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Exercise effects on muscle quality 
in older adults: a systematic review 
and meta‑analysis
Régis Radaelli1, Dennis R. Taaffe2,3, Robert U. Newton2,3,4, Daniel. A. Galvão2,3 & 
Pedro Lopez2,3*

To systematically review and analyse the effects of exercise on morphological and neuromuscular 
muscle quality (MQ) outcomes in older adults and assess a range of possible moderators that may 
affect the impact of exercise on MQ outcomes. Using PRISMA guidelines, randomised controlled 
trials were searched in CINAHL, EMBASE, LILACS, PubMed, SciELO, Web of Science, MedNar, 
OpenGrey and OpenThesis databases. Eligible trials examined the effects of exercise interventions 
on morphological and neuromuscular MQ in older adults (≥ 60 years). Twenty‑one trials (n = 973 
participants) were included. Exercise significantly improved morphological MQ (effect size (ES) = 0.32, 
95% CI 0.13–0.51, P < 0.001) with significant results maintained for studies assessing muscle density 
and intermuscular adipose tissue (ES = 0.45–0.52, P < 0.05). For neuromuscular MQ, exercise provided 
significant positive effects (ES = 0.49, 95% CI 0.29–0.69, P < 0.001) but only maintained for physically 
healthy participants (ES = 0.43, P < 0.001), resistance exercise interventions (ES = 0.64, P < 0.001), 
or studies assessing 1‑RM or knee extensor isokinetic muscle strength relative to leg lean mass 
(ES = 0.48–0.62, P = 0.001). Associations between exercise duration and changes in MQ measures were 
not observed (P > 0.05). Supervised exercise interventions significantly improved different measures of 
MQ regardless of exercise duration, although these effects were small‑to‑moderate and not supported 
across all population‑, exercise‑, and methods‑related features.

Exercise is increasingly acknowledged for the numerous benefits for the musculoskeletal system such as increases 
in muscle function, quantity and quality in a wide range of healthy and clinical  populations1,2. In older adults, 
for example, the utilization of exercise interventions has been considered crucial to mitigate muscle function 
declines and impaired  mobility3,4, as well as reduce the risk of metabolic  abnormalities5 and attenuate increases in 
intramuscular and intermuscular  fat6,7. Muscle quality (MQ) is attracting research and clinical interest, providing 
information on lower limb muscle morphology and function as well as insight into the deterioration of muscle 
tissue over the lifespan and potential interventions to attenuate such consequences in older  adults8.

The term muscle quality generally refers to two specific measures: morphological and neuromuscular MQ. 
Morphological MQ refers to the intermuscular and intramuscular adipose and fibrous tissue, effectively the 
amount of non-contractile tissue expressed in absolute terms and relative to total muscle  size8,9. This measure is 
derived from imaging assessment (e.g., magnetic resonance imaging (MRI)10, peripheral quantitative computed 
tomography (pQCT) or computed tomography (CT)11, or ultrasound imaging (US)12). Neuromuscular MQ is 
the force produced per unit of muscle mass and is assessed by the ratio between a wide range of muscle strength 
(e.g., one-repetition maximum (1-RM), isometric and isokinetic) and muscle size assessments (e.g., muscle 
thickness, cross-sectional area, muscle volume, and lean mass)13. Both morphological and neuromuscular MQ 
maintenance or improvement are deemed important for older adults in order to preserve or enhance physical 
function and metabolic  health8,9. Although it has been proposed that specific exercises such as resistance train-
ing (i.e., anabolic exercise; performing sets of repeated movements against a resistance with prominent effects 
observed on the musculoskeletal and neural systems), aerobic exercise (i.e., activity involving large muscle groups 
and performed in a continuous or intermittent fashion over an extended period of time, such as cycling, swim-
ming, jogging or running with prominent effects observed on cardiorespiratory fitness and blood lipid profiles), 
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or the combination (i.e., combined resistance and aerobic exercise, or concurrent training) may improve MQ 
measures through molecular pathways and anti-inflammatory  effects8,14,15, or by enhancing muscle strength 
along with muscle  mass16, this does not appear to consistently occur across studies involving older adults. For 
example, while exercise promotes significant enhancement of morphological MQ outcomes as reported in previ-
ous studies undertaken in frail and older adults with moderate limited functional  capacity17,18, the same effect 
has not been observed in physically healthy older  adults19,20, suggesting that older adults presenting at higher 
risk for disabilities may have greater capacity to adapt to exercise training with improvements in MQ. Moreover, 
although muscle strength is augmented to a greater extent and faster than muscle size resulting in increased neu-
romuscular  MQ16,18,21, this is also conflicting with previous studies undertaking different assessment methods or 
assessing different muscles presenting no meaningful change following resistance exercise 19,20. Thus, it is unclear 
whether specific study characteristics such as the population included, assessment techniques, or even different 
intervention characteristics (e.g., exercise mode, alone or combined with nutrition programs) are influencing 
the magnitude of exercise effects on morphological and neuromuscular MQ features. Furthermore, despite a 
previous meta-analysis examining exercise effects on intermuscular adipose tissue and muscle density in adults 
with different metabolic  disorders22, the lack of specific analyses involving older adults preclude determining 
the efficacy of exercise strategies in this population.

