strength to weight ratio. They are also used to make

boats, yachts and other items. The unidirectional fibre—reinforced composite has the strongest

stiffness and strength along the fibre direction but it is weak in its transverse direction. This

anisotropy is a great advantage when it is exploited in the design of a multidirectional angle—ply

laminate. By varying the fibre orientations and thicknesses of the laminae, the property of a

laminate can be tailored to suit a specific purpose.



The research into the mechanical properties and the structural response of fibre—reinforced

composite laminates can be generally divided into two areas: the stiffness-based analysis and

the strength-based analysis. In the former area, the stiffness properties calculated by classical

lamination theory (CLT) (Tsai & Hahn, 1980) are widely applied. They have been used in the

prediction of the traditional indicators such as stiffnesses, buckling load, vibration parameters

and so on. They are also exploited in the optimum design of composite laminates with respect

to these properties. Higher order analytical theories considering the shear deformation along the

thickness direction of the laminate have also been developed (Reddy, 1984; Reddy & Robbins,

1994).

In the area of strength prediction of fibre-reinforced composites, the situation is different.

Because of the complexity of the compositions, the development of failure criteria has to face

the multimodal nature of the failure forms. A unidirectional lamina has several failure modes

depending on how it is loaded. These modes include matrix cracking, fibre-matrix shearing, fibre

breakage, matrix compression failure, and fibre buckling (Chang et al., 1991). The damage of a

multidirectional laminate is characterized by those modes of the unidirectional laminae, as well

as by interfacial delarnination. When there are several failure modes, the stress redistribution

after one or several failure modes and the interaction among them make the stress evaluation

quite complicated. In order to study the load carrying capacity of the composite, it is necessary

to trace the development of damage in it. Through an examination of the relationship between

the imperfections and the macroscopic strength indicators, we can more accurately predict the

load carrying capability of composite structures from the properties of the basic constituents

or substructures. Another difficulty in predicting the strength of a multidirectional laminate

arises from the influence of the laminate configuration on the basic strength properties of an

individual unidirectional lamina. This lamination effect can play a positive or a negative role in

determining the strength of the whole laminate. The understanding of lamination effect is also

instructive in the design of the composite laminates. The work in this Thesis will focus on the

stress analysis of fibre-reinforced laminates. This analysis will be used to judge the strength of

the material through the establishment of relationships among the laminate configuration, the

applied external loads and the stress field in the material. In view of the myriad of the damage

forms in composite materials, we confine our attention to two of them only, and namely to the

transverse cracking and the delamination. Thus, the strength and/or load carrying capacity of

the laminates will be defined with respect to these two damage forms.

1.2.1 Transverse Cracking and Delamination

A fibre—reinforced unidirectional lamina is weak in the transverse direction when subjected to

tensile or shear loading. As a result, laminae in multidirectional laminates often crack in the



transverse direction, especially when thick unidirectional laminae are used. In most laminates

the first failure mode is transverse cracking of the laminae along fibre directions (Herakovich,

1982; Crossman & Wang, 1982; Talreja, 1987). The development of these transverse cracks

results in the redistribution of the stresses in a laminate and reduces its stiffness. Transverse

cracks also directly contribute to the delamination of plies. The eventual failure of a laminate is

caused by extensive delamination and/or fibre breakage (Herakovich, 1982).

Because of the inherent weakness of fibre-reinforced composites in the transverse direction,

microcracks are likely to occur in component laminae, possibly from the residual stress of

processing and the debonding between the fibres and matrix or matrix cracking. Upon being

loaded, the transverse cracks may also form at very low load levels or after only a few load

cycles under fatigue loading. Therefore, it is recognized that the transverse cracking of the

unidirectional laminae in a laminate originates as microcracks or inherent flaws, which propagate

under increasing load until they reach the interfaces, resulting in the complete rupture of the

laminae (Bailey et al. , 1979; Wang & Crossman, 1980; Bailey & Parvizi, 1981; Dvorak & Laws,

1987; etc.). Moreover, because the adjacent plies do not offer a strong constraint against the

crack growth, the initial microcracks are most likely to form away from the interfaces so that

they are wholly within the lamina at the early stage of loading. More details about the transverse

cracking will be given in Chapters 6, 8 and 9.

The other damage mechanism, namely the delamination between constituent laminae, is

the most common and fatal form of failure in laminates resulting in loss of both their strength

and stiffness. Under compression, the delaminated sublaminates may buckle leading to overall

failure of the laminate. The mechanism of delamination has been widely investigated both

theoretically and experimentally (Wang, 1980; Crossman & Wang, 1982; Chatterjee et al.,

1984; Reddy et al., 1984; O’Brien, 1985; Murn' & Guynn, 1988; Kim, 1989; Fish & Lee, 1990;

Liu et al. 1993 and Doxsee et al. 1993). The delamination often occurs at the free-edges of

laminates and at the interface in front of a transverse lamina crack. As the free—edge effect,

so also the transverse cracking in the laminae, can result in interfacial delamination (Crossman

& Wang, 1982; Kim, 1989; Fish & Lee, 1990; Liu et al. 1993 and Doxsee et al. 1993). The

severity of the free-edge induced delamination can be reduced by varying the stacking sequence

and ply thickness. In [00/ i 6°], angle—ply laminates the free—edge induced stress singularity

can be minimized or even eliminated (Christensen & DeTeresa, 1992).

It has been found for some composite laminates that when intralaminar transverse cracks

approach the interfaces, they can cause delamination. Experimental observations show (Kim,

1989) that under tensile loading delamination in laminates, especially those containing 900

plies, is preceded by transverse cracks, and that its location is related to the location of cracks.

When a laminate is subjected to transverse loading (perpendicular to the laminate plane), matrix



cracks in any one lamina also cause delamination. Liu et al. (1993) made detailed studies

of the interaction between transverse cracking and delamination in composite laminates under

transverse loading. Both experimental and analytical results showed that a transverse crack

in 90° lamina perpendicular to the interfaces in a [022/9021], laminate resulted in interfacial

delamination at the intersection of the crack tips and the interfaces between the 0° and 90°

laminae. It was also concluded that the delamination induced by an intraply crack under shear

loading is very unstable and catastrophic. Doxsee et al. (1993) studied the delamination of a

[02/902], laminate under transverse loading. It was shown that when there was a delamination

starter, the transverse cracks along the fibre directions in 00 and 90° laminae even occurred before

the delamination began to extend beyond the starter delamination. As the loading increased, the

delamination occurred at the intersection of crack tip and interface.

1.2.2 Lamination Effect and In Situ Strengths

It has been widely observed in tests that the transverse tensile and shear strengths of a fibre-

reinforced unidirectional lamina, when it is situated in an angle-ply laminate, are functions of

the thickness of the lamina itself and the ply angles of its neighbouring laminae (Parvizi et al.,

1978; Flaggs & Kural, 1982; Crossman & Wang, 1982; Yamada & Sun, 1979; Chang & Chen,

1987). These strengths of a lamina in a laminate are different from (generally larger than) those

measured by using a thick unidirectional laminate. As a consequence, it is recognized that the

transverse and in-plane shear strengths of a lamina cannot be regarded as its intrinsic property

(Flaggs & Kural, 1982; Chang & Chen, 1987). Because of this observation, the transverse and

in-plane shear strengths of a unidirectional lamina are referred to as in situ strengths, when this

lamina is situated in a laminate. Since this phenomenon occurs when a lamina is put into a

multidirectional laminate, it is also considered to be a sort of lamination effect.

Experiments by Flaggs & Kural (1982) indicated that the transverse tensile strength of

the 90° lamina in [i6/9021], laminates was a function of 0 and n (0 = 0°, 30°, 60°; n1 2

1, 2, 4, 8). When n1 is small the strength could differ significantly from the one measured using

a unidirectional (90?12 )3 (n2 2 8) lamina. It was also observed that the tensile strength decreased

with 0. The shear strength of a lamina in cross-ply laminates was also observed to be a function

of the thickness of the lamina ( Yamada & Sun, 1979; Chang & Chen, 1987).

A comprehensive literature survey can be found in Chang & Lessard (1991). From exper—

iments and the literature survey, two important features of the in situ strengths emerge, as was

pointed by Chang & Lessard (1991): (1) as the thickness of a group of identical plies increases,

the in situ strength of this group of plies will decrease; and (2) the ply orientation of an adjacent

ply will strengthen a ply according to the "adjacent ply constraint" effect, as long as it is different

from that of the ply under consideration.



Since the strengths of a unidirectional lamina form the basis of the failure criteria for general

multidirectional laminates, much effort has been spent on the prediction of the failure condition

for a lamina in cross— and angle—ply laminates (Parvizi et al., 1978; Bailey et al., 1979; Flaggs

& Kural, 1982; Tan & Nuismer, 1989; Chang & Lessard, 1991). These works examined the

conditions at which a through—thickness transverse crack appears in a unidirectional lamina in

these laminates. They certainly predicted the correlation between the strengths and thickness and

the properties of neighbouring laminae. However, these conditions have not been formulated in

a manner suitable for a general strength calculation of multidirectional laminates. An exception

is the set of concise formulae proposed by Chang & Lessard (1991) for calculating the in situ

transverse and in—plane shear strengths of a unidirectional lamina in multidirectional laminates.

1.3 Optimum Design of Laminates

Composite materials are themselves a kind of optimum usage of constituent phases. The aim

of designing a composite material is to take advantage of the merits of the constituent phases.

Therefore, one advantage of composite materials over the traditional ones is that they can

demonstrate certain novel mechanical properties which are desired in some specific engineering

applications but which cannot be expected from their constituent phases alone.

As the development and application of composite materials were initiated by the needs of

the aeronautical industry, the research on the optimum design of composite material structures

also started from the airplane design field. In view of the fact that composite materials have

high strength/weight ratio and offer wide tailoring possibilities, the early optimum design

schemes mainly concentrated on the minimum weight design. The earliest attempt in composite

optimization seems to be due to Foye (1968), who studied the minimum weight design of

laminated materials for strength and membrane stiffness. In his design procedure, multiple

in-plane loading conditions were considered, and a random search method was used to find ply

orientation angles, such that the strength and stiffness requirements would be satisfied with the

least number of plies. Another procedure for the optimization of the design of laminates was .

reported by Waddoups (1969). Minimum weight design was obtained by considering strength

constraint under multiple distinct loading conditions. Either the Tsai-Hill or the maximum strain

criterion was used as constraint. The search procedure for optimization was a grid technique.

Since then, optimization techniques have been widely applied to the design of laminates with

respect to weight and stiffness—based structural responses, such as buckling, frequency etc.

The minimum weight design of composite materials is a theme directly inherited from

optimization of structures made of isotropic materials. The minimum weight design is just

one of the many tailoring possibilities offered by composite materials. The methods used for



optimizing the design of isotropic structures with respect to weight, buckling strength, frequency

etc., can also be used for structures made of anisotropic materials. Of course there are major

differences in the choice of design variables and analysis techniques. The former does not

present a major obstacle. The main difficulty arises from the latter. If the optimum design of the

composite laminates stays only at the macro-level and does not include the micromechanical

characteristics of the composite material itself, it is evident that the advantages of formal

optimization techniques are brought to bear upon the design at a late stage (at the structural

level) using basic units which are not optimally designed. As a matter of fact, response of a

structure made out of a composite material is strongly influenced by the microstructure of the

basic unit. It is the aim of this Thesis to unify the optimum design of the basic composite unit

cell with that of the structural unit.

1.4 Brief Outline of the Thesis

The main body of original research in this Thesis is divided into two parts. The first part

consisting of Chapters 4 and 5 presents solutions to the boundary-value problems of cracked

composite laminates. Although these problems are motivated by the failure characteristics of

fibre-reinforced composites, the solutions are of general nature. They are the extension of

elastostatic solutions to crack problems in finite regions made up of dissimilar subregions. The

second part consisting of Chapters 6 to 9 inclusive specializes the solutions obtained in the first

part to fibre—reinforced composite laminates. The basic theoretical tools necessary in both parts

of the Thesis are introduced in Chapter 3. A brief overview of the contents of various Chapters

follows.

Chapter 2 gives a review of the published works on optimum design of composite laminates

with respect to their strength. Although the optimization techniques have been extensively

applied to the optimum design of laminates with respect to the stiffness-based properties, as

was mentioned before, these works will not be reviewed in detail because of the scope of this

Thesis. On the other hand, for the strength optimization which is based on stress analysis and

failure criteria, a description of optimum strength design will be preceded by a brief overview

of the available failure criteria for composites. A description will also be given of the optimum

stacking sequence design of laminates and of the mixed—variable (integer-continuous, integer—

discrete) design. These two topics remain particularly challenging and also of great practical

significance.

In order not to interrupt the exposition in the main body of the Thesis, Chapter 3 presents

some mathematical preliminaries essential to the work in this Thesis. In particular, a brief

description of the application of Fourier transforms to crack problems and of the classical



lamination theory (CLT) is presented.

In the framework oflinear elastic fracture mechanics (LEFM), basic solutions of a boundary—

value problem for a cracked composite laminate of finite thickness will be given in Chapter 4.

The composite laminate is made of three-sublaminates in which the central one is a transversely

isotropic medium and outer ones are orthotropic. The solutions are obtained when the central

layer contains a single crack, as well as a periodic distribution of cracks in all three modes of

loading — modes I, H and IH in the terminology of fracture mechanics.

The solutions obtained in Chapter 4 are extended in Chapter 5 to the cases where the crack

tips touch the interfaces. In these cases the interfacial stress singularities and the corresponding

in situ stress intensity factors are calculated, again under all three modes of loading. The

degenerate case when the outer sublaminates are also isotropic, but dissimilar from the central

sublaminate, is also discussed.

The general solutions obtained in Chapter 4 are specialized in Chapter 6 to study a multiple

crack problem in fibre-reinforced composite laminates. Such cracking is often observed in

experiments. The influence of the ply angles, thicknesses and the crack spacing upon the stress

field is depicted.

Chapter 7 specializes the general solutions obtained in Chapter 5 to the fibre-reinforced

composite laminates. The stress singularities and stress intensity factors in the three loading

modes are calculated when the tips of the crack touch the interfaces. Their variations with the

ply angle and thickness of the constraining sublaminates are depicted.

In Chapter 8, the variations of the stress intensity factor and the crack-induced interfacial

stresses are examined in an angle-ply laminate under transverse shear loading and found to

show opposite trends with respect to the ply angle. To resolve the conflict, an optimization

problem is formulated with a view to minimizing the risk of crack propagation and of interfacial

delamination in the laminate. The optimization problem is solved using nonlinear mathematical

programming techniques.

Chapter 9 investigates first in detail the mechanisms of lamination effect and in situ strength

in fibre-reinforced composite laminates. Based upon this investigation, a set of in situ strength

parameters for unidirectional laminae in a multidirectional laminate is proposed. The in situ

strength parameters take into account the influence of adjacent laminae and thickness of a

particular lamina upon its transverse tensile and in-plane shear strengths when it is used in a

multidirectional laminate. These strength parameters are then employed to calculate a stress

norm which determines how close the stress state in the lamina is to its failure state. Secondly,

the stress norm is incorporated into the formalism of an optimization problem in order to enhance

the load bearing capacity of multidirectional laminates. The optimization problem is solved for

symmetric laminates subjected to any combination of in-plane loads.



Chapter 10 summarizes the main conclusions reached on the basis of the research work

embodied in Chapters 4 to 9 inclusive.

References to works in the literature have been listed in an alphabetical order at the end

of the Thesis. Most of the work described in this Thesis has been published or accepted for

publication in Journals and presented at conferences. For easy reference, these publications are

listed below:

1. Wang, J. & Karihaloo, B. L. 1993 Design of crack-insensitive composite laminates.

Optimal design with advanced materials — Proc. IUTAM Symp. Advanced Materials,

Lyngby, Denmark, August 1992 (ed. P. Pedersen), pp. 207—219. London: Elsevier.

2. Wang, J. & Karihaloo, B. L. 1994a Cracked composite laminates least prone to delami-

nation. Proc. Roy. Soc. London A444, 17—35.

3. Wang, J. & Karihaloo, B. L. 1994b ModeH and mode 111 stress singularities and intensities

at a crack tip terminating on a transversely isotropic-orthotropic bimaterial interface. Proc.

Roy. Soc. London A444, 447—460.

4. Thomsen, N. B., Wang, J. & Karihaloo, B. L. 1994 Optimization — a tool in advanced

material technology. Structural Optimization 8, 9—15.

5. Wang, J., Thomsen, N. B. & Karihaloo, B. L. 1994 Multicriterion optimization — a tool in

advanced materials technology. In Proc. of Fifth AIAA/USAF/NASA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization Part I (ed. J. Soebieski, C. Borland,

V. Venkayya, L. Berke & G. Rozvany), pp. 54—63. Panama City, September, 1994.

6. Wang, J. & Karihaloo, B. L. 1995a Multiple cracking in angle-ply composite laminates.

J. Campos. Mater. 29, 1321-1336.

7. Wang, J. & Karihaloo, B. L. 1995b Mode I stress singularity and intensity factor at a crack

tip terminating at a transversely isotropic-orthotropic bimaterial interface. J. Appl. Mech.

(To appear).

8. Wang, J. & Karihaloo, B. L. 1995c Fracture mechanics and optimization — a useful tool

for fibre-reinforced composite design. Composite Structures 31, 151—162.

9. Wang, J. & Karihaloo, B. L. 1995d Optimum in situ strength design of composite lami-

nates. J. Campos. Mater (Submitted).

We end this brief introduction by quoting a statement by Savage (1991) who describes

the objectives of a project (worth 2 million pounds) ever taken by YARD (Glasgow) and its

partners: This project has two levels offocus in terms of damage type: (a) delamination; (b)

matrix cracking. The output ofthe research will be a predictive systemfor the residual strength

offibre reinforced epoxy (FRE) composite materials, that is already extensively used in aircraft

structures.



Chapter 2

Optimum Strength Design of Composite

Materials — A Review
 

2.1 Failure Criteria of Composite Materials

Since the stress field and strength properties of the laminae in a fibre-reinforced multidirectional

composite laminate are all functions of the laminate configuration, it is evident that under a given

loading condition, the risk of failure of the composite laminate also depends on the laminate

configuration. For given material and loading conditions, it is favourable to design the laminate

so that the risk of failure is minimized. In this way, the strength of the laminate is maximized,

and the material is exploited to the best of its capacity.

The failure of a multidirectional laminate is of a multimodal nature. The optimum design can

be pursued with respect to one or several ofthe strength indicators that reflect the overall strength

of the laminate. Irrespective of the objective, it is necessary to determine the stress field in the

laminate and to establish proper failure (strength) criteria, before any optimization procedure

can be applied. The progress made in the development of the failure criteria of fibre-reinforced

composite materials does not match the progress made in the analysis of their structural response.

This situation has come about because of two factors. One is the difficulty in making an accurate

assessment of the stress fields in the composite structures, and the other is attributable to the

scatter in the strength parameters themselves. The failure criteria available in the literature, such

as maximum stress (strain) criterion, Tsai-Hill failure criterion and Hoffman criterion, can attain

fairly good accuracies in predicting the strength of unidirectional continuous fibre-reinforced

laminae under uniaxial loading. On the other hand, the strength theory for laminates with

multiple ply angles, which is obviously the more practical, is still a continuing research topic.

The main factors that need to be taken into account when developing strength theories

for multidirectional laminates are the failure mode(s) likely to occur at given load conditions
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and the laminate configuration. It is also important to know how to use the basic strength

parameters obtained from unidirectional laminae to determine the strength of the multidirectional

laminates. The failure modes are related to the stress distribution in the laminates and the

relative strength of a lamina in different failure modes. The unidirectional lamina strengths

are emphasized here because of the following reason. The basic strength parameters used in

the failure criteria available in the literature for fibre-reinforced laminates are based on tests

conducted on unidirectional laminae. The knowledge that the in situ strength of laminae is

different from their unidirectional strength casts doubt on the validity of these failure criteria.

It means that in determining the strength of a lamina in a multidirectional laminate, the mutual

influence, viz. the layup or lamination effect, between adjacent plies and the dimensions of

the lamina under consideration must be taken into account. Herakovich (1982) experimentally

demonstrated the influence of layer thickness upon the ultimate strength of angle—ply laminates.

Chang & Lessard (1991) have proposed a set of in situ transverse tensile strength and in—plane

shear strength formulae. These formulae include the mutual influence between the adjacent

laminae as well as the dimension factor.

Chang & Lessard (1991), and Chang et al. (1991) have applied these formulae to the damage

analysis of laminates containing an open hole.

2.2 Optimal Design with Respect to Failure Criteria

The optimum strength design of fibre-reinforced composites has been pursued since the intro-

duction of these materials and the development of failure criteria. For example, Sandhu (1969)

used a parametric study to investigate the fibre orientation of a unidirectional lamina yielding

maximum strength under in-plane stress conditions. Because of the simplicity of the stress

evaluation and the laminate configuration, the strength of a unidirectional lamina under in-plane

stresses can be maximized analytically with respect to the fibre orientation (Brandmaier, 1970).

The results based on Tsai—Hill failure criterion indicated that the optimum fibre orientation

depends on the stress state and the relative value of the transverse and in-plane shear strengths

of the lamina. The intuitive design that the optimum fibre orientation for maximum strength

corresponds to the principal stress direction was found not to be applicable to the case of the

graphite/epoxy composite studied in that work.

When the strength of a multidirectional composite laminate is to be maximized, more

complicated and explicit optimization techniques are needed. The work of Chao et al. (1975a) is

the earliest study dealing with the optimal strength design of composite laminates using a failure

criterion. They designed a cylindrical shell composed of alternate +0 and —9 'undirectional

fibre-reinforced laminae. The ply angles were symmetric with respect to the middle plane of the
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shell wall. The optimum ply angle 6 was sought when the shell was under the combined action

of axial tension/compression, lateral pressure and torque. The yield criterion for orthotropic

material was written as (Tsai, 1968)

(garner—ea <$>+<az>2=1
where X, Y and S are the longitudinal, transverse and in-plane shear strengths, respectively,

and 01,, GT and 7LT are the corresponding stresses. This failure criterion predicts the initial

failure in one of the laminae. If the failure progress is to be traced, it is necessary to consider

the degradation of the material properties and the stress redistribution after each failure mode.

Substitution of the stresses in kth lamina led to a "performance index"

—1/2
0k 2 0k 2 0.]: 0k Tk 2
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The optimization problem was to maximize the performance index

Max IP 2 Max P (6",§,L1,L2,L6) (2.3)

Here, 5 designates the'position of a lamina in the laminate, and L,- (z’ = 1, 2, 6) are the loads.

In this optimization problem, there is actually only one design variable, i.e. 6. When

the laminate is composed of several laminae, the stresses are generally different from one

lamina to the next, as is P. Based on physical intuition and experimental observations, the

optimization problem was simplified so as to consider the stress state in the inner and outer

laminae, respectively. The optimization problem was solved by using a golden-section search,

preceded by a pseudo-random search in order to circumvent the multimodality, i.e. multiple

failure modes.

A similar optimization problem for a symmetric laminate was later solved to obtain the

maximum buckling load (Chao et al., 1975b). It was found that when the size of the laminate

exceeded a certain "marginal" size, only then should it be designed with a buckling constraint.

However, when its size is below this "marginal" value, it is enough to design it with respect to

strength alone.

The optimum strength design of six groups of antisymmetric angle-ply laminates was con-

sidered by Park (1982). These laminates were [—g/>°/ + W], [—¢°/0°/ + ¢>°], [-450/900/ +

$0], [—¢/O°/90°/ + do] , [—¢°/ $ 450/ + ¢°] and a laminate with continuously varying ply angle

from the middle plane to the top. Under in-plane loads N1, N2 and N6, the first-ply-failure (FPF)

criterion of Tsai & Hahn (1980) was written as

a} + e; + $62 = 252, (2.4)
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where b is a material parameter. If the left side of eqn (2.4) reaches a critical value, the lamina

is said to have failed. As e,- (2' = 1,2, 6) are determined by the laminate configuration and the

load condition, it is expected that under certain load conditions, there would be an optimal angle

4%,, which would minimize the left side of eqn (2.4).

Denoting
1

Q = e? + e; + 553,, (2.5)

the FPF optimality criterion is to minimize Q with respect to <25 under given loading condition

N1, N2 and N6. Park gave results under various load combinations for T300/5208 composite

material. It was found that the design angle ¢ is very sensitive to the load ratio under this

criterion. Sudden jumps (discontinuities) were observed in the optimal design angle 45 in the

neighborhood of certain load combinations but no explanation was provided. It is likely that

the jumps were caused by the switch of failure modes. This is the nature of multimodality of

the strength optimization, as had been previously pointed out by Chao et al. (1975a).

Ikegami et al. (1982) used Hoffman failure criterion (Hoffman, 1967) in the optimal design

of composite laminates

2 2 20L — ULUT UT FcL — FtLa For — FtTU TLT
L T

FcLFtL FcTFtT FcLFtL FcTFtT FELT
  = l (2.6)

where subscripts L and T denote the fibre and transverse directions, and c, t and 5 denote

tension, compression and shear, respectively. F and 0 denote strength and stress, respectively.

The strength constants in this criterion are determined experimentally by subjecting tubular

specimens respectively to axial load, torsion and to a combination of the two. The optimal

ply angles 01 and 02 were sought for [61/62] laminates under various in-plane load ratios by

maximizing the lengths of load vectors to the failure surface. Under most load ratios the optimal

configurations were found to be only symmetric or antisymmetric laminates, viz. [—00/ — 6°]

or [+00/ — 6°]. They applied the optimal fibre orientations to the design of rotating discs. The

optimal fibre directions that maximized the strain energy of laminates were also reported.

Although there are only two design variables 01 and 02 here, the determination of their

optimal values is not very straightforward because of their mutual influence when calculating

the stresses in each layer. The mathematical procedure for obtaining optimal values was not

described.

Adali (1985) optimized the configuration of a symmetric angle-ply laminate under in-plane

cyclic loads for maximum fatigue failure loads. Fibre orientation, layer thickness and fibre

content of the laminate were regarded as design variables. The maximum failure load was

determined by using a fatigue failure criterion formulated by Hashin & Rotem (1973) (see also

Rotem & Hashin, 1976).
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The first failure mode in this criterion is related to the fibre breakage. The failure criterion is

01 3 SL f1(N) (2.7)

where SL denotes the tensile strength of the composite material in the fibre direction. f1(N)

is a function of the number of cycles to failure denoted by N, as well as the stress ratio and

frequency of cycling. The second mode of failure is the fracture of the matrix for which the

2 2

02 7'12

2.

(3m) +(sz) £1 ( 8)

where ST and S, are the transverse tensile and in-plane shear strengths, and 02 and m are the

corresponding stresses, respectively. f2 and f1; play the same role as f1 in (2.7). Design is

obtained for a fixed number of cycles to failure.

condition is

  

Under out-of-plane bending load, the strength of a symmetric fibre-reinforced laminate was

optimized based upon the FPF criterion by Tauchert & Adibhatla (1985). The strain field in the

laminate was analysed by Rayleigh-Ritz method using thin plate theory. The first-ply-failure

criterion was taken as the objective, and the following optimization problem was solved

. 1

M111 (€i + €32, + _€:y)maz

22,6,- 2 (29)

subject to

N

21:, = t (2.10)

i=1

00g 9. g; cm
tmins t2 Stmaz (212)

The criterion (2.9) is the same as that of Park (1982) (eqn (2.4)), except that the subscripts x, y

and my, instead of l, 2 and 12, are used here in the specification of the strains. 0,- and t,- are ply

angles and thicknesses, respectively.

The optimization was performed via a quasi-Newton technique modified to handle linear

constraints. They concluded that a substantial increase in the failure load and stiffness of

laminate was possible. However, the improvement in stiffness was normally less than that in

strength.

Webber (1988) presented a parametric investigation through an interactive computer pro-

gramme for the optimal configuration of symmetric laminates under combined in-plane loads.

The stress field was calculated by classical lamination theory. The first-ply-failure and the

corresponding load were determined by the maximum allowable failure strain criterion. For a
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laminate subjected to a general loading system involving Nz, Ny and NW, two approaches to

the design problem were taken. In the first place, the fibres were arranged in the direction of the

principal load and the angles were varied about this initial position to find the optimum values.

The second approach used the common 0°/90°/ :1: 45° lay—up to sustain the loads, but this lay-up

is not as efficient as the design based on the principal load direction.

The effect of change in the ply thickness was considered for the 0°/90°/ i 45° laminate. It

was shown that increasing the thickness of 90° ply is not an efficient way of raising the failure

loads; rather, it is better to increase the thickness of the 0° layers because it dictates to a large

extent the transverse strain in the 90° ply. Webber also pointed out that the sudden discontinuity

in Park’s work (1982) was most likely due to a switching from one set ofmaximum failure loads

to another, fairly close to it in magnitude.

Through an analysis of the strain transformation from reference axes to material principal

axes, Fukunaga & Chou (1988) presented a particular class of angle-ply laminates which

could be obtained under certain in-plane loads. In these laminates, all the laminae would

fail simultaneously. Moreover, a diagram which describes the variation of the two lamination

parameters (Miki, 1982)

61 n COS 26,
= h,- , 2.13

{ £2 } E; { cos2 26,- } ( )

was used to determine the laminate configuration with the highest failure strains as per the

Tsai-Wu first-ply-fajlure criterion. A comparison between the laminates in which all laminae

failed simultaneously and the optimum laminates showed that the configuration of the former

was the optimum one for the loading condition N1 = N2. For all other loading conditions it

was pointed out that the simultaneous-failure laminate configuration either did not exist or was

not optimal.

Miravete (1989) using a quadratic failure criterion obtained the fully-stressed lightest design

of rectangular angle-ply laminates under uniform transverse load. He considered first symmetric

and balanced laminates restricting the ply angles to practical values 0°, +45°, —45° and 90°.

Lamina thicknesses and fibre directions were treated as design variables which were modified

at each iterative step. A finite element method accounting for in-plane and interlaminar stresses

was used to carry out the stress analysis. This design procedure was then (Miravete, 1990)

applied to find the lightest design of thick plates, sandwich panels and cantilever plates of

fibre-reinforced composite material under other load conditions. An experimental study was

made to assess the accuracy of the theoretical strain and displacement results. Good agreement

was found. Through optimization, large weight savings were found to be possible in all design

cases mentioned above.

The maximum strain energy density in an object can be used to assess how far the material
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used in this object is away from its failure state. Minimization of the strain energy density is

identical to maximization of the strength. Pedersen et al. (1991) have solved a shape design

problem of an orthotropic plate with a central hole bearing in-plane loading by minimizing the

maximum strain energy density in it. Parameters describing the shape of the hole were treated

as design variables. The solution to this minimax problem was obtained in three stages, viz.

finite element strain analysis for a given shape, followed by sensitivity analysis and optimal

search by linear programming with move limits. The combined shape, sizing (thickness) and

orientation optimization was also reported by Pedersen (1991).

The strength optimization of multidirectional laminates was converted into a thickness

(weight) optimization problem in the work by Fukunaga & Vanderplaats (1991). Considering

the optimum design problem of a symmetric laminate under in—plane loading, the optimization

problem was cast into the form minW=min 211:1 h,, where h,- are the ply thicknesses. The

original design variables were the ply angles and/or the thicknesses. The constraints were the

Tsai-Wu first failure criterion plus the bounds on the design variables. In order to overcome

the difficulty caused by the many local minima because of the high nonlinearity of the failure

criterion with respect the ply angles, the transformed design variables :5,- = sin 26,- or r,- = cos 20,-

(z' = 1, - - - , I ) were used instead of 0,. The actual choice of transformed variables depends on

the value of 49,-. Another feature of the optimization is the automatic deletion of the constraint

(failure criterion) corresponding to layers of zero thickness. The deletion is accomplished by

assigning a large negative value to the constraint corresponding to the layer of zero thickness.

Fukunaga & Sekine (1993) proposed a two-stage optimization procedure to minimize the

strain energy of a multidirectional laminate under in—plane loading. In the first stage, an explicit

optimal relation was derived for layer angles and layer thickness ratios in a single-element

laminate, based on the minimum strain energy criterion. It was found that this optimum

laminate is a cross-ply laminate in the principal load directions. In the second stage, the

optimality criterion was applied to the multidirectional laminate under in-plane loading. The

design variables were the ply angles and thicknesses. A strength constraint was imposed during

the search for the optimum design.

2.3 Optimal Design for Minimum Stress Irregularity

It is common to encounter local stress concentrations in some areas of a composite material.

These stress irregularities are caused by the mismatch of the material properties ofthe constituent

phases or by local cracking. If these local irregularities are not properly smoothened out, they

can cause rupture of the composite structure. In order to delay the damage or retard the crack

propagation induced by stress concentration, it is necessary to choose proper composition forms
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so as to minimize the risk of the failure. This can be done by incorporating the results of

stress analysis of composites into the formalism of optimization. Although the optimization

methodology has the same potential in this area of the design of composite materials, as in the

stiffness and strength design justed described, it has not been widely applied. The following

works present some implicit and/or explicit aspects ofthe optimum design of composite materials

against local damage or cracking.

In applying fracture mechanics results to optimal design of fibre-reinforced composite ma-

terials, Budiansky et al. (1986) have analysed matrix cracking strength of fibre-reinforced

ceramics, through an examination of the cracking process of the matrix at a microstructural

level. The pre—existent mismatch between the fibre and matrix strains during fabrication influ-

ences the matrix cracldng strength. An optimal strain match is found to exist which maximizes

the matrix cracking strength, if the Coulomb friction law between the fibre and matrix is op-

erative. Gao & Mai (1989) investigated a similar model. Considering the fact that the matrix

of some composite materials usually contains microcracks even before loading, e.g. fibre—

cementitious materials and fibre-reinforced ceramics, a fracture mechanics model was proposed

and the stress field, as well as the failure process was investigated. The stress at which the

matrix cracking began was maximized subject to the condition of the simultaneous failure of

the fibre and matrix. This optimization procedure led to a formula which matches the properties

of the fibre and the matrix.

On the experimental side, the work of Jones and co-workers (1990) illustrated how knowl—

edge of the temperature and energy fields can be used to assess damage and to develop an

optimum local redesign or repair strategy. The methodology was based on the fact that areas

experiencing a high energy field also experience rises in the local temperature field. The temper-

ature changes can be measured with an infra-red camera. Their report presented a new method

enabling the energy field to be computed from the knowledge of the surface temperature profile.

A damaged stabilizer of a fighter aircraft was used as an example, whose wing pivot fitting

plate was a boron/epoxy angle-ply laminate. The above method was applied to assess the repair

strategy to the damaged area.

Free-edge effects in fibre-reinforced composite laminates have received extensive attention,

because they play an important part in the free-edge delamination failure. Delamination can be

regarded as the most fatal failure form which damages the integrity of a laminate and therefore

results in the loss of its stiffness and load carrying capability. In an angle—ply laminate, there

are two sources of delamination between plies. One is the free-edge region; another is the

interfacial area right in front of a transverse crack (Crossman & Wang, 1982; Murri & Guynn,

1988; Kim, 1989).

Free-edge stress irregularity is caused by the mismatch of the mechanical properties of
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adjacent constituent plies of a laminate. The anisotropic nature of composite materials will

inevitably bring out this kind of problem which is not encountered in traditional homogeneous

and isotropic materials. The reduction of the free-edge effect was first studied by Pagano

(1971). It is evident from the literature that the research in this field has continued during

the last two decades. Recently, Christensen & DeTeresa (1992) proposed that for [00/ :l: 0°],

laminate the free-edge induced stress irregularity can be minimized or even be eliminated

through a proper choice of the ply angles 6. Folias ( 1992) investigated the stress field in

the neighborhood of the intersection of the free-edge of a hole and an interface in angle-ply

laminates. Shiau & Chue (1991) presented a different approach for the reduction of the free-edge

interlaminar stresses. They varied the fibre volume fraction in the free-edge region, which in

turn minimized the mismatch of elastic properties between adjacent layers, and consequently

reduced the interlaminar stresses. Parametric studies were conducted to evaluate the influence

of fibre volume fraction on the free-edge induced stresses. The results showed that proper fibre

volume reduction in the neighborhood of the free edge can reduce the stress concentration.

Although the reduction of the free-edge induced stress irregularity in angle-ply laminates

has been a topic of wide concern for a long time, no attempt has been made to study it using

optimization techniques. This is attributed to the difficulty in the determination of the stress

field. The optimum design process does not include the mechanical analysis of composite

materials at a microstructural level thereby limiting the scope of optimization in the design of

composite structures.

2.4 Optimum Stacking Sequence

Stacking-sequence design of composite laminates is a difficult and challenging topic. If the

lamina orientations in an angle-ply laminate are allowed to vary continuously, as has been

done in many designs mentioned previously, the stacking-sequence design would seem not to be

important. But in the practical design of composite laminates, only finite ply angles are available

for design selection because of fabrication convenience and other commercial considerations.

In addition, the strength and stiffness of a laminate depend strongly on its configuration under

certain loading conditions. For example, the bending strength and stiffness of a [00/900],

laminate are vastly different from those of a [900/00], laminate. As is shown by Pagano (1971),

the free-edge stress irregularity could be reduced by a proper choice of the stacking sequence.

The in situ strengths of laminae in a laminate are also determined by its neighbouring plies. In

view of the above considerations, the stacking—sequence design or the layup design, plays an

important role in the performance of composite laminates.

From a mathematical standpoint, stacking-sequence design of composite laminates is a
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nonlinear, discontinuous programming problem. The programming techniques dealing with

this kind of topological design problems are being explored. At present, it would appear that

there are two available techniques.

One of the techniques is reported by Rao et al. (1991). It is a selection technique. Using

the code representation of laminates developed by Tsai, the authors propose a procedure for

the optimum design of fibre-reinforced composite laminates by a ranking process. Given that a

symmetric laminate is made of repeated sublaminates, the ranking process selects the number

and kind of sublarninates from a set of basic configurations composed of 0°, 90° and :l:450 plies.

The design aim is the achievement of minimum weight of the laminate, with the satisfaction of

a prescribed failure criterion. The laminate can be subjected to in—plane and/or bending loads,

and optionally hygrotherrnal loads. Various layup schemes are evaluated based on lamination

theory and a quadratic failure criterion in strain space for given mechanical and hygrothermal

loads. A ply—drop round-off scheme is adopted to arrive at the optimum laminate thickness.

Haftka & Walsh (1992) proposed a mathematically rigorous scheme for the stacking-

sequence design of composite. It is based upon the usage of four sets of ply-orientation-identity

variables. For a symmetric angle-ply laminate composed of a total ofN plies of 0°, 90° and :l;45o

laminae, the ply stacking sequence is defined in terms of four sets of ply-orientation-identity

variables 0,, ni, ff and ff” (i = l, 2, ..., N/2) which are zero-one binary integer variables. The

variable 0,, 72,-, ff or ff” is equal to one if there is a 0°, 90°, +450 or -45° ply, respectively, in

the ith layer. Then the integral factors in the expressions of stiffness coefficients can be written

as linear functions of these variables. An optimization problem of a laminate with respect to a

mechanical property, for example, the buckling load A, is formulated as

Max A*(o,~,n,~,ff,fr) (2.14)

subject to

X“ g Acr(m,n), m =1,2,..,mf, n =1,2,..,nf (2.15)

0, +72, + ff +f,-"‘ = , i=1,2,...,N/2 (2.16)

N/2

22 (ff — fl") = 0, (2.17)
i=1

where A“ is the lowest buckling load over m and n — the number of half—waves in two directions,

and Acr(m, n) is the critical buckling load. 0,, 11,-, ff and ff” (2' = 1,2, ..., N/2) are zero-one

binary integer variables. The last constraint (2.17) ensures the laminate is a balanced one. Other

constraints on the stacking sequence such as a limit on the number of contiguous plies of the

same orientation and limits on the in-plane stiffnesses are easily accommodated. The former

condition may be necessary from the strength point of view.

19



The authors give the design examples for graphite/epoxy laminates under uniaxial and biaxial

compression using a software LINDO (Schrage, 1989) based on branch-and-bound algorithm.

Gfirdal & Haftka (1991) have reviewed optimization strategies for design with discrete and

integer valued variables leading to the stacking-sequence optimization. The graphic optimiza-

tion method of Miki (1982), the penalty function approach for problems with discrete-valued

variables (Shin et al., 1990) and the use of ply-orientation-identity variables are discussed. It

is pointed out that a difficulty in using flexural lamination parameters in designing laminates

for maximum buckling load is that the half wave numbers in two directions depend on the

design variables, as well as the aspect ratios and the applied loads. It is not always possible to

predict them accurately. The penalty method has mathematical continuity; hence it is simple

and straightforward to use. In some cases, it is unable to reach the global optimum, especially

for laminates with large number of plies or for discrete sets with large number of choices.

2.5 Mixed-Variable Design

From a commercial point of view, a logical construction of a fibre-reinforced laminate involves

integer numbers of unidirectional laminae, while the thicknesses of these laminae are discrete

numbers. In the design of laminates one inevitably encounters the situation where continuous,

integer and discrete variables are present. These mixed programming problems are highly

complex mathematically but have been receiving a lot of attention.

Mesquita & Kamat (1987) solved a mixed integer programming problem for the maximiza-

tion of frequencies of a stiffened laminate subject to frequency separation constraints and an

upper bound on the weight. In this design, a symmetric laminate is constructed of m plies of

90°, 11; plies of 60°, n3 plies of 45°, 11., plies of 30° and n5 plies of 0°. Along its two centrelines,

the laminate is reinforced by two stiffeners placed symmetrically with respect to the laminate

midplane. The frequencies are calculated using the finite element method.

The number n,- (i = 1,2, .., 5) of plies and the stiffener areas form the two sets of design

variables and the problem belongs to the class of nonlinear mixed integer programming (NMP).

Dakin’s branch and bound algorithm (Dakin, 1965) was employed to discompose the original

problem into a sequence of nonlinear programming sub-problems. These sub-problems were

then solved with projected Lagrangian or variable metric method for constrained optimization

(Powell, 1978). It was demonstrated that nonlinear mixed integer programming can be a viable

structural optimization alternative to the conventional practice of rounding off a continuous

Optimization solution.

Hajela & Shih (1989) proposed a modification of the branch and bound approach to include

nonlinear optimization problems involving continuous, integer and discrete design variables. A
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mathematical formulation of optimization problem with mixed continuous, discrete and integer

variables can be stated as follows

Min Fa) (2.18)

subjectto

gj(§) g 0; j=1,2,...,p (2.19)

me) = 0; k:l,2,....,s (2.20)

43 x,- gig, i=1,2,....,n (2.21)

where

5: (schrz,...,xL,...,xm,...,xn)T (2.22)

is the design variable vector. The design variables involve L non—negative discrete variables

which may be the thicknesses of the plies, m —- L non-negative integer variables which may be

the number of plies, and n — m positive real continuous variables , e.g. the ply angles. From a

practical point of view, the ply angles can also take discrete values.

The basic solution strategy used in this work for the nonlinear mixed integer programming

problems is a variant of the approach proposed by Garfinkel & Nemhauser (1974). The strategy

consists of a systematic search ofcontinuous solutions in which the discrete and integer variables

are successively forced to assume specific values. As a first step, the requirement that appropriate

variables be discrete or integer is relaxed, and a solution of the continuous problem is reached.

If the solution is such that the original requirements on integrality and discreteness are satisfied,

and the design is feasible, an optimum design is obtained. If some of the variables violate the

conditions of being integer or discrete values, then they are branched and new bounds are put

on them. The sub-problems thus created are solved again as continuous problems. This branch

and bound procedure is successively applied until a feasible integer and discrete design set is

obtained.

A design example was presented using this procedure. The design objective was the

minimum weight of a cantilever composite laminate beam. Constraints were placed on strength,

displacement and natural frequency. A modified feasible direction algorithm was used in the

solution ofthe continuous nonlinear programming problem, with piecewise linear representation

of the objective function and constraints.

2.6 Concluding Remarks

From the above brief review of the optimum strength design of fibre-reinforced composites,

the potential of optimization techniques to the design of composite materials became apparent.
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But at the same time it became also apparent, that most of the explicit optimum designs were

obtained at the structural level that did not take into account the microstructural characteristics

of the composites. For instance, the high sensitivity of fibre-reinforced composite materials

to defects such as cracks in the transverse direction was not considered in the prediction of

the strength of the material. The literature survey also showed that the detailed stress analysis

of cracked composites was not incorporated into the mathematical formalism of optimization.

On the other hand, the recent developments in both the stress analysis of the heterogeneous

materials and in the optimization techniques have provided us with effective tools which can be

used to overcome the above shortcomings.

Therefore, the primary aim of this Thesis is to provide guidelines for the design of composite

materials through a combination of the state-of—the—art analysis of cracked fibre—reinforced

composite laminates based on fracture mechanics with mathematical optimization techniques.

The analysis of the cracked composite laminates using fracture mechanics will examine the

interaction between cracks and the interfaces in these materials, whereas the optimization

of their design will aim at minimizing the influence of cracks on interfacial stresses and at

maximizing the constraining effect of laminae on one another.
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Chapter 3

Mathematical Preliminaries
 

3.1 Introductory Remarks

In order not to interrupt the continuity of exposition in the main body of this Thesis, and also for

the sake of completeness a brief overview of the mathematical techniques that will be repeatedly

used in this Thesis is given in this Chapter. In particular, the Fourier transform technique will

receive some attention, as will the lamination theory for composite laminates. But we begin

with the presentation of the stress-strain relationships for a transversely isotropic solid.

