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Coarse-grained and atomistic 
modelling of phosphorylated 
intrinsically disordered proteins

In this thesis, computational and experimental methods are applied 
to study the conformational ensembles of intrinsically disordered 
proteins. The main goals have been to investigate the relation 
between sequence and structure, focusing on the impact of 
phosphorylation, and to investigate different models applicable 
for studying intrinsically disordered proteins.
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Populärvetenskaplig sammanfattning på svenska

Proteiner är en livsnödvändig komponent i våra kroppar. Dels är de viktiga byggstenar ef-
tersom de ingår i kroppens alla vävnader, muskler och benstomme, men de har också andra
kritiska uppgifter, såsom att transportera näringsämnen och syre samt försvara oss mot virus
och bakterier. Länge trodde man att proteiner behövde en fix struktur för att vara funk-
tionella, och att dess struktur avgjorde funktionen. Detta ifrågasattes dock, när det kon-
staterades att en betydande del av alla proteiner faktiskt saknar väldefinierad struktur, men
ändå är funktionella. Dessa kallas för oordnade proteiner och utmärker sig genom att vara
flexibla och byta konformation ofta. Oordnade proteiner är involverade i många biologiska
processer där deras brist på väldefinierad struktur faktiskt kan vara en fördel. Till exempel
kan de lättare interagera med flera olika partners eftersom de är anpassningsbara, och där-
med fungera bra för att reglera processer. När saker går snett med de oordnade proteinerna
kan det dock uppstå sjukdomar. Alzheimers, Parkinsons, och vissa typer av cancer är alla ex-
empel på sjukdomar som involverar oordnade proteiner. I vår saliv finns det också flertalet
oordnade proteiner som hjälper till med att skydda tandemaljen och slemhinnor, samt att
bekämpa virus, bakterier och svamp. Proteinet jag har jobbat mest med heter statherin och
har som främsta funktion att binda kalciumsalter i saliven, så det finns lättillgängligt när
emaljen måste byggas upp, men inte i så stora mängder att det bildas utfällningar. Genom
att förstå hur oordnade proteiner fungerar kan vi förstå sjukdomsförlopp, hitta botemedel
och hämta inspiration för utveckling av läkemedel.

Proteiner är uppbyggda som långa kedjor av aminosyror med olika karaktär. Det finns ca
20 olika aminosyror som naturligt ingår i proteiner, och beroende på vilka som ingår och
i vilken ordning dessa är uppradade i proteinet, det vill säga vilken sekvens proteinet har,
så får proteinet olika struktur och beteende. En av de största frågorna när det kommer
till oordnade proteiner är hur den här relationen mellan sekvens, struktur och funktion
faktiskt ser ut. För att få svar på det, måste vi studera många olika oordnade proteiner.
Det är dock ganska svårt att bestämma struktur av oordnade proteiner, just eftersom de
växlar mellan olika konformationer hela tiden och således vara utsträckta i ena stunden
och mer kompakta i nästa stund. I de flesta experimentella tekniker som går att tillämpa
på oordnade proteiner mäter man på jättemånga proteinmolekyler samtidigt och får ut ett
medelvärde över tid. Man kan likna det vid att försöka få en bild av hur människor ser
ut genom att ta ett långtidsexponerat foto på ett dansgolv, där de dansande människorna
är proteinerna. Fotot kommer mest visa suddiga skuggor. Ett sätt att få en bättre bild av
vad som försiggår är genom att använda sig av datorsimuleringar, vilket kan visa exakt
hur varje protein ser ut i varje ögonblick, samtidigt som man kan beräkna medelvärden
motsvarande den experimentella datan. För att kunna göra simuleringar behövs dock en
modell. Modeller kan byggas upp på olika sätt, vilket illustreras i Figur 1. Ju mer detaljer
som är med i modellen, desto mer detaljerad information kan fås ut, men det blir både
svårare att tolka och mer krävande att simulera, i termer av datorresurser och tidsåtgång.
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Figur 1: Olika modeller av en katt. Den till vänster är mest detaljerad. Modellerna till höger är grovkorniga och den längst till
höger är mest grovkornig.

Beroende på vad vi har för forskningsfråga behöver vi därför ha olika modeller. För att
fortsätta på exemplet med katten i Figur 1, så kan det vara viktigt att ha med svansen i en
studie av hur katter kommunicerar. Om vi istället vill ta reda på hur många katter som får
plats i ett rum räcker det dock med att se varje katt som en boll, vars storlek bestäms av hur
stor katten är och hur mycket utrymme den vill ha. Men bara för att en modell innehåller
mer detaljer betyder det inte att den ger bättre resultat. För att vara säkra på att modellerna
stämmer och ger rätt resultat måste vi således ändå ha experimentella data att jämföra med.

I den här avhandlingen har jag främst haft två mål. Det första har varit att undersöka och
vidareutveckla modeller för att beskriva oordnade proteiner, så att vi får fler verktyg för att
studera denna typ av proteiner. Det andra har varit att undersöka sambandet mellan sekvens
och struktur, framför allt hur fosforylering av proteiner påverkar strukturen. Fosforylering
är en typ av reversibel ändring som kan göras på vissa aminosyror i ett protein, och som
medför att aminosyran bland annat blir negativt laddad och får annan storlek. För att gå
tillbaka till exemplet med katten, så kan vi likna det vid att sätta på katten en strumpa. Det
kan påverka hur katten rör sig, och ha olika effekt beroende på vilken tass vi sätter den på,
samt hur många tassar som får strumpor.

I mitt arbete har jag använt mig av två olika typer av modeller. Den första typen är en
grovkornig modell, som beskriver ett protein som ett pärlhalsband. Varje pärla motsvarar
en aminosyra, och har fått en laddning motsvarande den av aminosyran. Den andra typen
är atomistisk, vilket innebär att alla atomer i alla aminosyror är representerade, så den är
mycket mer detaljerad än den grovkorniga modellen, vilket visas i Figur 2. Den grovkorniga
modellen visade sig kunna beskriva flertalet oordnade proteiner och ge en ökad förståelse
för vad som kontrollerar proteinets struktur, det vill säga vilka konformationer det helst
antar. En lite modifierad version av modellen kunde dessutom beskriva självassociering av
statherin, det vill säga processen där flera proteinmolekyler går samman och bildar större
kluster. Tillsammans med experimentella data kunde modellen användas för att avkoda
vilka interaktioner som är viktiga i statherins självassociering. Den grovkorniga modellen
visade sig dock överdriva hur kompakta proteiner som fosforylerats på många ställen är.

För att bättre förstå hur fosforylering påverkar proteiner behövdes en mer detaljerad modell

iv



– +

(a) (b)

Figur 2: En bit av ett protein i en a) atomistisk modell och b) grovkornig modell. De färgade ovalerna visar vilka atomer som
bakas samman till en pärla i den grovkorniga modellen.

än den grovkorniga, så därför använde jag två olika atomistiska modeller för att studera fos-
forylerade oordnade proteiner. Dessa modeller gav väldigt olika resultat, vilket visar vikten
av att alltid jämföra med experiment. Den ena modellen visade sig kraftigt överskatta hur
starka interaktionerna mellan fosforylerade och positivt laddade aminosyror är, vilket gjor-
de att proteinerna blev mer kompakta än vad experimentella metoder visade. Den andra
modellen kunde kvalitativt fånga effekter av fosforylering som påvisats experimentellt och
ge en detaljerad bild av vilka aminosyror som spelade roll och på vilket sätt. Detta visade
att atomistiska simuleringar kan användas för att ge ökad förståelse av sambandet mellan
sekvens och struktur, men att det är väldigt viktigt att fortsätta förbättra modeller.
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Chapter 1

Introduction

For a long time, the structure–function paradigm dominated the view on proteins. Ac-
cording to this paradigm, protein function is critically dependent on a well-defined and
folded three-dimensional structure, determined by sequence [1]. However, since the late
1990s, the field of intrinsically disordered proteins (IDPs) has rapidly evolved [2] and chal-
lenged this view. Despite being unfolded at physiological conditions, IDPs have proved to
have important functions in our bodies [2–5] and are today recognised as an integral part
of protein science. One of the main questions in this field is how sequence, structure, and
function are related. Post-translational modification (PTM), such as phosphorylation, is
a great example of how function can be regulated by modifications at the sequence level
inducing structural changes.

Since IDPs lack well-defined structure they have proven more challenging to study ex-
perimentally than conventional proteins. Thus, computer simulations have emerged as a
useful complement, to aid in the interpretation of experimental data and to access detailed
information on the molecular level. Simulations are also useful for making predictions and
investigations at conditions unattainable by experimental methods. However, to obtain
successful results from computer simulations, accurate models are required. To this day,
there is no model available that can describe everything, hence there is a wide range of
specialised models. Simulations are also limited by the computational time and resources
it takes to simulate a system, so different types of models are required for different research
problems.

To evaluate models an important part is comparison with experimental data, hence, exper-
iments and computer simulations are closely linked, and also in this thesis. The aims of
this thesis have been: i) to contribute to the collection of possible tools to use for study-
ing IDPs, by evaluation and further development of suitable models, and ii) to investigate
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the link between sequence and structure by studying conformational properties of IDPs in
solution, with focus on phosphorylated IDPs.
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Chapter 2

Background

This chapter describes IDPs and their biological relevance. The main part of my research
has been focused around the saliva protein statherin, so it and its natural environment are
given more focus.

2.1 Proteins

Proteins are biological macromolecules essential for life, as they provide a wide range of
functions within organisms. Proteins are essentially polypeptides, since they are constructed
as chains of amino acid residues connected by peptide bonds. Traditionally, the term pro-
tein is applied to long polypeptides consisting of 50 residues or more [6], while those shorter
than that are referred to as polypeptides, or just peptides. Although there are many differ-
ent amino acids, only roughly 20 are incorporated biosynthetically into proteins. These are
referred to as proteinogenic amino acids. They all share the same basic structure, shown in
Figure 2.1, consisting of an amino group (−NH2), a carboxyl group (−COOH) and a side

+ N
N

N

O

O

O

O

R R

R

1

2

3

-H

H3H
+ N3H

O

O-

R

(a) (b)

Figure 2.1: General structure of a) an amino acid and b) a tripeptide at pH 7, where R represents side groups. The backbone is
highlighted in blue and the peptide bonds are shown within dashed ovals.
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Figure 2.2: Illustration of the different levels of protein structure.

group (−R). At pH 7, which roughly corresponds to physiological pH, the amino group is
protonised (−NH3

+) and the carboxyl group deprotonized (−COO−), making the amino
acid zwitterionic. Depending on the characteristics of the side group, the amino acids can
be classified as polar, hydrophobic, positively charged, or negatively charged.

The structure of a protein can be described at four different levels, as illustrated in Figure 2.2.
The primary structure is the sequence of amino acid residues. Local parts of the chain can
arrange into regular structures, referred to as secondary structure. The most common types of
secondary structure are α-helix and β-sheet, which both form as a result of hydrogen bonds
between protein backbone atoms [6]. 310- and π-helix are similar toα-helix, but differ in the
hydrogen bond pattern, causing the pitch of the helix to be different. Turn is another rather
common secondary structural element, which corresponds to a short segment in which
the direction of the polypeptide chain is reversed. Another interesting type of secondary
structure is the left-handed polyproline type II helix (PPII), which is a rather extended helix
that actually lacks internal hydrogen bonds. Instead, it can be identified by the values of
the backbone dihedral angles [7].

The protein can also fold into a well-defined three-dimensional shape, referred to as the
tertiary structure. The major driving force behind folding is the hydrophobic interaction,
trying to hide hydrophobic residues from the surrounding water [8]. In addition, a protein
can consist of several different protein chains, each having a three-dimensional structure
and making up a subunit of the complete protein. The arrangement of the subunits is
called the quaternary structure.

2.2 Intrinsically disordered proteins

IDPs are characterized by a lack of well-defined tertiary structure under physiological con-
ditions, which means that they are much more flexible than other proteins and interchange
rapidly between many different conformations. Often can protein disorder be recognised
already in the primary sequence. IDPs typically have a low sequence complexity and are
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generally enriched in charged and polar amino acids, with a low content of bulky hydro-
phobic amino acids [9, 10].

When IDPs and intrinsically disordered regions first were discovered, they were regarded as
non-functional and of no importance, due to the belief that protein function was strongly
coupled to the three-dimensional structure. Since then, it has been shown that intrinsic dis-
order is actually wide-spread in nature. At least 10 of eukaryotic proteins are intrinsically
disordered, while even more proteins contain long disordered regions [11–14]. In addition,
it has been established that IDPs are involved in many important biological processes, such
as regulation, signalling, and recognition, where intrinsic disorder can actually be crucial
for the function [3–5, 13, 15–17]. Some advantages of disorder are that it enables interac-
tions of high specificity coupled with low affinity, multiple binding partners, faster asso-
ciation/disassociation rates, and larger interaction surfaces [4]. Furthermore, many IDPs
have been shown to have folding induced upon binding to interaction partners [2, 4, 18].
Due to the immense biological functions of IDPs, there is no surprise that they are also as-
sociated with pathological conditions, for example Alzheimer’s disease, Parkinson’s disease,
diabetes, and several types of cancer [19, 20].

2.2.1 Classification of IDPs

IDPs are a rather heterogeneous group, including less or more compact proteins with dif-
ferent degrees of secondary and tertiary structure [21, 22]. The amino acid composition
and charge distribution have been shown to be important for the conformational proper-
ties of IDPs, such that they can be used to define conformational classes. From the fraction
of positively and negatively charged residues, f+ and f−, the fraction of charged residues
(FCR) and net charge per residue (NCPR) are defined according to

FCR = f+ + f− (2.1)

NCPR = |f+ − f−|. (2.2)

Based on these quantities, Das et al. have introduced a diagram-of-state with four different
conformational classes called R1–R4 [23], shown in Figure 2.3. The R1 class consists of glob-
ules, while the R3 class are made up by coils and hairpins. The R2 class is an intermediate
region, such that IDPs in this class usually adopt both coil and more globule-like conform-
ations. The IDPs in the R4 class are either strongly positively or negatively charged, and
behave as semi-flexible rods or coils.

Polymers consisting of positively or negatively charged subunits are called polyelectrolytes,
while polymers containing subunits of mixed charges are called polyampholytes. They can be
either weak or strong, depending on their FCR. Applying this terminology to IDPs, weak
polyampholytes and polyelectrolytes are found in the R1 class, strong polyampholytes in the
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Class FCR NCPR Conformation

R1 <0.25 < 0.25

R2 0.25–
0.35 ≤0.35

R3 >0.35 ≤0.35

R4 >0.35 >0.35

Figure 2.3: Diagram-of-states showing conformational classes of IDPs based on the fraction of positively (f+) and negatively
(f−) charged residues, fraction of charged residues (FCR), and net charge per residue (NCPR), as introduced by Das
et al. [23]. R1: globules, R2: mix of globules and coils, R3: coils or hairpins, R4: semi-flexible rods or coils.

R3 class, and strong polyelectrolytes in the R4 class. This classification scheme to predict
the conformational class of an IDP is valid for IPDs consisting of at least 30 residues, having
low hydrophobicity and low proline content. A high proline content is expected to give
more extended conformations than the diagram-of-states predicts.

For the IDPs in the R3 class, the distribution of charges throughout the sequence also
determines what conformations are adopted. The distribution of charges can be described
using the parameter κ, loosely described as a parameter accounting for charge mixing.
κ adopts a value between zero and one, where the maximum value corresponds to the
sequence with the largest possible segregation of opposite charges for the given composition.
IDPs having a low κ are expected to behave more as self-avoiding random walks, while IDPs
with a high κ are more likely to adopt hair-pin like conformations. κ can also be useful for
predicting the influence of salt concentration, since IDPs with high κ usually show larger
conformational changes upon changes in ionic strength [24].

2.3 Phosphorylation

A common regulatory strategy employed by cells is PTM, in which a protein is chemically
modified after synthesis by for example the addition of a modifying group. One of the
most abundant PTM is phosphorylation, in which a phosphoryl group is attached to a
residue, most commonly serine or threonine. Phosphorylation is a reversible process, and
especially prevalent among IDPs and disordered regions [4, 25, 26]. As seen in Figure 2.4,
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Figure 2.4: The structure of a) serine and b) phosphoserine at physiological pH.

phosphorylation increases the bulkiness of the residue and introduces two additional neg-
ative charges at physiological pH, which can greatly influence the electrostatic interactions
within a protein or with a binding partner. It has been established that phosphorylation
can induce changes in both overall conformation and secondary structure, as well as affect
the dynamics and interactions with binding partners [27]. As a consequence, abnormal
phosphorylation can be pathological; for example, Alzheimer’s disease is associated with
hyperphosphorylation of the neuroprotein tau [28]. In the disordered milk proteins case-
ins and saliva protein statherin, phosphorylated residues are of direct importance for the
functionality, by enabling sequestration of calcium [29] and increasing binding to the tooth
surface [30, 31].

