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Abstract The particularities of geosystems and geoscience data must be understood
before any development or implementation of statistical learning algorithms. Without
such knowledge, the predictions and inferences may not be accurate and physically
consistent. Accuracy, transparency and interpretability, credibility, and physical real-
ism are minimum criteria for statistical learning algorithms when applied to the
geosciences. This study briefly reviews several characteristics of geoscience data and
challenges for novel statistical learning algorithms. A novel spatial spectral cluster-
ing approach is introduced to illustrate how statistical learners can be adapted for
modelling geoscience data. The spatial awareness and physical realism of the spectral
clustering are improved by utilising a dissimilarity matrix based on nonparametric
higher-order spatial statistics. The proposed model-free technique can identify mean-
ingful spatial clusters (i.e. meaningful geographical subregions) from multivariate
spatial data at different scales without the need to define a model of co-dependence.
Several mixed (e.g. continuous and categorical) variables can be used as inputs to the
proposed clustering technique. The proposed technique is illustrated using synthetic
and real mining datasets. The results of the case studies confirm the usefulness of the
proposed method for modelling spatial data.
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1 Introduction

Understanding the particularities of geosystems and geoscience data is critical for
obtaining accurate and physically consistent inferences and predictions (Reichstein
et al. 2019). Due to technological advances in capturing geoscience data, the archives
of input data are large and ever growing (Sellars 2018). Geoscience data are obtained
froma variety of sources, including remote sensing (e.g. hyperspectral satellite images,
airborne geophysical surveys and high-quality aerial photography via drones), in situ
sensors in close proximity to the phenomenon under investigation (e.g. cameras on
conveyor belts, multiple sensors in the flotation cells, and soil pH sensors), direct
observations and sampling during field campaigns (e.g. soil geochemical samples and
drilling data), historical records and simulation data generated from process-based
models. Inconsistency and poor quality are therefore often unavoidable; For instance,
noise and missing values, measurement errors and analytical errors often accompany
geochemical data (Grunsky 2010).

Geoscience processes and attributes vary significantly through time and space. Such
heterogeneity is related to the spatial and temporal variation of soil types, rock types,
land uses, vegetation types, climatic conditions and tectonic activities. The hetero-
geneity and non-stationarity of geosystems and geoscience data must be accounted
for duringmodelling of geoscience variables across all points in space and time (Chilès
and Delfiner 2012). Geoscience attributes are spatially and/or temporally auto- and
cross-correlated (Goovaerts, 1997; Webster and Oliver, 2007) or show even more
complex statistical and spatial patterns (Mariethoz and Caers 2015); For instance,
a geochemical sample that shows a low proportion of magnesium oxide (MgO) is
generally surrounded by locations that have similar MgO proportions. This sample
and surrounding locations potentially share similar geological characteristics, such as
bedrock geology or surficial quaternary units.

Extracting information from high-dimensional and large datasets far exceeds any
human’s abilities. Machine learning (ML) approaches are used to extract the hidden
information from such datasets. However, ML algorithms may not be optimal when
applied to geoscience data (Karpatne et al. 2019). The particularities of geosystems
and geoscience data (e.g. big data, multi-source, multi-scale, high-dimensionality,
poor quality data, limited sample size, paucity of ground-truth information, physics-
based systems, importance of extreme cases, spatial and temporal heterogeneity, auto-
and cross-correlations and complex uncertainty model) should be accounted for in the
development of ML algorithms suitable for geoscience data. The most advanced ML
algorithms are accurate when good-quality training data are abundant, but are seldom
transparent, credible or interpretable. In particular, a lack of physical realism is prob-
lematic, as it makes ML algorithms potentially inaccurate in terms of extrapolations
and less interpretable in terms of input parameters and predictor ranking (Reichstein
et al. 2019). The majority of ML algorithms are based on the assumption of identi-
cally, independently distributed data. Such algorithms are not credible when applied
to geoscience data (Schaeben et al. 2019). Fit-for-purpose ML algorithms should be
able to capture dynamic (varying through time and space) multivariate spatial and/or
temporal patterns of different scales and types.
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Either current statistical learning algorithms can be amended to be consistent with
the nature of geoscience data or new algorithms need to be developed; For instance,
earth science data can be clustered to split the domain of study to account for the
radically different behaviours of the natural phenomenon over the domain (useful for
earth process discovery) and to simplify the subsequent modelling steps. However, to
achieve this goal, a consistent clustering algorithmshouldbe implemented.Non-spatial
clustering techniques generally cluster observations based on their relationships in the
feature space, so they do not have the means to consider auto- and cross-correlations
of the regionalised variables. As a result of the lack of spatial awareness, the spatial
coherence of the resulting clusters is not ensured (Fouedjio 2016a).

Incorporating coordinates as additional dimensions into the feature space and apply-
ing classical non-spatial clustering algorithms subsequentlymay lead to unsatisfactory
results; For instance, two distal (in geographical space) points may belong to the same
geological unit of interest or teleconnections in climate studies (Kawale et al. 2013).
Spatial contiguity can also be enforced during the clustering process by imposing a
proximity condition based on a graph organising the observations in the geographical
space (Romary et al. 2015). Secchi et al. (2013) proposed a technique to cluster spa-
tially dependent functional data using random Voronoi tessellations. In their proposed
approach, the original data are replaced by some local representatives, and these local
data are clustered subsequently. In addition, they achieved a model of uncertainty
by implementing a bagging process. Another possibility is to apply the non-spatial
clustering algorithms on a modified version of the dissimilarity matrix. Dissimilarities
between observations are modified to take into account the spatial dependence (Oliver
and Webster 1989; Bourgault et al. 1992; Fouedjio 2016a, b).

However, the aforementioned possibilities for improving the spatial awareness of a
clustering algorithm are not suitable for recognising complex spatial patterns, objects
and structures of different scales (which are not easily captured by two-point geo-
statistics) or their spatial distributions across the domain of study. Deep clustering
technique such as those based on convolutional auto-encoders (Guo et al. 2017; Min
et al. 2018) need a pre-processing step for multi-sensor imagery and vector data (e.g.
interpolation and upscaling), and usually there is no sensitivity analysis on the effects
of such pre-processing on the final results. The black-box nature of deep learning
techniques makes the inference process somewhat difficult (Kuwajima et al. 2019).
More importantly, the clustering of spatial mixed (e.g. continuous and categorical)
and constrained (e.g. compositional) data has not been discussed.

The main objectives of this paper are to highlight the nature and characteristics of
geoscience data and geosystems, the limitations of ML algorithms when it comes to
spatially dependent data, and finally illustrate how classical ML algorithms can be
amended to account for the particularities of spatial data through a case study aiming
to improve the spatial awareness of spectral clustering.

Spectral clustering is a relatively recent clustering algorithm that relies on graph-
theoretical concepts (Ng et al. 2001; von Luxburg 2007) but generally does not account
for spatial relationships between observations. A new approach is introduced to gen-
erate a dissimilarity matrix computed from the distances between multivariate data
events (e.g. geophysical, geochemical and geological spatial patterns) of different size
and scales. Subsequently, spectral clusteringwill be used to cluster the input data based
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on the novel dissimilarity matrix. Incorporating existing domain knowledge (e.g. prior
knowledge on the size and geometry of geophysical, geochemical and geological spa-
tial patterns, and reliability and data abundance for any sources of information) into
models of this type generates more physically realistic outputs.

The proposed technique will be illustrated through one synthetic and one mining
case study where the primary geometallurgical attributes are spatially clustered to
split the deposit into different domains. These domains will simplify the subsequent
metallurgical sampling and modelling steps.

Section 2 presents the proposed methodology for physically realistic and spatially
aware spectral clustering. Section 3 illustrates the implementation of the new tech-
nique using synthetic and real cases. Finally, some conclusions and final thoughts are
presented in Sect. 4.

2 Methodology

Spectral clustering algorithms cluster the eigenvectors derived from a similaritymatrix
of input data. Normally, a kernel function, e.g. a radial basis function (RBF) kernel,
is used to generate the n × n similarity matrix (where n is the number of input data).
The kernel function ignores spatial information such as heterogeneity, auto- and cross-
correlations, as well as complex spatial objects and patterns; For instance, in the case
of the RBF, the kernel function is based on the pairwise squared Euclidean distance
between observations in the feature space. Subsequently, a normalised Laplacian is
defined from the non-spatial similarity matrix. After defining the eigensystem of the
Laplacian, a classical clustering algorithm such as k-means is applied on the top m
eigenvectors to obtain m clusters. To improve the spatial awareness of the spectral
clustering, the following algorithm is proposed:

A set of n regionalised multivariate data Y �{
y (ui ) � [y1 (ui ) , y2 (ui ) , . . . , yK (ui )]; i � 1, . . . , n

}
needs to be clustered

intom subsets. The variables y1 (·) , y2 (·) , . . . , yK (·) can be a mixture of categorical
and continuous spatial variables, and some of the continuous variables may be
compositional. For ease of discussion, it is assumed that the first L , L ≥ 0, variables
form a composition. For each location ui , the data event for the kth variable is
defined as dEk (ui ) � {

yk
(
ui j

)
; j � 1, . . . , Ek

}
, which consists of the values of

the kth variable, k � L + 1, . . . , K , at all the Ek nodes (including the node ui )
in the neighbourhood. If a subset of the continuous variables is compositional,
y1 (·) , . . . , yL (·), then the data event for these variables is multivariate and defined
as dEZ (ui ) � {

[y1
(
ui j

)
, . . . yL

(
ui j

)
]; j � 1, . . . , EZ

}
. The overall data event at

ui is then given by dE (ui ) � [
dEZ (ui ) , dEL+1 (ui ) , . . . , dEK (ui )

]
. The parameters

EZand Ek, k � L + 1, . . . , K control the order of spatial statistics (the size of the
patterns) relevant for the composition and for the kth variable. Selecting Ek � EZ � 1
changes the proposed spatial algorithm to the classical non-spatial clustering. The
order of spatial statistics and the geometry of the spatial pattern can be different for
each source of information (e.g. mineralogy and geochemical compositions, rock
type, alteration code, porosity, permeability and resistivity). Figure 1 shows examples
of data event geometry useful for measuring pattern similarity at small scale, large
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Fig. 1 Examples of data event geometry useful for measuring pattern similarity at a small scale (E � 9), b
large scale (E � 9), c a combination of all scales (E � 25), d oriented (E � 11), and e three-dimensional
(E � 75)

scale, a combination of all scales, oriented, and three-dimensional, respectively. It
is the responsibility of the expert users to define the most relevant geometry for the
spatial patterns based on their prior knowledge.

To define a distance between twomultivariate data events, the nature of the variables
must be considered. If a subset Z composed of the first L variables is compositional,
then the distance is given by

dZ
composition

{
dEZ (ui ) , dEZ

(
u j

)}

� 1

EZdZ
max

EZ∑

e�1

√√√√√
1

2L

L∑

r�1

L∑

q�1

(

ln
yr (uie)

yq (uie)
− ln

yr
(
u je

)

yq
(
u je

)

)2

, (1)

where dZmax is the compositional range, i.e. the longest Aitchison distance between
compositional observations (Aitchison 1982), for the index set Z . If the kth variable,
k ≥ L + 1, is categorical, then the distance is defined as

dkcategorical
{
dEk (ui ) , dEk

(
u j

)} � 1

Ek

Ek∑

e�1

(
1 − δ

(
yk (uie) , yk

(
u je

)))
, (2)

where δ (x, y) � 1 if x � y and 0 otherwise. If the kth variable is continuous, then
the distance is defined as

dkcontinuous
{
dEk (ui ) , dEk

(
u j

)} � 1

Ekdkmax

Ek∑

e�1

√[
yk (uie) − yk

(
u je

)]2
, (3)

where the normalising factor dkmax is the range of the kth variable.
The total distance between two spatial mixed data events is the convex combination

of the individual distances

di j
{
dE (ui ) , dE

(
u j

)} � μZd
Z
composition +

K∑

k�L+1

μkd
k, (4)

where μZ +
∑K

k�L+1 μk � 1;μZ , μk ≥ 0, and

123



1040 Math Geosci (2020) 52:1035–1048

dk �
{
dkcategorical if the kth variable is categorical
dkcontinuous if the kth variable is continuous

.

By construction, di j ∈ [0, 1]. The function di j satisfies the following conditions:
di j ≥ 0, di j � 0 if and only if i � j , di j � d ji , and di j ≤ dik + dkj . The weights μZ

and μk account for the multiple-point spatial dependence between mixed variables.
It is highly recommended that the geometries of the spatial patterns and dependency
weights be defined by geoscientists based on their expert domain knowledge.

The radial basis function is used to define a symmetric similarity matrix An×n from
the spatially aware distance matrix as

Ai j � (1 − δ (i, j)) exp

(−d2i j
2σ 2

)

. (5)

The scaling parameter σ controls the deceleration of the similarityAi j with distance
di j , and several approaches have been introduced for choosing it automatically (Ng
et al. 2001; Zelnik-Manor and Perona 2004). In this study, to select a practical value
for σ , a distribution of the n closest distances is generated from the distance matrix
(minimum for each row, excluding diagonal values), and the 99th percentile is selected
as σ . The symmetric normalised Laplacian is subsequently defined as

L � D−1/2AD−1/2, (6)

where D is the diagonal matrix whose ith element is the sum of the entries in the ith
row of A. The Laplacian L is symmetric, and its eigenvectors can be chosen to be
pairwise orthogonal. In spectral clustering implementation, the eigengap heuristic is
often used to find the number of clusters m. The m largest eigenvalues represent sub-
regions of the study area that share similar multivariate spatial patterns. The eigengap
δm � |λm+1 − λm | is the absolute difference between the (m + 1)th and mth largest
eigenvalues of L . The eigenvectors x1, . . . , xm(counted according to their multiplic-
ity) corresponding to the m largest eigenvalues are used to form the n × m matrix
X � [x1 . . . xm]. Based on matrix perturbation theory, the subspace spanned by X
is stable if δm is sufficiently large. The rows of X are normalised to unit Euclidean
length. The resulting points on the m-dimensional unit sphere can then be clustered
via a distortion minimisation technique such as K-means clustering. Finally, the orig-
inal observation y (ui ) is assigned to a cluster s ∈ (1, 2, · · · ,m) if and only if the
ith point was assigned to cluster s. Theoretical considerations on spectral clustering
can be found in Ng et al. (2001) and von Luxburg (2007). There is no assumption
on the underlying model for the proposed clustering algorithm, thus a large variety
of different indices (Charrad et al. 2014) can be used to pick the number of clusters
and optimise the input parameters including the geometry of data events, EZ , Ek , μZ ,
and μk ; For instance, the silhouette metric (ranging from−1 to +1) that measures the
similarity of an object to its own cluster and dissimilarity from the other clusters can
be used to tune the input parameters. The input parameters for the proposed technique
can also be selected by experts in a knowledge-driven way. In this study, this approach
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is implemented. The input parameters enable experts to use their existing domain
knowledge. The resultant clusters are highly dependent on the experts’ knowledge
and decisions. Each geological structure determines the choice of geometry for the
corresponding spatial pattern in a multivariate data event; For instance, a geological
structure such as a weathering profile may be captured using a spatial pattern with a
greater vertical than horizontal extent. Similar decisions need to be made for alter-
ation zones and intensities, faults and folds, and geochronological order. Reliability
and data abundance for any sources of information can also be handled via different
weighting configurations. Such flexibility in terms of the physical realism of the input
parameters leads to an interpretable and reliable unsupervised model.

It should be noted that some pre-processing might be required. If the input data do
not lie on a regular grid, they should first be migrated to the closest nodes of a regular
grid of suitable resolution (some inputs such as satellite images are already regularly
spaced) or be rasterised using geostatistical simulation techniques. Similarly, missing
values and empty cells should be imputed first, and multiple-point simulations are
recommended for this purpose. Moreover, dissimilarity measures for the data located
at the margins of the study area are based on a lower order of spatial statistics (part of
the data event is located outside the known region). For the cases where full pattern
matching is needed, the margins can be dropped from calculations.

3 Experiments

3.1 Synthetic Case Study

The performance of the proposed method was tested using a synthetic case study
(Fig. 2). Figure 2a shows a geological cross-section. Three geological units, two types
of sedimentary transition and two types of fault transition (rock type #1 to #2 and rock
type #2 to #3) are indicated in this figure. Three samples from a uniform distribution
(with different centres) were combined to define the input variable (Fig. 2b). Classical
spectral clustering (Ek � 1, model M1) was implemented to assess the gain in the
implementation of a spatially and physically aware learner. The geometry in Fig. 1c
(Ek � 25) was selected to build the spatially aware distance matrix (model M2).
Figure 2c and d show the large eigenvalues of the symmetric normalised Laplacians for
modelsM1 andM2, respectively. The eigengap heuristic suggests three clusters (jump
after the third largest eigenvalue) for the M1 and 11 for the M2 model. Comparing
Fig. 2e and f reveals the superior performance (larger silhouette value) of the proposed
algorithm in terms of generating tight clusters. There is a consistency between the
eigengap heuristic and the silhouette metric in this case; For instance, both of these
methods suggest 11 clusters for the M2 model. The final clustered maps are shown
in Fig. 2g, h. The proposed method recognised the three geological units and the
four types of transitions. In addition, M2 recognised the different sides of transitions,
which is useful for some geological phenomenon such as uranium roll-front or skarn
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Fig. 2 a Cross-section of the input data, b histogram of the input data, large eigenvalues of the Laplacian
matrix for model cM1 and dM2, optimum number of clusters (based on silhouette metric) for model eM1
and f M2, and final clustered map for model g M1 and h M2
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Fig. 3 Three-dimensional representation of the input data, a–e continuous variables of interest, and g
categorical variable (rock type)

mineralisation. The proposed method is also robust in terms of removing unstructured
noise and improving the spatial coherency of the final clusters (Fig. 2g, h).

3.2 Mining Data

Murrin Murrin East (MME) is a nickel–cobalt laterite deposit located in Western
Australia. At MME, nickel laterite deposits occur as laterally extensive, undulating
blankets of mineralisation with strong vertical trends covering basement ultramafic
rocks (Murphy 2003). In total, 17,377 samples (of length 1 m) from 920 regularly
spaced RC holes (25 m×25 m) make up the database for this study (Fig. 3). Variables
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Fig. 4 Selecting the number of clusters using the a eigengap heuristic and b average silhouette

Fig. 5 Spatial distribution of the clustered data: a non-spatial clustering (Ek � EZ � 1) and b spatial
clustering (Ek � EZ � 75)

of interest consist of one categorical variable, viz. rock type: ferruginous (FZ), smectite
(SM), saprolite (SM) andultramafic (UM), andgeochemical compositions: threemajor
(Fe, Al and Mg) and two target (Ni and Co) elements, plus Rest to achieve closure in
the compositional data.

The geometry of the three-dimensional data event in Fig. 1ewas selected tomeasure
the distances. In this study, the same parameters were used for geological information
and compositional geochemistry (Ek � EZ � 75). Weights μZ � 0.7 and μ7 �
0.3 were defined to give 70% importance to compositional information and 30% to
rock types. Equation 1 was used to measure the distance between spatial patterns
of geochemical compositions, and Eq. (2) to measure the distance between spatial
patterns of lithological units. Classical spectral clustering (Ek � EZ � 1, μZ � 0.7
and μ7 � 0.3) was also implemented to assess the gain in the implementation of the
spatial spectral clustering for geometallurgical domaining.
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The eigengap heuristic suggested two (with a major jump after the second largest
eigenvalue) while the average silhouette index showed seven clusters as the best option
(Fig. 4a, b). The first two eigenvalues are related to the dominant geological units, FZ
and SA (Fig. 3f). To provide more detail, boreholes were clustered into seven spatially
homogeneous regions. Figure 5a and b show the spatial distribution of the final seven
clusters for the non-spatial and spatial spectral clustering, respectively. The non-spatial
clustering generated scattered domains (less spatial continuity), while the spatial clus-
tering recognised domains with complex structure; For instance, cluster #1 shows
complex curvilinear structure that is not easy to capture by two-point geostatistics.

Compositional characteristics such as closed geometric means, total compositional
variances and rock proportions (Pawlowsky-Glahn et al. 2015) of the generated spatial
clusters are presented in Table 1. Cluster #6 is rich in Fe, depleted in Mg and mainly
composed of ferruginous rocks. Cluster #5 shows high levels of Co and Ni minerali-
sation and mainly consists of smectite units. Fresh ultramafic rocks are mainly located
in cluster #3. This cluster shows the lowest level of global compositional dispersion,
which might be related to the fact that weathering has not reached to this depth. The
spatial distribution and compositional characteristics of the domains generated by the
spatial spectral clustering are consistent with the current geological understanding of
this deposit (Talebi et al. 2017, 2019).

4 Conclusions

Traditional statistical learning techniques do not fully account for the particularities of
geosystems and geoscience data. These techniques must thus be amended to account
for the characteristics of geoscience data, or new spatial learners must be developed.
A novel methodology is proposed herein to improve the physical realism and spatial
awareness of spectral clustering. This spatial spectral clustering approach allows the
use of existing domain knowledge to select the input parameters (e.g. geometry of
the patterns, order of spatial statistics, and weights for the convex combination of
distance matrices). Clusters generated via the proposed algorithm are homogeneous
(similar multivariate spatial patterns) up to a selected order of spatial statistics, thus
presenting a richer view of stationarity than variogram-based or non-spatial clus-
tering techniques. Many attributes of different natures (continuous, categorical and
constrained) can be used as inputs to the proposed clustering technique. The results
from the synthetic and mining datasets proved the usefulness of the technique. The
proposed method will be developed further for clustering of multisensor imagery and
vector data simultaneously.
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