Given the abovementioned conflicting observations of exercise effects on MQ in older adults, the aim of this 
study was to systematically review and analyse the effects of exercise on morphological and neuromuscular MQ 
of the lower limb derived from MRI, CT and US imaging assessment, and ratios of muscle strength per muscle 
size, respectively, in older adults. In addition, a range of possible population-, exercise-, and methods-related vari-
ables that may affect the impact of exercise on MQ outcomes were examined by subgroup and meta-regression 
analyses.

Results
Studies included. Eight-hundred twenty-six studies were retrieved from our search, with 706 potential 
records retained for screening after duplicate removals. Of these, 535 studies were excluded due to their irrel-
evance to the research question and 171 were deemed eligible and undertaken for full-text assessment (Fig. 1). A 
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826 records identified through database
(CINAHL= 71, EMBASE= 83, LILACS= 
0, PubMed= 151, SciELO= 0, and Web

of Science= 273) and grey literature 
searching (MedNar= 190, OpenGrey= 4, 

OpenTheses= 0)

124 duplicates removed

706 records screened on title 
and abstracts

535 records excluded based
on title and abstract

171 records screened for 
eligibility

150 full-text articles excluded with reasons:
20 studies including participants below 60 yrs;
24 studies including older adults with chronic 

conditions;
79 non-controlled trials or cross-sectional

analyses;
12 studies not undertaking evaluations for lower-

limb muscle quality;
5 protocol papers;

4 preclinical studies;
4 review papers;

2 secondary reports of the main study21 studies included in meta-
analysis

7 studies investigating only
morphological MQ outcomes

10 studies investigating only
neuromuscular MQ outcomes

4 additional studies via 
manual search (studies 

reference list)

4 studies investigating both
morphological and neuromuscular 

MQ outcomes

Figure 1.  Flow chart of study selection process.
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total of 21 randomised controlled trials (See in Table S1, SDC 2, Study characteristics: experimental design and 
sample size, exercise prescription and outcomes assessed) were included in the primary  analysis17–21,23–38; 7 stud-
ies investigating only morphological MQ  outcomes17,23,25,29,30,36,38, 10 studies investigating only neuromuscular 
MQ  outcomes21,26–28,31–35,37, and 4 studies investigating both MQ  measures18–20,24.

Participants and study design characteristics. A total of 973 older adults (women, n = 651; men, 
n = 284; not reported, n = 38) with a median age of 70.3 years (interquartile range (IQR): 67.3–74.8) and BMI 
of 27.5 kg  m−2 (IQR: 25.5–28.4) participated in the included studies. Most studies (n = 15) included physically 
healthy older  adults19–21,23,25,26,28–31,33–35,37,38. All exercise interventions were supervised and included predomi-
nantly resistance exercise (13 of 21 studies)19–21,23–25,28,31–34,36,37, followed by multimodal exercise  programs17,18,38 
and aerobic exercise (3 of 21 studies)23,30,35, combined resistance and aerobic exercise (2 of 21 studies)26,29, and 
aquatic resistance exercise (1 of 21 studies)25. In addition, four studies prescribed exercise (i.e., combined resist-
ance and aerobic exercise, resistance exercise, or aerobic exercise) allied with nutrition interventions such as 
caloric restriction, amino acids or protein  supplementation27,33,35,36. Studies were designed to compare the exer-
cise interventions versus non-active groups (12 of 21 studies)20,21,23,25,26,28–30,32,34,36,37, stretching or stretching and 
walking exercise groups (3 of 21 studies)17,19,31, health education classes (2 of 21 studies)18,27, and dietary edu-
cation  classes24, nutrition  placebo35,  walking38 or cognitive  exercises33. Six studies compared multiple exercise 
 interventions23,25,29,33,35,36. For the assessment of morphological MQ, 5 studies had undertaken  CT17,18,23,24,30 or 
US imaging  assessments19,20,28,29,36, and 2 studies had used the images derived from  pQCT25,38. Seven studies had 
assessed the neuromuscular MQ by isokinetic muscle  strength18,19,26,27,31,33,35 relative to  DXA27,31,33,35,  CT18,26 or 
 US19, 4 studies assessed isometric muscle  strength19,26,32,34 relative to  CT26,  DXA32,  US19 or bioelectrical imped-
ance  analysis34, and 5 studies assessed 1-RM muscle  strength20,21,24,28,37 relative to  DXA20,28,37,  CT24 or  US21.