2.4 Saliva

Saliva is a complex fluid of great importance to our oral health, even though it consists of
99.5 water. The rest involves inorganic components such as sodium, potassium, calcium,
and chloride, and organic components such as proteins, lipids, and carbohydrates. Saliva
aids speaking and swallowing through lubrication of the oral tissues, helps with digestion,
provides protection for the teeth, and is a first line of defence against bacteria, viruses,
and fungii [32]. Many of the protective functions of saliva are attributed to proteins, as
presented in Figure 2.5. Note that several of these proteins are in fact intrinsically disordered
and multi-functional. Many of the proteins are part of the acquired enamel pellicle, which
is a thin protein-rich film that forms on the tooth surface. The pellicle protects against acid
degradation, provides lubrication that protects the teeth from abrasion and attrition, and
also serves as a layer to which bacteria can adhere [33, 34].

The composition, and hence the ionic strength and pH of saliva, varies with a lot of different
factors, for example time of day and food intake. The saliva production can also be affected
by diseases and medication [33].
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Antibacterial Buffering
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Mineral-
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Figure 2.5: Proteins responsible for functionality of saliva, where intrinsically disordered proteins are marked in blue. The figure
is adapted from Levine [35].

2.5 Statherin

Statherin is one of the intrinsically disordered salivary proteins that is part of the aquired
enamel pellicle. The main function of statherin is to prevent spontaneous precipitation
of calcium phosphate salts in saliva, in order to maintain a supersaturated environment
[36, 37], which helps with remineralisation after dental erosion [38]. In addition, statherin
has also been shown to have lubricative properties [39] and promote adhesion of certain
bacteria that are associated with cemental caries and gum disease [40–42].

Statherin is a rather small protein, only 43 amino acids long with a molecular weight of
5.38 kDa, which makes it suitable for modelling. It has a distinct charge distribution, evid-
ent in the primary sequence in Figure 2.6, where nine out of ten charged residues are loc-
ated among the first 13 residues in the N-terminal part. This N-terminal part, including
the acidic motif with two phosphorylated serines, has been shown to be of extra import-
ance for the ability of statherin to adsorb to the tooth enamel and prevent crystal growth
[30]. Overall, the hydrophobicity is rather low (based on the hydropathy values in the
Kyte-Doolittle scale [44]), which is typical for IDPs. However, region 15–43 is rich in pro-
lines and glutamines, which allow for weak association to many other proteins [45], and
contain seven tyrosines, whose aromatic side-chains have been established to be of import-
ance for liquid-liquid phase separation [46, 47]. Statherin self-associates upon increased
protein concentration [48], such that several protein chains merge to a larger complex.
Self-association is further described in the following section.
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Figure 2.6: The primary sequence of Statherin [43]. Amino acids that have a negatively charged side chain at pH 8 are marked
in red, and those with a positively charged side chain are marked in blue. The phosphorylated serines (marked in
dark red) have a charge of -2e each at pH 8.

2.6 Self-association

Self-association is the spontaneous formation of larger structures from smaller constituents.
A typical example of self-association is the micelle formation of surfactants. Surfactants
usually consist of a hydrophobic tail and a polar head-group, which means that they are
amphiphilic. Driven by the hydrophobic interaction (see section 3.9) the surfactants arrange
into spherical structures called micelles, hiding the hydrophobic tails in the interior, as
shown in Figure 2.7. This only happens above a certain surfactant concentration, named
the critical micelle concentration (CMC).

Self-association is governed by intermolecular interactions, such as van der Waals interac-
tions, hydrogen bonding, hydrophobic interaction, and screened electrostatic interactions,
which are further described in chapter 3. Since these interactions are generally weak, at
least compared to covalent bonds, the self-association process is highly affected by solution
conditions such as pH and ionic strength. Both the interactions between and within self-
assembled structures are affected by changes in the solution conditions, therefore the size
and shape of the self-assembled complexes can be modified [49].

Large molecules such as amphiphilic block-copolymers can also form micelles, however,
due to their much larger size and sometimes more pronounced amphiphilic nature, the be-
haviour can differ from surfactants. Proteins can also self-associate, which the intrinsically
disordered milk protein β-casein is a good example of. The C-terminal part of β-casein
contains many hydrophobic residues, while the N-terminal part has several phosphorylated
residues that contributes to a net charge, giving the protein chain an amphiphilic structure.
Many studies, only a few mentioned here, have been devoted to the β-casein micelle form-

Figure 2.7: A schematic illustration of a micelle formed of surfactants having polar head-groups and hydrophobic tails.
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ation and have shown that the micelle size and shape, as well as CMC are sensitive to the
solution conditions such as temperature, pH and protein concentration [50–54].

10



Chapter 3

Intermolecular interactions

Studying proteins from a chemical point of view, we distinguish between two classes of
interactions: i) covalent bonds that keep the atoms together in molecules, and ii) non-
covalent intermolecular interactions. Although the term intermolecular literarily translates
to existing or occurring between molecules, the interactions also act between different parts
of molecules. The intermolecular interactions are generally weak compared to covalent
bonds, but are highly important as they account for how proteins behave, for example
how they fold and bind to other molecules. The intermolecular interactions that will be
described in this chapter can be classified as short-ranged or long-ranged, depending on
their distance dependence. The van der Waals interaction, having a 1/r 6-dependence,
is a typical example of a short-ranged interaction, while the Coulomb interaction acting
between charged species is considered long-ranged, due to its 1/r -dependence. The decay
of potentials with different distance dependence is shown in Figure 3.1. This chapter is
mostly based on the book by Israelachvili [49], which is referred to for a more thorough
description.

3.1 Charge–charge interaction

The electrostatic force, F, between two atoms with charges Qi and Qj, separated by a dis-
tance r, is described by the Coulomb law

F(r) =
QiQj

4πε0εr

1
r 2 , (3.1)
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Figure 3.1: Illustration of the decay of potentials with different distance dependence.

where ε0 is the vacuum permittivity and εr is the relative permittivity of the surrounding
medium. The interaction free energy, w(r), between the two charges is given by

w(r) =
∫ ∞

0
−F(r)dr =

QiQj

4πε0εr

1
r
. (3.2)

The interaction is long-ranged, but if the charges are surrounded by ions, as in an aqueous
salt solution, the interaction is screened, which reduces the range of the interaction. Ac-
cording to the Debye–Hückel theory, a screened Coulomb potential can be expressed as

V(r) =
QiQj

4πε0εr

1
r
exp(−κr), (3.3)

where V(r) is the potential energy and κ−1 is the Debye length, defined by

κ−1 =

√
ε0εrkT
2NAe 2I

, (3.4)

where k is the Boltzmann constant, T is the temperature, NA the Avogadro constant, e the
elementary charge, and I refers to the ionic strength, defined as

I =
1
2

n∑
i=1

ci Z 2
i . (3.5)

Here, n is the number of different ion species, and ci is the concentration of ion i with
charge number Zi.

3.2 Charge–dipole interaction

Most molecules have no net charge; however, they often possess an electric dipole, caused
by an asymmetric distribution of electrons in the molecule. The dipole moment is defined
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as
µ = q l, (3.6)

where l is the distance vector between the two charges −q and +q. When a charge and a
dipole interact at a distance r >> l, the potential energy is given by

V(r, θ) = −Q µ cos θ
4πε0εr

1
r 2 , (3.7)

where the polar angle, θ, is the angle between the distance vector and the dipole (see Fig-
ure 3.2a). If the charge is positive, maximum attraction occurs when the dipole points
away from the charge (θ = 0◦). At large separation or in a medium with high relative
permittivity, the angle dependence of the interaction can fall below the thermal energy kT,
which allows the dipole to rotate more or less freely. However, conformations allowing for
attractive interactions will still be more favourable, so the angle-averaged potential will not
be zero. The interaction free energy between a freely rotating dipole and a charge is given
by

w(r) ≈ − Q 2µ2

6(4πε0εr)2kT
1
r 4 for kT >

Q µ
4πε0εrr 2 . (3.8)

Note that this changes the distance dependence of the potential, making it more short-
ranged.

3.3 Dipole–dipole interaction

The interaction energy between two stationary dipoles i and j can be described by the
following potential

V(r, θi, θj, ϕ) = −
µiµj

4πε0εr

1
r 3 (2 cos θi cos θj − sin θi sin θj cosϕ), (3.9)

r

𝜃i 𝜙

–

(a) (b)

Q
μ μi

+ 𝜃j

r

μj

𝜃

Figure 3.2: Schematic representation of the (a) charge–dipole and (b) dipole–dipole interaction, where r is the distance between
the interacting species, θ is the polar angle and ϕ the azimuthal angle.
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where ϕ is the azimuthal angle between the dipoles (see Figure 3.2b). Also in this case can
the dipoles rotate, so the angle-averaged interaction free energy is

w(r) = −
µ2
i µ

2
j

3(4πε0εr)2kT
1
r 6 for kT >

µiµj
4πε0εrr 3 . (3.10)

This interaction is usually referred to as the Keesom interaction and is a part of the total van
der Waals interaction described in section 3.6.

3.4 Charge–induced dipole interaction

All molecules and atoms, even non-polar ones, are polarised by an external electric field,
which means that the electron cloud in the molecule is displaced. Hence, the electric field
exhibited by a charge will induce a dipole moment in a non-polar molecule. The potential
between the charge and the induced dipole is expressed as

V(r) = − −Q 2α

2(4πε0εr)2
1
r 4 , (3.11)

where α is the polarisability of the molecule.

3.5 Dipole–induced dipole interaction

Similarly to the charge–induced dipole interaction, a non-polar molecule can gain an in-
duced dipole moment in the field from a permanent dipole. The interaction is described
by the following potential,

V(r) = − µ2α

(4πε0εr)2
1
r 6 . (3.12)

Notice that this potential is already angle-averaged, since the interaction normally is not
strong enough to mutually orient the molecules. This interaction is usually referred to as
the Debye interaction and is a part of the total van der Waals interaction due to the 1/r 6-
dependence.

3.6 Van der Waals interaction

The total van der Waals interaction includes three different types of interactions, which
all have a 1/r 6-dependence: Keesom, Debye and London (dispersion), of which Keesom
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and Debye have been described above (section 3.3 and 3.5). The Keesom interaction is only
present between permanent dipoles and the Debye interaction when one of the molecules
is a permanent dipole. The last interaction, the London dispersion interaction is however
present between all types of molecules. It is of quantum mechanical origin, although we
can think of it in a simpler manner. For a non-polar atom (or molecule) the time averaged
dipole moment is zero, although at any instant it exists a finite dipole moment caused by
an uneven electron distribution around the nucleus. This instantaneous dipole generates
an electric field that induces a dipole in another nearby atom (or molecule), leading to an
attractive interaction.

3.7 Hydrogen bond

In the previous chapter hydrogen bonds where mentioned in the context of protein second-
ary structure. A hydrogen bond can occur between a highly electronegative atom, such as
nitrogen, oxygen or fluorine, and a hydrogen covalently bonded to another such electroneg-
ative atom. It is of predominantly electrostatic origin and can be seen as an especially strong
dipole–dipole interaction. Unlike normal dipole–dipole interactions it is fairly directional
and can be described by a 1/r 2-dependence, similar to the charge–dipole interaction.

3.8 Exchange repulsion (excluded volume)

At very small interatomic distances, when electron clouds overlap, a strong repulsive inter-
action of quantum mechanical origin occurs, which limits how close two atoms can come.
The repulsion increases steeply with decreased distance and is therefore often modelled with
a hard sphere potential which goes directly from zero to infinity, or with a soft core potential
of 1/r 12-dependence.

3.9 Hydrophobic interaction

Water is a special solvent due to the possibility to form many hydrogen bonds, which makes
the water–water interaction strong. Therefore, the water molecules much rather interact
with other water molecules than non-polar molecules. For small non-polar molecules the
water can arrange around the non-polar molecule in such a way that no hydrogen bonds
are broken. However, this arrangement is more ordered and therefore comes at an entropic
cost, which makes it more favourable to separate the non-polar molecules from the water
molecules. For large non-polar molecules it is not possible to retain hydrogen bonds, which
instead leads to an energy driven separation. Therefore, the cause of separation between

15



water and non-polar molecules can be both mostly entropic or mostly energetic, however,
the net result can always be seen as an effective attraction between non-polar molecules,
called a hydrophobic interaction [55].

3.10 Conformational entropy

When a flexible polymer, for example an IDP, approaches a surface or other polymers,
restrictions are enforced on the available conformations, which leads to a decrease in con-
formational entropy. If the restrictions are large enough, the result will be an effective
repulsion of entropic origin.
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Chapter 4

Statistical thermodynamics

Statistical mechanics provides a connection between macroscopic properties, such as tem-
perature and pressure, and microscopic properties related to the molecules and their in-
teractions. The aim is to provide means to both predict macroscopic phenomenas and
understand them on a molecular level. Statistical mechanics applied for explaining ther-
modynamics is usually referred to as statistical thermodynamics. Here I will provide a brief
introduction to the key concepts, while a more in-depth description can be found in for
example the book by Hill [56].

A central concept in statistical mechanics is ensembles. An ensemble is an imaginary collec-
tion of a very large number of systems, each being equal at a thermodynamic (macroscopic)
level, but differing on the microscopic level. Ensembles can be classified according to the
macroscopic system that they represent, as outlined below.

Microcanonical (NVE) ensemble: represents an isolated system in which the number of
particles (N), the volume (V) and the energy (E) are constant. Hence, the systems in the
ensemble all have the same N, V, and E, and share the same environment, however, they
correspond to different microstates.

Canonical (NVT) ensemble: corresponds to a closed and isothermal system, by having
constant number of particles, volume, and temperature (T).

Grand canonical ensemble (µVT): represents an open isothermal system, in which the
chemical potential (µ), the volume, and the temperature are kept constant.

Isothermal-isobaric ensemble (NpT): has constant number of particles, pressure (p), and
temperature.

When an experimental measurement is performed, a time average is taken over the observ-
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able of interest. If we instead want to calculate the observable from molecular properties,
we would need to deal with both a large number of molecules and the requirement to ob-
serve them for a sufficiently long time to smear out molecular fluctuations. In practice this
would be extremely complicated, however, a different approach is possible due to the first
postulate of statistical mechanics: a (long) time average of a mechanical variable in a thermo-
dynamic system is equal to the ensemble average of the variable in the limit of an infinitely
large ensemble, provided that the ensemble replicate the thermodynamic state and envir-
onment. Stated differently, this postulate says that instead of using a time average, we can
obtain the same result by performing an ensemble average, given that the ensemble is suffi-
ciently large. This is valid for all ensembles and provides the basis for molecular simulations.
There is also a second postulate of statistical mechanics which states that for an infinitely large
ensemble representing an isolated thermodynamic system, the systems of the ensemble are
distributed uniformly over the possible states consistent with the specified values of N, V
and E. This postulate is also referred to as the principle of equal a priori probabilities, as it
says that in the microcanonical ensemble, all microscopic states are equally probable.

In the canonical ensemble, the probability to find the system in a particular energy state Ei
is

Pi(N,V,T) =
exp[−Ei(N,V)/kT ]

Q(N,V,T)
, (4.1)

where Q is the canonical partition function, given by

Q(N,V,T) =
∑
i

exp[−Ei(N,V)/kT ], (4.2)

where exp[−Ei(N,V)/kT] is known as the Boltzmann weight. The partition function
describes the equilibrium statistical properties of the system and can be used to express the
Helmholtz free energy, A, as

A = −kT lnQ. (4.3)

The Helmholtz free energy is the characteristic function for the canonical ensemble and can
be used to derive other thermodynamic variables, such as the entropy, pressure and total
energy.

Here the partition function has been introduced in a quantum mechanical formulation with
discrete energy states. However, many simulation methods are based on classical mechanics,
in which the microstates are so close in energy that they are approximated as a continuum.
In a classical treatment the canonical partition function becomes

Qclass =
1

N!h3N

∫
exp[−H(pN, rN)/kT ]dpNdrN, (4.4)

where h is Planck’s constant and the integration is performed over all momenta pN and
all coordinates rN for all N particles. H(pN, rN) is the Hamiltonian of the system, having
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one kinetic energy part (dependent on the temperature) and one potential energy part
(dependent on the interactions). The kinetic part can be integrated directly, simplifying
the partition function to

Qclass =
ZN

N!Λ3N , (4.5)

where
ZN =

∫
V
exp[−Upot(r

N)/kT ]drN (4.6)

is the configurational integral calculated from the potential energy, Upot, and

Λ =
h

(2πmkT )1/2 (4.7)

is the de Broglie wavelength, where m is the mass. If we know the configurational integral,
we can calculate the ensemble average of an observable X, according to

⟨X(rN)⟩ =
∫
V X(r

N) exp[−Upot(r
N)/kT ]drN

ZN
. (4.8)

However, solving the integrals is normally a rather challenging problem that requires nu-
merical solution tools, such as the Monte Carlo method that will be discussed in chapter 6.
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Chapter 5

Simulation models

A model is a representation of reality and can be constructed with varying degree of de-
tail. When constructing or choosing a model, it is important to consider the properties
of interest. The model should include enough detail to be able to accurately describe the
properties of interest. Including excessive detail makes the model harder to interpret and
increases the computational cost, which can limit the accessible time scale or system size.
Hence, different scientific problems requires different models. In this thesis, two different
types of models have been used to study IDPs, specifically a coarse-grained model repres-
enting each amino acid as a hard sphere, and an atomistic model including all atoms in the
system, see Figure 5.1.

