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H I G H L I G H T S

• Predicting cyanobacteria harmful algal
blooms (CyanoHABs) is of crucial im-
portance.

• Physical and physiological processes in-
teract in the formation of CyanoHABs.

• Individual-based models (IBMs) can
capture the key processes leading to
CyanoHABs.

• IBMs, coupledwith Eulerianmodels, can
improve predictions of CyanoHABs.
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Lakes and reservoirs throughout the world are increasingly adversely affected by cyanobacterial harmful algal
blooms (CyanoHABs). The development and spatiotemporal distributions of blooms are governed by complex
physical mixing and transport processes that interact with physiological processes affecting the growth and
loss of bloom-forming species. Individual-basedmodels (IBMs) can provide a valuable tool for exploring and in-
tegrating some of these processes. Here we contend that the advantages of IBMs have not been fully exploited.
The main reasons for the lack of progress in mainstreaming IBMs in numerical modelling are their complexity
and high computational demand. In this review, we identify gaps and challenges in the use of IBMs for modelling
CyanoHABs and provide an overview of the processes that should be considered for simulating the spatial and
temporal distributions of cyanobacteria. Notably, important processes affecting cyanobacteria distributions, in
particular their vertical passive movement, have not been considered in many existing lake ecosystem models.
We identify the following research gaps that should be addressed in future studies that use IBMs: 1) effects of ver-
tical movement and physiological processes relevant to cyanobacteria growth and accumulations, 2) effects and
feedbacks of CyanoHABs on their environment; 3) inter and intra-specific competition of cyanobacteria species
for nutrients and light; 4) use of high resolved temporal-spatial data for calibration and verification targets for
IBMs; and 5) climate change impacts on the frequency, intensity and duration of CyanoHABs. IBMs are well
adapted to incorporate these processes and should be considered as the next generation ofmodels for simulating
CyanoHABs.
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1. Introduction

Cyanobacteria, sometimes also known as blue-green algae, are the
Earth's oldest phytoplankton. Their survival through periods of chang-
ing environments reflects their array of ecophysiological adaptations
and strategies (Paerl and Paul, 2012). Cyanobacteria strongly influence
water quality, with toxin-producing species affecting human health,
and cyanobacterial harmful algal blooms (CyanoHABs) also impacting
ecosystem services and the economy (Codd et al., 1999; Paerl et al.,
2001; Hamilton et al., 2014). CyanoHABs are likely to increase in the fu-
ture due to factors associated with climate change such as global
warming, altered precipitation patterns (Reichwaldt and Ghadouani,
2012; Burford et al., 2020; Paerl and Barnard, 2020) and land use change
(Hamilton et al., 2016).

Mechanistic models or process-oriented aquatic models (Vincon-
Leite and Casenave, 2019), based on knowledge of how target species
respond to various ecosystem drivers, can be used to predict changes
in biological communities with simulation output used to inform and
guide management actions (Franks, 2018). The main advantage of
mechanistic models is that they can capture the interactions
between the different mechanisms that shape ecosystem state
(Hipsey et al., 2020) and may therefore be more appropriate than
statistically based models for future predictions (Ralston and
Moore, 2020). The ecosystem drivers that can be considered in
mechanistic models include physiological adaptations of biota,
nutrient availability, inter and intraspecific competition, vertical
and horizontal transport, mixing and flushing rates, thermal stratifi-
cation, and life cycle characteristics of species (Rousso et al., 2020).
Mechanistic modelling can be challenging because of incomplete
knowledge of the complex interactions of individual organisms
with each other and with their environment. In addition, multiple
complex processes contributing to the development and distribution
of CyanoHABs need to be incorporated into mechanistic models to
simulate blooms. These processes are usually derived from labora-
tory studies of isolated strains. As a result, the processes can remain
poorly defined in model formulations (Ralston and Moore, 2020),
leading to uncertainties and errors in model outputs. Furthermore,
many processes have several parameters that need to be calibrated,
leading to potential for equifinality and uncertainty in model output
under a different set of forcing conditions (Rousso et al., 2020).

Results of mechanistic ecosystem models are often strongly depen-
dent on parameter calibration, which may be obtained from the litera-
ture, experimental studies or field observations. Advances in sensor
technology have opened upnewopportunities for bettermodellingpro-
cedures through improving the spatial and/or temporal resolution of
model initialization and boundary condition specifications, as well as
for rigorous calibration and validation ofmodel output against intensive
measurements. In situ sensors, often using chlorophyll fluorescence or
phycocyanin as a proxy for phytoplankton and cyanobacteria biomass,
respectively, can provide the required data for calibrating mechanistic
phytoplankton models at high temporal resolution (McBride and Rose,
2018). These sensors only provide a proxy for biomass; however, they
do not resolve phytoplankton at a species or strain-level (Bertone
et al., 2018). Remotely sensed aerial or satellite images provide an op-
portunity for detailed model calibration based on snapshots of optical
properties of surface waters over large spatial scales (e.g., Allan and
McBride, 2018) but they do not resolve at species level and cannot cap-
ture vertical distributions of populations (Odermatt et al., 2012a), which
can lead to high variability of chlorophyll in remotely sensed images
(Kutser, 2004). While great advances have been made in sensor tech-
nology, they are still not able to provide the detailed species- and
individual-based resolution that would be useful to help advance spe-
cies or succession-based phytoplankton models (Harris, 1997).

Variability of individual organisms within populations or com-
munities in the aquatic environment is governed by complex nonlin-
ear interactions between physiological and physical processes. Two
modelling methods are commonly used to simulate the dynamics
of a population of organisms: Eulerian and Lagrangian. Eulerian
models simulate time-dependent variables at specific fixed loca-
tions, whereas Lagrangian models follow moving particles through
space and time (Curchitser et al., 2013).

Eulerianmodels have been used since the 1970s to simulate eutrophi-
cation, water quality, and biogeochemical processes (e.g., Chapra, 2008;
Hellweger et al., 2016b; Vincon-Leite and Casenave, 2019). They are com-
posed of ordinary differential and partial differential equations which
simulate community dynamics in spatially homogeneous and spatially
structured spaces, respectively (Hellweger et al., 2016a). Eulerianmodels
have three main advantages. First, they are relatively simple in form and,
in turn, have lower knowledge and data requirements (Hellweger et al.,
2016a). Second, these models provide a convenient description of the
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mass and momentum governing equations that are fundamental for de-
scribing mixing and transport in aquatic systems (Soontiens et al.,
2019). Third, they can be easily coupled to hydrodynamicmodels; indeed
most of these models are underpinned by Eulerian formulations
(Soontiens et al., 2019). In Eulerianmethods, however, species are usually
allocated into a small number of state variables or may even be lumped
into a single state variable (e.g., Oliver et al., 2012; Hellweger et al.,
2016a; Kreft et al., 2017). Therefore, Eulerian ecological models are
often termed lumped-system models (Feng et al., 2018) or population-
levelmodels (PLMs) (Hellweger and Kianirad, 2007). Aquatic ecosystems
are characterised by high levels of heterogeneity and physiological differ-
ences that exist at an intraspecific isolate level (e.g., Cai et al., 2012;
Guedes et al., 2019). Furthermore, strains of species isolated from a single
waterbody can have quite different growth parameters (Xiao et al.,
2020b). For example, there is considerable intraspecific variation in the
growth responses to light and temperature of freshwater CyanoHAB spe-
cies, particularlyMicrocystis aeruginosa and Rhaphidiopsis raciborskii (Xiao
et al., 2020b). Willis et al. (2016) found substantial differences in physio-
logical variables in 24 C. raciborskii strains from a single sample of lake
water. Traditional PLMshave difficulty in capturing this strain-level diver-
sity. This shortcoming may need to be addressed as metagenomics re-
search reveals the increasing numbers of CyanoHAB species and strains
(Hellweger et al., 2016b).

Lagrangian models, by contrast, allow for different classes of parti-
cles to have individualised properties (Zhu et al., 2018; Soontiens
et al., 2019) that can vary from physical to physiological components.
However, conducting Lagrangian simulations in which a large number
(order of billions) of particles are simulated is challenging (Van Sebille
et al., 2018). This is because the computational time of Lagrangian
models is proportional to the number of particles in the simulation.
Lagrangian models can be divided into two main groups: individual-
based models (IBMs) – sometimes referred to as agent-based models
– and particle tracking models (PTMs). According to the definition of
Grimm (1999), IBMs refer to “simulation models that treat individuals
as unique and discrete entities, which have at least one property in addition
to an age that changes during the life cycle.” PTMs are identical to IBMs
but without the additional attributes included.

IBMs are gaining popularity in ecological modelling because they can
address questions that are beyond the scope of traditional models like

PLMs (Xue et al., 2018). They often seek to capture interspecific adaptive
behaviour (Grimm et al., 2006; DeAngelis and Grimm, 2014) but can
equally beused to capture the aspects of intra-specific variability discussed
above (Hellweger andBucci, 2009). They canalso simulate the interactions
of individualswith each other andwith their biotic or abiotic environment
(DeAngelis and Grimm, 2014), as well as the life cycles of individuals
(Grimm et al., 2006; Hellweger et al., 2008; Hense and Beckmann, 2010).