Regarding exercise prescription characteristics, the mean intervention duration was 18.3 ± 11.6 weeks 
(ranging from 6 to 48 weeks) with either  130,31,  217,19–21,23,25,28,29,33,34,36,38 or 3 sessions per  week24,26,27,32,35,37, 
while the exercise frequency ranged from 1 to 3 sessions per week in one  study18. Information about exercise 
 volume17,19–21,23,24,26,28–32,34,35,37 and  intensity17,19–21,23–26,28,29,31,32,34,35,37 were both reported by 15 studies. Adverse 
events related to the exercise programs were identified in 4  studies23,24,30,31, whereas 7 studies reported no adverse 
events throughout the exercise program  period17,18,25,32,33,35,36. Ten studies did not report information about 
adverse  events19–21,26–29,34,37,38.

Risk of bias assessment. For the morphological MQ outcome assessment, 54.5% of the studies had some 
concerns (6 of 11  studies17,18,23–25,36), whereas 27.3% had a high risk (3 of 11  studies20,29,30) in the overall risk of bias 
assessment (Table 1). The high risk of bias in morphological MQ was in the randomisation process as 1 study did 
not report concealment allocation and present baseline differences between groups in the outcome  assessed20, 
in missing outcome data as 1 study did not present the outcome of interest for all or nearly all  participants30, 
and in the measurement of the outcome as outcome assessors were aware of the intervention received by the 
 participants20,29. Regarding the studies presenting some concerns, these were in the randomisation process as 
studies did not report concealment  allocation18,23–25,29,30,36 or presented baseline differences between groups in 
the outcome  assessed17.

In the neuromuscular MQ overall risk of bias assessment, 57.1% of the studies had high risk20,24,27,28,31,33,35,37, 
whereas 35.7% had some concerns18,21,26,32,34 (Table 2). The high risk of bias was due to the randomisation process 
as studies did not report concealment allocation and present baseline differences between groups in the outcome 
 assessed20,27,28,33,35, in the missing outcome data as 1 study did not present the outcome of interest for all or nearly 
all  participants33, and in the measurement of the outcome as outcome assessors were aware of the intervention 
received by the  participants20,24,27,28,31,37. Regarding the studies presenting some concerns, these were in the ran-
domisation process as studies did not report concealment  allocation18,21,24,26,34,37 or present baseline differences 
between groups in the outcome  assessed31,32. The individual risk of bias assessment is presented in SDC 3 Fig-
ure S1A and S1B (see in SDC 3, Individual risk of bias assessment at outcome level).

Table 1.  Risk of bias of included studies. MQ, muscle quality; n, number of studies. a Intention-to-treat 
analyses, n = 8 and per-protocol analyses, n = 3. b Intention-to-treat analyses, n = 5 and per-protocol analyses, 
n = 9.

Outcome Randomisation process
Deviation from intended 
interventions Missing outcome data

Measurement of the 
outcome

Selection of the reported 
result Overall bias

Morphological MQ, n = 11a

Low risk 2 (18.2%) 11 (100%) 10 (90.9%) 9 (81.8%) 11 (100%) 2 (18.2%)

Some concerns 8 (72.7%) 0 0 0 0 6 (54.5%)

High risk 1 (9.1%) 0 1 (9.1%) 2 (18.2%) 0 3 (27.3%)

Neuromuscular MQ, n = 14b

Low risk 1 (7.1%) 14 (100%) 13 (92.9%) 8 (57.1%) 14 (100%) 1 (7.1%)

Some concerns 8 (57.1%) 0 0 0 0 5 (35.7%)

High risk 5 (35.7%) 0 1 (7.1%) 6 (42.9%) 0 8 (57.1%)
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Exercise effects on morphological muscle quality. Exercise resulted in a significant positive ES of 
0.32 (95% CI 0.13–0.51, P < 0.001) in morphological MQ outcomes in 231 older adults who undertook super-
vised exercise interventions compared to 156 older adults in control groups (Fig. 2). The study of Minett et al.38 
was considered an outlier and removed from the overall effect analysis (Table 2). The heterogeneity was  I2 = 3% 
with no presence of publication bias (τ = 0.19, P = 0.918; see in SDC 4 Figure S2A, Contour-enhanced funnel 
plot). For studies assessing thigh high muscle density and intermuscular adipose tissue, there was a significant 
ES of 0.52 (95% CI 0.05–0.99, P = 0.030) and 0.45 (95% CI 0.05–0.86, P = 0.027), respectively, for exercise com-
pared to control. However, the results were not maintained across the subgroup analyses regarding low risk of 
bias (ES = − 0.26, P = 0.104), population (physically healthy: ES = 0.08, P = 0.586) and intervention modalities 
(resistance exercise: ES = 0.34, P = 0.161; aerobic exercise: ES = 0.18, P = 0.443; and multimodal exercise pro-
gram: ES = 0.06, P = 0.812). Furthermore, exercise effects were not significant for low muscle density (ES = 0.34, 
P = 0.186) and echo intensity (ES = 0.21, P = 0.220) of the thigh, and calf muscle density (ES = − 0.18, P = 0.377). 
Additional subgroup analyses for different study populations, intervention delivery and modality, and assess-
ment methods were not undertaken given the small number of studies included (< 2). No significant association 
was observed between intervention duration and effects on morphological MQ outcomes (ranging from 6 to 
48 weeks; β = 0.01, 95% CI − 0.02 to 0.03, P = 0.649), while associations of exercise prescribed volume and peak 
intensity with exercise effects were not undertaken given the high heterogeneity in the reporting of these exercise 
components.

