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ABSTRACT 

In this paper, the thermal and hydrodynamic performances of an aqueous ammonia base-nanofluid (Al2O3-

NH3(aqu)) cooled in a rectangular microchannel heat sink was numerically investigated. The range of Reynolds 

number used in the investigation were between 140-1400. In order to assess the performance of the system during 

the employment of the proposed nanofluid, H2O and Al2O3-H2O were also tested and their performances were 

compared to Al2O3-NH3(aqu) performance in terms of thermal resistance and pressure drop. Results from the 

simulation showed that the proposed nanofluid outperformed pure water and slightly higher than Al2O3-H2O in 

terms of thermal resistance (for Re = 1400, 0.0474, 0.0449 and 0.04647 oK/W for H2O, Al2O3-H2O and Al2O3-

NH3(aqu), respectively). However, it exceeds the performance of both pure water and Al2O3-H2O in terms of 

pressure drop (for Re = 1400, 785288, 911217, 753591 Pa for H2O, Al2O3-H2O and Al2O3-NH3(aqu), 

respectively). The key findings from the current study may be used to attract more research about the proposed 

nanofluid to be used in the cooling process of microchannel heat sinks. 

KEYWORDS 

Al2O3-NH3(aqu), Numerical simulation, thermal resistance, ammonia. 

INTRODUCTION 

In the modern era, the requirement of having electronic devices able to perform multi-functions simultaneously is 

inevitable. This led to the invention of a very powerful electronic chips which allows the electronic devices to 

perform very efficiently without any noticeable delay [1]. On the other hand, these electronic chips produce huge 

amount of excessive heat compared to their sizes (up to 790 W/cm2 [2]) which should be efficiently dissipated. 

Since the pioneer work of Tuckerman and Pease [2] which employed the concept of micro-electronic mechanical 

system (MEMS) to investigate the capabilities of microchannel heat sink to dissipate heat generated by these 

electronic chips, many researchers have attempted to increase the thermal performance of microchannel heat sinks 

[3-8]. Nowadays, researchers have looked into developing the heat transfer performance of microchannel heat 

sinks by utilizing liquids with suspended nanoparticles called nanofluids [9]. These nanofluids provide better 

thermal behavior compared to classical used coolants [10]. With the recent progress in nanotechnology, 

homogeneous (stable) nanofluids which overcome the issue of sedimentation and therefore passage clogging are 

available [11]. Lee and Mudawar [12] experimentally investigated the use of Al2O3-H2O with 2% volume fraction 

in rectangular microchannel heat sink. Enhancement in the overall heat transfer performance was noted specially 

in the laminar entrance region.  

Koo and Kleinstreuer [13] numerically simulated the heat transfer process of CuO-H2O and CuO-ethylene in 

rectangular microchannel. They concluded that with a 4% volume fraction nanofluid, better heat transfer was 

performed. Mohammed et al. [14] employed numerical method (FVM) to explore the effect of different 

nanoparticles type on the overall thermal and hydrodynamic performances of triangle microchannel heat sink. 

Diamond-H2O, Ag-H2O, Diamond-Oil and Diamond-glycerin nanofluids were investigated. Diamond-H2O and 

Ag-H2O showed better performance in terms of thermal resistance and pressure drop compared to the other 
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nanofluids used. Halelfadl et al. [15] studied the overall performance of aqueous carbon nanotubes base nanofluid 

in rectangular microchannel. Optimization results showed that using CNT base nanofluid significantly lowered 

the overall thermal resistance compared to pure water. Mohammad Kalteh [16] studied the effects of nanoparticle 

types, base fluid, volume fraction on the overall performance of microchannel heat sink. Nine different 

nanoparticles (Al2O3, CuO, Cu, Fe, Au, Ag, TiO2, SiO2 and Diamond), Three different base fluids (water, ethylene 

glycol and engine oil) were studied. It was observed that the Diamond-H2O performed better thermal performance 

compared to the aforementioned nanofluids. Shahsavar et al. [17] studied the effect of connecting holes on the 

overall performance of microchannel heat sinks using silver-water nanofluids.  

Entropy generation behvaiors were examined under laminar flow conditions. Results from the study showed that 

the connecting holes have increased the heat transfer when Reynolds number was between 500 to 2000. Vinoth 

and Sachuthananthan [18] investigated experimentally the heat transfer and fluid flow performances of a 

nanofluid-cooled microchannel heat sink under different channel geometries namely, pentagonal and triangular 

cross-sections. Water was the base fluid and different nanoparticles were used such as (CuO, Al2O3 and 

Al2O3/CuO as a hybrid nanoparticles). Results from this study showed that pentagonal cross-section outperformed 

the triangular in terms of the thermal resistance when the hybrid nanofluid was used. According to the above 

literature, the effect of using different nanoparticles on the overall thermal performance of microchannel heat 

sinks were extensively studied. However, the effect of different base fluids has not received the same amount of 

attention from the researchers  as it can be seen that there are only few base fluids were mostly used (H2O, ethylene 

glycol and oil). Therefore, this paper will aim to propose a new base fluid namely (Aqueous ammonia) to be used 

in the preparation of the nanofluids. The mixture rate of the ammonia-water solution was 5:95. This mixture rate 

was taken into consideration in this study because it provides better thermal performance than pure water [19].  

Furthermore, a comparative study will be carried out to explore the thermal and hydrodynamic performances of 

the microchannel heat sink cooled by the nanofluids with ammonia-water solution as a base fluid.  

Mathematical Modelling 

The physical model of the current study is shown in Fig. 1. To obtain the solution and to minimize the time 

required to solve the problem, one channel will be considered based on the fact that the entire system is symmetric 

as shown in Fig. 2.  

 

Figure 1. Schematic diagram of the microchannel heat sink. 

 

Figure 2. One channel calculation domain. 
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In order to facilitate the solution, the following assumptions were made: 

1. The thermophysical properties of the coolant are constant. 

2. Steady state, single phase, laminar and incompressible fluid flow are considered. 

3. Heat loss to the surrounding is neglected. 

Heat flux of (900000 W/m2) is exerted on the top surface of the microchannel heat sink and it is uniformly 

distributed. The governing equations for this case are as follows: 

The continuity equation: 

𝜕𝑢

𝜕𝑥
+
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+
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The energy equation: 

𝜌𝐶𝑝 (𝑢
𝑑𝑇

𝑑𝑥
+ 𝑣

𝑑𝑇

𝑑𝑦
+ 𝑤

𝑑𝑇

𝑑𝑧
) = 𝑘 (

𝑑2𝑇

𝑑𝑥2 +
𝑑2𝑇
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𝑑2𝑇

𝑑𝑧2)                                                                                                    (5) 

The following hydrodynamic boundary conditions are applied: 

i.  At the surfaces of the channel wall, 𝑢 = 𝑣 = 𝑤 = 0 . 

ii.  At the channel inlet, 𝑢 = 𝑐𝑜𝑛𝑠𝑡. , 𝑇 = 𝑇𝑖𝑛  and 𝑧 = 0, 𝑃 = 𝑃𝑚 . 

iii.  At the channel outlet, 𝑧 = 𝐿, 𝑃 = 𝑃𝑜𝑢 . 

iv. For the thermal boundary conditions, all walls are assumed to be isolated except the top wall of the heat sink 

(channel top wall) were constant heat flux is applied: 

𝑞" = 𝑘𝑠
𝜕𝑇𝑠

𝜕𝑧
                                                                                                                                                                      (6) 

In order to determine the overall performance of the system, the total thermal resistance can be calculated as: 

𝑅𝑡ℎ =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑞"𝐴𝑠
                                                                                                                                                          (7) 

The pumping power can have calculated as: 

𝑃𝑝 = 𝐺. ∆𝑃 

The inlet temperature of the coolant is assumed to be constant and equal to 293 oK. The inlet velocity of the 

coolant can be determined from: 

𝑢 =  
𝑅𝑒×𝜇𝑓

𝜌𝑑ℎ
                                                                                                                                                                   (9) 

Dimensions and thermophysical properties 

In Table 1, the dimensions used to draw the microchannel heat sink were provided. Table 2 provides the properties 

of the structural material of the microchannel heat sink along with the properties of the coolants used in the current 

study. The properties of the nanofluids were calculated based on volume fraction of 2%. Because of the low 

volume fraction considered, the nanofluid is homogeneous.  
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Table 1. Dimensions of the rectangular microchannel. 

𝐻 (µm) 𝑊 (µm) ℎ𝑤1 (µm) ℎ𝑤2 (µm) ℎ𝑐ℎ (µm) 𝑤𝑐ℎ (µm) 𝑤𝑤1,2 (µm) 𝑑ℎ (µm) 

900 100 450 270 180 57 21.5 86 

Table 2. Properties of the structural material and coolants. 

Material 𝜌 (kg/m3) 𝐾 (W/m.K) 𝐶𝑝 (J/kg.K) 𝜇  (kg/m.s) 

Silicon 2330 148 712 ---- 

H2O 997.7 0.6 4178.9 0.000949 

Al2O3-H2O 1057.636 0.64882 3925.48 0.00105315 

Al2O3-NH3(aq) 1038.82 0.627 4187.9 0.0009556 

RESULTS AND DISCUSSIONS 

In order to validate the model, results from the current simulation was validate with the results given by Shah and 

London [20] for the average Nusselt number along the microchannel length as shown in Fig.3.  

 

Figure 3. Validation of current model with Shah and London [18]. 

The results show adequate agreement between the results obtained from the current simulation and Shah and 

London work. Therefore, the model can be used further to study the overall thermal performance of the considered 

system. In addition, a grid independence test was carried out and the results are listed in table 3. It can be inferred 

from that, mesh size has a marginal effect on the results and increasing the mesh size will only increase the 

calculation time. Therefore, second case was chosen to carry out the simulation. 

Table 3. Grid independence test results. 

No. Elements number T(at the L = 0.01) oK 

1 69600 301.22 

2 129688 301.395 

3 212744 301.412 

 

Figure (4), illustrates the temperature variation at the channel top wall where the constant heat flux is applied. It 

can be seen that the proposed nanofluid behaves better than pure water and slightly higher than Al2O3-H2O in 

terms of the temperature distribution along the channel length. 
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Figure 4. Temperature variation for all fluids along the channel length. 

In fig. (5), the total thermal resistance for different Reynolds number is given. It can be seen that the total thermal 

resistance of Al2O3-NH3(aqu) performs better than pure water. This can be attributed to the fact that the proposed 

nanofluid possesses better thermophysical properties compared to pure water. More specifically, better thermal 

conductivity and specific heat capacity. These aforementioned properties have an impact of the conductive and 

capacitive thermal resistances which ultimately reduces the total thermal resistance. 

 

Figure 5. Total thermal resistance vs. Reynolds number for different coolants. 

The total pressure drop for different Reynolds number is given in fig. (6). It can be seen that with the increase in 

Reynolds number, the total pressure drop is increases. This can be related to the increase in the inlet velocity of 

the coolant in the channel. Figure (6) also provide another interesting result which is clearly shows that the Al2O3-

NH3(aqu) outperformed the pure water and Al2O3-H2O in terms of the pressure drop (has lower pressure drop 

which consequently lowers the pumping power demand).  

 

Figure 6. Pressure drop vs. Reynolds number for all coolants 
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In this part of the results, the performance of the coolant in terms of Nusselt number and friction factor will be 

presented. Figure (7) depicts the surface Nusselt number along the channel length. It can be seen that the Nusselt 

number is increases with the increase in Reynolds number. This can be attributed to the increase in the velocity 

as a result of the increase in Reynolds number which ultimately leads to enhance the convection heat transfer in 

the channel.  

 

Figure 7. Surface Nusselt number vs. Channel length for different Reynolds numbers. 

In fig. (8), the variation in the friction factor along the channel length is shown. It can clearly be seen that the 

friction factor is decreasing with the increase in the Reynolds number. Also, the difference between friction factor 

values associated to the Re = 700 and 1400 is slightly lower for Re = 1400. The trend seen coherent with the trend 

seen before for the friction factor behavior for different Reynolds number.   

 

Figure 8. Friction factor vs. channel length for different Reynolds number. 

Figure (9) shows the temperature contours for Re of (140, 700 and 1400). It can be seen that the maximum 

temperature occurs at the end of the channel top because the heat flux was applied at the top surface of the heat 

sink and hence the channel top. With the increase in Reynolds number (increase in velocity), more heat was 

dissipated and the maximum temperature area approaches it minimum. 

 

Figure 9. Temperature contours for (a) Re = 140, (b) Re = 700 and (c) Re = 1400. 
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Figure 10. Velocity streamlines for (a) Re = 140, (b) Re = 700 and (c) Re = 1400. 

The velocity streamlines for different Reynolds number are shown in fig. (10). It can be seen that the minimum 

velocity occurs at the channel walls. This is due to the non-slip condition applied at these walls. On the other 

hands, the maximum velocity can be noted at the center of the channel. This is because the boundary layer effects 

get to be weaker as we go towards the center of the channel therefore, the free stream velocity (maximum) value 

can be seen at the center of the channel. 

CONCLUSIONS 

The overall performance of an ammonia-water mixture base nanofluid was numerically investigated. The effects 

of the temperature distribution, Nusselt number and friction factor along the channel length were studied. In terms 

of thermal resistance, it was found that Al2O3-NH3 has lowered the thermal resistance compared to pure water by 

2.1 %. On the other hand, it was found that the pressure drop was lowered by 4 % and 17 % compared to H2O and 

Al2O3-H2O, respectively. In addition, the surface Nusselt number increases as the Reynolds number is increasing. 

Friction factor was decreasing along the channel length with the increase of Reynolds number. Therefore, and 

based on these facts, the proposed nanofluid can be an attractive subject for more research to explore its 

capabilities in the field of microchannel heat sink.     
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