3.2 Stress-Strain Relationships for a Transversely Isotropic

Material

Figure 3.1 shows a homogeneous elastic medium which has the property of transverse isotropy

in the plane perpendicular to the z—axis, for instance, the my—plane

shown in Figure 3.1, the stress-strain relationships are
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— :L‘Z _ _ yy _ — zz
Ema: Eyy E22
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Figure 3.1: A transversely isotropic elastic body. The isotropy prevails in the plane perpendicular

to z-axis, represented by say-plane

72:5 : 1 721: (36)
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where E”, Egg and En denote Young’s moduli along x, y and 2-directions, respectively, and

pm, by; and um represent the shear moduli in xy, yz and zx-planes, respectively. Because of

the transversely isotropic nature of the body, we have the identities

Era: = Egg E E (3.7)

#:L‘y = F‘yz E M (3.8)

W = #2:: (3.9)

”w = Vyz' E 1/ (3.10)

1/12 = Vyz Um = sz (3.11)
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and

E

”m
(3.12)

In an elastostatic problem in which Tyz and T”. are absent, eqns (3.1)—(3.6) using the notation

of eqns (3.7)— (3.10) degenerate into

1 V sz

Egg : —0' _ —0' — —0-E m: E yy E22 22

z/ + 1 sz

5 = -_sz 0' Uzz
yy E E yy E22

V" Vyz 1

522 = - 0x1; _ 0' + 022

E E W Ezz

1

”Yrs: = ‘sz
,u

(3.13)

(3.14)

(3.15)

(3.16)

For a two-dimensional problem (in zy-plane) under general plane stress conditions (azz = O),

the strain components in the zy-plane are

 

1 V

a” _ 2(1+ 10/10" _ 2(1+ WWW

a l/ + 1

= ———"sz

W 2(1 + V)!” 2(1 + Wu yy

1

7n! = ‘Try

where eqn (3.12) has been used.

On the other hand, for a problem under plane strain conditions (522 = O) and

1 V5” z/
yZ

E U22 = 01.1: +

22

_0'
yy

Era: Eyy

the corresponding strain components are

 

1 — szsz V + szVyz

51:1: = 0'13: _ 0'

2(1+ V» 2(1+ w W

_ 1/ + szV“ 1 — sz z/yz

5” _ 2(1 + WM 0" 2(1 + V)!» a”

1

721/ = "Try

If we use the notation
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3—1/
 under general plane stress conditions
1 + VK = 3 4

(3.24)

MEX/Eda). under plane strain conditions
1 + V

then eqns (3.17)—(3.19) and (3.21)—(3.23) can be expressed in the following unified form

1+Is 3—K
 

 

615$ : 8,” an _ Wag/y (3.25)

3 — I6 1 + It
52121 = " 8M an: - —8pUyy (3.26)

l
71:31 2 Esz (3.27)

When the material degenerates into an isotropic medium, i.e. um = sz = l/ (which will

automatically lead to E” = E), n will become

i’ l ‘1: under general plane stress conditions
,9 = (3.28)

3 —— 41/ under plane strain conditions

 

Combining eqns (3.24) with (3.28), the corresponding K. for both transversely isotropic and

completely isotropic media under the two deformation modes can be explicitly written as

 :1} I Z isotropic or transversely isotropic in

general plane stress

rt 2 . . . . 3.29
3 — 41/ 1sotropic 1n plane strain ( )

3 — V — 41/ 1/ . . . .
wtransversely isotropic in plane strain

1+z/

The first two values of re for an isotropic medium are also called the Kolosov constants

(Sokolnikoff, 1956; Markenscoff, 1993).

3.3 Fourier Transforms and Relevant Expressions

The purpose of this brief Section is to express the components of stresses and displacements of

a two-dimensional elasticity problem in terms of relevant Fourier transforms. The exposition

below follows closely that of Sneddon (1951) with a slight alteration to the notation.
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In a two-dimensional problem of elasticity where body forces are absent, the stresses can be

expressed as

2 2 2

055 = 2—7:: 0,," = 2—5:: 75,, = ~5a§3in (3.30)

where tp = (,9(§, n) is the Airy stress function. In the above expressions and in those to follow,

the coordinates are denoted by 5 and 77 instead of the commonly used :1: and y. When these

formulae are used later for detailed problems, E and 17 will be replaced by a: and y or y and m,

respectively, as desired.

The Airy stress function 99(517) should satisfy the biharmonic equation

Wen) = 0 (3.31)

This biharmonic equation can be solved using Fourier transforms. It is taken as granted that

the Airy stress function and the resulting stresses and displacements all satisfy the conditions of

Fourier transforms. If we denote the Fourier transform of so = (o(§ , n) by

— +°° it

wet) = L» 99(6777) e 7' dn (3.32)

then the inverse transform is

(g ) — i /+°° -(g t) e-“n dt (3 33)
99 777 _ 27f —00 so 5 '

where 2' = v—l.

Substituting eqn (3.32) into (3.31), the general solution of the biharmonic equation where

flé, t) is the unknown can be written as

:o-(g, t) = (C1 + 025) (2-1“ + (C3 + 045) emg (3.34)

where Cj (j = l, 2, 3, 4) are unknown functions of t which are to be determined from the proper

boundary conditions.

From the relations (3.30), it is easily shown that

+00 .

[.00 aggeztndn = 42¢ (3.35)

+00 i ([2?

Lo annetndn = E7 (3.36)

+00 . —

/ Tgneztndn = 21%? (3.37)

The stresses are expressed as
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a = _i /+°° flee-it" dt (3 38)
£6 271' —00 .

1 +oo dza _,.0,7,, = g [00 a? e t" dt (3.39)

_ 1 +00 - d? —itn
Tén — Zr /_00 2t d5 6 dt (3.40)

In order to calculate the displacements, we need the relations between the displacements and

strains

@116
= — .41566 aé (3 )

Bu
em, = 6—77” (3.42)

611.5 6a,,
2 — —— 3.4”re; ( 377 + 36 > ( 3)

where U5 and un represent the displacements along 5 and 7] directions, respectively.

From the constitutive equations (3.25)—(3.27) and eqn (3.42), we have

aun 3 — Is 1 + K_ ___ _ _ _ 3.44
an 8/14 0'56 + 8H 07m ( )

Multiplying both sides by 6“" and integrating from —00 to +00 gives

  _Zt[_m unetfldnz— 8M [-00 Uggetndn+ 8” £00 Uflfletndn (345)

Substituting eqns (3.35) and (3.36) into the above equation and inverting gives

  
“17

+oo _ —
= i / l 3 K 752$ + 1 + R Q

271' —00 t 8/1 8p dfiz

Similarly, making use of eqn (3.43) and the proper integral of (3.37), the other component

] i 6".” dt (3.46)

of displacement is obtained

 
“5

1 +001 1+Isd3— 5+Isd" _i=5;/_oo A 8” d—g—tZVd—Sg]e "’dt (3.47)

The expressions (3.46) and (3.47) were given in terms of Young’s modulus and Poisson’s

ratio by Sneddon (1951) in his book. However, equation (29) on page 404 of that book

corresponding to eqn (3.47) above has a typographical error.

Once a particular form of solution ofa is chosen, based upon the general solution (3.34), all

the components of stresses and displacements can be obtained.
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3.4 Basic Solution for an Infinite Plate with Crack

The basic solution for an infinitely large plate (shown in Figure 3.2) containing a crack which

will be used later in this Thesis was given by Sneddon & Lowengrub (1969) in terms of Fourier

transforms under mode I and mode 11 loadings. The solution for the combined mode I and II

loading was given by Sneddon & Ejike (1969). Here the procedure first proposed by Sneddon

(1951) is followed to arrive at the general solution (3.34) which is then specialized using the

appropriate boundary conditions to determine the unknown functions CJ- (j = l, .., 4).

Ag

 

 

a h
 

Figure 3.2: An infinitely large plate containing a crack

Let us consider first the mode I problem when the surfaces of the crack are subjected to a

uniform pressure —0. Because of symmetry, we consider only the upper half plane y 2 O. The

boundary conditions at y = 0 are

HALO) = 0; --00 < x < +oo (3.48)

0yy(:l:,0) = —0; |x| < a (3.49)

uy(:c,0) = 0; Izrl > a (3.50)
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Another necessary condition is that the stresses vanish when y —+ +oo, i.e.

0351(‘737 y)

ayy(x,y) -—> 0; -00 < x < +00 (3.51)

Making use of the Fourier transforms (3.32) and (3.33) and expressions (3.35)—(3.40) after

replacing f by y and n by ac, we have

  

  

+00 .

m3) = /_ 90(y,x)emd:v (3.52)

( ) - if” ( te)““"dt (353)905359 —27r _°oSoya '

+00 .

/ ayye‘tzdm = 42-95 (3.54)

+00 itz‘ __ E[.00 one dx ._ dy, (3.55)
+00 . _ 03¢

nemdm = zt— (3.56)
[—00 y dy

1 +oo6,, = 37]..» tZ-(a emdt (3.57)

1 +00 (pa -it:a“. _ 27L” d—yze dt (3.58)

_ 1 +00 ' d§_0- —ita:Ty, _ 2” [.00 digs dt (3.59)

and from (3.46) and (3.47), we get

_ _ 1 +°°13—/9 2_ 16906? -m:uzzu _ 2W1 t[ 8)) 16HW]288# dt (3.60)

_ 1 +001 1+nd3¢ 5+ dz; e-Muyzv _ ZW/m t2[ 8,1 dy3—t 8” dy dt (3.61)

In order to satisfy the conditions (3.51), it is necessary to set 03: C4 = 01n the general

solution (3.34), and so giving

WM) = (01 + 02y) 6”” (3.62)
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and d“

i = (~ltl01 + 02 — Czltly)e""y (3.63)

Substituting eqn (3.63) into (3.56) and imposing the first ofthe three conditions (3.48)-(3.50),

we have

02 = lthi, (3.64)

so that (3.62) reduces to

Wm) = 01(1+ Itly) e-ltly (3.65)

It is obvious that ”22:05: y) and ayy(:c, y) are even functions of x and Txy(:c, y) is an odd

function of :5. Therefore, from enqs (3.54)—(3.56) it follows

fly, -t) = Wm) (3.66)

In other words,

Cl(—t) 2 am (3.67)

Under this condition, the Airy stress function and the components of stresses and displacements

can be written as

+00

(0(x,y)=3 / 01(t)(1+ty)e-tycos(tx)dt (3.68)
7r 0

2 +°° 2 —ton = —; 0 C1(t)t(l—ty)e ycos(t:c)dt (3.69)

+00

0,, = 72? f0 01(t)t2(1+ty)e'tycos(tx)dt (3.70)
+000

7'w : —:-/C tsye’9 sin(t:c) dt (3.71)

+00

u = gfi/o Cl(t)t(1— n+2ty) e—ty sin(t:c) dt (3.72)

v - 3i /+OOC(tt1)( +I~c+2t)e"y cos(tx)dt (373)
_ 7r4,u o 1 ye.

Finally, the unknown function C1(t) is determined from the conditions (3.49)—(3.50).

Let us consider next the mode 11 case when the surfaces of the crack are subjected to a

uniform shear stress Try 2 -T. We need again only consider the upper half of the body, y 2 0.

Because of skew-symmetry, we have at the boundary of the half plane
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ayy(a:,0) = 0; ——oo < x < +00 (3.74)

amy(x,0) = —7-; |x| < a (3.75)

uz(:c,0) = 0; Ix! > a (3.76)

As the conditions (3.51) are also to be satisfied under the present form of loading, eqn (3.62)

remains valid. Inserting the first of the three conditions (3.74)—(3.76) into the expression (3.57)

gives

01 = 0 (3.77)

so that a reduces to

“(5(y,t) = Czye_ltly (3.78)

and d“

g = 02 (1 — |t|y) e—ltly (3-79)

In view of the skew-symmetry, we have fly, —t) = —¢(y, t), i.e.

02(4) = —02(t) (3.80)

Because of the arbitrariness offunction 02(t) and the homogeneous nature of the biharmonic

equation, eqn (3.78) can be rewritten in the following form without altering the solution of the

biharmonic equation

amt) = 0m e""y (3.81)

The corresponding Airy stress function and stresses and displacements can now be written

as

2 +00
99(Cc,y)= ; f0 02(t)ye’tysin(tx)dt (3.82)

2 +°°

a” = g [0 Cz(t)t(—2+ty)e'tysin(tz)dt (3.83)

2 +°°

aw = 7 f0 02(t)t2ye-t0sin(m)dt (3.84)

2 +00 4y
7“ = _; f0 02(t)t(1—ty)e cos(tm)dt (3.85)
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— 3i /+°°C(t)(1+ —2t ) *9 t )dt (386)u — 7T4# 0 2 It y e cos(a: .

+00

72 = 3—1—/ 02(t) (—1+rc+2ty) e'ty sin(ta:)dt (3.87)
7r4,u 0

The unknown function 02(t) is determined from the conditions (3.75)—(3.76).

3.5 Basic Solution for an Isotropic Strip of Finite Thickness

For an infinitely long strip of finite thickness, shown in Figure 3.3, the general solution of the

biharmonic equation (3.31), using the Fourier transforms with respect to y, is taken in the form

(Sneddon, 1951)

War, t) 2 (D1 + thx) cosh(t:c) + (D3 + D4tx) sinh(t:c) (3.88)

where DJ- (3' = 1,2, 3,4) are functions of t which are to be determined from the boundary

conditions. It is noted that the Fourier transforms are carried out here with respect to y in the

coordinate system of Figure 3.3.

Following a similar procedure to that used in § 3.4, the general solution (3.88) can be

reduced to specific forms for particular loading cases by enforcing appropriate symmetry and

boundary conditions. For instance, Sneddon (1951) has given the solutions for a symmetric

and an asymmetric loading condition. In the following, we shall give the expressions for the

Airy stress function and the corresponding stresses and displacements for these two loading

conditions without detail.

For symmetric loading, we have

cp(x,y) = i [0” [010) + 04mm sinh(t:c)] cos(ty)dt (3.89)

O'xz = ’72; fom t2[D1(t)cosh(tx) + D4(t)txsinh(ta:)] cos(ty) dt (3.90)

am, = :— /0+°° t2{D1(t)cosh(tx) + D4(t) [2cosh(tx)+
+ t :1: sinh(tx)]} cos(ty) dt (3.91)

T“, = i [w t2{D1(t) 5111mm) + 04a) [sinh(tw)+
+ ta: cosh(t:c)]} sin(ty) dt (3.92)
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Figure 3.3: An infinitely long strip of finite thickness without a crack

21 +°°
u = -;4—1; 0 t{2D1(t) sinh(tm) + D4(t) [(1 — n) sinh(t:c)+

+ 2t .1 cosh(t:c)]} cos(ty) dt (3.93)

v 2 ii 0+°° t{2D1(t) cosh(tx) + D4(t) [(1 + n) cosh(t:c)+
+ 2t :15 sinh(t:c)]} sin(ty) dt (3.94)

The expressions (3.90)—(3.94) have been incorporated into the solutions of crack problems

under opening mode I in an isotropic strip by Sneddon & Lowengrub (1969) and Sneddon &

Srivastav (1971), and in composites by Hilton & Sih (1971), Bogy (1973), Gupta (1973), Sih &

Chen (1981), Fan et al. (1991), and Kaw & Besterfield (1992).

For skew-symmetric loading, the counterparts of the above formulae are

2 +oo90(:v,y) = — f0 [D2(t)t:ccosh(tx)+D3(t)sinh(ta:)] sin(ty)dt (3.95)
71'
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0.13.7}
_% [:00 t2[Dz(t)t xcosh(tx) + D3(t) sinh(t:c)] sin(ty) dt (3.96)

% f0” t2 {0209 [2 sinh(tm) + m cosh(t:c)]+
+ D3(t)sinh(t$)}sin(ty)dt (3.97)

—% /+°° t2 {192m [cosh(t2) + m- sinh(tx)]+
+ D3(t)0cosh(t:r)]} cos(ty)dt (3.98)

q
(
d

‘
d H

u = _%fi [:00 t{D2(t) [(1 — rs) cosh(t:r) + 2t :csinh(tx)]+

+ 2D3(t) cosh(t:c)} sin(ty) dt (3.99)

2 1
v = _;Zfl [:00 t{Dz(t)[(1+ H)Sinh(tx) + 2txcosh(tx)]+

+ 2D3(t) sinh(t:c)} cos(ty) dt (3.100)

The expressions (3.96)—(3.100) have appeared in the solutions of crack problems for in-

plane shear loading condition in the works of Hilton & Sih (1971), Bogy (1973) and Sih & Chen

(198 1).

In the next Chapter, the basic solutions given in §§ 3.4 and 3.5 will be utilised to solve the

crack problems in composite laminates when the cracks appear in an infinitely long transversely

isotropic strip of finite thickness.

3.6 Basic Solution for an Orthotropic Strip of Finite Thickness

In this Section, the basic solution for an infinitely long orthotropic strip of finite thickness is

presented. The procedure is similar to that followed in the work of Konishi & Atsumi (1973).

If the strip shown in Figure 3.3 is an orthotropic medium whose principal elastic axes (in two-

dimensional case) are parallel with :13- and y-axes, respectively, then the constitutive equations

are as follows

an = 011 51:: + €12€yy (3.101)

O'yy = 012 6;“; + 622 6%, (3.102)

Try = C66 72:11 (3.103)

where Cij (i, j = 1,2,6) (C16 = 026 = 0) are the stiffness coefficients.
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Substituting these expressions for stresses into the equilibrium equation and making use of

strain-displacement relations (3.41)—(3.43) gives (Konishi & Atsumi, 1973)

82 32 32
cu Ta: + C66 Ty? + (012 + 666) flax: = 0 (3-104)

62v 82v 8211
C66g + 022 334-2 + (612 + C66) Bar—y = 0 (3.105)

The Fourier transforms of u and v with respect to y in the coordinate system of Figure 3.3

can be written as

+00 .

mm) = / u(x,y)e”ydy (3.106)
+00 .

mm) = / v(:c,y)e“ydy (3.107)

Applying these transforms to (3.104)-(3.105) leads to the equations

Jl— . d—
cllc—lz—Z~666t2fi_2t(clz+c66)B—E 2‘ 0 (3108)

JZ‘ . d"césd—ag—czztzfi—zt(clz+css)fi = 0 (3.109)

The two unknown functions in the above two equations can be obtained by simple elimi—

nation. For instance, eliminating n from them by proper differentiation and substitution will

lead to the following ordinary differential equation of the fourth order in u (see also Konishi &

Atsumi, 1973)

(PEI(1412

 

2 4—
w—ZUlt W+U2t :0 (3.110)

where U1 and U2 given by

2U; : 0&6 + 611622 — (612 + €66)2 (3.111)

611066

U2 = 2 (3.112)
611

Let us discuss the solution of the differential equation (3.110). Its characteristic equation is

r4 — 2U1t2 7‘2 + U2t4 = 0 (3.113)

Generally, the roots of this quartic equation are
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7,2 = (U121:m) 12 (3.114)

Denoting

fl1=VU1+VU12—U2 fi2=VU1—VU12—U2 (3.115)

and

$1 = filtzv x2 = ,thx, (3.116)

the general solution of the differential equation (3.110) can be expressed as

ECE, t) = A1 Slnh {151+ Bl 00811 1111 + A2 sinh £112 + B2 COSh (E2 (3.117)

where A1, Bl, A2 and B; are functions oft to be determined from the boundary conditions of

the problem.

However, eqn (3.117) is not the only possible form of solution. One minor alternative form

of the solution is that when 51 and fl; are complex numbers. This case will be discussed later

in the Thesis (Appendix D) when the above solution is applied to particular materials. Another

form of solution will appear when U12 — U2 2 0, which has not been discussed in the work

of Konishi & Atsumi (1973). Under this condition, eqn (3.113) will degenerate into a perfect

square of a quadratic equation in r

(7‘2 — U1t2)2 = 0 (3.118)

so that it has two double roots

7‘1 = +flot T2 = —»30t (3-119)

where

flo = \/U_1 (3.120)

As a result the solution of the differential equation (3.110) is

5(23, t) = A0 :20 sinh $0 + Bo mo cosh $0 + A; sinh x0 + 31 cosh 560 (3.121)

where

330 = 50 mt (3.122)

A0, Bo, A1 and 31 are functions of t to be determined from the boundary conditions. For the

sake of conciseness, the same notation A1 and 31 of two arbitrary functions has been used in the

two solutions (3.117) and (3.121). Because these solutions will never be used simultaneously,

this notation should not cause any confusion.
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The components of stresses and displacements can now be obtained by substituting (3.117)

or (3.121), as appropriate, into the following relations

 

 

1 1 +00 1 c131:
Um = Em [00 25—2 —011€12666 Z; + [611022(012 + 666)—

d— .
— c%2(c12 + 2666)] 732 i} 6"” dt (3.123)

1 l +00 l d3fi
Uyy = E 012 + C66 [00 25—2 ”-011066 E + [012(012 + 666)—

d“ .
- 612(012 + 2055)] t2 i} e—Zty dt (3.124)

1 c +00 1 (PH .
Try = ‘2—71' €12 :6c66 [00 E (C11 W + Clztz 7U) 6"” dt (3.125)

+00 .

u = i / ae-“ydt (3.126)
27!" —oo

1 1 +00 1 d3n 2 dfi .31
= _ _______ _ — — " dt .U 271' c22(c12 + 066) £00 ”3 {011066 dx3 + 012(012 + 2666)t dx} 6 (3 127)

In eqns (3. 123)—(3. 127), the stresses and displacement U have been expressed in terms of U

and its derivatives with respect to x instead of the integrals of U, as has been done by Konishi

& Atsumi (1973). Similarly, we can also solve 6 first and express other components in terms

of 6 and its derivatives. Under certain conditions of symmetry, these expressions can be easily

reduced to corresponding sine or cosine transforms, as was done above (see (3.68)—(3.73) or

(3.82)—(3.87)).

3.7 Elements of Lamination Theory

This Section presents the calculation of the stiffness and stress field of fibre-reinforced composite

laminates, following the book ofTsai & Hahn (1980). Again some notation here is different from

that book. For instance, the notation a: and y is used in the book to denote the directions along

and perpendicular to the fibre, respectively, for a unidirectional lamina. Here, the notation L and

T will be used to denote these two directions. In order to avoid confusion, all the symbols used

in this Section will be defined where they appear first. The definition of a symbol introduced in

this Section will remain in force throughout this Thesis, unless otherwise explicitly indicated. It

should be pointed out that only a very short and simple part of the lamination theory is presented

here. More details of the analysis of laminates can be found in the above-mentioned or other

similar books.
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3.7.1 Stress-Strain Relations of Unidirectional Lamina

A fibre-reinforced unidirectional lamina is regarded macroscopically as an isotropic and homo—

geneous medium in the plane parallel to the fibre. In this plane the two principal elastic axes

are parallel and perpendicular to the fibre direction. These axes are designated by L and T

in Figure 3.4, with L denoting the direction along the fibre. This direction is also called the

longitudinal direction. T denotes the direction perpendicular to the fibre; it is also called the

transverse direction. When the axes of a coordinate system coincide with the elastic principal

axes, the coordinate system is called the on-axis system. Otherwise, it is called an off-axis

system.

 

\
Z<

  
   

Figure 3.4: A fibre-reinforced unidirectional lamina. The on-axis coordinate system is denoted

by L and T, and the off-axis by a: and y

For the unidirectional lamina shown in Figure 3.4, the elastic constants in the LT plane

are EL, ET, GLT and l/LT. Here EL is the longitudinal Young’s modulus, ET is the transverse

Young’s modulus, GLT the shear modulus in LT plane, and VLT is the Poisson ratio, defined as

m = —5—T (3.128)
5L

where 5], and ET are the strains in the longitudinal and transverse directions, respectively, when

the lamina is subjected to a unidirectional load in the longitudinal direction.

The stress-strain relations in the on-axis system are



ULL QLL QLT 0 6LL

O'TT = QTL QTT 0 5TT (3-129)

TLT 0 0 QSS ’YLT

where QLL, QTT and QLT (= QTL) are given by

E
QLL = ———1L (3.130)

- VLT VTL
E 1/

QLT == I——5-324— (3131)
- VLT VTL
E

QTT = ————-1T (3.132)
- VLT VTL

st = GLT (3.133)

in which VTL can be expressed as

VTL = EEVLT (3.134)
EL

When the lamina is considered in a general off-axis coordinate system where x and y are the

reference axes as shown in Figure 3.4, the stress-strain relations are

01 Q11 Q12 Q16 61

02 = Q21 Q22 Q26 52 (3-135)

06 Q61 Q62 Q66 56

where a; and 02 are the stresses along :1:— and y—directions, respectively, and 06 denotes the

shear stress in zy-plane. 5i (i = 1, 2, 6) are the corresponding strains. Qij (i, j = 1, 2, 6) are

expressed as

Q11 2 U1+ U2 cos 20 + U3 00346 (3.136)

Q22 = U1 — U2 cos 219 + U3 00340 (3.137)

Q12 = U4 — U3 c0840 (3.138)

(.216 = éUz sin 26 + U3 sin40 (3.139)

Q25 = $172 sin 29 — U3 sin40 (3.140)

Q66 = Us - U3 00549 (3.141)

in which

1
U1 = g [3QLL + 3QTT + 2QLT + 4st] (3.142)
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U2 = gem—on] (3.143)

1

U3 = g [QLL + QTT — 2QLT - 4st] (3-144)

1

U4 = g [QLL + QTT + 6QLT - 46255] (3145)

1

Us = ‘8' [QLL + QTT — 2QLT + 4st] (3.146)

3.7.2 Calculation of In-Plane Laminate Stresses

A multidirectional laminate is composed of more than one unidirectional laminae each with its

longitudinal axis in a different direction with respect to a reference system, e.g. the one shown

in Figure 3.5. A typical cross-section of the multidirectional laminate is shown in Figure 3.6.

Here, we consider only the in-plane (laminate plane) deformation of the laminate. It is assumed

that the strain is constant across the laminate thickness (Tsai & Hahn, 1980). The components

of the strains are denoted by

517 525 56 (3.147)

All

 

/////// 01

\\§\\\162 \ 4

Figure 3.5: A fibre-reinforced multidirectional laminate. 01 and 02 indicate longitudinal direc-

  

   

tions of two constituent laminae in the laminate

Under this deformation, the components of the stress in a constituent lamina in the laminate

are expressed by (3.135).
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Figure 3.6: Cross-section of a fibre—reinforced multidirectional laminate, showing a geometric

mid—plane

In the stress analysis of the laminate, as in the traditional analysis ofthin plates, it is expedient

to use the average stresses and stress resultants across the thickness. The average stresses are

defined as

1 h/2
0—1 = — / aldz (3.148)

h —h/2
1 11/2

0—2 = — / azdz (3.149)
h -—h/2
1 h/2

0—6 = — / asdz (3.150)
h —h/2

Substituting the stress-strain relations (3.135) into the above expressions, we get

0—1 A11 A12 A16 51

(7—2 = }1; A21 A22 A26 82 (3.151)

33 A61 A62 A66 56

where [W

Au = /_m Q1)- dz, m' = 1,2,6 (3.152)

If we further define the stress resultant as

N)- = ha, i=1,2,6 (3.153)
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we obtain the relations between the stress resultants and the strains in the laminate

N1 A11 A12 A16 51

N2 = A21 A22 A25 62 (3.154)

N6 A61 A62 A66 66

If the applied loads N,- (z' = 1, 2, 6) are known, it is easy to get the strain a; by the inversion

of the above expressions. The stresses in the constituent laminae in the laminate can then

be calculated by using eqn (3.135). These stresses are obtained with respect to the reference

coordinate system any. The components of the stresses in the on-axis system LT are obtained

using the transformation matrix

0L m2 n2 Zmn 01

0T 2 n2 m2 —2mn 02 (3.155)

7LT —mn mn m2 — n2 05

where m = cos 0 and n = sin 0. The components of the stress in the LT system are useful in

the strength prediction of the lamina.

For future reference, we present the average stress-strain relations for two angle-ply lam-

inates. First, we consider an antisymmetric angle-ply [(zl:0)n/ (:F0),,] laminate. Suppose that

the ply thickness is t. Then the total thickness of the laminate is h = 2nt (Figure 3.6). Since

Q16 and Q26 in eqns (3.136)—(3.l41) are odd functions of 0 but the other coefficients are even

functions, the in-plane moduli Aij of this laminate may be formally written using (3.152)

A11 A12 A16 Q 11 Q 12 0

A21 A22 A26 = 2m Q21 Q22 0 (3-156)

A61 A62 A66 0 0 Q66

Substituting the above expressions into (3.151) and noting that h = 2m, we get the relations

between the average stresses and strains

Q11 Q12 0 61

Q21 Q22 0 62 (3.157)

0 0 Q66 66

Therefore, the laminate behaves macroscopically like an orthotropic medium. Similarly, it can

.SI
3|

3|

I

be shown that its overall flexural moduli are also like those of an orthotropic medium. However,

there is an in-plane/out—of—plane coupling effect in an antisymmetric laminate. The details of

this coupling can be found in the book of Tsai & Hahn (1980).

Secondly, we consider a symmetric [(i6)n], angle—ply laminate. Because of the equal

number of plies in +0 and —0 directions and because Q16 and Q25 in eqns (3.136)—(3.14l) are
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odd functions of 0 whereas the other coefficients are even functions, the in-plane moduli Aij

can also be written as (3.156). Following the same procedure that led to (3.157), the relations

between the average stresses and strains for the symmetric angle-ply laminate can be written as

0—1 Q11 Q12 0 51

0—2 = Q21 Q22 0 62 (3-158)

36— 0 0 Q66 56

which are identical to (3.157). Thus this symmetric laminate also behaves macroscopically like

an orthotropic medium when subjected to in-plane loading. But its flexural moduli are different

from those of the above antisymmetric laminate.

3.8 Elements of Optimization Techniques

This Section presents a brief introduction of the formulation of an optimization problem and

optimization algorithms which will be used in this Thesis. A general mathematical optimization

problem may be stated as follows

Min F(x) (3.159)

subjectto

91(X) = 0; i=1....,m1 (3.160)

93(X) S 0; j21,...,m2 (3.161)

where x denotes the vector of design variables, and g,- and gj describe the behavioural and other

constraints.

The design variables can be grouped into size, geometry and topology. Optimal size design

involves variables such as member cross-sectional parameters, e.g. thicknesses of laminae in a

laminate. Geometrical design variables include positions of supports, shape of two- or three-

dimensional continua etc. Topological optimization includes selection of the actual members

of a structure or the structural model itself. In general, sizing optimization gives relatively

limited results, whereas the inclusion of geometrical and topological design variables gives

more flexibility and better designs, but the corresponding optimization problems are also more

difficult to solve.

Objective functions may be either geometrical or physical quantities, i.e. weight, strength,

toughness etc. which are desired to be minimized or maximized.

The constraints in (3.160)—(3.16l) are given by limits and bounds on geometrical, physical

quantities or follow from mathematical considerations. The physical quantities may include

stresses, displacements, buckling loads, stress intensity factors, and so on.
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Generally, the optimization problem described in (3.159)-(3.161) is a nonlinear one. It

can be solved by a number of nonlinear programming (NLP) techniques. In the following

a brief outline of five of the most common methods will be given (Karihaloo, 1993). They

are: sequential unconstrained minimization technique, SUMT (Fiacco & McCormick, 1968);

the augmented Lagrangian multiplier method, ALM (Rockafellar, 1973; Pierre & Lowe, 1975;

Powell, 1978, and Imai & Schmit, 1981); sequential linear programming with move limits,

SLP (Kelly, 1960; Moses, 1964, and Pedersen, 1981); sequential quadratic programming, SQP

(Powell, 1978) and sequential convex programming, SCP (Fleury & Braibant, 1986).

In SUMT, the constraints are added to the objective using penalty terms to form unconstrained

minimization sub-problems. Depending upon the penalty terms, there are many variants of

SUMT.

The augmented Lagrangian multiplier method ALM differs from the conventional SUMT in

that a quadratic term is added to the Lagrangian L(x, p) and not to the objective function F(x)

L(x,p) = F(x) — Z: High-(X), (3.162)
i=1

M(x, u) = 130w) + £2 max), (3.163)
i=1

where p,- are uknown Lagrangian multipliers and g,(x) are equality constraints.

In SLP, the nonlinear objective and constraints are linearized at the current design x0 using

only direct design variables. For instance (n = m1 + m2),

 é(X) = g(X°) + Z 8:3) dxz- (3.164)
i=1 1 x0

By this approach and using move limits, the original NLP is replaced with a sequence of linear

sub-problems.

In SQP, the Lagrangian corresponding to the objective function is approximated by a

quadratic function but the constraints are linearized. In this way the original NLP is replaced

with a sequence of quadratic sub-problems. The convergence of the algorithm is forced by a

line search with respect to an exact penalty function or an augmented Lagrangian merit function

(3.163).

In SCP, the nonlinear objective and constraints are linearized at the current design x0 using

mixed direct (+) or reciprocal (—) design variables depending on the sign of their gradients.

For instance

 ~ 6g 8g x9
x = x0 + — xi—x? + —' xi—x? (3.165)g<> g< > 2+ amixo( > Z_ 6%. x0 x5 >



Thus the original NLP is replaced with a sequence of explicit, convex and separable linear

sub-problems.

All the five methods are available in a general purpose package called ADS (Automated

Design Synthesis) by Vanderplaats (1987).
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PART I

The first part of the Thesis consists of Chapters 4 and 5. In these Chapters

we obtain the solutions to the boundary-value problems of cracked composite

regions. Although these problems are motivated by the failure characteristics of

fibre-reinforced composites, the solutions can be applied to crack problems in

finite regions made up of dissimilar subregions.
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Chapter 4

Composite Laminate with Intralaminar

Crack

 

4.1 Introductory Remarks

The elastostatic fracture problems involving composites made by bonding two dissimilar media

have attracted continuing interest for a long time. Basically, there are two types of problems con-

cerning the crack/inhomogeneity interaction, depending on the relative position of the crack(s)

with respect to the interfaces between the media. The first type of problems relates to cracks

that are within the interfaces, and the second type to cracks that are wholly within one material

or touching the bimaterial interfaces at an angle. In the present exposition, we will only be

concerned with the second type of crack configuration where the cracks are perpendicular to

the bimaterial interfaces. The case when a crack (or cracks) is wholly within one homogeneous

isotropic material and is lying perpendicular to a bimaterial interface between two dissimilar

isotropic media has been attempted in the works of Cook & Erdogan (1972), Hilton & Sih

(1971), Bogy (1973), Erdogan & Bakioglu (1976), Sih & Chen (1981), Ahmad (1991), and oth—

ers. Kaw & Besterfield (1992) solved a more complicated crack problem arising from a bonded

finite strip between two half-planes where the half planes contain multiple periodic cracks. For

the combination of two dissimilar homogeneous orthotropic materials, Arin (1977), and Delale

& Erdogan (1979) solved the second type of crack problems when the crack tip did not touch

the interface. Erdogan er al. (1991a,b) solved two interesting crack problems of this type in

bonded homogeneous/nonhomogeneous materials, in which one of the materials has variable

elastic properties along one dimension. A common feature of the works cited above is that one

of the bonded media is of infinite extent or the composite has a periodic structure.

Fan et al. (1989), and Bai (1989) considered the mode I crack problem in a cross-ply

laminate of finite thickness. In a two-dimensional approximation, the materials forming the
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laminate alternated between transversely isotropic and orthotropic media. Wu & Erdogan

(1993) solved the crack problem in two bonded orthotropic layers of finite thickness. Solutions

were given both when the crack is wholly within one medium and when it is touching the

interface. The most recent work of Erdogan & Kadioglu (1994) considered the interaction of

cracks in a bonded orthotropic/orthotropic composite. The cracked composite contained two

interfacial cracks and one intralaminar crack perpendicular to the interface.

As mentioned in Chapter 3, a unidirectional fibre-reinforced lamina may be regarded macro-

scopically as an orthotropic medium in the plane parallel to the fibres. On the other hand, in

the transverse direction, i.e. in the plane perpendicular to the fibres, it depicts macroscopically

the mechanical properties of an isotropic material. In some sandwich plates, the core material

is isotropic and weak. The facets bear the major flexural and/or tensile loads. They are stronger

and may possess orthotropic properties so as to resist loads along the principal directions. These

are just two examples of bonded isotropic/orthotropic composites in which the evaluation of

influence of any cracks on the macroscopic response is of prime concern. Therefore, in this

Chapter, we will first solve the boundary-value problem arising from a cracked bonded com-

posite, shown in Figure 4.1. This is an idealized model of a single crack existing in the central

layer of the composite. The physical background for this model is provided by experimental ob-

servations of cracking in composite laminates (Garrett & Bailey, 1977; Bailey & Parvizi, 1981;

Highsmith & Reifsnider, 1982; Crossman & Wang, 1982). This simple model will be extended

to the case of multiple cracks at the end of this Chapter. The major part of the work described

in this Chapter has been published in two papers by Wang & Karihaloo (1994a; 1994b).

4.2 Boundary-Value Problem for a Composite Laminate with

a Single Crack

The model of a symmetrically bonded composite laminate studied in this Chapter is shown in

Figure 4.1. The central sublaminate is a homogeneous isotropic or transversely isotropic (in

any-plane) medium with elastic constants p, K: which have been previously defined in Chapter 3.

The two outer sublaminates of thickness b are made of an orthotropic material whose principal

planes of elasticity are parallel to the coordinate planes. Their elastic properties in any-plane are

determined by the stiffness parameters c11,c12,cz2 and 666 and those in yz- and zm-planes by

C44, 055. The composite laminate is assumed to be infinitely long in the y-direction compared

with its thickness. The inner sublaminate of thickness 2d contains a central transverse crack of

length 2a.

The model being studied is similar to that studied by Fan et al. (1989), and Bai (1989).

The former authors were primarily concerned with the influence of the outer layers on the stress
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Figure 4.1: A cracked composite laminate, showing the laminate configuration (a), and the

opening (b), in-plane shear (c), and anti-plane shear (d) modes of crack face loading. The central

layer is transversely isotropic in xy-plane, whilst the upper and lower layers are orthotropic
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intensity factor under tension at the crack tip in fibre-reinforced cross-ply laminates, whereas

the latter author was concerned with the reduction in tensile stiffness due to the presence of

multiple cracks.

In the following, we shall solve the two-dimensional boundary-value problems correspond-

ing to the three loading cases shown in Figures 4.1(b), (c) and (d), when the crack faces are

subjected to self-equilibrating tensile (opening), in-plane (crack plane) and antiplane shear

stresses, respectively. These perturbation solutions can be superimposed on the uncracked body

solution subjected to the corresponding external loadings, as is commonly done in the solution

of cracked bodies. The solution under mode I loading has been given by Fan et al. (1989) for

a 00/90°/00 (cross—ply) fibre-reinforced laminate. They obtained the solution to the orthotropic

medium by using two displacement functions, following Sih & Chen (1981). The expressions

for the stresses and displacements are similar to those which can be directly deduced from the

solution of the equilibrium equations given in Chapter 3. However, the solution by Fan et al.

(1989) did not discuss the degenerate case represented by the solution (3.121). Therefore, for

completeness and for future use in the solution of multiple cracks and in Chapters 5 and 9, we

shall also include the mode I solution, besides the mode II and mode 111 solutions that are not

available in the literature.

4.3 Solution for Opening Mode I

Let us consider the opening mode crack problem, depicted in Figure 4.1(b). Because of

symmetry, it is enough to consider a quarter of the laminate, say :5 2 0, y 2 0. Since the central

layer is (transversely) isotropic in any-plane, we can directly use the basic solutions obtained in

Chapter 3. We note that the central layer is a finite strip with a central crack. The solution to this

configuration alone has been given by Sneddon & Lowengrub (1969), and Sneddon & Srivastav

(1971). It can be obtained explicitly by superimposing the solution to the crack problem of an

infinite plate given in § 3.3 and the solution to an uncracked finite strip given in § 3.4. This

superposition technique was also used in the work of Nied (1987) for a cracked half—plane. The

components of stresses and displacements are given by the summation of eqns (3.69)— (3.73)

and (3.90)—(3.94).

If we rewrite the unknown functions in (3.69)—(3.73) and (3.90)—(3.94) as

C1“) = ‘55:“) (4-1)

0,0) = tlea) (4.2)

04m = tlzBm (4.3)



then the expressions for the stress and displacement fields are

3/°°(—1)[A(t)cosh(m) + Bum Sinh(t:c)] cos(ty)tlt +

+—i/OOOE )(1 — ty)e"y cos(tx) dt (4.4)

—2/0°° {A()t)cosh(tm)+B(t)[2cosh(t:c)+txsinh(tx)]}cos(ty)dt+

+—:foom (1+ty)eW cos(t:z:)dt (4.5)

E2/: {A(t) sinh(tx)+ B(t)[sinh(t:c)+txcosh(ta:)]} sin(ty)dt+

+% j: E(t)tye-tysin(tx)dt (4.6)

:43; f0°°(—%) {2A(t) sinh(t:c) + B(t)[2t :c cosh(tx)— (4.7)
—(n — 1) sinh(tx)]} cos(ty) dt +
+: 4—1” f0”(%)E(t) [(n — 1) — 21 y] e-Wsin(tx)dt (4.8)

i 41”f”(——){2A(t)cosh(tx)+B(t)[(n+1)cosh(t:c)+ (4.9)

+21 :1: Smilax)” sin(ty) dt +
+3—11—°°(—%)E(t) [(5 + 1) + 21 y] e-tv cos(tx) dt (4.10)

where the superscript 1 denotes the central layer. These expressions have already appeared in

the works of Sneddon & Lowengrub (1969), Bogy (1973), and also Sih & Chen (1981), except

for a slight difference in notation for unknown functions and elastic constants.

As each of the outer sublaminates is orthotropic, we shall use the solutions from § 3.6.

Considering the symmetry and the two solution forms (3.117) and (3.121), the stresses and

displacements can be written from eqns (3.123)—-(3.127) as (superscript 2 denotes each of the

outer layers)

2 +00

2 —/ t Q1[A1(t) cosh 131+ 81 (t) sinh col] cos(ty) dt +
71' 0

2 +°°
+(1 - p) F/o tQ2[A2(t) cosh as; + Bz(t) sinh x2] cos(ty) dt +

+p % [:00 {Ao(t)[(611fio - €12Q0)Sinh$o +

+(Cllfi0 + CIZZO)$0 00511 5130] + Bo(t)[(611fio — C12Qo) COSh $0 +

+(cufio + 012Z0)x0 sinh 120]} cos(ty) dt (4.11)
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2 m
;/0 t T1 [A1(t) cosh x1 + B1(t)sinh $1] cos(ty) dt +

2 +°°Hl—N;A tnpxnmmm+imnmmmkmawn+
2 +°° ,

+p F/() 75 {14.00) [(Clzflo — szQo) smh $0 + T0 $0 COSh $0] +

+Bo(t) [(61250 — szQo) 0081'! $0 + To $0 sinh 130]} COS(ty) dt

2 +00g [0 tL1[A1(t)sinhx1+ Bl(t)coshx1] Sin(ty) dt +
+00

+(1 - p) :[0 th [1420) sinh $2 + B2“) COSh $2] sin(ty) dt —

2 +00 ,
—p EV/O t{A0(t)[066,30(Q0 - Z0) 005]] $0 — L0$0 SlIlh $0] +

+Bo(t) [C66,BO(QO — Z0) sinh $0 — L0$0 COSh $0]} sin(ty) dt

ifs-00 [A1(t) sinh $1 + 31 (t) cosh x1] cos(ty) dt +

+(1 — p) % /0+oo [A2(t) sinh $2 + Bz(t) cosh $2] cos(ty) dt +

+p ~72; jjm [Ao(t)xo sinh $0 + Bo(t)$o cosh 9:0] cos(ty) dt

if?» Z1 [A1(t) cosh x1 + Bl(t) sinh 2:1] sin(ty) dt +

+(l — p) g/o-m Z2 [A2(t) cosh x2 + Bz(t) sinh $2] sin(ty) dt —

2 +00 .
_p F/O {A0(t)[Qo smh $0 — Z0230 COSh $0] +

+Bo(t) [Q0 cosh $0 — Zowo sinh $01} sin(ty) dt

In (4.11)-(4.15)

$l=fil(x—d)t (1:03132)

where 51 (l = 0, 1, 2) follow the definition introduced in § 3.6.

The introduction of the generalized fields (4.11)—(4.15) will enable us to recover the solution

for the case when the orthotropic material 2 degenerates into an isotropic material (with elastic

p _ {0, if r/Ulz—U2#0
1, if t/Uf—Uzzo

53

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

constants 112, #22), such that the laminate is now composed of two dissimilar isotropic materials.

For this reason, the switching factor p has been used in (4.11)—(4.15) which is defined as

(4.17)

where U1 and U2 are given by(3.111)—(3.112). When p = 1, we define x1 = x0 = Bo (:c — d) t.



The other constants in (4.11)—(4.15) are

C66 - Cuflzz
Z = ——-— 4.18’ (mm + C66) ( )
L1 = c56(fi)Zl —— l) (l = 0,1,2) (4.19)

T] = Clzfiz + szZ1 (4.20)

Qt = Cufli + CIZZi (1 = 1,2) (421)

C66 + 61133= __ 4.22
Q0 30(612 + 666) ( )

The above stress and displacement fields identically satisfy the symmetry conditions

W0): 0, ogzgd (4.23)

73340.11) = 0, OSy<+oo (4.24)

uth y) = 0, 05y<+oo (4.25)

rim0): 0, dgxgd+b (4.26)

12,2(x 0) = O, dSzSd-l—b (4.27)

The arbitrary functions A(t), B(t), E(t), A;(t) and B)(t) (l = O, 1, 2) in (4.4)—(4.15) are

determined from the remaining symmetry, boundary and continuity conditions

v1(:c,0) = O; m > a (4.28)

lirgt 01y(x, y) = ——a; 03 a: < a (4.29)
11—)

and forO S y < +oo,

0;.(d y) = ninety) (4.30)

dyed y) = T§y(d,y) (4.31)
u1,(dy) = u2(d, y) (4.32)

Ulda( y) = ”2(da y) (433)

03(d+b, y) = 0 (4.34)

fy(d,+b y) = 0 (4.35)

Substituting the expressions for the displacement (4.10) and the stress (4.5) into (4.28)—

(4.29), respectively, and using the normalizations

t = (4.36)

a, (4.37)‘
i
a
m

$2
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we have

 
11 IE

1 —- — —
.—” (T70) — 7r Am SE :)—cos(sr)ds 0; r >1 (4,38)

2
l —' _3,133+ 0yNmy) — y1_lgl+—K2:a[7r /0+°° {Ag—)(cosh()sr

+ 3(3) [2cosh(sr) + s:sinh(sr)]}+cos(s%) +

2 +°° .3 y y.
— E — l - ”<2 d+ m1 0 (a)( + a)e 008(57') s]

= —a, O S r < 1 (4.39)

The functions A(s/a) and B(s/a) are determined from eqns (4.30)—(4.35) in a similar

manner to that of Erdogan & Wu (1991) (see Appendix A) as

1
14(2): —_)S[K11F1A(£a + Kan + K13F3 + K14F4] (440)

3(2) = A—(li—)[K21F1 + Kzze + K23F3 + K24F4] (441)

where AG), Kij and Fj (i = 1, 2;j = 1, ...,4) are listed in Appendix A ((A.33)—(A.35)).

Noting that

_l_

cos(sr) E (Zr?) 2 J_%(sr) (4.42)

where J_1/2 is the Bessel function of the first kind, and denoting

F(s) = (213); 13(3) (4.43)
a

the dual integral eqns (4.38)—(4.39) can be written in the form

[000 F(s)J_%(sr)ds=0; r > 1 (4.44)

°° 1
A .3F(s)J_%(sr)ds=—\/F

+B(§)[2 cosh(sr) + s r sinh(sr)]} d3] ; 0 g r < 1 (4.45)

[——a+/Ooo{A(:)cosh(sr)+

As we have related the two unknown functions A(s/a) and B(s/a) to E(s/a) through

eqns (4.40) and (4.41), the only unknown function in the above dual integral equations is F (s)

which is related to E(s/a) via eqn (4.43). This pair of dual integral equations can be solved by

generalizing the procedure of Copson (1961) (see also Sih & Chen, 1981), after their reduction
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to a Fredholm integral equation of the second kind. This reduction procedure has appeared

elsewhere in the works of Sneddon & Srivastav (1971), Hilton & Sih (1971), and Bogy (1973).

The solution of the integral equations is (Appendix B)

F(s) = 31/2 [01 4(5) Jo(s€) d6 (4.46)

where

4(4) = —(-)l/24 / (791—72 {10++/+°°[A(§)+

+ B(—)[2cosh(sr) +37“ sinh(sr)]] d5} dr (4.47)
a

Interchanging the order of the integrations on the right hand side, we obtain

44> = -<;>”w—<—>‘”:r°°{e104+
+ B(—:)[210(s§)+s¢‘11(s§)]}ds (4.43)

where we have made use of the following identities

/0€—-2—-(cosh()sr = Z2r-Io(sf) (4-49)
V16- 7"

f \/_2.57‘ sinh(()3? = gsé [(55) (4.50)
— r

in which Io and 11 are the modified Bessel functions of order zero and one, respectively.

Substituting (4.46) into (4.43) gives

1/2

E6) = (3) 6 /¢(n)()dJo€n (4.51)

Inserting the above expression into the formulae for E- ((A.35), Appendix A) and using the

identities (Gradshteyn & Ryzhik, 1965)

+00 xl—V 71'

[0 m Sin(a:c)Ju(7:c) dx = Efl—V e'afi IV(,67) (452)

+00 “V

/0 (CZ—'1? 005(acv)Ju(v-r)drc = gfl‘”“e“’fi Iu(fl7) (4.53)

we get
2 1/2 at 1

F]: (g) 36"”3/0 ¢(n)Ej(s,n)dn (1': 1,2,3,4) (4.54)
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where

Elm) = (1— 5%) MW) + 37716877)

E2(s,17) = (2-Sg)10(sn)+snfr(sn)

E3(s, 7]) = 4—1; [we — 3 + 2%) Io<sn> — 2sn 11627)]

1 d

E4(8,n) = 4—#[( +3— 28a)lo(sn)+25n11(sn)]

Substituting eqns (4.55)—(4.5 8) into (4.40)—(4.41) leads to

 A<§> = A(1§)(3)/2wazm./ ¢<n>E«cu mdn

 

71'

3(3) = A33) (3)” 2K [01 ¢(n)Ej(s,n)dn

Substituting eqns (4.59)—(4.60) into the integral equation (4.48) gives

¢(é)=—(§)méa(hf/1% K(€,n)dn

in which the kernel K(g , n) is

’7):\/’/+oo 8::——: {10(55):)ZK1]-Ej
+[210(s§)+s§11(]

s§) ZszE

j=l

Dividing both sides of equation (4.61) by

«as/Vac
and denoting

ME)
(I)(€) — — 32

(9/ Wm
¢(n)

$07) _ — 32

(g) / fiaa

the integral equation (4.61) can be rewritten in a more concise form to read

<1> g) + [01 Kmmm) dn = J?
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}d

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)



After solving <I>(§) from the above Fredholm integral equation of second kind, E(s /a) can

be calculated from (4.51) and (4.64) to give

72(3) = —<§> aas fol 72¢<t>10<s§>dr (4.67)
Integrating (4.67) by parts, we get

E(§) = —”2—“a {@(1)J1(s)——/01§J1(s§)—;E l%] d5} (4.68)

Let us discuss the behaviour of the kernel K(6 , 77) in the non-degenerate case when p = O.

The case when p = 1 can be similarly studied. First of all, we briefly examine its properties

when 5 = 0 and s —) +00. Because of the term ATS-5’ the integrand in (4.62) has a removable

singularity at s = 0. When .3 becomes large, we shall show in the next Chapter ((5 .52)—(5.59))

that

Ki]- 1 .1
lim = m —_'_——=>“ ar-l-bi-s 6—53 i=1,2;'=1,2,3,4

s->1arge (if) s-71arge AG) 625% e—(t1+t2) 5( J J ) ( J )

(4.69)

where t,- = flisg, and 6, aij and bij are constants determined by the elastic properties of the

materials (see (5.52)—(5.59)). It is shown in Appendix A that for 3% > 0, AG) e‘zsg (“1+”)

never vanishes for the materials considered in this Thesis.

dK”. 8-23; e_(t1+t2)
 

From the asymptotic behaviour of the deformed Bessel functions

 

 

1
lim 1 m T 4.70

:c—H-oo 001:) m 6 ( )

1
1i I z 1‘ 4.71Hines 1(9”) m e ( )

it follows that as s —-> +oo the integrand in (4.62) behaves as

1 d
—— fk 5) £7 7] e—(Zg—E—fl)5 (4-72)5 Tn ( )

where fk(s, §, 77) is a polynomial in s, and 5 and 77 are parameters. (4.72) shows that as s ——> +oo

the integrand in the infinite integral defining K(E , 77) (4.62) contains a negative exponential

function provided that d/a > 1. The integral of such a function is obviously finite for any

{6 [0,1] andn 6 [0,1].

Next, we consider the behaviour of K(§, 77) from a physical point of view. For this, we

rewrite the integral equation (4.66) in the following form

M) = 7% [1— [0‘ man) <1><n> d7] * (4.73)
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01'

% = 1_/01 K’"(€,n)<1>(n)dn (4-74)

where

 an(J05, “ff“AG)6—5:{10(()sg ZKlJ-EJ + [210(s§)+sfll(s:)]ZK2J-EJ}ds
()a j=l 1:1

(4.75)

When the central sublaminate is of infinite extent (i.e. d/a ——> +00), the solution of the

above integral equation is (Sneddon, 1951)

<I>(€) = \/E (4.76)

A comparison of this solution with the equation (4.73) shows that the second term in the square

brackets of (4.73) must be the perturbation due to the finite boundaries |:c| = d and the influence

of the two sublaminates between d g lav] S d + b. The convergence of the integral (4.75) will

therefore guarantee that this perturbation is finite.

Based upon the above observations, it is clear that the infinite integral in the kernel K(5 , 77)

(4.62) converges for any 5 and 7; provided d/a > 1, i.e. provided the crack tips do not touch the

interfaces.

For the calculation of the mode I stress intensity factor at the tip of the crack, the relevant

normal stress component near the crack tip is obtained from eqn (4.5), and is

a;(x, obi/0+"o E(%)cos(s§)ds +
7T0

2 +00 S :1; S (I) a: . (I)

+E 0 {51(5) cosh(s;)+B(;)[2cosh(s;)+sZsmh(s;)]}
ds (4.77)

where we have used the normalized variables (4.36). Substituting eqn (4.68) into eqn (4.77)

gives

a;J(x,0)= —a<1>(1)/+°° J(s)cos(s3:)ds+

+a+fo°° {/6J1(s015%:—)]d§}cos(s—)ds+

2 +°° a:—— B h - — }d,+7” 0 °°{A(:)c:sh(s53+ (—a)[2cos (5:)+s:sinh(sZn 3

x>a (4.78)

Making use of the integral

/0+<x> J1(as) cos(fls) ds = _Ww:W),
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 a > B (4.79)



eqn (4.78) can be rewritten as

(raw) = (pawl —
V122 — a2(:z + sz — a2)

— 0'02

 

1 E i no

0 W2 — (aozw + W2 — (as?) d5 1 V?

2 +00 s :c . s a: x :c

+ F; 0 {A(;)cosh(sE)+B(;)[2cosh(s;)+sEsmh(s-J)]}ds,

]d€+

a: > a (4.80)

The mode I stress intensity factor at the crack tip is given by

K; = lim 2(2) — a) U;y(a:,0) (4.81)

z-m+

Let us examine the asymptotic behaviour of 0;y(w, 0) when x —> a+. From eqn (4.74), it

can be shown that dd—g [3%] is finite (Appendix D). The integrand in the second integral term

of the expression (4.80) has therefore an integrable singularity at g = 1, when :1: = a. From

the expressions (4.59)—(4.60) for A(s/a) and B(s/a) and the asymptotic behaviour of %

(eqn (4.69)), it follows that the third integral in the expression (4.80) is also finite, when :1: = a.

Therefore, substituting eqn (4.80) into (4.81) gives

K1=q>(1)a¢asF,o\/6 (4.82)

The above expression for the stress intensity factor was deduced from the asymptotic be-

haviour of the expression (4.78) for the stress Jig/($7 0). It can also be derived in an alternative

manner, as shown by Sneddon & Srivastav (1971). The form of (4.82) is not new. It appears

in a lot of solutions of crack problems (Sneddon & Srivastav, 1971; Hilton & Sih, 1971; Bogy,

1973; Sih & Chen, 1981, and Fan et al., 1991).

4.4 Solution for In-Plane Shear Mode H

For the mode 11 problem, i.e. when the crack faces are subjected to self-equilibrating in-plane

shear stress 7'1] (with respect to crack faces but out-of—plane with respect to the laminate), shown

in Figure 4.1(c), we superimpose the solutions (3.83)—(3.87) and (3.96)—(3.100). Defining the

unknown functions in these solutions via

02(t) = ——E(t) (4.83)



D2(t) = —A(t) (4.84)

D3(t) = t—ZB(t) (4.85)

the stress and displacement components in the central, transversely isotropic layer can be written

as

07ch = 3/°°(—1)[A(t)twcosh(tx) + B(t)sinh(tac)]sin(ty)dt+

+—:/°°E( (2)—tyetysin(t:c)dt (4.86)

agy = —:2]: {A(:)[25inh(tz)+txcosh(ta:)]+B(t)sinh(tx)}sin(ty)dt+

+—:/°°(E(t)tyety s1n(t:c)dt (4.87)

Tgy = —732/0?(—1){A(t)cosh(tm)+t;vsinh(ta:)]+B(t)cosh(ta:)}cos(ty)dt+

+—:jowm )()1—ty)e"ycos(tx)dt (4.88)

ul = —%fifowé){A(t)[2txsinh(tx)—(rc—1)cosh(tx)]+

+ZB(t) cosh(tav)} sin(ty) dt —

_%4ip [(%)E(t)[n +1— 2t y] e-ty cos(tx)dt (4.89)

v1 = —%Z%Am(%){A(t)[(n+1)sinh(tx)+2tzcosh(m)]

+2B(t) sinh(t:c)} cos(ty) dt +

éi f:(%)E(t)[1 — rs — 2t y] e-W sin(tx) dt (4.90)

In a like manner, the stress and displacement fields in the orthotropic material 2 follow from

the general solution (3.123)-(3. 127)

a; = —/000 tQ1[A (t)sinhx1+Bl(t)Coshx1] sin(ty) dt+

2+(1—p); 1:”th[A2(t)sinhz2+Bz(t)cosh:cz]sin(ty)dt+
2 °° .

+p --71'] t {A0 [Q0 1130 smh $0 + C11 fio (Z0 — To) COSh $0] +

+301:[Q0 $0 00811 560 + Cu fl0(ZO — To) 811111 330]} sm(ty) dt (4.91)

02 = —:foo tL1[A t)sinhxl + 81(t)coshcvl] sin(ty)dt+

+(1 — p) ;2:1; th [A2(t) sinh $2 + Bz(t) COSh $2] sin(ty) dt +
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2 0° .
+P ; /(; t {A0 [L0 $0 Slnh $0 + C12 [80 (Z0 — T0) COSh $0] +

+Bo [L0 350 cosh x0 + 012 fl0(Zo — To) sinh x0” Sin(ty) dt (4.92)

2 oo

7g==gflt%da+mnmmwmm+3fiandmwwa+
2 co

+(1 — p) F /0 tea, (Z2 + ,62) [A2(t) cosh x2 + Bz(t) sinh x2] cosh(ty) dt +

2 0°
.

+P ; A t {A0 [C66 (Z0 + Bo) $0 00811 :60 + C65 (,30 — To) smh $0] +

+30 [066 (Z) + [30) 9:0 sinh $0 + 066 (.60 — To) cosh zo]} cos(ty) dt (4.93)

2 2 +00 . .
u = Flo Z1[A1(t)cosh:c1+ Bl(t)smhx1]sm(ty)dt +

2 +°°
+(1 — p);/(; Zz[A2(t) 005111122 + B2(t) smh 1132] sin(ty) (it +

2 +00
+P; [0 {Ao(t) [20130 00811 170 — To sinh $0]+

+Bo(t) [Zoxo sinh x0 —— To cosh mo]} sin(ty) dt (4.94)
+00

122 = %/0 [A1(t)sinh:c1+ Bl(t)cosh 21] cos(ty) dt +

2 +°°
+(1 — p);/(; [A2(t) sinh x2 + Bz(t) cosh 2:2] cos(ty) dt +

2 +00
+p; /0 [Aowo sinh 2:0 + 80360 cosh x0] cos(ty) dt, (4.95)

where p and 6; (l = 0, 1, 2) have the same meaning as in model, and

$1 = fll(:€ - (1)15 (4.96)

622 - 066512
Z = —— 4.97

’ ,31(012 + as.) ( )
Q1 = 611 ,3! Z1 — 012 (4.98)

L1 = 612,61 Z; — C22 (1 = 0, 1, 2) (4.99)

622 + C66fig
T = —————. 4.100
0 flo(012 + 066) ( )

The above expressions for the stress and displacement fields identically satisfy the skew-

symmetry conditions of the problem

agmw)= Q OSy<+m (4mm

01 (x,0) = 0, OS :1: S d (4.102)
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01(0,y) = 0, OSy<+oo
U:y(x,0) = 0, dsxgd+b
u2(a:,0) = 0, deSd—i—b

(4.103)

(4.104)

(4.105)

The arbitrary functions A(t), B(t), E(t), 14,05) and Bl(t) (l = O, 1, 2) in eqns (4.86)——(4.95)

are determined from the remaining boundary and continuity conditions

u1(:I:,0) = 0; m > a

yang T;y($,0) = —7'n; 0 S :c < a

and forO S y < +oo

0113(d, y) = 032M931)

T11'y(d7y) = T§y(d,y)

u1(day) = u2031,31)

vl(d,y) = v2(d,y)
012.101 + b, y) = 0

T:y(d + b, y) 2 0

From eqns (4.106)—(4.107), we get (vide (4.89), (4.88))

111030)  
+001

_n+11/0 —E(i)cos(sr)ds=0; r<1
2p7r s (1

lim T1(T‘,y) = lim [—3 [Om {A(
y—-)O+ 3y y-}0+

+ 3(3) cosh(sr)} cos(s

+3—/0+°° E<§)<1—
7ra

OSr<1

l
e

)ds+

@
l
‘
:

)e‘si cos(sr) ds

Q
I
‘
Q

— “7'11;

where we have used the normalizations

Denoting

)[cosh(sr) + s r sinh(sr)]+

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)



the dual integral eqns (4.114)—(4.115) can be written in the form that we have discussed above

in § 4.3

[3 F(s) J_%(sr) d3 = 0; 7' > 1 (4.119)

I/Ooo s F(s)J_%(sr) ds = ——\—/1--F [2—0731 — /OOO{A(§)[COSh(sr) + 51" sinh(sr)]+

+B(%) cosh(sr)} d3] ; 0 g 7‘ < 1 (4.120)

where we have used the identity (4.42).

The functions A(s/a) and B(s/a) are determined from eqns (4.108)—(4.113) (see Appendix

A)

1
14(3) = mLXUFI + [{1ze + K13F3 + K14F4] (4.121)

3(2): A——(:)1)[K21F1 + [{2ze + K23F3 + K24F4] (4.122)

where A(§), Kij and Fj (i = 1, 2;j = 1, 2, 3,4) are listed in Appendix A.

Using the same procedure as described in § 4.3, we obtain the mode H stress intensity factor

at the crack tip

KH—_ lim 2(x — a) T;y(x,0) = t11(1) T” (A? 2 F117,, (A? (4.123)
x—m+

Here, ‘1’( 1) is calculated from the following Fredholm integral equation

§)+§)/0K( )dn_— \/E (4.124)

in which the kernel K(5 , 17)IS given by

 
00 —$; 4

:_\/€T7/ 12% {10(35) 2(Ku+K2)-)Ej +3511()5€)ZK2jEj}ds (4.125)
(a) j:1 j: l

 

 

where

d
E1 = s; [0(377) — .577 [1(sn) (4.126)

d
E2 = (l—s—)I03(77)+57711(877) (4.127)

K + 1a 1 d 1= _ _ _ 4. 2E3 [ 4M + 2 8a] [0(377) 2’” .977 [1(371) ( 1 8)

K: + 1 1 d 1
= _ _ _ __ 4.129E4 [ 4” 214 8a] [0(377) + 2,14 517 11(377) ( )
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4.5 Solution for Anti-Plane Shear Mode III

When the crack faces are subjected to a uniform anti-plane shear stress Tyz = —7'm, as shown

in Figure 4.1(d), the only non-vanishing displacement component is in the 2—direction

w = w(:c,y), (4.130)

so that for an orthotropic material the stress components are

0w 3w

7'32 = 044 B—y Tzz = 655 5—2:- (4.131)

Here, C44 and C55 are the shear stiffnesses in yz- and zx-planes, respectively.

The only non-vanishing equilibrium equation in mode III is

62112 6211)

655 5;; + C44 (9—3/2 = 0 (4.132)

For transversely isotropic material 1 of the central layer, CA4 = cgs, and eqn (4.132) reduces

to a harmonic equation whose solution may be written as

2 +00 1
2 +00 1

l __ _ _
_ _ _ —ty

w _ 7r /0 tD(t)cosh(tx)s1n(ty)dt+ 7r [0 tE(t)e cos(t:c)dt (4.133)

The stress components are

71 — 3 /+°° c1 0(3) cosh(t:c) cos(t )dt— 3 f” c1 E(t)e‘“-’ cos(tx)dt (4134)
W — 7r 0 44 y 71' 0 44 .

2 +00 . . 2 +°° _ .
721$ = g [0 cgspos) smh(tz) sm(ty)dt — F /O c;5E(t)e ty sm(tx)dt (4.135)

The solution of the equilibrium eqn (4.132) for the outer orthotropic layers is taken as

+w ‘ U

w2= 3 / [G(t)e"” +H(t)e” ]sin(ty)dt, (4.136)
71’ 0

where

33* = 53(x — d)t fl3 = % (4.137)

55

The stress components are

2 +00 _$t xii

752 = g [0 c2423[G(t)e +H(t)e ]cos(ty)dt (4.138)

+m . ‘

T31 = g [0 c§5fi3t[—G(t)e‘x +H(t)ex]sin(ty)dt, (4.139)
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The unknown functions D(t), F(t), G(t) and H(t) in the solutions (4.133) and (4.136) are

determined from the boundary and continuity conditions

w1(a:, 0) = 0; x > a (4.140)

11m 512(3), 31) = —Tm; 0 S x < a (4.141)
y-+0+

and forO S y < +00

721461, y) = T310141) (4-142)

w1(d,y) = w2(d, y) (4.143)

73$(d+b, y) = O (4.144)

Substituting (4.133) and (4.134) into (4.140) and (4.141), respectively, gives

+00 1E

w1(r,0) = -—72r/os :)cos(sr) ds—-— 0; 7‘ > 1 (4.145)

_ +°° s y
y1351+ 73/147334) _ 3,131+ [ids/0% C44 D(;) cosh(sr) cos(sa)ds—

2 +00 1 l

__ —- _sa 2 — ' < .7m 0 C44 E(a) e cos(sr) ds TI”, 0 _ r < 1 (4146)

where we have used the normalizations

t = 3 (4.147)
a

a: = ra (4.148)

From the continuity and free-surface conditions (4.142)—(4.144), the unknown function

0(3) is solved

3

19(5) = @[H1F1+H2F2] (4.149)

where

d d

13(3) = c§5 fl3 COSh(s;) + c§5 sinh(s;) +

d

+[cé5 sinh(s§) -— c§5 fig, cosh(s;)] 6—2t3 (4,150)

H1 2 c§5fi3(e—2t3 — 1); H2 2 c§5(e"2t3 + 1) (4.151)

t3 = 13395 (4.152)
a
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and

__ 2 +°° 52 f d

2 +00 g , dF2 2 ; f0 fimgnmggm (4.154)

The dual integral equations (4. l45)—(4. 146) are solved using the same procedure as that used

previously for mode I and 11 problems.

The mode 111 stress intensity factor is

K111 = $132+ 2(55 — (1)7;z($ 0): 90>711: N/E E FIII 7'11! \/C—1 (4-155)

where Q( 1) is calculated from a much simpler Fredholm integral equation than the equations in

modes I and H (4.66) and (4.124)

0+0/1“ )dn-_ (fl (4.156)

 

The kernel is given by

+°° 56M353=—\/€_n /0 (H1 + H2) 10(35) Io(sn)ds (4.157)

where AG), H1 and H2are given by (4. 150)(“and)(4.151), respectively.

We can show that—)is finite for all s G [0, +00). First, we note that this expression has a

removable singularityAata)s—— 0. Secondly, we rewrite it as

_ 2
S 256 5a

A<2) ‘ 45330 + e411)<1 — e411) + 441 — e-11%)<1+e4)
It is seen that the two terms in the denominator of the above expression are always positive for

0 < s < +00, and tend to a finite value c2563 + c§5 when 5 —) +oo. Therefore, (4.158) decays

exponentially to zero as s —) +oo.

 (4.158)

It is seen that the mode 111 problem does not have a degenerate solution when the outer

sublaminates tend to be an isotropic medium dissimilar to the central transversely isotropic

medium. The basic solution (4.136) is therefore applicable irrespective of whether the outer

sublaminates are orthotropic or transversely isotrOpic.

4.6 Solution for a Composite Laminate with Multiple Cracks

4.6.1 Solution for Mode I

In this Section, we shall extend the solution of the single crack problem obtained in § 4.3 to

a multi-cracked composite laminate, shown in Figure 4.2. The exposition shall follow closely
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the paper by Wang & Karihaloo (1995a). The solutions in modes II and III for multi-cracked

laminate configuration can be obtained in a similar manner. As the tensile loading case is the

most important one, we shall demonstrate the solution procedure on mode I, and then present

the solution for mode III. We shall only need mode I and mode‘ III solutions later in Chapter 9.

 

 

 

    
 

iii

2: ll 11 all I H H—-—y~
   
 

Figure 4.2: A multi-cracked composite laminate and coordinate axes

It is recognized that with an infinite cracked body, the concept of “remote” stress is not

applicable, but the “average stress” is unique and it is equal to the uniform stress at the positions

of the cracks when all the cracks are absent under the condition of unidirectional tension. This

stress is sometimes called the solution of the homogeneous problem (e.g. Horii & Nemat-Nasser,

1985). Therefore, it is assumed that the composite laminate is subjected remotely to a uniform

tensile deformation along y—direction when all the cracks are absent. From a mathematical point

of view, one needs only to solve the problem of cancellation of a uniform stress over the faces

of all the cracks. Because of symmetry, it is enough to consider a quarter of the laminate, say

a: Z 0, y 2 0.

The solution to the above problem must satisfy the following boundary, symmetry and

periodicity conditions

a;y(:c,n)\) = ——a; 0 S x < a; n = 0, 1,2, ..., +00 (4.159)

v1(a:,n)\) = 0; a < x S d n = 0,1,2,...,+oo (4.160)

v2(x,n/\) = 0; d S x S d+ b; n = 0,1,2,...,+oo (4.161)

T;y(:r,n)\) = O; 0 S x S d; n = 0, 1,2, ..., +00 (4.162)

T§y(:c,n)\) = 0; d S x S (1+ 13; n = 0,1,2,...,+oo (4.163)

and the following continuity and free-surface conditions (0 S y < +00):

0:44.11) = 024d. y) (4.164)
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ninety) = Tfy(d,y) (4.165)

u‘(d,y) = u2(d,y) (4.166)

v1(d,y) = v2(d,y) (4.167)

aiAd+bay> = 0 (4.168)

T§y(d+b,y) = 0 (4.169)

The solution of the above boundary-value problem for multiple cracks is simplified by

applying the superposition procedure of Nied (1987), and Kaw & Besterfield (1992) to the

solution of the boundary-value problem for a single crack, given previously in § 4.3. For a

single crack located at y = O, the stress a;y(:c, y) and displacement v1(a:, y) are given by (4.5)

and (4.10), respectively,

2 +°° s y
031/y(rvy)lsingle = E 0 gl(;, 7‘) COS(SE) d8 +

2 +00
+—— E(i) (l + SE) e‘sfi cos(sr) ds (4.170)
7m 0 a a

2 +00 3 . y

7110‘, wlsingle = g [0 g;(;, r) sm(s;) d5 ..

I
h t
|
~

:3 o
\
. ’2?

413(2) [(6 + 1) + 25y] e-si‘ cos(sr) d5, (4.171)
3

where

Q16, 7') = 14(2) cosh(sr) + 3(2) [2 cosh(sr) + s r sinh(sr)] (4.172)

g2(:-,r) = tun? cosh(sr)+

+36) [(16 + 1) cosh(sr) + 2 s r sinh(sr)]} (4.173)

and we have introduced the normalized variables

x = m, 75:: (4.174)

The functions A(s/a) and B(s /a) are determined from the continuity and free-surface conditions

(4.164)—(4.l69). This has been done in Appendix A.

The perturbation of the stress and displacement fields caused by the infinite array of cracks

can be obtained by superposing the contributions of cracks located at y = inA, n = 0, ..., +00.

Therefore, we have

+oo

03:1)(7'70) = Z U;y(r’n)‘)|single (4175)

+00

111030) 2 Z vl(r,n)\)lsingle (4.176)
TL=—OO
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Substituting eqn (4.170) into (4.175) and noting that 0233,03 y)lsingle is an even function of y,

we have
+00

011,110", 0) = U;y(7‘, 0)|sing1e + 2 :1 0111310, ”Aflsingle (4.177)

From the solution (4.170) to an isolated crack, we know that the stress perturbation at y = n/\

caused by the crack located at y = 0 is

2 +°° s nA

a;y(rvn)‘)1single = 5/0 g1(—,r)cos(s7)ds+

”A nA

+1 /0+oo EG) (1 + s—a—) e—sT cos(sr) ds (4.178)

2 +00 s +°° 2 +00 s /\

1 _ ——
_

—_
_

—

ayy(r,0) — 7m 0 91(a,r) ds+nE=1 7rd [0 g1(a,r)2cos(sna)ds+

2 +°° .9 s

— - — 4.
+ W [0 E(a) [1+ g(a)] cos(sr) ds ( 179)

where A

.9 26“? A 1
_ = _— _ _———-— _ 4.180

9(a) 1—6—5? [1+sa1_e_s%] ( )

On the other hand, when we calculate the summation in (4.176), we should note that

v1(7‘, y)| single is an odd function of y, so that we can easily write (4.176) as

 

121030) = —fi2:7rl V/Ofio (g) E(:—) cos(sr) ds, (4.181)

Substituting (4.179) and (4.181) into (4.159) and (4.160), respectively, yields

[:00 [1+ 9(2)] E(%) cos(sr)ds = — {3.220 4.1:“) 91(37) (13+

+ 7122/0 91(%,r)2cos(sn;) d5}; 0 _<_ 7‘ <1 (4.182)

/ —E(—)cos(sr) d5 = 0; 7‘ > 1 (4.183)

0 s a

By denoting

71' i s
:: — — 4.184

1%) (25) ma) < >
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the dual integral eqns (4.182)——(4.183) can be rewritten as

+00 1 7m +00 3

f0 s[1+g(s)]F(s)J_%(sr)ds = _V—;{70+/0 91(;,r)ds+

+ Z/OOOQ —7‘)(:)200s(sn:)ds}; o g 7' <1 (4.185)

+00

/0 17(3) J_%(sr)ds = 0; r > 1 (4.186)

The first integral equation (4.185) is just a variation upon (4.45) which we met in § 4.3.

Therefore, the dual integral equations can be solved following a similar procedure to that used

in § 4.3 (see Appendix B) to give

13(3) = —%o {@(1) Ms) — fol smog [9%] d5}, (4.187)

where d>(§) is the solution of the following Fredholm integral equation

<1> g) + fol [mm + m, m] (1’07) dn = (3 (4.188)

The kernels K1(§, n) and K2(§, n) in eqn (4.188) are

K(§, n): \/§— [0+°° —_{Io(se_s56));K13E +[2IO(35)+5511(3(5))12KZJE}ds+

  

j=l

+00 00 —s% 4
/\

+2752 [0+ Z—E) {10(86) 2 (<le + [210(55) + sum35))1: szE}cos(sn-)ds

n=l a j=1 j: 1

(4.189)

+00 2 "5% ,\ 1

77) = V51) 1:66-33 [1+ 551 _ 6%] Jo(ES)Jo(ns) ds (4.190)

where Kij and Ej (i = 1, 2; j = 1, ..,4) are defined by (Appendix A34) and (4.55)—(4.58),

respectively.

That the integrals in K1(§, n) are convergent follows from the integral

+00 m _ s m am fl

[0 3 e (3 cos(nas) d3 = (—1) 5W (m) . (4.191)

The integral in K2({ , n) is evidently convergent.

We now calculate the mode I stress intensity factor at each crack tip. Substituting eqn (4187)

into eqn (4.179) gives

a;y(x,0) = —a/O+°°[1+g(:)]{<I>(1)J (::—/§J1(s§) d—§d[q:F——)]d§} cos(s :)ds+

+71% 0+0091:(,x)ds+7%:/0m; —,:z)2cos(sn3)cls, a; > a (4.192)
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The mode I stress intensity factor at the tip of each crack is calculated from

KI—_ lim ,/2(x—a)a;y(x,0)=<1>(1)a\/a (4.193)
I—H‘L'l'

where <I>(1) is calculated from the solution of the integral equation (4.188).

4.6.2 Solution for Mode III

When the surfaces of the cracks in Figure 4.2 are subjected to a uniform anti—plane shear stress

Ty, = —7', the resulting boundary—value problem can be solved in a similar way to that used

above for solving the mode I problem. Because of symmetry, it is enough to consider a quarter

of the laminate, say :1: 2 0, y 2 0. Under this loading condition, the boundary and symmetry

conditions are

T;z(x,n/\) = —7'; 0 g a: < a; n = 0, 1,2, ..., +00 (4.194)

wl(z,n/\) = O; a < x S d; n = 0, 1,2, ...,+oo (4.195)

w2(x,n)\) = 0; d S x g d+ b; n = 0, 1,2, ..., +00 (4.196)

andforO S y < +00,

ducky) = Titty) (4.197)

w‘(d,y) = w2(d,y) (4.198)

rfz(d+b,y) = 0 (4.199)

The superposition procedure used above for mode I problem will be recalled to solve the

present boundary-value problem. For this, we need again the solution for a single crack. From

eqns (4.134) and (4.133), we have

2 +0017;,(r,y)|single = —f0 —c;4 D(—a)cosh(sr)cos(s 5-)ds—

__/0+oo —c44E )65a cos(sr) d3 (4.200)

1 +00 1 3

w (rd/”single = — —D(()g)cosh(sr)sin(s %)dt+

+00.S

:_0/os1(Esp’5%cos(sr)ds (4.201)

where we have used the normalizationst: s /a and :13: m.
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The perturbation of the stress and displacement fields caused by the infinite array of cracks

can be obtained by superposing the contributions of cracks located at y = inA, n = 0, ..., +oo.

Therefore, we have

+00

752(00) = Z 752(r,na)lsingle (4.202)

+00

w‘(r,0) = Z w‘(r,nx\)lsingle (4.203)
TL=—OO

Noting that 73,120", y)|sing1e is an even function of y, eqn (4.202) can be rewritten as

752030) = 7'yz,(r mlsingle + 2271212 (TvnANsingle (4.204)

Substituting eqn (4.200) into (4.204) gives

1 +00 +°° +ooD A
71112030) = 276:1 D(:)cosh(sr))ds +——2——C“4(IE/OD Moosh(sr)2cos(sn)ds —

0 7L:

2 1 +00 —S%‘

— & E(i) 1+2e—Tfcos(sr)ds (4.205)
7ra o a 1 — e"?

 

Because 101 (r, y) I single is an odd function of y, the summation in eqn (4.203) can be easily

performed to give

 

2 +°° 1 s
1 — _ — _w (r, 0) _ 7r /0 313(0) cos(sr)ds (4.206)

Substituting eqns (4.205) and (4.206) into (4.194) and (4.195), respectively, gives

+00 s (3‘5A 71117 +00 s
A 13(5) 1+(21_—e_z:l COS(ST) d8: 2—1_C44 +/ D(:z') COSh($T‘) d8 +

/\+ 20:1an :)cosh(sr) 2005(sn;)ds; 0 g r < 1 (4.207)

+00 1
f0 —8‘3-E(a) cos(sr) ds = 0; 7‘ > 1 (4.208)

Eqns (4.207) and (4.208) are the counterparts of (4.182) and (4.183). They can be solved in

a similar way. We shall therefore omit the details here and only give the result that we require

later in Chapter 9.
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The mode IH stress intensity factor is also formally given by eqn (4.155) but with the

geometry factor 9(1) calculated from the solution of the following Fredholm integral equation

:2 E) + [0 [mm + m, m] 907) dn = fl (4.209)
in which the kernels are

51

me n) = —\/35/+°° 3:5“(H1 + H2)Io(s§) Io(sn) d3 _

—2\/—n z /+A“’56 f(H1+H2)IO(s§)IO(sn)cos(sn§)ds (4.210)

 

 

K2097)= \/€— 0+°o %:Jo(8£)Jo(sn)ds (4.211)

AG) is given by eqn (4.150), and H1 and H2 by (4.151).

4.6.3 Remarks on Boundary and Symmetry Conditions

In the solution to the crack problem in tensile mode I, we derived the solution by satisfying the

major boundary and symmetry conditions (4.159) and (4.160) for the crack located at y = O

(i.e. n = O). The minor conditions (4.161)—(4.163) for this crack are identically satisfied by the

basic solutions in view of the fact that v2(x, y) and “rig/(as, y) (i = 1, 2) are all odd functions of

g. If we consider an infinite extension of the body along the y-direction, then it is evident that

by a suitable choice of the origin any crack can be made to coincide with y = 0 by translation.

Therefore, the solution for the crack at y = 0 actually satisfies the conditions (4.159)—(4.163)

for any crack in the array, i.e. any n (Kaw, 1992). The same discussion also holds for the

anti-plane shear mode.
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Chapter 5

Composite Laminate with Interlaminar

Crack
 

5.1 Introductory Remarks

Interfacial areas between dissimilar media of a laminated composite material are the most

critical locations for failure. A crack approaching transversely to an interface has been shown

to increase the risk of delamination failure in fibre-reinforced angle-ply laminates. On the other

hand, the interface area could be a crack arrestor preventing the crack from advancing further

along its straight path (Gupta et al., 1992).

For the configuration ofdissimilar isotropic materials, the result obtained by Zak & Williams

(1963) for determining the stress singularity under a symmetric stress field at a crack terminating

at the interface is a widely cited result. Cook & Erdogan (1972) solved the boundary-value

problem of a bonded isotropic/isotropic composite for the cases when a crack is wholly within

one medium or is touching the interface at right angles. The stress intensity factors and crack

surface displacements were obtained. For the same composition, Atkinson (1975) gave closed

form expressions for the stresses at a crack tip in terms of a small parameter, the distance from or

through the interface, when a crack is approaching the interface and when it has passed through

the interface at a right angle. In both problems, the limiting case when the small parameter is

identically zero was also discussed. Ashbaugh (1973) examined the behaviour of the stresses at

a crack tip created by a broken layer of an isotropic material bonded between two semi-infinite

planes of dissimilar isotropic materials. This problem was also solved by Gupta (1973), who

reduced the boundary-value problem to a singular integral equation which could easily and

accurately be solved by using a numerical Gauss-Jacobi integration technique (Erdogan et al.,

1973). Kaw & Besterfield (1992) gave the stress singularity and intensity factor when one tip

of the multiple periodic cracks in a half-plane touches the interface between this half-plane and
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a finite strip.

Regarding crack-interface interaction in anisotropic media, Arin (1974) studied the stress

singularity and stress intensity factor at a crack tip in an orthotropic layer bonded to two

half-planes of a different material. A similar characteristic equation for determining the stress

singularity was also derived by Delale & Erdogan (1979). Wu & Erdogan (1993) solved the

crack problem in two bonded orthotropic layers of finite thickness. Solutions were given both

when the crack is wholly within one layer and when its tip is touching the interface. The

expressions in these works for the displacement and stress fields do not include the degenerate

case when one of the materials degenerates into an isotropic medium. They are only applicable

to orthotropic/orthotropic configurations.

Ting & Hoang (1984) reported a solution for the stress singularities at the tip of a crack

ending at an interface in an angle-ply laminated composite. The model used was that of two

anisotropic bonded half planes, one of which contained a crack terminating at right angles to the

interface. Their approach, although general in nature, leads to quite complicated results. The

singularities have to be numerically computed from the determinant of an 18 x 18 matrix. The

singularities for orthotropic configurations were given in a numerical form. Bai & Loo (1989),

using Lekhnitskii’s method of complex stress functions, calculated the stress singularities and

stress intensity factors at the transverse crack tip intersecting an interface in fibre-reinforced

cross-ply laminates under tension. Again, for determining the stress singularity the determinant

of an 8 x 8 matrix has to be numerically resolved.

On the application of the solutions to the singular behaviour of stresses at interfaces, He &

Hutchinson (1989) studied the crack deflection/penetration phenomenon at the interface of two

dissimilar isotropic materials. The stress field (Zak & Williams, 1963; He & Hutchinson, 1989)

around an interfacial crack tip was recently cited by Nakamura & Kamath (1992) in their three-

dimensional computational analysis of a crack model for a film-substrate composite. Gupta et

al. (1992) analysed the crack penetration/deflection at the interface between two aligned infinite

orthotropic media, based upon the stress singularity and the angular functions of the singular

stresses around the crack tip.

In this Chapter, the basic solutions presented in Chapter 4 will be applied to the corresponding

boundary—value problems when the crack tip is touching the interface, i.e. a ——> d. The procedure

for solving the problems will follow that in the work of Gupta (1973). The fracture parameters

of interest, i.e. the stress singularities and the in situ stress intensity factors at the crack

tip terminating at a transversely isotropic—orthotropic bimaterial interface will be calculated.

Since the basic solutions include the degenerate case when the outer sublaminates tend to be

a dissimilar isotropic medium, those parameters are also given in this case and compared with

the published results in the literature. A part of the work described in this Chapter has been
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published in the paper by Wang & Karihaloo (1994b). Another part has been accepted for

publication (Wang & Karihaloo, 1995b).

5.2 Solution for Mode I

5.2.1 Solution of Boundary-Value Problem

The basic solutions for inner (4.4)—(4.10) and outer sublarninates (4.11)—(4.15) obtained in

Chapter 4 are all applicable, as are the continuity and free-surface conditions (4.30)—(4.35). In

order to solve the present problem with a ——> d, we reproduce eqns (4.38)—(4.39) here

 1 __'<+11 +°°l i _.v(r,0) _ 2# 77/0 sE(a)cos(sr)ds—0, r>l (5.1)

lim 01 (7‘ y) = lim 3 [+00 {A(£)cosh(sr)+
y—)O+ W ’ y->0+ 7m 0 a

+ B(§)[2 cosh(sr) + s r sinh(sr)]} cos(s%) ds +

2 s y 53
+7r—a/o E(—)(1+;)e cos(sr)ds]

: _.; 0§r<1 (5.2)

To simplify (5. l)—(5.2), we introduce an unknown function

 ___1 _”+1i/+°° 3'RI(r) — v (r,0) — 2” rm 0 E(a) sm(sr) ds. (5.3)

R,(r) would be the so-called dislocation distribution function, had we used the dislocation

formalism to model the crack.

Inverting eqn (5.3) and using eqn (5.1), we get

s __ 4pm +1

E(E) _ n+10
 R,(r) sin(sr) dr (5.4)

In order to solve for R10"), we need first to relate the relations A(s/a) and B(s /a) appearing

in (5.2) to R1(7‘). It is seen from (5.3) that R10“) is an odd function of r. This property will be used

in the following deductions. Substituting eqn (5.4) into the expressions for Fj (j = 1, 2, 3,4)

given by eqn (A35) in Appendix A, we have

_ 2/10, +1 d _s(é_,)
F1 — 5+1 —1 R1(r)(a —r)se dr (5.5) 
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F2

F3

F4

 

 

 

 

+1
2:: R1(r)e_’(%") dr —

K?

2 a +1 dK j: 1 _1 R,(r) (; - T)se‘s(§")dr (5.6)

It — 1 a +1 _s g_r

(27251711 R4") ‘“ ”1”
+1R

2+1 [1:2;()(:— r)s e‘s(%‘r)dr (5.7)

+1
Ea R10 %—’)dr —

+1 d
5:1 RI(:1~)( —7")se5(3")dr (5.8)

In deriving (5.5)—(5.8) we changed the order of integrations in (A35) and used the following

identities

+00 2 d
A (2%; COS(; Ii:

[:00 (——+——€2€sz22) sin(d:tr)§d§

agdg = 4%[1—s(g:tr)] e’5(%i’) (5.9)

7r d_ __ _ —s( ir)_ “(aim (5.10)

It should also be pointed out that the range of 7' has been extended to (— 1, +1) in (5.5)—(5.8)

and in the deduction to follow, in view of the fact that R,(r) is an odd function of r.

In order to avoid confusion when Fj (j = 1, 2, 3, 4) are used in the following deductions,

we change the variable of integration 1‘ in eqns (5.5)—(5.8) to t and denote

f1

f2

-1

/— 1l

6—36‘0 dt

R1(t) (i — t)s e—
a

EU)

Equations (5.5)—(5.8) can now be rewritten as

F1

F2

F3

F4

Zua

n+1

2a
: f1—

(31)..
2(++1)
313 -

 f2

KZua

+1
  

 f1+

 “If:

 

5(3-0 dt

f2

:lfz

Substituting the above equations into (4.40)—(4.41), we get

2pm

n+1
Zpa

n+1

 

 

78

(N1f1+ szz)

(N3f1+ N4f2)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



in which

        
  

 

   

  

 

1 - rs — 1 I9 + 1

N = .

N — 1 - K —K +iK iK] (520)2 AG) - 11 12 2/1 13 2’” 14 -

1 " n—l n 1
N = .3 AG) -K22+ 4# K23+ 4p K24] (5 21)

N — 1 -—K -—K +iK -iK] (522)4 AG) _ 21 22 2H 23 2'“ 24 -

Substituting eqns (5.4) and (5.17)—(5.18) into (5.2) and noting (Erdogan & Gupta, 1971)

. 1 +00 _£8 R1(—(—t)

1,138+ 0 R,(t) [/0 e «2 sin(st) cos(sr)ds] dt: 2/: t—r dt (5.23)

we obtain a Cauchy-type singular integral equation for RI(t)

+1 R,(t)1 +1 n + 1

£1 t_r——)td1+; /_1 IC,(r,t)R,(t)dt—— 4,1 0, (5.24)

where +00

IC, = / k,(r,t,s) ((5-1). ds, (5.25)
o

with

—1 +1

        

1 1

[3103735) = — [K12+£——— ]+[—K11—K12+—K13—

13(5) 41” 2/1

31.124] (3 _.)}.11....

   

1 -1I€+ 1 1

A161) {[KzzkE+—4/1—K23 + 4/1 K24] + [—Kzl — K22 + $K23—

——K24] (g — t) s} [2 cosh(sr) + s 7' sinh(sr)] (5.26)

AG) and [fig-(s) (i = 1, 2;j = 1, ...,4) are given by (A.33)—(A.34) in Appendix A.

The solution of eqn (5.24) is subject to the single-valuedness condition

+1

/ R,(t)dt = 0 (5.27)
—1

It is seen from (5 .25)—(5.26) that when d/a ——> 1, i.e. the crack tip approaches the interface,

IC10”, t) becomes unbounded at t = 1 and r = i1, because of the infinite integral in eqn (5.25).

79



It is therefore necessary to use the asymptotic value of k,(r, t, s) as s ——> +oo in order to study

the singular behaviour of ICI(r, t). The asymptotic value of k,(r, t, s) as s —> +oo is obtained

in two steps.

First, we calculate the asymptotic values of Kij /A(§) (2' = l, 2; j = 1,2, 3, 4) by letting s

in K,5 tend to +00. In the following, we demonstrate this asymptotic analysis on the example

of K11 /A(§)

The two hyperbolic functions sinh(sff—) and cosh(s§) in (A.33)——(A.34) in Appendix A can

be written as

sinh(sg) = %[1—e-25%] (:53 (5.28)

cosh(sg) = % [1+ 6—255] (35% (5.29)

sinh(sg)cosh(s:—) = %[1—e‘45§] (525% (5.30)

whence, we have

253% sinh(sg) = [1— e-zsfl (5.31)

255% cosh(sg) = [1 +62%] (5.32)

d

46-25g sinh(s£:—)cosh(sg) = [1— E4573] (5.33)

Dropping the lower order terms e—zsg and 63-45% in the square brackets in (5.31)—(5.33), we

obtain the following asymptotic expressions as s —> +00

lim 2e-s% sinh(sé):>l (5.34)
s—++oo a

d

11m ze-s%cosh(s—)=>1 (5.35)
s—++oo a

. _252 . d d

11m 46 a smh(s—)cosh(s—)=>1 (5.36)
s—)+oo a a

In order to calculate the asymptotic value of K11/A(§), we multiply its numerator and

. . _ 2 .
denommator With 46 23a to g1ve

_252 —SE I

K11 : 48 d K11 = 28 d A11 26_s% (537)

AG) 4e-23: AG) 4625: Mg)

 

Using K11 of eqn (A34) and 13(5) of eqn (A33) in Appendix A, we have
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d d d 1 d d
265% K11 = 265% {[sinh(s;) + s;cosh( )] M1 — [-z—S‘COSMSEH

  

 

32 M a
K: — 1 . d n + 1 d 1 d . d

+ 4'” Sll’lh(8;):| M4 - I: 4/1 COSh(5:1-) + is; Slnh(s;)] M5} (5.38)

46—25% Mi) = 452% {[55 + sinh(sé) cosh(s§)] M1 + l} + 1 sinh2(sé)] M2+
a a a a 4p a

1 d 5—1 . d d [‘2
+ [Z1182 — 4p Slnh(8‘a‘) COSh(8£):l (M3 + M4) + [— 

 

1 d K . d d
+ [—4—FLZSE + 4,—th smh(s;) COSh(S;)] M6} (539)

Using (5.34)——(5.35) in the asymptotic analysis of (5.38), we get

  lirn 26_5%K11=> 1+5é M1— -isé+fl_1M4— N+1+—1—sé MS (5.40)
s—>+oo a 2,u a 4p 4p 2p a

Substituting (5.36) into (5.39) and ignoring, as before, the terms containing sieflsfi , we get
a

. +1 Iz—l n+1 K
11 4-232‘343 M—K M— M — M —343900 e (a): 1 4p 2 4;. W” 4) 4,5 5+4»?

  
 M6 (5.41)

Substituting (5 .40) and (5.41) into (5.37) gives

  

   

, _ . K11 _ 2 1 1 d #1
kll — sg?m@—§|:M1+ZM4—flMs:| 521-6 0+

2 Is: -1 K: +1 d_ _ _ -s: .42+ 6’ [M1 4” M4 4'” M5] 6 (5 )

(5.43)

h
were 6’-M MlM ”—1M ”—1M ”+1M+ ”M (544)— 1 4” 2 4’“ 3 4M 4 4M 5 4H2 6 -

Using the same procedure, we get the following asymptotics of the remaining expressions

in (5.26):
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+ 327 [5—4711M2+ ”;1M3] e-si' (5.45)

is = SEEP,» 5;): :,[—Mz— M4+§1EM6] Sge_s%+

+ 32—,[—M2+ “4:1M6] 55% (5.46)

ki4 = H+oo Alig—" '52-, [M3 +M5- 2—446] 8:6—5“ +

+ %[M3+ ”4:11M6] 53% (5.47)

kg, = 513nm 5—2—1)_—§[—M1—ZLM4+LM5] e-5% (5.48)

k’zz = 5ng 1%: §,[—M1+2Mz—EIEM3]€_% (5.49)

53 = 33153100 [1%—— 53 [Mz+ 2—1M4—2iM6] e-’% (5.50)

kg, = 3211100 £234) = 53 [—M; — M5 + 511%] 65% (5.51)

In the second step of the asymptotic analysis of k1(r, t, s), we note that Mn (n = 1, - - - ,6)

appear both in the numerator and denominator (via 6’) of the expressions for kg]. (2' = 1, 2; j =

1,2, 3,4), and that Mn contain hyperbolic functions sinht- and cosht- (i = 1,.2) Therefore, we

use a similar procedure to that used above to obtain the asymptotic expressions for k’j in (5.42)

and (5 .4.5)—(551) when 5 in the hyperbolic functions sinht and cosht in Mn tends to +00. In

this way, the asymptotic values of k’- can be finally written as, after dropping the prime on kij

in the above intermediate process,

 

  

k1, = lim £=3[m,+ 1m4__1_m5] sis-5h
s-H'OO AG) 6 2 2p a

’9” = 513% if?) ii 1 21m23+§1112misé6 5&4“
+ %['€4;1m2+ ”les] 65% (5.53)



kn

km

1921

A722

[3723

1924

where

 

 

 

 

 

    

= 11 K13 -2— [—m2 — m4 + im6] sé e‘sg' +
H+°° AG) 5 2x1 a

+ él—mz + “:4: m6] e—sE

= 11m K14 2 [mg + m5 — im5] sé e‘s<z +
8-*+°° AG) 6 2;; a

2 K3 —— 1 3g
+ E [m3+ 4;” m6] 6 a

. K 2 1

= $5900 A651) “ 3 [‘ .— W4 + 7m] e 5“
= lim K22 E [ m1+ im2 — im3] e‘3%

H... AG) 6 2p 2,.
K23 2 1 I _si

= s—++oo A(-;-) — 3 [7722+ Em“ ‘ EM] 6 “

= 1m fl=3[ 3—m5+—Lm6] 6—5“
8->+°° A(3) 5 2p

m1_K+1m2_K—1m3_n—14_r~c+15+im6

4H 4/J 4,u 4 4M2

(1— P)(Z1— Z2) — PQo

(1— P) (ZZQI — Z1Q2)+ P[Q1Qo + Z1(611,30 — €12Q0)]

(1 — P) (Q1 - Q2) + 10(01150 — Cleo)

m3

(1— P) (L2 — L1) + P06630(Q0 - Z0)

“(1 ‘ P)(Q1L2 — Q2111) —

—P[L1(Cuflo — Cleo) + CssfioQ1(Qo — 20)]

Substituting (5.52)—(5.59) into (5.26) gives

191 d
s—++oo (r,t,s) = 2 [4710 + (4710 + m) s; + (4710 + 711+ 2m) (3 — t) 3+

d d
+27%; (3 — t) .92] cosh(sr) e'5% — 2 [4n0 + 711+

+2n2(g — t) s] [2 cosh(sr) + 31' sinh(sr)] 65%
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(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)



where

  

 
 

1 FL +1 #52 — 1

720 = g i: 8/; 7723 + 32’12 m6] (5.68)

1 FL + 1 -— 1 r62 + 1

”I = 3 [m ‘ 4y “”2 “ m5) ‘ 52 ”13‘ WW (5'69)

1 1 1

n2 = 3 [—ml - Ems + 4—p2m6] (5.70)

Substituting (5.67) into (5.25) yields

+00 d d

IC, = /0 2 4n0+(4n0+n1)s;++(4no+n1+2n2)(——t) 5+

+ 2mg (2? — t) 52] cosh(sr) e‘5(2d3’t) ds —

+00

—/ 2 [4710 + m + 2122(3 — t) s] [2 cosh(sr) + .57“ sinh(sr)] e_s(2§'t) (15 (5.71)

0

Making use of the following identities (Erdelyi, 1953)

[+00 Sm 6'39?” sinh(sr) ds = (1—7" [+00 e_s(2%_t) sinh(sr)

0 cosh(sr) dtm 0 cosh(sr)

__ dm 1 7'

_ dtm (23—1024»2 zg—t

we can evaluate the infinite integrals in (5.71) and obtain

W .
I
W
—
z

A

y
:

\
l

[
\
J

v

_ d d d 2 d2 1
[C1030 — [(721+2n2)+6n2(;+r)d—r—+2n2(;+r) E3] m'i‘

d d d 2 a0 1
+ [(711 + 2n2)— 67%; “ 7‘) g + 2"2(; - r) (172]m (573)

Substituting the above expression into (5.24) gives

+1R1(t (1+ (1

£1 t_——7jdt+—1/_+l([n1+2n2+6n2( +T)d_r+

d 2 J2 R105) 1 +1 d d

+ 2n2(a + r) (”2] t — (2% + 1") dt + ; f—l 011+ 2712) — 6112(3 _ T) dr+

+ 2722(é — 7‘)2 :22] ___1%I—Elt)____dt : _fl0-
, lrl <1

(574)

a r t — (25 — r) 4/1
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In common with the works of Gupta (1973), and Arin (1974), 12,05) is assumed to exhibit

the following behaviour near it = i1

H,(t) _ H,(t)e"71”

RIG) = (1—t2)71 _ (t _ 1))1 (t + 1)‘Yi

 |fl<1 673

where 0 < Re(71) < 1, and H105) satisfies Holder condition in the closed interval [— 1, +1].

Denote

  _ 1 +1 Bra) _ 1 +1 Him
975(2) _ 7r /_1 t — 2 dt _ 7r [.1 (t —- l)71 (t + 1)71 (t — 2) dt’ (5.76)

where ¢(z) is a sectionally holomorphic function. If 2 is on the integration path, 45(2) may be

written as (Muskhelishvili, 1953, Chapter 4)

z = cot 71w HI(—1) _ 1111(1)

¢( ) 2’71 [(1+ z)"/l (1— z)'Yl

 ]+¢@) 67%

Here (15*(2) is bounded everywhere except at z = 21:1 where it may be of the form

M

WC?” 5 W, 0 S RCWO) < Rem/1) (5.78)

in which M is a Holder constant of some function.

Substituting 7" E (—1, +1) into (5.77), we get

cot 7171' H,(—1) H,(1)

$0) : 2'71 (1+ 7-)71 _ (1.. 7-)7

A comparison of the second and third integrals of (5.74) with (5.76) shows that we need to

calculate ¢(z) for z = 2% :l: r. We note that when d/a = 1 (so that 2% :1: r = 2 :t r) and as

r —+ $1, 2 :1: r is near one end of the integration path, i.e. near +1. However, 2 j: T will never

 

1 +¢o)lw<1 67%

be on this path. Therefore, we need only know the variation of the function ¢(2) in eqn (5.77)

for the case when 2 is near, but not on the integration path. In this case, in view of the behaviour

of R,(t) in (5.75), ¢(z) in (5.76) is written as (Muskhelishvili, 1953, Chapter 4)

6717’" 1 HI(—1) 61-71" 6—71” 1 H,(1) 6‘71"
 

 

¢(z) = sin’mr (z + 1)71 (—2)71 — sin717r (z — 1)71 271 + ¢ (2) (5'80)

instead of (5 .77), where C

l¢¢fl£ki1m 63D

in which 0 and 70 are real constants such that 70 < Re(71)

Therefore, in terms of (5.76) and (5.80), we have
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1 +1 R1(t) em" 1 H,(—1)ei‘11”

2 = - / ———— dt =
_

¢( + 7‘) 7r -1 t — (2 + 7') sin 71% (3 + r)’71 (_2)'yx

e-“ani 1 111(1) ei’nfi'

‘
’ . 2

sinm (1H) 27. +¢(2+r) lrl <1 (58)

1/+1——R(1(t e’Ymi 1 HI(_1)ei'yl1r

._
dt—_ .

t——'—— 7‘) 81117177 (3 — r)’Yi (__2)’yl

6—717” (21 HI(1) 61371”.

sin'ynr (1 — 7‘)71 271

 

 

¢(2 - 7‘)
 

 + ¢'(2 — r) |r| < 1 (5.83)

Noting that the terms involving 3 + r and 3 —— 7' in (5.82)—(5.83) will never be singular when

7‘ —> :lzl, we can write (5.77) and (5.82)-(5.83) as follows, as far as their leading singular terms

are concerned

45(7') = 211 (1+?)1l — (1—7‘)“ +4510), lr| < 1 (5.84)

1 1 ___(_H1)
45(2+r) = —fisin717r(1+r)71¢2(r)’ 1<2+r<3 (5.85)

 

 

_ 1;H11() _¢(2——r)—27181n77r(1_r)11+¢3(r) 1<2 r<3 (5.86)

The functions ¢n(r) (n = 1,2,3) have the same behaviour as that of ¢*(z) of (5.78).

Substituting eqns (5.84)—(5.86) into (5.74) gives

1

271 (1+ 7011 Sin 7171' [HI(_1) CO5 7177 - HI(1)(n1+ 272.2) + 6HI(l)n271—

[171(1)

_2H.(1)nm(~n+1)l -m

—6n2’71 + 2n271(’71 + 1)] = A(r), Irl < 1
(5.87)

[cos 7m + (m + 2712)—

where A(r) is a linear combination of ¢n(r) (n = 1,2, 3) and a. It is bounded everywhere

except as 7‘ —> £1, when it behaves as

M*

W7 RCW") < Re(’¥1) (5-88)

This property follows immediately from that of ¢n(r).

From (5.75) it follows that HI(— 1) = —H,(1). Following the procedure presented in the

work of Gupta (1973), we multiply eqn (5.87) by (1 + 7)“ and substitute r = —1 and then

multiply it by (1 — r)“ and substitute 7' = 1. In this way, we obtain the following characteristic

equation

cos 71% + 2722(71 —— l)2 + m = O (5.89)
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where m and n; are given by (5.69)—(5 .70).

The root of eqn (5.89) in the range (0, 1) is the crack tip stress singularity in mode I. It

is noted that the mode I stress singularity is determined by two parameters only, m and n2,

which are related to the material properties, although there are six material constants which

characterize the transversely isotropic central layer and the orthotropic outer layers.

5.2.2 Stress Intensity Factor

To calculate the mode I stress intensity factor, we need the tensile stress in front of the crack

tip. When the crack tip touches the interface, the central sublaminate is completely broken.

Therefore, the relevant stress is aw in the outer sublarninate. This stress for the case p = 0, is

given by (4.12)

2 +00 ,
a:y(x,0) = ir/o tT1[A1(t) cosh $1 + B1(t)smhz1] dt +

2 +00
4-; [0 tT2[A2(t) COSh (132 + B2(t) SlIlh 1E2] dt (5.90)

where

(c, = ,6, (a: — d)t (i = 1,2) (5.91)

Using the normalization
s

t — d (5.92)

we rewrite eqn (5.90) as

2 1 +00 .
Jig/(730) = ;E 0 S T1[A1(d)COShT1$ + B1(3) smh 7'18] d5 +

2 l +°° [ s s . ] 9
+;Zz- 0 8 T2 142(2) (3081'! 7‘28 + 32(2) smh 7‘28 d8 (5. 3)

where d

m = [3.- ——xd (i = 1. 2) (5.94)

In the following, we shall analyse the asymptotic behaviour of the stress 051,03 0) near the crack

tip, i.e. when r —> 0+. 141,-(3 /d) and B,(s/d) (i = 1, 2) can be determined from (A.1)—(A.6) in

Appendix A in the same way as A(s/a) and B(s /a) were determined above, and so giving,

  

  

s i d d 4

Ai<g> = 3A(§)21Miij+sA(§);Aiij (595)

Eli) — d 5N F+ d 54331” ('-12) (596)
2 d — $A(§) 1.7 SA(§)1~=1 r] J l— 7 .



in which A( 3) is obtained by replacing a with d in the expression for AG) in eqn (A33), and

M11

M12 —

M13

M14

M21

M22 _

M23

M24

N11

N12

N14

N21

N22 —

N23

N24

n+1

rs—l

4M
. 53 —

Z2 wl smh s cosh 5 —

. rc+
—w3 smhscoshs —

n+1
 

Is—l
 

 

 

. K3 —
21 L01 SlIlh2 S +

1
lel sinhscoshs+ K+

. K —
Z2 wl smh2 s —— 

4M

 

 

 

4M

 

 

1
Z2 v.21 sinhscoshs — K +

p
(.03 coshzs ——

Q2 (.01 sinhs coshs +

1 _

Q2 wl Sillh2 3 + K

1 _ rs .
w3 smh s cosh s - — L2 w3 smh s cosh 5

4,412

4:——2 szl sinhscoshs

1
L2 (.03 cosh2 s 

53+

4M
1
L2 (U3 sinh s cosh s 

1 . Is .
w4 smh s cosh s + — L1 w4 smh s cosh 3

4/12

w4 cosh2 s + ——- Q1 wl sinh s cosh .94:2

—1 1
— Z w] sinhscoshs + L— Qlwl sinhscoshs — %— L1w4 coshzs

1 _
w4 sinhscoshs + if—Qlwl sinhzs — E

Ic+1

4M
5—1

 

 

. 1c —
-—ZZ (.04 smh s cosh s +

. E
w; smh s cosh s +

n+1

53—1

 

 

Z2Ld2$inh23 + K; _

Zzw4 sinhscoshs + K

. 53"
Z1 wzsmhzs —

. K3

Z1w3 smh s cosh s —

4M

4M

 

 

4M

 

 

 

 

4M

 

1
w4 sinh s cosh s +—

1 2w; cosh s +—

1
Q2 (04 sinh s cosh s —

#1

L1 (124 sinh s cosh .5

L2 L02 sinh s cosh s
4M2

4:2 Q2 (.04 sinh s cosh s

 

1
+ L2 M2 (3081'!2 S

4M

1 L2 L04 sinh s cosh s 
1 . K, —
Q2 w; smh2 s —

. n .
w3 smhs cosh s — 4—2 L1 wz smhs cosh s

1::

%Q1 L03 sinh s cosh s

— 1 1
- Z1w3 sinhscoshs — L— Q1w3 sinhscoshs + —:j-— L1 w; coshzs

p

1 —l
—w2 sinhscoshs — 2:— Q1 w; sinhzs + ii— Llwg sinhscoshs

M M

In the above expressions,

001

W2

W3

014

= Qle

sinh t1 cosh t2

sinh t2 cosh t1

sinh t1 sinh t2

cosh t1 cosh t2
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— Q2131

sinh t2 cosh t1

sinh t2 cosh t1

sinh t2 sinh t1
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(5.97)
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AU and Bij (i = 1,2; j = 1,2, 3,4) in (5.95)—(5.96) have the following asymptotic be-

haviour

 

 

3352» A11?) => Cije_(“+’2)
(5.114)

d

311530 52') => Dije-Wtz) (i=1,2;j=1,2,3,4) (5.115)

E

where b

zfligs (i=1,2) (5.116)

and Ci) and Dij are constants.

Because of the asymptotic behaviour of Aij and EU, it will be seen that they do not enter

into the asymptotic singular term of the stress 03,10", 0) near the crack tip.

Substituting eqns (5.13)—(5.16) into (5.95)—(5 .96) gives

  

 

s
2 d2 2 I

Ai (3) = :(2?)Jgpjf +3A(§) jg] Aij fj (5.117)

s 2 J2 2 I

31(2) = 5:3)2; Qiif' +3TG) i=1 Bijfj (5.118)

where Ag,- and [32,- have the same behaviour as Aij and Bij, and

 

 

Pa = 5—51 M». + 5% M13 + % MM (5.119)

P12 392:: Ma — [72:11 Mn + Elf—1 M.3 —% M.4 (5.120)

Qil = 1:25—1— er +flN3 + % N14 (5.121)

Q12 = —K2::L1N,-1—Zf——1Niz+i—1Na—fiNr4 (i=1,2) (5.122)

f1 and f; are given by eqns (5.11)—(5.12).

Inserting (5.1 17)—(5.118) into (5.93) yields

2 2 +°°

a:y(r,0)—- —— 2T Mi :((Bj cosh ms + Qij sinhris) fj+

7r A(1d)
i=1 j=l

 

d

1 2

+ A0) XML-cosh ms + 81-,- sinh ms) fj} ds (5.123)
_ j=1

Substituting f1 and f2 from (5.11)—(5.12) (note a = d) into the above expression and changing

the order of integrations, we get

1 +1

031(7) 0) = — /_1 K1<r,t)R.(t>dt (5.124)
77
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Here

 

 

 

 

+00

K10, t) = / k,(r,t, s) e-SU-t) ds (5.125)
0

in which

2 2

k(r, 15,)s :A(5)2 T1[P1-1 coshr1s + Q11 sinh 11.9 + (H2 cosh 7'15 + Q1zsinhr1-s)(1—t)s] +
Z

2
+A(5)21 T [A11 cosh 713 + Bil sinh ms + (A22 cosh ms + 3:2 sinhr1-s)(1-t)s]

3
(5.126)

From the expressions for P1,-, Q1]- (i,j = 1,2) and A(s/d), it is seen that

. P11-5111nm AG) => p11 (5.127)

. Qij . . __
skin“) A(§) :> q” (Z73 “ 132) (5.128)

where p1-1- and q1-1- are constants.

From the properties of P11, Q11, A’- and Bij, it follows that for any values of T1- and t, the

second term in k,(r, t, .9) (5.126) only makes a finite contribution to K10", t), and thus only a

finite (non-singular) contribution to the stress 05110", 0). However, the first term of k,(r, t, s)

will result in an infinite value of K1(r, t) because of the infinite integral. Therefore, in order

to examine the singular behaviour of K1(7‘, t), it is necessary to use the asymptotic value of

k1(r, t, s), as s —> +00. This value is obtained in much the same way as in § 5.2.1 (cf. eqns (5.25)

and (5.26)).

Through an asymptotic analysis similar to that which led to (5.67) from (5.26), we have

s-Zcioo(()2737375 2 :1 T1[l11— [1-2 + 112(1 - t) s](cosh r13 — sinh r15) (5.129)

where

_ __ 1_ 2 . 1 , i‘é—l .
lzl '— 3[ K—‘fimzl+2mz3+Z(Kl+l)mz4:l

 

  

2 (1' = 1,2) (5.130)

522 = alt [—E—fi—flmn + miz) + fiUnis -— mi4)]

6 is given by eqn (5.60), and the other constants are

K, + 1 Ii — 1 FL
m“ = — 4,” Z2 — —4#—— — W112 (5.131)

It — 1 [‘5 + 1 h:
77112 = - 4'” Z2 — 4’“ — sz (5-132)
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— 1m13 = 22 — ”4 Q2 ” +1L2 (5.133)
M 4)“

m14 = —1 — ”I 1622 ’S _ 11.2 (5.134)
n 4#

Ii +1 [’6 — 1 r.
"121 = 4,1 Z1 + 4/1 + 7L1 (5.135)

15 — 1 I43 +1 rs
m22 - 4 Z1 + 4” + 471le (5.136)

— 1 1m2. = —z1 + ” Q1— " + 1:. (5.137)
4,11 4p
1 _

m24 = 1+’€+ 621—” 1L1 (5.138)
4p 4

Substituting eqn (5.129) into (5.125) gives

2 +00

K,(r, t) = 2: T,- /O [1.1—1.-2 +1,-2(1 — t) s](coshr.~s — sinh ms) 6-50-.) ds (5.139)
i=1

Performing the integrations, we get

d 1
K10"t — —2: T [li1+li2T,d—r—i]m (5.140)

Inserting eqn (5.140) into (5.124) yields

d 1
0'y2y,(7‘ 0): ~"—/ R1002 T' [(51+li2ridr] mdt (5.141)

As we are examining the asymptotic behaviour of the stress near the crack tip, a: —> dJr

(i.e. r, —) 0+ (i = 1,2)), 1 + r,- lie near, but outside of the integration path. Substituting

the expression (5.75) for R,(t) into (5.141) and using the equations (5.82) and (5.85) (also see

Muskhelishvili, 1953, Chapter 4), we have

1 +1 R,(t) _ 1 1 H(1) * ,_

”/4 t‘(1+ri)dt— ZVIsin’ylvr r7‘ +<Di(ri) (2—172) (5142)  

<1>3‘(r,—) (i = 1, 2) in (5.142) have a similar behaviour to that of q5*(z) in (5.78) except that their

singular points are now at 0.

Inserting (5.142) into (5.141), we get

2 H( 2 1
IUZTi(l.'271-l.1);3—+¢?*(n), (5.143)

_2“Vl sin717r .
2:1

 023/0“, 0) =

where d>’f*(r1) and <I>;*(7~2) are linear combinations of d>§(r1) and (D302), respectively.
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In the commonly used notation, the mode I stress intensity factor is defined as

K, = lim flog — cm a;y(x,0) (5.144)
x—>d+

Substituting (5.143) into (5.144) and taking the indicated limit gives

 

d '71

K, = —2\/§ (5) ,1,H,(1) (5.145)

where [.41 is a mixed parameter with the dimension of stiffness

— 1 :2: —1—T-(l- —z-) (5146)
#1 _ sin ”7177 ,-=1 [321 1 1271 21 I

The other stress components can be obtained straightforwardly. They have the same singular

behaviour as 051,0, 0). As they are not relevant to the calculation of the stress intensity factor,

they are not reproduced here. However, an examination of the behaviour of the stresses at two

areas around the crack tip, namely the domain of the material 2 in front of the crack tip and the

interfacial area perpendicular to the crack path, may be useful in judging whether the crack will

penetrate the interface or deflect, as is done by Gupta et al. (1992).

Although the stress intensity factor K1 is a function of [11 and H,(1), it will be seen later

(Chapter 7) that generally ,u, is the dominant factor. H,( 1) is related to the material properties

and the geometry and is proportional to the magnitude of the stress. The characteristic equation

(5.89) and the corresponding stress intensity factor (5.145) are derived for orthotropic material

2 only. When the outer constraining sublarninates degenerate into an isotropic medium (similar

or dissimilar to the inner isotropic layer), the corresponding characteristic equation and the

expression for the stress intensity factor can be derived following the same procedure as above,

but with p = 1 in the basic solutions (4.1 1)—(4. 15). The results are discussed in the next

Subsection.

5.2.3 Degenerate Case

When the outer layers are also isotropic, the fourth order characteristic equation (3.113) nec-

essary for the solution of the differential equations (3.108)—(3.109), degenerates into a perfect

square of a second order equation (3.118). In this degenerate case, we should take p = 1 in the

basic solutions (4.11)-(4.15). Through a similar asymptotic analysis to that in § 5.2.2, we can

examine the features of the stress field near the tip of the crack when it touches the interface.

The characteristic equation (5.89) for determining the stress singularity degenerates into

1
cosm +2A2(A)1 — 1)Z — 591+ A2) = 0 (5.147)
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where m and n2 of (5.89) given by (5.69)—(5.70) now simplify to A1 and A2

#251 " MM

,\1 = —— (5.148)

M2+mn2

A2 = M (5149)

#1 ‘1' MM

with the subscripts 1 and 2 with ,u and h: now referring to materials 1 and 2, respectively.

The characteristic equation (5.147) is in the form reported by Gupta (1973) and is identical to

the well-known formula obtained by Zak & Williams (1963). It can be written in an alternative

form (He & Hutchinson, 1989) via Dundurs’ parameters a and fl (Dundurs, 1969) instead of A1

and A2,

fl—a

mhl — 1)2

Here, a and ,6 are the two Dundurs’ parameters

2

— if; = 0 (5.150) 
cos 71w — 2

mm

”2(“1 + 1) + m(r~22+ 1)

#2091 _ 1) "' #1(l€2 -1)

fl #2(I€1 + 1) + [110% +1)
(5.152)

(5.151)

For the isotropic combination, it can be shown following the procedure in § 5.2.2 that ,u,

degenerates into the form

 

1 2A 1— 1—2)‘ 1—
HI_ ”1M + 1( 70+ 2( ’71)

_ _ (5.153)

sm'mr 111+ MM #2 + #1192

which is consistent with the result of Cook & Erdogan (1972), and also of Gupta (1973).

5.3 Solutions for Mode 11 and Mode HI

5.3.1 Solution of Boundary-Value Problem

Using the basic solutions (4.86)—(4.95) and (4.133)—(4.136) for mode H and mode 111, re-

spectively, the boundary-value problems for these two modes can be solved straightforwardly

following the procedure adopted in the preceding Section (§ 5.2). As the asymptotic analyses

for modes II and III completely parallel the analysis for mode I above, many intermediate steps

will be omitted and only the key steps presented.

For mode 11 problem with a —+ d, we reproduce eqns (4.114)—(4.115) here
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 1 _ _”+1l/+°°l : _.u (730) — 2’“ 71' o 5 E(a)cos(sr) ds — 0, 7' < 1 (5.154)

2 +°° su 1 _ . ——_. — .

111—13151 Try(7‘,y) —— Ill—1351+ [ 77a /0 {A(a)[cosh(sr) + 57‘ smh(sr)]+

Q
I
‘
Q

)d3++ 3(2) cosh(sr)} cos(s
2 +00 8 y -31

+ E/o 147(5) (1 — a) e cos(sr) d5]

= —TH; O S r < 1 (5.155)

To solve (5.154)-(5.155), we introduce an unknown function

n+li

2,11 7ra
 Rum = ——u1(r,0)= /0+°° E(£)sin(sr)ds. (5.156)

CL

R,1(7‘) would be the so-called dislocation distribution function, had we used the dislocation

formalism to model the crack.

' Inverting eqn (5.156) and noting eqn (5.154), we get

.3 41111 +1

E(;) — K: + 1 o

The solution procedure for (5.154)—(5.155) is the same as that for (5.1)—(5.2) in § 5.2.1

for mode I problem. First, we substitute (5.157) into A(s /a) and B(s/a) ((A.41)—(A.42) in

Appendix A) and insert the resulting expressions into (5.155). These steps give

 R,,(r) sin(sr) dr (5.157)

 

1 +1 R t 1 +1 +1

’/ ———”()dt—; /_1 ’CuRn(t)dt=—K “Fm (5158)

 

7r —1 t- 7‘ 411

where +00

1c” = / “(mange-05113, (5.159)
0

with

1 K: + 1 K, — 1 ,
7911037575) = A—(g{ [WKIPF 411 R12+K13]+

1 - 1 d
— K — — K I" — K — —t+ [211 11 2,“ 12+ \13 14] (a )8}

[cosh(sr) + s r sinh(sr)] +

1 n+1 15—1
—— K K K+A(s) { l 4” 21+ 4# 22 + 23] +  

1 1 d
+ — K21— —' K22 ‘1' K23 - K24 (- —- t)3 COSh(ST'). (5.160)

2/1 2,11 (1
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AG) and Kij (i = 1, 2;j = 1, ..., 4) are given by (A.43)—(A.44) in Appendix A.

Using asymptotic analysis similar to that which led to (5.73 ) from (5.25), we get

d d d J2 1
’Cn(7‘,t) = — [011+ 2712) + 6722(5 + 7') 5 + 2722(0 + T‘)2 (172]m_

d d d (12 1a
_ [021+ 2712) - 6722(3 - r) g + 2712(2 — r)2 61—72.]m (5.161)

Substituting (5.161) into (5.158) gives

"MR 1 +1 d d
-/_ ”(—)tdPkg/1 [(n1+2n2)+6n2(;+7‘)E—+

t—r r

 

d all 12,,(1) 1 +1 d d

+ Ma H) «172) 17%;)“ i (.1 (”1+2nz)‘6”2(;”")d7+

+ 2mg ‘ 02 £2 ————R”() dt = f +17”, (5.162)
(1 dr _(2_ __ 7.) 4,11

The constants m (i = 1, 2) are related to the elastic constants of the two media and to the

switching factor p

 

1 1
n1 :: g [1422-]: m1—— 2([43 —1)m2 — (K +1)(m3 + m4) — 4Mm5] (5.163)

1 1

where

m, = (1— p)c66[Q1(zz + 52) — 62M + [101+
+p[61166efio(Z1 + mxzo — To) — 636624110 — 111)] (5.165)

m2 = (1—13))(C66[Z1+51)—(Zz+fl2)]+

+p 666(50 — To) (5166)

m3 = (1—P)(Q2 — Q1) — P01130(Zo — To) (5167)

m4 = (1—P)C66[Zl(Z2 + 52)- Zz(Z1 + ,31)] — PC66(Z1[30 + fiiTo) (5-163)

m5 2 —m2 (5.169)

m6 = (1 — p) (Z1 — Z2) — pTo (5.170)

6 = —Em1+(n +1)(m3 — m4) + 2(6 —1)m5 — 4pm., (5.171)

with Z), Q,‘ (2' = 1, 2) and To given by (4.97), (4.98) and (4.100), respectively.

As in the mode I case, R1105) is assumed to exhibit the following behaviour near t = :tl

H,,(t) : HUG) em7r

(1-19)“12 (It - 1W” (t + 1)12
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 Rn(t) = |t| < 1 (5.172)



where O < Rem/2) < 1, and H1,(t) satisfies Holder condition in the closed interval [— 1, +1].

Following the procedure for mode I, the characteristic equation for determining the stress

singularity can be shown to be

cos 7271' + 2712(72 — l)2 + n1 = 0 (5.173)

The solution for mode III is obtained in a similar but simpler manner. For this, we reproduce

here eqns (4.145)—(4.146) from § 4.5

+00 1E

w1(r,0) = —:fo :)cos(sr)ds=0; r>1 (5.174)

lim 'rl (r y) = lim —2—8(/+°°c D(: ) cosh(sr) cos(sy)ds—
y—>0+ yz ’ y-)0+ 7m 0 44 a

2 +00 1 s _51
—— C44 E(—)e «1 003(57') d5 = —7'm; 0 S 7' <1 (5.175)
7m 0 a

We again introduce an unknown function

16 2 +00_ _ _ 1 __ f 'R1,,(t) — a 01' w (r, 0): 7m 0 E(a) Sln(.37‘)87‘ (5.176)

Inverting eqn (5.176) and using eqn (5.174), we get

5 +1

E(—) = —a 0 Rm(r) sin(sr) dr (5.177)
(1

Substituting (5.177) into (4.153)—(4.154) and noting that Rm(t) is an odd function, we get

(1“F, = -5 R,,,(t)e-s<%-t)dt (5.178)
+1

F, = _% Rm(t)e‘s(%—‘)dt=Fl (5.179)
—1

so that D(§) in eqn (4.149) can be written as

s E 1

a 2 AG)
 

+1 2 t
[H1+H2] /_1 Rm(t)e‘s(a‘)dt (5.180)

Substituting eqns (5.177) and (5.180) into (5.175) and using (5.23), we get the following

singular integral equation

+1R t)1 +1 1
71r/_1'—I_—II() — a: /;1 K111(T,t) RIII(t) dt 2 -CT TIII) (5.181)
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where

+00

ICIII(T1t) = =/() 16111037553) e_s(g—t)d3 (5.182)

with
1

km(r, t,.s) = EUII + H2] cosh(sr) (5.183)

AG), H1 and H2 are given by (4.150) and (4.151), respectively.

The solution of eqn (5.181) is subject to the single-valuedness condition

+1

/ Rm(t)dt = 0 (5.184)
-1

It is seen from (5.182)—(5.183) that when d/a —> 1, i.e. the crack tip approaches the

interface, [C I1,(r, t) becomes unbounded at t = 1 and r = :t1, because of the infinite integral

in eqn (5.182). It is therefore necessary to use the asymptotic value of km(r, t, s) as s —> +oo

in order to study the singular behaviour of K1110", t). The asymptotic value of k1,,(r, t, s) as

s —> +oo is easily obtained

.5555. (mt, 8): 2n3 e-st cosh(sr) (5.185)

where

1 — (/c2 82
713 =m (5.186)

C55 ‘1‘ 624655

Substituting (5.185) into (5.182) gives

 

1 l

K1110)” = "‘713 [t _ (2% +7.) + t _ (2% —7")] (5.187)

Substituting (5.187) into (5.181) gives

——dt+
7r —1 t—r

l f“ Rm(t)

 

1 +1 1 1 1

+713 ; /—1 ICUIG‘J) RIII(t) [t _ (2% + 7‘) + t _ (2% _ 7'):| dt = —EETIII (5-188)

As in modes I and 11 cases, Rm(t) is assumed to exhibit the following behaviour near

t = 21:1 .

H111“) __ HIII(t) €273”

(1—t2)73 — (t _ 1)73 (t + 1));

where 0 < Re(73) < 1, and HI11(t) satisfies Holder condition in the closed interval [— 1, +1].
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Following the procedure for modes I and II, the characteristic equation for determining the

stress singularity 73 in mode III can be simply written as

cos 73w + 713 = O (5.190)

which contains only one mixed material parameter n3 given by (5.186).

5.3.2 Stress Intensity Factors

In the commonly used notation, the mode II and mode III stress intensity factors are written as

 

d ’72

K” = _2\/§ (5) 11,,H”(1), (5.191)

d '73

K111 = —2\/§ (a) HIIIHIHU), (5-192)

where

Mr; = 666 i231-(Z +5["272—1'1) (5-193)8111727? izl/B'YZ 2) 2 1

c 02 c2 3% 1
Hm = #(f) —- (5.194)

811173” 44 ¢C§5+C§5

In eqns (5.191)—(5.192), H,,(1) and Hm(l) are the counterparts of H,(1) in eqn (5.145).

The constants Z,- (2' = 1, 2) in (5.193) are given by (4.97), while Zn and lg; (i = 1, 2) are

 

 

 

 

lil = 1 [—K—jimu + #77112 + 2mi3 - mm]

112 = '01 [#101111 — miz) + mi3 — T7114]

where 6 is given by eqn (5.171) and

mu 2 (I6 +1)655(Z2 + [32) + (K. —1)Q2 + 411, (5.196)

mm = (rs —1)c66(Z2 + [32) + (n +1)Q2 + 4uZ2 (5.197)
2 2 — 1

77113 = ,1 flotsam. + 132) — (—:+—)—“zz + 211 (5.198)

mm = +1Q2 — —(-—+—1)— + 2,”Z2 (5.199)

17121 = —(+++1)066(Z1 + ’31) — (fl — 1)Q1— 4.” (5200)

m22 = —(n — 1)056(Z1 — fll)+(n+ 1)Q1- 41121 (5.201)
2 2r; 1m2. = 1. flew. + 51)+—(—+—1)”Z1 211 (5.202)

__ 2n 2(rs — l),u
77224 — —I€ + lQl F; +1 — 2le (5.203)
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5.3.3 Degenerate Case

When the outer layers are also isotropic with elastic constants M, a; different from the central

layer (p = 1 in the general solutions (4.91)—(4.95) for mode II; there is no degeneracy in mode

111), the two characteristic equations (5.173) and (5.190) reduce to

 

1

COS “7271' + 2A2(’)’2 — 1)2 - 5(A1 + A2) = O (5.204)

cos 73w + A3 = 0 (5.205)

where

)1 = m (5.206)

#2 + #1162

A2 = £13— (5.207)

/~‘1 + #251

)3 = ”1 ‘ ”2 (5.208)

#1 + #2

, The two mixed parameters, p“ and pm, in the stress intensity factors (5.191) and (5.192),

reduce to

rm = 5““ 1" 201(1 _ 72) + 1+ 2M1 _ 72) (5.209)
srn 7271' #1 + #251 #2 + ”1&2

MM 1

51117377 #1 + #2

 

#111 =
(5.210)

in, (5.209) is similar in form to that obtained in § 5.2.3 (eqn (5.153)) for the mode I stress

intensity factor, but the signs before A1 and A2 are reversed. Thus, whilst the characteristic eqn

(5.204) and the corresponding A1 and A2 in mode II are identical to those obtained in § 5.2.3

for mode I implying identical nature of stress singularity in both modes, the stress intensity

factors are different in the two modes. The stress singularity for both isotropic-isotropic and

isotropic—orthotropic configurations in anti-plane deformation is determined by an independent

characteristic equation and a different mixed material parameter (A; or 723).

5.4 Relation between Stress Intensity Factor and Crack Open-

ing Displacement

Equation (5.75) gives a relation between H,(t) (which is in turn related to the stress intensity

factor KI) and R, which is related by definition (5.3) to the gradient of the crack surface

displacement vl(x,0) (0 S a: < a)

99



H,(t) = (1 — t2)“ R(t) = (1 — t2)“ %v1(x,0), 0 3 ac < a (5.211)

Notingt = :c/a and a = d, we get

a: 2 A“ a 1H,(t) = [1— (E) J 551) (130)

= 32177 (d + x)‘“(d — ac)“11 g—xv1(m,0) (5,212)

Because H,(t) satisfies the Holder condition in the closed interval [— 1, +1], it follows that

111(1) = lim 1w)
t—rl‘

_ ' i '71 _ 116—1— 11m (i271 (d+:1:) (d 2:) amv(:tr:,0)
z—rd‘

2 '71 a l

_ _ - _ '11 __. (d) 313; (d :8) 8x0 (x,0) (5.213)

Substituting the expression (5.213) for HI( 1) into the expression (5.145) gives the following

relation between the stress intensity factor KI and the crack opening displacement v1(x, 0)

'71

K, = —2\/2 (c5!) )1, lim (d—x)”1 aiv1(:c,0) (5.214)
z—rd’ $

The relation (5.214) was also obtained by Cook & Erdogan (1972), Kaw & Besterfield (1992).

In a like manner, the function HI,( 1) in mode 11 can be related to u1(z, 0) and the function

HII,( 1) in mode 111 to w1(x, 0). When the functions so obtained are substituted into (5.191) and

(5.192), respectively, the following relations emerge

d '72 8
__ _ __ ‘ _ '72 _ 1K” _ 2\/2 (2) ,1” $13?— (d :c) axu (15,0) (5.215)

d 73 . a l

K111 = '—2\/2_ E #111 2:13;]- (d — £13)",3 all} ($,0) (5.216)
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PART II

In the second part of the Thesis comprising of Chapters 6 — 9 the elastostatic

solutions for cracked transversely isotropic-orthotropic bonded layers obtained in

Part I are specialized to specific glass or carbon fibre-reinforced resins (e.g. epoxies

and polyesters, etc.). The ever-increasing range of application of these materials

is the main motivation of the study presented in this Thesis, while the numerous

experimental studies on these materials provide a proper frame of reference.
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Chapter 6

Multiple Cracking in Fibre-Reinforced

Angle-Ply Composite Laminates

 

6.1 Introductory Remarks

6.1.1 Transverse (Matrix) Cracks and Interfacial Delamination

The significance of the application of the solutions obtained in Chapters 4 and 5 to the fibre—

reinforced composites is manifested in the following mechanical and structural properties of

these composites. The strength and stiffness of unidirectional fibre—reinforced composite lam—

inae are quite sensitive to the direction of the application of load with respect to the fibre

orientation. For this reason, they are often used in the form of multidirectional laminates. In

these laminates, because of the inherent weakness of the laminae in their transverse direction,

multiple transverse cracks are the most frequently observed form of damage. They can be found

in the very early loading stage or even before external service load is applied (Bailey & Parvizi,

1981). The propagation of these cracks results not only in the fracture of the laminae, but

also in the delamination failure between the sublaminates. Experimental results and theoretical

calculations (Crossman & Wang, 1982; Fish & Lee, 1990; Kim, 1989) have revealed that trans—

verse cracks, especially when they are close to the interfaces, are directly responsible for the

delamination failure.

In the sequel, the terms laminate, lamina and ply will be interpreted according to the

following example laminate, unless otherwise stated. The whole structure of a [i9/902],

composite material is referred to as a laminate. The subscripts means “symmetric”. A part of

this laminate which has distinct interface(s) with other part(s) of the laminate and in which the

fibres are oriented in the same direction is referred to as a lamina, e. g. the +60, ——6° and (900),,

parts in the above laminate. A lamina is composed of one or several plies. Thus, for instance,
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+00 and —6° laminae are composed of one ply each, whereas the (90°)n lamina is composed of

72 consecutive plies. When the term in situ strength is mentioned, it refers to the strength of a

lamina in a laminate.

Recognizing the transverse cracks as a basic damage feature of fibre-reinforced angle-

ply laminates, many studies have been devoted to estimating the perturbations induced in

the stress fields and laminate properties by these cracks. Thus, for [0°/90°], type cross-ply

laminates, Garrett & Bailey (1977) used a one-dimensional shear-lag model to predict the stress

redistribution due to multiple transverse cracks in the 900 ply. Using the energy criterion

advanced by Aveston & Kelly (1973), Parvizi et al. (1978), and Bailey et al. (1979) have

shown the dependence of the transverse failure strain of the 90° lamina on the geometric

and mechanical properties of the 90° and 00 sublaminates. Crossman & Wang (1982) made

detailed experimental observations of the phenomena of multiple transverse cracks in 902 and

of delamination in [:l:25°/90‘,),]s angle-ply laminates. The stress redistribution and the stiffness

reduction due to the existence of multiple transverse cracks were extensively investigated in the

works of other researchers (Highsmith & Reifsnider, 1982; Hashin, 1985; Talreja, 1985; Tan

& Nuismer, 1989; Naim, 1989; Lee et al., 1989; McCartney, 1992, and others). They studied

composite laminates which contain pre-existing through-thickness transverse cracks in the 90°

plies. The interesting statement made by Naim (1989) and his illustration (Figure 6.1) perhaps

encapsulates this feature : “We must conclude that while the propagation step in Figure I (b)

is an interesting fracture mechanics problem (it has been studied by finite elements [19]), it is

not relevant to the practical problem at hand which is the analysis of experimental composite

microcracking data. We therefore concern ourselves with the fracture analysis of the process

described by the direct transitionfrom Figure 1 (a) to Figure 1(c).”

However, through-thickness cracks do not normally exist in laminates but originate as

microcracks or small flaws in the 90° ply and propagate under increasing load until they reach

the interfaces, resulting in the complete fracture of the 90° ply. The microcracks appear first in

the form of fiber-matrix debonding in small areas. As the loading increases, these debonds join

up to form the nuclei for the transverse cracks (Bailey et al., 1979; Bailey & Parvizi, 1981).

The propagation of these cracks at a later stage depends on the configuration of the laminate

of which the lamina is just a small part. The most striking feature is that the further growth of

these cracks which eventually leads to the formation of a through-thickness crack in the lamina

depends strongly on the thickness of the lamina and on the constraining effect provided by the

neighbouring sublaminates. Moreover, when a crack is wholly within one of the two bonded

materials and is perpendicular the the interface, the stress intensity factor at the tip which is

away from the interface is larger than that for the tip which is close to the interface (Kaw &

Besterfield, 1992; Wu & Erdogan, 1993), if the constraining material is stiffer than the cracked
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Figure 6.1: An illustration of the formation of a transverse crack. What concerns us is the con-

straining effect on the crack propagation at stage (b) supplied by the constraining sublaminates

on the two sides (After Nairn, 1989)

one. Therefore, the initial microcracks are most likely to form away from the interfaces so that

they are wholly within the 900 ply at the initial stage. The influence of the geometry of the

cracks and the laminate configuration on the crack driving force will be examined in detail in

Chapter 9.

On the aspect of the intralaminar crack problem, Wang & Crossman (1980) calculated the

energy release rate at the tip of an intralaminar transverse crack using the finite element method.

It was found that the energy release rate is a function of the relative size of the crack with respect

to the thickness of the transverse ply and the laminate configuration. The stiffness reduction

in laminates due to the development of multiple transverse cracks was predicted by Talreja

(1985) using the stiffness-damage relationship developed by the author. Good agreement with

experimental results was found. Dvorak & Laws (1987) calculated the strain energy release

rates in two orthogonal directions of an elongated elliptic intralaminar transverse crack in a

composite laminate. These strain energy release rates were used to judge the condition and

sequence of propagation of the crack in the two directions. We shall discuss the results by Wang
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& Crossman (1980), and Dvorak & Laws (1987) in Chapter 9. Fan et al. ( 1989) calculated

the stress intensity factor at the tip of a single transverse crack in the 90° ply of a cross-ply

laminate. Bai (1989) studied the tensile stiffness reduction of cross-ply laminates due to the

existence of multiple intralaminar cracks in the 900 ply. Our primary concern in this Chapter is

to investigate the constraining effect on the crack propagation at stage (b) (Figure 6.1) supplied

by the neighbouring sublaminates on either side of the sublaminate under consideration. The

major part of the work described in this Chapter has been published in the paper by Wang &

Karihaloo (1995a).

6.2 Boundary-Value Problem and Solution

We consider a symmetric (or antisymmetric) angle-ply [(i90)n2 / (900)n1]8 fibre—reinforced lam-

inate shown in Figure 6.2. It consists of a central sublaminate in which the fibres are oriented

normal to the plane of the paper (900 ply) and two outer sublaminates which are composed

of an equal number of +6° and —0° angle plies. The (900),.l sublaminate of thickness 2d is

transversely isotropic (in cry-plane) and is assumed to contain a series of parallel, periodically

distributed transverse cracks of length 2a. Each outer sublaminate of thickness b is treated as

being homogeneous orthotropic with average elastic properties of [:l:0°]s laminate, consistent

with the classical lamination theory (Chapter 3). The random nature of the distribution of the

defects in composites is not taken into account here. The neglect of this randomness does not

invalidate the evaluation of the interaction between the cracks and sublaminates. We shall see

that the density and the size of the cracks will only influence the magnitude of this interaction

but not its basic features. In fact, experiments show that the transverse cracks are fairly evenly

spaced in reality (Garrett & Bailey, 1977; Highsmith & Reifsnider, 1982; Crossman & Wang,

1982). The calculation of the elastic parameters of the sublarninates is given in Appendix C.

It is assumed that the composite laminate is subjected to a tensile load along y-direction so

that the central sublaminate is subjected to a homogeneous tensile stress 0 along this direction

when the cracks are absent, as discussed at the beginning of § 4.6.1. Because of the orthotropy

of the outer sublaminates, the 90° sublaminate also undergoes a uniform tensile deformation

along y-direction except near the free edges. This free-edge effect is not considered here.

The solution of the boundary-value problem for multiple cracks is readily obtained from the

general solutions of § 4.6.1.

6.2.1 Stress Intensity Factor in Mode I

The mode I stress intensity factor at the tips of each of the cracks is given by eqn (4.193)

K; = d>(1)a\/E (6.1)
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Figure 6.2: The cracked composite laminate and coordinate axes

where (13(1) is given by the solution of the Fredholm integral equation (4.188).

Before we calculate the value of (13(1) for some specific materials, let us comment briefly

on the solution of the Fredhohn integral equation (4.188) and on the evaluation of its kernels

(4.189) and (4.190). The integral equation (4.188) is solved numerically by using the trapezoidal

rule. In this way, the original integral equation is discretized into a system of linear equations

ZCW‘WEj) = fl? (i=1w‘wn) (6.2)
i=1

where g,- (i = 1, - - - ,n) is a set of uniformly distributed discrete values in the interval [0, 1].

The value of n is chosen having regard to the desired accuracy and the CPU time spent'on the

computation, as the calculation of the complicated kernel (4.189) is very time consuming. In

most of the computations, n = 10 was found to be quite adequate, although n = 20 was also

tried to check the accuracy. It was found that when 19 = 90°, i.e. the cracked composite laminate
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degenerates into an isotropic strip with a periodic array of parallel central cracks, the parameter

(13(1) for a given crack spacing is in close agreement with the value given in the handbook of

Tada et al. (1985).

The first kernel (4.189) contains both the summation of an infinite series and an infinite

integral. Let us discuss the computation of the infinite integral. The integrand of this integral

can be separated into two parts. The first part is given by eqn (4.62), and it does not contain the

cosine function. The second part contains the cosine function. Having regard to the asymptotic

behaviour of the first part of the integrand (eqn (4.72)), the Gauss-Laguerre quadrature was used

to calculate the integral numerically. The number of quadrature points was chosen between

15 and 20. It was found that the integral for different number of quadrature points converged

rapidly. The convergence of the second part of the infinite integral containing the cosine function

is demonstrated by the integral (4.191). Because of the influence ofthe cosine function, the value

of the integrand will oscillate. Therefore, in order to enhance the accuracy of the numerical

integration, these infinite integrals are calculated using the following procedure. The term

containing the cosine function in eqn (4.189) can be written as

+00 /\ 3N A +00 A

[0 F(€,n,s)cos(sn;)ds 2/0 F(§,n,s)cos(sn;)ds+/SN F(§,n,s)cos(sn;)ds

(6.3)

where

—51 4 4

FM, 77, 5) = x/CT; 2:97“ {10(85) 2,: Kqu + [210(35) + 5511036)] :1 ME} (64)
a J: J:

and 5N is a large finite number.

The first integral in the right hand side of eqn (6.3) is evaluated using Simpson’s quadrature,

and the second by Gauss-Laguerre quadrature. Because the integrand contains a negative

exponential term, the second integral only makes a minor contribution to the total, when 3N is

large. In most of the computations, 3N = 20 was found adequate.

Next, we encounter the problem of the summation of an infinite series in the calculation of

the kernel, i.e.

+00 +00 A

”2 f0 F(§,n, s) cos(sn;) as (6.5)

Because of its complexity, the summation of the infinite series in eqn (6.5) is approximated by

a finite sum in the computations. Physically, each term in the summation gives a part of the

perturbation in the stress field caused by a crack at a distance n/\ along the y—direction. A second

part of the perturbation in the stress field is given by the sum of a second infinite series (i.e. the
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sum of the second part of the expression (4.178) with respect to A). However, this summation

can be performed analytically and is given by (4.180) which appears in the kernel (4.190). So

the finite series approximation of (6.5) can be expected to give a limited truncation error based

on the convergence of the series resulting from the infinite integral of (4.191).

From the calculations, it was found that when A is greater than approximately 6 times the

half-thickness of 90° layer, the interaction among the cracks is not significant. This can be clearly

seen from Figure 6.3. A comparison of this numerical result for the present composite laminate

with the available results for other material configurations obtained by different techniques

should give us some confidence in the accuracy of the evaluation of interaction among multiple

cracks by the present technique. The book by Tada et al. (1985) gives the stress intensity factor

at the tips of an array of parallel cracks located centrally in an isotropic strip of finite thickness.

When the spacing between the cracks is greater than twice the half-width of strip, the stress

intensity factor is quite close to that for an isolated crack, i.e. the interaction among the cracks

is not significant. On the other hand, for a multicracked [02,, /90?,]s laminate with interlarninar

transverse cracks, Hashin (1985) evaluated the stress field by a variational approach. For an

isolated transverse crack, he found that the stress perturbation caused by the crack decays

rapidly with the distance away from the crack. Under uniaxial tension, the perturbation virtually

vanishes at a distance equal to 6 times the half-thickness of the 90° sublaminate away from the

crack. For the case of interacting multiple transverse cracks, he found that the crack interaction

is not significant when the distance between the cracks is greater than 8 times the half—thickness

of the 90° sublaminate. Therefore, the finite term approximation to the infinite sum in the

calculation of the first kernel (4.189) would seem to be reasonably accurate.

The kernel (4.190) was also evaluated by Simpson’s quadrature. Because the integrand

decays rapidly when .5 tends to infinity (it contains a negative exponential term), a limited

truncation error is expected as a result of numerical integration.

As a check on the accuracy of the numerical scheme described above, we compare some

results for mode I problem with those available in the handbook of Tada et al. (1985). For

example, for 0 = 90°, b/d = 1.0 and a/d = 0.7, when A/d 2 2.0, the relative error of (13(1)

calculated above from the value read offthe curves in the handbook was less than 3%. It is noted

that the error of the value in the handbook is itself within 1%. For an isolated crack, the relative

error of the present result from that calculated by the formulae in the handbook is around 1%.

The error is even smaller for mode III problem, as will be demonstrated later in § 6.4.2.

@(1) alone is affected by the stiffness properties of the sublaminates, the density of the

cracks and the laminate configuration, i.e. the ply angle 0 and the relative thicknesses of

the sublaminates. For the graphite/epoxy material properties (Tan & Nuismer, 1989) listed in

Table 6.1, the variations of <I>( 1) and ¢(1)\/5/\/gwith a/d and 6 for a single crack (A/d -—> +00)
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Figure 6.3: Variation of <I>(l) with 0 and /\ /d for multiple cracks each of length a/d = 0.7

are shown in Figure 6.4 and Figure 6.5, respectively, while that with 0 and A/d for multiple

cracks is shown in Figure 6.3. For these calculations the ratio of sublaminate thicknesses b/d

90° 1.0
2.0

was chosen to be unity, unless otherwise indicated explicitly.

Table 6.1: Material properties

   

 

A/d

6.0

 

 

        

Properties EL ET GLT GTT VLT VTT Ply

& Material (GPa) (GPa) (GPa) (GPa) - - thickness(mm)

T300/934 138 11.7 4.56 4.18 0.29 0.40 0.132
 

We are now in a position to examine the constraining effect of the outer sublaminates on

the inner 90° sublaminate. <D(1) exhibits two notable features. First, it always increases with

increasing 6, irrespective of the crack size. This means that the constraining effect of the outer

plies decreases with increasing 0. In other words, transverse cracks in the 90° ply of [:l: 0°/90°]s

laminates will propagate at smaller stress levels, the larger the ply angle 0. This result agrees

with experimental observations which show that in situ tensile strength of the 90?1 layer in

[i00/902], laminates reduces with an increase in 6 (Flaggs & Kural, 1982). It is also seen from

Figure 6.5 that if the size of the initial cracks or flaws is less than a certain critical value, the

in situ stress intensity factor increases with an increase in the thickness of the 900 sublaminate.

Thus, the thicker the 90° layer, the smaller the in situ transverse tensile strength. This result also
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Figure 6.4: Variation of <D(1) with a /d and 6 for a single crack

confirms experimental observations made by Garrett & Bailey (1977), Parvizi et al. (1978), and

Flaggs & Kural (1982).

Secondly, for 00 S 0 < 90°, @( 1) is always less than F(Bi-d) — the corresponding geometry

factor at each crack tip in a finite homogeneous isotropic strip (if the 0° sublaminates on the

two sides are absent then the stress intensity factor is KI0 = F(%)a\/c—r ) otherwise there would

be no point in using composite materials. It is also for this reason that the 0° sublaminates are

regarded as constraints for the central layer. However, it is found that this constraining effect has

the following important property which can be exploited in the design of laminates insensitive

to cracks (flaws). As can be seen from Figure 6.4, when 0 is less than a certain critical value 6c,

(13(1) decreases with increasing crack length, so that the crack driving force decreases during

the propagation of the crack. This suggests that for arbitrary multidirectional laminates, the

difference between the fibre orientations in the adjacent plies should exceed a certain minimum

value 6m, if the laminae are going to play the role of mutual crack arrestors. For the material

properties of Table 6.1, this critical value BC is around 70°, i.e. the ply angle difference between

the central sublaminate and the outer sublaminates should exceed 0m = 20°. The configurations

with smaller ply angle differences should be avoided in order not to exaggerate the crack growth

in the central sublaminate.

Figure 6.3 shows the variation of CD( 1) with 6 and A/d. The interaction among the multiple

cracks helps to reduce the value of the stress intensity factor at each crack tip. This effect

comes from the stress relaxation caused by crack arrays on either side of a particular crack.
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Figure 6.5: Variation of the mode I stress intensity factor with a /d and 9 for a single crack for

b/d = 2.0

Theoretically, when A/d ——> 0, (13(1) —+ 0 (a paradoxical result from a practical view point).

Experimental results (e.g. Highsmith & Reifsnider, 1982) reveal that the number of cracks

(the crack density) in the 900 sublaminate increases with increasing tensile load, reaching a

saturation value at a certain load level. This saturation phenomenon is evidently a result of the

interplay between <I>( 1) and AM just mentioned.

6.2.2 Interfacial Stresses

The evaluation of the interfacial stresses in composite laminates is also an important subject

because high interfacial stresses can lead to delamination failure in laminates. Even though the

overall integrity of the laminate may still be intact after the occurrence of transverse cracks in

individual laminae, the delamination failure will profoundly destroy this integrity. As has been

previously pointed out, experimental results show that when transverse cracks approach the

interfaces, they can cause delamination failure (Crossman & Wang, 1982; Kim, 1989; and Fish

& Lee, 1990). In this Section, we shall investigate the perturbation of the interfacial stresses

due to the existence of transverse cracks, i.e. the crack-induced interfacial stresses, with a view

to revealing the role of transverse cracks in the delamination failure of laminates.

In the preceding Section, we replaced each of the [(i0°)n2] outer sublaminates by a homoge-

neous orthotropic medium with average stiffness properties according to the classical lamination

theory (CLT). However, as the central 900 layer is bonded from above and below to a —6° layer,
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a question arises when we calculate the crack-induced interfacial stresses, namely, how does the

local anisotropy of the —0° layer influence the nature of the crack-induced interfacial stresses

calculated using the indicated homogenisation procedure? This question is directly related to

applicability of the CLT and the complexity of the analysis of interfacial stresses in angle-ply

laminates.

As we have seen in § 3.7, CLT is based upon thin plate approximation and macroscopic

average elastic properties of laminates. For various angle—ply laminates under in-plane loading

(e.g. tension), the problem posed above has been extensively investigated by many researchers

(e.g. Pagano & Soni, 1983; Wang & Choi, 1982a,b; Jones, 1975; the paper by Wang & Choi

(1982a) contains a brief review of this topic). These and other investigations show that the

CLT cannot accurately predict the stress fields in the boundary regions near the free edges of a

laminate. The mismatch in the elastic properties of plies indeed invalidates the stress prediction

by CLT in these regions. However, they also show that away from the boundary regions, the

stress fields converge to those predicted by CLT. For the problem under consideration, according

to CLT, the interfacial stresses in cry-plane at the interface without the transverse cracks will

be or,2 = 0 and ayy = 0. (There is a discontinuity in ayy at the transition from the 90° layer

to the outer layer. ayy = a is valid on the side of the weaker 90° layer). That is to say, the

local anisotropy of the outer +0° (or —0°) layer does not give rise to any additional interfacial

stresses that would distort the stress field predicted by CLT. Therefore, as the dominant interfacial

stresses will result from the existence of transverse cracks, the replacement of the [(i9°),,2] outer

layer by an effective orthotropic medium should not invalidate the interfacial stress calculations

except near the boundary regions.

The extent of this boundary region is generally one to several times the laminate thickness

(about 2.2 times the thickness for a [+45°/ - 45°], laminate according to Wang & Choi, 1982b).

The width to thickness ratios of actual laminate components generally far exceed this boundary

region. The investigation of the stress state in the boundary region is a continuing research topic

(e.g. Christensen & DeTeresa, 1992; Folias, 1992; and Becker, 1994).

Following the principle of superposition (§ 4.6), the crack-induced interfacial stresses can

be calculated by superimposing the perturbations from a single crack calculated in § 4.3. From

the expressions of the stresses (4.4)—(4.6) and the symmetry of the problem, it is seen that only

of” and 031w exist at the interface just in front of the tip of a crack, i.e. a: = d, y = 0. Therefore,

following the procedure that led to the derivation of (4.179), the relevant interfacial stresses are

 

2 +°° .9 cl 5 d d +oo A
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0'1-1:(d,0) - 7m 0 [A(a)cosh(sa) + B(a)sa smh(sa)] [1+ 2}; cos(sna) d5 +

2 +°° 3 e‘ % /\ 1 d
+ EA E(;) [1+ 2—1_ 6‘8% (1— Sg—‘l— 5%)] COS(S;) d8 (6,6)



Md0)_ W27 0+°° {A(%)cosh(sg) + B(:—)[2cosh(sg)+

+ 5':— Sinh(5g)]} [1+ 2% cos(sn:—)] d3 +

2 +°° s e“? A 1 d
+ —/0 E(;) [1+ 21 & (1+3;1 —s>‘ )] cos(s;)ds (6.7)

7rd —8_ a

  

Moreover, substituting (4.65) into (4.59) and (4.60) gives

 

3 7r 6-5-
14(3) = —§aa Aisi) :Kle' (6.8)

Bi — 5 —— -S%ZK.G- (69)
(a) _ _2aaA(1§)se j=1 23 J ‘

where

0-: [$607) E-,(sn)d17 (j=1,2,3,4) (6.10)

Substituting eqns (6.8)—(6.9) into the first integral in each of (6.6) and (6.7), and eqn (4.67)

into the second integrals, we get

  014d, 0) /+°° i
0 a

4

cosh(sK1'G-+
A(5) )2 .7 J

of d) 4
+ s— sinh(s(5;) E KZJGJ-

J=1

 

/\
1+2;cos((3720)] 615+

=1

  

+00

+/ @(n))(G(mdn— f0 KGsds (6.11)

1 d /+oo ‘3; 4
Uyy( ’0) = 56A{cosh(i)22K'1J‘Gj+

0' a)

dinh d
+[:cosh(:d—)++551nh(sc:)]§:K2jG}[1+22cos(sn—)st+

n—l

1
+/0 <1><n>G<n>dn— Aw K6626 (6.12)

where

n):(g)2 fl , 2+ (WPHW (6.13)WI-(nr1w—(nr1 1611+ 1-61
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as = a. = fol m><n>Jo<smdn
. ,\ 1 dK5 = 256—,— [1— s——,] cos(s—) (6.14)

1—6‘53 01—3—33 a

A

~s: ,\ 1 dK; = 236—, [1+ s——.] cos(s—) (6.15)
1— 6‘5? a1_ e-S: a

All the infinite integrals are computed by the numerical scheme described in § 6.2.1.
The tensile stress normal to the interface area is most likely to cause delamination. For the

crack configuration and loading of Figure 6.2, the interfacial stresses 0m and aw in front of
each crack tip are found to be always positive. Therefore, under plane strain conditions, the
interfacial area is subjected to an unfavourable three-dimensional tensile field. The variation
of crack-induced interfacial normal stress am. with /\ /d and a/d for 0 = 00 and 0 = 450 is
shown in Figures 6.6(a) and (b), respectively. The crack-induced interfacial stress aw is almost

of the same order as an. The total interfacial stress am, is obtained by adding the applied

homogeneous stress a to the crack-induced value.

As the crack tip approaches the interface (a /d —> 1), the interfacial stresses increase rapidly

for all 0. For small cracks though, the interfacial stresses are fairly insensitive to changes in

(9, but as a/d increases so also does this sensitivity to outer ply angle 0, as is evident from a
comparison of Figures 6.6(a) and (b).

6.3 Mode III Stress Intensity Factor for Multiple Cracks

When an angle-ply fibre-reinforced composite laminate is subjected to in-plane loads and if

there exit no in-plane/out-of-plane coupling effects within the framework of classical lamination

theory described in § 3.7, the stress components existing in a lamina of this laminate are ayy,
0'22 and szz) in the coordinate system of Figure 6.2. These stresses can be resolved into three
components 0L, UT and TLT in the system of the elastic principal axes L (longitudinal) and T

(transverse) of the lamina. 0,; is the stress along the fibre direction, (IT is normal to the fibres

and 7LT is the shear stress in LT plane. Since the transverse and in-plane shear strengths of the

lamina are much smaller than its strength in the longitudinal direction, the stresses OT and TLT

generally result in the failure of the lamina in the transverse direction. This failure is manifested

through the appearance of transverse cracks. For a transverse crack in the 900 sublaminate in
Figure 6.2, the transverse tensile stress 0T results in mode I deformation, while the stress TLT

causes a mode III (anti-plane shear) deformation. Therefore, in this Section, we shall give the

results of the mode IH stress intensity factor at the tips of the cracks of the cracked composite

laminate shown in Figure 6.2, just as the mode I stress intensity factor was obtained in § 6.2.1.
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For the material properties listed in Table 6.1, the integral equation (4.209) for mode 111

was solved, and the variation of (2(1) with 6 and A/d is shown in Figure 6.7. (2(1) depicts a
variation with /\/d similar to that of <I>(1) in Figure 6.3. The interaction among the cracks also
helps to reduce the value of the mode III stress intensity factor at each crack tip. When the
cracks are fairly well apart, e.g. A/d > 6, the influence of this interaction on the mode III SIF

is not significant for the crack length under consideration.

1.20

1.00

9(1) 0.80

0.60

 
00

6.0

    w

 

900 1.0 2‘0

Figure 6.7: Variation of S2( 1) with 0 and A/d for multiple cracks each of length a/d = 0.7

6.4 Accuracy of the Numerical Scheme and Conclusions

6.4.1 Remarks on the Constraining Effect

In a [(:h«9°),,2 / (900),,1]s angle-ply laminate, the constraining effect of the outer [(:l:0),,2] sublam-
inates on the inner [(90°)n1] sublaminate is determined by the stiffness, geometry and ply angle
0, with the stiffness of the outer sublaminates playing the most dominant role. In order to retard

the growth of transverse cracks in the inner sublaminate the difference in the fibre orientations

in the adjacent laminae must exceed a certain critical value. For the same reason, the inner

sublaminate should not be very thick. We shall return to this topic in Chapter 9.

Transverse cracks can induce high interfacial stresses, the more so when these cracks are

close to the interface. This is a major cause of the crack-induced delamination in angle-ply

laminates.
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6.4.2 Accuracy of Numerical Solution of the Fredholm Integral Equation

In § 6.3, we described the numerical procedure for the solution of the Fredholm integral equation

(4.188) that determines the stress intensity factor via d>(1) for the case of the multiple cracks.
This procedure was also used to solve the Fredholm integral equation (4.209) for the mode HI
problem. For the configuration of a single crack, the integral equations given by (4.66) for mode

I, (4.124) for mode II and (4.156) for mode III are simpler and easier to handle. Moreover, as
exact expressions of the geometry factors for mode HI stress intensity factor exist for a single
central crack in an isotropic strip of finite width and for multiple cracks in an infinite body
(Tada et al., 1985), we can judge the accuracy of the numerical scheme used here by comparing

the numerical solutions of the integral equations (4.156) and (4.209) with the exact values for
the two indicated configurations. The numerical results were computed by setting 0 = 90°.
Under this condition, the bonded composite laminate degenerates into an isotropic strip of width
2(6 + d). For the case of a single crack, the geometry factor is determined by the relative length
of the crack to the width of the strip, while for multiple cracks in an infinite body it is determined

by the ratio of the spacing between the cracks to the length of the cracks. It is noted that the
definitions of the stress intensity factors in this Thesis and those in the handbook of Tada et
al. (1985) differ by the constant (fir. The exact geometry factor for a single crack in a finite

strip is compared in Table 6.2 with the numerical value for several a/d values. Similarly, the
exact geometry factor for an array of periodic cracks (period x\) in an infinite isotropic body
(b + d —> 00) is compared in Table 6.3 with its numerical counterpart.

Table 6.2: Accuracy of mode III geometry factor (0 = 900 and b/d = 2.0) for a single crack in
a finite strip

 

 

 

       

% 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Exact

Solution 1.0018 1.0041 1.0074 1.0120 1.0170 1.0234 1.0310 1.0398

Numerical

Solution 1.0019 1.0043 1.0077 1.0122 1.0177 1.0244 1.0323 1.0416    
It is seen from Table 6.2 that the numerical solution for a single crack is in very good

agreement with the exact value for all values of a/d. Although the accuracy for the multiple

cracks is not as good as that for the single crack, the relative error is still less than 1% for the
considered crack spacings. No exact solutions exist for modes I and II, but the numerical values

of the geometry factors are also close to the data calculated using the approximate formulae

given in the above mentioned handbook. For mode I, as was mentioned in § 6.2.1, the relative
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error is less than 3% for multiple cracks (x\ /d 2 2.0), and around 1% for a single crack.

Table 6.3: Accuracy of mode 111 geometry factor for multiple cracks in an infinite body

 

 

 

      

% 1.25 1.4286 1.6667 2.00 2.50 3.3333 5.00 10.0

Exact

Solution 0.6267 0.6661 0.7118 0.7641 0.8225 0.8839 0.9414 0.9840

Numerical

Solution 0.6207 0.6605 0.7068 0.7598 0.8191 0.8815 0.9402 0.9837    
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Chapter 7

Interlaminar Cracking in Angle-Ply

Laminates

 

7.1 Introductory Remarks

In this Chapter, we shall apply the basic solutions given in Chapter 5 to fibre-reinforced composite

laminates. Although the through-thickness crack problem, i.e. the problem where the tips of

the transverse cracks touch the interfaces, would appear to have been well investigated, there is

practically no information available in a useful form on the behaviour of the stress fields. Bai &

L00 (1989) have come closest to providing such information. They used Lekhnitskii’s method

ofcomplex stress functions for anisotropic media to solve the problem of a finite [0°/90°], cross-

ply fibre-reinforced composite laminate with a transverse through—thickness crack under tension.

The stress singularity and stress intensity factor were calculated. However, their method led

to very complicated expressions for the stress and displacement fields. The stress singularity

had to be calculated from a complicated transcendental equation which is the determinant of an

8 x 8 matrix. Wu & Erdogan (1993) have solved the problem of bonded orthotropic/orthotropic

composite when a crack is embedded in one layer and when one tip of the crack touches the

interface. They have given characteristic equations for determining the stress singularities and

expressions for stress intensity factors. It is the aim of this Chapter to examine the singular

behaviour of the stresses for fibre-reinforced composite laminates and provide easily-accessible

information, using the solutions from Chapter 5. In particular, we shall consider situations

where both crack tips touch neighbouring interfaces and when the laminate consists of an inner

transversely isotropic sublaminate of finite thickness surrounded by outer finite orthotropic

sublaminates. A part of the work described in this Chapter has been published in the paper by

Wang & Karihaloo (1994b). Another part has been accepted for publication (Wang & Karihaloo,

1995b).
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7.2 Elastic Properties of Composite Laminates

In order that the basic solutions given in Chapter 5 are applicable to the problem at hand, it is

necessary to restrict the structure of the composite laminates and to use certain homogeneity

assumptions. Suppose that the central layer of the composite laminate shown in Figure 4.1 is

composed of a fibre-reinforced unidirectional lamina in which the fibres are aligned parallel to

the z—axis (material 1), while each of the outer layers (material 2) is an angle—ply sublaminate in

which the fibres, in yz-plane, lie symmetrically at angles +00 and —6° with respect to the y—axis.

For these fibre layouts, the central layer may be treated as a transversely isotropic material

(in xy-plane) and the constraining sublaminates as orthotropic with their principal elastic axes

parallel to the coordinate axes. From a manufacturing point of view, the angle-ply sublaminates

can also have a (3:00),, or [(i6°)n], structure. When n is fairly large for a given thickness

of the structure, such a sublaminate may also be approximated by an effective orthotropic

medium whose elastic constants can be calculated by the classical lamination theory (CLT). In

the following, we shall calculate the stress singularities and the in situ stress intensity factors

using the four materials listed in Table 7.1. The properties of unidirectional laminae listed in

Table 7.1 are reported by Tan & Nuismer (1989), and Talreja (1991). The elastic stiffness of

the central and outer sublaminates are calculated using the procedure discussed in Appendix C.

The consequences of the homogenisation are also discussed in that Appendix.

Table 7.1: Material properties

 

 

 

 

 

        

Materials EL ET GLT GTT VLT VTT

Property (GPa) (GPa) (GPa) (GPa) - —

1 T300/934 (Gr/Ep) ~ 138.0 11.7 4.56 4.18 0.29 0.40

2 Glass/Ep 41.7 13.0 3.40 4.57 0.30 0.42

3 AS4/3501-6 (Gr/Ep) 140.1 8.36 4.31 3.20 0.253 0.297

4 AS4/Tactix 556 (Gr/Ep) 151.1 7.09 3.63 2.72 0.241 0.304
 

7.3 Mode I Problem

After calculating the elastic stiffnesses (and/or compliances) of the sublaminates following the

procedure in Appendix C, the mode I stress singularity 71 can be directly obtained by solving the

characteristic equation (5.89). The necessary elastic stiffnesses of the four materials of Table 7.1

are given in Table 7.2 for one representative value of (9 = 30°.
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Table 7.2: Stiffnesses of the sublaminates for 6 = 30°

 

 

 

 

 

          

 

 

 

   

Stiffnesses (GPa)

Material C11 C12 022 C44 655 C55

M1 20.80 30.22 127.46 28.13 4.27 4.47

M2 26.36 22.20 47.73 9.90 4.28 3.69

M3 10.91 13.89 101.33 28.23 3.48 4.03

M4 9.66 15.03 112.41 30.01 2.95 3.40

0'6 I I I I I I I I

0.5 ‘—

M2

’71 0.4 — -

M1

M3

0.3 — M4 -

02 I I I | I I I I

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

Figure 7.1: Mode 1 stress singularity at a crack tip terminating at an isotropic-orthotropic

bimaterial interface as a function ofthe orthotropic ply angle 6 for the four material combinations

of Table 7.1

The variation of the stress singularity 71 with 6 for the four materials is shown in Figure 7.1.

For all four materials the weakest singularity always occurs when 6 = 0°, i.e. for cross-ply

laminates, because the highest modulus (but not necessarily the stiffness coefficient) of the [3:60]
ply in y—direction is when 6 = 0°. It seems that the reduction of the interfacial stress singularity

from the usual value 0.5 is greatly assisted by the high anisotropy in the longitudinal (L) and

transverse (T) directions of the unidirectional laminae. Materials 2 and 4 are two extreme cases

in point. The ratio EL/ET of material 4 is the largest and that of material 2, glass/epoxy, the

smallest among the four chosen materials. The values of 71 for these two materials therefore

are also at the extreme ends; the larger the ratio EL/ET of the orthotropic layer the smaller the

stress singularity at the interface.
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It is seen from eqn (5.145) that the stress intensity factor at the crack tip when it reaches

the interface is determined by two parameters, i.e. m and H1(1). The former is a function

of the elastic properties of the central and outer sublaminates (eqn (5.146)), while the latter is

related to the material properties and geometry and is proportional to the applied stress. H1(1)

is obtained by solving the singular integral equation (5.24) after substituting eqn (5.75) into it.

Here, we first examine the influence of the ply angle 6 on in assuming that the variation of 6

only affects the stiffness of the outer sublaminates. The variation of ,u, with the ply angle 6 is

shown in Figure 7.2. The trend in ,u, is exactly the opposite of that in 71 (of. Figures 7.1 and

7.2).

 

 

   
Figure 7.2: Variation of ,u, with the ply angle 6 for the four material combinations of Table 7.1

Since the stress intensity factor is related to H,(1), we must solve the Cauchy-type singular

integral equation (5.24). This can be done by using the Gauss-Jacobi quadrature (Erdogan et

al., 1973). But first, the Cauchy—type singular integral equation (5.24) is rewritten as

 

1 +1 R,(t) 1 +1 S 1 +1 F _ n+1
”/4 t_rdt+7T/_l ICI(r,t)R,(t)dt+7r/_1 ICI(r,t)R,(t)dt— 4M 0', (7.1)

where the two kernels are

+00

16,503+) = /0 5.520003%8) e'(g_t)sds, (7.2)

F +°° ’91 (r t s) ~(g-t)s1c! (at) = ]0 k1(T,t,$)—s—>+oo ,, e 1: ds, (7.3)
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In the above expressions for the kernels, s—{c-{oo (’3 ta 3) and k,(r, t, s) are given by (5.67) and
(5.26), respectively. From the asymptotic analysis in § 5.2.1, we know that when a = d, the

kernel (7.2) is singular, and its asymptotic representation is given by (5.73); the kernel (7.3) on
the other hand is of the Fredholrn type. Subject to the condition that R,(t) behaves like (5.75)
and that 0 < Re(7l) < 1 (which is evidently satisfied by all four materials under consideration,
see Figure 7.1), the singular integral equation (7.1) can be readily solved by using the procedure
of Erdogan et al. (1973). Following this procedure, the singular integral equation (7.1) and
single-valuedness condition (5.27) are discretized into a system of N linear equations

 

 

1 N 1 n+1 .
;;H1(tk)Wktk_7~.+K§(rj’tk)+lcf(rj’tk) :- 4,” 07 .7 :17"'7N_1(74)

:1 J

N

H,(()thc :0 (7.5)
k=1

where t], and rj which vary in the interval (—1, +1) are given by the roots of the following
Jacobi polynomials

Pig—711_71)(tk) = 0 19:1,...)N (7.6)

Pz‘vlril’1‘””(rj) = 0 j=1,---,N—1 (7.7)

Wk are the corresponding weights which are given by

2(N - 71+ 1) [F(N — 71+1)]2 2-27,

Wk 2 _ N 1 I N 2 1 I“ N 2 1 [(‘717-71) (“try-11) (7'8)( + H — ’71 + ) ( " 71+ ) PN (tk)PN+1 (it)
 

where a prime denotes derivative. Equations (7.4) and (7.5) are N linear equations for deter-
mining the N unknowns H,(tk) (k = 1, - - - , N).

A discussion of the convergence of the above method will be found in the work of Erdogan et
al. (1973). In the numerical computation of the present mode I problem, as well as of the mode
II and mode III problems ('3‘ 7.4) N = 40 was used. The accuracy was judged by comparing the
geometry factor for 6 = 900 with that given in the book of Tada et al. (1985). Since an exact
solution exists only for mode IH, the comparison will be given in Table 7.3 of the next Section.
In the other two modes, there are no exact solutions available for comparison. However, the
numerical solutions obtained here are quite close to the approximate solutions given in the above
handbook.

In order to examine the influence of both the stiffness and the geometry of the constraining
layers on the behaviour of the stresses, we show the properties of to, and H{(1), respectively.
The variation of p, with the ply angle 0 is shown in Figure 7.2. It is found that when 0 varies
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Figure 7.3: Variation of H,(1)/(—a) for materials 1 (a) and 2 (b). The curves for 6 = 450 and
900 are indistinguishable on the scale of the figure for material 2
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Figure 7.4: Normalized stress intensity factors for materials 1 (a) and 2 (b)
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from O0 to 90°, ,u, decreases greatly for graphite composites (materials 1, 3 and 4). It has a

much larger value at 6 = 00 than at 6 = 900 (homogeneous isotropic material), as expected due
to the high ratio of EL/ET.

H1(1) is a function of b/(b + d) and 6, and is proportional to the applied stress —a. We

show the variations of H,( 1) / (——a) in Figures 7.3(a) and (b) for materials 1 and 2, respectively.

This parameter shows two features. First, it decreases monotonically with the thickness of the

constraining layers for all ply angles 6. Secondly, it is very sensitive to the change in b/ (b + d)

when b/(b + d) is small.

The normalized stress intensity factors KI / (odil) for materials 1 and 2 are depicted in

Figures 7.4(a) and (b), respectively, as a function of the ply angle and the relative thickness of

the constraining layers. Corresponding figures for graphite/epoxy compositions of materials 3

and 4 have been omitted because of their similarity to the graphite/epoxy composition of material

1 shown in Figure 7.4(a). Due to the influence of H,( 1) / (—0'), the normalized stress intensity

factors have similar variation with b/(b + d) to that of H1(1)/(—a) in Figures 7.3(a) and (b).

Therefore, when the constraining layers are thin, the stress intensity is equally influenced by

both the geometry and the ply angle, but when they are thick, it is mostly influenced only by the

ply angle via m. This ought to be borne in mind in designing composite laminates which are

least sensitive to interfacial delarnination.

7.4 Mode H and Mode III Problems

The mode II and mode HI stress singularities 72 and 73 are calculated from eqns (5.173) and

(5.190), respectively. Their variation with the ply angle 6 of the outer sublaminates is depicted

in Figure 7.5, for the four materials of Table 7.1.

It is seen that the stress singularity in a particular loading mode for all four materials shows

a similar trend with the ply angle 6 of the constraining sublaminates. The singularities in

both modes can be larger or smaller than the inverse square-root singularity in a homogeneous

isotropic medium depending on the elastic properties of materials and on the ply angle 6.

To calculate the stress intensity factors KH (5.191) and Km (5.192), it only remains to

determine HH(1) and Hm(1), since #11 and #m are already known from (5.193) and (5.194).

The latter are related to the elastic properties of the two media and the respective crack tip

singularity. Hn(l) and Hm(1), on the other hand are related to the elastic properties and

geometry of the laminate and it is necessary to solve Cauchy-type singular integral equations

to determine them. The singular integral equation for determining HI,(1) is obtained after

substituting RI,(t) from (5.172) into (5.162). Hm(1) is solved from the singular integral

equation (5.181) which is much simpler than those for modes I and II.
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Figure 7.5: Stress singularities in (a) mode II and (b) mode III
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Figure 7.6: Variation of (a) MI and (b) #111 with 6 for the materials in Table 7.1
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Figure 7.7: (a) Mode II and (b) mode III normalized stress intensity factor for material 1
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Table 7.3: Accuracy of mode III geometry factor (6 = 90°)

 

 

 

         

6—1—6! 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Exact

Solution 1.0170 1.0398 1.0753 1.1284 1.2085 1.3360 1.5650 2.1133

Numerical

Solution 1.0171 1.0399 1.0754 1.1285 1.2086 1.3361 1.5651 2.1132 
 

The variation of p” and pm with 6 is shown in Figure 7.6. It is seen that whereas ,un
decreases with 6 (except for glass/epoxy combination (material 2), when it is almost independent
of 6), pm peaks at 6 = 45°, contrary to the mode HI stress singularity that has a minimum
around this value of 6. This is a result of the fact that the shear stiffness C44 (Gyz) is the largest
when 6 = 45°.

Figure 7.7(a) shows the normalized stress intensity factor KII / (7',,J") for different values
of 6 as a function of the ratio of outer layer thickness to the laminate thickness. It decreases
monotonically with increasing b/ (b + d). When b/d tends to infinity, it reaches a steady state
value. When 6 = 90°, it simply represents the geometry factor in the stress intensity factor at

the tip of a central crack in a finite isotropic plate. The mode HI counterpart KIII / (7',IId“) is
depicted in Figure 7.7(b). Because of the indicated behaviour of #111, the normalized mode IH

stress intensity factor is maximum when 6 = 45°.

The numerical algorithm was found to be quite accurate by comparing the computed results,
i.e. the normalized stress intensity factor KIII / (TI1,x/E) for 6 = 90° with the exact solution of
the geometry factor1 for the mode III stress intensity factor for a centre cracked isotropic plate
(Table 7.3). For mode 11 loading no exact solutions are available, but for isotropic materials, the
computed results were found to be in very good agreement with those given in the handbook by

Tada et al. (1985).

7.5 Extrema of Stress Singularities

The values of the strongest and weakest singularities are given in Table 7.4, as are the corre-

sponding 6. The weakest and strongest stress singularities in mode I occur when 6 2 0° and
 

1When 6 = 90°, the composite laminate degenerates into an isotropic strip with a central crack. The stress
singularity is of the usual square-root type and the stress intensity factor at the crack tip is K111 = F”, 7',” x/g,
where F”, is the geometry factor which is determined by the size of the crack relative to the width of the strip and

is not related to elastic properties of the medium.
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6 = 90°, respectively, for all the composites in Table 7.1. The strongest singularity in mode

11 occurs when 6 = 90° for all the graphite/epoxy compositions (materials 1,3 and 4). For all

four materials, the singularities in modes II and HI attain a minimum at almost the same value

of 0° — around 45°. For the glass/epoxy composition (materials 2) the mode III singularity has

the largest value when 0 = 90°, which may be attributed to the fact that its longitudinal shear

modulus GLT is smaller than transverse shear modulus GTT (Table 7.1). An examination of the

stress singularities and the stress intensity factors in three modes shows that they depict opposite

variation with 0, that is, when the former attain the minimum, the latter reach the maximum.

Table 7.4: Strongest and weakest stress singularities

 

Mammal M1 M2 M3 M4
Mode

Model mm, 0.500 0.500 0.500 0.500

am, 90° 90° 90° 90°

mm... 0.355 0.436 0.321 0.312

0mm 0° 0° 0° 0°

ModeII 72m, 0.500 0.510 0.500 0.500

am 90° 0° 90° 90°

72min 0.468 0.468 0.470 0.468

am 45° 45° 41° 42°

Mode III 73m 0.507 0.500 0.524 0.523

0m 0° 90° 0° 0°

73m... 0.346 0.390 0.348 0.331

am,” 46° 42° 47° 47°
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Chapter 8

Design of Cracked Composite Laminates

Least Prone to Delamination
 

8.1 Introductory Remarks

8.1.1 Transverse (Matrix) Cracks and Interfacial Delamination

Unidirectional fibre-reinforced laminae are typical orthotropic materials as far as their mechani-

cal properties in the plane of the fibres are considered. The fibre-reinforced composite materials

are commonly used in the form of laminates composed of laminae with different fibre directions.

The most common and fatal form of failure in these laminates resulting in loss of both their

strength and stiffness is delamination between constituent laminae. Under compression, the de-

laminated sublaminates may buckle leading to overall failure of the laminate; under transverse

bending the extensive delamination caused by matrix cracking results in a significant drop in the

applied load (Liu et al., 1993). The mechanism of delamination has been widely investigated

both theoretically and experimentally (Wang, 1980; Crossman & Wang, 1982; Chatterjee et al.,

1984; Reddy et al., 1984; O’Brien, 1985; Murri & Guynn, 1988; Kim, 1989; Fish & Lee, 1990;

Liu et al., 1993; Doxsee et al., 1993; Liu & Chang, 1994). The delamination often occurs at the

free—edges of laminates and at the interface in front of transverse lamina cracks. The severity

of the free—edge induced delamination can be reduced by varying the stacking sequence and

ply thickness. In [00/ i 6°], laminates the free-edge induced stress singularity can be mini-

mized or even deleted (Christensen & DeTeresa, 1992). Because of the inherent weakness of

fibre-reinforced composites in the transverse direction, the pre—service microcracks are likely to

occur in component laminae, possibly from the residual stress of processing and the debonding

between the fibres and matrix. Upon being loaded, the transverse cracks may also form at very

low load levels or after only a few load cycles under fatigue loading. It is the propagation of
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these initial cracks that results in delamination when they approach the interfaces. Experimental

observations show (Kim, 1989) that under tensile loading delamination in laminates, especially

those containing 900 plies, is preceded by transverse cracks, and that its location is related to

the location of cracks. Furthermore, the load at which delamination occurs is influenced by the

crack size.

Similarly, under transverse (perpendicular to laminate plane) loading conditions, both ex-

perimental and theoretical calculations show that the matrix cracks in the 90° sublarninate in a

[0?,2 /90911 ]S laminate could directly result in delamination (Liu, et al. , 1993; Doxsee, et al. , 1993;

Liu & Chang, 1994). Figure 8.1 clearly shows the relation between the matrix cracks in the

900 sublaminate and the interfacial delamination when the laminate is subjected to a transverse

load. Calculations done by Liu et al. (1993) show that matrix cracks immediately produce an

interfacial delamination which propagates instantly to the boundaries. In a load—displacement

diagram, a sharp drop in the load is observed due to the extensive delamination resulting from

the matrix cracks. The cracks in Figure 8.1 are called “shear matrix cracks” in the papers of

Liu et al. (1993), and Liu & Chang (1994). The cracked areas are mainly subjected to shear

deformation. Therefore, it was concluded by these authors that the delamination growth induced

by intraply shear cracks is very unstable and catastrophic. Interfacial delamination induced by

a transverse crack was also observed in the experiment by Doxsee et al. (1993) who subjected

a cross-ply laminate to transverse loads.

Interfacial delamination induced

by transverse cracks

 

 

 

 

\
\
\
\
\
\
\
\

 

  

Transverse (matrix) cracks

Figure 8.1: A cross-ply composite laminate under transverse loading. The dark “Z”-shaped

lines show the transverse cracks and areas of interfacial delamination (After Liu et al., 1993)

From the above mentioned experimental results, it is clear that transverse cracks are directly

responsible for interfacial delamination when their tips approach the interfaces. The mechanisms
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behind this phenomenon will be investigated in this Chapter by investigating the perturbation

in the stress field induced by the existence of a transverse crack. It transpires that a transverse

crack can induce high interfacial stresses when it is close to the interface. Theoretically, when

the crack tip touches the interface the stress field is singular, but the singularity is different from

that the usual square root type when the crack is wholly within one lamina. The problem when

the crack tip terminates at the bimaterial interface was studied in Chapters 5 and 7.

8.1.2 Constraining Effect in Composite Laminates

It is known (Parvizi et al., 1978; Bailey et al., 1979; Flaggs & Kural 1982; Fan et al., 1989)

that crack propagation in the 900 sublaminate in angle—ply laminates under in-plane tension

is constrained by the adjacent sublarninates. We have revealed in Chapter 6 the mechanisms

of this constraining effect using fracture mechanics. This constraining effect results in the

observed higher in situ strength of laminae in laminates. Because it is relatively easy to apply

unidirectional in-plane tension in a laboratory, the constraining effect in laminates under this

load condition has been widely studied both experimentally and theoretically. In this Chapter,

we will show that this constraining effect also exists when a laminate is subjected to a transverse

shear load. This effect influences the crack-driving force at the tip of a transverse crack in a

unidirectional lamina in an angle-ply laminate.

Since the constraining effect on the crack propagation and the influence of the transverse

crack on the interfacial stress field vary with the configuration of laminates, it may be possible

that the risk of interfacial delamination and crack propagation can be reduced to a certain extent

by varying the configuration of laminates.

It is the aim of this Chapter to explore this possibility. To this end, we will calculate the

stress intensity factor for a transverse crack in the (900),,1 layer of a [(i6‘3),,2 / (900),,l / ($6°)n2]

antisymmetric laminate and also the crack-induced interfacial stresses between the (90°)nl and

(i00)n2 sublarninates under transverse shear loading. These results will then be used to optimize

the configuration, that is, to choose the ply angle 0, the relative thiclmess of the constraining

sublarninates and the commonly reported fibre—reinforced material properties, so as to minimize

the tendency of crack growth in the (90°)nl sublaminate and therefore of delamination between

this and (M5,, sublarninates under shear loading. The optimization problem is posed as a

nonlinear programming problem whose solution is sought by several techniques. The design

sensitivities required in these techniques are calculated by mixed analytical/numerical means.

The results confirm the possibility of minimizing the crack driving force in the (900)”, layer and

of avoiding the risk of delamination by ajudicious choice of ply angle 0 and relative sublaminate

thickness. The major part of the work described in this Chapter has been published in two papers

by Wang & Karihaloo (1994a), and Wang et al. (1994).
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8.2 Mathematical Model and Solution

8.2.1 An Idealized Model of Cracked Angle-Ply Laminate

The model being studied in this Chapter is shown in Figure 8.2. It consists of a central layer

in which the fibres are oriented normal to the plane of the paper ((900)n1 layer) and two outer

sublaminates which are composed of an equal number of +60 and —6° angle plies. They

can also be regarded as a kind of woven structure with fibres intersecting at an angle of 29°

(Figure 8.2(a)). The (90°)nl layer of thickness 2d is transversely isotropic (in xy-plane) and is

assumed to contain a flaw in the form of a central transverse crack of length 2a well removed

from the edges of the laminate. In the analysis, each outer sublaminate of thickness b is treated as

being homogeneous orthotropic with average elastic properties of [(it2‘0)n2 /(=;:0°)n2] laminate,

consistent with the classical lamination theory.
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Figure 8.2: The composite laminate and coordinate axes. The central crack is well removed

from the edges of the laminate

It is assumed that the composite laminate is subjected remotely to self-equilibrating shear
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stress 7-2,, = 7', so that from a mathematical point of view one needs only to solve the problem
of cancellation of this stress over the crack faces. Using the basic solution for mode H problem
given in § 4.4, the mode II stress intensity factor is

Kn = 2133. \/2<x — a) Tam) = ‘I’(1)rf s Fm «22 (8.1)
where ‘I’( 1) is calculated from the solution of the integral equation (4.124).

If the ($00)"2 sublaminates on the two sides are absent then the stress intensity factor is

K11 = F(%)T\/E, (82)

where the geometry factor F(a/d) may be found in any standard handbook of stress intensity
factors (e.g. Tada et al., 1985).

For the graphite/epoxy material properties listed in Table 6.1, the variation of ‘I‘( 1) with a/d
is shown in Figure 8.2. Also shown is the value of F(a/d). ‘I’(1) is equal to F[a/(b + d)] when
(9 = 900.

It is seen that the magnitude of ‘I’(1) and its variation with a/d are different from those of
F(a/d) — the geometry factor for an isotropic material. ‘I’( l) is not only related to the geometry
a/d and b/d, but is also influenced by the stiffness of the (90°)n1 and ($00)”2 layers. Obviously,
‘I’(1) g F(a/d), otherwise there would be no point in using composite materials. It is also for
this reason that the ($00)”, sublaminates are regarded as constraints for central layer. It is noted
that the degree of this constraint can be expressed solely in terms of L11(1).

In the following, we shall calculate the crack-induced interfacial stresses. Before that let
us discuss briefly the evaluation of interfacial stresses in composite laminates in view of the
average elastic properties used in the classical lamination theory to determine the stress and
strain fields in the laminates. We already discussed some aspects of these limitations of CLT in
§ 6.4.

In the present investigation, the outer sublaminates [(:l:0°),,2] are replaced by an effective
orthotropic medium whose elastic stiffnesses are calculated following the CLT. In § 6.4 it was
pointed out that under tension there are interfacial stresses caused by the mismatch of the elastic
properties of the laminae in an angle—ply laminate. These stresses which are not predicted by the
CLT, however, only exist in the boundary regions (edges) of the laminate and vanish in the area
of the laminate away from the boundaries. On the other hand, as noted by Kassapoglou (1990),
very little research has been done on the stress analysis of laminates, especially of angle-ply
laminates, subjected to out-of—plane loads. However, the limited results for various symmetric
angle-ply laminates that are available do show certain tendencies. Thus, for instance, Tang
(1976) calculated analytically the stresses at the interface of +00/ — 9° plies in a four layer
[$190]s angle—ply laminate under a uniform transverse load. The interior domain was assumed
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 1.3

   

 

Figure 8.3: Values of ‘I’(1) and F(a/d). Value of 6 is indicated on the graph. b/d = 2

to be governed by CLT (as was also done by Kassapoglou, 1990), so that the interfacial shear

stresses (73,, and Tyz, which might otherwise exist at a micromechanical level) did not arise

in this domain. Salamon (1978) solved the exact elasticity equations, using finite-difference

approximations. The stresses at the interface between +450 and ——45° plies in a four layer

[1450], angle-ply laminate and at the interface between 0° and 00 plies in a four layer [00/00],

laminate were calculated in flexure. The interfacial shear stress (Tu) indeed tended to vanish

in the area away from the boundary region, as would be expected if even a single lamina were

assumed to behave orthotropically when it is situated in the symmetric laminate. It is recognized

that whereas Tu and Tyz are absent in an orthotropic medium under loads along its principal

axes, the vanishing of 73,, and Ty, does not necessarily imply that the medium is orthotropic.

However since these shear stresses vanish for different ply combinations, the assumption of

orthotropy seems to be reasonable. It is worth noting that the maximum width/thickness ratio

considered by Salamon (1978) was only 3.

The 3-D finite element calculations (Murthy & Chamis, 1987) for four layer symmetric

[+00/ — 0°], angle-ply laminates under out-of—plane shear and bending also showed that the

interfacial shear stresses Try and M of the laminae were negligibly small away from the edges

and practically disappeared in the central region of the laminate. Although an isotropic interply

was added in this analysis, the results are still indicative.

It is noted that there is a coupling of bending and twisting in all symmetric [iflo], angle-ply

laminates. They are macroscopically orthotropic only when bearing in-plane loads along their
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principal axes, but not when bearing out-of—plane flexural loads (D16 aé 0; 026 aé 0, Tsai &
Hahn, 1980). The local anisotropy of the laminae (or sublaminates) in the macroscopically
orthotropic laminates referred to above does not seem to generate significant interfacial shear
stresses. Salamon (1978) noted “....While the magnitudes of these stresses are generally small,
the distinguishingfeature is the sharp rise near thefree edge which afiects a boundary region of
the order ofone laminate thickness (2t) inward” It is noted that the antisymmetric laminate in
this exposition behaves macroscopically like an orthotropic medium under in-plane (laminate
plane) and flexural loadings, respectively (cf. § 3.7.2).

From the above statements and the fact that under the present loading condition the dominant
interfacial stress will be my, the replacement of the [(i6°)n2] layer by an effective orthotropic
medium should not invalidate the interfacial stress calculations except in the boundary regions.
The calculation of the stiffness parameters of the [(zt00),,2] layer is given in Appendix C.

Following the procedure for deriving the interfacial stresses (6.6)—(6.7) for the multicracked
laminate under tensile load described in § 6.4, the non-dimensional normal and the shear stresses
at the interface between the (900),,l and ($60)”2 layers are written as

1:1: d: 00 —5% ’
d d

U ( y) = se—s{[l\1101+ K1202 + K13G3 + K1404]3_008h(8—) +‘r 0 N3)
a a

. d .
+[K21G1+ K22G2 + K2303 + K2404]s1nh(s;)}sm(s%)ds —-

— /°° 6—55 K5 G5 d8
(83)0

-5—d 30yy( ,3!) = /0 (-1)%{[K11G1+K1202+K13G3+

+K14G4][2 sinh(sg) + a; cosh(sg)] +

. d ,
+lK21G1+ K2202 + K23G3 + K2404] Slnh(s;)} sums? d3 _

— Ame—5% KsGsds (84)

Txy(d7y) 0° 36—5%
7' = 0 @{[1{11G1+ K1202 + K13G3 +

+K14G4][cosh(sg) + 3%! sinh(sg)] +

+[K21G2 + [(2sz + K23G3 + K2404] cosh(s§)} cos(s%) d5 —

_ f: 6-“: K7 G7 d5 (8-5)

At the interfacial point right in front of the crack tip, where y = 0, a: = d, the only non-vanishing
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stress is

T (d 0) °°sedL— : A—{[K11G1+K12G2+K13G3+7’ 0 ——)(Z

d d d
+K14G4][cosh(s—) + s— sinh(s—)] +

a a a

+[K21G1 + K2202 + K23G3 + K24G4] COSh($ El—)}d$ +

+ [0 M) 08(6) d6 (8.6)

In eqns (8.3)—(8.6)

G,- = Alx/fid’(n)E.-(s,n)dn (i=1...,4>

G5 = Ge = G7 =/01\/77<I>(77)Jo(sn)dn

 
 

 

G _ 6: {2 (%€)2[1+2\/1-(%£)2 }
s — + .

32W [MW—(202] [heel] [1+ 1—(303
Kg = :(2—s%)sin(sg)

K5 = szgsims3:)

K7 = s(l—s%)cos(sg)

The variation of crack-induced interfacial principal tensile stress (normalized by 7')

 

2T 7'
a. = ——+ “W + \/<-——"”2'.”yy>2 + <—T+W (8.7)

with y/d and a/d for 6 = 0° and 6 = 45° is shown in Figure 8.4. It is seen that the largest

tensile stress 0T (normalized by T) occurs at y/d = 0 for different 6° and a/d. This largest

stress is depicted in Figure 8.5, for 6 2 0°, 6 = 90° and 6 = 45°. As the crack tip approaches

the interface (a/d increases), the largest interfacial tensile stress increases rapidly for all 6°. For

small cracks, this stress is fairly insensitive to changes in 6, but as a/d increases so also does

its sensitivity to the ply angle 6. An examination of Figures 8.3 and 8.5 shows that for all a/d,

the crack driving force takes on its minimum value, but the largest interfacial tensile stress (at

y/d = 0) its maximum value when 6 2 0°. There is thus a need for a compromise design which

would ensure minimization of the crack driving force in the central layer without exceeding the

interfacial strength of the laminate.
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Figure 8.4: Crack—induced interfacial principal tensile stress normalized by 7- for a /d = 0.4

' 8.3 Optimization Problem and Solution

To obtain the compromise design, we formulate the following minimization problem

3; wmagma wfi
subjectto

UT 3 ao=(1+a) (8.9)
E 3 ( —»y)D0 (8.10)
93 S SE (8.11)
03 a 3-723 (8.12)

F is the normalized laminate modulus. For the ansverse loading case, 5 is the normalizedc;

flexural modulus

m+$tua+a
(1 + 5F

00 is the specified interfacial strength and Do is the value of 5 when 0 2 0°. a and 7 are
tolerance factors on the stress gain and stiffness loss, respectively.

Since the expressions relating ‘P( 1) and the interfacial principal tensile stress to the geometry
and stiffness properties of the layers are quite complicated, sensitivity of the objective with

F = (8.13)
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Figure 8.5: The largest interfacial principal tensile stress normalized by 7- for y/d = 0.0 and

IBM 2 2.0

respect to design variables is calculated by a mixed analytical]numerical procedure. The integral

equation (4.124) is discretized into a set of linear equations

[AH‘P] = [B] (8.14)

where [A] = [aij], [‘1’] = [‘I’(§j)]T, [B] = [ {i T, (i,j = 1, ..., n). n = 10 resulted in sufficient

accuracy. Then the sensitivity with respect to the design variables x,- is given by

5W] -1 31/1]
E = —[A] 8—x, [‘1’] (8.15)

where, m,- stand for cf]. (i,j = 1,2), 6 and b/d.

The sensitivities of the constraint (8.9) are calculated numerically, whereas that of (8.10) are

calculated analytically (see Appendix C).

The above minimization problem was solved by nonlinear mathematical programming tech-

niques (§ 3.8), viz. sequential linear programming (SLP) with move-limits (Pedersen, 1981),

sequential quadratic programming, SQP (Powell, 1978) and sequential convex programming,

SCP (Fleury & Braibant, 1986) which are available in the general purpose structural optimiza-

tion package ADS (Vanderplaats, 1987). The number of functional and gradient evaluations for

the above problem and an alternative formulation to be considered below, are given in Table 8.1.

It was found that among the three strategies, SLP and SCP terminated with fewer functional

evaluations but more gradient calculations than SQP. However, when the objective function was
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somewhat flat near the optimum point, the SLP and SQP could sometimes terminate prema-

turely. It seems therefore for the present problem SQP produces the most precise results with

fewer gradient calculations, but more functional evaluations.

Table 8.1: Functional (fe) and gradient (ge) evaluations

 

Min ‘P(1) Min 5

Method fe ge fe ge

SLP 7 7 10 10

SQP 12 3 26 6

SCP 7 7 8 8

 

 

 

 

       

The results of the optimization design problem for the laminate properties of Table 6.1 are

shown in Figure 8.6.

It was found that for small a/d, the active constraints were the lower limit on 0 and the

upper limit on b/d. When 6 2 0°, the outer sublaminates have the strongest effect on the arrest

of central layer crack. The minimum of ‘P( 1) always occurred at 0 = 0°, no matter what initial

6 was chosen.

The relative thickness of the outer sublaminates also plays an important role in arresting the

crack growth. The relatively thicker the constraint sublaminates, the smaller the crack driving

force and hence the stronger the (90°)nl layer.

When a/d is large, the interfacial stress constraint becomes critical to the design. For the

satisfaction of this constraint the design angle 9 takes a non-zero value. It was found that for

a = 0.5, 7 = 0.15 and 5 = 4.0, when a/d is greater than 0.7;, no optimum design is possible

because of the violation of the constraint on interfacial strength. For this reason an alternative

formulation of optimization problem was considered in which the largest interfacial tensile stress

was minimized subject to the constraint that ‘l’( 1) not exceed 1.0 and that the flexural stiffness

be adequate. The corresponding minimization problem is as follows:

1341211, 0T(cfj,%,0;§) (8.16)

subjectto

km) < 1.0 (8.17)

E 2 (1—7)D0 (8.18)

as 3 :5 (8.19)

03 a s; (8.20)
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Figure 8.6: Minimization of ‘l‘(1): (b/d)opt = E

The results of the above minimization problem are shown in Figure 8.7. In this case, UT

reaches its minimum when 6 = 500 and b/a’ = 3. The reason that the laminate has sufficient
flexural stiffness at such large 6 is the high value of the transverse in-plane (with respect
to laminate) Poisson’s ratio of the (i0°)n2 sublaminates and the use of plane strain stiffness
parameters.

Besides the intralaminar crack problem under out-of—plane (with respect to laminate, but
in—plane with respect to crack) shear loading, the analyses for in-plane (with respect to laminate)
tensile and shear loadings are needed for a more comprehensive understanding of laminate
strength and delamination characteristics. These problems will be considered in Chapter 9. The
lamination effect on the stress field and particularly on its singular behaviour when the crack tip
touches the interface was studied in the preceding Chapter.

8.4 Multicriterion Optimization

It is noted that the values of a and 7 in the constraints (8.9), (8.10) and (8.18) will influence
the solution of the single-criterion optimization problems, if they are active in the optimization
process. When they are not properly chosen, it is likely that there is no feasible solution. It
raises the difficult task of choice of these parameters and the possibility of multiple solutions.
This difficulty can be overcome if we use a multicriterion optimization formalism — the so-called
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Figure 8.7: Minimization of OT: (b/d)opt = 5

Pareto—type optimization. Let us denote

f1(x) = 0T (8.21)
f2 (X) = F11 (8.22)

f3(x) = E (8.23)

where x is the design vector. With these functions, the objective is to minimize f1 and f2 and

at the same time, to maximize f3 (or to minimize —f3). Figure 8.8 shows the three objective

functions f1(x), f2(x) and f3(x).

The microstructural parameters (the design variables) that can be altered are the fibre ori-

entations $00 in the outer sublaminate, and the thicknesses of the sublaminates b and d, such
that the design vector is x E [i630 b d]T. The crack length a is a parameter of the problem. As
noted above (Figure 8.1), the analytical model chosen to establish the relations f1(x), f2(x) and
f3(x) requires that a < d. By varying 21:9" and the thickness ratio b/cl it is desired to minimize
the crack driving force f2(x) and the maximum interfacial principal tensile stress f1(x) and
to maximize simultaneously the flexural stiffness f3(x) (tie. to minimize -f3(x)), subject to
—900 S 6 S +90°,and (b/d)min S b/d g (b/d)mar. The limits on design variables are dictated

by physical and practical considerations.

For this multicriterion optimization problem, a preference function (the metric) is constructed
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Figure 8.8: Contours of the objective functions f1(x) = (IT, f2(x) 2 F11 and f3(x) = 17 for

a/d = 0.4. Arrows indicate the direction in which the functions increase. The Pareto optimal

design corresponding to p = 50 is indicated by an asterisk (*). Maxima and minima of the three

objective functions considered in isolation are also shown. A: max f1, B: min f1; C: max f2, D:

min f2, E: max f3, F: min f3

as follows

. p 21:
() _ m fj(X)—m1nfj

F P (x) _ {12:31 —-———-—minfj _ max fj } , (8.24)
  

where m is the number of objective functions (here equal to 3) and min fj and max fj are

the minimum and maximum values of each objective function considered in isolation from the

others (Figure 8.8). The preferable solution is now found by minimizing the metric function

F(”)(x). Its solution depends on the chosen parameter p. The Pareto optimal design for p = 50

is indicated by anasterisk in Figure 8.8. Table 8.2 shows the minimized metric function F(”)(x)

for various values of p. It is seen that the min F(”)(x) tends to a constant value as p is increased.

The table also gives the optimum values of the microstructural parameters (design variables x)

and the corresponding objective functions fj (x) which have been appropriately normalized.
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Table 8.2: Minimum metric function F(”)(x) with corresponding optimum microstructural

van’ables (0’, b/d) for two crack lengths (a/d) and various exponents (p); the upper half for

a/d = 0.4 and the lower for a /d = 0.7. The corresponding values of objective functions f1(x),

f2(x) and f3(x) are also given

 

 

a/d p o g f1(X) f2(X) f3(X) PM
0.40 2 19.15 4.00 1.1127 0.9894 0.8144 0.474

0.40 4 24.48 4.00 1.1098 0.9900 0.7143 0.408

0.40 10 25.53 4.00 1.1091 0.9902 0.6938 0.371

0.40 16 25.69 4.00 1.1090 0.9902 0.6907 0.360

0.40 25 25.67 3.95 1.1091 0.9903 0.6905 0.357

0.40 50 25.64 3.98 1.1091 0.9902 0.6912 0.353

0.70 2 19.01 4.00 1.4844 0.9637 0.8198 0.468

0.70 4 23.95 4.00 1.4729 0.9652 0.7251 0.404

0.70 10 25.44 4.00 1.4687 0.9657 0.6951 0.366

0.70 16 25.23 4.00 1.4694 0.9656 0.6994 0.358

0.70 25 25.71 4.00 1.4680 0.9658 0.6899 0.352

0.70 50 25.46 3.98 1.4689 0.9658 0.6947 0.350
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Chapter 9

Optimum In Situ Strength Design of

Composite Laminates

 

9.1 Introductory Remarks

It has been widely observed in tests that the transverse tensile and shear strengths of a fibre-

reinforced unidirectional lamina, when it is situated in an angle-ply laminate, are functions of

the thickness of the lamina itself and the ply angles of its neighbouring laminae (Parvizi et al.,

1978; Flaggs & Kural, 1982; Crossman & Wang, 1982; Yamada & Sun, 1979; Chang & Chen,

1987). As a consequence, it is recognized that the transverse and in-plane shear strengths of

a lamina cannot be regarded as its intrinsic property. The experiments on [021/902], cross-ply

and/or [i0/902], angle-ply laminates in these works showed that the failure stress (strain) at the

onset of the transverse cracks in the 90?1 layer under unidirectional tension is a function of n and

6 of an angle-ply laminate. If the strength of the 90?1 layer is assumed to be that corresponding

to the onset of transverse cracks in it, then at first sight it would appear to be of a statistical

nature. Such an argument based on the size effect has in fact been advanced by Zweben (1994),

but it is questionable (Edge, 1994) in that it cannot explain the dependence of the strength of a

900 lamina on its thickness. Similarly, based on the experimental measurement of the strength

of 902 lamina in [21:6/902], angle-ply laminates, it was found by Flaggs & Kural (1982) that

a simple two—parameter Weibull distribution could not adequately describe the thickness effect

of the 90?1 lamina on its strength. Even if one accepted the ‘size effect’ argument or any other

statistical explanation, the well—known dependence of the strength on the ply angle 6 of the

neighbouring sublaminates could still not be explained.

Since the in-plane normal and shear strengths of a unidirectional lamina form the basis of the

failure criteria for general angle-ply laminates and since the transverse cracks are deleterious to

the integrity of laminates, much effort has been spent on the prediction of the failure condition
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for a lamina in cross—ply (e.g. Garrett & Bailey, 1977; Parvizi et al., 1978; Bailey et al.,

1979) and angle-ply laminates (e.g. Tan & Nuismer, 1989). These works examined the

conditions at which a through-thickness transverse crack appears in a unidirectional lamina in

cross- and angle-ply laminates. Although the strengths were correlated with the thickness of the

lamina under consideration and properties of neighbouring laminae, the resulting relationships

were not formulated in a manner suitable for a general strength calculation of multidirectional

laminates. An exception being the set of concise formulae proposed by Chang & Lessard

(1991) for calculating the in situ transverse and in-plane shear strengths of a unidirectional

lamina in multidirectional laminates. Some of the parameters in these formulae are deduced

from experimental results, while others are obtained by curve fitting, thus restricting their

applicability. In this Chapter, we shall first provide analytical results from the solution of the

problem of a cracked angle-ply laminate. These results clearly show the constraining effect

of neighbouring laminae upon a unidirectional lamina, resulting in an enhancement of its in

situ strength. The analytical calculations are mostly in accord with the formulae of Chang &

Lessard (1991) within their range of applicability. Outside of this range, modifications will be

made to these in accordance with the present analytical calculations. The basic in situ strength

parameters will then be used in a failure criterion which judges how close the stress state of a

lamina in a multidirectional laminate is to its failure state.

Many failure criteria for unidirectional fibre-reinforced laminae have been proposed (e.g.

Hoffman, 1967; Tsai & Wu, 1970; Hashin, 1980; Chang & Lessard, 1991). Rowlands (1985)

reviewed the commonly used composite failure criteria and compared them with experimental

observations. Some of these give the condition of the matrix failure in laminae; others take into

account the fibre breakage, as well. When multidirectional laminates are subjected to loads,

it is generally the matrix that fails first due to transverse cracking along the fibre direction

(Herakovich, 1982; Crossman & Wang, 1982; Talreja, 1987). This results in the degradation of

the laminate stiffness. Transverse cracking is also known to be a direct cause of delamination

of neighbouring laminae, as discussed in Chapter 8. The growth of interlaminar delamination

and/or fibre breakage result in the final collapse of the laminates (Herakovich, 1982; Crossman

& Wang, 1982). In the present work, the in situ strengths will be incorporated into a failure

criterion which characterizes the onset of transverse cracking in laminates.

The closeness of the stress state in a lamina to its failure point is determined by the laminate

configuration, i.e. the ply angles, thicknesses, and stacking sequence of the laminae in the

laminate, and by the applied load. It is evident, that under a given load condition, the stress

state in a lamina can be altered by varying the configuration of the laminate. Given the choice

offered by the composites, it is even likely that there exists an optimum configuration which

maximizes the load bearing capacity of the laminate. As we are only considering the situation
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at the onset of growth of the transverse cracks in laminates, it is clear that the maximum load
so determined will still be a lower bound to the ultimate load carrying capacity of the optimally

designed angle-ply laminate.

Traditionally the optimum configuration has been sought by trial and error relying on
experience and rules of thumb. Here, the search for the optimum configuration will be put

on firm mathematical foundation for symmetric angle-ply laminates under any combination of
in-plane loads. In the parlance of mathematical optimization theory, the optimization problem

under consideration is a minimax non-differentiable one. It is a minimax problem because the
design objective is to minimize the maximum stress norm of the laminae, i.e. to maximize the
in situ strength of each lamina in the laminate and to bring the strength of the whole laminate
as close to the ultimate failure strength as possible. It will be shown that the in situ strength
of a lamina depends on the differences in the ply angles and thicknesses between this lamina
and its immediate neighbours. As the gradients of these differences are not continuous, the
optimization problem is non-differentiable.

The optimization problem will be first reduced to a differentiable one ( to the first order

gradients) by the introduction of a novel smoothing function, and then the differentiable minimax
problem will be solved by the bound—formulation method (Olhoff, 1989) and mathematical
programming. The gradients of the objective and constraint functions required in this method,
will be obtained by a mixed analytical/numerical procedure. The solution shows that the
incorporation of the in situ strength parameters into the optimum design formalism has great

potential for increasing the load bearing capacity of angle-ply laminates. In fact, an optimally
designed laminate can carry several times more load than a conventionally designed one. A part
of the work described in this Chapter has been published in the paper by Wang & Karihaloo
(1995c). Another part has been submitted for publication (Wang & Karihaloo, 1995d).

9.2 Development of In Situ Strength Theory

9.2.1 Analysis of 3 Cracked Laminate

We shall examine the mutual constraining effect in composite laminates through the model

of a cracked [(zl:0°)n2 / (900),,1], angle-ply laminate shown in Figure 9.1. This model is an
asymptotic case of the multicracked angle-ply laminate studied in Chapter 6 when the crack
spacing A -+ +00. The solution to this single crack problem is available from Chapter 4.

Here, we shall concentrate on the derivation of a set of in situ strengths based upon the detailed
examination of the constraining effect in this laminate. This single crack approximation is a

good model for microcracks or defects existing in the 900 lamina in the early stage of their
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Figure 9.1: A cracked composite laminate, showing the laminate configuration (a), and the

opening (b) and anti-plane shear (c) modes of crack face loading
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appearance in [0°/90°], cross-ply and [i0/900], angle-ply laminates. Although multiple cracks

appear even at early stages, they are usually well separated so that their mutual interactions can

be ignored. Experiments show that the density of transverse cracks increases with increasing

external load and reaches a saturation level. For a [0°/907°]s cross-ply laminate, the saturation

spacing between the cracks is found to be about two times the half thickness of the 902 layer

(Highsmith & Reifsnider, 1982). In a [1250/9091], angle—ply laminate, Crossman & Wang

(1982) found that a saturation spacing of 8nt (where t is the thickness of ply) using shear-lag

model and energy analysis. This prediction appears to agree with the experimental data for

n = 6. For n = 4, a saturation spacing of 4m was found. Thus, it is evident that multiple

transverse cracks are well apart at the early stage of their appearance. Theoretical analysis shows

that when the spacing between the cracks is several times the half thickness of the 902 lamina,

their mutual interaction is insignificant (Chapter 6). For a multicracked [021/902], laminate with

through-thickness transverse cracks in the 90?z lamina, Hashin (1985) evaluated the stress field

by a variational approach. The crack interaction was found to be insignificant when the distance

between the cracks was larger than eight times the half thickness of the 902. A recent study of

a cracked [00/ i 45°/90°]s angle-ply laminate with a single transverse crack in the 90° lamina

(Li et al., 1994) showed that the perturbation of the stress caused by the transverse crack tends

to vanish at distances larger than seven times the half thickness of the 90° lamina. Therefore,

the single crack approximation is quite adequate for studying the constraining effect of the

neighbouring sublaminates upon its propagation. Experiments also show (Garrett & Bailey,

1977; Highsmith & Reifsnider,1982; Crossman & Wang, 1982) that the cracks are more or less

equally spaced, so that there is no need to consider a random distribution of cracks. Since the

multicracked angle—ply laminates have been analysed in Chapter 6, we shall also discuss briefly

later in § 9.2.2 the interaction effect of multiple cracks on the behaviour of the deduced in situ

strengths.

The idea of modelling inherent flaws in fibre-reinforced composite materials by effective

central cracks first appeared in the works of Wang & Crossman (1980), and Wang et al. ( 1984).

Experiments had shown (Harrison & Bader, 1983) that some dominant flaws coalesce to form

a large plane crack. Detailed experimental observations by Bailey et al. (1979), and Bailey

& Parvizi (1981) on glass fibre- and carbon fibre-reinforced [0°/90°], cross-ply laminates have

revealed that fibre debonds, matrix failure, and even fibre failure sites in the case of carbon

fibre-reinforced composite, form the nuclei for transverse cracks. The final through-thickness

transverse cracks develop by the coalescence of these nuclei. However, their propagation is

influenced by the thickness of the 90° layer. If it is thin, the propagation is stable, while in

the case of thick 90° layer, the propagation may be instantaneous. Therefore, whilst the source

of transverse cracks may lie in the very nature of composite laminates, their behaviour under
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external loading is influenced by the constraining effect determined by the thickness of the 900
and the outer constraining sublaminates. The study of their behaviour is of primary interest in
the present work for two reasons. First, the early growth of these nuclei results in the formation
of large cracks in the 900 layer and thus determines its in situ strength in the laminate. Secondly,
through an understanding of how the behaviour of the initial cracks depends on the laminate
configuration, it is possible to design the laminates so as to retard or even to prevent their failure.

As we will only consider the situation at the onset of growth of the transverse crack(s) in the
900 sublaminate, it is sufficient to superimpose the conditions from the two planar modes I and
HI (Figure 9.1), when the crack is essentially in one plane. The crack will however grow out
of its plane so that the growth process will require a proper three-dimensional description. This
will not be attempted in the present work.

It was shown in Chapter 4 that when the cracked laminate is subjected to uniform in-plane
tension perpendicular to the crack faces (Figure 9.1(b)), the mode I stress intensity factor at each

of the crack tips is

KI=<I>(1)a\/_EF10\/E (9.1)

where F; is calculated from the solution of the integral equation (4.66), and a is the in-plane

stress applied to the (900),,l sublaminate.

\“‘

 

 

Figure 9.2(a): Variation of F; with b/d and 0 for half crack length a = 0.4d
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 6.0 0°

Figure 9.2(b): Variation of PMI with b/d and 6 for half crack length a = 0.4d

Likewise, when the laminate is subjected to in-plane (laminate plane) shear, the mode HI
stress intensity factor at each of the crack tips is

K111 = 9(1)T\/C_l E FIIITx/C—l (92)

where F111 is obtained from the integral equation (4.156), and T is the shear stress applied to
the (900)”l sublaminate.

From the expressions for KI (9.1) and K111 (9.2), it is seen that the crack driving forces
depend on the laminate configuration through F1 and F11I. For a given crack length, the latter are
determined by the stiffnesses, ply angle 6 and thicknesses of the inner and outer sublaminates.

The influence of the ply angle 6 upon F1 and Fm may be judged from Figure 9.2. The
material properties used for these calculations were for a graphite/epoxy composite (material 1
in Table 7.1). Figures 9.2(a) and (b) show the variations of F1 and F111 with the ply angle 6
and the relative thickness of the outer sublaminates. F1 and F111 depict completely different
dependence on 6; F1 increases monotonically when 6 increases from 00 to 90°. This means
that the outer sublaminates provide progressively less constraint on the crack propagation. This
is in agreement with the experimental results of Flaggs & Kural (1982) who found that the
stress at the onset of the transverse cracks in 902 laminae in (i6/90n)s laminates decreases
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with increasing 6. The outer sublaminates have the strongest constraining effect on the crack
propagation in mode I when 6 = 0°, i.e. in cross-ply laminates.

F111 on the other hand, does not vary monotonically with 6. It reaches a minimum at about

6 = 45°. This is because the in-plane shear stiffness of [(i9)n2] sublaminate is at its maximum
at 6 = 45°. From the material properties of the graphite/epoxy composite, it is seen that GLT is
almost equal to GTT, so that F111 is nearly symmetric with respect to 6 = 45°. This suggests
that under in-plane shear, a lamina has the strongest constraining effect on the crack propagation
in the adjacent lamina when the difference of the ply angles of the two laminae is 45°, instead
of 90° under in—plane tensile stress. It also suggests that the 0° lamina in a (0°/90°), cross—ply
laminate does not provide any constraint on the mode HI crack propagation in the 90° lamina,
if GLT is less than, or almost equal to, GTT. Thus, the experimentally observed enhancement
of the in situ shear strength of a unidirectional lamina in a cross-ply laminate (Yamada & Sun,
1979; Chang & Chen, 1987) is likely to be a result of crack arrest at the interface between
laminae which occurs at a late stage in the failure process of the lamina. The thickness of the
outer sublaminates does not have a significant influence upon F1 and F111. But calculations

show that this influence is the more significant, the larger the crack length 2a.

Figures 9.3(a) and (b) demonstrate the influence of the thickness d of the inner (90°)n,

sublaminate upon F1 and F”; for different 6. Both F1 and F111 reach constant values at

d/b = 2.0 for the crack length under consideration.

It is however worth noting that when the crack length is fixed, F1 increases with d/b provided
6 is less than about 70°, with a consequent decrease in the in situ tensile strength. For 6 > 70°,
F1 decreases smoothly with d/b, as in a centrally cracked isotropic strip. The influence of the
ply angle 6 weakens with increasing thickness of the inner sublaminate, d. These characteristics
of the mode I stress intensity factor agree well with the trend in the in situ transverse tensile
strength measured by Flaggs & Kural (1982). They found that the thicker the 902 lamina in
(i0/9og), (6 S 60°) laminate, the smaller its transverse tensile strength. Fm also increases
with increasing thickness of the inner (90°),,l sublaminate when 6 is close to 45°. It shows a
similar variation to that in an isotropic centrally cracked strip, when 6 is close to 0° or 90°.

Figures 9.4(a) and (b) show the influence of the relative size of the crack on normalized mode

I and mode HI stress intensity factors FIW = KI/(ax/c—l) and FHA/7 = KIH/(Tx/c—l),

respectively. In mode I, when 6 '3 70°, EM increases first with a/d but then decreases.

Theoretically, it will eventually become 0 with a ——> d. For 6 > 70°, F1%always increases
with a /d just as it does in a homogeneous isotropic medium of finite width. We can therefore
regard the ply angles 6 less than about 70° as active ply angles and those above 700 as inactive,

in that they offer no constraining effect. In mode III, the active angle is around 45°, while the

inactive angles are in the ranges close to 0° and 90°, respectively. When 6 lies in the active
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Figure 9.3(a): Variation of F1 with d/b and 0 for half crack length a = 0.4b
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Figure 9.3(b): Variation of F111 with d/b and 6 for half crack length a = 0.4b
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Figure 9.4(a): Variation of the mode I stress intensity factor with half crack length a and 0 for
b/d = 2.0
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Figure 9.4(b): Variation of the mode III stress intensity factor with half crack length a and 0 for
b/d = 2.0
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range, there is a upper limit on the stress intensity factor (SIF). For example, when 0 = 0°, the

mode I SIF reaches a maximum value at a /d as 0.78, and when «9 = 45° the mode III SIF reaches

a maximum value at a/d z 0.83. When a/d is larger than these values, the SIFs decrease.

However, if the ply angle is in the inactive ranges, the crack driving forces will increase rapidly

with the relative size of the crack. From the viewpoint of the stability of crack propagation, the

former laminate configuration is favourable, whereas the latter should be avoided.

9.2.2 Calculation of In Situ Strength Parameters

From a micromechanical point of view, the fibre-reinforced composite material is heterogeneous

in the transverse direction. The application of fracture mechanics concepts from isotropic and

homogeneous materials such as the critical energy release rate, will therefore inevitably involve

certain approximations. Parvizi et al. (1978) using work-of-fracture method, as well as the

linear elastic fracture mechanics (LEFM) based method, measured the fracture surface energy at

initiation 7,- in the transverse direction ofunidirectional glass fibre-reinforced epoxy composites.

They found that 71 from both tests was the same, and what is more important, was independent of

the initial crack size. This fracture surface energy has been incorporated into the energy balance

criterion advanced by Aveston & Kelly (1973) to judge when a through—thickness transverse

crack will form in the laminate (Parvizi er al., 1978; Bailey et al., 1979). A similar criterion

for transverse cracking was also presented by Tan & Nuismer (1989), who used it to predict

the in situ crack strain (first-ply-failure strain, FPF) of the 902 sublaminate in cross-ply and

[1300/9033 angle-ply laminates. Good agreement with experimental data was obtained. An

energy criterion for the description of the local behaviour of stresses at the tips of the transverse

cracks in cross-ply laminates was used by Wang & Crossman (1980), and Wang et al. (1984) to

establish the moment at which the initial transverse cracks are about to propagate

G(E,ao) = G, (9.3)

Here 0(3, a0) is the energy release rate at the tip of an initial transverse crack of half length do

at a stress level 6, and Gc is the material’s critical energy release rate (= 271).

When the laminate shown in Figure 9.1 is loaded by an in—plane (yz-plane) load, it experi—

ences stresses aw, a” and ryz. For the configuration of an intralaminar transverse crack shown

in Figure 9.8, Dvorak & Laws ( 1987) specified relations among these stresses and modes of

deformation associated with the two crack fronts designated T and L in Figure 9.8. It is noted

that the "mode II" deformation in that paper associated with L—type crack front is mode IH

with respect to T-type crack front. Therefore, for the crack in the central lamina in Figure 9.1,

the crack tip is under mixed mode I and mode IH stress state. Thus, following Dvorak &
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Laws (1987), the fracture criterion advanced by Hahn & Johnnesson ( 1983) for fibre-reinforced
composites can be used to judge the propagation of the crack under a mixed mode stress state

GI ”2 G1 G111

( g) GIc + g GIc + 0111c ( )
where G; and GH1 are the energy release rates in modes I and III, respectively, and GI, and
G111, are the corresponding critical values. 9 = G16/G1116. The values of G1C and G111,
are very rare. However, we shall see that since we are only interested in the influence of the
configuration of the laminate on the crack driving force, the absolute values of G[c and GIIIc
are not important.

  
 

Under mixed mode conditions a crack cannot propagate in its own plane but must deviate
from it. However, if we are only interested in the instant at which the pre—existing cracks are
about to grow and not in their growth regime, the stress intensity factors at the original crack tip
may be used as a first approximation (Karihaloo, 1982).

For the special loading when only am, = 0 exists, following Dvorak & Laws (1987), the

failure stress at the propagation of the crack can be calculated from the relation

 

GI = GI, (9.5)

Substituting

K% F1302 a= _ = 9.GI E’ E’ ( 6)

into (9.5), we get

— V G” E (9.7) 

Y; = a” — F1 \/‘_l

where E’ = E (Young’s modulus) in plane stress, and E’ = E/ (1 — V2) in plane strain.
Similarly, for the loading when only Ty, = 7' exists, the failure stress at the propagation of

the crack can be calculated from the relation

GIII = GIIIc (9.8)

Substituting
K2 F2 2

Gm = g = 4L2 (9.9)
2;; 2p

into (9.8), we get

3, 2 To, = Law” (910)
FIII x/5

where ,u is the shear modulus.

It is noted that in eqns (9.7) and (9.10), the stresses Ucr and Tc,- at the propagation of the crack
are regarded as the in situ strengths Y; and Sc (in the notation of Chang & Lessard (1991)) of the
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' transverse lamina. However, if 0,, or Tc,- does not result in the complete rupture of the transverse

lamina, i.e. under 0,, or 7-,, the crack does not propagate instantaneously through the whole

thickness of the lamina, these stresses cannot be regarded as the in situ strengths of the lamina.

This problem is concerned with the stability of crack propagation. It is seen from Figure 9.4(a)

that for a given thickness of the transverse lamina the crack driving force (FI\/¢z/_d) increases

with increasing a/d up to a critical value approximately equal to 0.78. When a/d is greater

than ~ 0.78, EMdecreases with increasing a/d when 0 is in the active range. Therefore,

if the relative size a/d of an initial crack is less than ~ 0.78, as is likely to be the case in most

composite materials, once the crack starts to propagate at a certain stress a”, it will propagate

unstably, resulting in the failure of the transverse lamina. On the other hand, if the relative size

a/d of the initial crack is greater than ~ 0.78, the propagation will be stable. This is likely to

happen when the transverse lamina is very thin. The same discussion holds also for mode HI

except that the critical value of a/d is ~ 0.83 for this mode. Therefore, the above definition of

the in situ strengths is appropriate for the size of transverse cracks observed in practice.

Using the finite element method, Wang & Crossman (1980) calculated the mode I strain

energy release rate at the tip of an intralaminar transverse crack in the 90° lamina of a [00/900],

cross-ply laminate. It is expressed as

a _ afla £00132 _ gfla/d) (ti/(1)0”?2
I ‘ 73’ ‘ E

where a is the half-length of the transverse crack, and d is the half-thickness of the 900 lamina.

E and F are the applied stress and Young’s modulus, respectively. 9? (a/d) is called the shape

function. It is independent of the applied load and is determined only by the geometry of the

 (9.11)

crack and laminate. The superscript 0 indicates that the values of G’ and g correspond to the

applied stress a, and the subscript I denotes mode I loading.

When only mode I loading is considered, a comparison of eqn (9.6) with eqn (9.11) shows

that

F} = gfla/d) (d/a) (9.12)
or 2

[F1 \/3] = gfla/d) (9.13)

The qualitative variation of gfla/d) with a/d was shown in above-mentioned paper. It

depicts a variation similar to that of FIW in Figure 9.4(a) when 6 lies in the active range.

gfla/d) also increases with a/d, reaching a maximum value, and then decreases. g; (a/ d)

reaches the maximum value at a/d z 0.85. This is in good agreement with the location of the

maximum of F1 a/d at a/d z 0.78, as discussed above.
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If the values of Y, and Sc expressed by eqns (9.7) and (9.10) for the lamina with 6 = 90°,
(i.e. the angle-ply laminate degenerates into a unidirectional (90°)2n (n = m + n2) laminate),
are denoted by Yt° and 52, respectively, then we have the following ratios

Y1 _ F10 -f0 — F1 = Ft(0,d,b,a) ‘ (9.14)

Sc F911
: EFs a v a '

52 Fm (0 d b a) (915)

where F? and FIOH are the values of F1 and F111 when 6 = 90°.
Let us now examine the behaviour of the two functions Ft(6, d, b, a) and F,(6, d, b, a). From

the discussion of Figures 9.2(a) and (b) we know that the influence of b is not significant for a
large range of a. Its effect becomes important only when a is nearly equal to d. Therefore, we
may neglect the influence of b upon these two functions. Since Ff), F1, F?” and F11I all depend
on the relative crack length a/d and on 6, the expressions (9.14)—(9.15) can thus be rewritten as

Yt _ F? _
K0 _ FI "' Ft(07 a/d) (9.16)

SC _ FIOII _‘53 _ —Fm _F,(6,a/d) (9.17)

Figures 9.5(a) and (b) depict the variations of F, and F, with a/d and 6. For the example
material considered above, E is always greater than or equal to 1. F, is also greater than 1 but
falls below this value at 6 = 0°. The minimum value of F, is 0.99 and is attained at a/d = 0.9
and 6 : 0°. For a given a/d the typical E versus 6 and F, versus 6 curves are shown by solid
lines in Figures 9.6(a) and (b).

From Figures 9.5(a) and 9.6(a) we can deduce the following properties of E. First, it is
always greater than or equal to 1 because F1|9¢9oo < F1l9=900. This means that a lamina in an
angle-ply laminate always restricts the growth of a mode I transverse crack in the neighbouring
lamina having a different ply angle. This constraining effect reaches its maximum when the
difference of the ply angles is 90°, and it decreases monotonically (i.e. Ft —> 1) when the
difference of the ply angles decreases from 90° to 0°. Secondly, Ft reduces with increasing
thickness of the lamina under consideration, i.e. limdnlme Ft —) 1. This is in agreement with
experimental results which show that as the thickness of the 90° lamina increases, its in situ
strength reaches an asymptotic value. Thirdly, F, is a periodic function of the difference in the
ply angles.

F, also exhibits the first and third features of Ft. However, it reaches its maximum when
the difference in the ply angles is about 45°. Bearing in mind the above properties of F, and F3,
we shall demonstrate the merits and drawbacks of the in situ in—plane tensile and shear strength
formulae pr0posed by Chang & Lessard (1991)
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Figure 9.5(b): Variation of F5
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with relative crack length a /d and 6 for b/d :2 .0

 

Figure 9.5(a) : Variation of Ft with relative crack length a /d and 6 for b/d 2.0
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Figure 9.6(a): Typical variation of Ft with 6 (a/d = 0.7). The solid line represents the calculated

values of F1?/F1 from eqn (9.14), and the dotted line the approximate expression (9.20)
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Figure 9.6(b): Typical variation of FS with 0 (a/d = 0.7). The solid line represents the calculated

values of Ff}I/ F111 from eqn (9.15), and the dotted line the approximate expression (9.21)
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Y; A .

Sc C .

Here, K and 5c are the in situ transverse tensile and in—plane shear strengths of a lamina in
a laminate, respectively. A0 is the minimum ply angle difference between the lamina under

consideration and laminae immediately above and below it. N is the number of consecutive
plies in the lamina under consideration. Yt° and SE are the reference transverse tensile and
in-plane shear strengths of a [90,,], unidirectional laminate (n 2 6). A, B , C and D are material
parameters which are determined from experiments.

Expressions (9.18) and (9.19) demonstrate the lamination effect on the strengths of a lamina

in an angle-ply laminate. The in situ transverse tensile strength Y, for the 901, lamina in
(i0/90n), laminate (0 2 0°, 30°, 60°) calculated from (9.18) is found to be in good agreement
with experimental data (Flaggs & Kural, 1982), when A and B are obtained from curve fitting,
as is Sc calculated from (9.19) for cross-ply laminates (0,,l /9O,,2),.

The constraining effect ofthe neighbouring laminae on the strengths ofa lamina is determined

by the second terms on the right hand side of eqns (9.18) and (9.19). It is seen that the in situ

strength ratios tend to 1 when the thickness of the lamina becomes large. This agrees with the

properties of F, and F, deduced above. The variation of Yt/ Yt° with the difference in the ply

angles, depicted by sin(A0), also conforms with that of Ft. However, sin(A0) does not seem
to describe the observed variation of Fs with the difference in the ply angles. In addition, if

we consider the first-order derivative of Ft with respect to 0, we see from the solid line in

Figure 9.6(a) that it tends to zero when 0 = 0° and 90°, i.e. when the difference between the
ply angles of constraining sublaminate and the 90° lamina in the considered [(:1:0)n2/ (90°)nl]s
laminate is equal to 90° and 0°. Expression (9.18) has a zero gradient when A0 = 90°, but nOt
when A0 = 0°. Same observations hold also for the behaviour of F5.

Based upon the above observations and taking into account the merits of the formulae (9.18)—

(9. 19), we propose a set of modified formulae for calculating the in situ strength parameters for
a unidirectional lamina when it is placed in a multidirectional angle-ply laminate

Y;17,0 = 1+Aft(A6) (9.20)
S.5.3 = 1+Cfs(A6) (9.21)

To err on the conservative side, the functions ft(A«9) and f,(A6) must only take into account
the minimum constraint offered by the neighbouring plies, as in eqns (9.18)—(9.19). In addition,
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they must be positive and periodic functions of A9. These properties and the shapes of Ft and

F, curves in Figures 9.6(a) and (b) suggest that ft(A0) and f,(A0) can be chosen as

 

 

_ . sin2(A6a) sin2(A0;,)

MM) ‘ mm [1+sin2(A0,)’ 1+sin2(Aob) (9'22)

_ . sin2(2A9a) sin2(2A65)

MAB) - mm [1+sin2(2A0,)’ l+sin2(2A0a) ’ (9‘23)

where A0,, and A01, denote the ply angle differences between the lamina under consideration and

laminae immediately above and below it. The influence of the thicknesses of the neighbouring

laminae is neglected.

It will be shown below that the parameters A and C in eqns (9.20)—(9.21) play the same role

as A/NB and O/ND in formulae (9.18)—(9.19) of Chang & Lessard (1991).

The approximations (9.20)—(9.21) to the ratios Y;/ Y? = F?/F1 and Sc/Sf:J = F1911/Fm are

shown in Figures 9.6(a) and (b) by dotted lines. The values of A and C are chosen so that the

maxima predicted by (9.20)—(9.21) (at 6 = 00 for mode I and 450 for mode III) coincide with

those of Ff/FI and FfII/FHI. This gave A = 0.34 and C = 0.207 for a/d = 0.7 of Figure 9.6.

The same matching procedure was used for different values of a/d and the results are shown

in Figure 9.7, together with the variation of A/NB and C/ND in expressions (9.18)—(9.19) with

N. An increase in d is the same as an increase in N.

The size of flaws in a material is unlikely to increase in proportion to its overall size.

Therefore, if we assume that a remains more or less constant as d (and also N) increases, the

above trend in the variation of A and C with d/a surprisingly confirms the inverse exponential

decay predicted by the formulae ofChang & Lessard (1991). Ofcourse, there is still a substantial

difference in the absolute values ofA and A/NB , and C and C/ND (Figures 9.7(a) and (b)). The

cause of this difference needs to be clarified by dedicated experiments and more sophisticated

analysis, which is beyond the scope of the present exposition. However, as the formulae

(9.18)— (9.19) are deduced from experimental data and they predict accurately the influence of

the thickness upon the in situ strengths, they will be retained in the modified in situ strength

parameters of eqns (9.20)—(9.21)

Y; A

Y_t0 = 1 + fig ft(A6) (924)

Sc 0

C

in which f,(A6) and f,(A6) are given by (9.22) and (9.23). Based on the properties of ft(A0)

and f,(Al9), eqns (9.24)— (9.25) give a conservative estimate of the in situ strengths compared

with eqns (9. 18)—(9. 19).
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Figure 9.7(a): Variation of A with d/a, and of A/NB with N
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Let us discuss briefly the influence of multiple transverse cracks on the in situ strength

parameters (9.24) and (9.25). An examination of Figures 6.3 and 6.7 shows that as the crack

spacing reduces, so do (13(1) (F1) and 9(1) (F111) for all ply angles 6 and crack lengths

a /d. Although this reduction is significant, especially when /\/d is small, the ratios F?/F1

and FBI/F111 in eqns (9.16) and (9.17) change little when the crack spacing is reduced. For

example, when b/d = 2.0 and a/d = 0.7, FRO = 90°)/F1(0 = 0°) is equal to 1.298 and 1.216

for A/d = 2.0 and 6.0, respectively. For the same geometry, anw = 90°)/F1n(0 = 45°) is

equal to 1.126 and 1.106, respectively. For this reason, the interaction of cracks was ignored in

the calculation of the in situ strengths.

Another problem which has been ignored in most of the research of transverse cracking,

including the present work, is the propagation of a transverse crack in the direction of fibres, i.e.

z-direction in Figure 9.1 (a). Only the fracture dynamics in the direction perpendicular to the

fibres, i.e. m-direction in Figure 9.1 (b), has been taken into account. For brevity, we refer to the

former direction of propagation as L (longitudinal) and the latter as T (transverse), following

the notation of Dvorak & Laws (1987) as shown in Figure 9.8. If the size of the initial crack

in z-direction is (or supposed to be) of the same order as its size in :v-direction, then the crack

problem must be considered as a three-dimensional one. The present two-dimensional analysis

should be regarded as a first approximation to the more difficult three-dimensional problem.

T-type crack front

 

 

 

 

I
< \

>\

\

\
L-type crack front

 

   

 
VI

Figure 9.8: An elongated elliptic intralaminar transverse crack in a laminate. The coordinate

system follows that in Figure 9.1. The direction of fibres in the central lamina (transverse

lamina) is parallel to z-axis. It is assumed that the crack in z-direction is much longer than that

in :z-direction (After Dvorak & Laws, 1987)

The experimental observations by Parvizi et al. (1978) clearly showed the process of
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transverse cracking in the 900 lamina in a cross-ply laminate under unidirectional tension.

There are three basic forms of transverse cracking, depending on the thickness of the 900

lamina. When the 900 lamina is comparatively thick, the majority of the transverse cracks span

the whole width of the specimen and propagate instantaneously. When the thickness is reduced

(below ~ 0.4 mm), transverse "edge" cracks are observed. It is important to note that these edge

cracks grow very slowly towards the inner area of the specimen under increasing loading. When

the thickness is further reduced (to 0.15 mm), transverse cracks are not observed prior to the

complete failure of the specimen. From these observations, we may deduce that (i) in the case of
thick lamina, the propagation ofL— or T—type transverse cracks is indistinguishable, and (ii) in the

case of moderately thick lamina, it is likely that an initial transverse crack which spans a certain

length along the direction of fibres propagates as a T-type crack to form a through-thickness

crack. It is unlikely that a short (measured along the direction of fibres) through-thickness crack

appears first and then propagates as an L-type crack, because of the very slow propagation rate

of a through—thickness crack towards the inner area of the specimen. It is obvious that such a

crack propagation meets strong resistance.

On the theoretical side, the work by Dvorak & Laws (1987) deserves particular attention

in that they attempted to predict the propagation of a transverse crack in the direction of the

fibres, i.e. L—type propagation in Figure 9.8. They assumed that the intralaminar transverse

crack (nucleus) in z—direction is much longer than that in x-direction so that the crack size

is not important in the analysis. They calculated the strain energy release rates at the T and

L crack fronts. These energy release rates were used to determine the direction in which the

crack might propagate. The influence of the outer orthotropic sublaminates on the crack driving

force at the tips of the central intralaminar crack was approximated by that for a cracked finite

isotropic strip sandwiched between two dissimilar isotropic half-planes considered by Hilton &

Sih (1971). Depending upon the size of the crack in :v-direction (equivalent to a in Figure 9.1(b))

relative to the thickness of the transverse lamina (equivalent to d in Figure 9.1(b)), Dvorak &

Laws (1987) found that three patterns of propagation of the initial crack were possible. When

the transverse lamina is relatively thick (a << d), the failure is caused by T-type propagation

followed by L—type cracking. For transverse lamina of intermediate thickness (0 < a/d < 1),

the sequence of propagation was not well defined. It is possible however that the crack first
propagates in T—direction until it reaches a certain size amr corresponding to the maximum

of EM (see Figure 9.4(a)), whereafter it begins to propagate in L-direction. It is also
possible that propagation happens spontaneously. For thin transverse lamina, Dvorak & Laws

(1987) assumed that the initial crack was already a through-thickness crack, i.e. a/d = 1, so
that the strength of the transverse lamina can only be controlled by propagation of the initial

crack in L-direction. This pattern of propagation of the initial crack is different from that being
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considered in this Chapter, because a through—thickness crack cannot exist prior to loading. It

must form as a consequence of the propagation of an initial crack in T—direction, which is the

subject of the present Chapter. We noted in passing that in the work of Dvorak & Laws (1987)

the size of the initial crack in z-direction does not play a role in the analysis, irrespective of the

lamina thickness. In that sense, their analysis is also a two—dimensional one.

Based upon the above discussion, we conclude that the fracture mechanics analysis in this

Chapter is important in determining the in situ transverse strength of a unidirectional lamina in

laminates. The two-dimensional model which ignores the size of the initial crack in the direction

of the fibres is a good approximation of the failure mechanism in laminates judging by both the

available experimental evidence and the previous theoretical studies.

9.2.3 Failure Criterion of Lamina in Laminates

A multidirectional angle-ply laminate can fail in a variety of ways. It can fail because of matrix

cracking (transverse cracks), fibre breakage, fibre buckling, and delamination (Herakovich,

1982; Chang et al., 1991). However, as mentioned previously, in most laminates the first failure

mode is transverse cracking of the laminae along fibre directions. Although the transverse

cracks do not directly destroy the overall integrity of the laminates (the failure load of a laminate

is much larger than the load at the appearance of transverse cracks), they have the potential

to induce other kinds of failure. The growth of transverse cracks results in the redistribution

of the stresses in a laminate. They are also known to contribute to the delamination of plies.

The eventual failure of a laminate is caused by extensive delamination and/or fibre breakage.

Therefore, we shall use the matrix tensile failure criterion (Hashin, 1980; Chang & Lessard,

1991) to judge the appearance of transverse cracks in laminae in a multidirectional laminate.

This criterion can be written as

gt)? (SE): = 1; (i=1,...,L) (9.26)

where Y and S are the in—plane transverse and shear stresses in a lamina due to actual in-plane

laminate loading; Y; and S, are the corresponding in situ strengths, and L is the number of

laminae in the laminate. This failure criterion traces a supersurface in 2L-dimension space, if

all L laminae have different fibre orientations and thicknesses. If the failure of the laminate is

assumed to coincide with that of the first lamina, i.e. the equality in eqn (9.26) is satisfied by the

stress state in each of the laminae in the laminate, then (9.26) corresponds to the first-ply-failure

(FPF) criterion of Tsai & Hahn (1980).

For a multidirectional laminate subjected to in-plane loads N9, N2? and N2 (in the notation

of Tsai & Hahn (1980), see § 3.7), let us denote the left hand term in eqn (9.26) by
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q§= (g):+(§):; (i=1,...,L) (9.27)

q,- can be regarded as a stress norm, if the space of the stresses {Y, S} has a variable metric

(1 / Y), 1 /So). It is similar to the “strain norm” used by Park (1982) in the optimum design of

laminates.

9.3 Optimum Design of Multidirectional Laminates

9.3.1 Problem Formulation

For a given composite composition and in-plane loads, the stress distribution in the laminae

is determined by the laminate configuration, namely by the ply angles and thicknesses of the

constituent laminae. If these design variables are so chosen that the stress state in each lamina
is well below the failure state described by (9.26), then the load carried by the laminate will be

enhanced. This objective is achieved by minimizing the maximum value of q,- (2' = l, .., L).

Suppose that under given in—plane loads {Nf) , N3 , N2}T, the values of the stress norm of the
laminae are

q? (z’ = 1, ...,L). (9.28)

When the in-plane loads are increased proportionally by a factor k > 1

N1 N10

N2 = k N? , (9.29)

N6 N2

the value of q,- will be

kg? (i=1,...,L). (9.30)

The in-plane loads cannot be increased beyond E, where

1
E: ——

maxq?’
(2' = 1, L) (9.31)

From eqns (9.29) and (9.31), it is seen that if the laminate is designed under a given loading

so that maxqi (z = 1, ..., L) is minimized, then the load at which one of the laminae fails can be

maximized. If moreover, the laminate is designed to use a fixed volume of material, then the

optimum design makes the most effective use of the available composite material.

To achieve the above goal, we formulate the following optimization problem

Maxk E Min max - (9.32)
anti giati{ i 92}

169



subject to

71' 71'
——< - <— .2_ a, _2 (933)

Zt, = h (i=1, ,L) (9.34)

:S t:- S? (9.35)

where 0,» and t,- (2' = 1, ..., L) are the ply angles and thicknesses, respectively. They form the
design variable vector in this optimization problem. h is the prescribed total thickness of the
laminate.

The objective function of the above minimax Optimization problem (9.32)-(9.35) is not
differentiable with respect to the design variables. This is because of the piecewise continuous
functions appearing in the stress norm q,- (see relations (9.27), (9.23), (9.22), (9.21), and (9.20)).

9.3.2 Treatment of Non-differentiability of In Situ Strength Parameters

As the bound-formulation technique (Olhoff, 1989) that will be used for the solution of the
problem (9.32)—(9.35) requires the evaluation ofgradients, it is expedient to introduce continuous
functions with continuous first order derivatives. For this we proceed as follows. Let

F = Min[f1, f2] (9.36)
where f1 and f2 are scalar functions in 2L-dimension space. Next, let us construct a function of
f1 and f; in such a way that not only is this function as close as possible to F but so are its first
derivatives. Such a function could, for instance, be the simple weighted expression

7: = 0(f1,f2)f1+ [3(f1,f2)f2 (9.37)

where the functions a(f1, f2) and fl(f1, f2) are continuous and at least first—order differentiable.
Moreover, they must satisfy the following conditions:

f1 > f2 2 a —) 0; fl -—> 1 (9.38)

f1 < f2 : a —t 1; fl —+ 0 (9.39)

f1 = f2 1 04 = 3 (9.40)

a + B E 1 (9.41)

and

f1 > f2 : f. —> f2. (9.42)

f1 < f2: .7‘} —> figs (943)
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where subscript x denotes differentiation with respect to x (a design variable). The conditions

(9.38)—(9.43) are met for instance, by the following functions a(f1, f2) and ,6(f1, f2):

a = étl—tanhAm—fzn (9.44)

,3 = %[1+tanhA(f1—f2)1 (9.45)
where A is a judiciously chosen large positive number.

Functions (9.44) and (9.45) identically satisfy the conditions (9.40)—(9.4l). The satisfaction

of conditions (9.38)—(9.39) is dependent on the choice of A. In the numerical computations,

where the step length is finite, conditions (9.38)—(9.39) can be satisfied to any desired degree of
accuracy. It is easily verified that the functions (9.44) and (9.45), together with the conditions

(9.38)—(9.39), if these have been satisfied to the desired accuracy, will lead to the fulfilment of

the conditions (9.42) and (9.43). The influence of A on the closeness of the weighted function

of the form (9.37) to the original expression (9.36) is examined graphically in Appendix F.

ft and f3 in (9.22) and (9.23) are now modified to read

 

m2(A0a) sin2(A05)
MAG) 0“ 1 + sin2(A0a) + fi’ 1 + sinzma.) (9'46)

fame) = a. 511132139» +5; Mme“) (9.47) 

1 + Sln2(2A0a) 1 + sin2(2A0b)

where at, fit, as and fls are

 

 

 

 

at = 2 {1 tanhA [I f::in2(:A0a)_ 1 32:38:20]} (948)

fi‘ = 31 + “mm [1:nAsin2(6A0) ‘ 132151128326)” (9'49)

as = 2 {I _ tanhA [1 filinigAG; _ 1 :::flfé6::)65)] } (9‘50)

’35 = i{1+ tanhA [132513535 ‘ 13:33:39.)” (9'51)
We can now use the bound-formulation method to solve the optimization problem (9.32)—

(9.35). In this method a new variable 7 is introduced as the objective function which is then

minimized with respect to the augmented vector of design variables (01, ..., 1%, t1, ..., tL, 7)T.

The original minimax statement of the objective function (9.32) is replaced by constraints

q,- S 7. In this way the original optimization problem (9.32)—(9.35) is replaced by the following

minimization problem:

Min 7 (9.52)
62': ti, ’7
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subject to

(Ii-7 S 0 (9.53)
71' ’/T

__< . <_

.2_ 62 _2 (954)

Zti = h (i=1, ,L) (9.55)

is t- S? (9.56)

9.3.3 Sensitivity Analysis

For the solution of the optimization problem (9.52)—(9.56), all the necessary gradients (sensi-

tivities) of the objective function and constraints with respect to 'y can be readily calculated

analytically. Those of q,- with respect to (it and t1- are more complicated. We denote the vector

of design variables (01, ..., 9L, t1, ..., tL, 7)T as (2:1, ..., $2L, x2L+1)T. The derivatives of q? with

respect to the design variables can be expressed as

t _ gag/fig-
6112]“ _ Y? 8233' 562 6x]-

2 2

_ZY_38_}/f_ £845? (i=1,...,L;j=1,...,2L)
(9.57)

a?

where the derivatives of the stresses Y and S are computed using their appropriate expressions

from the classical lamination theory (Tsai & Hahn, 1980, see § 3.7). In principle, these

derivatives can also be analytically calculated, but in the optimization procedure used here they

will be evaluated numerically to any desired accuracy. The derivatives of the in situ strength

parameters Y; and Sc are calculated as follows

 

 

 

 

ani 0 1 aft(A0)

E = Y; 15? 8x . .

85;- _ 5° i 8fs(At9) (W = 1,...,L) (9.58)

% = _ABY°f_—;E£6:) 6,-k
J ._ . ,_ . _ '—

aSci _ ___CDSQMM) 6 (2 —1,--.,L,J — L+1,...,2L,k _ ] L) (9.59)

8333’ _ C {ED—4T 2k

in which flag—92 and age are calculated from the expressions (9.46)—(9.51). a” is the

Kronecker delta, (6,7c = 1, z' = k; 6,-k = 0, otherwise).
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9.3.4 Design Examples

The above optimization procedure was applied to the optimum design of a multidirectional

laminate shown in Figure 9.9. Figure 9.9(a) shows the in-plane loads, and Figure 9.9(b) shows

the detailed configuration of one half of the laminate. This laminate is composed of L laminae
of different ply angles and thicknesses. It is physically symmetric with respect to its geometric

middle plane, i.e. the laminae are stacked in the order (6L/2/.../01),. The strength constants

used in the calculation of the in situ strengths are adapted from Chang & Lessard (1991), i.e.
Y? = 44.5 MPa, SE = 48.2 MPa, A = 1.3, B = 0.7, C = 2.0 and D = 1.0.

Because of the highly nonlinear nature of the functions q,- and of the fact that they can attain

their minima at different combinations of design variables, the above optimization problem can

have many local minima. In the computational scheme, the global minimum is sought by a

random search technique. The optimization process is begun from different initial design points
(33?); (j = 1, ...,2L;m = 1, ..., M) (m denotes the mth initial design point) in the space of
design variables {95,-}T (j = 1, ..., 2L). These random initial design points are chosen so that

they are uniformly distributed in the design space, and the global minimum is sought from

among the local minima corresponding to these randomly chosen initial designs. In all cases,

M was chosen to be equal to 120. As will be seen later, these initial designs cover the design

space with sufficient density to give the global optimum design when the number of unknown

ply angles is not excessive (0L/2 S 5). When the number of unknown ply angles exceeds this

value, the optimization techniques converge to what appears to be a local optimum solution.

This will be further discussed below when we consider examples with six or more unknown ply

angles.

The optimization problem was solved by standard mathematical programming techniques

available in a general-purpose package ADS (automated design synthesis) (Vanderplaats, 1987).

In the following, we present three examples ofthe optimum design of symmetric multidirectional

laminates under in-plane loads. Because of symmetry, only one half of the laminate needs to be

considered. Therefore, in the sequel the number of the ply angles and/or thicknesses will refer

to only one half of the laminate. In the first two examples, the number of ply angles 6,- varies

between four and eight. The thickness of each lamina is however assumed to be constant and

equal to 0.140 mm so that the total number of design variables ranges between four and eight. In

the third example, the number of the ply angles is 4, and both the ply angles 0,- and thicknesses

t,- are chosen as variables. Solution of each example problem required numerous calls to ADS.

(i) A Symmetric Laminate of 4 or 5 Ply Angles

The change of the load factor k during the optimization process for four in-plane loading

combinations is shown in Figures 9.10 and 9.11, respectively. The initial guesses to ply angles

(chosen pseudo-randomly) and their final optimum values, and the optimum load factor F, i.e.
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Figure 9.9: The laminate configuration. The in-plane loading shown represents the resultant

forces over the thickness
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km”, are given in Tables 9.1 and 9.2, respectively.

Table 9.1: Summary of optimized ply angles in a symmetric laminate of 4 ply angles

 

In-plane Initial design Final design

loading 01, 62, 03, 04 61, 627 03, 64 kmaz £2311

27.04,—32.26,63.3l,11.40 62.68,—54.20,81.23,-1.96 1.59 2.18

20.00,—46.46,40.55,45.62 32.30,-56.6l,—7.78,33.87 1.86 1.98

-46.92,73.43,-80.42,47.62 -27.46,57.58,-43.61,20.11 1.34 4.06

63.77,79.07,26.81,84.40 45.45,51.72,43.38,39.58 10.21 13.43

 

 

 

 

Q
O
C
‘
W

       

Table 9.2: Summary of optimized ply angles in a symmetric laminate of 5 ply angles

 

In-pl. Initial design Final design

load. 01, 92, 63, 94, 05 61, 027 63, 64, 05 kmaz‘ Egan;

 

a 79.77,—34.34,24.31,-22.12,-64.08 45.90,—22.64,30.14,—19.74,-80.81 1.64 1.55
 

22.82,-60.60,—53.47,-70.64,—40.37 31.38,-58.89,28.50,—31.42,28.62 2.19 4.76
 

 

     

b

c —71.85,67.20,38.61,71.85,64.68 -29.80,55.69,-44.26,42.20,—2.68 1.37 7.00

d 80.14,33.04,57.99,35.35,86.63 48.06,42.09,45.25,42.58,47.18 21.50 19.91   

The in-plane load vector [Nf’, N3, Ng]T was chosen so that the values of q,- (2' = l, ..,4)

were of the order 1 during most of the optimization process. Figures 9.10 and 9.11 clearly show

the significant improvement in the load carrying capacity of the laminate achieved through

optimization. For the loading case d, the improvement is particularly dramatic. Intuitively, the

best configuration of the laminate for this loading would appear to be the one in which all ply

angles are equal to +450 (Figure 9.12). When all ply angles are equal to +450, the stress norm

q,- for each ply in the laminate (eqn (9.27)) will be identically equal to zero, that is to say, the

optimum value of the objective function 7 (9.52) will be exactly equal to zero. Although this

design is obviously the global solution, the numerical optimization techniques have difficulty in

reaching this exact solution because of round—off errors. For the case of 5 unknown ply angles

under loading case (1, the optimum value of the objective function 7 is 0.01, and the values of q}

are (qf, (1%, q§, q}, q§)T = (0.0022, 0.0015, 0.0002, 0.0011,O.0013)T. It is seen that the values of

q,- are very small but not exactly zero. Therefore, the optimization process may be regarded to

have converged to the global optimum solution within the accuracy of numerical calculations.
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Figure 9.10: Evolution of load factor k for a symmetric laminate of 4 ply angles during
optimization for four loading cases: (a) [Nf, N3, N3]T = [200, 200, 0]TkN/m; (b) [200,0,200]T
kN/m; (c) [400,200,0]T kN/m; and (d) [200,200,200]T kN/m

 

   

2.5 I I I I l I I I I 25.0

d b

2.0 - - 20.0

a

1.5 - - 15.0
k C k

(a,b,C) (d)
1.0 — - 10.0

0.5 _ - 50

0.0 I I l I I I I I I 0.0

0 10 20 30 40 50

n — Number of calls to ADS

Figure 9.11: Evolution of load factor k for a symmetric laminate of 5 ply angles during
optimization for four loading cases: (a) [N9, N2", N§]T = [250, 250, 0]TkN/m; (b) [250,O,250]T
kN/m; (c) [500,250,0]T kN/m; and (d) [250,250,250]T kN/m
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On the other hand, from a strength point of view, the configuration of identical ply angles is not

plausible because of the "clustering effect" that reduces the strength of the unidirectional lamina

in the laminate. It is also noted that there is a difference between the ply angles of the surface

lamina and the lamina immediately beneath it. Such a design prevents a crack in the interior

lamina from running through the thickness of the laminate and reaching the surface.

20

7:0

450

a __

<——— ——->

<—

20‘

 

   

(a) (b)

Figure 9.12: The stress state (a) referred to as loading case d in Figures 9.10—9.11, 9.13—9.16

and Tables 9.1—9.9 is equivalent to the unidirectional tension (b)

In Tables 9.1 and 9.2, kin is the load factor corresponding to the initial design and km“. the

optimum design. The ratio km”/k,-,, indicates the relative enhancement in the loading carrying

capacity of the optimally designed laminate. The effect of optimization is manifested in two

ways. First, as the optimization procedure aims at reducing the transverse in-plane and shear

stresses appearing in the failure criterion (9.26) of the lamina, a considerably large stress is

directed along the fibre direction of every lamina in the optimally designed laminate. Secondly,

the stress norms q,- (i = 1, .., 4 or 5) of individual unidirectional laminae in the laminate have

almost the same value. For example, for 5 unknown ply angles under load case 0, the values

of q? are (qlz, (1%, (1%, q§,q§)T = (0532,0533,0.532,0.532,0.536)T. These two observations,

although based on numerical computations, would indicate that optimization is tending to create

a ‘smart’ composite. In an anisotropic composite it aims at distributing the stresses (in magnitude

and direction) according to the strengths of the material in different locations and directions, i.e.

"the strongest carries the largest share". It also aims at achieving a uniform stress norm for all

laminae. This should not however be confused with the uniform average strain energy density

criterion well-known in structural optimization (Venkayya et al., 1968; Venkayya, 1971).
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(ii) A symmetric laminate of 6, 7 or 8 ply angles

In minimizing the compliance of a symmetric angle-ply laminate subjected to flexural
loading, Cheng (1986) found that the number of different angles of unidirectional laminae in an
optimum laminate is no more than 4. The present example is intended to study the influence
of the number of different ply angles on the results of optimization. The evolution of the load
factor k is shown in Figures 9.13, 9.14 and 9.15, respectively when the number of unknown
ply angles is 6, 7 or 8. The numerical results are given in Tables 9.3, 9.4 and 9.5, respectively.
The thickness of the laminate here is larger than that in example (i). In order to maintain q,- at
approximately the same value as in example (i), the prescribed loadings [Nf, N3, N§]T used in
this example are increased in proportion to the thickness of the laminate.

Table 9.3: Summary of 6 optimized ply angles in symmetric laminate

 

 

 

 

      

In-plane Initial design Final design

. 91 92 93 91 92 63 kload 11 kmaz‘ g
1g (04 05 06) (04 05 96) i"

a 88.32,-76.59,36.77 46.95,-54.49,69.92 1 66 1 57
-56.06,60.07,-1.93 —53.13,69.67,-4.31 ' ’

87.94,-60.29,83.41 34.78,—58.20,37.73
b 10.39,—52.10,23.43 21.99,-57.66,33.42 2’40 323

c 72.46,-24.38,59.52 29.59,—48.53,39.02 1 40 1 97
-25.12,40.38,-37.48 —48.37,34.27,—l7.85 ’ '

d 23.03,66.31,89.44 46.74,48.75,49.28 4 31 5 l6
—64.13,68.94,67.41 17.54,49.28,48.36 ‘ '
  

The 8 optimized angles in the third column in Table 9.5 do not exactly merge into only
4 different values. Nevertheless, they show a trend towards the selection of a finite set of
angles. For example, the 8 optimized angles for loading case a are roughly from a set of
four angles, i.e. (-90°, —30°, 0°, 40°). Those for loading cases b, c and d are basically from
the sets (—57°, 30°, 37°, 90°), (—40°, —25°, 11°, 40°, 50°) and (12°, 27°, 50°). Besides Cheng’s
prediction mentioned above, Miki (1985) also showed that in designing an angle-ply laminate
for a required flexural stiffness, two groups of ply angles, i.e. (+01/ — 01) and (+62/ — 02), are
enough. The difference between the strength design dealt with in this Thesis and the stiffness
design of Miki (1985) is that the strength depends on the size and location of the lamina in the
laminate, whereas stiffness is a global (integral) characteristic of the laminate as a whole.

It is noted that not all the optimum ply angles for loading case d are close to 45° in each
of the three cases (6,, z’ = 1, ..., 6 or 7 or 8). As discussed in example (i), the global optimum
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Figure 9.13: Evolution of load factor k for a symmetric laminate of 6 ply angles during
optimization for four loading-cases: (a) [N?, N3, N2]T = [300, 300, 0]TkN/m; (b) [300,0,300]T
kN/m; (c) [600,300,0]T kN/m; and (d) [300,300,300]T kN/m
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Figure 9.14: Evolution of load factor k for a symmetric laminate of 7 ply angles during
optimization forfour loading cases: (a) [N?, N5), N§]T = [350, 350, O]TkN/m; (b) [350,0,350]T
kN/m; (c) [700,350,O]T kN/m; and (d) [350,350,350]T kN/m
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solution for loading case d is that all the ply angles are 45°, no matter how many ply angles

are chosen. Therefore, the solutions for loading case d for the cases when 6L/2 > 5 must be

local optima. The major reason for the presence of local optima is the multi-modal nature of the

problem as a result of the high nonlinearity of the stress norm qz- with respect to the ply angles

0,-. When the number of the ply angles is large, the pseudo-randomly chosen initial designs do

not cover the design space sufficiently densely as to lead to the global optimum solution. The

situation did not improve even when 400 initial designs were chosen pseudo-randomly.

Table 9.4: Summary of 7 optimized ply angles in symmetric laminate

 

 

 

 

      

In-plane Initial design Final design

. 91 92 93 91 92 93 k

loadmg (04 05 06 07) (94 95 06 67) km” “E?

a 72.46,-24.38,59.52 60.16,—16.97,41.23 1.70 1.44

-25.12,40.38,-37.48,—67.93 -18.45,39.75,—22.47,-76.01

b 88.32,-76.59,36.77 28.68,—56.33,29.18 2.13 2.32

-56.06,60.07,—1.93,34.64 -56.90,30.39,-4.72,35.35

c -48.38,52.77,—80.8l -30.71,45.93,-40.31 1.43 1.31

26.09,-23.17,40.63,—5.19 46.31,—40.14,38.67,—3.47

d l7.30,—7.85,29.16 46.10,-l.31,46.15 3.23 4.38

44.80,30.50,14.37,36.08 48.99,49.91,47.91,49.30
 

[Nf) , N3, N§]T are twice those of example (i)

Table 9.5: Summary of 8 optimized ply angles in symmetric laminate. The prescribed loadings

 

 

 

 

  

In-plane Initial design Final design

. 91 92 93 94 01 92 93 94 k

loadmg (as 06 07 as) (as 06 67 63) km” “gm
a —44.11,87.56,33.79,71.26 -3.08,—90.00,—28.51,88.00 1.70 2.17

-45.26,-60.16,-52.71,28.82 -28.49,—90.00,—27.59,40.05

b 39.13,-13.67,54.59,87.60 36.66,—57.68,36.47,90.00 2.22 2.64

26.93,8.42,—52.88,76.60 37.31,24.58,-57.77,31.65

C -48.36,52.77,—80.79,26.07 -26.94,49.26,-37.54,40.09 1-40 1.75

-23.15,40.62,-5.16,38.39 -42.78,55.36,-24.16,1086

d 80.21,56.30,79.78,—66.57 49.29,49.27,49.29,26.60 3.62 4.04

61.31,5.17,84.22,17.93 49.42,11.91,50.14,49.33    
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Figure 9.15: Evolution of load factor k for a symmetric laminate of 8 ply angles during

optimization for four loading cases: (a) [Na N3, N§]T = [400, 400, 0]TkN/m; (b) [4OO,0,400]T

kN/m; (c) [800,400,O]T kN/m; and (d) [400,400,400]T kN/m

(iii) A symmetric 4-ply laminate with variable angles and thicknesses

In this example, we allow both the ply angles 01- and thicknesses t,- (z' = 1, 2, 3, 4) of the

laminae to vary in the optimization process. The half thickness h/2 of the laminate is set equal

to 20 to. The lower and upper bounds of t,- are set equal to to and h/2, respectively. The

evolution of the load factor k during the process of optimization is shown in Figure 9.16. The

numerical results are given in Table 9.6. The prescribed loadings [N9, N20, N§]T are 5 times

those in the first example. The thicknesses of the laminae seem to change significantly from

the initial values which were pseudo-randomly chosen. It is noted that the sum of the initial ply

thicknesses is less than the prescribed half thickness h/2 of the laminate. However, the sum of

the Optimized ply thicknesses is always equal to h/2 for the four loading cases. The optimized

ply angles are different from those of example (i) when the thicknesses were fixed. Another

feature is that the relative enhancement of the load factor kmaI/kin in this example is much

larger than that in the first example. This can be attributed to the small initial ply thicknesses

which result in a small initial load factor kin and to the flexibility offered by the large number

of design variables (eight instead of four or five in example (i)).
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Figure 9.16: Evolution of load factor k for a symmetric laminate when ply angles and thick-

nesses are design variables during optimization for four loading cases: (a) [Nf’, N29, N§]T =

[1000, 1000, O]T kN/m; (b) [1000,0,1000]T kN/m; (c) [2000,1000,0]T kN/m; and (d)

[1000,1000,1000]T kN/m

9.3.5 Sensitivity of Optimum Design

From a mathematical point of view, the solution (i.e. the optimum design variables) of a

constrained optimization problem may fall at a point corresponding to an extremum of the

objective function or at the boundary of the feasible region. In both cases, the optimum design

can become quite sensitive to changes in the design variables. If this is the case for the optimum

design of the composite laminates, then a minor deviation of the ply angles and/or thicknesses

from the theoretical optimum design can result in a dramatic loss of the load carrying capacity

of the laminates. Therefore, it is prudent to check the sensitivity of the optimum design with

respect to design variables. This can be done by rounding off the optimum ply angles to the

nearest commonly used values 0°, 30°, 45°, 60° and 90°, and the optimum thicknesses of

laminae to the nearest multiples of the thickness of a single ply (0.14 mm), that is, the optimum

design is compared with a nearly—optimum design. The results of three sensitivity analyses are

given in Tables 9.7, 9.8 and 9.9, respectively.

A comparison of the mathematical optimum design with the nearly-optimum design shows

that the load factors km” for the latter are always less than those for the former under loading
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Table 9.6: Summary of optimized ply angles and thicknesses in symmetric laminate. The
prescribed loadings [N9, N2, N2]T are 5 times those of example (i)

 

 

 

 

      

In-plane Initial design Final design

. 91 92 93 64 91 (92 93 94 kloadln kmaz f“
g (t1t2t3t4) (t1 152153 t4) in

a 40.74,—76.20,80.44,—3.55 38.39,-58.61,47.95,-9.85 1 51 4 78
0.189,0.424,0.255,0.140 O.524,1.175,0.738,0.363 ' '

b -72.14,-60.56,42.46,7.85 28.72,—56.54,35.02,30.41 2 04 5 77
0.364,0.677,0.189,0.521 O.541,0.768,0.398,1.094 ' '

c 66.41,75.63,—83.31,28.59 -35.20,35.11,-59.54,15.51 1 15 10 45
0.624,0.356,0.268,0.291 O.924,0.982,0.399,0.496 ‘ '

79.35,19.19,79.18,51.39 48.13,43.64,48.14,38.59
d 0.144,0.306,0.384,0.147 0.426,0.901,1.042,0.432 1364 4930
  

Table 9.7: Nearly-optimum ply angles in a symmetric laminate of 4 ply angles. The mathemat-
ically optimized ply angles are given in Table 9.1

 

 

 

 

 

In-plane Nearly-Optimum Design

loading 01 02 03 64 km“

a 60 -6O 90 0 1.35

b 30 -60 0 30 1.5 1

c -30 60 -45 30 0.99

d 45 45 45 45 oo    
 

cases a, b, and c, but the difference is not large. This indicates that the design near the optimum
solution is fairly stable and not very sensitive to changes in the design variables. The situation
for loading case d is quite different. The nearly—optimum design in which all the laminae are
oriented at 45° will carry as much load as possible. The reason for this is simple. First, under
this loading condition, the laminate is actually subjected to a unidirectional tension along the
45° direction (Figure 9.11). Secondly, the strength criterion (9.26) does not take into account
the stress along the direction of the fibre in a unidirectional laminae. As long as there is no
normal stress in the transverse direction and no in—plane shear stress, the lamina is safe no matter
how much stress is exerted along the longitudinal 45° direction. So, if a laminate is subjected
only to a unidirectional tension along the direction 45°, the best laminate is the one in which
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the fibres in all laminae point in this direction. However, such a laminate cannot be subjected

to any transverse and in-plane shear stresses at all.

Table 9.8: Nearly-optimum ply angles in a symmetric laminate of 5 ply angles. The mathemat-

ically optimized ply angles are given in Table 9.2

 

In-plane Nearly-Optimum Design

loading 61 62 63 64 65 km“

a 45 -3O 30 -30 -90 1.54

b 30 -60 30 -30 30 2.14

c -30 45 -45 45 O 1.24

d 45 45 45 45 45 oo

 

 

 

 

     

Table 9.9: Nearly-optimum ply angles and thicknesses in symmetric laminate. The prescribed

loadings [N9, N3, Ng]T are 5 times those in example (i). The mathematically optimized ply

angles and thicknesses are given in Table 9.6

 

In-plane Nearly optimum design

6 6 6 6
loading 1 2 3 4 kmaz

t1 t2 t3 t4

a 45 ~60 45 0 139

0.56 1.12 0.70 0.42 '

30 -60 30 30

0.56 0.70 0.42 1.12

-30 30 -60 30

0.98 0.98 0.42 0.42

45 45 45 45

0.42 0.98 0.98 0.42

 

 

1.70

 

 

     

9.4 Concluding Remarks

This exposition presented a three-stage procedure for the optimum design of multidirectional

laminates. In the first stage, a fracture mechanics analysis was performed on a cracked angle—ply

laminate. The results of this analysis revealed the mutual constraining effect of the unidirectional
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laminae in a laminate, so that the in situ strength of each lamina is enhanced. In the second stage,
the above results and experimental observations were used to propose a set of in situ strength
”parameters and a failure criterion. Finally, an optimization problem was formulated in which

the load bearing capacity of symmetric laminates was maximized. This minimax optimization
problem was solved by using bound-formulation approach and nonlinear mathematical pro-
gramming. The results demonstrate that the load bearing capacity of multidirectional laminates
can be significantly increased through optimization.

It must however be mentioned that in the present work all the design variables, i.e. the ply
angles and thicknesses were assumed to be continuous variables. The continuity of thickness
also meant that the number ofplies was treated as a continuous variable. From a fabrication point
of view, it may be expedient to use certain discrete values of ply angles and integer number of
plies. Haftka & Walsh (1992) have used discrete ply angles in the optimum design of composite
laminate with respect to buckling. The consideration of discrete ply angles and integer ply
numbers in the optimum in situ strength design of laminates can also be attempted by integer
programming. Another factor which depends on the configuration of a laminate and influences
its load carrying capacity is the thermal stress induced in the process of manufacturing. This
effect may alter the optimum design obtained by considering the external loads only. However,
it is easy to incorporate the thermal effect into the procedure of optimization described in this

exposition using the lamination theory.

When the number ofunknown ply angles is large, the high nonlinearity ofthe stress norm with
respect to the ply angles causes difficulty in reaching the global optimum solution. Therefore,
there is a need to use a proper treatment to overcome this difficulty. The nonlinearity may be
reduced by using indirect design variables such as the “lamination parameters” of Mild (1982)
or the “transformed design variables” x.- = cos 26. or x,- = 'sin 20. of Fukunaga & Vanderplaats
(1991).

185



Chapter 10

Conclusions
 

The large difference in the strengths of unidirectional fibre-reinforced composites along dif-
ferent directions makes their load carrying capacity very sensitive to the direction of loading.
Transverse cracks are the most commonly observed damage in these materials. Therefore, in the
analysis of the mechanical behaviour of composites, we inevitably have to solve complicated
boundary-value problems of cracked bodies. Moreover, the many interfacial areas between the
constituent phases in a composite can both be sources of defects and serve as crack arrestors,
depending on how we design the microstructure of the composites. Given the many choices of
composition available, the materials technologists are faced with the difficult task of designing
these materials without any sound guidelines. They often resort to empirical rules of thumb
or design the material to suit a specific application utilising one of the performance indicators,
e.g. high strength. In order to exploit the full potential of composite materials in different
applications, guidelines based upon sound mechanical and mathematical knowledge are needed
to assist the materials technologist.

Optimization techniques have shown their potential in the strength design of composite ma-
terials. But at the same time it was also observed that most of the explicit optimum designs were
obtained at the structural level that did not take into account the microstructural characteristics
of the composites. For instance, the high sensitivity of fibre-reinforced composite materials to
defects such as cracks in the transverse direction was not considered in the prediction of the
strength of the material. On the other hand, the recent developments in both the stress analysis of
the heterogeneous materials and in the optimization techniques have provided us with effective
tools which can be used to the benefit of the materials technologist.

In view of the fact that fibre-reinforced composites are prone to cracking, the first part of this
Thesis presented elastostatic solutions to the boundary-value problems of cracked composite
regions using Fourier transforms. These regions were made of three subregions in which
the central one was assumed to be a cracked transversely-isotropic medium and outer ones
were orthotropic. The generalized expressions for the stresses and displacements in the outer
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subregions (layers) included the degenerate case when they were also isotropic, but dissimilar

from the central subregion (layer). The three-layer composite problems were solved when the

central subregion contained a single intralaminar crack (the crack was wholly within the central

subregion) in all three modes of loading - modes I, II and III in the terminology of fracture

mechanics. When the central subregion contained a periodic distribution of intralaminar cracks,

solutions were given for mode I and mode IH loading cases. When the central subregion

contained a single interlaminar crack (the tips of the crack touched the interfaces between the

central and outer subregions), the interfacial stress singularities and the corresponding in situ

stress intensity factors were calculated, again under all three modes of loading. It was found

that although there are six material constants which characterize the transversely-isotropic

central layer and the orthotropic outer layers, the mode I and mode II stress singularities

were determined by only two mixed material parameters, respectively. The mode III stress

singularity was determined by only one mixed material parameter. The stress intensity factors

were functions of the stiffnesses and geometry of the subregions. For the degenerate case

when the outer subregions were a dissimilar isotropic medium from the central one, the results

for mode I were compared with those available in the literature and were found to be in total

agreement.

Although the above boundary-value problems were motivated by the failure characteristics

of fibre—reinforced composite laminates, the solutions can be applied to crack problems for any

finite regions made up ofdissimilar subregions. Many ofthese solutions were not available in the

literature prior to the work described in this Thesis, except the solution for a single intralaminar

crack under mode I loading case. These solutions are theoretically significant because of their

potential in revealing the failure mechanisms of advanced composites.

In the second part of the Thesis, the elastostatic solutions for cracked transversely isotropic—

orthotropic bonded layers obtained in the first part were specialized to glass or carbon fibre-

reinforced composite laminates. The ever-increasing range of application of these materials was

the main motivation of the study, while the numerous experimental studies on these materials

provided a proper frame of reference. In order to render the basic solutions given in the first

part applicable to the problems in fibre-reinforced composite laminates, the classical lamination

theory and homogeneity assumption were used to evaluate the stiffness parameters of the

sublaminates.

First, a fibre-reinforced symmetric angle-ply laminate containing multiple intralaminar

cracks was studied under mode I and mode III loading cases. Such cracking is often ob-

served in experiments. The influence of the ply angles and crack spacing upon the stress

intensity factors was thoroughly examined. This examination revealed the constraining effect

of one sublaminate on the crack driving force in its neighbouring unidirectional lamina, in
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agreement with experimental observations. In mode I loading, it was found that transverse

cracks could induce high interfacial stresses, the more so when these cracks were close to the

interfaces. This is thought to be a major cause of the crack-induced delamination in angle-ply

laminates. Secondly, a laminate containing a single interlaminar transverse crack was studied.

The influence of the ply angles and thicknesses upon the stress singularities and intensities was

investigated under all three modes of loading. In each of the three modes, the stress singularity

and intensity showed opposite variations with the stiffnesses of the constraining sublaminates.
The stiffer the constraining sublaminates, the weaker the stress singularity but the stronger the
stress intensity. In mode I loading, the stress singularity reached its minimum value when the
ply angle 0 of the outer constraining sublaminates was 00 for the considered four fibre-reinforced

composites. It increased monotonically to the usual square-root type when 0 varied from 0° to

90°. On the other hand, the stress intensity decreased as 6 increased. The mode II and mode

III stress singularities reached their minimum value when the ply angle 0 of the constraining

sublaminates was around 45°, whereas the stress intensities in these two modes reached their

maximum value at this value of 0. Due to the closeness of the magnitudes of GL1 and GTT in

all the materials studied, the mode III singularity varied almost symmetrically about 0 = 45°.

In a [(:l:0°)n2/(9O°)n1/(:F0°),,2] fibre-reinforced laminate, the outer (:l:¢9°),,2 sublaminates
were shown to reduce the mode II stress intensity factor at the tips of a crack in the central (900),,l
layer under out—of-plane (laminate plane) shear loading. The degree of reduction depends on the

stiffness ofthe plies, the ply angle 0 and the thickness of the outer sublaminates. However, whilst

the stress intensity factor decreases, the crack-induced largest interfacial principal tensile stress

increases. The high interfacial stress would inevitably lead to interfacial delamination. Thus,

an optimization problem was formulated with a view to choosing the design variables of the

laminate, viz. the ply angle 0, relative ply stiffness and thickness, in such a way as to minimize

the stress intensity factor at the crack tips in the (900),,l layer without exceeding the interfacial
bond strength. A constraint was also placed on the minimum flexural stiffness of the laminate.

An alternative optimization problem in which the largest interfacial principal tensile stress was

minimized subject to a limit on the stress intensity factor was also formulated and solved. It

was found that the parameters in these single—criterion optimization problems influenced the

solutions. If they are not properly chosen, it is likely that there is no feasible solution. To avoid

the possibility of multiple or infeasible solutions, a multicritetion optimization problem, in which

the crack driving force and crack-induced interfacial principal tensile stress are minimized, while
the flexural stiffness is maximized, was also formulated and solved. All optimization problems

were solved by several techniques of nonlinear mathematical programming. The sensitivities

with respect to the design variables required in these techniques were calculated by a mixed

analytical/numerical approach.
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In the first optimization problem (that of the minimization of crack driving force subject to
a limit on the crack-induced interfacial principal tensile stress), when the crack length relative
to the thickness of the 90° sublaminate was small, the active constraints were the lower limit

on 6 and the upper limit (3) on the relative thickness b/d of the constraining sublaminates.
The minimum of the stress intensity factor always occurred at 6 = O0 and b/d = 3, no matter

what initial 6 and b/d were chosen. When the crack was large, the interfacial stress constraint
became critical to the design. For the satisfaction of this constraint the design angle 6 took on

a non—zero value. The transition of the optimal 6 from 00 to a non-zero value depended on the

interfacial stress constraint. In the alternative optimization problem (that of the minimization of

crack-induced interfacial principal tensile stress subject to a limit on crack driving force), the
largest interfacial principal tensile stress reached its minimum when 6 = 500 and b/d = 5. In
the multicriterion optimization problem, the optimum design was reached at a non-zero 6 and

Wd=5
The last Chapter presented a three—stage procedure for the optimum design ofmultidirectional

laminates. In the first stage, a fracture mechanics analysis was performed on a cracked angle-

ply laminate. The influence of the configuration of the laminate on the strain energy release
rates at the tips of the transverse crack was quantitatively investigated. The results of this

analysis revealed the mutual constraining effect of the unidirectional laminae in a laminate, so

that the in situ transverse tensile and in-plane shear strengths of a lamina were enhanced. This
enhancement primarily depended on the differences in the ply angles between this lamina and

its immediate neighbours and on the thickness of the lamina itself. In the second stage, the
above results and experimental observations were used to propose a set of in situ transverse

tensile and in-plane shear strength parameters. These parameters were then incorporated into

a failure criterion to judge the appearance of transverse cracks in unidirectional laminae in a
multidirectional laminate. Finally, an optimization problem was formulated in which the load

bearing capacity of multidirectional symmetric laminates under any combination of in-plane

(membrane) loads was maximized. The optimum design was sought through minimizing the

maximum stress norm which characterized the closeness of the stress state in a lamina to its
failure point. The design variables were the ply angles and/or thicknesses.

In the parlance of mathematical optimization theory, the optimization problem under con-

sideration was a minimax non—differentiable one. It was first reduced to a differentiable one

(to the first order gradients) by the introduction of a novel smoothing function, and then the

differentiable minimax problem was solved by the bound—formulation method and mathematical

programming. The gradients of the objective and constraint functions required in this method,

were obtained by a mixed analytical/numerical procedure. The results demonstrated that the

load bearing capacity of multidirectional laminates could be significantly increased through op—
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timization. The sensitivity of the optimum design with respect to changes in the design variables

was checked. It was found that the optimum design was fairly stable and not very sensitive to

changes in the design variables. Therefore, a nearly-optimum design could be a substitute for

the mathematically optimum design. The nearly-optimum design was obtained by rounding off

the optimum ply angles to the nearest commonly used discrete values and the thicknesses to the

nearest multiples of the lamina thickness.

In the present work, all the design variables, i.e. the ply angles and thicknesses were

assumed to be continuous variables. The continuity of thickness also meant that the number of

plies was treated as a continuous variable. From a fabrication point of view, it is expedient to use

certain discrete values of ply angles and integer number of plies. Discrete/integer programming

techniques are needed in considering discrete ply angles and integer ply numbers in the optimum

in situ strength design of laminates. When the number of unknown ply angles is large, the high

nonlinearity of the stress norm with respect to the ply angles causes difficulty in reaching the

global optimum solution. There is thus a need to use proper analytical techniques to overcome

this difficulty. The nonlinearity may be reduced by using indirect design variables instead of

the ply angles. The in situ strengths in the present work were defined with reference to the

onset of transverse cracks. The composite laminates can still carry additional loads after the

occurrence of transverse cracks in its constituent laminae. It will fail at an ultimate load which

is larger than that corresponding to the occurrence of transverse cracks. The optimum design

that maximizes the load for transverse cracks may not be the design that maximizes the ultimate

load. More sophisticated stress analysis and optimization techniques are needed for obtaining

the maximum ultimate strength design.
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Appendix A

A.1 Determination of the Unknown Functions in Mode I

The two unknown functions A(s/a) and B(s /a) in the dual integral equations (4.38)—(4.39)

can be expressed as functions of E(s/a) by using the continuity and free-surface conditions

(4.30)—(4.35). When doing so, it is noted that p can take the value 1 or 0. Therefore, these

equations have to be solved separately for p = 1 and p = 0. In the following we shall

demonstrate the procedure on p = O. The case for p = 1 can be similarly dealt with and will

not be reproduced here. This procedure also appeared in the work of Erdogan & Wu (1991)

for dealing with the continuity and free-surface conditions of stresses and displacements which

arose in the solution of the boundary-value problem of a cracked composite laminate of finite

thickness. The treatment of free-surface conditions in the framework of Fourier transforms for

a cracked strip dates from the work of Sneddon & Lowengrub (1969).

When p = O, by substituting the expressions for the stresses and displacements (4.4), (4.6),

(4.8),(4.10), (4.11), (4.13), (4.14) and (4.15) into (4.30)—(4.35), we have

— —/()+OOL4(2515)(cosh(td) + B(t)tdsinh(td)] cos(ty)dt+

+ —/+°°E(1)(el—1y)t)11ycos(1111=—/0°o t[(t)Q1A1)+Q2A2(t)]cos(ty)dt (A.1)

—:/O+°°{ t)sinh((11) + B(1)[sinh(td) + tdcosh(td)]} sin(ty) 111 +

+ _/0+°°::)(t)_ty€ty sin((W =t—fflott[L 131(75)+ Lsz(t)] Sin(ty) dt (A2)

- 7?; 4L foo:- {2A(t) sinh(1d) + B(1)[(1 — 11) sinh(td) + 21dcosh(td)]} cos(ty) dt —

‘ :21; [00 1E()(1 — N + 241) 6‘” 511(11) = 3 [001310) + 32(1)] cos<ty> d1 (A3)
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3); /+°°112A) Cosh(td) + B(t)1(1+ n) cosh<td> + 2tdsinh<td>n sin<ty> dt —
2 1 +001 4y _

— 7274fl/0 —E(t)(1+n+2ty)e cos(td)dt_

= ;2[0+°°[ZIA1(t)+ ZZA2(t)] sin(ty)dt (AA)

3 [+00 tQ1[A1(t) cosh(fl1bt) + Bl(t) sinh(fl1bt)] cos(ty) dt +
7F 0

+ :1)er tQ2[A2(t) cosh(fi2bt) + Bz(t) sinh(flzbt)] cos(ty) dt : 0 (A5)

—:/°°tL1[A(t)sinh(fllbt) + 31(2: )cosh(fl1bt)] may) dt +

+ —“/0” tL2[A2(t) sinh(fl2bt) + 32(t) cosh(flzbt)] sin(ty) dt = o (A.6)
71'

In obtaining the above equations, we have used the identities

cosh/Mac - d)t |Z=d = 1 (A7)

sinhfli(:z — d)t |$=d = O (A.8)

Eqns (A.1)——(A.6) can be rewritten as

/0+°°[A(t) cosh(td) + B(t)tdsinh(td) + tQ1A1(t) + tQ2A2(t)] cos(ty) dt =

= /0+°° E(n)(1 — ny) cos<nd> dn (A9)

— /0+°° {A(t) sinh(td) + B(t)[sinh(td) + tdcosh(td)] + tLlBi(t)+

+ thBz(t)} sin(ty)dt = [Om E(77)17ye'"y sin(17d)dn (A.10)

/0+°° {4:7 [2A(t)sinh(td) + B(t) ((1 - N) $111M“) + 2” °°Sh(td))] + 3100+
+00

+ th()} cos(ty)d =t—4——/0n1E )(1— n + 2ny)e"y sin(nd)d77 (A.11)

fom { 4—; [2A(t)cosh(td) + B(t)((1+ rs) cosh(td) + 2tdsinh(td))] — Z1A1(t)—

1 +00 1— ZzA2(t)} = 5 f0 ;E(n)(1+ rs + 277g) e-"y cos(17d) dn (A12)
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[0” t {cm/11(1) cosh(fllbt) + 31(1) sinh(fi1bt)] +

+ Q2[A2(t) cosh(fi2bt) + B2(t) sinh(fl2bt)]} cos(ty) dt = 0 (AB)

/0+°° t {111 [A1(t) sinh(fl1bt) + 131(1) cosh(fl1bt)]+
+ L2[A2(t) sinh(,82bt) + Bz(t) COSh(flzbt)]} sin(ty) dt = 0 (A.14)

Applying inversion formulae for Fourier sine and cosine transforms to the above equations

and using the following integrals

 

/0+°°e‘7’ysin(ty)dy = ”zitz (A15)

/0+°°e'"ycos(ty)dy = # (A.16)

/o+ooe‘"ynysin(ty)dy = $5 (A.17)
oo _ 2

[0+ e'"y17ycos(ty)dy = % (A.18)

we get a system of linear equations for the unknown functions

cosh(td)A(t) + tdsinh(td)B(t) + A1(t) + 212(1) = F; (A19)

— sinh(td)A(t) — [sinh(td) + tdcosh(td)]B(t) + 1L1 31(1) + th 32(1) 2 F2’ (A20)

i sinh(td)A(t) + i[(1 — rs) sinh(td) + 2tdcosh(td)] +
2;; 4g

+ B(t) + tBl(t) + 1132(1) = F; (A21)

i cos(td)A(t) + 4—1;[(1 + rs) cosh(td) + 2tdsinh(td)]B(t) —

_ 1212110) 42214201) 2 F4’ (A22)

tQ1COSh(,61bt)A1(t)+tQ1$lnh(fllbt)Bl(t)+

+ th cosh(flzbt) 212(1) + 1% sinhwzbt) 32a) = 0 (A23)

tLl smh(fl1bt) A1(t) + tL1COSh(,61bt)Bl(t) +

+ th 511111082“) A2(t) + th COSh(fl2bt) Bz(t) = 0 (A24)
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where

F; = g [0007;175:27E07) cos(nd) dn (A25)

F; = if”) (2772—1392190?) sin(nd)d17 (A.26)

F3’ = gfoo—KLMWEW sin(nd)dn (A27)

F: = g [0+(30%1307) cos(nd)dn (A28)

The six unknown functions A(t), B(t), Ai(t) and Bi(t) (z' = 1, 2) can be solved in terms
oft and FJ’(t) (j = 1, 2, 3,4) from eqns (A.l9)—(A.24). Since only A(t) and B(t) are needed
in the solution of the dual integral equations (4.38)—(4.39), we only give the corresponding
expressions but for both values of the switching factor p. Using the normalized variables

 

 

 

 
 

 

t = f (A29)
a

_ §)7 _ _ (A30)
(1

we have

1AG) = Emma+K12F2+K13F3+K14F41 (A31)
1

B (E) = m [K21F1 + [(2ze + K23F3 + K24F4] (A32)

where

s _ d d r: + 1 , 2 dME) _ [ss;++sinh(s ad)scosh( (1)] M1+ [— 4/1 smh (3a)] M2+

—l . d d
+ [$55135 — “74/1 smh(s;)cosh(s;)] (M3 + M4) +

n+1 2 d 1 d d d+ [— 4” cosh (33)] M5 + [— 4;“——zsa + 4—32 sinh(ssa)cosh(s —)J Ms (A.33)

. d d d 1 d d
K11 = [smh(sg) + SECOSh($Zl-):l M1 — [_§;82C08h(3;)+

n — 1 . d n + 1 d 1 d d+ 4p smh(s;)] M4 — [ 4M cosh(s;) + Z80 sinh(s (1)] M5

d . d 1 d d Is: — l . d
K12 — S; s1nh(s;)M1 + [—Z—fi-32C08h(83) + 4/1 smh(s;)] M2 +
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K13

F3

F4

M1

M2

M3

 

n+1 d 1 d d
+[ 4p cosh(s;) + Zsasinhw3a)] M3

d d
— [sinh(s§) + sC—l cosh(s—)] M2 — :5g sinh(s—)M4 +

a a a Cl a

 

n+1 d 1 d . d
+ [ 4/], COSh(S'C;) + as; Slnh($;):l M6

[sinh(sad)+ 3d cosh(s 61)] M3 + s: sinh(s d)M5 +

K —1
 

l d____ h _+[ 2[usacos (s:)+

1 d. d . 1 d
— smh(s;) M1 — Z smh(s;) M4 + i cosh(s;) M5

d 1 . d 1 d
— cosh(s;)M1+ Z s1nh(s;)M2 — a; cosh(s;) M3

. d d 1 d
smh(s;) M; + cosh(s;)M4 — E cosh(s;) M6

~ sinh(sé) M3 — cosh(sé) M5 + —1— sinh(si) M6 (A34)
(1 (1 2p a

sinh(sg)] M6

2°° d3$1):flEa/amsagdé
2 2 . d_ 0 (62+652?E(§/a)sm(§;)d§

2 +°°( 3)3§2+(f~2+1)s3 , d
E/o WEOE/a)Sln(€;)d€

2 +°° ("6 + $5262 + (rs +1)s4 d
F/o WE(E/G)COS(€;)d€ (A35)

(1 — p) [lesz + ZZQ1L1+(Z1Q1L2 + ZzQ2L2)sinht1 sinhtz —
—(Z1Q2L1 + Z2Q1L2)cosht1 cosh t2] +

+p[ — Q0(P3Q1cosht1— PlLlsinht1)+ Z1(P1P4 — 132133)]
(1 — p)[Q1L2(Z2Q1— Z1622) sinhtl cosh t; +

+Q2L1(Z1Q2 — Z2Q1)cosht1 sinh t2] +

+p[Q1Qo(P3Q1 sinhtl — PILlcosht1)+

+Zl(01150 — €12Q0)(P4Q18inht1 — P1L1 00811150]

(1 — p)[Q1Q2(L1+ L2)(1— coshtl cosh 15;) +
+(QfL2 + Q§L1)sinht1sinht2] +

+P[Q1(P1P4 — P2173) + (01150 — €12Q0)(P3Q1005ht1 — P1131 sinht1)]
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M4 = (1 — p)[L1L2(Z1Q2 + Z2Q1)(1— coshtlcoshtz) +

+(Z1Q1L2L2 + Z2Q2L1L1)sinht1 sinhtz] +

+p[ZlL1(P1P4 — P2P3) — Q0L1(P3Qlcosht1— PlLlsinht1)+

+C56Z1fl0(Qo — Z0)(P4Q1 sinhtl — Plecosht1)—

-066Q1L1/30Q0(Q0 - Zo)]

M5 = (1 — p) [Q1L2(L2 — L1)cosht1 sinhtz + Q2L1(L1- L2)sinht1cosht2] +

+p[c66fio(Qo — Z0)(P4Q1cosht1 — Ple sinht1)]

M6 = (1 — p)[2Q1Q2L1L2 (coshtl coshtz — 1) —

4cm; + QgLf) sinh t1 sinhtz] +

+p{L1[Q1(P2P3 — P1134) - (Cnfio —' 612Q0)(P3Q1005ht1—

—P1L1sinht1)] — Memo — Zo)[Q1(P4Q1 sinhtl -

_P2L1COSht1) + Q1L1(611,Bo — 012Q0)]} (A36)

P1 sinh to 0081'! to

= — Z t
{ P2 } (Cuflo 612Qo) { coshto } + (011/60 + 612 o) o{ sinhto }

P cosht sinht

3 = —Cssfio(Qo — Zo) . 0 — 666(1 — 30%) to 0 (A37)

P4 smh to 0081’) to

In the above expressions

t1 = 5128 (l = 0, 1, 2) (A38)

AG) is the determinant of a matrix encountered during the solution of a system of linear

equations. It is a function of the variable 5. Similar determinants also appeared in the works

of Bogy (1973), Sih & Chen (1981), and Erdogan & Wu (1991). Here, we discuss briefly its

behaviour for p = O. For convenience of the numerical computation, let us denote

5, = A(—) x e-Zst e-UIW (A39)

From an asymptotic analysis similar to that in § 5.2, we can get the exact asymptotic value of

the above expression

lim 6, = i 6(Q1L2 — QZLI) (A.40)

s-)+oo 16

where 6 is given by (5.60), and L,- and Q,- (i = 1, 2) are given by (4.19) and (4.21), respectively.

Bogy (1973) showed analytically that the determinant in the solution of an centrally cracked

isotropic strip bonded to two dissimilar half planes is never equal to zero when the variable

208



 

 

   

0 I I I I I I I I I

-2 -
-

-4 -
-

-6 -
..

/—\

6? '8 I
I

2

X _10 k
a

9Q“;

—12 r
-

-14
.

-16 - .

-18 -
-

-20 I I I I I I I I

O 1 2 3 4 5 6 7 8 9 10

8%

Figure A1. Variation of 6, x 10‘3 with 5% for the material in Table 6.1 when

9 = 0°, b/d = 2.0 and a/d = 0.7. The dotted line denotes its

exact asymptotic value when .3 —> +00 (A.40)

(which is equivalent to 3 here) varies between (0,+oo). Here, because of the complexity ofA( 3 ),

it is hard to show analytically that it does not vanish when 3 varies between (0,+oo). However,

numerical calculation of 6, at discrete points with fine step lengths for numerous combinations

of material properties shows that it never vanishes up to a large finite value of s. A typical

variation of 6, with 5:1- is shown in Figure A1. The data used to draw this curve are calculated

for 3% E [0, 10] in steps of 0.005. The value of 6, x 10‘3 at 5% = 10 is equal to -7.0639491

which is already close to the exact asymptotic value -7.0639497 obtained from (A40). The

asymptotic value 6 given by (5.60) is found never to vanish for the materials considered in this

Thesis. From a physical viewpoint, if 1 /A(f) has a non-integrable singularity in the interval

(0, +00) for certain laminate configurations, the two constraining sublaminates will lead to an

infinite perturbation in the stress field of the cracked central sublaminate (Figure 4.1). This

cannot be true for the materials under consideration. The same discussion holds also for the
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case p = l, and also for mode 11. The corresponding AG) for mode IH given by (4.150) has

been shown analytically in § 4.5 never to vanish.

A.2 Determination of the Unknown Functions in Mode H

Following the above procedure for mode I problem, we can solve the two unknown functions
A(s/a) and B(s/a) in the expression (4.115) for mode II case

 

 

 

 
 

 

 

 

s 1A(;) = A0) [KuFl + mm + 1(1an + K14F4] (A41)
1

3(3) = M3) [K21F1 + K22F2 + K23F3 + K24F4] (A42)

Here

.3 F 1 (1 re d d_ z _ _ _ _ __ ‘ _ h _ _A(a) L4/‘2 .9 a 4’12 smh(sa)cos (5a)] M1

' 1 d n —— 1 . d d_ _Z35 + 4” smh(s;) cosh(s;)] M2+

'n +1 2 d n +1 , 2 d
+ - 4p cosh (50)] M3 [ 4‘“ s1nh(sa) M4 +

F 1 d Is — 1 . d d
+ as; + 2” smh(s;)cosh(s;)] M5+

+ s; — sinh(s;—1)C05h(sg)] M5 (A.43)

1 d l . d d
K11 — _Z cosh(s;) M; + Z smh(s;) M4 + cosh(s;) M6

1 d l . d . d
K12 — Z 00811053) M3 — Z s1nh(s;) M5 — smh(s;) M6

1 . d . d d
K13 = —2—'L; smh(s;) M1 — Slnh(s;) M2 + COSh(S;—) M3

1 d d d
K14 = —— cosh(s—) M1 + sinh(s—) M4 — cosh(s-) M5

2p a a a

1 d . (1 55—1 (1
K21 = [-z—MSESlnh(SE) - 4M COSh(S-(;):l M2 +

IS: +1 d
 

l d d .
— [Zs;cosh(s;) + 4p smh(s;)] M4 ——

— [cosh(sé) + 3% sinh(sé)] M6
a a a
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M1

M3

1 . d a
K22 — [—2—5—smh(s—)+ 4y cosh(sg)] M3 —

 

1 d n+1
+ [Esa005h(sa)+ 4g

K, + 1 . d 1 d d
smh(s;) + E s;cosh(s;)] M1+

d
sinh(s—)] M5 + :35 cosh(sé) M6

a a a

 K23 = ':

+s—aacosh(sd)M2—s[cosh(s:)+s§sinh(s§)] M3

, _ 1 d, d n+1 d
A24 — [ 2[usasmh(s;)+ 4p cosh(sa)] M1 

d d
—35 cosh(sé) M4 + [cosh(s—) + s— sinh(sé)] M5 (A44)

(1 a a a (1

0° d
F2 = -:—/0002—632) (a)cos(§;)d§

+)1+(— 22 d

2 1 +1 5 2+ 3 33 , dF4 — —/:°° 9%Eéhmfiydé (A.45)

 

(1- P) {2C66(Zl + 51)(Z2 + fl2)Q1Q2(1 — coshtl cosh t2)

+ c56[Q%(Z1 + £302 + Qflzz + L302] sinhtl sinhtz} +
+9 {—666(Z1 + 130521001134 — P2133) — 066(50 — T0)Q1[Q1P3 sinhtl—

—(Z1 + fl1)P1 00511751] + 01166630(Z1+ 51)(Zo — To) [Q1P4 coshtl—

_ (21+ £30132 sinhtl] — cll¢66fl0(ZO — To)(Zl + fil)(fl0 - T0)Q1}

(1— P) {065(Z1 + filX-Zz + [32)(Q1+ Q2)(cosht1cosht2 — 1)—

-Css[(Zl + £31sz + (22 + fi2)2Q1]sinhtlsinht2} +

+p {666(50 - To)[Q1P3 Sinhtl - (21 + 51)P1008ht1]+

+ 666(21'1- fl1)(P1P4 — P2P3)}

(1— P) {Q1(Zz + fl2)(Q2 — Q1) Sinht1€08ht2+

+ Q2(Z1+ 51)(Q1— Q2)cosht1 sinhtz}

+p{-611fio(Zo — To)[Q1P4SiIlht1-(Z1+ [31)P2 COSht1]}
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M4 = (1 — p) {c66[Z1Q1(Z2 + fl2)2 coshtl sinh t; + ZZQ2(Z1+ £02 sinhtl cosht2]—

—066(Z1 + fl1)(Zz + fl2)[ZlQ2 sinhtl cosh t; + Zle coshtl sinh Q” +

+p {-066(ZL60 + 51T0)[Q1P3 COShtl-(Z1+ 31)P151Dh751]}

M5 = (1— ,0) {Q1Q2[Z1(Zz + 32) + Zz(Z1+ 31)](1- COSht1COSht2)+

+[ZIQ§(ZI + m) +mm + 52)]sinht1sinht2} +
+9 {Cllflowo — To)Zl [Q1134 COShtl — (Z1 + [30132 sinht1]-

—Z;Q1(P1P4 — P2133) + T0Q1[Q1P3 Sinhtl — (Z1+ 50R cosh t1] +

+CnfioTo(Zl + filXZo - T0)Q1}

M5 = (1— P) {[Z1Q1(Z2 + 52) + ZzQ2(Z1+ 31)]008ht1008ht2-

‘[ZIQ2(ZI + 31) + ZzQ1(Zz + 32)] sinhtl sinh t2—

— [ZIQ2(Z2 + 32) + Z2Q1(21 + 51)]}+
+p {—T0[Q1P3 sinhtl — (Z1+ ,81)P1cosht1] + Z1(P1P4 — P2P3]} (A.46)

P1 sinh to cosh to
= t Z — T

{ P2 } Q0 0{ coshto }+c11flo( 0 0) { sinhto }

{ £3 } = (Z1+fi1)to{ Cfmht" }+(flo—To) { Sim" } (A47)
smh to cosh to

In the above expressions

t, = ,3, g s (1: 0,1,2) (A48)
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Appendix B

Solution of the Dual Integral Equations

The contents of this Appendix follow closely the paper by Wang & Karihaloo (1994a). For the
dual integral equations

/0°° A(s)Ju(rs)ds = o r>a (3.1)

f0” 32a A(5)Jy(rs)ds = f(r) r < a (3.2)
Copson (1961) showed the solution to be

A(s) = 51-0 f0“ ¢(t)J,,+a(st)dt (3.3)
provided that

0 < a<1 (BA)

1/ > —a (B5)

tgrg1tV+a'l¢(t)J = 0 (13.6)
The function ¢(t) may be determined from

 
 

21—01 1—11—01 2’1—a l—u—a t rl+uW) = 1.(Ofl W) = F(a) t /0 flog” (3.7)

Equation (B7) was derived by assuming that the function r”f(r) and its first derivative are
continuous in the interval [0, a]. The above solution procedure was also cited by Sih & Chen
(1981) in relation to crack problems in composite materials.

In the crack problems under consideration (e.g. (4.44)—(4.45)), a = 1/2 and V = —- 1/2, so
that the condition (B5) is not satisfied. We will show below that the solution of

[O A(s)J_%ds = 0 r>a (B.8)

/0°osA(s)J_%ds = f(r) r<a (3.9)
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is also given by (B3) and (B.7), thereby extending the range of applicability of Copson’s

procedure to include the equality sign in (B5), i.e. V 2 —a.

To this end, we rewrite first (B.8)—(B.9) in the following form

f: %E(s)cos(sr) ds = 0 r > a (3.10)

[0” E(s)cos(sr) d3 = (9% r% m) r < a (3.11)

where we have made use of the definition

J_”(m ("—55% cos(sr) (3.12)

and denoted

E(s) = 3% A(s) (3.13)

In order to solve eqns (B.10)—(B.11), eqn (B.11) is further rewritten (Sneddon & Srivastav,

197 1) as

 

%/0°° EEG) sin(sr)ds = (g)% r% f(r) r < a (BM)

Next, we introduce a new unknown function ¢(t) as follows

— 3(5) = [0 ¢(t) J0(st) dt (3.15)

which automatically satisfies eqn (B.10). Inserting eqn (B.15) into eqn (B.14) gives

71' 1 L
d7d/Om f0¢(t)(Jost))sin(sr) dt d3- (5)2 r2 f(r) (B.16)

Changing the order of integration and noting that

00 . 1

/o Jo(st) sm(sr) d5 = r2 _ t2 0 S t < r

= 0 r < t < oo (B.17)

reduces eqn (B.16) to

3/0 ___r2_t2 dt = (gfififlr) (B.18)

The solution of this Abel—type integral equation is

(Zfit/otW—N m?) (3.19)

Then from eqns (BB) and (B.15) we get the solution of eqns (B.8)—(B.9)

 

t
o
p
-

A(s) = s /0¢(t)Jo(st)dt (3.20)
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The solution (B20), with ¢(t) given by (B.19), could be directly written from (B3) and

(B7) with a = 1/2 and V = —1/2, thus extending the range of applicability to include the

equality sign in (B5), i.e. z/ 2 —a.

In § 4.6, we encountered dual integral equations (4. 185)—(4. 186), which are slightly different

from (B. 1)—(B2)

f0” A(s)Jy(rs)ds = 0 r > a

/o°° 52“F(s)A(s)J,,(rs)ds = m) 7' < (1

These may however be formally given the form of (B.1)—(B.2)

[:0 A(s)Jy(rs) d3 = 0 7‘ > a

jaw 32“A(s)J,,(rs)ds = f*(r) 7' < a

where 00

NT) = m) — fo sews) — 11A<sm<rs> ds
The solution (B.7) now becomes

 

c 21_°‘ t 1+V

in which the additional kernel K(g, 77) is

1am = t /0°° s[F(s) — 11Ja+u<soJa+u<st> ds
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Appendix C

Stiffness Parameters and Their Gradients

In this Appendix, we evaluate the stiffnesses of the sublaminate (:1:9),,2 in the symmetric angle-

ply [(i0)n2/(90°)n1], laminate considered in Chapter 6. The stiffnesses of the constraining

sublaminates considered in Chapter 7, and those of the (i6)n2 sublaminate in the antisymmetric

angle-ply [(:1:0),,2/(9O°)n1 / (420),,2] laminate considered in Chapter 8 are also calculated. The

stiffnesses of all these sublaminates are approximated by those of an antisymmetric angle-ply

[(j:0),,2 / (2126),,2] laminate. Because it has an identical in-plane (laminate plane) matrix of

average stiffnesses to that of a symmetric [(:l:0)n2]s laminate (cf. (3.157) and (3.158)), some

of the relations are also applicable to the latter. The procedure is approximate and is based

upon homogenisation and classical lamination theory. The exposition in this Appendix follows

closely the contents of Appendix A in the paper by Wang & Karihaloo (1994a).

Using the notation of Tsai & Hahn (1980) (see also § 3.7), and denoting

Q — EL
m _ 1 — VLT VTL

_ EL VTL

sz _ 1 — VLT VTL

ny _ 1 — VLT VTL

Q55 = GLT

U1 = g [3sz + 3’ny + zQxy + 4QsS]

U2 = % [Q12 _ ny]

U3 = you + C2,, — 20,, — 4%]

U4 = % [QM + ny + 662311 T 46255]
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Us = gm” + ny — 2sz + 4st]

Q11 = U1+U2 cos26+U3 c0340

Q22 = U1 — U2 cos 20 + U; c0546

Q12 = U4 — U3 cos 40

Q66 = U5 — U3 cos 40
((3.1)

the in—plane (with respect to laminate) stiffness matrix of a symmetric [(i6)nz]s and an anti—

symmetric [(d:9°)n2 / (21:00)n2] laminate may be written as (cf. § 3.7.2)

Q11 C212 0

[Q] = Q12 Q22 0 (C2)

0 0 Q66

with the compliance matrix as

an (112 0

[S] = [Ql—l = 012 022 0 (C3)

0 0 (155

In the coordinate system of Figure 6.2(a), we have

 

E1 = ET

1

E = ——

y (111

1

E2 = —
(122

V = —‘32
W (111

uzy = E212; (04)

y

The modulus E: is evaluated using a series model (Enie & Rizzo, 1970). It can also be

calculated from the formula

1 _ 836

E1: - S33 — 366 (C5)

where

l

333 — E_T

_ 5122 1/3 -
S36 — (ET EL ) sm29

366 = GLT (C6)



Eqn (C.5) takes into account the shear-normal stress coupling between the laminae. If this

coupling is ignored, E2 reduces to ET. For the material properties used in Chapter 8, it was

found that the maximum deviation of Ex (C.5) from ET is 5.8%. The changes in the stress

intensity factor and the stresses are smaller still. In order to maintain consistency with the

parameters calculated using the lamination theory, E, 2 ET is used in this Thesis.

To calculate the out—of—plane (in xy-plane) Poisson’s ratios, we invoke the assumption of

homogeneity and orthotropy of [(:l:0°),,2 / ($0°)n2] laminate, and write

1],, = m 00520 + V” sin20 (07)

V“: = VLT sin2 0 + VTT cosz 0 (CS)

The out-of—plane (in wy-plane) shear modulus is taken as (Vinson & Chow, 1975)

ca; = GLT cos2 0 + GTT sin2 6 (C9)

From the above engineering constants and plane strain condition, we get the constitutive equa-

tions of [(i(9°),,2 /(:F0°),,2] laminate

52:2: 311 512 0 0'12%

em, = 321 $22 0 O'yy (C. 10)

7mg 0 0 566 Txy

in which Sij (i, j = 1, 2, 6) are the compliance coefficients. They can be expressed as

 
1 V3:

5 = —-11 E2 E2

_ __ _Vyx + Vzr Vyz
512 — 821— ——Ey

1 V3,,

- Eric:
1

366 = — (C.11)
066

Inverting the above compliance matrix [3,7] gives the stiffness matrix [Cij] (i, j = 1, 2, 6) of the

[<i6°>n./(ac0°>n,] laminate

011 612 0

621 022 0 (C. 12)

0 0 C56

Once the stiffness parameters have been obtained, the normalized flexural modulus, eqn (8. 13),

of the laminate can be calculated using the lamination theory (Tsai & Hahn, 1980). For ease of
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gradient calculation, it is expedient to rewrite the constraint (8.10) as

(Pp—E S 0 (CB)

where, by definition (8.13),

 

_ b 3 9 90D 1+- —1 +

17 : K205162223 (CM)
0 [(1+2)3—1]022+0z2

The gradients of 5/Do with respect to 6 and b/d are easily written

6‘ F [mgr—11 a 9
60 (D0) [(1+%)3 _ 1103290 60 622 (C 5)

_8 D— +b)2 (032 — 0295(2)
3 (“‘) = 2 (C.16)

8(3) D°d)2<{1+31—111+32++33}
in which (9 42/66 can be calculated analytically from (C.12) and (CH).

When the angle—ply fibre-reinforced laminate is considered in mode H1 in § 6.3, the neces-
sary shear stiffnesses for the outer constraining sublaminate [(i0°)n2] are evaluated from the
following expressions

C44 = U5 — U3 00840 (C.17)

055 = GTT COS2 9 + GLT Sin2 0 (C.18)

where U3 and U5 given by (CD.
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Appendix D

Expressions for M,- When 5,- Are Complex

Conjugate

For the [(:t610),,,/(90°)nl /($0°)n,] laminate and the commonly used materials, when 00 S 0 <

6c , the roots 5,- (z' = 1, 2) of the eqn (3.113) are distinct real numbers; whereas for 6, < 6 S 90°,

the roots are complex conjugate. 6, depends on the material properties. With real roots fl,- (i =

1, 2), the results are given in Appendix A. On the other hand, when )6,- (i = 1, 2) are complex

conjugate, M,- (i = 1, ....,6) in eqns (A36) and (A.46) would seem at first sight to require

modifications. However, it will be shown below that irrespective of whether {3,- (i = 1, 2) are

real or complex conjugate, M,- (2' = 1, ...., 6) are always real. Thus the entire procedure described

in Appendix A is applicable to any configuration of [(:i:6l°)n2 / (900),,l / (4:00),,2] laminates.

If the roots fl,- (i = 1,2) of eqn (3.113) are complex conjugate, they may be written as

,81 = r+ti fl2=r—ti=[71 (D.1)

where

r = %(\/§2+Bl) t: %(\/B—2—Bl) (13.2)

The other constants are

Z = A+Bi Z2:A—Bi='Z_l_ (D.3)

Q1 = R+Ti Q2=R—Ti=@ (D4)

in which

czzr — 0667“(r2 — t2) — 2065712

A = (r2 + t2)(ciz + 666)
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656(7‘2 — t2)t — 2c66r2t — czzt
 

(T2 + t2)(012 + C66)
R = C11(AT‘ - Bt) - 612

T = c11(At + Br) (D.5)

Denoting the various combinations of hyperbolic functions appearing in eqns (A36) and (A46)

through

cosh t1 cosh t2 = écosh(2r§s) + écos(2tgs) E 00

sinh t1 sinh t2 = %c08h(2rgs) — écosatgs) E SS

sinh t1 cosh t2 = ésinh(2rgs) + ésin(2tgs)i E D + Hi

cosh t1 sinh t2 = ésinh(2r:-s) — ésinatgsfi E D — Hi, (D.6)

M,- (1 = 1, ..., 6) of (A46) may be rewritten as

Ml 2666KA + 7‘)2 + (B + t)2](R2 + T2)(1— CC) +

+2c66{(R2 — T2)[(A + r)2 — (B + t)2] + 4RT(A + r)(B + t)}SS

M2 2c66R[(A + r)2 + (B + t)2](CC — 1) —

—2066{R[(A + 7')2 — (B + t)2] + 2T(A + 7')(B + t)}SS

M3 _ 4T[(DT + HR)(A + r) + (HT — DR)(B + t)]

M4 2%{KA + r)2 — (B + t)2][D(AR — BT) + H(AT + BR)] +

+2(A + r)(B + t)[D(AT + BR) — H(AR — BT)]} —

—2c66[(A + r)2 + (B + t)2][D(AR + BT) — H(BR — AT)]

M5 2(R2+T2)[A(A+r)+B(B+t)](1—CC)+

+2{(A + r)[A(R2 — T2) + ZRTB] —

—(B + t)[B(R2 — T2) — 2RTA]}SS

M6 2[(A + r)(AR — BT) + (B + t)(AT + BR)]CC —

—2[(A + r)(AR + BT) — (B + t)(BR — AT)]SS -

—2[(A + r)(AR + BT) + (B + t)(BR — AT)] (D7)

which are all real.

In a similar manner it can be shown that M,- (i = l, ..., 6) appearing in (A.36) are also real.
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Appendix E

(DE. . d

Flnlteness of 35 £1 2

In this Appendix, we shall examine the behaviour of K*(E, n) in the expression (4.75) with

respect to 6 alone. For this, we shall omit the details of the influence of 17 but only keep in mind

that O S 17 S 1. Therefore, all the expressions up to (E.12) inclusive are valid for any n E [0, 1].

For the sake of conciseness and convenience of the exposition in this Appendix, we rewrite the

expression (4.75) as follows

K*((527))=/°° f((577») (13.1)

where

f(5‘,n,s) = W51)— {Io(s(5)ZK1,-E +[210(s5)+3511(35)])]X:IK2,E-} ds (E.2)

a j=1 j=1

Following the discussion from (4.69) to (4.72), we know that the integral (El)15 convergent

for any 6.

In the following, we shall show that

+00 8 E3

[0 a—§f(5’"’5sds) ( .)

is uniformly convergent with respect to E e [0, 1]. For this, we perform the differentiation in

(EB) and write

 

  3141K”Ej+ 4 KZJ' E] —s 2

where we have used the formulae

d

510(5) = [1(33) (E5)

d 1
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For anyé E [0, 1] ands E [O,+oo),we have

 

    

 

 

 

 

 

 

 

  

 

 

  

K E 4 K2 3d

‘9-f(§,n,s > 3 $78 use 2—1—4— +[211(5€)(+5§Io()]3€121:;(1;,
6&- j=l A(:) J=1()a

4 4

2 Klej szj -53
S s {11(5) j; A(?:') +[211(S)+510(3 )l 12:21 AG) }eE

S 52 l5 ZKljsEj +22K255; e's(§_1)Eh(s,n) (E7)

2 j=l A(;) j=1A();

where we have used the propernes of Io( ) and Mac), i.e.

10(151) S 10(332) .
11(351) S 119:2) 1f 033:1sz (ES)

and

Io(:c) S e” 0 9

< E.

was) g £er -”<+°° ( )

These properties are easily derived from the integral expression of the deformed Bessel function

x U

(2) /+1(1—t2)"‘% cosh(xt) dt Re(1/) > —% (E.10)

“(War/Hue) —1

Considering the behaviour ofAE—L.)(eqn (4.69)) and I (775) (1/: 0,1)in Ej (eqns (4.55)—

(4.58)), it is seen that h(s, 17), whichdoes not depend {, is integrable1n the interval [0, +00)

Therefore, Weierstrass’s criterion ensures that

+°° 6 E11/0 g-éffimassds) (. )

is uniformly convergent with respect to 6. Based upon this conclusion, we can differentiate

f(g , n, s) with respect to E under the integral sign when we differentiate K*(5 , n) in eqn (E.1)

with respect to 6, i.e.

8—61?“”7 :aa—gl/om flWW]: fox a—€f(€,n,s ) dé (13.12)

which is finite and a continuous function of 5. Therefore, from (4.74), we have

élgfg=:?l1_/01K*(€’77)¢(77)d77]2— olgémm WW7 (12.13)
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We now show that §EK*(§, 17) is also a continuous function of 77 for any 6 E [0, 1]. For this,

we use eqn (E7) and eqns (4.55)-(4.5 8) to get

  

     

 

 

 

a 1 4 K1- d 4 K2- .1 a_ < 2 _ J 5; I_ J 3; I_ —25(;-—1)la€f(§,n,s) _ s {23 32—1 AG) 6 EJ+23.E_1 NE) E] e
_ a, j— a

E g(s) (E.14)

inwhich

d lI _ _ __ _ 2El — ‘(1 3(1) + 25 (E.15)

d 1I _ _ _ _ 2E2 — [(2 3(1) + 25 (E.16)

1 d 1, __ _ _ 2
E3 —— 4—” (re 3+23a)i + —2#s (E.17)

, _ .1. _ i i 2E4 — 4y (n+3 23a) + 2/25 (E.18)
 

 

Noting the behaviour of $17 (eqn (4.69)) and that § > 1, the integral f0+°° g(s) d5, which does

not depend on n, is convergent. Thus, the integral (EU) is also uniformly convergent with

respect to 77. g—£K*(§, n) is a finite and continuous function of 77 via eqn (E.12). Therefore, the

integral in eqn (E.13) exists, i.e. 3d? [%/%1] is finite.

Following the same procedure as used to obtain eqn (E.7), it can be shown that the improper

integrals of K(5 , 77) in eqn (4.62) and of K*(5 , n) in eqn (4.75) are unifome convergent with

respect to 5 for any n E [0, 1], and they are also uniformly convergent with respect to 17 for any

5 6 [0,1].
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Appendix F

Behaviour of the Smoothing Function

Here, we shall show the closeness of the two functions expressed in eqns (9.36) and (9.37), i.e.

the original F = min (f1, f2) and the weighted smoothing approximation 7-".

As an example, let us assume

f1 = sinzx (E1)

f2 = sin2 2w (E2)

which are similar to the trigonometric functions appearing in ft and f, of eqns (9.22)—(9.23).

Using the expressions for a and fl (eqns (9.44)—(9.45))

‘1 = :— [1 - tanhA(f1— f2)] (E3)

3 = g [1 + tanhA(f1 — 12)] (E4)

we get

at = af1+ M2 (F5)

The variations of F and .7: with :z for A = 100 and A = 2000 are shown in Figures F1

and F2, respectively. At the scale used in Figures F1(a) and F2(a), the difference between

these two functions can hardly be seen. A deviation at the corner in Figure F1(a) can be seen

in Figure F1(b) on a magnified scale. But when A = 2000, no deviation is seen even on the

magnified scale in Figure F2(b). The two curves are practically indistinguishable.

225



 0.8 . . . . . .

07 _ See below

0.6 -

0.4 -

0.3 -

0.2

0.1    

 

 0.76 . . . .

0.75 - - - J: .

0.74 - -

0.73 -

0.72 - -  0.71 I l I l

1 1.02 1.04 1.06 1.08 1.1
£8

 

Figure F1(b): Comparison of F and .7: near a comer when A=100 on a magnified

scale
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Figure F2(b). Comparison ofF andfnear a corner when A=2000 on a magnified

scale
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