Figure 5.1: Statherin depicted in the different models: a) coarse-grained model, where gray spheres represent neutral residues,
blue spheres positively charged residues, red spheres negatively charged residues, and dark red spheres phos-
phorylated residues, b) atomistic model, where carbon atoms are shown in gray, nitrogen in blue, oxygen in red,
hydrogen in white, and phosphorus in tan.
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5.1 The coarse-grained model

The coarse-grained model is a bead-necklace model based on the primitive model, in which
each amino acid is described as a hard sphere (bead), connected by harmonic bonds. The
N- and C-termini are modelled explicitly as charged spheres in each end of the protein
chain, so the full length corresponds to the number of amino acids plus two. Each bead
has a fixed point charge of +1e, 0, −1e, or −2e, corresponding to the state of the amino
acid side chain at the desired pH. The counterions are included explicitly, while the solvent
(water) and salt is treated implicitly. The model, as used in Paper i, was parameterised by
Cragnell et al. for the saliva IDP histatin 5 [57].

The model contains contributions from excluded volume, electrostatic interactions, and a
short-ranged attraction mimicking van der Waals-interactions. The total potential energy
is divided into bonded and non-bonded interactions, according to

Utot = Ubond + Unon-bond = Ubond + Uhs + Uel + Ushort, (5.1)

where Uhs is a hard-sphere potential, Uel the electrostatic potential, and Ushort a short-
ranged attraction. The non-bonded energy is assumed pairwise additive, according to

Unon-bond =
∑
i<j

uij (rij ), (5.2)

where uij is the interaction between two particles, rij = |ri − rj| is the center-to-center
distance between the two particles, and r refers to the coordinate vector.

A harmonic bond represents the bonded interaction,

Ubond =
N−1∑
i=1

kbond

2
(ri,i+1 − r0)2. (5.3)

Here, N denotes the number of beads in the protein, kbond is the force constant having a
value of 0.4 N/m, and ri,i+1 is the center-to-center distance between two connected beads,
with the equilibrium separation r0 = 4.1 Å.

The excluded volume is accounted for by a hard sphere potential,

Uhs =
∑
i<j

uhs
ij (rij ), (5.4)

where the summation extends over all beads and ions. Here, uhs
ij represents the hard sphere

potential between two particles, according to

uhs
ij (rij ) =

{
0, rij ≥ Ri + Rj
∞, rij < Ri + Rj

, (5.5)
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where Ri and Rj denote the radii of the particles (2 Å). The electrostatic potential energy is
given by an extended Debye–Hückel potential,

Uel =
∑
i<j

uel
ij (rij ) =

∑
i<j

ZiZje 2

4πε0εr

exp[−κ(rij − (Ri + Rj))]
(1 + κRi)(1 + κRj)

1
rij
. (5.6)

Hence, the salt in the system is treated implicitly as a screening of the electrostatic interac-
tions.

The short-ranged attractive interaction is expressed as

Ushort = −
∑
i<j

εshort

r 6
ij

, (5.7)

where summation extends over all beads. Here, εshort reflects an average amino acid polar-
isability and sets the strength of the attraction. In this model εshort is 0.6 · 104 kJ Å/mol,
which corresponds to an attraction of 0.6 kT at closest contact.

In Paper ii, an additional short-ranged interaction is included in the model, to make the
protein chains associate. This mimicks a hydrophobic interaction, which is applied between
all neutral amino acids, according to

Uh-phob = −
∑

neutral

εh-phob

r 6
ij

, (5.8)

where εh-phob is 1.32 ·104 kJ Å/mol. This corresponds to an attraction of 1.32 kT at closest
contact. The value of εhphob was set by comparing the average association number with
experimental results obtained by small-angle X-ray scattering (SAXS).

5.2 The atomistic model

In the atomistic model, distributed in the GROMACS simulation package [58–62], each
atom in the system is included, hence, also solvent molecules and ions are modelled expli-
citly. The total potential energy consists of bonded and non-bonded interactions, according
to

Utot = Ubond + Uangle + Ud + Uid︸ ︷︷ ︸
bonded

+ULJ + Uel︸ ︷︷ ︸
non-bonded

. (5.9)

The bonded potentials act on covalently bonded atoms and each of the interaction poten-
tials are summed over the atoms involved in the interaction. The first bonded term is a
harmonic potential representing bond stretching,

Ubond =
∑
b

1
2
kb
ij

(
rij − r 0

ij

)2
, (5.10)
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where kb
ij is a force constant, rij the distance between two bonded atoms i and j, and r 0

ij the
equilibrium bond length. The second term is the bond angle vibration,

Uangle =
∑
θ

1
2
kθij

(
θijk − θ0

ijk

)2
, (5.11)

in which kθij is a force constant, and θijk the angle between the three atoms i-j-k, having the
equilibrium angle θ0

ijk. The third and fourth term are torsion potentials related to dihed-
ral angles, i.e. angles between two intersecting planes, controlling the rotation of a bond
around its own longitudinal axis. Here, the proper dihedral angle is defined according to
the IUPAC/IUB convention [63], as the angle ϕijkl between the ijk and jkl planes, with
zero corresponding to the cis conformation (atoms i and l on the same side). The proper
dihedral angle potential is given by a sinusoidal function with periodicity n and phase ϕs:

Ud =
∑
ϕ

kϕ
[
1 + cos(nϕijkl − ϕs)

]
, (5.12)

where kϕ is a force constant. Unlike for the proper dihedrals, the atoms defining an im-
proper dihedral do not need to be linearly connected. The improper dihedrals are used
to keep planar groups (e.g. aromatic rings) planar, and maintain chirality. The improper
dihedral angle potential is a harmonic potential,

Uid =
∑
ξ

1
2
kξ

(
ξijkl − ξ0

)2
, (5.13)

where kξ is the force constant and ξijkl the angle between the planes having an equilibrium
dihedral angle ξ0. The bonded interactions are illustrated in Figure 5.2.

Regarding the non-bonded interaction potentials, both are assumed pairwise additive. The
Lennard-Jones potential,

ULJ =
∑
i<j

4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(5.14)

represents steric repulsion and an attractive dispersion interaction. Here, ϵij is the depth of
the potential well, and σij corresponds to the finite distance at which the potential becomes
zero. For the force fields used in this work, the Lorentz-Berthelot rules are used to calculate
ϵij and σij, according to

ϵij =(ϵiiϵjj)
1/2,

σij =
σii + σjj

2
.

(5.15)
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Figure 5.2: Schematic representation of the bonded interactions included in the atomistic model: a) bond stretching, b) bond
angle vibration, c) proper dihedral torsion, and d) improper dihedral torsion.

The electrostatic interactions are represented by the Coulomb interaction,

Uel =
∑
i<j

qiqj
4πε0εrrij

, (5.16)

where qi and qj are the charges of particle i and j, respectively.

5.2.1 Explicit water models

As previously mentioned, the atomistic simulations include the solvent, i.e. water, expli-
citly. The reason for this, is that the solvent itself and solvent–biomolecule interactions can
have critical influence for biomolecules immersed in solvent. In fact, IDPs have been shown
to be especially sensitive to how the water is represented, due to the extended conformations
often adopted significantly exposing the protein to solvent [64–66].

There are many different explicit water models available, and due to the large number of
water molecules needed to simulate a biomolecular system, the level of complexity of the
water model not only influences the accuracy, but also the computational time. Among
the most widely used water models today are the rigid point-charge water models with
pairwise additive interactions. Due to having a fixed geometry of the water molecule, only
non-bonded interactions (Coulomb and Lennard-Jones interactions) are included expli-
citly, which reduces the required computational effort [67]. The water models can be fur-
ther dived into classes based on the number of interaction sites they contain. As shown in
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Figure 5.3: Illustration of a a) three-site and b) four-site water model, with the bond length l and bond angle θ. M represents a
dummy atom where the oxygen charge is located.

Figure 5.3, three-site models have three sites, one for each atom in the molecule. In four-
site models the oxygen charge is displaced to a fourth site M, while the Lennard-Jones term
remains on the oxygen. Specific models are defined by their geometry (i.e. bond lengths
and angles), Lennard-Jones parameters (σ and ϵ), and charges. The water models that I
have used are part of the TIP family, first developed by Jorgensen [68], and are TIP3P [69]
with modifications for the CHARMM force field [70, 71] and TIP4P-D [64]. The TI4P-D
model uses the same geometry as the preceding TIP4P/2005 model [72], but has increased
dispersion interactions (part of the Lennard-Jones interactions), aimed at sampling more
extended conformations of IDPs. Another set of three-site models is the SPC family. The
key difference between TIP and SPC is the geometry of the water molecule, which in
TIP closely approximates experimental values (bond length l = 0.9572 Å and bond angle
θ = 104.52◦), while the SPC water molecule mimics the tetrahedral shape of water mo-
lecules in ice (l = 1 Å and θ = 109.5◦) [67].

5.2.2 Force fields

The potentials described in section 5.2 together with the parameter set (e.g. force constants,
equilibrium angles, and charges) constitutes a force field, which provides the foundation of
a simulation. Although the dream is to have one force field that can describe all possible
types of molecular systems, this is far from reality. Force field parameters are generally
obtained from quantum chemical calculations and/or fitting with experimental data for a
set of molecules, meaning that different force fields are aimed at different molecular systems.
For proteins, the most widely used force fields families are Amber, CHARMM, GROMOS,
and OPLS-AA. For a description of similarities and differences between these families, the
reader is referred to ref. [73]. When discussing force fields, it is important to point out the
relation to water models. Most force fields have been developed to work with a specific
water model, and it has been shown that for IDPs even subtle changes in water model can
influence the conformational ensemble sampled [74, 75]. Hence, it is important to use a
correct combination of force field and water model.

While globular proteins and IDPs can appear indistinguishable at the most basic level; both
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being chains of amino acid residues connected by peptide bonds, standard force fields de-
veloped for globular proteins have been shown to work poorly for IDPs, by overestimating
α-helical and β-strand structure [76–78] and producing overly compact conformations
[79, 80]. Therefore, much effort has been put into improvements, resulting in numer-
ous force fields [75, 78, 81–95]. For IDPs, there are mainly two types of improvements
that have been relevant. The first is improvement of the propensity of sampling second-
ary structure, for example by adjustments of backbone dihedral parameters, such as in
Amber ff03* and ff99SB* [82], and CHARMM22* [85]. Side-chain torsion potentials
have also been improved, resulting in force fields like Amber ff99SB-ILDN [84]. An-
other approach with the same aim has been the introduction of energetic terms based
on backbone dihedral cross-terms, so called grid-based energy correction maps (CMAP),
first introduced in the CHARMM22/CMAP (CHARMM27) force field [81]. This force
field was still shown to have bias towards α-helical structure, and therefore the CMAP
potentials were refined against nuclear magnetic resonance (NMR) data, which together
with updated sidechain dihedral parameters resulted in CHARMM36 [86]. Further refine-
ment of CMAP potentials together with updates to Lennard-Jones parameters to correct
arginine–glutamate/aspartate/C-terminus salt bridges, were introduced in CHARMM36m
[75]. The second type of improvements has been aimed at overcoming collapse by balan-
cing the protein–water and protein–protein interactions, for example by specifically target-
ing Lennard-Jones parameters between water and protein atoms as in Amber ff03ws [87],
or by introducing a new water model [64]. A more profound description of force field
development for IDPs can be found in the following reviews: [96–98].

As stated above, force fields generally perform best for systems that have been used in their
optimisation. This also extends to the type of properties considered for validation. Hence,
different force fields are better at reproducing some properties than others. Therefore, when
selecting a force field, it is important to carefully consider the type of system and problem
at hand, as well as perform tests and compare to experimental data.
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Chapter 6

Simulation methods

Simulations act as a bridge between the microscopic and macroscopic world, and between
theory and experiment. Through simulations we can obtain values of observables that can
be measured in the lab, based on the interactions described in the model. In this way we
can test a model by comparing with experiments, and test theoretical predictions on which
the model is built. Given an accurate model, the simulations can also provide information
not accessible by experiments.

In this work two different simulation methods have been employed: i) Monte Carlo (MC)
to simulate the coarse-grained model and ii) Molecular dynamics (MD) to simulate the
atomistic model. The main difference between MC and MD is that MC calculates ensemble
averages based on random sampling, while MD is based on Newton’s equations of motion,
hence providing time averages. Recalling the first postulate of statistical mechanics stated
in chapter 4, provided sufficiently long time and large ensembles, the result is the same.

6.1 Metropolis Monte Carlo simulations

As mentioned in chapter 4, the MC technique can be utilised to compute the ensemble
average of an observable, given in Equation 4.8. In the simplest MC technique, often
referred to as random sampling, this is done by evaluating the observable at a large number
of random points in phase space and multiplying the result with the Boltzmann factor.
Each point in phase space corresponds to a configuration. However, a lot of the generated
configurations would only give a negligible contribution to the average, by having a really
small Boltzmann factor. Such configurations are for example the ones in which particles
are overlapping, since that results in a very high (or infinite) potential energy.
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Metropolis et al. [99] presented a more efficient scheme for evaluating a ratio of integrals
for obtaining the ensemble average. In this scheme the sampling is based on the Boltzmann
factor, so that the sampling is focused more around configurations with a larger Boltzmann
factor. This is a type of importance sampling and implies that the number of configurations
needed for getting a good result is reduced, which makes the simulations faster. A Metro-
polis MC algorithm is outlined below [100]:

Metropolis Monte Carlo algorithm

i) Generate a starting configuration.

ii) Calculate the interaction energy within the system, Uold.

iii) Choose a particle at random and a type of trial move (see section 6.1.1).

iv) Generate a new configuration by performing the trial move on that particle.

v) Calculate the energy of the new configuration, Unew.

vi) Compare the energy of the old and the new configuration to determine if the
new configuration is accepted. The probability of acceptance is given by:

pacc =

{
1 if Unew ≤ Uold

exp[− 1
kT(Unew − Uold)] if Unew > Uold

.

vii) If the new configuration is rejected, restore the old one.

viii) Repeat from step ii.

To perform the MC simulations I have used the simulation package Molsim [101]. After
an initial simulation allowing the system to equilibrate, the production run consisted of a
single continuous run, divided into macrosteps, on which statistics have been calculated.

6.1.1 Trial moves

Trial moves are applied to generate new configurations of the system, to explore phase space.
An advantage with Monte Carlo simulations is that unphysical moves can be used to speed
up the exploration. In Paper i, four different types of moves, commonly applied to polymers
and proteins modelled as bead-necklaces, were used. In Paper ii I also implemented a cluster
move, which is advantageous in self-associating systems.

Single particle translation: A single bead in the chain, or an ion, is moved to a new, ran-
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Figure 6.1: Illustration of three types of Monte Carlo moves: a) single particle displacement, b) slithering move, and c) pivot
rotation.

domly chosen, position, see Figure 6.1a. The length of the translation is limited by an input
parameter defined in the simulation.

Slithering move: In the slithering move, also known as reptation, one of the end beads is
displaced to a random position within a bond length. The other beads are moved forward
in the chain along the old configuration, as illustrated in Figure 6.1b.

Pivot rotation: One end of the chain is rotated around an axis defined by a randomly
selected bond, see Figure 6.1c.

Chain translation: A whole chain is translated. This move does not change the conforma-
tion of the chain, only the position in relation to other chains and particles in the system.

Cluster move: A translation of a group of chains. The group includes the chain that the
selected particle belongs to and all other chains whose center of mass is less than a predefined
distance away. If the number of chains in the cluster changes during the displacement, the
move is automatically rejected, as this violates detailed balance1.

1Detailed balance implies that the probability of making a move and reversing it should be the same.
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6.2 Molecular dynamics simulations

MD is another technique for computing equilibrium properties of classical many-body
systems. In contrary to the MC technique, dynamical information can also be obtained due
to the technique following Newton’s equations of motion to move the particles. Newton’s
second law of motion states that for a particle i with constant mass, mi, the force, Fi is
proportional to the acceleration, ai, which can be expressed as the second derivative of the
position ri with respect to time, t:

Fi = mi · ai = mi ·
∂2ri
∂t 2 . (6.1)

Hence, by knowing the forces, new positions and velocities of the particles can be generated
by integrating Newton’s second law of motion.

To run an MD simulation, starting velocities and positions, as well as the interaction po-
tential are required as input. The forces are computed from the potential U(rN), where rN

represents the complete set of atomic coordinates, according to

Fi = −∂U(r
N)

∂ri
. (6.2)

Since this is a many-body problem, we can only integrate the equations of motion numer-
ically. Of course, the MD program relies on a good algorithm for doing this. I have used
a version of the Verlet algorithm, called the leap-frog algorithm. In this algorithm, the velo-
cities, v, and the positions, r, are updated at alternating times, as illustrated in Figure 6.2,
using the following relations:

v(t+
1
2

Δt) = v(t− 1
2

Δt) +
Δt
m
F(t) (6.3)

r(t+ Δt) = r(t) + Δt · v(t+ 1
2

Δt). (6.4)

Figure 6.2: Schematic illustration of the leapfrog algorithm. It is called leapfrog due to the positions, r, and velocities, v, leaping
over each other like frogs.

32



This algorithm is time reversible and area preserving, which contributes to its good energy-
conserving properties. In addition, the algorithm allows for fairly long time steps, which
is desirable since the number of time-consuming force evaluations then can be reduced
[100, 102].

By repeatedly calculating the forces, velocities and positions, a trajectory showing how the
positions and velocities changes with time is created. In this way, averages of observables
can be obtained. A generic MD algorithm is summarized below [103]:

Molecular Dynamics algorithm

i) Initialize system: input the initial conditions (positions and velocities of all
atoms in the system, and the potential interaction).

ii) Compute forces.

iii) Update configuration by numerically solving Newton’s equations of motion.

iv) Write output.

v) Repeat from step ii.

For the MD simulations I have employed the GROMACS simulation package [58–62].
Each system has been simulated in several replicates, which have been initiated separately
from the same structure, to obtain different starting velocities. Before final analysis, the
individual replicates have been concatenated to one trajectory.

6.3 Technical details

In a simulation program, there are certain things that can be made to make the simulations
more efficient or represent the system that we want. Here, some of those are described.

6.3.1 Periodic boundary conditions

Since this thesis investigates the behaviour of IDPs in solution, the simulations are supposed
to represent bulk properties. Simulation systems can however not be as large as what is
used in experiments, because that would entail an extremely large number of particles.
For example, considering the most dilute samples in Paper ii, even a small sample volume
such as 0.1 mL contains about 1015 protein molecules, which is way too computationally
demanding even for a coarse-grained simulation with implicit water. Unfortunately, the
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Figure 6.3: A schematic illustration of periodic boundary conditions in two dimensions, where the gray box is replicated in all
directions. The arrows represents movement over a border. The red circle represents a spherical cut-off compliant
with the minimum image convention for the particle marked in red.

relatively small system size employed in simulations causes a large part of the molecules
in the system to be in contact with the walls of the box enclosing the system. Hence, to
represent bulk behaviour, we employ periodic boundary conditions (PBC). This means that
the simulation box is replicated in all directions to create an infinite lattice, as illustrated
in Figure 6.3. In practice, this is achieved by letting a particle that leaves from one side of
the box enter again from the opposite side. With this approach there are no walls in the
system, hence it resembles the bulk. However, the periodicity of such a system can give rise
to artefacts, especially if the simulation box is too small. Therefore, it is good practice to
try different box sizes for the system. In the MD simulations, to ensure that the protein
is not interacting with one of the periodic images, I have monitored the shortest distance
between the protein and its closest periodic image. This distance should not fall below the
cut-off applied to the non-bonded interactions. Cut-offs are further described in section
6.3.2.

In the coarse-grained simulations, a cubic box was employed, which is one of the simplest
shapes that can be applied. However, in atomistic simulations using explicit solvent, a cubic
box is not very efficient, due to the amount of solvent molecules needed to fill the corners
of the cube. While a sphere is the most efficient volume, it cannot be combined with PBC.
A shape that both has a smaller volume for the same image distance compared to a cube and
is applicable for PBC is the rhombic dodecahedron, which has been used in the atomistic
simulations.

34



6.3.2 Truncation

When dealing with an infinite system such as when using PBC, adding all the interactions
in the system would lead to an infinite sum, due to the infinite number of particles. So
for it to work practically, the interactions need to be truncated. Another reason for using
truncation is that it increases the speed of the simulations, by reducing the number of
calculations of non-bonded interactions. One approach is to use the minimum image
convention, which restricts each molecule to interact only with the closest image of the
other molecules. In practice, a spherical cut-off is often used, as illustrated in Figure 6.3.
For a cubic box, the cut-off distance should not exceed half the box length, to comply with
the minimum image convention. Truncating the interactions is often permissible dealing
with short-ranged interactions, as the cut-off can be chosen sufficiently large, such that the
interaction potential is zero beyond the cut-off. However, for long-ranged interactions,
the contribution from the tail of the potential beyond the cut-off is usually non-negligible.
Hence, to avoid errors, another approach is needed.

6.3.3 Long-range force handling

Due to the reasons described above, long-ranged electrostatic interactions are usually handled
by the particle-mesh Ewald (PME) method [104], which is an improved version of Ewald
summation. In Ewald summation the long-ranged interaction is separated into two parts:
a short-ranged part treated as a direct sum, and a long-ranged part treated as a summation
in reciprocal space. In this way, both parts converge rapidly. However, the computational
cost scales as N 2, which makes it unsuitable for large systems. In PME, the reciprocal sum
is approximated by a multidimensional piecewise interpolation. The approximate recip-
rocal energy and forces are expressed as convolutions and can therefore be evaluated using
fast Fourier transforms, reducing the order of the algorithm to N · lnN, which makes it
substantially faster than the original Ewald summation.

6.3.4 Neighbour lists

By employing cut-offs, the simulation program is sped up since the number of calculations
of non-bonded interactions is reduced. However, iterating over all particles to calculate
the distance between them, so that it can be determined which particles are within cut-off
distance, still takes computational time. In liquids, it is usually the same particles that are
in close vicinity over a few simulation steps, since it takes some simulation steps for the
particles to move further away. By keeping lists over which particles are close, so-called
neighbour list, we can avoid doing these calculations in every step. Due to having a ”buffer
zone” outside the interaction cut-off when creating the neighbour lists, they can be updated
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less frequent. For a description of different ways to generate neighbour lists, the reader is
referred to ref. [100].

6.3.5 Bond constraints

Another way to reduce the computational cost of MD simulations is by using a longer time
step. The size of the time step is constrained by the time scale of the highest frequency mo-
tion in the system, which is usually bond vibrations of bonds involving hydrogen, limiting
the time step to around 1 fs. Using a longer time step potentially makes the simulations
unstable [105]. However, biomolecular simulations usually require simulation times in the
order of µs–ms, which has a very high computational cost in terms of resources and/or
physical time. By applying constraints on the bonds, such as by the LINCS algorithm
[106], the length of the time step can be increased.

6.3.6 Controlling temperature and pressure

Direct use of MD simulations corresponds to the microcanonical (NVE) ensemble, since
the Verlet-type integrators naturally conserves energy (assuming an appropriate time step).
However, other ensembles can be a more convenient choice, for example the isothermal-
isobaric (NpT) ensemble, having constant pressure and temperature, corresponding to the
conditions of many laboratory experiments. The temperature and pressure can be con-
trolled by applying temperature and pressure couplings. While there are several different
options available, the velocity-rescaling thermostat [107] and the Parrinello-Rahman barostat
[108] have been used for the MD simulations in this work.

The velocity rescaling thermostat is based on the Berendsen thermostat [109], in which the
system is weakly coupled to an external heat bath, fixed at a desired temperature, T0. The
velocities of the particles in the system are rescaled in such a way that the rate of temperature
change is proportional to the difference in temperature between the bath and the system:

dT
dt

=
T0 − T
τ

. (6.5)

Here, τ is a time constant determining how strong the coupling is. A problem with the
Berendsen thermostat is that it suppresses the fluctuations of the kinetic energy, meaning
that it does not generate a proper canonical ensemble, hence the sampling is incorrect.
In the velocity-rescaling thermostat this is corrected by an additional stochastic term that
ensures a correct kinetic energy distribution [103]. When applying the Parrinello-Rahman
barostat, additional terms involving the box vectors are included in the equations of motion,
allowing the volume and shape to fluctuate.
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Chapter 7

Simulation analyses

To characterise the simulated protein systems and obtain data that can be compared with
experiments, I have performed different analyses, out of which the most important are
described below.

7.1 Size and shape

The radius of gyration, Rg, is generally used as a measurement of size and is calculated as

Rg =

√∑n
i=1 mi||ri − rcom||2∑n

i=1 mi
(7.1)

where mi is the mass of element i, ri the position of element i, rcom is the center of mass,
and n the total number of elements. In the atomistic simulations the elements are the
atoms, while in the coarse-grained simulations they are the beads, with each bead having
equal mass.

The end-to-end distance, Ree, provides the distance between the N- and C- terminus and is
given by

Ree =
√
||r1 − rn||2, (7.2)

where r1 and rn is the position of the first and last element, respectively.

Defining the shape factor as

rs =
R 2

ee
R 2

g
, (7.3)

37



we obtain a measurement of the shape of the IDP. For a Gaussian chain, rs is approximately
six, while in the rod-like limit it reaches twelve.

7.2 Scattering curves

For a direct comparison between experiments and simulations, scattering curves are meas-
ured by SAXS and corresponding curves are calculated in the simulations. The theory
behind SAXS can be found in section 8.2. The scattering curves are calculated differently
in the coarse-grained and the atomistic simulations, and will be presented separately.

7.2.1 Coarse-grained approach

Each particle (bead) is regarded as a point scatterer. For a system containing N identical
scattering objects, the total structure factor is expressed as

S(q) =

⟨
1
N

∣∣∣∣∣∣
N∑
j=1

exp(iq · rj)

∣∣∣∣∣∣
2⟩

, (7.4)

where q is the scattering vector. S(q) can be further decomposed into partial structure
factors given by

Sjk(q) =

⟨
1

(NjNk)1/2

 N∑
j=1

exp(iq · rj)

[
N∑

k=1

exp(iq · rk)

]⟩
, (7.5)

where j and k are particle types. The total and partial structure factors are related through

S(q) =
Nj∑
j=1

Nk∑
k=1

(
NjNk

)1/2

N
Sjk(q). (7.6)

For identical homogeneous spheres, the scattering intensity can be expressed as a product of
the form factor and the structure factor, where the form factor corresponds to intra-particle
interference and the structure factor to inter-particle interference. For a point scatterer, the
form factor is constant, inferring that the scattering intensity is proportional to the structure
factor. Consequently, the calculated structure factor for the point scatterers corresponds to
the system’s scattering intensity, only lacking a constant scaling factor. If the system is
composed of a single protein chain, the calculated scattering profile comes only from intra-
chain interference, hence, it is the protein form factor. For comparison with experiments an
approximate effective particle form factor needs to be accounted for. This can be solved by
dividing both the experimental and calculated scattering profile by their forward scattering,
I0.
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7.2.2 Atomistic approach

There are several methods available for calculating solution scattering curves of macro-
molecules from atomic coordinates, of which the main differences regard the treatment of
the solvent. The solvent is of importance because in a SAXS experiment, it is the excess elec-
tron density compared to pure solvent that is measured, meaning that the collected pattern
corresponds to both the protein and the more dense layer of water molecules surrounding
the protein, called the hydration shell (or hydration layer).

In this work I have used CRYSOL [110], in which the solvent is treated as a continuous
electron density. The hydration shell is a 3 Å thick border layer with a constant excess
electron density. The contrast of this hydration shell, i.e how much higher the water density
is in this layer compared to the bulk, largely influences the calculated scattering curve. The
effect of the contrast is especially evident in the Kratky plot, which provides information
about the shape of the macromolecule. Unfortunately, choosing the optimal value of this
contrast is not straightforward, as it has been shown to depend on both protein and force
field [111]. A more robust way of obtaining the scattering curve is through explicit-solvent
methods such as WAXSiS [112], which eliminate free parameters describing the hydration
shell. However, it is associated with a higher computational cost.

7.3 Complex analyses

In Paper ii, studying the self-association of statherin, several analyses are performed to char-
acterise the result of the self-association, that is, the formed complexes. In these analyses,
two chains are regarded as being part of the same complex if the center-to-center distance
between a bead in each chain is less than a certain cut-off.

The complex size probability distribution is calculated according to

Pn =
n
⟨
N complex

n

⟩
∑
n
n
⟨
N complex

n

⟩ , (7.7)

where
⟨
N complex

n

⟩
is the average number of complexes consisting of n chains [113]. Since

the number of chains is constant in the simulations, the denominator is equal to the total
number of chains in the system. Note that the distribution is weighted by the number of
chains in each complex. The average association number is calculated from the complex
size probability distribution, as

Nassoc =
∑
n

nPn. (7.8)
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To set the strength of the short-ranged hydrophobic interaction, in addition to compar-
ing the average association number with experimental results, the number of contacts for
each chain was monitored along the simulation. The purpose of that was to avoid a too
large interaction, which would have prevented chains in complexes from separating. The
geometric condition mentioned above was used to determine if two chains were in contact.

The shape of the complexes is determined from the the principal moments of the gyration
tensor. For a perfect sphere, all three principal moments are equally large. The gyration
tensor is calculated from the x, y and z-coordinates according to

S =
1
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 , (7.9)

where Xi = (xi − xcom) and similarly for Y and Z, and N is the number of beads in the
complex. Through a transformation to a principal axis system such that

S = diag(R 2
1 ,R

2
2 ,R

2
3 ) (7.10)

S is diagonalised and R 2
1 ≥ R 2

2 ≥ R 2
3 are the eigenvalues of S, also called the principal

moments of the gyration tensor [114]. In the simulations the ensemble averages of the
eigenvalues are calculated for each complex size separately. From the principal moments of
the gyration tensor, the asphericity, αs, is calculated according to
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)2 . (7.11)

The asphericity ranges between 0 and 1, the values for a perfect sphere and a rod, respectively
[115].

7.4 Secondary structure

In the coarse-grained model, no information regarding secondary structure of the IDP is
available, since that requires finer details. However, from atomistic simulations, secondary
structure can be determined. The program DSSP [116] calculates secondary structure based
on hydrogen bonding patterns. Hydrogen bonds are defined through an electrostatic in-
teraction energy between C=O and N–H groups, employing a generous cut-off. Secondary
structure types that lack hydrogen bonding, such as bends, are determined based on geo-
metric conditions. The secondary structure types defined in DSSP are α-helix, β-bridge,
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β-sheet, 310-helix, π-helix, hydrogen bonded turn, and bend. Residues not fulfilling the
criteria for any of the aforementioned types are classified as having irregular structure. In
IDPs, PPII structure is also common, which can be identified by DSSP-PPII [7, 117], an
extension to the DSSP program. The DSSP-PPII program acts solely on what DSSP has
classified as irregular, and uses a definition of PPII based on dihedral angles.

There are many available programs for secondary structure assignment, although DSSP is
one of the most used. Another wide-spread program is STRIDE [118], which uses both
hydrogen bonding patterns and dihedral angles. In the visualization tool VMD [119], sec-
ondary structure is assigned by STRIDE. Although DSSP and STRIDE often are in good
agreement for structured proteins, especially in the assignment of α-helix and β-sheet, dis-
agreement is somewhat larger among IDPs, where structural elements are usually shorter
and more distorted. Differences are largest among turns, where DSPP and STRIDE use
different definitions [120].

Experimentally, we have used circular dichroism (CD) spectroscopy to probe secondary
structure. As will be discussed in section 8.3.2, it is challenging to obtain reliable quantit-
ative measurements of secondary structure for IDPs from CD data. However, as an altern-
ative, there are algorithms available that can calculate CD spectra from atomic coordinates
[121, 122]. Such an algorithm can therefore be used to calculate the CD spectra from sim-
ulations, to compare with experimental data. However, recent studies have suggested that
they are currently not reliable for IDPs [123, 124].

7.5 Salt bridges

In proteins, salt bridges can form between oppositely charged amino acid residues. In
terms of intermolecular interactions, a salt bridge is a combination of an attractive charge–
charge interaction and a hydrogen bond. Phosphorylated residues have the ability to form
salt bridges with positively charged residues, and as Papers iii–v show, this can greatly
influence the conformational ensemble. We analyse salt bridges between phosphorylated
and positively charged side groups based on formed hydrogen bonds, defined according to
the Wernet-Nilsson criterion [125],

rDA < 3.3 Å − 0.00044 · θ2
HDA, (7.12)

where rDA is the distance between donor and acceptor heavy atoms, and θHDA is the angle
made by the hydrogen, donor, and acceptor atoms, given in degrees, with zero correspond-
ing to a perfectly straight bond.
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7.6 Principal component analysis

An important part of characterising IDPs is to get a view of the conformational ensemble.
The complete energy landscape contain all information about a molecule and is described
by 3N − 6 internal coordinates, where N is the number of atoms of the system [126].
For most systems, this is a huge number of dimensions, making it impossible to handle.
Additionally, the information content of a complete energy landscape is much larger than
what we are interested in. Usually the goal is to find a few conformational classes, or arrive
at a low-dimensional energy landscape that captures the relevant behaviour of the system
in only a small set of coordinates. For this, principal component analysis (PCA) can be
applied. It is a mathematical method for reducing the dimensionality of data while still
retaining most of the variability, i.e. information content. PCA transforms the data from
the original set of possibly correlated variables, into a new set of uncorrelated variables called
principal components. The principal components are constructed as linear combinations of
the original variables, in such a way that the first principal component accounts for as much
of the variation of the data as possible. Each succeeding principal component account for
as much of the remaining variation as possible, while still being orthogonal to the preceding
components [127]. Hence, the information content is largest in the first few components,
which makes it possible to scrap the remaining components and still retain a reasonable
description of the system.

To construct low-dimensional energy landscapes of the IDPs in atomistic simulations, we
follow the Campos and Baptista approach [126], where PCA is applied to the cartesian
coordinates of the backbone atoms of the protein, obtained after translational and rotational
least square fitting on a reference structure. Due to IDPs lacking an experimental reference
structure, the central structure of the simulation, i.e. the conformation that differs least
from all the sampled conformations, is used as reference. In mathematical terms, it is the
conformation i among N sampled conformations that minimizes the dispersion measure

Di =

 1
N− 1

N∑
j

RMSD2
ij

1/2

, (7.13)

where RMSDij is the root mean square deviation between backbone conformations i and j.
After PCA, the probability density function, P(r), in the representation space is estimated
using a Gaussian kernel density estimator. The conditional free energy is then calculated
according to

E(r) = −RT ln
P(r)
Pmax

, (7.14)

where Pmax is the maximum value of P(r). This corresponds to assigning zero energy to
the maximum of the probability density. The resulting energy landscape can be used to
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Figure 7.1: Schematic representation of an energy landscape constructed from the first two principal components that can be
used to identify conformational classes.

compare different simulations and identifying conformational classes, as exemplified in
Figure 7.1. However, for a complete picture of the conformational classes, more than the
first two principal components are often required. This is due to that the major groups
of conformations not necessarily are arranged in a non-overlapping way in this subspace,
despite the first two principal components accounting for most of the variation.

7.7 Quality of sampling

In molecular simulations, there are two main factors causing errors: i) inaccurate models,
and ii) insufficient sampling [128]. Hence, to be able to trust the simulation results and
accredit discrepancies between simulations and experiments to model inaccuracies, we need
to ensure proper sampling. It is important to keep in mind that it is much easier to rule
out proper sampling than to prove it. In addition, without previous knowledge of phase
space, there is no way to ensure that all important regions have been visited. Hence, focus
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needs to be on assuring good quality sampling in the regions visited. Here I will describe
the methods used in this work, while a more profound guide can be found in for example
these references [128, 129].

To check that basic equilibration has occurred, the time series of single observables can be
observed, such as Rg and Ree. For IDPs which exhibit a wide range of interchanging con-
formations, these observables usually show large fluctuations, however, systematic changes
can often still be detected. The quality of sampling of single observables can be assessed by
observing correlation and calculating error estimates. For a time-ordered series of values of
an observable f (t), the auto-correlation function at a time separation t ′ is given by

cf (t ′) =
⟨( f (t)− ⟨ f ⟩)( f (t+ t ′)− ⟨ f ⟩)⟩

σ2
f

, (7.15)

where angular brackets denote the arithmetic mean, and σ2
f is the variance calculated as

σ2
f =

1
N− 1

N∑
i=1

( fi − ⟨ f ⟩)2, (7.16)

where N is the number of values sampled. The auto-correlation function starts at one and
decays towards zero as the correlation between values diminishes, i.e the simulation looses
memory of earlier values. The time it takes for the simulation to loose memory is called the
correlation time, and is more rigorously defined as

τ =

∫ ∞

0
cf (t ′)dt ′. (7.17)

From the correlation time, it is possible to estimate the number of statistically independent
values as the total simulated time divided by the correlation time, which can be used as a
measurement of the quality of sampling of the observable. As a rule-of-thumb, the number
of statistically independent values should be at least around 20 for the sampling of that
observable to be considered reliable.

In block averaging, the trajectory is divided into M blocks of length n. For each block, the
average of the observable, Bi, is calculated, yielding a total of M values. The block size n is
gradually increased, and for each block size, the block-averaged standard error is calculated
as

BSE(n) =
∑M

i=1(Bi − ⟨B ⟩)2

M(M− 1)
, (7.18)

where ⟨B ⟩ is the total average for the given block size. When the block length is substan-
tially larger than the correlation time, i.e. the blocks are independent of each other, the
BSE is a reliable estimator of the true standard error. For very small block sizes, when the
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consecutive blocks are highly correlated, BSE greatly underestimates the statistical error.
Hence, BSE(n) increases with n until it reaches an asymptote to the true standard error.
A converged BSE plot therefore signalizes that the error estimate for that observable has
converged.

While the described methods above provides information about the sampling of single
observables, it says little about the global sampling quality, i.e. how well the conformational
space is sampled. Therefore, best practice is to always run several replicates with different
initial conditions to compare.
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Chapter 8

Experimental methods

In order to ensure that the simulation models describe the real world, we need to eval-
uate them against experimental data. Some of the most common techniques for experi-
mental studies of IDPs are SAXS, single-molecule fluorescence resonance energy transfer
(smFRET), and NMR, which all provide ensemble averaged data. This chapter focuses on
the experimental techniques applied in this work, namely SAXS and CD spectroscopy. First
however, I give a description of my protein purification process. In contrary to simulations
were we are in complete control over what is included in the simulation box, real-world
products purchased are never 100 pure. Therefore, the sample preparation and especially
the protein purification is an important step in every experiment. In addition, the last
section highlights some things to be aware of when using experimental data as validation.

8.1 Protein purification and determination of concentration

Statherin and the peptide fragments used in this work were purchased as lyophilised powders.
The statherin powder contained trifluoroacetate, which lowered the pH, so that small ad-
dition of sodium hydroxide was necessary to dissolve the protein in buffer. To remove
impurities and other buffer remains, the proteins and peptides were purified by two altern-
ative methods. In the first, the protein solution was rinsed with buffer corresponding to at
least 30 times the final sample volume, by centrifugation at a maximum speed of 358g at
8 ◦C in concentration cells with a 2 kDa cutoff. In the second method, dialysis was per-
formed in room temperature and at 6 ◦C against a buffer of at least 400 times the sample
volume, using 0.5–1 kDa membranes and exchanging the buffer 4 times during 48 h.

In both SAXS and CD experiments, the recorded signal depends on the protein concentra-
tion. Hence, for processing and interpreting the data it is important to know the concen-
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tration. I have determined the concentration by absorption measurements using a Nan-
odrop 2000 spectrometer. For statherin, measurements were performed at 280 nm using
an extinction coefficient of 8740 M-1cm-1. Since the 15 residue long N-terminal fragment
of statherin lacks residues with aromatic rings, measurements were instead performed at
214 nm, using an extinction coefficient of 24000 M-1cm-1, calculated based on contribu-
tions of the peptide bond and the individual amino acids present, according to Kuipers
and Gruppen [130]. In Paper iii, due to limitations posed by available equipment, the con-
centration of the statherin fragment samples for SAXS were determined at 257 nm, where
phenylalanine absorbs. The extinction coefficient used was 390 M-1cm-1, based on the value
reported by Mihalyi [131]. However, here the absorption was rather low, so this approach
was associated with a larger uncertainty.

8.2 Small-angle X-ray scattering

SAXS is a low-resolution technique commonly used to probe the average size, shape, and
structure of particles in the nanometer length scale, typically between 1 and 100 nm. It
can be applied to samples in different states such as liquid and solid, but here we focus on
solution scattering of biological macromolecules.

8.2.1 Basic principle

In a SAXS experiment, a narrow beam of X-rays is sent through a sample. The X-rays
interact with the electrons in the atoms, which causes the atoms to emit spherical scattered
waves. The scattered waves interfere, which gives rise to an interference pattern at the
detector, from which structural information can be extracted. A schematic set-up of the
main parts of a SAXS instrument is found in Figure 8.1.

Scattering can occur with or without the loss of energy, however, it is the elastic scattering,

X-ray source

Beam shaping

Sample
Detector

incident beam

scattered beam

Beam stop

Figure 8.1: A schematic representation of the main components in a SAXS instrument. The beam stop hinders the incident
beam from reaching the detector and overshadowing the sample scattering.
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ki 2θ
q ≡ ks - ki

ks

Figure 8.2: A schematic representation of the scattering vector q, defined by the incident wave vector ki and the scattered wave
vector, ks.

that occurs without energy loss, that is of importance for SAXS. Both the incident beam
and the scattered beam can be considered as planar waves defined by a wave vector, ki and
ks, respectively. The momentum transfer, usually referred to as the scattering vector, q,
is defined as the difference between the incident and scattered wave vectors, as illustrated
in Figure 8.2. The magnitude of the incident wave vector is ||ki|| = 2π/λ, where λ is
the wavelength of the incident beam. Since there is no loss of energy in elastic scattering,
||ks|| = ||ki||, hence, the magnitude of q can be expressed as

q =
4π
λ

sin(θ), (8.1)

where 2θ is the angle between the incident and scattered wave vector [132].

Since the X-rays are scattered due to interactions with electrons, the more electrons a sample
contains, the stronger the scattering signal is. The difference in electron density through-
out the sample is therefore responsible for creating the contrast. Biological macromolecules
contain mostly light elements such as hydrogen and carbon, thus the difference in electron
density compared to the aqueous solution is small. Hence, the resulting signal is especially
weak [132]. Therefore, for biological samples, it can be advantageous to use X-rays pro-
duced from a synchrotron, a type of large circular accelerator, instead of a lab source. The
synchrotron produces X-rays with much higher brilliance, which means that the exposure
time needed for detecting a useful signal is much shorter, often a few seconds compared
to hours. However, the risk of radiation damage to the sample is much higher. Therefore,
several frames are recorded of each sample, to compare for radiation damage and collect
statistics. Also, I have used Tris buffer, which acts as a radical scavenger and therefore
reduces radiation damage, in contrary to phosphate buffer which can promote it [133].

8.2.2 The scattering intensity

The detector records the scattering intensity at positions in two dimensions, however, since
thermal motion causes the orientation of the particles to be random in respect to the incid-
ent beam, the scattering signal is a spherical average and can therefore be reduced to one
dimension. The scattering intensity is usually presented as a function of q, to be independ-
ent of the wavelength. When performing a SAXS experiment, the scattering of the full
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sample is recorded. To obtain the scattering curve of only the solute of interest, in my case
the protein, we need to subtract the background. Therefore, the scattering of a matching
buffer is also measured. A poorly matched buffer will greatly affect the data, so to ensure
a good match, I dialysed all stock solutions overnight. The resulting dialysis buffers were
used for background measurements and to dilute the samples into a concentration series.

The scattering intensity contains information on both the single particle (intraparticle inter-
ference) and relation between different particles (interparticle interference). Assuming the
system consists of identical homogeneous spheres, the scattering intensity can be expressed
as

I(q) = P(q) · S(q), (8.2)

where P(q) is the form factor and S(q) is the structure factor. From the form factor the
size and shape of the individual particle can be determined. The structure factor contains
information on the distance between particles, which can show if the particles are repelling
or attracting each other. Attraction will increase the scattering curve at low q and repulsion
will decrease it. In dilute and weakly interacting systems no structure is formed in the
solution, meaning that the structure factor is a constant. Hence, at such conditions the
form factor can be determined. Different form factors are illustrated in Figure 8.3a.

Note that IDPs adopt many different conformations, so the measured SAXS pattern corres-
ponds to an average over all these conformations. Likewise, when dealing with polydisperse
samples containing particles of different sizes, the resulting SAXS curve is an average over
the different sizes present.
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Figure 8.3: Illustration of the differences between a more globular, flexible (Gaussian chain-like) and rodlike protein. a) Form
factor, b) dimensionless Kratky plot, and c) pair distance distribution function.
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8.2.3 Data analysis

For proteins some standard analyses which do not require any modelling are usually per-
formed. Besides providing information regarding particle shape and size, they also serve as
a check of data quality.

The Guinier approximation

The Guinier approximation [134] provides a relation between the scattering curve at low q
and the object size given by Rg, according to

ln I(q) = ln I0 − (Rgq)2/3, (8.3)

where I0 is the forward scattering (the scattering signal extrapolated to q = 0). Usually
ln I(q) is linear with respect to q 2 at small q, normally in the region qRg < 1.3 for well-
folded proteins. For IDPs, this region can be reduced to qRg < 0.8 [135]. Using a too
large q-range tends to underestimate the Rg. If the Guinier plot shows an upswing at low
q this indicates considerable aggregation in the sample, while a downswing corresponds
to intermolecular repulsion. In both cases the data quality is compromised and detailed
analysis should be avoided.

The forward scattering is related to the molecular weight by

Mw =
I0 · NA

c([ρp − ρs]νp)
(8.4)

where I0 is given in absolute units (cm−1) and c is the protein concentration. The electron
density of the protein, ρp, the electron density of the solvent, ρs, and the partial specific
volume of the protein, νp, can all be calculated theoretically. The forward scattering is
measured in arbitrary units that differs between detectors, but can be transformed to ab-
solute units, for example by measuring the scattering of water. Normally a difference less
than 10 between the measured and the theoretical weight is regarded as good [54, 136]. For
self-associating proteins such as statherin, the average association number can be calculated
from the measured molecular weight. Note however that for a polydisperse sample, this av-
erage is not the number average. The scattering from a sphere can be expressed analytically,
from which it can be shown that in the q → 0 limit, I ∝ R 6, where R is the sphere radius
[132]. Hence, large particles contribute more to the average than small particles. This is
also the reason why SAXS is so sensitive to aggregates in the sample. To remove possible
large aggregates from the samples, I centrifuged all protein stock solutions at approximately
18000g for at least 2 hours, after which the bottom 1/3 of the samples were discarded.
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Kratky plot

To assess the flexibility of a protein and differentiate between globular and disordered pro-
teins the Kratky plot is useful. A dimensionless Kratky plot allows for comparison between
proteins of different sizes, and is constructed as (qRg)

2I(q)/I0 vs qRg [137]. Figure 8.3b
illustrates the different behaviour of a more globular, Gaussian chain-like and rodlike pro-
tein. An intrinsically disordered protein usually exhibits a plateau as the Gaussian chain,
while the actual slope depends on for example the amount of partial structure.

Pair distance distribution function

The pair distance distribution function, P(r), provides information on shape, since it shows
the distribution of pair distances within the protein. It is expressed in real space, compared
to the scattering pattern that contains information in inverse space. I(q) and P(r) are related
by a Fourier transform, according to [132]

P(r) =
1

2π2

∫ ∞

0
I(q)qr sin(qr)dq. (8.5)

Since I(q) is not known over the full interval 0 ≤ q ≤ ∞, P(r) can not be obtained directly,
hence an indirect Fourier transformation method [138, 139] is often used. By definition, P(r)
is equal to zero at r = 0 and r = Dmax, the maximum distance within the protein. Since
proteins do not have hard surfaces, the distribution is expected to approach zero smoothly.
Problems of reaching zero or small peaks at larger r values are indicative of aggregation in
the sample [140].

The P(r) provides easy differentiation between globular and unfolded proteins, such as
IDPs, as illustrated by Figure 8.3c. For a globular protein, the P(r) is a symmetric bell-
shaped curve, while for an unfolded protein the P(r) shows an extended tail. If a protein
has multiple domains it can be detected in the P(r) as two different peaks.

Rg and I0 can also be calculated from P(r), by using the equations below [135]

R 2
g =

∫ Dmax
0 r 2P(r)dr

2
∫ Dmax

0 P(r)dr
(8.6)

I0 = 4π
∫ Dmax

0
P(r)dr. (8.7)

Since the Guinier method only uses a small region of the scattering curve, while P(r) is based
on more or less the whole curve, the Guinier method is more susceptible to experimental
noise, giving rise to larger uncertainties. Hence, the P(r) method can be more reliable.
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However, the Guinier method normally has better reproducibility between users, as it is
an easier method to apply. Ideally, the Rg determined from both methods should be in
agreement. Note however, that Rg determined from SAXS is not directly comparable to
the Rg calculated in simulations using equation 7.1, due to the scattering pattern including
contributions from the hydration shell surrounding the protein [111, 141].

8.2.4 Size exclusion chromatography-coupled SAXS

A size exclusion chromatography (SEC) column is used for separating a sample according
to size. A SEC column usually contains porous beads that allow small molecules to travel
into the bead pores, while large objects only moves in between the beads. Hence, smaller
objects travel a longer route and will be eluted later than large objects. A SEC column can
therefore be used in-line with SAXS to separate the sample according to size and measure
SAXS directly as it is eluted. For polydisperse samples it is therefore possible be to obtain
SAXS curves for the different sized objects individually and hence obtain a size distribution.
SEC-SAXS is also useful in obtaining the form factor for samples prone to aggregate, since
the aggregates and the monomeric protein are eluted at different times.

8.3 Circular dichroism spectroscopy

CD spectroscopy is a highly sensitive but low-resolution technique based on the adsorption
of polarised light and provides information on the secondary structure content in proteins.

8.3.1 Basic principle

Light is a type of electromagnetic radiation, which comprises an electric field and a mag-
netic field. These fields oscillate in perpendicular planes, that also are perpendicular to
the direction of propagation. Normally light is unpolarised, which means that it oscillates
in all possible directions. In linearly polarised light, the oscillations are restricted to only
one direction, as illustrated in Figure 8.4a. In circularly polarised light, the electric vector
rotates around the direction of propagation, undergoing a full revolution per wavelength.
Clockwise rotation corresponds to right circularly polarised light, and counterclockwise to
left circularly polarised light [142].

Linearly polarised light can be viewed as made up by two components of circularly polarised
light of equal magnitude and phase, rotating in opposite directions (left and right), as
illustrated in Figure 8.4b. If the two components are of different amplitudes, the light will
be elliptically polarised, as the electric vector instead will trace an ellipse, see Figure 8.4c.
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Figure 8.4: a) An illustration of linearly polarised light. The grey arrow corresponds to the direction of propagation and the black
arrows represent the electric vector at different points along the propagation. b) Linearly polarized light made up by
two components of circularly polarized light L and R rotating in opposite directions. The dashed arrow represents
the electric vector and corresponding to the sum of the two components, which is always oriented along the blue
line. (c) Different amplitude of the two components causes the electric vector (dashed arrow) to trace an ellipse,
outlined in blue.

This is what happens during a CD spectroscopy experiment, as an optically active sample
absorbs the left and right circularly polarised light to different extents [143].

An optically active sample contains chromophores, i.e. light-absorbing groups, that are
chiral, covalently linked to a chiral centre, or situated in a chiral environment due to the
three-dimensional structure of the molecule. In a protein, the chromophores of largest
interest are the peptide bond, aromatic amino acid side chains and the disulphide bond.
The far UV-region (approximately 170-250 nm) is dominated by peptide bond absorption,
and it is in this region different secondary structure give rise to characteristic patterns, see
Figure 8.5 [142].

8.3.2 Data analysis

A CD experiment monitors the difference in absorption of left and right circularly polarised
light for different wavelengths. To ensure a good signal from the protein, the absorbance
of the buffer should be low. Chloride ions strongly absorbs light at wavelengths in the
lower end of the UV region of interest [143], and therefore I used sodium fluoride instead
of sodium chloride in the CD samples. Also Tris absorbs in this region, so phosphate buffer
was used instead. Aggregates and dust particles can create artefacts in the data [143], so all
samples were filtered through a 0.22-µm hydrophilic filter before measurement.

Due to historic reasons the spectrum is usually presented in terms of ellipticity, with the
unit degrees, and not as a difference in absorbance (ΔA). The ellipticity, θ, is calculated
from the major and minor axes of the resulting ellipse and is related to the absorbance by
θ = 32.98ΔA. The magnitude of the CD signal depends on the sample concentration
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Figure 8.5: CD spectra of proteins with different secondary structure. The spectra are obtained from the Protein Circular Dichro-
ism Data Bank [144] with the following spectrum id: CD0000117000 (α-helix) [145], CD0000118000 (anti-parallel
β-sheet) [145], CD0004553000 (PPII) [146], and CD0006124000 (irregular) [147].

and the path length, so to be able to compare different measurements, the signal needs to
be normalised. A common approach is to express the signal as the mean residue ellipticity
(unit: deg·cm2·dmol−1), calculated as

[θ]MRW =
θ · MRW
10 · d · c

, (8.8)

where θ is the observed ellipticity (in mdeg), d the path length of the cell (in cm), and c
the protein concentration (in mg/mL). The mean residue weight, MRW, is the molecular
weight (in Da) divided by the number of peptide bonds [143]. Data in absorption units is
often expressed as the molar differential extinction coefficient, Δε (unit: M-1cm-1), calcu-
lated as

Δε =
ΔA
C · d

, (8.9)

where C is the molar concentration (in M).

By observing the shape of the CD spectrum, it is usually possible to discern the domin-
ating type of secondary structure. Monitoring the shape is a straightforward method for
detecting conformational and structural changes upon changes in environment, such as
salt concentration or temperature. To obtain a quantified measurement of the secondary
structure composition from the CD spectrum, there are several different methods avail-
able. They are all based on the approximation that a given protein CD spectrum can be
expressed as a linear combination of spectra of different secondary structure components
[148]. Hence, a good reference data set is vital to the results. A big reference set is often
advantageous to account for some of the structural variability within a secondary structure
type. Still, results can vary with both method used and applied reference set. Since irregular
structure, sometimes referred to as random coil, is not a defined secondary structure, rather
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the lack of other structural elements, its variability is especially large. Hence, structural as-
sessment of IDPs from CD data is particularly challenging. Furthermore, most methods
are optimized for globular proteins, meaning the result for short peptides and IDPs can
be questionable. It is therefore advantageous to compare the result of different methods
and/or basis sets before drawing conclusions, or only use CD spectroscopy as an indicative
tool of changes in secondary structure.

8.4 Using experimental data to evaluate simulation models

By using experimental data for investigating whether the simulation models are correct, we
assume that the experimental data is representative of the real world. However, even when
disregarding errors that can occur in the execution of experiments, as we have seen above,
approximations and assumptions are often used in the processing of data. This of course
affects the final data and is another possible source of discrepancy between simulations and
experiments. It is therefore preferable if the observables measured in experiments can be
calculated directly in simulations.

Something else to consider is that the methods described above are rather low in resolution
and measure ensemble averages. This implies that it is easier to prove a model incorrect
than correct, since for example a given SAXS curve can agree equally well with different
ensembles of structures. Hence, best practice is to always use several experimental methods
to compare with. Just as SAXS, smFRET provides information on the overall chain dimen-
sions, by probing long-range distances within IDPs. Connecting fluorophores to the N-
and C-terminus, Ree can be determined by assuming a shape of the distance distribution
based on polymer theory [149]. However, the necessary fluorophores have actually been
shown to influence the conformational properties of the IDP, which needs to be corrected
for [150]. NMR data in the form of chemical shifts and scalar couplings contain informa-
tion about local-level phenomena such as secondary structure content, and have also been
applied for force field validation [65, 77, 92, 151]. In fact, regarding atomistic simulations,
it has been shown that overall chain dimensions and secondary structure content is largely
independent of each other, such that experimental data of both types need to be used in
proper validation of force fields [152].

Lastly, when comparing results of a simulation model to experimental data, we should be
aware of the intended purpose of the model. Quantitative agreement with experimental
data is not always required for a model to be useful. In fact, qualitative agreement through
trends can be enough, depending on the research question asked.
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Chapter 9

The research

This chapter summarises and discusses the papers compiling this thesis. Overall, the re-
search has been focused on investigating models and force fields and explore the conform-
ational ensembles of IDPs. The first two papers explored the coarse-grained ”one bead per
residue”-model. Paper i investigated the generality of the model in dilute conditions, while
Paper ii applied the model to the self-association of statherin. In Paper iii–v focus was
shifted to the role of phosphorylation, which required an atomistic approach to capture
changes in secondary structure. Paper iii studied the 15 residue long N-terminal fragment
of statherin using two different force fields. The force fields were further evaluated in Pa-
per iv for an additional four peptides, and in Paper v the most appropriate force field was
used to investigate the conformational effects induced by phosphorylation.

9.1 The generality of the coarse-grainedmodel at dilute conditions

To test the generality of the coarse-grained model, in Paper i MC simulations of a single
chain with explicit counterions and implicit salt and water, were performed for the ten
different intrinsically disordered proteins or regions summarized in Table 9.1. According to
the Das-Pappu plot in Figure 9.1a, this selection of IDPs represent all four conformational
classes of IDPs. Hence, although the number of IDPs studied is fairly small, they still
provide a good representation.

The Rg determined from simulations were compared to the Rg reported from SAXS meas-
urements at 150 mM. As Figure 9.1b shows, the simulated values were overall in rather
good agreement with the experimental values, suggesting that the model can be applied
to a range of different IDPs. However, for some sequences the simulated value was dis-
tinctly smaller than the experimental value, considering the reported uncertainty, namely
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Table 9.1: Length, number of phosphorylated residues (Nphos), fraction of charged residues (FCR), net charge per residue (NCPR),
proline content (Pro), and hydrophobic content (H-phob) of the IDPs studied in Paper i. The name of the phos-
phorylated IDPs are printed in red, while yellow represents proline-rich IDPs.

IDP Length Nphos FCR NCPR Pro () H-phob ()
histatin –   . +.  

histatin    . +.  
statherin   . -.  

IB   . +.  
ash   . +.  

pash   . -.  
sic   . +.  

psic   . -.  
II-ng   . +.  

RNase E   . +.  

for pAsh1, pSic1, II-1ng, and RNase E. For RNase E it is plausible that the discrepancy
was caused by a slight degree of self-association affecting the SAXS data. II-1ng is rich in
prolines, which is known to increase stiffness. This effect has not been accounted for in the
model, hence a smaller simulated value could be expected. The discrepancies for II-1ng and
RNase E were however relatively small, compared to the discrepancies for pAsh1 and pSic1,
which are most probably due to their high number of phosphorylated residues, which will
be discussed later on.

Further-on, the experimental Rg could be fitted to a power law expression typical for poly-
mers:

Rg = ρ0N ν , (9.1)

where ρ0 is a prefactor, N is the number of monomers (i.e amino acid residues), and ν
is the Flory exponent, determined to 0.59, which agrees with the value for a self-avoiding
random walk (SARW), which is approximately 0.6. This indicates that this selection of
IDPs can be approximated as SARWs under the experimental conditions used, namely
high ionic strength (150 mM). Therefore, it suggests that the intramolecular interactions
are dominated by electrostatic interactions, which are highly screened at 150 mM.

Using a model system without charges, resembling the SARW, it was shown that the range
of Rg values sampled increased with chain length, implying a relation between the conform-
ational entropy and chain length. For all chain lengths, the probability distribution of the
shape factor was a broad bell-shaped curve ranging between zero and twelve (the rod-like
limit) with a maximum value of 15 at six, the value for an ideal chain. This shows that
IDPs indeed adopt a wide range of different conformations, so that the conformational
ensemble description is necessary.

Since IDPs are generally rather sensitive to environmental changes due to their rather flat
conformational landscapes, the effect of ionic strength is of interest. Indeed the number of
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Figure 9.1: a) Classification of the IDPs included in Paper i according to the Das-Pappu plot. The regions are globules (R1),
globules and coils (R2), coils/hairpins (R3), and coils/semiflexible rods (R4). Radii of gyration obtained from simulations
versus the radii of gyration determined from SAXS experiments. In both panels proline-rich IDPs are shown in yellow,
phosphorylated in red, and the rest in blue.

charged residues and their distribution throughout the sequence controlled the response to
changes in ionic strength. For example, RNase E expanded upon increased ionic strength,
in agreement with its classification as a strong polyampholyte, while Ash1 showed polyelec-
trolytic behaviour, i.e. a contraction. Although it was concluded that the IDPs could be
approximated as SARWs at an ionic strength of 150 mM, Figure 9.2a confirms that this is
an approximation. For Ash1, full agreement with the distribution of a SARW was reached
first at 1000 mM, although the largest change occurred between 10 and 150 mM. In fact,
the ionic strength was shown to have a considerable effect on the form factor. The form
factor from simulations at both 150 mM and SARW conditions were in agreement with
the experimental form factor collected at 150 mM NaCl, see Figure 9.2b,c. The form factor
at 10 mM deviated, which implies that using the form factor collected at 150 mM salt to
obtain the structure factor at 10 mM salt is indeed an approximation. However, depending
on the system this approximation can be valid or contribute to errors.

To summarise, it appears that many IDPs can be described by this coarse-grained model
including only steric contributions, electrostatic interactions and an approximate van der
Waals interaction. The model is able to provide a basic understanding of the importance of
chain length and charge distribution, and predict the outcome of changes in ionic strength.
Of course, the model has its limitations. As pointed out above, the Rg of IB5 was slightly
underestimated, and the stiffness shown by the Kratky plot as well. Including an angular
potential made it possible to accurately represent the shape in accordance with the Kratky
plot, however, this instead caused an overestimation of the Rg. To obtain a better repres-
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Figure 9.2: a) Probability distribution of the radius of gyration for Ash1. b) Form factor and c) dimensionless Kratky plot of Ash1
at 10 and 150 mM salt, and modelled as a SARW, compared to the experimental form factor collected at 150 mM
NaCl, obtained from [153].

entation of both size and shape, a different approach, for example including local stiffness,
would be necessary. The phosphorylated IDPs were also shown to be a challenge for the
model. Statherin, the shortest and least phosphorylated of the three, showed a matching
scattering curve and decent agreement of Rg, but for pSic1 and pAsh1 the model produced
more collapsed ensembles than the experimental references. Interestingly, the agreement
was much better using a charge of only −1e on the phosphorylated residues. What appears
as an overestimation of charges in the model may instead be caused by experimental de-
ficiencies and/or errors and approximations within the model. For example, there can be
a natural variation of the number of phosphorylated residues in the experimental sample,
as well as traces of multivalent ions binding to some phosphorylated residues, meaning
that the simulated and experimental sample might not be the same. Since the model has
been parameterised by comparing with the form factor of histatin 5, the fact that the cal-
culated Rg from simulations does not take into account a hydration shell, is not expected
to cause discrepancy as long as the hydration shell is rather similar to that of histatin 5.
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However, for Ash1/pAsh1 it was recently shown that the SAXS-derived Rg includes a larger
hydration shell for the phosphorylated species, which makes it appear larger and therefore
partly masks conformational changes induced by phosphorylation [141]. In addition, this
model uses fixed charges, and it is possible that −2e is an overestimation of the negative
charge, considering the pKa being approximately six [154] and possible influence from the
local environment. As Section 9.3 will show, phosphorylation contributes with more than
only charge–charge interactions, and these other factors can influence the conformational
ensemble, such that a more detailed description than what this model provides might be
necessary for an accurate description of phosphorylated IDPs.

9.2 Self-association of statherin

While Paper i showed that a coarse-grained model can be useful for exploring the con-
formational ensemble of IDPs at dilute conditions, one of the greatest benefits of a coarse-
grained approach is that it enables studies of larger and more complex systems, where the
computational load of an atomistic model is too large to be feasible. Hence, in Paper ii
the aim was to apply the model for understanding the balance between interactions in a
self-associating IDP system. The saliva protein statherin was used as a model system, due
to its amphiphilic character and relatively short chain length. Using SAXS, it was shown
that statherin forms complexes upon increased protein concentration, see Figure 9.3a. The
self-association ceased with the addition of 8 M urea, and diminished by increased temper-
ature or lowered ionic strength. Changes in the Kratky plot (Figure 9.3b) and P(r) showed
that the formed complexes were more globular than the monomeric protein.

Although the exact mechanism of how urea affects proteins and self-associating systems has

Figure 9.3: a) Scattering intensities and b) dimensionless Kratky plot of increasing concentrations of statherin in 20 mM Tris,
150 mM NaCl, pH 8, and 20 ◦C. The legend applies to both panels.
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been long debated, urea is regarded as being able to weaken hydrophobic interactions in
aqueous solution [155, 156]. Thus, that the self-association occurred both at high and low
salt concentration and was hindered by urea, was interpreted as it being hydrophobically
driven. To induce self-association within the model, an additional short-ranged attractive
potential between neutral residues was needed, mimicking a smeared hydrophobic interac-
tion. The strength of this potential was determined by comparing the average association
number between simulations and experiments at 150 mM NaCl and 20 ◦C. The model
was then able to capture the trends regarding protein concentration, salt concentration,
and temperature. In line with the experimental findings, the complexes were shown to
be more globular/spherical than the monomeric protein, see Figure 9.4a. In addition, the
simulations also revealed polydispersity, as shown in Figure 9.4b. The reduction of average
association number with decreased ionic strength demonstrated that electrostatic repulsion
between the chains contributes to limit the growth of complexes. Substituting the phos-
phorylated residues with non-charged residues within the model gave larger complexes,
revealing the electrostatic contribution of the phosphorylated residues. Excluding charges
all together pinpointed the contribution of chain entropy in limiting the growth of com-
plexes, which I therefore believe is the dominating factor behind the temperature effect
observed in this system.

To conclude, the adjusted model successfully captured the experimentally observed trends
and aided in the explanation of the observed effects in terms of a balance between different
interactions and entropy. However, some limitations of the model were also encountered.
First, upon inclusion of the additional attractive potential, the shape and size of the mono-
meric protein were no longer in agreement with SAXS data, as shown in Figure 9.5a. It
might be possible to counteract this by also including an angular potential, but it would re-
quire careful balancing against the short-ranged attraction. Also, at high salt concentrations
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Figure 9.4: a) Asphericity of complexes of different size and b) size distribution in the simulation of 5 mg/mL statherin.
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concentration calculated from SAXS data (experimental) and determined from simulations at an ionic strength of
150 mM and 20 ◦C. The triangular data point is the result of a simulation using explicit salt.

the model was only applicable at low protein concentrations, as seen in Figure 9.5b. At high
protein concentrations all protein chains aggregated into one large complex. This was dis-
covered to depend on the implicit treatment of salt. With explicit salt no such breakdown
was observed, which shows that the model performs better with a more accurate descrip-
tion of the electrostatic interactions than the extended Debye-Hückel potential. However,
an explicit treatment of salt greatly increases the number of particles in the system and
therefore poses larger demands on computational resources and the simulation software.

9.3 An atomistic approach to phosphorylated IDPs

The coarse-grained treatment of phosphorylated IDPs in Paper i suggested that depend-
ing on the number of phosphorylated residues and their distribution throughout the se-
quence, short-ranged attractive electrostatic interactions can have dramatic effects on the
conformational ensemble. The discrepancies between simulations and experimental refer-
ences motivated a more detailed investigation, using an atomistic approach. In addition,
phosphorylation has been shown to be a versatile method for controlling protein function,
as different IDPs have demonstrated varying conformational and structural response. It is
therefore desirable to achieve a better understanding of phosphorylation effects.

Due to the computational expense of all-atom simulations, the 15 residue long N-terminal
fragment of statherin, SN15, was chosen instead of the full protein for studying phos-
phorylation effects in Paper iii. I selected two different force fields shown to work well
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for short IDPs and which had parameters for phosphorylated residues available: i) Amber
ff99SB-ILDN [84] with the TIP4P-D water model [64] and the phosaa10 parameter set for
phosphorylated residues [157, 158] (A99), and ii) CHARMM36m [75] with the CHARMM-
modified TIP3P water model [71] (C36). Note however that the Amber parameters had
been developed for a preceding force field. For experimental reference, SAXS and CD
spectroscopy were performed. The force fields were shown to be in good agreement for the
non-phosphorylated peptide. Rg, Ree and scattering curves were in excellent agreement, and
the scattering curves also matched the experimental curve, see Figure 9.6a,b. On the con-
trary, for the phosphorylated peptide there were large discrepancies between the force fields
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Figure 9.6: a) Form factor and b) dimensionless Kratky plot of non-phosphorylated (n) and phosphorylated (p) SN15 obtained
by SAXS at 4 and 1.2 mg/mL, respectively, at 20 ◦C, 150 mM NaCl, 20 mM Tris, and pH 7.5, and from simulations
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non-phosphorylated and phosphorylated SN15. d) CD spectra of non-phosphorylated and phosphorylated SN15
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versus wavelength.
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Figure 9.7: Two representative compact conformations of SN15 in CHARMM36m held together by strong salt bridges. All atoms
are shown in the positively charged and phosphorylated residues. The black dashed lines represent hydrogen bonds.

regarding overall size, shape and secondary structure. C36 produced much more compact
conformations, which were coupled to a higher occurrence of salt bridges between phos-
phorylated and positively charged residues, see Figure 9.7 for illustrative snapshots. These
salt bridges also increased the content of bends in the peptide. The other main difference
in secondary structure was the helical content. A substantial increase of α- and 310-helical
content was observed upon phosphorylation in A99, but not in C36, as shown in Fig-
ure 9.6c. The differences in CD spectra between non-phoshorylated and phosphorylated
SN15 shown in Figure 9.6d, supports an increase of α-helical structure. Both force fields
gave a compaction of the peptide upon phosphorylation, however, the Rg determined from
SAXS data for the non-phosphorylated and phosphorylated peptide were indistinguishable.
Nonetheless, the Kratky plot indicated a small compaction upon phosphorylation, accord-
ing to Figure 9.6b. Hence, a compaction in accordance with the simulations is plausible,
but most probably not as large as in C36. To investigate whether the deficiencies of the
force fields were general or specific to SN15, in Paper iv, the study was expanded to an
additional four peptides, presented in Table 9.2.

Table 9.2: Full name, number of residues (Nres), phosphorylation sites (Nph), positively charged residues (N+), negatively charged
residues (N-), and net charge of the non-phosphorylated (Zno) and phosphorylated variant (Zph) of the peptides studied
throughout Paper iii–v.

Name Peptide Nres Nph N+ N- Zno Zph

Tau tau–     + -
SN statherin–     + -
Tau tau–     + -
bCPP β-casein–     - -
Stath statherin      -
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C36 was shown to produce much more compact ensembles than A99 for all the phos-
phorylated peptides, see Figure 9.8. All peptides showed significantly higher probability of
salt bridges in C36 than A99, which was the main reason behind the discrepancy between
the force fields. In the 43 residue long statherin, where the phosphorylated and positively
charged residues are all located within the first 13 residues, there was also another contribu-
tion. The C36 simulation contained more structures with β-strand and β-bridge formation
between the middle and C-terminal end, and less structures where the protein was allowed
more extended conformations. Additionally, all peptides contained a higher fraction of
bends in C36, which in most cases could be linked to the salt bridges. Another noteworthy
observation regarding secondary structure was that C36, in contrary to A99, did not sample
any helical content at all in the N-terminal region of statherin. Although the N-terminal
end of statherin is considered to be mainly irregular in water, helical propensity has been
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Figure 9.8: Radius of gyration distribution of a) Tau1, b) Tau2, c) bCPP and d) statherin, simulated with AMBER ff99SB-ILDN
(A99) and CHARMM36m (C36).
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detected in experiments [30, 159].

Noticing the large influence of salt bridges on the conformational ensemble, it was worth
considering the influence of screening by addition of salt. These simulations have been
performed in a salt-free environment, only with counterions to neutralise the system. So,
for bCPP that showed the largest deviations between the force fields, in line with being
the most charged peptide with the greatest separation of oppositely charged residues, addi-
tional simulations with 150 mM NaCl were performed. Although the probability of several
salt bridges were greatly reduced in C36 when adding salt, the conformational ensemble
did not change much, as was shown by comparing the Rg distributions (Figure 9.9a). In
fact, the most probable conformations were still heavily influenced by salt bridges and the
electrostatic interactions involving phosphorylated residues. In A99 only one salt bridge
was significantly reduced, and the Rg distributions were highly similar. The calculated scat-
tering curves were also indistinguishable in both force fields, see Figure 9.9b. Hence, the
inclusion of 150 mM salt had little to no effect on the conformational ensemble, and the
salt bridges were still of importance. It has been indicated that many force fields have a
tendency to overestimate salt bridges [85, 141, 160, 161], hence, it is possible that both A99
and C36 overestimate the importance of salt bridges in phosphorylated IDPs. Compared
to available experimental data for the shortest peptide Tau1 and the longest IDP statherin,
A99 appeared as the better choice for simulating phosphorylated IDPs. However, for a
better evaluation of the force fields, more experimental data is needed. Here NMR plays
an important role, by being able to detect secondary secondary structure propensity for
individual residues and salt bridges by scalar couplings, chemical shifts and NOEs.

In Paper v the A99 force field was used to also simulate the non-phosphorylated variants of
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Figure 9.9: a) Radius of gyration distribution and b) calculated form factor of bCPP simulated with Amber ff99SB-ILDN (A99) or
CHARMM36m (C36) in the presence of 0 or 150 mM NaCl.
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the peptides, to study the conformational and structural effects induced by phosphoryla-
tion. To fully observe the electrostatic effects, the simulations were performed without
additional salt. However, complementary simulations of bCPP at 150 mM demonstrated
that phosphorylation effects still remained at 150 mM, although slightly diminished. Re-
cently it was hypothesised that the global conformational changes could be predicted from
the net charge of an IDP in non-phosphorylated state, such that a positively charged IDP
contracts, while a neutral or negatively charge IDP expands [141]. Both Tau1 and bCPP
were shown to contradict this hypothesis, see Table 9.3. In bCPP the electrostatic attraction
between the arginine termini residues and the phosphorylated region drove a contraction
of the peptide (see Figure 9.10), despite a local expansion of region E13–E21, containing the
phosphorylation sites. Salt bridge formation between arginine/lysine and phosphorylated
residues was indeed shown to be a major reason behind compaction upon phosphorylation
in SN15, Tau2, and bCPP. Another contributing factor in SN15 and Tau2 was helix form-
ation. These peptides, as well as statherin, which also exhibited increased helix propensity
upon phosphorylation, all have a lysine three or four steps away from the phosphorylated
residue, a pattern known to stabilise helices through salt bridge formation between the side
groups [162].

In statherin, phosphorylation induced a compaction of the first 15 residues, but an over-
all expansion. The expansion was not caused by electrostatic repulsion, but instead ex-
plained by the preference of forming arginine-phosphoserine salt bridges over arginine–
tyrosine cation–π-interaction. In non-phosphorylated statherin, arginine–tyrosine interac-
tion caused β-sheet formation, which disappeared upon phosphorylation, when the argin-
ine residues instead became involved in salt bridges with phosphoserine. The disruption of
the β-sheet caused a global expansion. Relating back to Paper i, it is worth noticing that
these effects are not captured by the coarse-grained model, since it only includes electro-
static effects between charged residues. In fact, the coarse-grained model provides a small
decrease in Rg upon phosphorylation, originating from the compaction of the N-terminal
region where the phosphorylated residues reside.

To conclude, the studies performed in Paper iii-v showed that phosphorylation induces
changes in both overall dimensions and structural content, and that salt bridge formation

Table 9.3: Net charge of the non-phosphorylated peptide and mean radius of gyration (Rg) and end-to-end distance (Ree) of the
non-phosphorylated (n) and phosphorylated (p) variants.

Rg (Å) Ree (Å)
Peptide Net charge n p n p
Tau1 + 9.3 ± 0.1 9.8 ± 0.1 27.4 ± 0.6 28.9 ± 0.2
SN15 + 10.0 ± 0.1 9.0 ± 0.1 25.4 ± 0.9 23.0 ± 0.3
Tau2 + 14.6 ± 0.2 12.9 ± 0.3 38.3 ± 0.9 32.7 ± 1.7
bCPP - 15.3 ± 0.3 14.3 ± 0.3 38.0 ± 0.8 30.9 ± 1.5
Stath  15.6 ± 0.4 17.3 ± 0.9 33.0 ± 0.4 40.5 ± 1.7
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Figure 9.10: Energy landscapes with conformations in selected minima of bCPP for non-phosphorylated (left) and phos-
phorylated (right) bCPP. The energy landscapes were constructed using the first two components from principal
component analysis, using the same basis set for both variants. Hence, they are directly comparable. Contour lines
are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the minimum of each basin is represented by
a marker depending on the energy: l: ≤ 1RT, s: ≤ 2RT, 6: ≤ 3RT. In the conformations positively charged
residues are shown in blue, negatively charged residues in red and phosphorylated residues in yellow.

is an important contributor to this. Vast over-stabilisation of salt bridges was shown to have
large effects on the global dimensions, demonstrating the need for revised force fields. Also
at 150 mM salt did salt bridges between phosphorylated and positively charged residues
influence the conformational ensemble. It was shown that only considering net charge
is not enough for predicting the outcome of phosphorylation, and that also non-charged
residues can be of importance. Atomistic simulations show great potential in providing
deeper knowledge regarding the effect of phosphorylation, however, more experimental
studies at both global and local length-scales are required for further revision and validation
of force fields.

9.4 Conclusions and outlook

The overall objective of this thesis has been to investigate the conformational ensembles
exhibited by IDPs in solution, to explore the dependence on sequence, especially the impact
of phosphorylated residues. Due to the conformational polydispersity exhibited by IDPs,
it is challenging to extract detailed information from experiments, but combining different
experimental and computational techniques has proven to be a fruitful approach. Since a
computational approach is dependent on appropriate models, a significant part of the work
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has been focused on investigating how models and force fields perform.

One property characterising a great model is it being as simple as possible, but still de-
scribing the phenomenon of interest. In this way, it can act as an explanatory tool. The
coarse-grained ”one bead per residue model” relying on excluded volume, electrostatic in-
teractions and an approximate van der Waals interaction was shown to reproduce Rg for a
range of different IDPs under dilute conditions, implying that many IDPs can be thought
of as self-avoiding random walks influenced by electrostatic interactions. From this model,
a basic understanding of how chain length, charge distribution and salt concentration af-
fects the conformational ensemble can be achieved. Furthermore, with the addition of a
hydrophobic interaction, the model was shown to qualitatively describe the self-association
process of statherin and provided a deeper understanding of the balance of interactions.
This demonstrates that the model is applicable also in larger and more complex systems,
where coarse-grained approaches are currently the only feasible option considering the com-
putational expense versus resources. Other adaptations of the original model have also been
applied to studies of crowding [123, 163] and zinc-initiated oligomerisation [164], showcas-
ing the potential and adaptability of this model within the field of IDP research. However,
all models come with limitations. Here it was shown that the model in current form could
not simultaneously provide a good representation of both size and level of stiffness for the
proline-rich proteins and that the size of the highly phosphorylated IDPs was underestim-
ated. Since IDPs are a very diverse group of proteins, it is by no means surprising that not
all IDPs can be described by this model. For the phosphorylated proteins, better agreement
was achieved with a reduced charge of the phosphorylated residues. It is therefore of interest
to further explore whether this is due to an overestimation of electrostatic interactions in
the model, ill-matching of the experimental conditions or if a fixed charge of −2e is a poor
representation of the charge state of phosphorylated residues at physiological pH. Also, in
the simulations of self-association, the implicit treatment of salt caused the model to break
down at higher protein concentrations. While an explicit treatment of salt provides better
results, it comes with a larger computational cost and limits to the accessible system size.

Regarding the effects of phosphorylation, this problem required a more detailed model.
Atomistic simulations were shown to detect changes in global compaction and secondary
structure, and relate them to interactions between specific residues. Especially salt bridges
between phosphorylated and positively charged residues were shown to have major impact
on the conformational ensemble, which highlighted the importance of having force fields
that accurately estimate the strength of salt bridges. Other force field deficiencies regard-
ing secondary structure were also detected. In the continued strive for understanding the
implications of phosphorylation of IDPs, it is therefore important to revise force fields,
and to especially consider the strength of salt bridges involving phosphorylated residues.
Therefore, the collection of more experimental data suitable for use as benchmarking is
also required, which extends beyond the techniques applied in this work. NMR was men-
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tioned as an example, which has the advantage that scalar couplings and chemical shifts
can be calculated from simulations, which facilitates comparison. The interplay between
arginines, tyrosines and phosphorylated residues implied by the atomistic simulations of
statherin is of specific interest to explore further. In addition, a systematic investigation
varying the number of phosphorylated residues and their position in relation to positively
charged residues in a controlled manner is suggested for gaining a better understanding of
underlaying factors controlling the outcome of phosphorylation.

While this thesis has been focused on the relation between sequence and structure, an area
where much is yet to be explored, the link to function is equally important to consider.
Since the functionality often involves interaction with binding partners or surfaces, there
is a requirement for computational models to handle such situations. Also in this context
can statherin be used as a model protein, as binding to hydroxyapatite has been shown
to induce more helix formation in the N-terminal end [165, 166] and expose a bacterial
binding site in the C-terminal tail [166, 167].

As a final remark, one of the greatest lessons I have learned during these years of research is
that it is not at all straightforward to compare experimental and simulation data and draw
correct conclusions from it. Here I see great advantages of having practical experience of
both parts, as it provides better comprehension of what can affect the data and what is
actually compared.

71





References

[1] R. van der Lee, M. Buljan, B. Lang, R. J. Weatheritt, G. W. Daughdrill, A. K.
Dunker, M. Fuxreiter, J. Gough, J. Gsponer, D. T. Jones, P. M. Kim, R. W. Kriwacki,
C. J. Oldfield, R. V. Pappu, P. Tompa, V. N. Uversky, P. E. Wright, and M. M. Babu,
“Classification of intrinsically disordered regions and proteins,” Chem. Rev., vol. 114,
no. 13, pp. 6589–6631, 2014.

[2] C. J. Oldfield and A. K. Dunker, “Intrinsically disordered proteins and intrinsically
disordered protein regions,” Annu. Rev. Biochem., vol. 83, no. 1, pp. 553–584, 2014.

[3] P. E. Wright and H. Dyson, “Intrinsically unstructured proteins: re-assessing the
protein structure-function paradigm,” J. Mol. Biol., vol. 293, no. 2, pp. 321 – 331,
1999.

[4] A. K. Dunker, C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and Z. Obradovićá,
“Intrinsic disorder and protein function,” Biochemistry, vol. 41, no. 21, pp. 6573–6582,
2002.

[5] V. N. Uversky and A. K. Dunker, “Understanding protein non-folding,” Biochim.
Biophys. Acta, Proteins Proteomics, vol. 1804, no. 6, pp. 1231 – 1264, 2010.

[6] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry. New York, USA: W. H.
Freeman and Company, international 7th ed., 2011.

[7] Y. Mansiaux, A. P. Joseph, J.-C. Gelly, and A. G. de Brevern, “Assignment of
polyproline ii conformation and analysis of sequence – structure relationship,” PLOS
ONE, vol. 6, pp. 1–15, 03 2011.

[8] K. A. Dill, “Dominant forces in protein folding,” Biochemistry, vol. 29, no. 31,
pp. 7133–7155, 1990.

[9] P. Romero, Z. Obradovic, X. Li, E. C. Garner, C. J. Brown, and A. K. Dunker,
“Sequence complexity of disordered protein,” Proteins, vol. 42, no. 1, pp. 38–48, 2001.

73



[10] S. Vucetic, C. J. Brown, A. K. Dunker, and Z. Obradovic, “Flavors of protein dis-
order,” Proteins, vol. 52, no. 4, pp. 573–584, 2003.

[11] A. K. Dunker, P. Romero, Z. Obradovic, E. C. Garner, and C. J. Brown, “Intrinsic
protein disorder in complete genomes,” Genome Inform., vol. 11, pp. 161–171, 2000.

[12] P. Romero, Z. Obradovic, C. Kissinger, J. Villafranca, E. Garner, S. Guilliot, and
A. Dunker, “Thousands of proteins likely to have long disordered regions,” Pac. Symp.
Biocomput., vol. 3, pp. 437–448, 1998.

[13] J. Ward, J. Sodhi, L. McGuffin, B. Buxton, and D. Jones, “Prediction and functional
analysis of native disorder in proteins from the three kingdoms of life,” J. Mol. Biol.,
vol. 337, no. 3, pp. 635–645, 2004.

[14] B. Xue, A. K. Dunker, and V. N. Uversky, “Orderly order in protein intrinsic disorder
distribution: disorder in 3500 proteomes from viruses and the three domains of life,”
J. Biomol. Struct. Dyn., vol. 30, no. 2, pp. 137–149, 2012.

[15] H. J. Dyson and P. E. Wright, “Intrinsically unstructured proteins and their func-
tions,” Nat. Rev. Mol. Cell Biol., vol. 6, pp. 197–208, 2005.

[16] P. Tompa, “Intrinsically disordered proteins: a 10-year recap,” Trends Biochem. Sci.,
vol. 37, no. 12, pp. 509 – 516, 2012.

[17] J. Liu, J. R. Faeder, and C. J. Camacho, “Toward a quantitative theory of intrinsically
disordered proteins and their function,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, no. 47,
pp. 19819–19823, 2009.

[18] P. E. Wright and H. J. Dyson, “Linking folding and binding,” Curr. Opin. Struct.
Biol., vol. 19, no. 1, pp. 31–38, 2009.

[19] V. N. Uversky, C. J. Oldfield, and A. K. Dunker, “Intrinsically disordered proteins
in human diseases: Introducing the d2 concept,” Annu. Rev. Biophys., vol. 37, no. 1,
pp. 215–246, 2008.

[20] V. N. Uversky, V. Davé, L. M. Iakoucheva, P. Malaney, S. J. Metallo, R. R. Pathak,
and A. C. Joerger, “Pathological unfoldomics of uncontrolled chaos: Intrinsically
disordered proteins and human diseases,” Chem. Rev., vol. 114, no. 13, pp. 6844–
6879, 2014.

[21] A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh,
C. J. Oldfield, A. M. Campen, C. M. Ratliff, K. W. Hipps, J. Ausio, M. S. Nis-
sen, R. Reeves, C. Kang, C. R. Kissinger, R. W. Bailey, M. D. Griswold, W. Chiu,
E. C. Garner, and Z. Obradovic, “Intrinsically disordered protein,” J. Mol. Graphics
Modell., vol. 19, no. 1, pp. 26–59, 2001.

74



[22] V. N. Uversky, “Unusual biophysics of intrinsically disordered proteins,” Biochim.
Biophys. Acta, Proteins Proteomics, vol. 1834, no. 5, pp. 932–951, 2013.

[23] R. K. Das, K. M. Ruff, and R. V. Pappu, “Relating sequence encoded information
to form and function of intrinsically disordered proteins,” Curr. Opin. Struct. Biol.,
vol. 32, pp. 102–112, 2015. New constructs and expression of proteins / Sequences
and topology.

[24] R. K. Das and R. V. Pappu, “Conformations of intrinsically disordered proteins are
influenced by linear sequence distributions of oppositely charged residues,” Proc.
Natl. Acad. Sci. U.S.A., vol. 110, no. 33, pp. 13392–13397, 2013.

[25] L. M. Iakoucheva, P. Radivojac, C. J. Brown, T. R. O’Connor, J. G. Sikes,
Z. Obradovic, and A. K. Dunker, “The importance of intrinsic disorder for protein
phosphorylation,” Nucleic Acids Res., vol. 32, pp. 1037–1049, 02 2004.

[26] J. Gao and D. Xu, Biocomputing 2012, ch. Correlation Between Posttranslational
Modification and Intrinsic Disorder in Protein, pp. 94–103. World Scientific Pub-
lishing Co. Pte. Ltd., 2012.

[27] L. N. Johnson and R. J. Lewis, “Structural basis for control by phosphorylation,”
Chem. Rev., vol. 101, no. 8, pp. 2209–2242, 2001.

[28] C. X. Gong and K. Iqbal, “Hyperphosphorylation of microtubule-associated protein
tau: a promising therapeutic target for alzheimer disease,” Curr. Med. Chem., vol. 15,
no. 23, pp. 2321–2328, 2008.

[29] C. G. De Kruif and C. Holt, Casein Micelle Structure, Functions and Interactions,
pp. 233–276. Boston, MA: Springer US, 2003.

[30] P. A. Raj, M. Johnsson, M. J. Levine, and G. H. Nancollas, “Salivary statherin. De-
pendence on sequence, charge, hydrogen bonding potency, and helical conformation
for adsorption to hydroxyapatite and inhibition of mineralization.,” J. Biol. Chem.,
vol. 267, no. 9, pp. 5968–76, 1992.

[31] K. Makrodimitris, D. L. Masica, E. T. Kim, and J. J. Gray, “Structure prediction of
protein–solid surface interactions reveals a molecular recognition motif of statherin
for hydroxyapatite,” J. Am. Chem. Soc., vol. 129, no. 44, pp. 13713–13722, 2007.

[32] J. A. Loo, W. Yan, P. Ramachandran, and D. T. Wong, “Comparative human salivary
and plasma proteomes,” J. Dent. Res., vol. 89, no. 10, pp. 1016–1023, 2010.

[33] M. Edgar, C. Dawes, and D. O’Mullane, eds., Saliva and Oral Health. London, UK:
British Dental Association, 3rd ed., 2004.

75



[34] W. Siqueira, W. Custodio, and E. McDonald, “New insights into the composition
and functions of the acquired enamel pellicle,” J. Dent. Res., vol. 91, no. 12, pp. 1110–
1118, 2012.

[35] M. J. Levine, “Development of artificial salivas,” Crit. Rev. Oral Biol. Med., vol. 4,
no. 3, pp. 279–286, 1993.

[36] E. Moreno and R. Zahradnik, “Demineralization and remineralization of dental
enamel,” J. Dent. Res., vol. 58, no. 2_suppl, pp. 896–903, 1979.

[37] D. Hay, D. Smith, S. Schluckebier, and E. Moreno, “Basic biological sciences rela-
tionship between concentration of human salivary statherin and inhibition of cal-
cium phosphate precipitation in stimulated human parotid saliva,” J. Dent. Res.,
vol. 63, no. 6, pp. 857–863, 1984.

[38] M. A. Buzalaf, A. R. Hannas, and M. T. Kato, “Saliva and dental erosion,” J. Appl.
Oral Sci., vol. 20, no. 5, pp. 493–502, 2012.

[39] W. H. Douglas, E. S. Reeh, N. Ramasubbu, P. A. Raj, K. K. Bhandary, and M. J.
Levine, “Statherin: A major boundary lubricant of human saliva,” Biochem. Biophys.
Res. Commun., vol. 180, no. 1, pp. 91 – 97, 1991.

[40] R. J. Gibbons and D. I. Hay, “Human salivary acidic proline-rich proteins and stath-
erin promote the attachment of actinomyces viscosus LY7 to apatitic surfaces.,” Infect.
Immun., vol. 56, no. 2, pp. 439–445, 1988.

[41] A. Amano, K. Kataoka, P. A. Raj, R. J. Genco, and S. Shizukuishi, “Binding sites
of salivary statherin for porphyromonas gingivalis recombinant fimbrillin,” Infect.
Immun., vol. 64, no. 10, pp. 4249–4254, 1996.

[42] H. Nagata, A. Sharma, H. T. Sojar, A. Amano, M. J. Levine, and R. J. Genco, “Role
of the carboxyl-terminal region of porphyromonas gingivalis fimbrillin in binding to
salivary proteins,” Infect. Immun., vol. 65, no. 2, pp. 422–427, 1997.

[43] D. H. Schlesinger and D. I. Hay, “Complete covalent structure of statherin, a
tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from hu-
man parotid saliva,” J. Biol. Chem., vol. 252, no. 5, pp. 1689–1695, 1977.

[44] J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic char-
acter of a protein,” J. Mol. Biol., vol. 157, no. 1, pp. 105–132, 1982.

[45] C. Holt, “Unfolded phosphopolypeptides enable soft and hard tissues to coexist in
the same organism with relative ease,”Curr. Opin. Struct. Biol., vol. 23, no. 3, pp. 420–
425, 2013. New contructs and expressions of proteins / Sequences and topology.

76



[46] Y. Lin, S. L. Currie, and M. K. Rosen, “Intrinsically disordered sequences enable
modulation of protein phase separation through distributed tyrosine motifs,” J. Biol.
Chem., vol. 292, no. 46, pp. 19110–19120, 2017.

[47] C. W. Pak, M. Kosno, A. S. Holehouse, S. B. Padrick, A. Mittal, R. Ali, A. A. Yunus,
D. Liu, R. V. Pappu, and M. K. Rosen, “Sequence determinants of intracellular phase
separation by complex coacervation of a disordered protein,” Mol. Cell, vol. 63, no. 1,
pp. 72–85, 2016.

[48] E. Rieloff, M. D. Tully, and M. Skepö, “Assessing the intricate balance of inter-
molecular interactions upon self-association of intrinsically disordered proteins,” J.
Mol. Biol., vol. 431, no. 3, pp. 511–523, 2019.

[49] J. N. Israelachvili, Intermolecular and Surface Forces. Oxford, UK: Academic Press,
Elsevier, 3rd ed., 2011.

[50] M. T. A. Evans, M. C. Phillips, and M. N. Jones, “The conformation and aggregation
of bovine β-casein a. II. Thermodynamics of thermal association and the effects of
changes in polar and apolar interactions on micellization,” Biopolymers, vol. 18, no. 5,
pp. 1123–1140, 1979.

[51] K. Takase, R. Niki, and S. Arima, “A sedimentation equilibrium study of the
temperature-dependent association of bovine β-casein,” Biochim. Biophys. Acta, Pro-
teins Proteomics, vol. 622, no. 1, pp. 1–8, 1980.

[52] J. O’Connell, V. Grinberg, and C. de Kruif, “Association behavior of β-casein,” J.
Colloid Interface Sci., vol. 258, no. 1, pp. 33–39, 2003.

[53] I. Portnaya, U. Cogan, Y. D. Livney, O. Ramon, K. Shimoni, M. Rosenberg,
and D. Danino, “Micellization of bovine β-casein studied by isothermal titration
microcalorimetry and cryogenic transmission electron microscopy,” J. Agric. Food
Chem., vol. 54, no. 15, pp. 5555–5561, 2006.

[54] C. Moitzi, I. Portnaya, O. Glatter, O. Ramon, and D. Danino, “Effect of temperat-
ure on self-assembly of bovine β-casein above and below isoelectric pH. Structural
analysis by cryogenic-transmission electron microscopy and small-angle x-ray scat-
tering,” Langmuir, vol. 24, no. 7, pp. 3020–3029, 2008.

[55] D. Chandler, “Hydrophobicity: Two faces of water,” Nature, vol. 417, no. 491,
pp. 493–502, 2002.

[56] T. L. Hill, An Introduction to Statistical Thermodynamics. Reading, MA, USA:
Addison-Wesley Publishing Company, 2nd ed., 1962.

77



[57] C. Cragnell, D. Durand, B. Cabane, and M. Skepö, “Coarse-grained modeling of
the intrinsically disordered protein histatin 5 in solution: Monte carlo simulations
in combination with saxs,” Proteins, vol. 84, no. 6, pp. 777–791, 2016.

[58] H. Berendsen, D. van der Spoel, and R. van Drunen, “Gromacs: A message-passing
parallel molecular dynamics implementation,” Comput. Phys. Commun., vol. 91,
no. 1, pp. 43–56, 1995.

[59] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms
for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem.The-
ory Comput., vol. 4, no. 3, pp. 435–447, 2008.

[60] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C.
Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, “GROMACS 4.5:
a high-throughput and highly parallel open source molecular simulation toolkit,”
Bioinformatics, vol. 29, pp. 845–854, 02 2013.

[61] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, “Tackling exascale
software challenges in molecular dynamics simulations with gromacs,” in Solving
Software Challenges for Exascale (S. Markidis and E. Laure, eds.), (Cham), pp. 3–27,
Springer International Publishing, 2015.

[62] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,
“Gromacs: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers,” SoftwareX, vol. 1-2, pp. 19–25, 2015.

[63] G. P. Moss, “Basic terminology of stereochemistry (IUPAC recommendations
1996),” Pure Appl. Chem., vol. 68, no. 12, pp. 2193–2222, 1996.

[64] S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw, “Water dispersion interac-
tions strongly influence simulated structural properties of disordered protein states,”
J. Phys. Chem. B, vol. 119, no. 16, pp. 5113–5123, 2015.

[65] S. Rauscher, V. Gapsys, M. J. Gajda, M. Zweckstetter, B. L. de Groot, and H. Grub-
müller, “Structural ensembles of intrinsically disordered proteins depend strongly on
force field: A comparison to experiment,” J. Chem. Theory Comput., vol. 11, no. 11,
pp. 5513–5524, 2015.

[66] J. Henriques and M. Skepö, “Molecular dynamics simulations of intrinsically dis-
ordered proteins: On the accuracy of the TIP4P-D water model and the repres-
entativeness of protein disorder models,” J. Chem. Theory Comput., vol. 12, no. 7,
pp. 3407–3415, 2016.

[67] A. V. Onufriev and S. Izadi, “Water models for biomolecular simulations,” WIREs
Comput. Mol. Sci., vol. 8, no. 2, p. e1347, 2018.

78



[68] W. L. Jorgensen, “Transferable intermolecular potential functions for water, alcohols,
and ethers. application to liquid water,” J. Am. Chem. Soc., vol. 103, pp. 335–340, 1981.

[69] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein,
“Comparison of simple potential functions for simulating liquid water,” J. Chem.
Phys., vol. 79, no. 2, pp. 926–935, 1983.

[70] S. R. Durell, B. R. Brooks, and A. Ben-Naim, “Solvent-induced forces between two
hydrophilic groups,” J. Phys. Chem., vol. 98, pp. 2198–2202, 1994.

[71] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck,
M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuch-
nir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen,
B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub,
M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, “All-atom empirical
potential for molecular modeling and dynamics studies of proteins,” J. Phys. Chem.
B, vol. 102, no. 18, pp. 3586–3616, 1998.

[72] J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of
water: TIP4P/2005,” J. Chem. Phys., vol. 123, no. 23, p. 234505, 2005.

[73] O. