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Abstract
Quest for alternate energy sources is the core ofmost of the research activities these days. Nomatter
how small or large amount of energy can be produced by utilizing the non-conventional techniques
and sources, every bit of innovation can reshape the future of energy. In this work, experimental
analysis of the thermoelectric (TE) properties of bulk-graphene in the temperature range of (303 to
363)K is presented. Graphene powderwas pressed to form a pellet whichwas used to fabricate the TE
device. The effects of temperature on the Seebeck coefficient, electrical and thermal conductivities,
and the dimensionless figure ofmerit (FOM)weremeasured. The increasing value of the Seebeck
coefficient (thermopower)with temperature is indicant of themetallic behavior. Additionally, the
observed thermopower (TEP) is positive, which shows that themajority charge carriers are holes and
peaked to a value of 56μVK−1 at 363K. The thermopower of the pellet is four times larger than the
previously reported values for single layer graphene (SLG) and few layer graphene (FLG). In addition
to this, low values of the thermal conductivity were observed for the pellet which is one of the
requirements of a goodTEmaterial. Besides this, an upward trend is observedwith increasing
temperature for FOM,which attains a peak value of 0.0016 at 363K,which is almost ten times that of
the previously reported values.

1. Introduction

Energy has been themost important part of human society since long. Themodern-day lifestyle of humanity
cannot survive without continuous supply of energy. Frompersonalmobile phones and electronic gadgets to
country level power houses and defence, energy is being utilized in one formor the other, and the demand is
risingwith each passing day [1]. Depletion is one among other drawbacks associatedwith the conventional
energy sources [2]. A solution to such energy crisis is to develop renewable energy resources which include the
wind, tides, sunlight, waves, and geothermal heat. These areas of energy production are the focus ofmany
researches since decades. Thermoelectric generators (TEGs), which can usewaste heat to generate electrical
energy is one another highly appreciated way of energy generation. It can use thewaste heat generated during
combustion processes, chemical reactions and other heat generating systems, and can play a vital role in solving
the present-day energy problem. TEGs convert thewaste heat energy directly into useful electrical power [3].
However, TEGs cannot replace the conventional generators due to their low conversion efficiencies, but can be
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used in cogeneration systemswhere they can convert waste heat into useful energy thus improving the overall
efficiency of the generation system. Efforts are needed to develop highly efficient TEGs so that they can function
as stand-alone power systems.

Here we present an experimental study on the thermoelectric (TE) properties of graphene, a two-
dimensional (2D) crystallinemonolayer of graphite having a thickness of 0.34 nm [4, 5]. The structure of
graphene resembles a honeycomb lattice inwhich each carbon atom is covalently bonded to three other carbon
atoms [6]. The intriguing properties of the graphene result fromof its unique structure [7–10]. The remarkable
physical properties of graphene and its potential applications in solar cells [11–13], transistors [14–17], and sensors
[18–23]have garnered the interest of the researchers in the recent years. For graphene fabricated by a scotch tape
method, charge carriermobility attains a peak value of 106 cm2/Vs at =T 15 K [24]. However, thismobility is
greatly dependent on the substrate onwhich graphene is deposited [25]. It shouldbenoted that themobility of
electrons is the sameas themobility of holes in graphene.Due to crystalline structure and the lightweight of the
carbonatomswhich formgraphene, it is predicted theoretically that graphene exhibits high thermal conductivity
at roomtemperature [26, 27]. Besides the theoretical studies, few experimental studies on single-layer graphene
(SLG) reported that the thermal conductivity of graphene varies from (600–5300)WmK−1 [27, 28].

In the recent years, TE properties of graphene remained the subject of intensive research and it was
theoretically predicted that the dimensionless figure ofMerit (FOM) could be greater than 4 [29–32]. However,
experimental results are not thatmuch assuring as the FOMvalues aremuch less than 1 [33, 34]. Low
thermopower (TEP) of graphene and its high thermal conductivity are themain factors contributing to the low
values of the dimensionless FOM.However, efforts are needed to reduce the thermal conductivity and enhance
the TEP, to get high FOM for graphene-based TEdevices [35]. Previously,measurement of the TE properties of
graphene involved either single-layer graphene (SLG) [36, 37] or few-layer graphene (FLG) [38–40]. Here, we
have investigated TEproperties of bulk-graphene pressed in pellet form, for thefirst time and noted that the TEP
varies linearly with the temperature. AmaximumTEPof 56μVK−1 is observed for the graphene pellet (GP) at
363Kwhich is comparable with themaximum reported value of 80μVK−1 in the temperature range of
(475–575)K for FLG [40]. The TEP of the bulk-graphene is found to be greater than the SLG [36] and FLG [38].
This shows that an increase in the dimensionality of the graphene sample fromSLGor FLG to bulk-graphene
tends to increase the TEP of graphene.

2. Experimental setup

Powder graphenewas used to fabricate pellet using amanual hydraulic pressingmachine. The diefilledwith a
weighted amount of graphene powderwas kept under a pressure of 600 bars for 180 s. The pellet formed had a
diameter of 17mmwhile the thickness was 1.5mm.Copper (Cu) electrodes (due to their high electrical
conductivity)were fine-tuned on the pellet affixed to a glass substrate. The distance between theCu electrodes
was equal to 11mm. Figure 1 shows the fabricated graphene pellet. For thermoelectricmeasurements, a
rectangular samplewith dimensions equal to 17×6mm2,was cut from the pellet.

In this experimental work, heat was provided to both ends of the pellet using two separate resistors (each
5W) powered by separateDC supplies. The amount of heat generated by each heater was controlled using the

Figure 1.Graphene pellet.
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current supplied by the power supplies.When a difference of temperature was established between the two ends
of the pellet, a voltagewas generated due to Seebeck effect. The generated voltage wasmeasuredwith the help of
Fluke 88 digitalmultimeters while, the heat at each end of the pellet wasmeasuredwith aUT33C digital
thermometer. TEP values of graphene pellet were determined by using the differentialmethod relative toCu
electrodes [38, 41]. The absolute values of the TEP of Cu in the temperature range of (303–363)Khad been taken
into account while calculating the TEP of the graphene pellet. During the experiment, a temperature difference
of 10Kwasmaintained between the hot and cold end of the pellet for calculating the TEP. The experimental
setup used in our experiment is shown infigure 2. Electrical conductivity wasmeasured using four-point probe
methodwhile thermal conductivity wasmeasured using longitudinal steady state technique.

3. Results and discussion

Seebeck effect is defined as the generation of the voltage by amaterial when a temperature gradient is established
across its ends. The ability of thematerial to generate a voltagewhen a temperature gradient is established across
its ends is characterized by the Seebeck coefficient (thermopower).Mathematically the Seebeck coefficient is
formulated as /a = DTV ,whereα, V, andΔT are the Seebeck coefficient, the voltage generated by the TE
material, and the temperature gradient between the hot and cold end of the TEmaterial respectively.

Figure 3 illustrates the relationship between the Seebeck coefficient and average temperature T of the
graphene pellet. Besides the TEP of theGP, the TEP of SLG [36] and FLG [38] is also shown for comparison. The
TEPof the graphene based TEdevice is found to be gradually increasing from (23–56)μVK−1 as the
temperature increases from (303–363)K. But for SLG and FLG, a slight increase in the TEPwith increasing
temperature is observed. The TEPof SLG and FLG is (3–5) order ofmagnitude smaller than that of theGP.
Enhancement in the TEP of the graphene pellet is attributed to the entrapped air within the pellet and increase in
the number of layers of graphenewhich causes an increase in the density of defects in the sample [40]. Since
graphene pellet also hasmultiple layers of graphene that’s why the density of defects inGP is greater than SLG
and FLGultimately resulting in enhanced TEP for theGP. This is also evident from the TEP of SLG, which is
smaller inmagnitude than the TEP of the FLG as illustrated by figure 3. Similar to SLG and FLG, the TEP of
graphene pellet is positive for the entire temperature rangewhich illustrates that the dominant charge carriers
are holes.

For a temperature less than the Fermi temperature (TF), the Seebeck coefficient of themetal is given by
equation 1.Where kB, T, andEF are the Boltzmann constant, average temperature between the hot and cold end
of the TEmaterial, and Fermi energy respectively. The TEP of themetals is generally less than / /m»k e 87 V KB

[42].

( )a »
k

e

k T

E
1B B

F

Equation 1, clearly illustrates that the thermopower of themetals increases linearly with temperature. It is
reported in by Berger et al, that the Fermi temperature (TF) of epitaxial graphene is 2490K [43]. So, the Fermi
energy of graphene is calculated as »E 214 meVF using the relation of = ´E k T .F B F Using these values for the
constants in equation 1, the TEP for graphenewas calculated and thismathematically simulated (SIM)TEP is
shown infigure 4. The simulated TEP increasesmoderately with the increase in the temperature. The
experimentally (EXP) observed TEP is also shown for comparison. RGVaidya et al reported that if the TEP of a
material varies linearly with temperature, then it represents that the TEP is dominated by the diffusive

Figure 2. Schematic view of the experimental setup.
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componentwhile the phonon drag component contributes a little to the effective TEP [44]. Therefore, we can
say that the linear increase in TEP indicatesmetallic diffusion behaviorwhile the contribution by the phonon
drag is negligible due toweak electron-phonon coupling [45, 46] in graphene pellet. The experimentally
observed TEP is clearly following the predicted TEP.

Figure 5 shows the voltage-temperature gradient characteristics of the graphene pellet. Load voltagewas
measured across a load resistor connected to the TE device. This load is approximately equal to the internal
resistance of the graphene pellet. It can be seen that themagnitude of the open-circuit voltage and load voltage is
rising as the temperature gradient is varied from (6–11)K, however, themagnitude of load voltage is smaller
than themagnitude of the open-circuit voltage.Maintaining a temperature gradient of 6K across theGP,

Figure 4.Temperature dependent experimentally (EXP) observed, and simulated (SIM) thermopower of graphene pellet.

Figure 3.Temperature dependent thermopower of graphene pellet (GP), SLG [36] and FLG [38].
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generates an open-circuit voltage of 0.15mVwhile the same temperature gradient produces a load voltage of
0.1mV. These values increase steadily to 0.25mV and 0.15mV respectively, when the temperature gradient
increases to 8K. Establishing a temperature difference across theGP, results in the diffusion of the charge
carriers from the hot end towards the cold end.When the charge carriers diffuse from the hot end towards the
cold end, opposite charges are left at the hot end. As a result, a potential difference is generated between the two
ends ofGP.When the temperature difference across the pellet is increased, the rate of diffusion of the charge
carriers increases and hence causes an increase in the voltage generated. The open-circuit voltage and load
voltage attain a peak value of 0.4mV and 0.3mV respectively at a temperature gradient of 11K. The linear
relationship between the voltage generated by the graphene pellet and the temperature gradient verifies its
thermo-electric origin.

The electrical conductivity (σ) of the graphene pellet wasmeasured using four-point probemethod. The
dependence of electrical conductivity on temperature is shown infigure 6. It is clear from figure 6 that the
electrical conductivity of the graphene pellet increases dramatically as the temperature is increased, which is
indicative of the semiconducting behavior. At a temperature of 303K, the pellet exhibits an electrical
conductivity of 0.3 sm−1. The electrical conductivity of the graphene pellet reaches its peak value of 4.3 Sm−1

when the temperature reaches to 363K. Xiao et al reported the electrical conductivity of single layer graphene
(SLG)films in the range of (4×104–6×104) Sm−1 which is higher than the values for few layer graphene
(FLG)films i.e., (4×104–5×104) Sm−1 [40]. The reason for high electrical conductivity of SLG films as
compared to FLGfilmswas the low density of structural defects in SLG films. Since the pellet hasmultiple layers
of graphene, therefore higher density of structural defects and entrapped air within the pellet results in the
reduction of the electrical conductivity as compare to SLG and FLG filmswhile increasing its thermopower.

The thermal conductivity (к) of the graphene pellet wasmeasured using longitudinal steady state technique
[47]. Figure 7 shows the dependence of the thermal conductivity on temperature. The thermal conductivity
of graphene pellet is 0.38×10–3 WmK−1 at 303Khowever, it linearly rises to a peak value of
3.02×10–3 WmK−1 at a temperature of 363K. Previously, very high values of thermal conductivity were
reported for SLG i.e., (3000− 5000)WmK−1 [48, 49]. The thermal conductivity of bulk-graphene goes on
decreasingwith the increase in the number of graphene layers and the thickness of the sample. This decrease is
due to cross-plane coupling of the low-energy phonons and corresponding changes in the phononUmklapp
scattering in bulk graphene [50, 51]. The effect of cross-plane coupling of phonons in bulk-graphene is evident
from the thermal conductivity of the graphene pellet as it shows very small values. The greater density of pores in
the pellet would cause further lowering of the thermal conductivity of graphene pellet. A decrease in the thermal
conductivity is one of the important requirements for goodTEmaterials. Graphene pellet has very low thermal
conductivity and thus can be considered for TE applications.

Figure 5.Voltage-Temperature gradient relationship of the graphene pellet. OC represents the open circuit voltagewhile LV
represents the voltage across a load resistor.
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The dimensionless FOMof a TEmaterial is formulated as ( )/a s k=ZT T2 whereα,σ,κ, andT are the
Seebeck coefficient, electrical conductivity, thermal conductivity, and average temperature of the graphene
pellet. Themeasured electrical and thermal conductivities of the graphene pellet were used to determine the
FOM,which is shown infigure 8. As expected, a linear relationship exists between the FOMof the graphene
pellet and the temperature. The FOMof the TE device is 130.3×10–6 at 303Kwhich further increases by 12
timeswhen the temperature is increased by 60K. The FOMachieve itsmaximumvalue of 0.0016 at 363K. This
value is 10 times higher than the previously reported FOM for graphene [52, 53]. The high value of FOMcan be
attributed to the large density of pores and entrapped air within the pressed pellet which decreases the thermal
conductivity by a great factor and to a large value of the TEP as compares to previously reported values. But this
value is not comparable with the best TEmaterials. In principle, high value of thermopower and very low

Figure 6.Temperature-electrical conductivity relationship of the graphene pellet.

Figure 7.Temperature-thermal conductivity relationship of graphene pellet.

6

Mater. Res. Express 8 (2021) 056302 MUKhan et al



thermal conductivity could have resulted in high value of ZT for graphene pellet but this is not the case here as
the electrical conductivity is very lowwhichmakes the power factor (α2×σ) very small. In order to increase the
FOMof the bulk-graphene, a further study is needed to increase the electrical conductivity while still keeping the
thermal conductivity to low values.

4. Conclusion

Thermoelectric properties of bulk-graphene based TEdevice fabricated usingmanual hydraulic pressing
machine, weremeasured. The TEP of the graphenewas found to be linearly varying between (23–56)μVK−1

when the temperature of TE device was increased from (303–363)K. The positive TEP of the graphene pellet
shows that themajority charge carriers are holes. The TEP of the pellet is found to be four times larger than the
previously reported values for single layer graphene (SLG) and few layer graphene (FLG). Graphene pellet shows
metals like thermopower as its thermopower linearly increasedwith the temperature. Furthermore, it should be
noted that the large value of the FOMof the pellet is due to its porous structure, which results in lowering the
thermal conductivity ultimately enhancing the FOMby 10 times as compared to the previously reported values.

5. Future perspective

Thiswork has several potential areas worth exploring for improvement. An important one among them is the
porosity of the pellet that can control the thermal conductivity and hence improve the FOMof the graphene
pellet. Themain factors that can control the thermal conductivity of the graphene pellet include the pressure
applied, and the time forwhich the pressure has been applied during the fabrication of the pellet. In addition to
this, the physical dimensions of the pellet will also affect the thermal and electrical conductivity.

Due to smaller value of FOM, the concept of using TEGs based on bulk graphene (fabricated in the formof
pellet) can be utilized in low andmediumpower devices. Potential application includes sensors requiring less
power and light weight TEGs.

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

Figure 8.Dimensionless FOMof graphene pellet as a function of temperature.
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