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Abstract 

 
For the last decades neuroscientists have grown interest in the analysis of the rhythmic activity of the brain syn- 
chronized at temporal and spatial level. These neural oscillations, grouped by their frequency, have been pro- 
posed to govern all cognitive processes. In the field of the neurobiology of language, considerable research has 
linked speech processing and language comprehension to neural oscillations. On one hand, neural rhythmic ac- 
tivity is thought to synchronize to relevant spectral information of speech on three-time scales – which physically 
reflect phoneme, syllable and phrase processing. On the other hand, syntactic and semantic processing is sub- 
served by faster oscillatory patterns not necessarily related to the acoustic properties of speech. For each linguistic 
process, this article summarizes the neural oscillations involved. Further evidence comes from studies on language-
related pathologies. 
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1. Introduction 
 

Neuroscientists using magnetoencephalography 
(MEG) and electroencephalography (EEG) 
have greatly relied on event-related potentials 
(ERPs) and event-related magnetic fields 
(ERFs) to investigate the major components 
involved in linguistic processes – a positive or 
negative deflection of the signal in respect of a 
baseline – such as P100, N100, P200, P300, 
N400, P600 (Swaab et al. 2012). Thereby, con- 
siderable research has tested the involvement of 
distinct brain regions and the concomitant elec- 
trical/magnetic activity for various linguistic 
processes, highlighting the spatiotemporal dis- 
tribution of neural activation. This approach is 
based on the idea that each stimulus (visual, au- 
ditory and so on) a subject is exposed may elicit a 
time-locked neural response. However, this 
response cannot be seen in the raw EEG signal, 
due to the overlapping of ongoing background 
activity. To determine these systematic re- 
sponses, a certain experimental paradigm is re- 
peated a number of times: each time a stimulus 

is presented to the subject, a marker is set into 
EEG/ERF signal to obtain time-locked epochs 
to the experimental event of interest: that is, the 
components previous cited. By averaging all the 
epochs, only the systematic response should 
remain (Sauseng and Klimesch 2008). 
Recent advancement in neurolinguistic research 
have seen a shift in paradigm: a central question 
has become not only which brain region is re- 
sponsible for which function but also how 
brain regions interact with each other. In fact, it 
is necessary to explore “not only what is con- 
nected, but how and in what directions regions 
of the brain are connected” (Kopell et al. 2014, 
1319) by adding a functional perspective to un- 
derstand how the brain’s regions are involved in 
producing and processing brain signals (Mur- 
phy 2015). 
Although ERPs/ERFs have proved to be ex- 
tremely useful, this approach overshadows that 
the EEG activity of the human brain is not flat 
and that functions, especially complex ones, in- 
volve different areas. In fact, all the electrical 
activity recorded at the scalp is characterized by 
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rhythms, which are driven by fluctuations in 
excitability of large-sized populations of neu- 
rons, with specific spatiotemporal patterns that 
differ in amplitude, timing, and frequency (Co- 
hen 2017). Depending on their frequency, such 
rhythms are grouped in delta (δ: ~0.5–4 Hz), 
theta (θ: ~4–8 Hz), alpha (α: ~8–12 Hz), beta 
(β: ~12–30 Hz) and gamma (γ: ~30–120 Hz). 
Neural oscillations have found wide use in clin- 
ical applications, providing useful information 
about levels of consciousness, psychological 
states, or presence of neurological disorders. 
Recently, researchers have come to realize that 
these oscillatory rhythms also subserve a wide 
variety of cognitive processes: it has been ar- 
gued that the synchronization and de- 
synchronization of these oscillations in distinct 
clusters can shape input gain and assist infor- 
mation transfer (Akam and Kullmann 2010; 
Muller et al. 2018). In fact, strong evidence sug- 
gests that the reorganization of ongoing oscilla- 
tory patterns might explain some of the features 
of ERPs/ERFs, due to phase reset (i.e., the re- 
shaping of the signal) once a stimulus is pre- 
sented to the subject (Başar et al. 2001; Başar 
2011). Therefore, event-related oscillations, fur- 
ther than to have the time-locked EEG infor- 
mation, permits the retrieval of non-phase 
locked EEG information related to the cogni- 
tive activity induced by the stimulus 
As for language, neural oscillations have been 
linked to a number of linguistic operations. 
This article provides an overview of neural os- 
cillations subserving linguistic operations. Fol- 
lowing Meyer (2018), a dichotomy between 
lower-level functions of speech processing and 
higher-level functions of language comprehen- 
sion will be assumed: on one hand, linguistically 
meaningful units must be segmented from 
speech, based on temporal and spectral cues 
recognized by the auditory system; on the other 
hand, two streams of language comprehension 
are assumed to occur to decode the meaning of 
words (semantic stream) and the relations be- 
tween words (syntactic stream). 

 

2. The delta-(theta-gamma) neural code for speech pro- cessing 
 

2.1. Speech processing on three timescales 

By paraphrase of Meyer (2018), the 
segmentation and identification of discrete 
phonological units have been found to occur in 
a particular range of operational frequencies. 
Phonological units decreasing in granularity hi- 
erarchically build speech: the combination of 
phonemes result into syllables; the combination 
of syllables result into intonation phrases. Each 
phonological unit has an acoustics-temporal 
counterpart (Gussenhoven and Jacobs 2017). 
In the last decade, researchers have found that 
neural oscillations might subserve a set of neu- 
ral operations that allows the segmentation and 
identification of discrete phonological units. In 
fact, during speech processing, three frequency 
bands, gamma, theta and delta bands, seem to 
synchronize respectively with the pace of pho- 
nemes, syllables and intonational phrases, by 
tracking linguistically meaningful acoustic prop- 
erties of speech on three different time scales 
(Bourguignon et al. 2020; Giraud and Poeppel 
2012; Molinaro and Lizarazu 2018). The syn- 
chronization of neural oscillations to speech is 
thought to occur thanks to the so-called neural 
entrainment which relies on phase synchroniza- 
tion and amplitude synchronization (Obleser 
and Kayser 2019): on one hand, bottom-up 
modulations of neural oscillations are stimulus- 
dependent, relying on acoustic properties of 
speech; on the other hand, neural oscillations 
have been found to internally organize, building 
hierarchical structures, where lower-frequency 
bands top-down modulate higher-frequency 
bands, regardless of stimulus properties (Fonto- 
lan et al. 2014). 

 

2.2. Stimulus-bound processing 
 

Starting with bottom-up modulations, the pho- 
nemic time scale falls within the gamma band 
frequencies (30-120 Hz). As discussed by Meyer 
(2018), low and high gamma band oscillations 
may subserve acoustic and categorical 
processing, respectively: low gamma-band 
phase synchronization seems to be related to 
acoustic processing (Gross et al. 2013), while 
phonemic-categorical perception is subserved 
by amplitude synchronization of high gamma 
bands (Lehongre et al. 2011), which reflect the 
spiking activity of neurons in the auditory cor- 
tex sensitive to phonemes (Mesgarani et al. 
2014). In addition, it has been argued that low 
gamma band synchronization occurs more 
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strongly with the acoustic amplitude envelope 
compared to phonemic-categorical information 
(Di Liberto, O’Sullivan, and Lalor 2015). 
Going up in granularity, theta bands oscillations 
(4-8 Hz) capture the pace of syllables, thus sub- 
serving syllabic processing. In fact, recent 
works have suggested that theta oscillations 
phase-synchronize to the onset of syllables, al- 
lowing the segmentation of syllables (Luo and 
Poeppel 2007; Howard and Poeppel 2012; Peel- 
le, Gross, and Davis 2013; Doelling et al. 2014; 
references from Meyer 2018). Moreover, further 
evidence suggests a relation- ship between the 
amplitude modulations of speech and the phase 
of neural oscillations (Gross et al. 2013; Vander 
Ghinst et al. 2016; Molinaro, Monsalve, and 
Lizarazu 2016). 
Lastly, delta bands (0.5-4 Hz) have shown in- 
creased phase coherence to the fundamental 
frequency envelope of speech: delta oscillations 
have been proposed to aid the segmentation of 
intonational phrases (Giraud and Poeppel 
2012), due to the amplitude extrema of the 
pitch contour marking the boundaries of into- 
national phrases. Interestingly, delta bands also 
capture the pace of syntactic phrases (Ding et 
al. 2016; Molinaro and Lizarazu 2018), which 
do not have a direct physical counterpart, in the 
case prosodic cues were explicitly removed 
(Ding et al. 2017). However, the role of delta 
oscillations in speech processing is still under 
debate (see for example Boucher, Gilbert, and 
Jemel 2019). 

 

2.3. Top-down modulations 
 

While strong evidence suggests bottom-up 
modulations of neural oscillations, it has been 
argued that these oscillations hierarchically self- 
organize, regardless of acoustic properties of 
speech: particularly, the phase of lower- 
frequency bands top-down modulates the am- 
plitude of higher-frequency bands (Giraud and 
Poeppel 2012; Fontolan et al. 2014), opening a 
new window on brain dynamics of speech pro- 
cessing. In fact, theta-gamma cross frequency 
coupling in the left hemisphere have been pro- 
posed to subserve the concatenation of pho- 
nemes into syllables (Canolty et al. 2006), alt- 
hough this hypothesis contrasts with a number 
of studies that show a theta-gamma coupling in 
the right auditory cortex (Luo and Poeppel 
2007; Abrams et al. 2008; Hämäläinen et al. 

2012; Gross et al. 2013; Howard and Poeppel 
2012; Peelle, Gross, and Davis 2013; references 
from Meyer 2018). Interestingly, it has been 
shown that phase-amplitude coupling between 
theta and gamma oscillations adapts to speech 
rate (Lizarazu, Lallier, and Molinaro 2019). The 
combination of syllables into intonational 
phrases is then subserved by delta-theta cross-
frequency coupling (Giraud and Poeppel 2012; 
Ding et al. 2016). It is worth noticing that the 
neural underpinnings of prosody are still not 
clear and need future research (for a discussion 
see Myers, Lense, and Gordon 2019), given that, 
at least in some cases, prosody conveys crucial 
information on the syntactic structure which 
suggests a tight relation with top-down 
information. 

 

3. Language comprehension along two streams 
 

3.1 Syntactic processing 
 

Once all phonological units are segmented from 
speech and the auditory system is tempo- rarily 
aligned, the brain must decode the rela- tions 
between words which are recursively combined 
into syntactic phrases (Chomsky 1957). Recent 
evidence suggests that the group- ing of words 
into phrases might be subserved by delta band 
cycles through phase resetting. In fact, Ding and 
colleagues (2016) have found an increase in 
delta-power associated with internal syntactic 
phrase generation. These findings were later 
confirmed by Bonhage et al. (2017): subjects 
involved in this study showed an in- crease in 
delta band power while exposed to a list of 
words that could be combined into syn- tactic 
phrases, while a decrease in delta band power 
was found for a list of words that could not be 
grouped into phrases. As mentioned above, 
delta band oscillations also play a role in the 
segmentation of intonational phrases. Inter- 
estingly, these results may not contradict each 
other: in fact, Ghitza (2017) argued that the re- 
lation between delta bands and intonational 
phrases would reflect a stimulus-bound bot- 
tom-up segmentation, while delta oscillations 
subserving syntactic chunking would reflect 
top-down generation based on a priori syntactic 
knowledge. However, the role of delta bands in 
syntactic phrase generation is still under debate. 
While a sentence unfolds word by word, 
phrases have to be stored in verbal working 
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memory and retrieved later on to assess their 
dependencies with other phrases and generate 
syntactic hierarchies. A number of studies have 
linked the storage of phrases in verbal working 
memory with an increase in alpha band activity 
(Haarmann and Cameron 2005; Weiss et al. 
2005; Meyer, Obleser, and Friederici 2013; 
Bonhage et al. 2017; references from Meyer 
2018). Particularly, alpha band power increases 
with storage demands, local- ized in the inferior 
parietal cortex. 
Interesting findings come from violation stud- 
ies that examined time-locked neural oscilla- 
tions related to syntactic anomalies. Many of 
these studies have found a consistent pattern in 
response to syntactic violations, such as gender 
and number agreement violation (Bastiaansen, 
van Berkum, and Hagoort 2002; Davidson and 
Indefrey 2007; Schneider et al. 2016), mostly 
confirming the aforementioned findings. 
A groundbreaking result concerns the possible 
role of gamma band in structure-building oper- 
ations, what generative linguists call Merge: (Nel- 
son and colleagues (2017) found a specific 
gamma band pattern that they claim as evidence 
for Merge, the binding. Particularly, gamma 
power increases every time a new word is added 
to an unfolding sentence, while it sharply de- 
creases when words can be compressed into a 
syntactic node. In addition, a recent study has 
shown a difference in high gamma response for 
the syntactic disambiguation of homophones 
phrases (Artoni et al. 2020). However, these re- 
sults may be in contrast with aforementioned 
studies linking delta activity to syntactic pro- 
cessing. 

 

3.2. Semantic processing 
 

Along the syntactic parsing, language compre- 
hension also implies a semantic processing 
which has been linked primarily with beta and 
gamma oscillations. Evidence of beta-bands in- 
volvement in semantic processing have come 
from a number of violation studies, focused on 
semantic anomalies (Kielar et al. 2014; 2015; 
Wang et al. 2012a; Luo et al. 2010). Particularly, 
these studies have found a decrease both in al- 
pha and beta oscillations related to semantic 
anomalies. Willems, Oostenveld, and Hagoort 
(2008) have linked both alpha and beta decrease 
to audio-visual semantic anomalies. However, 
they found that alpha activity decreases where 

both a visual and linguistic context mismatch 
occurs. 
Interestingly, other research on semantic anom- 
alies has also found an increase in theta power 
(Hagoort et al. 2004; Hald, Bastiaansen, and 
Hagoort 2006; Davidson and Indefrey 2007; M. 
Bastiaansen and Hagoort 2015; Wang, Zhu, and 
Bastiaansen 2012; references from Prystauka 
and Lewis 2019). Bastiaansen, Mazaheri, and 
Jensen (2012) proposed that theta power in- 
crease due to semantic anomalies might reflect 
the integration of the anomalous word into the 
sentence. Another interesting proposal comes 
from Prystauka and Lewis (2019): given that 
theta increase has also been found in syntactic 
violation studies and has been proposed to aid 
lexical-semantic retrieval (Bastiaansen, 
Mazaheri, and Jensen 2012; Marko, Cimrová, 
and Riečanský 2019), an increase in theta power 
may reflect a general error detection mecha- 
nism. This idea is also supported by other stud- 
ies on incorrect solutions to mathematical equa- 
tions (Tzur and Berger 2007) or motor error in 
reaching a task (Arrighi et al. 2016). 
However, violation studies do not give the full 
picture: semantic processing also relies on pre- 
dictions of upcoming words. Each word is 
stored in the long-term memory with a certain 
probability of occurring in a given context, pri- 
or and after other words (Hagoort et al. 2004; 
Kutas and Federmeier 2010). Top-down predic- 
tions, independent of stimuli, have also been 
linked with beta bands power which increases 
when expectations of upcoming words are con- 
firmed and decreases when such predictions do 
not match the sequence of incoming words 
(Lewis and Bastiaansen 2015; Lewis et al. 2016). 
For example, Wang et al. (2012) performed a 
cloze test, finding a beta power decrease in sen- 
tence ending that did not matched expectations. 
These findings were further confirmed by Lew- 
is et al. (2017) that compared short stories of 
sentences, observing an increase in beta power 
in semantically coherent stories and a decrease 
in beta power for semantically incongruent sto- 
ries. An interesting proposal about the role of 
beta bands and prediction comes from Lewis et 
al. (2016), yielding that they might subserve 
predictions across different linguistic levels, 
from the auditory domain to the syntactic level 
(Kim and Chung 2008; Sabine Weiss and 
Mueller 2012; Arnal, Wyart, and Giraud 2011; 
Arnal and Giraud 2012). However, Meyer 
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(2018) argues that beta bands only subserve 
lexical-semantic predictions for two reasons: 
beta bands power increase during contextual 
prediction of upcoming words correlates with 
the amplitude of N400, indicating the lexical- 
semantic predictability of a word (Kutas and 
Federmeier 2010; Wang et al. 2012; Hale 2016; 
Lewis et al. 2016) but not its syntactic category 
(Levy 2008; Frank et al. 2015); beta-bands have 
been shown to be modulated by syntactic fac- 
tors only in syntactic violation studies (e.g.: the 
syntactic category of the upcoming words do 
not match expectations), possibly yielding that 
semantic processing does not occur when syn- 
tactic parsing is not accomplished (Steinhauer 
and Drury 2012). 
Alongside top-down predictions based on the 
occurrence frequency of each word in context 
stored in long-term memory, lexical-semantic 
representations of incoming words must be 
checked. When lexical-semantic predictions are 
fulfilled, gamma power has been found to in- 
crease (Wang, Zhu, and Bastiaansen 2012; Mo- 
linaro, Barraza, and Carreiras 2013; Monsalve, 
Pérez, and Molinaro 2014). Conversely, gamma 
power decreases when the incoming word does 
not match expectations (Hald, Bastiaansen, and 
Hagoort 2006; Penolazzi, Angrilli, and Job 
2009; Rommers, Dijkstra, and Bastiaansen 
2012; references from Meyer 2018). 
The interplay between beta and gamma bands 
has been included in the predictive coding 
framework (e.g. Friston 2005). In fact, data col- 
lected on beta and gamma bands are compati- 
ble with the predictive coding framework (Lew- 
is and Bastiaansen 2015; for a discussion see 
Meyer 2018; Prystauka and Lewis 2019). 

 

4. Language-related disorders and neural oscillations 
 

Further evidence of the implications of neural 
oscillations into linguistic operations comes 
from research on language-related pathologies 
and disorders. In fact, a number of studies has 
confirmed the aforementioned findings on lin- 
guistic operations and neural oscillations. 
Current models of aphasia classifications still 
rely on the Wernicke-Lichtheim model which 
links damages in a brain area with a specific 
function. This model has the advantage of be- 
ing simple: for example, a damage in the motor 
area of language, Broca’s area, will be linked to 

a non-fluent aphasic syndrome, while damage in 
the sensory area of language, Wernicke’s ar- ea, 
will be linked to fluent aphasia syndrome 
(Lichteim 1885; Wernicke 1974). 
A number of studies have observed an altera- 
tion of neural oscillations both at resting state 
and while performing a linguistic task. Spi- 
ronelli and Angrilli (2009), for example, demon- 
strated that an increase in delta amplitude in the 
perilesional area is a marker of brain damage in 
chronic non-fluent aphasic patients. In fact, del- 
ta band might be an index of neural inhibition. 
Other research has shown that focal lesions in 
the left hemispheric language regions may lead 
to a change in brain physiology. For example, 
Meinzer et al. (2004) found an increase in spon- 
taneous delta activity in the perilesional area in a 
group of stroke patients suffering from differ- 
ent aphasia types, while also reporting a de- 
crease in spontaneous perilesional delta activity 
after an intense speech and language therapy. 
Dubovik et al. (2012) also found a shift from 
fast to slow spontaneous neural oscillations, 
particularly in delta and theta frequency range. 
Interestingly, Nicolo et al. (2015) reported that 
more coherent beta oscillations in lesioned 
Broca’s area in early post stroke recovery pa- 
tients predicts future language improvement 
during recovery. 
Functional restoration of the brain in post- 
stroke patients seems to be related to an in- 
crease in spontaneous alpha-band synchroniza- 
tion (Westlake et al. 2012; Dubovik et al. 2012). 
Moreover, Kielar et al. (2016) investigated the 
functional reorganization of language networks: 
particularly, in a group of subjects suffering 
from different types of aphasia, they found a 
decrease in alpha and beta power in the left 
hemisphere, where the lesion occurred, in re- 
sponse to semantic anomalies during sentence 
comprehension. 
A previous study also reported a possible role 
of beta activity as an index of the reorganiza- 
tion of language networks in aphasic patients: 
Spironelli, Manfredi, and Angrilli (2013) reported 
that non-fluent aphasic subjects, after lin- 
guistic recovery, showed a reduced beta activa- 
tion in the core damaged area during a phono- 
logical and semantic task, while also showing an 
increased delta activity compared to healthy 
control subjects. They also found an increased 
high beta-activity in the left anterior sites during 
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the phonological and orthographic task. The 
authors of the study have interpreted these 
findings as an index of the reorganization of 
language in recovered non-fluent aphasic sub- 
jects at the left prefrontal sites. 
In addition, many studies on dyslexic subjects 
have confirmed the role of neural oscillation in- 
to linguistic operations. For example, Lehongre 
et al. (2011) linked a decreased entrainment of 
the lower gamma band to phonological deficits, 
while Leong and Goswami (2014) suggested 
that rhythmic entrainment at the syllabic time- 
scale is disrupted in dyslexic subjects. These re- 
sults were recently confirmed by Lizarazu et al. 
(2021), proving an impairment of cortical en- 
trainment in the delta and theta range to speech 
in dyslexic subjects. 

 

7. Conclusions 
 

Although this article is far from offering an ex- 
haustive overview, it is clear that neural oscilla- 
tions provide a new window on brain dynamics 
related to linguistic operations. The number of 
studies following the oscillation-based frame- 
work has been growing in the last decade, yield- 
ing an increasing interest in brain’s oscillatory 
nature. On one hand, speech processing seems 
to be subserved by delta, theta and gamma 
bands, respectively at phrase, syllable and pho- 
neme timescales. On the other hand, language 
comprehension is subserved by a variety of fre- 
quency bands involved in syntactic and seman- 
tic processing, including more general cognitive 
functions such as the implication of short- and 
long-term memory. 
Bottom-up and top-down modulations of neu- 
ral oscillations may provide a neural code for 
linguistic operations: the cyclicity of oscillatory 
rhythms’ synchronization and desynchroniza- 
tion may represent a neural coding (and decod- 
ing) that matches linguistic computations, 
shortening the gap between broader neurosci- 
entific investigations and more fine-grained lin- 
guistic investigations (Granularity Mismatch 
Problem, (Embick and Poeppel 2015). Accord- 
ingly, formal proposals of hierarchical organiza- 
tion of neural oscillations have emerged (Mur- 
phy 2019; Grimaldi 2019). 
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