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Epidemiological overview 
of multidimensional chromosomal 
and genome toxicity of cannabis 
exposure in congenital anomalies 
and cancer development
Albert Stuart Reece1,2* & Gary Kenneth Hulse1,2

Cannabis and cannabinoids are implicated in multiple genotoxic, epigenotoxic and chromosomal-toxic 
mechanisms and interact with several morphogenic pathways, likely underpinning previous reports 
of links between cannabis and congenital anomalies and heritable tumours. However the effects of 
cannabinoid genotoxicity have not been assessed on whole populations and formal consideration 
of effects as a broadly acting genotoxin remain unexplored. Our study addressed these knowledge 
gaps in USA datasets. Cancer data from CDC, drug exposure data from National Survey of Drug 
Use and Health 2003–2017 and congenital anomaly data from National Birth Defects Prevention 
Network were used. We show that cannabis, THC cannabigerol and cannabichromene exposure 
fulfill causal criteria towards first Principal Components of both: (A) Down syndrome, Trisomies 18 
and 13, Turner syndrome, Deletion 22q11.2, and (B) thyroid, liver, breast and pancreatic cancers and 
acute myeloid leukaemia, have mostly medium to large effect sizes, are robust to adjustment for 
ethnicity, other drugs and income in inverse probability-weighted models, show prominent non-linear 
effects, have 55/56 e-Values > 1.25, and are exacerbated by cannabis liberalization (P = 9.67 × 10–43, 
2.66 × 10–15). The results confirm experimental studies showing that cannabinoids are an important 
cause of community-wide genotoxicity impacting both birth defect and cancer epidemiology at the 
chromosomal hundred-megabase level.

Cannabinoid-induced genotoxicity was first demonstrated by researchers in the 1960’s who showed multiple 
congenital defects developing in prenatally exposed animals1–3, cannabinoid-induced micronucleus formation 
from chromosomal mis-segregation errors and mitotic spindle disruption4, ring and chain chromosomal mal-
formations in sperm5, nuclear blebbing and bridging of oocytes and lymphocytes during cytokinesis6,7 and direct 
and indirect multimodal mitochondrial toxicities with downstream direct and indirect epigenetic effects4,8–12. 
It has long been known that cannabinoids reduce histone formation and protamine substitution and synthesis 
resulting in a more open chromosomal conformation which is more subject to mutagenicity and is also pro-
oncogenic as more genes are available for transcription13–18. Cannabis has a large epigenetic footprint with major 
alterations of DNA methylation, a change inheritable to subsequent generations in both mice and man9,19–26.

An elegant and incisive molecular dissection of the cannabidiol-related genotoxic mechanisms was recently 
published by the Parnell group which indicated that cannabidiol-hedgehog signalling and cannabinoid recep-
tor type 1 (CB1R)—smoothened receptor heterodimerization was a key molecular mediator of developmental 
malformations including orofacial cleft palate and lip deformities, exencephaly and microphthalmia/anophthal-
mia in mice and zebrafish27. These authors also noted that since the hedgehog pathway is a key developmental 
mechanism also implicated in many oncogenic pathways it could also be expected to implicated in the growth 
and promotion of several cancers. This important predictive hypothesis has not been tested epidemiologically to 
our knowledge. If confirmed it would clearly carry major public health and regulatory implications as it seems 
very evident that the genotoxicity of many cannabinoids is not well appreciated currently in either lay or profes-
sional circles. Moreover promiscuous heterodimerization of the CB1R with many other G-protein receptors has 
been reported including notch and CBR228, delta29 and mu30 opioid receptors, angiotensin II31, serotonin 2A 
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receptors32, GPR5533, orexin34, dopamine type 2A35 and adenosine 2A36. Heterodimerization of the CB1R changes 
its downstream interactions with G-protein transduction coupling machinery and can change the polarity of 
signalling from inhibition to activation27.

Presumptive evidence for cannabinoid-induced genotoxicity was first demonstrated in human populations 
in Hawaii with the 2007 documentation of elevated rates of Down syndrome in infants prenatally exposed to 
cannabis but not to other drugs, with OR 5.26 (95% CI 1.08–15.46)37. This finding has since been confirmed 
in Colorado and Australia8,38 and by studies of US data39. Indeed a dramatic rise from the fourth to the fifth 
quintiles of cannabis use amongst US states was recently reported for 34 congenital anomalies of birth includ-
ing prominently cardiovascular and central nervous system disorders, orofacial clefts, limb reductions and the 
chromosomal disorders Down syndrome, Trisomy 13, Turner syndrome and Deletion 22q11.239.

Testicular cancer, with its ubiquitous chromosome 12 anomalies40–42, has been linked with parental cannabis 
exposure in all four studies to examine this relationship43–46.

Together this list makes an impressive assemblage of the human genome. Chromosomes 12, 13, 18, 21, and 
X are each 133, 114, 80, 48 and 153 megabases (MB) in length so together they comprise 528 MB (16.7%) of the 
human genome which is in total about 3000 MB in length. This substantial list also leaves open the possibility 
that cannabis may be generally toxic to human chromosomes including the possibility that damage related to 
other chromosomes is filtered out by in utero foetal loss contributing to the lower fecundity and higher miscar-
riage rates known to occur amongst human women who consume cannabis47,48.

Cannabis use in parents has previously been linked with non-lymphoblastic leukaemia, several pediatric 
sarcomas49–51 and in a recent causal inference report, with the rising rate of pediatric cancers across USA since 
197052. This latter is important as it presents presumptive clinical evidence of intergenerational inheritance of 
oncogenic mutagenicity and teratogenicity53,54.

Whilst the relationships between cannabinoids and various morbidities are increasingly being studied, it 
seemed timely to review the epidemiological evidence linking cannabinoid-induced genotoxicity to clinical 
phenomenology at the epidemiological level using US space–time denominated drug and disorder data which 
is the perhaps the most complete dataset globally using standard epidemiological tools. The objective here is to 
provide in overview form an increased understanding of the implications of cannabinoid induced genotoxicity, 
areas not well understood by medical or public health practitioners or in the general community.

Principal Components (PC) analysis is a classical statistical technique which quantifies the dominant trends 
in a cloud of data points and allows several variables to be combined at once thereby allowing significant dimen-
sion reduction and streamlining of data analysis across multiple variables.

The central hypothesis to be investigated was whether there was a relationship between cannabis use and 
Principal Components (PC’s) of the congenital anomalies Down syndrome, Trisomy 18 (Edwards syndrome), 
Trisomy 13 (Patau’s syndrome), Turner syndrome, Deletion 22q11.2 (Di George syndrome), and selected cancers 
namely thyroid, liver, breast and pancreatic cancers and acute myeloid leukaemia, and whether the association 
fulfilled formal quantitative criteria of causality. The present study was intended to be an overview and introduc-
tion to the potentially broad impacts of cannabinoid genotoxicity across the chromosomal complement and was 
useful to introduce the concept of large-scale genetic damage. Rather than considering morbidities separately 
it was felt that additional insights could be gained by considering these syndromes together particularly with 
regard to their impacts across the chromosomal landscape. This is not of course to suggest that detailed studies 
on each pathology mentioned should not be conducted. And indeed for many of these issues we are doing just 
this at the time of writing. However it was felt that much could be gained by the “wide-angled lens approach” in 
parallel with detailed spatiotemporal and causal inference epidemiological analyses.