One important difference between IBMs and both PLMs and PTMs is
that particles in IBMs carry amemory (e.g., of light history, nutrient sta-
tus, etc.). In conventional PLMs/PTMs, a population state variable or La-
grangian element responds directly to exogenous variables only within
the current time step. By contrast, particles with a ‘memory’ allows for
adaptive biological traits can be included (Feng et al., 2018). It also
means that photosynthetic responses and vertical migration of
cyanobacteria resulting from light exposure history can be considered.
The ability to transfer information on physiological properties of cells
through successive time steps is one of the reasons why IBMs are likely
to be an increasingly valuable tool to study the development and spatio-
temporal distribution of CyanoHABs.

The main disadvantages of IBMs are their complexity and high
computational demand, especially in modelling large systems where
there are a large number of species. To overcome these limitations, super
individual-based modelling is suggested (Scheffer et al., 1995; Hellweger
and Bucci, 2009; Hellweger et al., 2016a). In this method, similar individ-
uals are lumped into a single representative individual which has a com-
mon set of physiological and anatomical characteristics. This lumping
procedure can reduce the computational simulation time. However, it
also decreases the heterogeneity in populations, which is at the heart of
the justification for IBMs. Alternately, representative spaces may be used
in larger systems. In this method, a smaller statisticallyrepresentative vol-
ume or area of a large-scale system is simulated, and the heterogeneity is
considered representative of the larger system (Hellweger et al., 2016a).

IBMs are usually forced bywater elevation, currents, turbulent diffu-
sivity, and temperature field from Eulerian hydrodynamic models
driven by external boundary conditions (e.g., atmospheric and inflow
conditions) and nutrient concentrations from ecological models
(Fig. 1). In IBMs, each organism has a set of attributes and behaviours
and is simulated as an individual entity (DeAngelis and Grimm, 2014).
As discussed earlier, a memory of past events also dictates how these

Eulerian framework

Hydrodynamic 

model

Elevation

Velocity

Diffusivity

Temperature

Ecological 

model

Nutrient 

concentrations
Lagrangian framework

Individual-

based model

Model of development 

and distributions of 

CyanoHABs

Individuals’ 

behavioural rules

Individuals’ 

memory of past

Individuals’ 

attributes

Fig. 1. Conceptual approach for modelling of CyanoHABs using IBMs.
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individuals respond in IBMs (Fig. 1). These models are one of the few
that can capture the complex nonlinear interactions between physio-
logical and physical processes that govern transport and variability of
autonomous individual organisms (Feng et al., 2018). Therefore, IBMs
are theoretically the most realistic and effective way of modelling the
life cycle of individual organisms (Hense, 2010).

Comparedwith IBMs, PTMshave a lower level of complexity at the cost
of ignoring physiological processes contributing to CyanoHABs. In PTMs,
particles are usually advected through the modelling domain according
to current fields (e.g., Pinto et al., 2016; Silva et al., 2016). PTMs can be
used to simulate short-term CyanoHAB transport (e.g., Wynne et al.,
2011; Wynne et al., 2013; Soontiens et al., 2019). The premise of
CyanoHAB PTMs is that growth and loss processes are generally insignifi-
cant compared with the effects of dispersion and transport of
cyanobacteria at the short time scales (~days) used for model simulations
(Feng et al., 2018; Soontiens et al., 2019). In these cases, cyanobacteria can
be considered to act like passive particles that are transported by physical
processes, and their growth and loss can be neglected (Dippner et al.,
2011; Wynne et al., 2011; Wynne et al., 2013; Rowe et al., 2016). This as-
sumption of conservative behaviour over short time scales is reasonable
for slow-growing cyanobacteria species whose in situ growth rates are
generally less than 0.1 day−1 (Fahnenstiel et al., 2008;Wynne et al., 2010).

Only two studies have compared the performance of different
modelling methods for the transport of bloom-formingMicrocystis spe-
cies. Soontiens et al. (2019) showed that an Eulerian tracermethod sim-
ulated the algal bloom transport better than a Lagrangian one. In their
study, phytoplankton was represented as a passive Eulerian tracer
with an assigned buoyant velocity. Different horizontalmixing schemes
employed in each of the in silico tracing experiments undertaken by
Soontiens et al. (2019) might have affected the ability to make direct
comparisons between eachmodelling technique. Additionally, the com-
parison of Eulerian and Lagrangian schemes is likely to be affected by
the vertical mixing assigned to the Eulerian tracers. Wang et al. (2017)
simulated the transport behaviour of colony-forming Microcystis with
both IBM and Eulerian models. Based on a comparison of model results
with measurements of chlorophyll a, as a proxy for the abundance of
Microcystis, they showed that results of the IBM were more accurate
than those of the Eulerian model. Vertical migration simulated by the
IBM was mostly upward, while vertical migration simulated by the
Eulerian model was mostly downward. This resulted in different hori-
zontal distributions of Microcystis between the models.

With the growing attention on IBMs in ecologicalmodelling, there has
been a number of reviews in the last fewyears (e.g., Grimm, 1999; Grimm
et al., 2006; Hellweger and Kianirad, 2007; Hellweger and Bucci, 2009;
Grimm et al., 2010; DeAngelis and Grimm, 2014; Hellweger et al.,
2016a). However, none of these studies have focused exclusively on
CyanoHAB IBMs and processes that should be incorporated into these
models. Better understanding of how CyanoHABs develop and are
transported is critical to formulatingmitigation strategies for CyanoHABs.
Therefore, this paper reviews both physical and physiological processes
driving CyanoHABs and discusses CyanoHAB IBMs related to these pro-
cesses. In addition to providing a state-of-the-art understanding of the
key physical drivers and physiological processes controlling CyanoHAB
transport and development and discussing the potential for IBMs to be
the next generation of CyanoHAB models, objectives of the review are
to: discuss the objectives of previous studies that have used IBMs or
PTMs to simulate CyanoHABs; describe different approaches to couple
IBMs to Eulerian models, including their advantages and disadvantages;
outline dimensionality, domain discretization and grid resolution re-
quired for Lagrangian CyanoHAB modelling; and describe innovations in
measurements that can enhance data input and model comparisons.

2. Current trends in IBMs and PTMs of CyanoHABs

An overview of the objectives of previous studies that have used
IBMs or PTMs to simulate CyanoHABs is given in Table 1. In addition,

to outline the methodology used to achieve the objective of each
study, the model, simulation duration, coupling approach, and dimen-
sion of the movement of Lagrangian particles in the model domain in
the previous studies are summarized in Table 1. For most IBM studies,
the objective has been to hindcast CyanoHAB events to better understand
the environmental drivers of blooms and the physical (e.g., wind-driven
turbulentmixing) and physiological (e.g., buoyancy regulation) processes
affecting their transport. For example, Feng et al. (2018) examined the ef-
fects of both physiological and physical processes on the development
and transport of CyanoHABs using an IBM. They concluded that surface
accumulation and extension of early summer blooms (April–June) were
mainly affected by physical forcing, namely horizontal transport and ver-
ticalmixing;while for blooms later in the summer season (July–October),
physiological processes (i.e., buoyancy control) had an increased impor-
tance. PTMs have been used in some studies to forecast CyanoHAB trans-
port (Table 1) (e.g., Wynne et al., 2011; Wynne et al., 2013; Soontiens
et al., 2019). The main focus of these studies was on the physical drivers
influencing the passive movement of particles, ignoring physiological
processes controlling CyanoHABs. As will be discussed below, a large
number of physical and physiological processes may influence the devel-
opment and spatiotemporal distributions of CyanoHABs. It is difficult to
include all of these different processes into cyanobacteria models. There-
fore, the previous studies havemade some transport-related assumptions
that are summarized in Table 1 and discussed in Section 3.1.

2.1. Coupling Lagrangianmodels to Eulerian hydrodynamic-ecologicalmodels

Two approaches have been used in IBMs to couple hydrodynamics
and biogeochemical variables: online and offline (Table 1). Online, or di-
rect coupling mode, refers to a fully coupled hydrodynamic-ecological
IBM which runs concurrently with, though not necessarily at an identi-
cal time step to, the hydrodynamic-ecological model. This method has a
high computational burden because a large array of variables undergoes
the advection-dispersion computations. An alternative method is to
launch IBMs in an offline mode, with the hydrodynamic-ecological
model outputs first saved and then used to force the IBM (Kim and
Khangaonkar, 2012). The offline mode helps to reduce the computa-
tional burden (Gillibrand et al., 2016), but it does not capture the two-
way interaction between species and their environment. Surface
blooms of cyanobacteria, for instance, absorb heat and, therefore, in-
crease light attenuation and surface water temperatures. These effects
strengthen thermal stratification and provide a more favourable envi-
ronment for cyanobacterial blooms (Kumagai et al., 2000; Ibelings
et al., 2003; Jones et al., 2005; Rinke et al., 2010) particularly when nu-
trients are replete or are at elevated concentrations (Paerl andHuisman,
2008; Xu et al., 2015). In addition to strengthening thermal stratifica-
tion, surface cyanobacterial blooms or scums can influence their
physical environment by increasing the viscosity and reducing the mo-
mentum transfer from wind to water at low wind speeds (Wu et al.,
2019). These changes again provide conditions that are favourable for
the development of CyanoHABs. Another examplewhere onlinemodels
capture dynamic feedbacks of physical and biological processes is in the
field of sediment transport. Chen et al. (2007b) examined how
seagrasses reduce sediment transport through reductions in shear
stress and increases in drag forces and wave attenuation. The feedbacks
of cyanobacteria or seagrasses on the physical structure of thewater col-
umn can only be captured by interactive onlinemodelling inwhich each
model is run simultaneously in a fully coupled mode.

2.2. Dimensionality, domain discretization and grid resolution

Phytoplankton may be transported andmixed in all dimensions and
many species, including cyanobacteria, have adaptations that allow
them to move or migrate through the water column. Some studies
that have used PTMs to simulate CyanoHABs (Table 1) invoked two-
dimensional (2-D) transport models, focused on the horizontal plane
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Table 1
Summary of studies that have used IBMs or PTMs to simulate CyanoHABs.

Objective Reference Study site Model Simulation
duration

Coupling
approach

Dimension
of individuals'
movement

Data used for assessing
model performance

Horizontal
transport
assumptions

Vertical
transport
assumptions

Short-term forecasts of
CyanoHAB transport

Soontiens
et al.
(2019)

Lake Erie,
USA-CAN

PTM (NEMO) Short-term Online 2D Sentinel-3 derived spatial
distribution of chlorophyll
a concentration

Neglecting
effects of
wind drift
Neglecting
effects of
Stokes drift

No vertical
movement

Investigation of the factors
affecting surface blooms

Feng et al.
(2018)

Lake
Taihu,
CHN

IBM (FVCOM
+ SWAN +
GEM)

Long-term Online 3D Water temperature
DIN and DIP
concentration
Cyanobacterial biomass
MODIS derived extent of
blooms

No specific
stated
assumptions

Neglecting
effects of
Langmuir
circulation
Disaggregation
of colonies not
considered

Understanding the
transport behaviour of
colony-forming
Microcystis

Wang
et al.
(2017)

Lake
Taihu,
CHN

IBM (ND) Short-term Online 3D Water levels
Surface current speed
Vertical and horizontal
distributions of
Microcystis
MODIS derived extent of
blooms

Neglecting
effects of
Stokes drift

Neglecting
effects of
Langmuir
circulation
Neglecting
effects of
changes in cell
diameter
Neglecting
effects
of temperature
and nutrients on
density changes
Aggregation
between
colonies not
considered
Disaggregation
of colonies not
considered

Short-term forecast of
CyanoHAB abundance
and distribution

Rowe
et al.
(2016)

Lake Erie,
USA-CAN

PTM (FVCOM) Short-term Offline 3D Vertical profiles of
temperature and
cyanobacterial
chlorophyll concentration
MERIS derived spatial
distribution of
cyanobacterial
chlorophyll concentration

Neglecting
effects of
wind drift
Neglecting
effects of
Stokes drift

Neglecting
effects of
Langmuir
circulation
Neglecting
effects of
changes in cell
diameter
Neglecting
effects of
changes in cell
density
Aggregation
between
colonies not
considered
Disaggregation
of colonies not
considered

Short-term forecasts of
CyanoHAB transport

Wynne
et al.
(2013)

Lake Erie,
USA-CAN

PTM (GLCFS +
GNOME)

Short-term Offline 2D MERIS derived spatial
distribution of
cyanobacterial index

Neglecting
effects of
wind drift
Neglecting
effects of
Stokes drift

No vertical
movement

Short-term forecasts of
CyanoHAB transport

Wynne
et al.
(2011)

Lake Erie,
USA-CAN

PTM (GLCFS +
GNOME)

Short-term Offline 2D MERIS derived spatial
distribution of
cyanobacterial index

Neglecting
effects of
wind drift
Neglecting
effects of
Stokes drift

No vertical
movement

IBM development for the
formation and behaviour
of resting stage cells

Hellweger
et al.
(2008)

Bugach
Reservoir,
RUS

IBM (iAlgae) Long-term Online 1D Water temperature
Secchi disk
transparency
DIP and chlorophyll a
concentration
Anabaena cell counts

No
horizontal
movement

Constant
vertical
migration
velocity

Examining relationship
between buoyancy

Wallace
et al.

Thomsons
Lake, AUS

IBM (buoyancy
regulation

Short-term Online 1D Vertical profiles of
temperature chlorophyll a

No
horizontal

Neglecting
effects of

(continued on next page)
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(Wynne et al., 2011, 2013; Soontiens et al., 2019). In this approach, the
water column is assumed to be fullymixed and vertical heterogeneity or
movements of species are ignored (Soontiens et al., 2019). Rowe et al.
(2016) compared the results of a three-dimensional (3-D) PTM with
those of a 2-D PTM for simulations of CyanoHABs in Lake Erie, USA-
Canada. As a result of capturing the vertical distribution of the
cyanobacteria, the 3-D model simulated the CyanoHAB distribution
with higher accuracy, particularly under conditions of increased wind
stress when the 2-D model did not adequately disperse the bloom.

One-dimensional (1-D) models that capture only the vertical water
column have also been used to simulate CyanoHABs. Wallace et al.
(2000) examined the vertical distribution of Microcystis aeruginosa in
a shallow eutrophic lake using an empirical buoyancy regulation
model which was coupled with a 1-D hydrodynamic numerical model.
Hellweger et al. (2008) developed an individual-based model for the
formation and behaviour of resting stage cells in a cyanobacterium
(Anabaena) in a shallow reservoir. Their model segmented the reservoir
into vertically resolved water column and sediment bed (aerobic and
anaerobic) compartments. Hellweger et al. (2008) stated that future
work may include adding a horizontal dimension to the model in
order to resolve horizontal gradients or differences between shallow-
and deep-water sediments. The sediment compartment is required as
a repository and specifically to provide a process representation of re-
cruitment from the bottom sediments to the water column (Karlsson-
Elfgren and Brunberg, 2004).

Eulerian-based models generally require sufficient resolution to ac-
curately represent the scales of horizontal and vertical heterogeneities
of physical and chemical properties that affect the dynamics of phyto-
plankton. Domain discretization and grid resolution, therefore, influ-
ence the level of success with which IBMs or PTMs simulate observed
data. In terms of horizontal discretization, computational meshes of
models can be divided into structured (rectangular grids) and unstruc-
tured (triangular grids) meshes. Structured meshes usually consist of a
uniform grid dimensions (Piggott et al., 2008), while unstructured
meshes allow variable resolution in areas of interest such as bays. In ad-
dition, structured meshes have a limited ability to reproduce compli-
cated coastlines, whereas unstructured meshes of the same level of
resolution can be accurately configured to them (Piggott et al., 2008).
Compared to structured meshes, unstructured fine grids can allow
finer resolution and flexibility to represent regions with complex coast-
lines or bathymetry, including smaller waterbodies (Aleynik et al.,
2016).

Structured-grid models often use finite difference methods and
unstructured-grid models use finite volume or finite element methods
(Willis, 2011). The finite difference method has the advantage of sim-
plicity and computational efficiency, while the major advantage of the
finite element method is its geometrical flexibility (Weisberg and
Zheng, 2006; Chen et al., 2007a). Models based on the finite volume
methods like the Finite-Volume Community Ocean Model (FVCOM)

can combine the advantages of both finite element and finite difference
methods (Chen et al., 2007a). Compared with results obtained from a
finite-difference model, Chen et al. (2003) found that FVCOM better re-
solved the detailed thermal structure andflows in regionswith complex
topography. The number of CyanoHAB PTMs or IBMs using unstruc-
tured grids has increased recently (Rowe et al., 2016; Wang et al.,
2017; Feng et al., 2018) in line with the increase of computational
speed, although it is still common to use PTMs for CyanoHAB simula-
tions in open waters where grid resolution may be about 2 km or
more (Wynne et al., 2011; Wynne et al., 2013; Soontiens et al., 2019).

2.3. Measurements for data input and model comparison

The data required for (i) model initialisation, (ii) boundary condi-
tions and (iii) calibration and validation can be obtained in different
ways. Commonly, point or grab samples are used which involve manu-
ally collectingwater samples at specific locationswithin a lake. It is then
followed by laboratory analyses of relevant analytes. Grab samples are
usually taken at low frequency and often with a limited spatial resolu-
tion (Hamilton et al., 2015). Recent advances in sensor and information
technologies are increasing the spatial and temporal resolution atwhich
water quality parameters can be autonomously measured in situ
(McBride and Rose, 2018) and remotely from the air or space (Allan
and McBride, 2018). In situ high-frequency monitoring creates an op-
portunity to deepen our understanding of changes taking place over
short periods of time relevant to derivation of fluxes (Hamilton et al.,
2015). It also enables robust validation of dynamic models (Fringer
et al., 2019) and better alignment of the measurements with the high
frequency output from dynamic models (Hamilton et al., 2015). Exam-
ples of such in situ high frequency sensors include chlorophyll fluores-
cence or phycocyanin as proxies for phytoplankton and cyanobacteria
biomass, respectively (McBride and Rose, 2018). Automated high-
frequency monitoring has also been undertaken at cellular level using
microscopic imagery and flow cytometry to provide high-frequency
phytoplankton composition profiles through the water column
(Pomati et al., 2011). This method captured the rapid changes occurring
over the duration of a CyanoHAB event, while routine monitoring at
two-week intervals did not. High-frequency echosounders have also
been used for rapid quantification of Microcystis biomass during
CyanoHAB events, allowing scanning of the entirewater column and re-
liant up backscatter from gas vesicles in Microcystis (Ostrovsky et al.,
2020). Many high frequency sensors require careful calibration. How-
ever, as they provide proxy measurements for biomass, these sensors
are often associated with compensation for interferences associated
with changes in temperature, light and phytoplankton community
composition and physiology (Bertone et al., 2018).

Comprehensive data for spatial initialisation and validation can im-
prove confidence in the predictive capabilities of all CyanoHAB PLMs,
PTMs, and IBMs. To characterize the spatial variability of key variables,

Table 1 (continued)

Objective Reference Study site Model Simulation
duration

Coupling
approach

Dimension
of individuals'
movement

Data used for assessing
model performance

Horizontal
transport
assumptions

Vertical
transport
assumptions

regulation and diurnal
stratification

(2000) model +
DYRESM)

concentration movement Langmuir
circulation
Neglecting
effects of
changes in cell
diameter
Aggregation
between
colonies not
considered
Disaggregation
of colonies not
considered
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several point-based measurements with grab samples or high-
frequency monitoring are usually required. Remote sensing with satel-
lites offers an alternative method to detect and quantify distributions
of CyanoHABs (Kutser, 2004; Wynne et al., 2008; Isenstein et al.,
2020). Remotely sensed imagery can provide information for the entire
surface of water bodies and also enable acquisition of information about
inaccessible areas or historical datasets (Hadjimitsis and Clayton, 2009).
However, remote sensing of chlorophyll a cannot resolve its vertical dis-
tribution (Odermatt et al., 2012b). Recent satellite Ocean and Land Col-
our Instruments (e.g., Sentinel 3; Schaeffer et al., 2018) have targeted
reflectance wavebands corresponding to specific cyanobacteria pig-
ments such as phycocyanin, but they do not provide information on
species composition. Therefore, a combination of remotely sensed
data, high-frequency monitoring of the water column using sensors,
and conventional cell counts is ideally required to create a 3-D distribu-
tion of the species composition and biomass of CyanoHABs that can be
used for initialisation, calibration, and validation of all CyanoHAB
models.

Remote sensing of phytoplankton distributions, often related to the
heterogeneity of CyanoHABs, has been used to initialise and evaluate
the performance of IBMs (Wang et al., 2017; Feng et al., 2018) and
PTMs (Wynne et al., 2011, 2013; Rowe et al., 2016; Soontiens et al.,
2019). Studies have used high temporal resolution imagery from the
Medium Resolution Imaging Spectrometer (MERIS) (Wynne et al.,
2011, 2013; Rowe et al., 2016), Moderate Resolution Imaging
Spectroradiometer (MODIS) (Wang et al., 2017; Feng et al., 2018), and
Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensor
(Soontiens et al., 2019). Although these sensors may provide data sev-
eral times per week (weather permitting), the data is generally limited
to waterbodies with areas larger than 100 ha, because of coarse spatial
resolution. MERIS, MODIS, and Sentinel-3 have spatial resolutions of
300 m, 250–1000 m, and 300 m, respectively (Allan and McBride,
2018). For small lakes, the next generation of optical sensors on board
Sentinel-2 and Landsat 8 can provide capability to monitor CyanoHABs
in waterbodies with a minimum area of 0.5 ha and 1.5 ha, respectively,
using multispectral data at 10 m and 30 m resolution (Allan and
McBride, 2018). The finer spatial resolutions imply lower revisit times,
around 5–16 days, compared with those of MERIS, MODIS, and
Sentinel-3 OLCI sensors (Dörnhöfer et al., 2018). To improve the tempo-
ral resolution of thefine spatial resolution data,multi-sensor data fusion
methods that blend observations from different sensors with different
spatial and temporal resolutions can be used, providing high spatiotem-
poral resolution suitable for dynamic events such as CyanoHABs (Hilker
et al., 2009; Dörnhöfer et al., 2018).

Some issues should be considered in the use of satellite images. For
example, cyanobacteria populations can be highly vertically heteroge-
neous and concentrations at the surface can therefore also vary horizon-
tally at small scale, of the order of tens of metres and similar to pixel
sizes in satellite images (Kutser, 2004). Moreover, cyanobacteria can
be rapidly distributed through the water column or sometimes form
dense aggregates of a few millimetres at the water surface (Puddick
et al., 2016), dependent on levels of turbulence, vertical migration and
buoyancy (Oliver et al., 2012). Clouds and fog are also intermittent ob-
stacles to the continuous use of remote sensing data (Ibelings et al.,
2003; Odermatt et al., 2010). Therefore, it is recommended to use satel-
lite images when species are distributed through the surface mixed
layer, and the sky is clear (Wynne et al., 2011).

The use of extensive data sets for model calibration and validation
requires a more advanced statistical approach (i.e., skill levels) for
model calibration and validation. Visual assessments are no longer sat-
isfactory as the sole basis for model assessments, and interrogation of
model performance should be made with complementary statistical
tests (e.g., Moriasi et al., 2007; Bennett et al., 2013). These tests also re-
veal quite different performances among state variables, with decreas-
ing performance from physical to chemical and biological variables
(Arhonditsis and Brett, 2004). Wherever possible, performance

assessments should consider both state variables (state validation)
and key fluxes (process validation), after aligning units of fluxmeasure-
ments to those used inmodel. For example, phytoplankton productivity
is often expressed as a gross volumetric value (mg C m−3 d−1) but can
be divided by phytoplankton biomass (mg C m−3) derived from
biovolumes (e.g., using calculations from microscopic enumeration)
(Hillebrand et al., 1999) to obtain the rate (d−1) suitable for model
flux comparisons. These types of comparisons are valuable because
they may help to resolve the issue related to equifinality, where a simi-
lar model outcome arises from different combinations of free parame-
ters, i.e., parameter values may misrepresent the ‘actual values’ and
lead to poor outcomes when the model is applied to a different condi-
tion. In other words, IBMs, like other process-based models that have
multiple complex processes, may produce the “right answer for the
wrong reason”. By conducting process validation, we can obtain “good
results for the right reasons” by correctly capturing interactions
among variables in the ecosystem and provide greater confidence in
forecasts (Hipsey et al., 2020). Fluxes that form the basis for process val-
idation are infrequently used for calibration, partly because they are not
routine model outputs.

3. Physical drivers and physiological processes controlling
CyanoHABs

3.1. Horizontal and vertical transport of cyanobacteria

As can be seen from Table 1, previous studies that have used IBMs or
PTMs to simulate CyanoHABs havemade several assumptions about the
processes involved in the horizontal and vertical transport of
cyanobacteria cells. Some of these assumptions may adversely affect
the accuracy of the models. In order to increase the predictive ability
of all types of CyanoHABmodels to forecast the spatiotemporal distribu-
tions of CyanoHABs, it is crucial to improve the representation of key
physical and physiological processes that control CyanoHAB develop-
ment and distribution. This section gives an overview of the processes
that can govern the dynamics of cyanobacteria cells and should be con-
sidered in any modelling approach of cyanobacteria dynamics.

The transport of cyanobacteria depends on their physical andbiolog-
ical characteristics (e.g., density, size, and morphology) and environ-
mental forcing (e.g., currents, wind, and waves) (Fig. 2). These
constituents vary considerably, and some are stochastic in nature, mak-
ing the simulation of cyanobacteria transport very challenging.

The horizontal trajectory and speed of movement of cyanobacteria
are mainly controlled by currents, winds, and waves. Currents are the
major forcing for the transport of cyanobacteria but wind drift can
also generate additional velocity and be important under gentle wind
conditions when cyanobacteria colonies accumulate at the water sur-
face (Wynne et al., 2011) (Fig. 2a). Cao et al. (2006) found that surface
cyanobacteria blooms develop on the water surface in Taihu Lake,
China, when wind speeds are less than 3.1 m s−1. Webster and
Hutchinson (1994) reported that wind speeds greater than 2–3 m s−1

can mix floating phytoplankton cells (or colonies) into deeper water
layers while at lower wind speed, surface blooms are expected to re-
main on the surface. Above a critical wind speed, cells are vertically
redistributed (Fig. 2b) and transported by wave-driven Stokes drift
(Wang et al., 2016). The horizontal positions of particles are governed
by the following equations (Wang et al., 2017; Feng et al., 2018):

X i; t þ Δtð Þ ¼ X i; tð Þ þ Udt þ Uadditionaldt þ ζ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DH i; tð ÞΔt

p
ð1Þ

Y i; t þ Δtð Þ ¼ Y i; tð Þ þ Vdt þ Vadditionaldt þ ζ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DH i; tð ÞΔt

p
ð2Þ

where t is time; X and Y are the cyanobacteria cell locations; U and V are
the current-induced horizontal velocity components; DH is the horizon-
tal dispersion coefficient (considered to be identical in X and Y direc-
tions). ζt is an independent normally distributed random variable with
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a zero mean value and unit variance. The fourth term on the right-hand
side of Eqs. (1) and (2) accounts for lateral mixing of cells (Soontiens
et al., 2019), which may be considered relatively small. Uadditional and
Vadditional that represent the surface wind drift andwave-induced Stokes
drift (Wang et al., 2016; Feng et al., 2018) are estimated as:

Uadditional ¼
CwUw sin Wwinddirection−πð Þ 1þ γtð Þ for Uw ≤Ucritical

π2H2

L2
c

cosh khð Þ
sinh2 khð Þ

sin Wwavedirection−πð Þfor Uw > Ucritical

8><
>:

ð3Þ

Vadditional ¼
CwUw cos Wwinddirection−πð Þ 1þ γtð Þ for Uw ≤Ucritical

π2H2

L2
c

cosh khð Þ
sinh2 khð Þ

cos Wwavedirection−πð Þfor Uw > Ucritical

8><
>:

ð4Þ

where Uw and Wwinddirection are the wind speed and direction, respec-
tively. Cw is the wind drift coefficient, γt is a random number uniformly
distributed between zero and unity, h is the average water depth, H is
the wave height, L is the wavelength, k is the wave number (2π/L) and
c ¼ gT

2π tanhð2πHL Þ is wave velocity, where T is the wave period.

Dippner et al. (2011) who used a PTM set a wind drift coefficient
(Cw in Eqs. (3) and (4)) of 0.015 for modelling of CyanoHABs in coastal
waters. Wang et al. (2017) and Feng et al. (2018) calibrated the wind
drift coefficient and used a value of 0.016, together with a prescribed

wind direction, in Lagrangian modelling horizontal trajectory and
speed of cyanobacteria movement. It should be note that the wind
drift coefficient that is used in IBMs and PTMs differs from the wind
drag coefficient that connects wind velocity to surface water velocity
in Eulerian hydrodynamic models.

The vertical position of cyanobacteria species ismainly controlled by
the interplay of the buoyancy of the cyanobacteria andwater turbulence
(Wallace et al., 2000; Hozumi et al., 2019) (Fig. 2). Vertical movement
changes environmental conditions that cells encounter and directly in-
fluences horizontal transport as horizontal water velocities change ver-
tically. For example, cyanobacteria can be subject to different levels of
subsurface currents and wave-driven Stokes drift depending on their
vertical position. Therefore, accurate simulation of the vertical transport
of cyanobacteria is necessary to represent their spatiotemporal distribu-
tions. In addition, knowledge of the vertical position of cyanobacteria
populations has an important implementation for water supply from
reservoirs. Drinking water supplies can be adversely affected when
dense layers of cyanobacteria form under low levels of turbulence and
align with the depth of the water intake (Rowe et al., 2016; Ndong
et al., 2017). In some cases, these events have had major impacts on
water supplies (Steffen et al., 2017) and have stimulated additional
modelling to investigate causal factors (Manning et al., 2019).

3.1.1. Buoyancy control and vertical migration of cyanobacteria
In stratified lakes where light and nutrients are vertically separated,

several bloom-forming cyanobacteria genera, such as Dolichospermum

Fig. 2. The primary processes involved in the transport of cyanobacteria species under gentle (upper) and strong (lower) wind conditions in the surface mixed layer. The background
colour represents chlorophyll a.
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(basionym Anabaena), Microcystis, Aphanizomenon and Oscillatoria
(Visser et al., 2016a and references therein), can vertically migrate to
position themselves for optimal growth in the water column
(Reynolds and Walsby, 1975; Walsby, 1978; Ganf and Oliver, 1982). In
natural populations of cyanobacteria, vertical migration mainly occurs
through changes in carbohydrate ballast (Kromkamp and Mur, 1984;
Ibelings et al., 1991; Wallace et al., 2000) that are complemented by
longer-term adjustments in buoyancy from gas vesicles. Gas-vacuolate
cyanobacteria may become positively buoyant at night when carbohy-
drate consumption is not compensated by production from photosyn-
thesis (Villareal and Carpenter, 2003). Consequently, when there is
little wind mixing, cells float upwards and form dense surface scums
(Huisman et al., 2018). After having access to light, cells become nega-
tively buoyant from the production of carbohydrates, and gas vesicles
no longer offset the carbohydrate ballast, enabling cells to exploit
nutrients in deeper waters (Visser et al., 1995; Villareal and Carpenter,
2003). Therefore, at low irradiance, the buoyancy of gas-vacuolate
cyanobacteria increases while under high irradiance the buoyancy de-
creases (Kromkamp et al., 1988; Visser et al., 2005).

In addition to light, temperature and nutrient availability influence
carbohydrate ballast accumulation and density changes (Spencer and
King, 1987; Kromkamp et al., 1988). Nitrogen and phosphorus limita-
tion can lead to a decrease in gas vesicle volume per cell and may, in
turn, lead to a loss of buoyancy, whereas under nitrogen and phospho-
rus replete conditions, cells may become buoyant (Konopka et al., 1987;
Klemer et al., 1996; Brookes and Ganf, 2001; Chu et al., 2007). Chu et al.
(2007) showed that nitrogen limitation has a more significant effect on
gas vesicle content ofM. flos-aquae than phosphorus limitation. Brookes
and Ganf (2001) showed that M. aeruginosa varies its buoyancy as a
function of previous nutrient and light history of the cells. In addition,
at reduced temperatures, an increase in carbohydrate ballast can lead
to a loss of buoyancy although the gas-vesicle volume stays the same
(Visser et al., 1995). This can result in the observed autumnal sedimen-
tation of theMicrocystis population (Visser et al., 1995). Stokes' law can
be used to provide insights about the speed of buoyancy-controlled ver-
tical migration (Ws) in quiescent waters with little wind mixing:

Ws ¼ gd2c ρw−ρcolð Þ
18φμ

ð5Þ

where g is the acceleration of gravity, dc is the equivalent diameter of
the cell (assumed to be spherical for certain genera such asMicrocystis),
ρw is the density of water, ρcol is the density of a cell, φ is a shape coef-
ficient and μ is the dynamic viscosity of water.

The effect of variable cell or colony morphology is represented in
Stokes' law by the shape coefficient (Eq. 5). In previous IBM studies, col-
onies of Microcystis have been assumed to be spherical (i.e. φ=1)
(Wallace et al., 2000; Wang et al., 2017; Feng et al., 2018). However,
Microcystis colonies can have irregular shapes (Zhang et al., 2007; Li
et al., 2016; Li et al., 2018). It has been shown that any non-spherical
particles (except teardrop-shape particles) settle more slowly than
spherical particles (McNown and Malaika, 1950; Reynolds, 1997).
Therefore, the assumption of spherical particles can lead to overestima-
tion of settling velocity. Additionally, cell or colony size can influence
vertical velocities according to Stokes' Law. Many gas-vacuolate
cyanobacteria form multicellular trichomes (e.g., Dolichospermum) or
colonies (e.g., Microcystis) that effectively increase ascent and descent
velocities as a result of increases in cell diameter (Wu and Kong,
2009). Larger colonies that migrate more rapidly can access deeper,
nutrient-rich layers (Rabouille and Salençon, 2005; Aparicio Medrano
et al., 2013). Stokes' law is valid for determining the vertical velocities
of particles at low Reynolds numbers (Re), i.e., under quiescent condi-
tions (Reynolds, 1997) but may overpredict floating and sinking speeds
for large colonies (Aparicio Medrano et al., 2013), at Re > ~0.1 (Re in-
creases because colonies are large). Using Stokes' law, Re can be esti-
mated as (Feng et al., 2018):

Re ¼ ρcoldc
μ

gd2c ρw−ρcolð Þ
18φμ

ð6Þ

To avoid overprediction of colony velocities at high Reynolds num-
bers, a non-linear drag term can be added to Stokes' law (Aparicio
Medrano et al., 2013; Feng et al., 2018). For example, Aparicio
Medrano et al. (2013) showed that considering the non-linear drag
can lead to a reduction in the terminal velocity of a colony by 15% at a
Reynolds number of 3. On the other hand, it has been found that turbu-
lence can cause disaggregation of cyanobacteria colonies. The disagg-
regation may increase with increasing intensity and duration of
mixing (O'Brien et al., 2004; Li et al., 2018). Li et al. (2018) demon-
strated that colonies ofM. ichthyoblabemay be more susceptible to dis-
aggregation driven by turbulence than colonies of M. aeruginosa and
M. wesenbergii. Therefore, turbulence has an important influence in
the selection of different morphospecies of Microcystis.

As discussed, Stokes drift generated by waves can cause net advec-
tion in the direction of wave propagation. Drift is also important for
the transport of cyanobacteria cells under strong wind conditions
(Wang et al., 2016) whenwave-current interactions are strong. In addi-
tion to Stokes drift, dissipation of waves approaching coastlines can lead
to themovement of particles parallel and perpendicular to the coastline
(see Van Sebille et al., 2020 for a review). In spite of the importance of
waves, there is limited literature on their effects on the spatial and tem-
poral distributions of cyanobacteria. In the modelling context, coupling
a wavemodel (e.g., SimulatingWAves Nearshore (SWAN)model (Booij
et al., 1999)) to an IBM, that has been already forced by the outputs of an
Eulerian hydrodynamic-ecological model, could advance our under-
standing of the wave impacts.

3.1.2. Vertical turbulence-induced displacement
If a mild horizontal force (e.g., light wind) is applied to the surface

layer of the water column, laminar flow can be generated where layers
of molecules slide smoothly over one another and fluid flow is domi-
nated by viscous forces. In laminar flow, all layers move parallel to the
bed although surface layers move faster than the lower layers
(Reynolds, 1997). If the magnitude of wind forcing increases, turbulent
motion can be generated where the molecular structure can no longer
accommodate the energy of the forcing (Reynolds, 1997), and random
velocity fluctuations dominate fluid flow (Reynolds, 2004). According
to the Kolmogorov spectrum, turbulent energy cascades from large-
scale eddies (metres) adjacent to the source of forcing to small scale
eddies (millimetres), until the smallest turbulent eddies (Kolmogorov
length scales) are overcome by viscosity (Reynolds, 1997).

The water column in lakes may stratify during several hours to years
depending on the balance on stabilizing forces (e.g., solar radiation and
convective heating) to destabilizing forces (e.g., wind and convective
cooling) and the lake morphology (Imberger and Patterson, 1989).
When stabilization persists for more than a few days, a layer of buoyant
surface water (epilimnion) forms over cooler, darker waters (hypolim-
nion) (Howard, 2001; Howard and Easthope, 2002). These two zones
are separated by a transitional zone (metalimnion) with a central ther-
mocline (Rodi, 1987). The epilimnion – the layer directly influenced by
wind shear and penetrative convection – is considered to be a mixed
layer where the temperature is relatively constant (Imberger, 1985;
Rodi, 1987). The thickness of themixed surface layer can vary on a diurnal
timescale as a result of wind energy and the amount of heating or cooling
during the course of the day. Severe wind events and surface cooling can
deepen the surface layer (Imberger, 1985; Rodi, 1987). On a typical sum-
mer day, a fairly calm and hot morning can lead to heating of the surface
layer and development of strong stratification that resists mixing
(Imberger, 1985; Spigel et al., 1986; MacIntyre and Melack, 1995). How-
ever, the combination of strong wind and heat loss (largely due to evap-
oration) in the afternoon erodes the stratification (MacIntyre et al.,
2002). Therefore, stratification can develop and be eroded on a daily
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basis. Woolway et al. (2015) showed that diel variability in epilimnetic
temperature is highly connected with the lake area. Larger lakes are
more exposed to wind, which results in a greater surface mixed layer
depth. This, in turn, reduces the difference between the maximum and
minimum daily epilimnetic temperatures (Woolway et al., 2015).

The degree of entrainment of phytoplankton embedded in the tur-
bulent motion can be quantified using ψ proposed by Humphries and
Imberger (1982):

ψ ¼ Ws 15 �w02
� �1=2

� �−1

ð7Þ

where w′ is the vertical turbulent velocity fluctuation. If ψ < 1 sinking
phytoplankton are entrained because turbulence dominates their verti-
cal distribution, while if ψ > 1 sinking phytoplankton are disentrained
since their vertical velocity outcompete turbulent eddies. In other
words, if turbulent velocity ismore than 15 times larger than the sinking
velocity of phytoplankton, this can lead to their entrainment. In the case
of cyanobacteria with positive buoyancy, ψ is frequently much larger
than unity (Spigel and Imberger, 1987). It means that the vertical distri-
bution of positively buoyant cyanobacteria is more affected by their
buoyancy than by turbulence (Spigel and Imberger, 1987). Therefore,
it has been shown that larger colonies with greater buoyancy and verti-
cal velocity are better able to resist the turbulent entrainment velocity
and maintain their position in the water column (Wallace et al., 2000;
Rabouille and Salençon, 2005; Aparicio Medrano et al., 2013).

The degree of entrainment can influence intra-specific competition
among cyanobacteria species for nutrients and light that may exert a sig-
nificant effect on the community structure of cyanobacteria (Huisman
et al., 2004; Zhou et al., 2015). For example, duringweakmixing, the phy-
toplankton community will likely be dominated by the species, such as
buoyant cyanobacteria, with positive buoyancy that can escape from the
turbulent flow entrainment and position themselves at depths of
favourable light intensity (Huisman et al., 2004). As a result, they have ac-
cess to light, while sinking species are shaded by them. When turbulent
mixing is strong enough to dominate the sinking or flotation velocity of
cells, both buoyant and sinking species are vertically mixed throughout
the water column. Sinking species are generally better able to withstand
fluctuating light conditions and are therefore likely to outcompete buoy-
ant species in well-mixed environments (Reynolds et al., 1983; Visser
et al., 1996; Huisman et al., 2004; Visser et al., 2016a). In lakes, buoyant
species, such as the cyanobacterium Microcystis, dominate under condi-
tions of low turbulent diffusivity; while sinking species, such as diatoms
andgreen algae, becomedominant during periods of high turbulent diffu-
sivity (Huisman et al., 2004; Zhou et al., 2015).

A numerical technique called randomwalk is widely used to capture
the effects of sub-grid scale turbulent diffusion on particle trajectories in
Lagrangianmodels (e.g., Rowe et al., 2016;Wang et al., 2017; Feng et al.,
2018). This technique helps to account for the effects of sub-grid scale
turbulent transport processes that cannot be resolved by flow fields
(Xue et al., 2008). The randomwalk technique is based on the diffusivity
which is represented in Eulerian hydrodynamic models (Fig. 1). Visser
(1997) proposed the following random walk formula that can be used
in CyanoHAB IBMs and PTMs:

Δz ¼ D́V Z i; tð Þð Þdt þ ξt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV Z i; tð Þ þ 0:5 D́V Z i; tð Þð Þ

� �
Δt

r
ð8Þ

where Z is the location of cyanobacteria cells in the water column; DV is
vertical diffusivity and D́V is the derivative of DV (Hellweger and Bucci,
2009; Feng et al., 2018). The vertical positions of particles are governed
by the following equation (Wang et al., 2017; Feng et al., 2018):

Z i; t þ Δtð Þ ¼ Z i; tð Þ þWsdt þ D́V Z i; tð Þð Þdt
þ ξt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV Z i; tð Þ þ 0:5 D́V Z i; tð Þð Þ

� �
Δt

r
ð9Þ

The second term on the right-hand side of Eq. (9) accounts for
buoyancy-controlled vertical migration, and the third and fourth
terms represent vertical turbulence-induced displacement.

Previous Lagrangian modelling studies have provided valuable in-
sights into the processes governing the transport of cyanobacteria pop-
ulations. As Table 1 shows, some of the key processes mentioned above
are often not included in IBMs or PTMs of cyanobacteria, affecting pre-
dictive ability of themodel. In some studies, buoyancy or buoyancy reg-
ulation has not been considered or has been assigned as a constant value
rather than being affected by light or nutrient limitation or other envi-
ronmental factors (Table 1). Many studies have neglected the effects
of turbulent mixing on the vertical movement of cells (Table 1).
Researchers are recommended to use more advanced models
(e.g., FVCOM) that can consider a larger array of these key processes.

3.1.3. Langmuir circulation
Under sustained wind forcing, the interaction between wind shear

and surface waves can generate Langmuir cells, a turbulent circulation
process with quasi-organized large-eddy structures in the upper layers
of lakes (Langmuir, 1938; Thorpe, 2004; Neale et al., 2012; Smyth et al.,
2017) (Fig. 2). Phytoplankton species can be transported vertically by
this circulation (Neale et al., 2012). Under wind speeds greater than
2–3 m s−1, large water bodies can experience Langmuir circulation
(Wetzel, 2001). For example, in Lake George, NY, USA, with an area of
117.4 km2 and an average depth of about 19.5 m, the velocity of down-
ward currents was 0.016 m s−1 at a wind speed of 6 m s−1 (Wetzel,
2001). The effects of Langmuir circulation on phytoplankton species dif-
fer considerably from those of turbulence. Langmuir circulation causes
entrained phytoplankton to experience organized periodic light fluctu-
ations (Langmuir, 1938), but turbulence causes disorganized random
light fluctuations (Wallace and Hamilton, 1999). Langmuir circulation
may also indirectly affect phytoplankton by influencing their physical
environment. For example, Langmuir circulation destroys the near-
surface stratification (Huang et al., 2014). Turbulence resolving large
eddy simulation (LES)models are capable of representing Langmuir cir-
culation (Kukulka et al., 2009). LES models solve the Craik-Leibovich
equation using spatially averaging over a subgrid scale. The Craik-
Leibovich momentum equations capture Langmuir circulation dynam-
ics by a vortex force (McWilliams et al., 1997; Kukulka et al., 2009).

3.2. Physiological processes relevant to CyanoHABs

Developers of CyanoHAB IBMs are faced with a myriad of physiolog-
ical processes that may be included in these models, aside from formu-
lations that describe growth responses to temperature, light and
nutrients, and losses from grazing, viruses and natural attrition (see
Oliver et al., 2012). Our intention in this section is not to provide an ex-
haustive list of physiological processes but to identify some of the pro-
cesses that are strongly relevant or specific to cyanobacteria. We have
focused on the colony formation, overwintering, carbon concentrating
mechanism, nitrogen fixation, and luxury phosphorus uptake. These
processes are discussed briefly below.

3.2.1. Colony formation
The cyanobacterium Microcystis has high phenotypic plasticity and

can exist as solitary cells or form scums consisting of large colonies
(100–2000 μm) under natural conditions (Li et al., 2018; Xiao et al.,
2018). Colony formation byMicrocystis can positively impact its vertical
velocities (maximum recorded for a single colony, ~ 10.08 m h−1 (Xiao
et al., 2018)), resulting in resistance to high levels of turbulence
(disentraining from turbulent mixing or escaping from entrainment in
the turbulent flow) and having access to optimal light and nutrient en-
vironments. In turn, colony formation may affect grazing pressure by
zooplankton and exposure to chemical stressors (Xiao et al., 2018).
Therefore, the ability to form large colonies is a key trait of Microcystis
(Duan et al., 2018) but colony formation can lead to decreased specific
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growth rates compared with the solitary (unicellular) habit (Xiao et al.,
2018).

Various abiotic and biotic factors can affect colony formation. Flagel-
late grazing can induceM. aeruginosa to actively form colonies but larger
colonies may also be resistant to grazing (Yang et al., 2008). There is a
positive correlation between colony size of Microcystis and the content
of extracellular polymeric substance (EPS) surround the cells and
colonies (Xiao et al., 2017; Xiao et al., 2019). As a result, EPS can be
considered as a precursor to colony formation (Xiao et al., 2019). The
EPS comprises three humic acid-like components (C1 – C3) and a
protein-like component (C4). Humic acid-like component C1 is
involved in colony formation and colony size growth of Microcystis
(Xiao et al., 2019).

There is contradictory literature on whether higher nutrient con-
centrations affect Microcystis colony formation. For example, Wang
et al. (2010) reported that nutrient enrichment coupled with preda-
tion of zooplankton can promote surface Microcystis blooms. Duan
et al. (2018) also showed that higher phosphorus availability may
enhance Microcystis scums while nitrogen enrichment may have
negligible effect. However, Ma et al. (2014) indicated that increased
nutrient concentrations can result in the formation of single cells. It
has also been shown that warmer temperatures can elevate colony
size (Duan et al., 2018).

3.2.2. Overwintering
Although some cyanobacteria, including Planktothrix agardhii and

Planktothrix rubescens, can develop blooms in thewater column of tem-
perate lakes in winter, many others overwinter successfully as akinetes
(Dolichospermum, Aphanizomenon, and Gloeotrichia) or as vegetative
cells (Microcystis sp.) (Visser et al., 2016b). In autumn, Microcystis can
sink into the sediment and survive in bottom sediments of lakes
(Reynolds et al., 1981; Tsujimura et al., 2000). As a result of poor light
conditions at the bottom of lakes, their photosynthetic activity can be
restricted. Therefore, the overwintering can be considered as a physio-
logical ‘rest’ (Brunberg and Blomqvist, 2002). When environmental
conditions become favourable, the benthic population can be recruited
from surface sediments to the water column (Zou et al., 2018) and the
benthic Microcystis population surviving winter can serve as an inocu-
lum for pelagic blooms in spring and summer (Preston et al., 1980;
Brunberg and Blomqvist, 2003). Model simulations have shown that
the absence of recruitment from the sediment can result in a reduction
of 50% inMicrocystis sp. blooms in summer (Verspagen et al., 2005). De-
spite its importance, most models do not simulate benthic stages
(Cottingham et al., 2021).

Hense and Beckmann (2006) developed a mathematical model to
investigate the dynamics of cyanobacteria life cycles. The model sepa-
rates the life cycle into vegetative cells, vegetative cellswith heterocysts,
akinetes, and recruiting cells (including germinates) and assumes that
the transition between each stage depends on the internal energy and
nitrogen quotas of the cells. Vegetative cells have high internal energy
and high nitrogen quotas without nitrogen fixation. Once nitrogen
quotas are low, vegetative cells fix nitrogen. The common characteristic
of vegetative cells with and without nitrogen fixation is their positive
buoyancy. Low energy and nitrogen quotas of planktonic cells lead to
the development of akinetes that sink to the bottom where they take
up nitrogen. After the internal nitrogen quota is sufficiently filled,
the cells with low energy are recruited to surface waters in vegeta-
tive form and are able to replenish their energy reservoir. A simpli-
fied version of this cyanobacterial life cycle model that considers
two-life cycle stages instead of the four-life cycle stages described
above was used by Hense and Beckmann (2010). The simplified
model showed good skill in representing the timing and the duration
of the blooms, the annual mean nitrogen fixation rates, and the mag-
nitude of year-to-year fluctuations and decadal variability. The
model was deemed suitable to be a sub-component of a 3-D ecosys-
tem model.

3.2.3. CO2 concentrating mechanism
Cyanobacteria can take up atmospheric carbon dioxide (CO2) and bi-

carbonate (HCO3
−) from the environment for carbon fixation using the

CO2 fixing enzyme Ribulose bisphosphate Carboxylase Oxygenase
(RubisCO) (Visser et al., 2016b; Ma et al., 2019). Since RuBisCO has a
low affinity for CO2, cyanobacteria possess an active CO2 concentrating
mechanism (CCM) (Giordano et al., 2005; Burford et al., 2016; Ma and
Wang, 2020). The CCM involves transport of dissolved inorganic carbon
(DIC) into cells to allow accumulation of CO2 with RuBisCO (Giordano
et al., 2005; Burford et al., 2016), resulting in improved photosynthetic
performance (Wang et al., 2015). Badger and Price (2003) and Badger
et al. (2006) showed that when CO2 levels are low, CCMs in
cyanobacteria aremore efficient in comparisonwith other algae. There-
fore, CCMs provide cyanobacteria with a competitive advantage under
low CO2 conditions (Price et al., 2008; Meyer and Griffiths, 2013). How-
ever, when inorganic carbon is adequate, the cyanobacteria CCM re-
mains in a constitutive state (Price et al., 2008). Morales-Williams
et al. (2017) have suggested that the CCM in cyanobacteria becomes ac-
tive at a threshold partial pressure of CO2 of 393 ppm.

In nutrient-enriched lakes, the high concentration of cells in blooms
enhances CO2 consumption to support photosynthetic activity. This re-
duces the availability of free CO2 and increases the pHof affectedwaters,
causing extreme carbon limitation (Paerl andUstach, 1982; Ibelings and
Maberly, 1998). If the water is stratified, in response to CO2 depletion,
cyanobacteria form scums (Paerl and Ustach, 1982). Surface-dwelling
blooms can directly intercept the CO2 influx at the air−water interface,
thereby alleviating the limitation of photosynthetic growth by dissolved
inorganic carbon (Paerl and Ustach, 1982; Ibelings and Maberly, 1998).
Scum formation can therefore promote cyanobacterial dominance
under CO2-limiting conditions by enabling dense cyanobacteria bio-
masses to avoid low CO2 availability in deeper areas and shade sub-
surface phytoplankton populations.

3.2.4. Nitrogen-fixation
Several bloom-forming cyanobacteria genera are diazotrophic, such

as Anabaena, C. raciborskii, Aphanizomenon, Nodularia, Lyngbya and
Nostoc, fixing atmospheric nitrogen (N2) to complement cellular nutri-
tional requirements (O'Neil et al., 2012; Beversdorf et al., 2013; Visser
et al., 2016b). N2 fixation can enable diazotrophic cyanobacteria to
grow rapidly and outcompete non‑nitrogen fixing cyanobacteria and
eukaryotic phytoplankton, particularly when there are low rates of
DIN supply (O'Neil et al., 2012; Huisman et al., 2018; Ma and Wang,
2020). However, N2 fixation is an energetically costly process (Gobler
et al., 2016) and requires absence of oxygen that would otherwise inac-
tivate the nitrogenase enzyme complex (Gallon, 1992; Zehr et al., 2000;
Huisman et al., 2018). To protect the nitrogenase, freshwater
diazotrophic cyanobacteria form differentiated specialized cells known
as heterocysts (Muro-Pastor and Hess, 2012). Heterocysts have a thick
cell wall that limits oxygen diffusion (Muro-Pastor and Hess, 2012).

Hellweger et al. (2016b) developed a mechanistic, molecular-level
model of Anabaena – nitrogen interactions that represent several
genes involved in nitrogen uptake and assimilation (e.g., GlnA). In the
model, when fixed nitrogen is depleted and the cells become
nitrogen-stressed, cells metabolize various forms of nitrogen, grow
and divide, and differentiate into heterocysts. They took advantage of
individual-based modelling because each individual readily responds
to its intracellular state and environmental conditions by changing
gene expression, enzyme velocity and photosynthesis, among other
physiological features. The model was used to simulate a scenario of re-
duction of N loading in a hypothetical lake, showing its potential to be-
come part of a comprehensive ecosystem models.

3.2.5. Luxury phosphorus uptake
When the concentration of phosphorus (P) is high, cyanobacteria

can accumulate P in excess of immediate cellular demand to ameliorate
the effects of P deficiency. This phenomenon is known as luxury P

M.H. Ranjbar, D.P. Hamilton, A. Etemad-Shahidi et al. Science of the Total Environment 792 (2021) 148418

11



uptake (reviewed by Healey, 1982) and it can increase cellular P con-
centrations from ~0.3% to ≥3% ash-free dry mass (Reynolds, 2006).
When P becomes depleted, this storage can be used as a P source, giving
a competitive advantage to cyanobacteria over other phytoplankton
that mostly have limited P storage capacity. Luxury P storage capacity
varies among cyanobacteria genera (Carey et al., 2012). For example,
R. raciborskii has a high luxury storage capacity (Xiao et al., 2020a),
while Anacystis has a smaller capacity (Carey et al., 2012).

Two approaches can be used to represent the effect of nutrient avail-
ability on phytoplankton growth. The first formulates that growth is
based on ambient concentrations of nutrients (e.g., Monod growth),
and the second formulates that growth is based on the intracellular nu-
trient content or cell quota that is more mechanistically correct (Cerco
et al., 2004; Hellweger and Kianirad, 2007; Cerucci et al., 2010). Growth
as a function of the internal nutrients is commonly simulated using the
Droopmodel (Droop, 1973; Hellweger and Kianirad, 2007). By contrast,
the Monod method (Monod, 1949) is a straightforward approach that
cannot represent nutrient luxury uptake since themodel directly relates
growth with available nutrients in the water column (Cerucci et al.,
2010). The Droopmodel, while more complex, is generally a better pre-
dictor of nutrient-limited growth (Sommer, 1991). According to the
Droop equation (Droop, 1973; Grover, 1991), the specific growth rate
of cell i, μi, is given by:

μ i ¼ μ max;i 1−
Q min;i

Q i

� �
ð10Þ

where μmax, i is the maximum specific growth rate of cell i, and Qi and
Qmin, i are the current andminimum intracellular nutrient quota, respec-
tively. Therefore, the specific growth rate of cell i increases with its in-
tracellular nutrient content and becomes zero if its intracellular
nutrient content has decreased to the minimum value Qmin, i

(Sommer, 1991). The Droop model can be incorporated into IBMs, but
an obstacle to using the Droop model is that there are rarely measure-
ments of cell quotas, and minimum cell quotas are more likely to be
the theoretical values.

3.3. Climate change and catchment-lake interactions

Climate change has regional and local impacts on interdependent
systems (e.g., weather, catchments, and lakes) that are typically
modelled independently (Sharma et al., 2018). Large lakes with large
heat capacity (low albedo), and small atmospheric roughness coeffi-
cients in comparison to their surrounding lands can modify regional
weather and climate (Su et al., 2020). For example, lake surface temper-
atures in the Great Lakes are warmer than air temperatures in late fall
and winter, leading to increased precipitation on the lee side of the
lake, triggered by atmospheric instability. However, during summer,
there may be downwind decreases in rainfall (Scott and Huff, 1996).
On the other hand, climate variability and change can affect lake physics
and, in turn, lake biology and biogeochemistry (Hadley et al., 2014). For
example, the thermal structure of lakes is closely connectedwith the air
temperature andwind speed (Magee andWu, 2017).Warming air tem-
peratures and decreasingwind speeds (atmospheric stilling) can lead to
more long-lasting and stable thermal stratification (Magee and Wu,
2017; Woolway et al., 2017), favouring CyanoHABs (Paerl and
Huisman, 2008). Lakes are influenced not only by the overlying atmo-
sphere but also by neighbouring catchments (Sun et al., 2020) that ex-
hibit two-way interactions with the atmosphere (Charney et al.,
1975). Xue et al. (2017) developed a two-way coupling of FVCOM
(Chen et al., 2003) with the Regional Climate Modelling system Version
4 (RegCM4) (Giorgi et al., 2012) in the Great Lakes region. As a result of
providing a better representation of lake-atmosphere interactions, the
two-way coupling increased the accuracy of simulated lake thermal
structures and ice over previous studies that used hydrodynamic
models in one-way offline simulations.

Future research exploring the impacts of climate change on
CyanoHABs is recommended to incorporate climate-catchment-lake
interactions using two-way coupledmodelling systems. Climate change
is expected to lead to a higher frequency and intensity of rainfall events,
leading to greater nutrient input into waterbodies during heavy
rainfall events, thus resulting in conditions that are favourable for
cyanobacterial growth (Reichwaldt and Ghadouani, 2012; Carpenter
et al., 2015; Carpenter et al., 2018). Moreover, urban development or
the widespread use of fertilizers for intensive farming can result in in-
creased transfer of nutrients from catchments to receiving waters
(Goyette et al., 2019), fuelling the growth of cyanobacteria. In addition,
as discussed before, thermal stratification that suppresses turbulence
and, in turn, allows buoyant cyanobacteria in the surface mixed layer
to migrate upward and access sufficient light for growth is expected to
be affected by climate change. Higher temperatures lead to more
prolonged diurnal stratification in the surface mixed layer (Stetler
et al., 2020), especially if atmospheric stilling (Woolway et al., 2017)
also occurs.

The interactions between the environmental drivers expected to be
affected by climate change (e.g., more long-lasting and stable thermal
stratification and altered nutrient loading) and cyanobacterial physio-
logical processes (e.g., colony formation and buoyancy) will likely fa-
vour cyanobacterial dominance in most future climate scenarios
(Carey et al., 2012). For example, warmer temperatures and higher
phosphorus availability can lead to the formation of larger colonies of
Microcystis, increasing surface scums (Duan et al., 2018). This
strengthens thermal stratification (Kumagai et al., 2000; Ibelings et al.,
2003; Jones et al., 2005; Rinke et al., 2010) and reduces momentum
transfer fromwind to water at low wind speeds (Wu et al., 2019), rein-
forcing conditions favourable for the development of CyanoHABs.
Therefore, since climate change potentially influences CyanoHABs in
several ways, incorporating two-way climate-catchment-lake interac-
tions as well as cyanobacterial physiology into future CyanoHAB IBMs
is essential to accurately predict the effects of climate change on
CyanoHABs and thus develop effective management strategies to miti-
gate the impacts.

4. Summary and conclusions

IBMs can be used to improve predictions of CyanoHAB development
and transport by capturing the key physical and physiological processes
that interact in the formation and distribution of blooms. Here, we pres-
ent a checklist of criteria that can be used to determine model type in
future studies. IBMs are highly recommendedwhen there is a consider-
able 1) strain-level diversity, 2) interspecific adaptive behaviour, and
3) intra-specific variability among individuals, or 4) individuals behave
as a function of their previous environmental conditions. In addition,
IBMs can be very useful to capture the interactions of individuals with
each other and with their biotic or abiotic environment and the life cy-
cles of individuals.

A large array of complex processes lead to CyanoHABs, and incorpo-
rating them into CyanoHAB IBMs will be one of the most important
challenges ahead. A step-by-step approach can be used to meet this
challenge. First, it is recommended to pay particular attention to the
physical characteristics of colonies, especially colony size. This is be-
cause the vertical migration velocity of a colony varies as an exponent
of the diameter. As discussed earlier, the interaction of colony velocity
and the turbulence a colony encounters determineswhether the colony
can disentrain from turbulentmixing to formbloomswhich is related to
the interaction of colony velocity and turbulence intensity. Colony size
can vary among colonies and also vary dynamically with aggregation
and disaggregation processes. Capturing variations in colony size is im-
portant for accurate predictions of the timing andmagnitude of blooms.
Second, individuals in CyanoHAB IBMs should carry a memory that re-
flects the previous physiological state such as light exposure history
and nutrient status. For instance, if we wish to capture the effect of
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variations in irradiance on buoyancy regulation in cyanobacteria, then it
would be necessary to consider the history of light exposure in individ-
ual cells or colonies.

Future studies are also recommended to incorporate key processes
in CyanoHABs of colony formation, overwintering, CCM, N2 fixation,
and luxury P uptake. Few models unite these processes, but some in-
clude formulations of the individual key processes that could form the
basis of a more comprehensive CyanoHAB IBMs. Finally, there are im-
portant dynamic feedbacks between CyanoHABs and their environment
that can reinforce favourable conditions for CyanoHAB development.
For example, surface blooms absorb heat and, in turn, strengthen ther-
mal stratification that suppresses turbulence. This allows buoyant spe-
cies, such as the cyanobacterium Microcystis, to migrate upward and
outcompete other species for light. As a result, both thermal stratifica-
tion and surface blooms can become progressively more intense, and
sub-surface phytoplankton populations can be shaded by dense surface
blooms. In the modelling context, online coupling of an IBM to an
Eulerian hydrodynamic-ecological model could capture the two-way
interaction between cyanobacteria and their environment. The combi-
nation of incorporating physiological processes into IBMs and online
coupling could advance the ability of IBMs to identify the underlying
mechanisms controlling CyanoHAB distribution and abundance.

An accurate CyanoHAB IBM requires a comprehensive dataset for
model initialisation, boundary conditions and calibration and validation.
Ideally, the combination of automated high-frequency monitoring and
remote sensing is required. Advanced statistical approaches for model
calibration and validation are also recommended when extensive
datasets are used. In addition, since different complex processes are in-
corporated into a CyanoHAB IBM, it is advisable to assess whether the
interactions among different mechanisms in the ecosystem are cor-
rectly captured by conducting process validation, wherever possible.

Climate change is likely to impact weather, catchments, and lakes,
i.e., major environmental drivers of CyanoHABs related to thermal strat-
ification and nutrient loads. High-resolution, integrated climate-
catchment-lakemodelling systems should therefore be used to simulate
the potential effects of climate change on CyanoHABs and more fully
test if climate change will favour cyanobacterial dominance, including
considerations of the frequency, intensity duration and species compo-
sition of CyanoHABs.
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