Exercise effects on neuromuscular muscle quality. For the neuromuscular MQ outcomes, there was 
a significant ES of 0.49 (95% CI 0.29–0.69) (P < 0.001) in 271 older adults who undertook supervised exercise 
compared to 211 older adults in the control groups (Fig. 3). The study of Liao et al.32 was considered an outlier 
and removed from the overall effect analysis (Table 3). The heterogeneity was  I2 = 11% with no publication bias 

Table 2.  Overall and subgroup exercise effects on MQ derived from morphological outcomes in older adults. 
† Insufficient data for analysis;  I2, indicator of between-study heterogeneity; n, number of studies; SMD, 
standardised mean difference.

Main effects n Sample size SMD (95% CI) I2 P-value

Overall effect 11 472 0.23 (− 0.01 to 0.48) 52% 0.062

Without outlier 10 387 0.32 (0.13 to 0.51) 3%  < 0.001

Risk of bias

Low risk of bias 2 109 − 0.26 (− 0.57 to 0.05) 3% 0.104

Some concerns or high risk of bias 9 363 0.33 (0.13 to 0.05) 11% 0.001

Population

Physically healthy 7 295 0.08 (− 0.20 to 0.36) 38% 0.586

Sarcopenia/dynapenia† 1 84 0.23 (− 0.22 to 0.69) – –

Moderate limited functional  capacity† 1 42 0.40 (− 0.06 to 0.86) – –

Overweight/obese† 1 27 1.01 (0.40 to 1.62) – –

Frail† 1 24 0.20 (− 0.40 to 0.80) – –

Intervention delivery

Supervised 11 472 0.23 (− 0.01 to 0.48) 52% 0.062

Unsupervised - - − – –

Intervention modality

Resistance exercise 6 196 0.34 (− 0.13 to 0.81) 65% 0.161

Resistance exercise +  nutrition† 1 56 0.55 (0.01 to 1.09) – –

Aerobic exercise 2 55 0.18 (− 0.27 to 0.62) 0% 0.443

Combined resistance and aerobic  exercise† 1 36 0.36 (− 0.32 to 1.05) – –

Multimodal exercise program 3 151 0.06 (− 0.43 to 0.55) 72% 0.812

Aquatic resistance  exercise† 1 36 0.25 (− 0.40 to 0.90) – –

Assessment methods—thigh

Muscle  density† 1 42 0.11 (− 0.49 to 0.72) – –

High muscle density 4 122 0.52 (0.05 to 0.99) 34% 0.030

Low muscle density 3 80 0.34 (− 0.16 to 0.83) 19% 0.186

Intermuscular adipose tissue 3 98 0.45 (0.05 to 0.86) 0% 0.027

Echo intensity 3 146 0.21 (− 0.12 to 0.55) 0% 0.220

Assessment methods—calf

Muscle density 2 138 − 0.18 (− 0.61 to 0.23) 32% 0.377

Intermuscular adipose  tissue† 1 85 − 0.28 (− 0.71 to 0.14) – –

Echo  intensity† 1 24 0.12 (− 0.68 to 0.92) – –
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identified (τ = 0.76, P = 0.730; see in SDC 4 Figure S2B, Contour-enhanced funnel plot). The results were main-
tained in subgroup analyses involving physically healthy older adults (ES = 0.43, 95% CI 0.21–0.64, P < 0.001), 
studies undertaking resistance exercise interventions (ES = 0.64, 95% CI 0.27–1.01, P < 0.001), and studies 
assessing 1-RM of the knee extensors relative to leg lean mass by DXA (ES = 0.62, 95% CI 0.26–1.05, P = 0.001) 
or knee extensor isokinetic muscle strength relative to leg lean mass by DXA (ES = 0.48, 95% CI 0.19–0.78, 

Figure 2.  Standardised mean difference effects of exercise compared with control on morphological muscle 
quality outcomes in older adults. Overall analysis conducted with a random-effects model. Diamond represents 
pooled standardised mean difference estimate of random-effects meta-analysis; I2 represents the heterogeneity 
test; MQ, muscle quality; squares represent study-specific estimates.

Figure 3.  Standardised mean difference effects of exercise compared with control on neuromuscular muscle 
quality outcomes in older adults. Overall analysis conducted with a random-effects model. Diamond represents 
pooled standardised mean difference estimate of random-effects meta-analysis; I2 represents the heterogeneity 
test; MQ, muscle quality; squares represent study-specific estimates.
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P = 0.001), while it was not significant in overweight/obese older adults (ES = 0.79, P = 0.082) or in studies assess-
ing knee extensor isokinetic muscle strength relative to muscle volume by CT (ES = 0.42, P = 0.155). Additional 
subgroup analyses for risk of bias, different study populations, intervention delivery and modality, and assess-
ment methods were not undertaken given the small number of studies included (< 2). No significant association 
was observed between intervention duration and effects on neuromuscular MQ outcomes (ranging from 6 to 
48 weeks; β = − 0.00, 95% CI − 0.02 to 0.02, P = 0.868), while further analysis involving exercise components were 
not undertaken given the high heterogeneity in the reporting of these exercise components.

Discussion
The present systematic review and meta-analysis examining the effects of exercise on morphological and neu-
romuscular MQ outcomes in older adults produced three important findings. First, there were significant posi-
tive effects of exercise on morphological MQ outcomes although the effects derived from different supervised 
exercise modalities were modest and not consistent across the subgroup analyses undertaken. Second, significant 
exercise effects were observed on neuromuscular MQ outcomes and these were mainly derived from supervised 
resistance exercise in physically healthy older adults. Third, there was no significant association between exer-
cise intervention duration and morphological or neuromuscular MQ outcomes. Therefore, supervised exercise 
interventions significantly improved different measures of MQ regardless of exercise duration, although these 
effects were small-to-moderate and not supported across all population-, exercise-, and methods-related features.

Increased intramuscular and intermuscular adipose tissue and fibrous tissue accumulation are associated with 
aging and reduced oxidative  capacity39–41, resulting in higher risk of metabolic syndrome and physical disabilities 
in older  adults11,42. Although exercise has been widely suggested as an efficient treatment to counter or attenuate 

Table 3.  Overall and subgroup exercise effects on MQ derived from neuromuscular outcomes in older 
adults. † Insufficient data for analysis, BIA, Bioelectrical impedance analysis; CT, computed tomography; DXA, 
dual-energy X-ray absorptiometry;  I2, indicator of between-study heterogeneity; n, number of studies; SMD, 
standardised mean difference; US, muscle ultrasound.

Main effects n Sample size SMD (95% CI) I2 P-value

Overall effect 14 538 0.59 (0.33 to 0.85) 51% < 0.001

Without outlier 13 482 0.49 (0.29 to 0.69) 11%  < 0.001

Risk of bias

Low risk of  bias† 1 24 0.30 (− 1.11 to 0.51) – –

Some concerns or high risk of bias 13 514 0.64 (0.39 to 0.89) 45%  < 0.001

Population

Physically healthy 10 367 0.43 (0.21 to 0.64) 0%  < 0.001

Overweight/ Obese 2 73 0.79 (− 0.10 to 1.68) 67% 0.082

Moderate functional  capacity† 1 42 0.72 (0.10 to 1.35) – –

Sarcopenic  obesity† 1 56 1.69 (1.07 to 2.32) – –

Intervention delivery

Supervised 13 492 0.61 (0.33 to 0.89) 54%  < 0.001

Unsupervised – – − – –

Intervention modality

Resistance exercise 10 353 0.64 (0.27 to 1.01) 63%  < 0.001

Resistance exercise +  nutrition† 1 28 0.44 (− 0.32 to 1.20) – –

Aerobic  exercise† 1 22 0.19 (− 0.65 to 1.03) – –

Aerobic exercise +  nutrition† 1 21 0.57 (− 0.31 to 1.45) – –

Combined resistance and aerobic  exercise† 1 49 0.33 (− 0.24 to 0.91) – –

Combined resistance and aerobic exercise + caloric  restriction† 1 46 0.38 (− 0.21 to 0.97) – –

Multimodal exercise  program† 1 42 0.72 (0.10 to 1.35) – –

Assessment methods—knee extensors

1-RM/DXA 3 111 0.65 (0.26 to 1.05) 0% 0.001

1-RM/CT† 1 27 1.30 (0.45 to 2.14) – –

1-RM/US† 1 36 0.07 (− 0.58 to 0.72) – –

Isokinetic/DXA 5 195 0.48 (0.19 to 0.78) 0% 0.001

Isokinetic/CT 2 91 0.42 (− 0.16 to 0.99) 46% 0.155

Isometric/DXA† 1 56 1.69 (1.07 to 2.32) – –

Isometric/CT† 1 49 0.30 (− 0.27 to 0.87) – –

Isometric/BIA† 1 36 0.09 (− 0.58 to 0.76) – –

Assessment methods—plantar flexors

30°  sec−1/US† 1 24 − 0.46 (− 1.27 to 0.35) – –

Isometric/US† 1 24 0.00 (− 0.80 to 0.80) – –
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aging-related impairments in morphological  MQ8, the present results indicate only a small effect derived from 
supervised exercise interventions on this outcome (ES =  ~ 0.3). Furthermore, results were not consistent across 
multiple subgroup analyses involving older adult populations, intervention-related characteristics, and assess-
ment methods, precluding us observing potential moderators of exercise response on morphological MQ in 
older adults. The reasons for this may be related to the high relative risk of bias in most studies included in this 
 review17,18,20,23–25,29,30,36 as well as the small number of exercise randomised controlled trials designed to directly 
investigate morphological MQ in this  population19,38. In addition, the range of morphological MQ assessment 
characteristics may have affected the magnitude of exercise effects on this outcome since only specific measures 
from CT such as high muscle density and intermuscular adipose tissue of the thigh were improved by exercise, 
while exercise effects on other thigh measures and the calf muscles were not observed. For example, the location 
of the morphological MQ measurement, technology, and sensitivity to identify differences following exercise 
likely increases the heterogeneity among  studies43,44. Therefore, these methodological issues may impede further 
analyses of exercise effects on MQ in older adults.

The ratio of muscle strength per muscle mass has been suggested as a more complex and complete index of 
muscle function in older  adults13,45. In the present study, our findings are that exercise, mainly supervised resist-
ance exercise is effective in improving neuromuscular MQ, although this was only significant in physically healthy 
older adults. This result is in accordance with previous research demonstrating more neural than morphological 
adaptations following short-term resistance training  programs16,24,33,37. Therefore, despite expecting to observe 
greater effects in those at higher risk for disability (i.e., those presenting with low baseline levels), the paucity 
of studies examining exercise interventions in older adults with health issues impacting muscle precludes us 
observing such benefits in those most in need. In addition, most studies involved resistance training programs 
and strength increase with this exercise modality is expected following the principle of specificity16. However, 
this limited our ability for a more comprehensive analysis concerning different exercise  modalities18,26,27,35 or the 
combination of exercise with nutrition interventions in older adults. For example, the combination of resistance, 
aerobic and balance exercises may counteract other age-related impairments (e.g., cardiorespiratory fitness, 
functional capacity, and body composition deficiencies), while the utilisation of protein supplementation has 
been associated with additional benefits in muscle strength and hypertrophy following exercise  interventions46. 
Finally, inconsistency across different assessment methods for knee extensors and plantar flexors for strength 
and morphological features should be noted in our results as only knee extensor 1-RM and isokinetic muscle 
strength relative to DXA-derived measures were significantly enhanced by  exercise20,27,28,31,33,35,37. Accordingly, 
methods to assess neuromuscular MQ outcomes must be carefully chosen and interpreted as this may determine 
the magnitude of adaptations observed and reported in older adults.

The association of exercise program duration with decreases in intramuscular and intermuscular fat or 
increases in muscle strength and size is not clear from the current  literature47,48. In previous studies, greater 
morphological or neuromuscular adaptations were not observed following extended exercise program dura-
tion in older  adults47,48, and this could be explained by the larger window for adaptations in untrained older 
persons during the initial 3 months of exercise compared to longer training periods (i.e., principle of diminish-
ing returns)49. The present results are in accordance with these previous  investigations47,48 indicating that MQ 
adaptations are mainly achieved during initial periods of training and maintained with longer training periods. 
Moreover, although we report no association between exercise program duration and greater effects on MQ, the 
required exercise volume and intensity to enhance MQ outcomes remains to be determined in older adults. In 
the present study, the high heterogeneity of exercise modalities, volume and intensity reported precluded the use 
of meta-regression analyses to examine if changes in MQ outcomes were dependent on higher exercise volumes 
or intensities. Therefore, although the necessary exercise dosage remains to be determined in this population, 
significant improvements in MQ outcomes might be achieved and maintained following short-term exercise 
programs, reducing the risk of metabolic  disorders5 and functional  impairments3,4 in older adults.

As far as we are aware, the present study is the first systematic review and meta-analysis to examine the 
exercise effects on MQ outcomes in older adults. The strengths of the present study are: (1) a large number of 
studies (n = 21) with up to ~ 1,000 participants; (2) the assessment of both neuromuscular and morphological 
derived MQ outcomes; and (3) a range of subgroup analyses based on different population characteristics, exer-
cise modalities and delivery, and outcomes assessed. However, there are also some limitations which are worthy 
of comment. First, most studies included were of low quality because of concerns regarding the randomisation 
process and measurement of the outcomes. We attempted to use a subgroup analysis involving low risk of bias to 
minimise such bias; however, this was not possible given the small number of studies deemed low risk. Therefore, 
our results should be interpreted with caution because of the relatively low quality of studies included and small 
number of studies designed to directly investigate MQ as the main outcome. Second, all studies investigating 
MQ were supervised and mostly involved only resistance exercise programs and this may have limited our ability 
to detect the best intervention for morphological and neuromuscular MQ outcomes, or even if unsupervised 
exercise programs, a strategy of exercise delivery well-investigated  recently50, may produce similar effects on 
these outcomes. Finally, there was high heterogeneity related to the older adult populations included and exercise 
components reported, impeding further analyses concerning the consistency of exercise effects across different 
population settings, and the exercise volume and intensity necessary to achieve improvements on MQ outcomes.

Regarding future research directions, despite promising findings from the current systematic review and 
meta-analysis examining the effects of exercise on MQ, well-designed trials are still required to determine the 
effectiveness of exercise on morphological MQ outcomes in older adults. For example, the effect of different exer-
cise modalities or whether the combination of protein supplementation or other dietary strategies with exercise 
remains to be elucidated in various populations. Such questions are of great relevance given the importance of 
multidisciplinary strategies to counteract age-related impairments (e.g., cardiorespiratory fitness, functional 
capacity, and body composition deficiencies). Finally, additional studies are necessary to investigate the effects 
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of exercise in older adults at increased risk of disability and the required exercise dosage to achieve meaningful 
benefits for MQ outcomes.

In summary, the present findings on the effects of exercise on muscle quality outcomes in older adults are 
promising. Our conclusions are that both morphological and neuromuscular MQ are improved by exercise inter-
ventions, although it was not consistent across different subgroup analyses involving different populations, meth-
ods, and exercise characteristics. Considering the evidence thus far, resistance exercise promotes greater effects 
on neuromuscular MQ in physically healthy older adults, and this appears to be achieved with relatively short-
term programs, whereas a superior exercise mode was not observed for morphological MQ derived outcomes.

Methods
Study selection procedure. A systematic search was conducted in CINAHL, EMBASE, LILACS, Pub-
Med, SciELO and Web of Science databases, while dissertations and theses (i.e., grey literature) were searched in 
MedNar, OpenGrey and OpenThesis databases, from inception to January 2021. The search strategy consisted 
of a combination of relevant keywords and controlled vocabulary that included the terms ‘age’, ‘resistance train-
ing’, ‘aerobic exercise’, ‘exercise’, ‘physical activity’, ‘muscle quality’, ‘intermuscular fat’, ‘intramuscular fat’, ‘specific 
tension’ and ‘randomised controlled trials’ (see in Appendix 1, Supplement Digital Content (SDC) 1, Search 
strategy). In addition, we also performed a manual search of the reference lists provided in the selected papers. 
All procedures were undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA)  statement51,52 and based on the minimum criteria established by the Cochrane Back 
Review Group (CBRG)53, with registration at the international prospective register of systematic reviews (PROS-
PERO identifier: CRD42021223794). In addition, the present systematic review complies with international 
guidelines and regulations as per the Declaration of Helsinki.

This review included randomised controlled trials evaluating the effects of supervised or unsupervised exer-
cise programs combined or not with nutritional programs (e.g., protein supplementation, caloric restriction, or 
healthy diet) on morphological MQ outcomes, expressed as measures from CT (e.g., muscle density or inter-
muscular adipose tissue), pQCT (e.g., muscle density or intermuscular adipose tissue), MRI (e.g., lipid infiltra-
tion) or US (e.g., muscle echo intensity), and neuromuscular MQ outcomes expressed as the ratio of maximal 
muscle strength (e.g., derived from 1-RM (isotonic), isokinetic or isometric tests) per muscle mass parameter 
(e.g., muscle thickness, muscle cross-sectional area, muscle volume, lean mass, fat-free mass, or muscle mass) 
by MRI, CT, US, or dual-energy X-ray absorptiometry (DXA) in older adults (i.e., ≥ 60 years). The primary out-
comes for this review were both morphological and neuromuscular MQ outcomes of the lower limb (e.g., thigh 
and calf muscles). The exclusion criteria were: (1) studies involving older adults with chronic conditions such 
as type II diabetes, cancer, chronic haemodialysis, or heart failure; (2) studies not including or reporting on the 
specific outcomes required for this review, or did not include sufficient information such as baseline and post-
intervention assessment, or within- and between-group mean differences for analysis; (3) studies undertaking 
within-subject designs (i.e., legs randomised to different intervention programs or single-group studies); and (4) 
studies written in a language other than English, Portuguese or Spanish. In the search strategy, titles and abstracts 
were first independently evaluated following the eligibility criteria. When abstracts did not provide sufficient 
information, they were selected for full-text evaluation. Eligibility was assessed independently in duplicate (R. 
R. and P. L.) with differences resolved by consensus.

Data extraction. Data extraction was performed via a standardised form. Demographic and methodo-
logical information were extracted from the included studies such as age, body mass index (BMI), number of 
participants randomised to study arms, exercise prescription characteristics that included duration, modality, 
frequency, intensity and volume, adverse events, and outcomes assessed. In addition, baseline, and post-inter-
vention assessment, or within- and between-group mean difference from the outcomes of interest were extracted 
in their absolute units and for the longest period of the exercise intervention. When graphs were used instead of 
numerical data, the graphs were measured through the plots using a specific tool for data extraction (WebPlot-
Digitizer, San Francisco, CA)54.

Risk of bias assessment. The risk of bias was evaluated according to the 2nd version of the Cochrane risk-
of-bias tool for randomised trials (RoB 2) with each assessment focused at the outcome  level55. The six-domain 
instrument includes: (1) randomisation process; (2) deviation from intended interventions; (3) missing outcome 
data; (4) measurement of the outcome; (5) selection of the reported result; and (6) overall bias. Overall risk of 
bias was expressed as “low risk of bias” if all domains were classified as low risk, “some concerns” if some concern 
was raised in at least one domain but not classified as at high risk in any other, or “high risk of bias” if at least 
one domain was classified as high risk, or multiple domains had some  concerns55. The study quality assessment 
for all included studies were performed independently by two reviewers (R. R. and P. L.) with disagreements 
resolved by consensus.

Data analysis. For the meta-analysis, the pooled effect estimates were obtained from the standardised mean 
difference (SMD) of baseline to the final assessment of the intervention versus control group. When studies did 
not provide dispersion values of change such as standard deviation (SD), standard errors or 95% confidence 
intervals (95% CI), the SD of the change was calculated by the square root of 

(

SD
2

Baseline
+ SD

2
Post−intervention

)

 , 
assuming a correlation of zero between the baseline and post-intervention assessment  measures56. Furthermore, 
to avoid overestimating the weight of a study by entering it multiple times in the overall effect analyses, effects 
of different exercise groups were combined when reported/presented in the same study, as well as outcomes 
considered within the same outcome category (e.g., intermuscular adipose tissue and low muscle density)57. 
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In outcomes where lower values indicate better than poorer results, the mean effect was multiplied by − 1 as 
recommended in the Cochrane  Handbook57. Meta-analyses were conducted for overall studies, and subgroup 
analyses were provided for: (1) older adults subgroups (e.g., physically healthy, obese, mobility-limited, sarco-
penic, frail); (2) exercise delivery modes (e.g., supervised vs. unsupervised exercise programs); (3) interven-
tion modalities (e.g., resistance exercise, aerobic exercise, combined resistance and aerobic exercise, water-based 
exercise prescription, exercise plus nutritional supplementation); (4) outcomes assessment (e.g., muscle echo 
intensity, intermuscular adipose tissue); (5) thigh versus calf muscle outcomes (or knee extensors vs. plantar 
flexors); and (6) based on risk of bias assessment, when sufficient number of studies were available. Calculations 
were performed using a random-effects model with the DerSimonian & Laird  method58. Statistical significance 
was assumed when the SMD effect was below an α level of P ≤ 0.05. Effect sizes (ES) were according to  Cohen59 
with values of 0.0 to < 0.5 indicating small, values of 0.51 to < 0.8 indicating medium, and values ≥ 0.8 indicating 
large effects. Statistical heterogeneity was assessed using the Cochran Q  test60. A threshold P value of 0.1 as well 
as values greater than 50% in  I2 were considered indicative of high  heterogeneity60. We examined heterogeneity 
using sensitivity analysis by omitting one study at a time. Outliers were considered those studies in which the 
confidence intervals did not overlap the estimated pooled effect using the package ‘dmetar’ from R (function 
find.outlier; R Core Team, 2020). Publication bias was explored by contour-enhanced funnel plots and Egger’s 
 test61 and, if necessary, trim-and-fill computation was used to estimate the effect of publication bias on the inter-
pretation of  results60,62. Analyses were conducted using the package ‘meta’ from R (R Core Team, 2020). Forest 
plots presented for the outcome measures are after sensitivity analysis procedure adjustments.

In addition, we tested the associations between exercise components (intervention duration, prescribed 
volume and peak intensity) and SMD effects if sufficient data were available. Using one or multiple variables 
at a time, we assessed whether exercise components influence the association of exercise with the main effects. 
Correlations were weighted by the inverse of the variance of each observation.
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