Our concerns in relation to cannabis and cannabinoids were heightened by the recent demonstration from 
SAMHSA that cannabis use alone has risen across this period whilst the use of tobacco and alcohol use disorder 
have declined55–57 and by the demonstration that the rate of daily or near daily cannabis consumption in USA 
has recently doubled again based on SAMHSA data58. The rates of opioid use in household surveys has generally 
declined and the rate of cocaine use has been consistently low level.

The emerging picture is in fact very concerning and indeed the very antithesis of the supposedly “soft drug 
image” with which cannabis is invariably associated in popular culture. Epidemiological data implicates several 
cannabinoids including cannabigerol, cannabinol and cannabichromene in addition to tetrahydrocannabinol 
(THC). Public health concerns are heightened by the major theme coming through much cannabinoid genotoxic-
ity and cell biology of an exponential dose–response relationship14,26,59–61 which appears to have serious impacts 
in environments where cannabis use is allowed to increase—with major multigenerational and transgenerational 
implications.

Results
Cancer data was downloaded for the fifty US states from 2001 to 2017 from the SEER registry62. Congenital birth 
anomaly data was taken from NBDPN CDC annual reports63. It was adjusted to include estimates of early termi-
nation of pregnancy for anomaly (ETOPFA) taken from the published literature64–66. These datasets were matched 
with drug use data from NSDUH at SAMHSA for the period 2003–201767 so that the fifteen years 2003–2017 
became the period of analysis. There were therefore 750 datapoints for analysis. This data was supplemented by 
income and ethnicity data from US census bureau and cannabinoid concentration data from DEA68–70.

Cannabis use quintiles were calculated for each year. The mean percentage rates of cannabis use are shown 
in Supplementary Table 1.

Four Principal Components (PC’s) were constructed in the domains of congenital anomaly (CA) rates (CAR), 
ETOPFACAR’s, cannabinoid exposure and the five cancers of interest. Details of the composition of the PC’s are 
shown in Supplementary Tables 2–5.
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Figures 1 and 2 show the rate of the various disorders over time for raw data and after ETOPFA-adjustment 
respectively. In all cases the dependent variables listed were rising with time (Fig. 1). ETOPFA adjustment for the 
congenital anomalies has the effect of exacerbating this increase (Fig. 2). Note the change in scale between graphs.

Figure 3 shows the time course of four first Principal Components 1. In each case they are also noted to be 
rising strongly across time.

Supplementary Fig. 1 and Figs. 4 and 5 are paired scatterplot matrices showing the bivariate relationship of 
the raw CAR’s, ETOPFACAR’s and cancer rates with substance exposures respectively. In Supplementary Fig. 1 
the five chromosomal anomalies appear in the last five rows of the plot matrix and the cannabinoid exposures 
appear in the middle columns. Cannabis exposure appears in the third column from the left. The relationship 
between exposures to cannabis and cannabinoids is therefore seen in the positive slopes of the regression lines in 
the intersection of these rows and columns. Figure 4 is very similar to this but uses the ETOPFA-adjusted data. 
In this scatterplot matrix it is noted that the slopes of the regression lines in the corresponding plots is much 
more steeply positive. The relationship of these CAR’s with cannabigerol is different in this plot matrix as most 
anomalies have a negative relationship with cannabigerol exposure.

Figure 5 performs a similar function for the cancer data. In this plot matrix the cancers occupy the last five 
rows. The slope of the regression lines for cannabis and the cannabinoids THC, cannabidiol, cannabichromene, 
and cannabinol is strongly positive. In the case of cannabigerol the relationship is more heterogeneous.
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Figure 1.   Raw congenital anomaly and cancer incidence data over time, by pathology type. (Created in 
R-Studio version 1.3.1093 using ggplot version 3.3.2).
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Figure 2.   ETOPFA-corrected congenital anomaly and cancer incidence data as a function of THC exposure, by 
pathology type. (Created in R-Studio version 1.3.1093 using ggplot2 version 3.3.2).
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Supplementary Figs. 2–6 and 7–10 and Fig. 6 show the relationship between the pathologies of interest 
and the various cannabinoids in more detail for CAR’s, ETOPFACAR’s and cancers respectively. These figures 
make explicit the positive relationship between CAR’s and cancers and cannabis, THC, cannabinol, and can-
nabichromene (Supplementary Figs. 2–5) which is increased by ETOPFA correction (Fig. 6 and Supplementary 
Figs. 7–9) whilst the relationship between these pathologies and cannabigerol is more complex (Supplementary 
Figs. 6 and 10).

Supplementary Figs. 11 and 12 and Figs. 7 and 8 show Corrplot correlograms of the correlation coeffi-
cients and their significance for the CAR’s and ETOPFACAR’s and cancers respectively. In each case the con-
genital anomalies appear in the right hand columns along with their combined principal component which is 
PC!DefxRaw in Supplementary Figs. 11 and 12 and PC1TrueDefx in Figs. 7 and 8. All four correlograms include 
the PC1Cannabinoid for cannabinoids and PC1_5xCancers which combines the data for the five cancers. In each 
case the cannabinoids occupy the middle rows.

Positive Pearson correlation coefficients are noted for the CAR’s (Supplementary Fig. 11) which are shown 
in Supplementary Fig. 12 to be significant for Down syndrome but not for other CAR’s. ETOPFA adjustment 
has little effect on these correlation coefficients (Fig. 7) and does not change the significance levels of the cor-
relations appreciably (Fig. 8).

Supplementary Figs. 13–15 present time-based cannabis use quintile plots and boxplots for CAR’s, ETOP-
FACAR’s and cancers respectively. One reads the boxplots by noting where the notches do not overlap which 
signifies statistically significant differences. The cannabis use quintile categories may be dichotomized as the 
highest quintile against the lower four quintiles. In each case time-dependent dichotomization reveals very dif-
ferent trends for the highest and lower quintiles (Supplementary Figs. 13–15, panels C and D).

The statistics applicable to the continuous quintile data in these three domains are shown in Supplementary 
Table 6. These results confirm formally the visual impressions from inspection of Supplementary Figs. 13–15 
of important changes at higher quintiles of cannabinoid exposure with high levels of statistical significance 
(CAR’s: β-est. = 1.76 (1.22, 2.29), P = 3.81 × 10–9; ETOPFACAR’s: β-est. = 1.59 (1.04, 2.14), P = 1.15 × 10–7; cancers: 
β-est. = 0.43 (0.26, 0.61), P = 1.69 × 10–6).
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Figure 3.   The time course of the four PC1’s for: CAR, ETOPFACAR, cannabinoids and Cancer data (Created in 
R-Studio version 1.3.1093 using ggplot2 version 3.3.2).
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The statistics for the categorical quintile data confirm the visual impressions of no significant differences 
between quintiles on the Chi Squared test for trend (ChiSqu. = 444, 444, 3000, df = 440, 440, 2996, P = 0.44, 
0.44, 0.48 respectively) but statistically significant differences on comparison of dichotomized data on testing 
for Student’s T (CAR’s: t = 5.221, df = 16.583, P = 7.49 × 10–5; ETOPFACAR’s: t = 4.296, df = 16.08, P = 5.49 × 10–4, 
cancers: t = 5.17, df = 251.52, P = 4.76 × 10–7).

Table 1 shows Cohen’s D which is a measure of effect size, its qualitative meaning, and applicable E-Values 
and P-Values for various quintile dichotomizations. The effect sizes are noted to be large for the CAR’s and 
ETOPFACAR’s for all comparisons and medium for the cancer comparisons between the third and fifth quintiles.

Supplementary Tables 7–9 show the results of inverse probability-weighted instrumental variable regression 
against PC1 across the three domains in increasingly complex models. The first model shown in Supplemen-
tary Table 7 is a model additive for drugs. It is followed by a model interactive for drugs. The third and fourth 
models are again additive and interactive respectively but substitute the cannabinoids THC, cannabigerol and 
cannabichromene in place of cannabis. The fifth and sixth models are additive and interactive respectively and 
include the PC1 of cannabinoids with all the covariates including six ethnicities and median household income. 
All six models listed include cannabinoids with highly significant positive terms (from β-est. = 3.67 (2.77, 4.56), 
P = 3.06 × 10–12) in model four) and in all six models the effect of cannabinoids is positive overall.

Supplementary Table 8 is structured similarly to Supplementary Table 7 but uses the ETOPFA-adjusted data 
and includes an additive and an interactive comprehensive model with all covariates including ethnicity and 
income and the three cannabinoids THC, cannabigerol and cannabichromene. Seven of the eight models listed 
in this Table incorporate positive and highly significant terms including cannabinoids (from β-est. = 5.40 (3.79, 
7.00), P = 2.16 × 10–9 in model six) and in six models the overall effect of cannabinoids is positive (models six 
and eight being the exceptions).

Supplementary Table 9 is structured similarly to Supplementary Table 8 and in this Table the dependent 
variable is the PC1 for the cancers. All eight final models include terms positive and significant for cannabinoids 
(from β-est. = 14.84 (10.88, 18.79), P < 2.20 × 10–16 in model three; β-est. = 0.35 (0.29, 0.41), P < 2.20 × 10–16 in 
model five; β-est. = 1.48 (1.19, 1.77), P < 2.20 × 10–16 in model seven) and in five models the overall effect of can-
nabinoids is positive (models two, four and eight being the exceptions).

Thus in all three instrumental variable regression tables Supplementary Tables 7–9 terms for cannabis, can-
nabinoids and PC1-cannabinoids are noted to be significant and positive.

Figure 4.   Paired scatterplot matrix for the covariates in the ETOPFACAR dataset. (Created in R-Studio version 
1.3.1093 using ggpairs function from the GGally package version 2.0.0).
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Figure 5.   Paired scatterplot matrix for the covariates in the cancer dataset. (Created in R-Studio version 
1.3.1093 using ggpairs function from the GGally package version 2.0.0).
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Tables 2, 3, and 4 perform a similar function for inverse probability-weighted robust generalized regression 
models across the three domains. Table 2 presents final inverse probability weighted robust generalized linear 
regression models for the CAR dataset. Additive and interactive models for drugs, additive and interactive 
models for drugs including cannabinoids and additive and comprehensive models including sociodemographic 
and socioeconomic covariates are presented. Terms including cannabinoids are positive and highly significant in 
five of the six final models shown and in the first, third, fourth and fifth models the effect of rising cannabinoid 
exposure is positive overall.

Table 3 is set out like Table 2 but also includes additive and interactive comprehensive models for cannabi-
noids. Terms including cannabinoids are positive and very highly significant (from β-est. = 3.94 (2.62, 5.25), 
P = 6.46 × 10–6 in model seven) in all eight models and in each case the overall effect of rising cannabinoid 
exposure is positive overall.

Table 4 is structured similarly to Table 3. In each of the eight final robust models illustrated terms including 
cannabinoids are positive and highly significant (from β-est. = 0.97 (0.75, 1.19), P = 5.15 × 10–11 in model seven) 
and the overall effect of cannabinoids is positive in seven of the eight models (the exception being model eight).

Hence in these robust regression models many terms involving cannabinoids are again noted to be positive 
and highly significant and the effects of cannabinoids are strongly positive across this model series overall.

Supplementary Table 10 and Table 5 list the E-Values which may be drawn from the linear and instrumental 
variable regression model respectively. Minimum E-Values from linear models are noted to range from 1.21 to 
11.25, with median, mode and interquartile ranges of 3.05, 3.44 (1.58, 5.86, Supplementary Table 10). Similar 
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Figure 7.   Correlogram drawn in Corrplot for the Pearson correlation coefficients between covariates for 
ETOPFA-corrected data. The colouring is scaled from strongly positive (bright red) to strongly negative 
(bright royal blue). The upper triangle represents these associations as ellipses where the width of the ellipses 
in inversely proportional to the strength of the correlation so that the strongest associations have the narrowest 
ellipses. Ellipses slope to the right for positive relationships and to the left for negative relationships. (Created in 
R-Studio version 1.3.1093 using corrplot version 0.84).
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statistics for the minimum E-Values from the instrumental variable regression models are 10.96, 12.01 (2.23, 
1250, Table 5) so that the minimum E-Values arising from the more sophisticated type of regression are signifi-
cantly larger than those originating from simple linear regression (Wilcoxson’s W = 179.5, P = 0.0011).

56 minimal E-Values are listed in descending order in Supplementary Table 11 where 55 are noted to be 
greater than 1.25, 29/56 (51.87%) exceed five and 21 are larger than 9.0. The mean, median and modal E-Values 
for this series are 2.52 × 1016, 5.365 and 7.75 and the interquartile range is 2.17 to 44.16. The significance of these 
values is that 1.25 is the generally accepted cut-off for causal effects71 and 9.0 is the applicable E-Value for the 
tobacco-lung cancer relationship and is generally considered to be large72. Five is also considered to be a size-
able E-Value. Given that this is a comprehensive list of positive E-Values to emerge from these models this is an 
impressive list of minimum E-Values.

Supplementary Figs. 16–18 show the time dependent and box plot aggregated charts across the three domains 
by cannabis legal status. Strong effects are shown on dichotomization as indicated. Some of these are summarized 
in Fig. 9.

Final models from the time-dependent analysis of these data as continuous variables are shown in Table 6. 
Many highly significant effects shown including the effect of legal cannabis on the CAR data (β-est. = 2.57 (1.03, 
4.11), P = 0.0014) and the effect of liberal as opposed to illegal cannabis regimes on cancer rates (β-est. = 0.58 
(0.44, 0.72), P = 1.14 × 10–15).

As suggested by the dichotomous boxplots in these four figures these data can also be analyzed as categori-
cal variables by dichotomous legal status. The CAR PC1 data may be dichotomized as illegal (-0.064 ± 0.114, 
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Figure 8.   Correlogram drawn in Corrplot for the significance of correlative relationships between covariates for 
ETOPFA-corrected data. Numbers represent the P-values corresponding to the Pearson correlation coefficients. 
The colouring is scaled from strongly positive (bright red) to strongly negative (bright royal blue). The upper 
triangle represents these associations as ellipses where the width of the ellipses in inversely proportional to the 
strength of the correlation so that the strongest associations have the narrowest ellipses. Ellipses slope to the 
right for positive relationships and to the left for negative relationships. (Created in R-Studio version 1.3.1093 
using corrplot version 0.84).
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Table 1.   Quintile analysis. Cohen’s D, Effect Sizes, E-Values and P-values for quintile analyses.

Quintiles 3 v 5 Quintiles 4 v 5 Quintile 5 v lower

Cohen’s D

PC1 defects 2.51 (1.61, 3.42) 1.85 (1.05, 2.65) 1.78 (1.18, 2.37)

PC1 ETOPFA 2.09 (1.25, 2.93) 1.53 (0.77, 2.29) 1.57 (0.98, 2.16)

PC1 cancers 0.54 (0.23, 0.85) 0.16 (0.14, 0.47) 0.44 (0.26, 0.62)

Effect sizes

PC1 defects Large Large Large

PC1 ETOPFA Large Large Large

PC1 cancers Medium Negligible Small

E-Values

PC1 defects 19.25, 11.25 10.21, 6.24 9.57, 6.652

PC1 ETOPFA 12.90, 7.75 7.52, 4.64 7.86, 5.43

PC1 cancers 2.91, 2.63 1.62, 1.38 2.68, 2.52

P-levels of T-tests

PC1 Defects 2.81E-06 4.13E-05 7.49E-05

PC1 ETOPFA 3.43E-05 4.45E-04 5.49E-04

PC1 Cancers 4.41E-04 0.2777 4.72E-06

Table 2.   Robust IPW-weighted generalized regression analyses on PC1 for raw congenital anomaly data. Final 
robust generalized linear regression models for CAR Dataset.

Parameter Estimate (C.I.) P-Value

Drugs—additive model

svyglm(PC1 raw anomalies ~ cigarettes + AUD + mrjmon + Analgesics + cocaine + MHY)

 Cannabis 1.56 (0.4, 2.72) 0.0071

 Cigarettes − 14.87 (− 19.87, − 9.87) 3.83E−06

Drugs—interactive model

svyglm(PC1 raw anomalies ~ cigarettes * AUD * mrjmon + analgesics + cocaine + MHY)

 AUD 74.69 (46.65, 102.74) 1.88E−05

 Cigarettes: AUD − 289.8 (− 428.68, − 150.92) 3.70E−04

Cannabinoids—additive model

svyglm(PC1 raw anomalies ~ cigarettes + AUD + THC + CBG + CBC + analgesics + cocaine)

 CBG 1.42 (0.3, 2.55) 0.0203

 Cigarettes − 14.85 (− 19.8, − 9.89) 3.41E−06

Cannabinoids—interactive model

svyglm(PC1 raw anomalies ~ cigarettes * AUD * THC * CBG * CBC + Analgesics + cocaine)

 Cigarettes: CBG 4.49 (2.63, 6.36) 6.70E− 05

Full additive model

svyglm(PC1 raw anomalies ~ cigarettes + AUD + PC1− Cannabinoids + analgesics + cocaine + income + 6_races)

 AIAN 10.03 (5.3, 14.75) 0.0003

 PC1-Cannabinoid 0.65 (0.2, 1.11) 0.0097

 Cigarettes − 14.12 (− 18.82, − 9.42) 3.82E−06

Full interactive model

svyglm(PC1 raw anomalies ~ cigarettes * AUD * PC1-cannabinoids + analgesics + cocaine + income + 6_races)

 Cocaine 106.67 (24.71, 188.64) 0.0186

 PC1-Cannabinoid 3.01 (0.47, 5.54) 0.0303

 Cigarettes: AUD 320.87 (26.47, 615.27) 0.0446

 AUD: PC1-Cannabinoid − 34.59 (− 66.35, − 2.83) 0.0447

 AUD − 82.77 (− 148.26, − 17.29) 0.0218

 Asian − 23.31 (− 40.72, − 5.89) 0.0159

 Cigarettes − 35.71 (− 50.08, − 21.35) 8.11E−05
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mean ± S.E.M.) compared to liberal (0.395 ± 0.206; t = 1.945, df = 70.588, P = 0.056) or not legal (0.078 ± 0.106) 
compared to legal (2.509 ± 0.002; t = 22.76, df = 108.11, P = 9.67 × 10–43). The ETOPFACAR PC1 data may be 
dichotomized as not legal (0.273 ± 0.106) compared to legal (2.546 ± 0.081; t = 17.01, df = 7.330, P = 3.71 × 10–7). 
The cancer PC1 data may be dichotomized as illegal (− 0.277 ± 0.0.54) compared to liberal (0.189 ± 0.615; t = 5.703, 
df = 476.848, P = 2.06 × 10–8).

These results confirm formally at both continuous and categorical analysis the strong visual impression from 
inspection of Supplementary Figs. 16–18 and Fig. 9 that liberal cannabis regimes greatly exacerbate the rates of 
CAR’s, ETOPFACAR’s and cancers studied at high levels of statistical significance.

Table 3.   Robust IPW-weighted generalized regression analyses on PC1 for ETOPFA-adjusted congenital 
anomaly data. Final robust generalized linear regression models for ETOPFACAR Dataset.

Parameter Estimate (C.I.) P-Value

ETOPFA data

Drugs—additive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes + AUD + mrjmon + Analgesics + cocaine + MHY)

  Cannabis 1.56 (0.51, 2.6) 0.0071

  Cigarettes − 13.19 (− 17.62, − 8.75) 3.83E−06

Drugs—interactive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes * AUD * mrjmon + Analgesics + cocaine + MHY)

  AUD 98.08 (58.27, 137.89) 5.81E−05

  AUD: Cannabis 21.02 (2.59, 39.44) 0.0345

  Cigarettes: AUD − 229.76 (− 329.02, − 130.5) 0.0001

Cannabinoids—additive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes + AUD + THCRt + CBGRt + CBCRt + analgesics + cocaine)

  CBG 2.94 (1.39, 4.48) 0.0010

  CBC − 1.53 (− 2.67, − 0.39) 0.0146

  Cigarettes − 13 (− 17.52, − 8.48) 7.33E−06

Cannabinoids—interactive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes * aUD * THCRt * CBGRt * CBCRt + analgesics + cocaine)

  Cigarettes: CBG 4.53 (2.67, 6.39) 6.70E−05

  CBG 3.49 (0.44, 6.53) 0.0338

  Cigarettes: THC: CBC 3.78 (0.23, 7.34) 0.0473

Full additive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes + AUD + PC1_Cannabinoids + analgesics + cocaine + income + 6_races)

  PC1_Cannabinoid 0.64 (0.22, 1.06) 0.0063

  Cigarettes − 12.33 (− 16.59, − 8.07) 5.73E−06

Full interactive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes * AUD * PC1_cannabinoids + analgesics + cocaine + income + 6_races)

  PC1_Cannabinoid 0.64 (0.22, 1.06) 0.0063

  Cigarettes − 12.33 (− 16.59, − 8.07) 5.73E−06

Cannabinoids full additive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes + THC + CBG + CBC + AUD + Analgesics + cocaine + income + 6_races)

  CBG 3.94 (2.62, 5.25) 6.46E−06

  AIAN 19.58 (12.65, 26.52) 1.46E−05

  Cocaine 94.7 (12.92, 176.47) 0.03337

  AUD − 26.81 (− 45.85, − 7.78) 0.01141

  CBC − 2.8 (− 4.48, − 1.11) 0.00366

  Cigarettes − 11.53 (− 15.82, − 7.24) 2.79E−05

Cannabinoids full interactive model

 svyglm(PC1_ETOPFA_anomalies ~ cigarettes * THC * CBG * CBC + AUD + Analgesics + cocaine + income + 6_races)

  AIAN 11.36 (8.14, 14.58) 6.01E−07

  CBG 3.8 (1.74, 5.86) 0.0015

  Cocaine 78.22 (7.94, 148.49) 0.0401

  Cigarettes: CBC − 14.08 (− 24.26, − 3.9) 0.0128

  Cigarettes − 73.02 (− 115.67, − 30.38) 0.0029

  Asian − 19.81 (− 29.84, − 9.77) 0.0008
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Parameter Estimate (C.I.) P-value

Drugs—additive model

svyglm(PC1-cancer ~ cigarettes + AUD + Cannabis + analgesics + cocaine + MHY)

 Cannabis 1.6 (1.08, 2.12) 2.67E−07

 AUD − 22.88 (− 32.34, − 13.42) 2.02E−05

Drugs—interactive model

svyglm(PC1-Cancer ~ cigarettes * AUD * cannabis + analgesics + cocaine + MHY)

 Cigarettes 54.66 (26.52, 82.8) 0.0004

 Cigarettes: Cannabis 15.56 (6.58, 24.55) 0.0015

 AUD 48.5 (8.04, 88.96) 0.0233

 Cigarettes: AUD: Cannabis − 140.39 (− 258.36, − 22.41) 0.0243

 Cigarettes: AUD − 655.34 (− 1016.26, − 294.42) 0.0009

Cannabinoids—additive model

svyglm(PC1-cancer ~ cigarettes + AUD + THC + CBG + CBC + Analgesics + cocaine)

 THC 2.4717 (1.81, 3.13) 2.23E−09

 CBC − 1.7349 (− 2.78, − 0.69) 0.0020

Cannabinoids—interactive model

svyglm(PC1-cancer ~ cigarettes * AUD * THC * CBG * CBC + Analgesics + cocaine)

 Cigarettes: THC: CBG: CBC 1.47 (0.9, 2.04) 7.84E−06

 Cigarettes: CBG: CBC 9.18 (5.35, 13.01) 2.70E−05

 Cigarettes: CBG 36.19 (20.55, 51.83) 4.56E−05

 THC: CBG: CBC − 0.17 (− 0.31, − 0.04) 0.0133

 CBG − 7.44 (− 11.98, − 2.9) 0.0025

 CBG: CBC − 1.74 (− 2.71, − 0.76) 0.0012

Full additive model

svyglm(PC1-cancer ~ cigarettes + AUD + PC1-Cannabinoids + analgesics + cocaine + income + 6_races)

 Asian 10.72 (8, 13.44) 9.88E−10

 African 0.46 (0.32, 0.59) 2.64E−08

 PC1-Cannabinoid 0.37 (0.25, 0.48) 1.32E−07

 Caucasian 5.38 (3.31, 7.45) 6.89E−06

 Hispanic 0.36 (0.17, 0.55) 0.0005

Full Interactive Model

svyglm(PC1-cancer ~ cigarettes * AUD * PC1-cannabinoids + analgesics + cocaine + income + 6_races)

 Asian 10.24 (7.77, 12.71) 3.15E−10

 African 0.48 (0.35, 0.6) 2.73E−09

 Caucasian 4.86 (3.06, 6.66) 3.99E−06

 Cigarettes: PC1-Cannabinoid 5.38 (3.01, 7.74) 5.85E−05

 Hispanic 0.29 (0.11, 0.46) 0.0024

 PC1-Cannabinoid − 0.79 (− 1.31, − 0.27) 0.0050

Cannabinoids full additive model

svyglm(PC1-cancer ~ cigarettes + THC + CBG + CBC + AUD + Analgesics + cocaine + income + 6_races)

 THC 0.97 (0.75, 1.19) 5.15E−11

 Asian 9.2 (6.75, 11.65) 3.46E−09

 African 0.41 (0.28, 0.53) 5.71E−08

 Caucasian 4.32 (2.43, 6.22) 5.35E−05

 Hispanic 0.28 (0.09, 0.46) 0.0051

Cannabinoids full interactive model

svyglm(PC1-cancer ~ cigarettes * THC * CBG * CBC + AUD + Analgesics + cocaine + income + 6_races)

 Asian 7.31 (5.31, 9.31) 1.52E−08

 African 0.37 (0.26, 0.48) 8.87E−08

 THC: CBG: CBC 4.93 (2.83, 7.03) 4.67E−05

 THC 70.96 (40.45, 101.47) 5.22E−05

 Caucasian 2.79 (1.51, 4.06) 0.0001

 THC: CBG 21.27 (11.19, 31.35) 0.0002

 THC: CBC 16.76 (7.95, 25.57) 0.0006

 Cigarettes: THC: CBC − 89.35 (− 126.43, − 52.27) 3.14E−05

 Cigarettes: THC: CBG − 115.05 (− 161.96, − 68.14) 2.42E−05

Continued
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Supplementary Table 12 shows Cohen’s D as an effect size measure, the qualitative characterizations of Cohen’s 
D, and the applicable E-Values and P-Values for legal status metrics. The strong effects noted in the preceding 
graphs are confirmed here on quantitative analysis as both effect sizes and minimum E-Values.

Discussion
The present study examined the bivariate and multivariate relationships of the principal components of five 
chromosomal pathologies (trisomies 13, 18, 21, the monosomy Turner syndrome and Deletion 22q11.2) and five 
cancers (thyroid, liver, breast and pancreatic cancer and acute myeloid leukaemia) to substance exposure, income 
and ethnicity covariates in a quantitative causal analysis framework. The main results of the present study were 
that all ten pathologies examined are rising both across time and in relation to the five cannabinoids examined 
[cannabis, THC, cannabinol (CBN), cannabichromene (CBC) and cannabigerol (CBG)] in a manner which was 
robust to adjustment in multivariable inverse probability weighted instrumental variable and robust generalized 
regression models. Cannabis and all four cannabinoids were significantly related to the PC1’s for chromosomal 
anomaly rates both before and after adjustment for ETOPFA’s and to the cancer PC1 in final regression models 
after full adjustment for sociodemographic factors. Large effect sizes were demonstrated for both congenital 
anomaly PC’s between the highest quintile of cannabis use and the third and fourth quintiles and a medium 
effect size was shown for the cancer PC. Large effect sizes were also demonstrated between states with legal and 
not legal cannabis legal regimes for chromosomal anomaly PC’s and a medium effect size was demonstrated 
between illegal and liberal legal paradigms for the cancer PC1. These effect sizes were accompanied by appro-
priately large minimal E-values of greater than five and 2.4 respectively, and small P-values (P = 9.67 × 10–43 and 
P = 2.66 × 10–15 respectively).

Previous studies have reported individual conditions in the young known to be associated with cannabis-
related chromosomal damage: current data highlight cannabis damage on multiple human chromosomes. Live-
born congenital anomaly rates are known to underestimate true rates due to both spontaneous and induced 
abortion of damaged foetuses. The existence of an experimentally well described threshold dose in the micro-
molar range73–81 explains both why inherited morbidity is not observed more commonly at present after pre-
natal exposure and why rates jump abruptly with the increased use, availability and concentration implicit 
under the legalization paradigm as shown clearly by epidemiological data from Colorado, Canada, Hawaii and 
Australia8,10,37,82,83.

It is intriguing to note the variety of chromosomal-toxic mechanisms which are implied by the present results. 
Whereas the trisomy/monosomy (Turner) syndromes are presumably related to chromosomal mis-segregation 
errors4, horizontal transversions and gene amplifications on chromosome 12 in testicular cancer43–46,84,85 and 
deletion of the short arm of chromosome 22 in Deletion 22q11.2 signify multiple pathways to major chromo-
somal pathology.

This report studied five congenital chromosomal anomalies and five cancers. Dose–response effects were 
noted for many associations which were independently significant for cannabis, THC, cannabichromene and 
cannabigerol and these relationships were preserved after adjustment for estimated ETOPFA rates which is a 
preponderant effect especially for chromosomal anomalies which are terminated prior to birth at high rates. 
All ten disorders were noted to rise strongly over time and in relationship to cannabis and the cannabinoids 
THC, cannabigerol, cannabinol and cannabichromene. Strong effects by quintile of cannabis exposure were 
noted which were also reflected in the impact of cannabis legal status. Many effect sizes were noted to be strong 
with many Cohen’s D’s above 1.4, where relationships above 0.8 being typically described as being strong86. The 
pooled disorder-cannabinoid relationship satisfied formal criteria of causality as assessed by inverse probability 
weighting of robust marginal structural models with P-values significant from 2.8 × 10–7 and 55/56 e-Values 
being greater than 1.25 which is the causal threshold and 30/56 minimum e-Values being greater than 5 which is 
relatively large. The individual disorders are also the subject of separate space–time and causal inference analyses 
which are presently being prepared.

The findings are prominent for showing a dramatic rise from the fourth to the fifth quintile of cannabis use 
and a reflection of a similar kind when considering the cannabis legal paradigm. This is reminiscent of a similar 
finding for 34 defects recently published which also showed a major jump from the fourth to fifth quintile39. 
This is concerning because it directly reflects the well described exponential dose response which has been 
found in many cannabinoid genotoxicity studies and in many studies of the pharmacology of cannabinoids 
generally14,26,59–61.

A direct corollary of this bench to bedside parallelism is that as the community moves steadily into higher 
echelons of cannabis use the genotoxic sequelae will be unprecedentedly magnified—in coming generations. It is 
this multi-generational and transgenerational aspect of cannabinoid genotoxicity which is of particular concern 
in the context of disproportionate dose-exposure escalation.

Parameter Estimate (C.I.) P-value

 Cigarettes: THC: CBG: CBC − 26.26 (− 36.06, − 16.46) 6.06E−06

 Cigarettes: THC − 380.98 (− 519.06, − 242.9) 3.69E−06

Table 4.   Robust IPW-weighted generalized regression analyses on PC1 for selected cancer incidence data. 
Final robust generalized linear regression models for cancer Dataset.
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Parameter Estimate (C.I.) E-Value

RAW RATES

Drugs—additive model

 Cannabis 1.17 (0.3, 2.04) 5.02, 1.93

Drugs—interactive model

 Cigarettes: Cannabis 19.28 (13.34, 25.21) 2.09E + 08, 7.18E + 04

 AUD: Cannabis 69.54 (42.68, 96.4) 1.71E + 29, 1.20E + 18

Cannabinoids—additive model

 CBG 0.95 (0.3, 1.6) 4.04, 1.94

Cannabinoids—interactive model

 Cigarettes: CBG 3.67 (2.77, 4.56) 48.91, 22.14

Full additive model

 PC1-Cannabinoids 0.6 (0.33, 0.87) 3.03, 2.12

Full interactive model

 PC1-Cannabinoids 4.37 (2.97, 5.77) 213.43, 47.55

ETOPFA DATA​

Drugs—additive model

 Cannabis 1.29 (0.4, 2.17) 5.51, 2.17

Drugs—interactive model

 Cigarettes: AUD: Cannabis 73.95 (48.33, 99.57) 2.13E + 26, 2.14E + 17

Cannabinoids—additive model

 CBG 3.14 (1.74, 4.54) 37.77, 9.79

Cannabinoids—interactive model

 Cigarettes: CBC 2.31 (1.5, 3.11) 17.25, 7.75

 CBG 7.38 (4.18, 10.57) 2.16E + 03, 105.18

 CBG: CBC 0.98 (0.49, 1.47) 4.51, 2.57

Full additive model

 PC1-Cannabinoids 0.68 (0.39, 0.97) 3.15, 2.23

Full interactive model

 PC1-Cannabinoids 5.4 (3.79, 7) 595.814, 109.21

Cannabinoid Full Additive Model

 CBG 4.21 (2.91, 5.5) 176.69, 44.16

CANCER DATA​

Drugs—additive model

 Cannabis 0.45 (0.2, 0.69) 2.83, 1.87

Drugs—interactive model

 Cigarettes: Cannabis 14.84 (10.88, 18.79) 2.82E + 07, 3.53E + 05

Cannabinoids—additive model

 THC 1.98 (1.61, 2.36) 18.58, 12.01

Cannabinoids—interactive model

 CBC 12.78 (6.96, 18.59) 1.53E + 07, 1.14E + 04

 THC: CBC 3.02 (1.33, 4.71) 84.47, 9.91

 THC: CBG: CBC 0.6 (0.17, 1.04) 3.63, 1.76

 CBG 7.27 (0.46, 14.09) 1.66E + 04, 2.99

 CBG: CBC 1.79 (0.1, 3.49) 18.01, 1.53

Full additive model

 PC1-Cannabinoid 0.35 (0.29, 0.41) 2.51, 2.25

Full interactive model

 Cigarettes: PC1-Cannabinoid 6.63 (4.8, 8.46) 1.45E + 04, 1.25E + 03

Full additive model with cannabinoids

 THC 1.48 (1.19, 1.77) 14.18, 9.43

Full interactive model with cannabinoids

 CBG 10.6 (4.39, 16.81) 7.52E + 06, 1.08E + 03

 THC: CBG: CBC 3.81 (1.54, 6.08) 4159.71, 17.54

 CBG: CBC 2.47 (0.93, 4) 67.03, 7.00

 THC: CBG 16.09 (5.82, 26.36) 1.89E + 10, 9.37E + 03

 CBC 7.52 (2.44, 12.59) 9.16E + 05, 65.62

Continued
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Cannabis use amongst young adults has been unanimously linked in four of four studies with the subsequent 
development of testicular cancer43–46. Testicular cancer is interesting in that 90% of cases involve the formation 
of an isochromosome 12, and in the remainder an internal intra-chromosomal amplification of parts of the 
long arm of chromosome 12 occurs so that the relative gene dosage is increased under both scenarios40. Can-
nabis exposure—testicular oncogenesis dose–response effects have been described in several epidemiological 
series43–45. Testicular cancer is believed to arise from pro-oncogenic germ stem cell mutations which occur dur-
ing in utero life which are subsequently activated by the hormonal surge of pubertal development40–42. In the 
case of this tumour therefore cannabis accelerates the subclinical pro-oncogenic phase from several decades to 
just a few years.

Most particularly, the present demonstration of cannabinoid-linked genotoxicity applying to over 500 MB of 
the human genome accommodated on chromosomes 12, 13, 18, 21 and X clearly indicates that mechanisms exist 
in man linking in vitro genotoxic effects to clinical effects. Hence it becomes plausible to link the 21 congenital 
defects noted in Hawaii with cannabis-only exposure37, the 13 congenital anomalies noted in Australia38, limb 
defects noted in France and Germany87,88, 29% increase in total congenital anomalies listed in Colorado8 a tri-
pling of total birth defects in the high-cannabis using areas of Canada10 and 34 congenital anomalies in USA39 

Parameter Estimate (C.I.) E-Value

 THC 46.13 (11.12, 81.15) 8.05E + 28, 1.73E + 07

 THC: CBC 11.15 (0.87, 21.42) 1.63E + 07, 6.57

Table 5.   E-values of instrumental variable regression models. E-Values from instrumental variable regression 
models.
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Figure 9.   Effect of dichotomized cannabis legal status on PC1 for ETOPFA-corrected and cancer data. (A) 
Scatterplot over time for PC1 for ETOPFA-corrected anomalies for legal status dichotomized as legal cannabis 
states v not legal cannabis states. (B) Scatterplot over time for PC1 for cancer incidence dichotomized by legal 
status as illegal states v. liberal states. (C) Boxplot for PC1 for ETOPFA-adjusted congenital anomalies time-
aggregated data by legal status dichotomized as in (A). (D) Boxplot for PC1 for selected cancer incidence of 
dichotomized legal status over aggregated time dichotomized as in (B). (Created in R-Studio version 1.3.1093 
using ggplot2 version 3.3.2).
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to transgenerational cannabinoid-induced genotoxic mechanisms. Evidence presented herein also implicates the 
PC1 of five cancers seen clinically including acute myeloid leukaemia which has been previously documented89,90 
and breast cancer which is the most common cancer of all across USA with 279,100 cases expected in 202091. 
Cannabis has previously been linked with both the induction and promotion of liver fibrosis and cirrhosis92,93 
and with hepatic neocarcinogenesis by numerous mechanisms94. It has not been previously linked with the other 
cancers studied to our knowledge.

Central to any discussion of genotoxic mechanisms of cannabis are considerations of the biological mecha-
nisms by which it mediates chromosomal derangements and disruptions. Cannabis and the cannabinoids THC, 
cannabinol, cannabidiol and cannabinol have been shown to be toxic to oocytes6, sperm24,95,96, chromosomes96, 
the bases of DNA97 and epigenetic regulation both by DNA methylation4,19,20,22–24,98 and histone formation16,99. 
Cannabidiol and cannabidivarin in low doses have been shown to directly oxidize DNA bases which is a highly 
oncogenic and mutagenic action97. Cannabinoids have long been recognized to reduce the synthesis of major 
macromolecules of life including DNA, RNA proteins and histones13,18,60,99–104. Reduction in the linker histone 
H1 has recently been shown to comprise a major oncogenic mechanism by making genes more accessible for 
transcription105. One of the proteins whose synthesis is impeded is tubulin4,16. Tubulin polymerization has many 
key roles in side the cell including the formation of the microtubules of the mitotic spindle and the molecular 
skeleton of axons, cilia, centrosomes and flagella106. Deranged microtubular function has been linked with chro-
mosomes sliding off the mitotic spindle in anaphase and the formation of micronuclei4,6,7,107 which are described 
as being a major generator of the genetic chaos of cancer4,107–118. Indeed, just as histones undergo post-transla-
tional modifications tubulin has also been shown to undergo post-translational modifications which target the 
tubulin monomers for different subcellular destinations105. Errors in this “tubulin code” have been linked to disor-
ders of flagellar function so that sperm are not able to swim normally in a linear trajectory and go round in circles 
and fail to correctly target oocytes which is believed to be a potentially significant cause of male infertility105. 
Hence whilst for descriptive purposes it is useful to describe cannabinoid-related molecular aberrations in vari-
ous stratified layers and subcellular compartments, it seems likely that in reality the various layers are intimately 
crosslinked and molecularly interdependent53,54,119–121. Unfortunately space precludes a more detailed discussion 
in this forum but many of the important issues have been addressed elsewhere4,8–12,14,15,19,20,23,24,38,39,61,102,122,123.

We feel that our results are widely generalizable for several reasons. The cannabinoid-genotoxicity relation-
ship fulfils most of the Hill criteria for causality including of strength of association, consistency among studies, 

Table 6.   Effects of legal status. Final linear regression models for the effects of cannabis legal status in CAR, 
ETOPFACAR and cancer datasets.

Parameters Model parameters

Parameter Estimate (C.I.) P-value R-Squared Wald ChiSqu dF P

Congenital anomaly raw data

lm(PC1DefectRaw ~ status)

 Medical 0.11 (− 0.41, 0.64) 0.6720 0.0968 4.93 3107 0.0030

 Decriminalized 0.62 (0.08, 1.16) 0.0263

 Legal 2.57 (1.03, 4.11) 0.0014

lm(PC1DefectRaw ~ dichotomized status)

 Liberal (v Illegal) 0.46 (0.03, 0.89) 0.0388 0.0298 4.375 1109 0.0388

lm(PC1DefectRaw ~ dichotomized status)

 Legal (v Not Legal) 2.43 (0.88, 3.98) 0.0027 0.0711 9.425 1109 0.0027

Congenital anomaly ETOPFA-adjusted data

lm(PC1_ETOPFA_adjusted ~ status)

 Medical 0.16 (− 0.37, 0.68) 0.5643 0.0822 4.283 3107 0.0067

 Decriminalized 0.58 (0.04, 1.11) 0.0385

 Legal 2.42 (0.87, 3.96) 0.0027

lm(PC1_ETOPFA_adjusted ~ dichotomized status)

 Liberal (v Illegal) 0.45 (0.03, 0.88) 0.0403 0.0292 4.305 1109 0.0404

lm(PC1_ETOPFA_adjusted ~ dichotomized status)

 Legal (v not legal) 2.27 (0.72, 3.82) 0.0048 0.0620 8.272 1109 0.0048

Cancer data

lm(PC1_cancer ~ status)

 Medical 0.62 (0.44, 0.8) 1.84E−11 0.0801 22.73 3746 4.31E−14

 Decriminalized 0.52 (0.33, 0.7) 3.61E−08

 Legal 0.69 (0.32, 1.05) 0.00026

lm(PC1_cancer ~ dichotomized status)

 Liberal (v Illegal) 0.58 (0.44, 0.72) 1.14E−15 0.081 67.05 1748 1.14E−15

lm(PC1_cancer ~ dichotomized status)

 Legal (v Not Legal) 0.45 (0.08, 0.83) 0.0182 0.0061 5.6 1748 0.0182
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specificity, temporality, coherence with known data, biological plausibility, dose–response relationship, analogy 
with situations internationally and a rich experimental research base124. Naturally further details will be provided 
in manuscripts addressing each of these issues individually including consideration in the native space–time data 
context and formal causal inferential analyses. As noted many of the above findings have been replicated several 
times elsewhere particularly with relation to the congenital chromosomal anomalies8,10,37,38. These results are 
based on the best data available globally. Since causal relationships were demonstrated herein we would expect 
these relationships to be maintained wherever adequate data quality allows their assessment.

The techniques of causal inference are well satisfied by these results. For comparison, one notes that the 
E-Value, or Expected value for the tobacco-lung cancer association is 9.0. As noted 21/56 (37.5%) of the E-Values 
reported herein are above this cut-off and 29/56 (51.87%) exceed 5 which is also a sizeable E-Value.

The E-Value is the value of association required of some extraneous hypothetical unmeasured confounder 
covariate with both the exposure of concern and the outcome of interest to explain away the observed results. 
With such high results as are reported in our present paper such a confounder seems most unlikely. Inverse 
probability weighting is the technique of choice to correctly weight an observational study and turn it into a 
pseudo-randomized study from which causal inferences can appropriately be drawn. The classic concern with 
observational studies is that one is in actually comparing “apples with oranges”. The use of inverse probability 
weighting ensures that everything is “apples” as it were. It is therefore important to appreciate that, although it is 
true that our study uses several multiple regression techniques, the extensive use of the techniques of quantitative 
causal inference particularly inverse probability weighting and E-values are the appropriate tools with which to 
address causal relationships and formally draw causal inferences.

Our study has many strengths including the use of advanced statistical techniques and the formal techniques 
of causal inference. Its limitations include that we have not had space here to address each disorder separately 
as those analyses are destined for other manuscripts. In common with all epidemiological studies we do not 
have individual patient-level data available to us. It is also relevant to observe that the quantitative criteria 
fulfilled by the analytical procedures in this study are those of causal inference in epidemiology and are widely 
acknowledged in the discipline. However this is not the same thing as the formal assessment of causality as is 
done in the controlled experimental laboratory setting, however given that it is not expected to ever be ethical 
to conduct clinical trials of prenatal exposures these various analytical procedures are the next best thing which 
can be achieved in clinical populations. Having said that we heartily endorse ongoing research into the many 
mechanisms of cannabinoid genotoxicity for the same reason that the mechanisms of action of thalidomide 
continue to be investigated experimentally to better understand its pathophysiology, to remediate its damage, 
and to develop new lead compounds for novel clinical applications in cancer medicine and elsewhere. As patients 
can be confused about the impact of early gestational cannabis exposure on developing pregnancies we advocate 
for the development of a reliable biomarker to quantitate exposure and denominate future studies11.

Some of the statistical techniques used herein also have theoretical limitations. For example it has been noted 
that inverse probability weighting cannot be used if all the subjects of a certain class at any time during the study 
must receive a certain exposure condition125. Inverse probability weighting has also been observed not to work 
well with small samples126. And its use for dealing with missing data also has methodological weaknesses127. 
However these conditions were not observed in the present dataset and inverse probability was not used to 
address missing data in these analyses. The interpretation of E-Values is necessarily always subjective and relies 
on some background knowledge of the subject. For example if an E-Value is reported as five then the judgement 
must be made as to whether confounding variables are likely to exist which correlate with both the exposure of 
interest and the outcome of concern of the calculated magnitude to explain away an apparently causal effect. In 
the present study with median and modal minimum E-Values of 5.65 and 7.75 this seems quite unlikely. Whilst 
the use of principal components is a common analytical device it can never substitute for detailed investigations 
of each identified syndrome separately and in detail. For this reason detailed causal modelling and spatiotemporal 
analyses are indicated on each of the pathologies identified to further investigate the effects reported herein in 
aggregate.

This report is intended as an introductory overview only and serves the purpose of introducing the subject 
to readers’ consideration and detailed geospatial and causal inference studies of many congenital anomalies 
and cancers are indicated to further explore these findings, issues which are indeed the subject of other recent 
papers4,8,10,52,82,83,128–133 and current manuscripts. In conclusion this study of recent US data not only confirms 
previous findings linking cannabis use with congenital and chromosomal anomalies, but it shows that those 
impacts are significant at the public health level, likely account for much of their recent rise, explain the wor-
risome discontinuity and jump from the fourth to the fifth quintiles for cannabis exposure and are consistent 
both with a rich experimental database and experience from other countries8,10,37,38. Since findings implicate over 
500 MB of the human genome this directly explains the association of cannabis use with many other congenital 
anomalies and heritable carcinogenesis previously reported. In the context of an exponential dose–response 
curve for metabolically-genotoxically- and epigenetically-mediated cannabinoid-induced genotoxicity14,26,59–61 
the rising level of cannabis use induced by cannabis legalization and its severe sequaelae would appear to be 
more than sufficient contraindication to continued relaxation of the laws surrounding cannabis, risks further 
compounded by increasingly described heritable neurotoxicity128,132,134–139.

Methods
Data.  Data on US birth defect rates was downloaded from the National Birth Defect Prevention Network 
(NBDPN) from CDC Atlanta Georgia website annual reports63. Estimated early termination of pregnancy for 
anomaly (ETOPFA) rates by birth defect type were taken as an average of a composite score from several Aus-
tralian and USA published series shown as Supplementary Table 1364–66. The rate of change over time of these 
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ETOPFA rates was taken from the only longitudinal annual series of ETOPFA rates which could be identified 
which was the Western Australian series for Down syndrome (Supplementary Table 14140).

Age-adjusted state cancer data was taken from the National Program of Cancer Registries (NPCR) and 
Surveillance Epidemiology and End Results (SEER) Incidence dataset US Cancer Statistics Public Use Database 
2019 submission (2001–2017)62.

Drug use data by state was taken from the Restricted Data Analysis System (RDAS) from the annual National 
Survey of Drug Use and Health (NSDUH) of the Substance Abuse and Mental Health Data Archive (SAMHDA) 
from Substance Abuse and Mental Health Services Administration (SAMHSA)67. Intensity of cannabis use data 
by ethnicity was taken from the RDAS, NSDUH at SAMHDA. Concentration of various cannabinoids nationally 
was taken from published reports from the Drug Enforcement Agency (DEA)68–70. Median household income 
data was downloaded from the US Census Bureau using tidycensus package in R141. Cannabis legal status in each 
state was taken from an Internet search142.

Derived data.  Intensity of ethnic-specific cannabis use was multiplied by state monthly cannabis use and 
the THC concentration in Federal seizures to derive an estimate of ethnic THC exposure at state level. Quintiles 
of cannabis use were derived by dividing the states for each year into five groups for cannabis use with details 
as shown in Supplementary Table 15. State-based cannabinoid exposure was calculated by multiplying the state 
levels of monthly cannabis use by the applicable cannabinoid concentration in Federal seizures. Chromosomal 
anomalies are extensively screened for prenatally and subject to high rates of early termination of pregnancy for 
anomaly (ETOPFA). Accordingly ETOPFA-corrected congenital anomaly rates were calculated by dividing the 
observed anomaly rate in any year by the composite ETOPFA rate for that anomaly multiplied by the fraction of 
ETOPFA for that year obtained from the Western Australian longitudinal series.

Statistics.  Data was processed using R version 4.0.2 and R-Studio 1.3.1093 in October 2020. Data are listed 
as mean ± standard error of the mean (S.E.M.). Data was manipulated using dplyr and graphs were drawn using 
ggplot2, both from the tidyverse suite143. Correlograms were drawn using the packages corrplot and corrgram 
from R144,145. Linear regression was performed using R-Base. Two-step instrumental variable regression was per-
formed using package AER146. Robust inverse probability weighted regression was performed using the survey 
package147 with State as the identifying variable. In all cases initial models were serially reduced manually by the 
deletion of the least significant term by the classical technique. The overall direction of models with rising can-
nabinoid exposure was determined by matrix multiplication with other covariates held constant at their means. 
Effect size was quantitated using Cohen’s D from the effsize package86. Principal Components (PC’s) were calcu-
lated using the psych package and the number of PC’s required was determined formally using a Scree plot and 
factor analysis148. Inverse probability weights were calculated using the ipw package149. E-Values were calculated 
using the E-Value package149. T-tests were two-tailed. P < 0.05 was considered significant throughout.

Ethics.  The Human Research Ethics Committee of the University of Western Australia approved this study 
on 7th January 2020 RA/4/20/7724.

Data availability
Raw data including the software computing script accompanying this article have been made available online in 
the Mendeley data repository and may be found at https://​doi.​org/​10.​17632/​xwrkp​6kjd9.1.
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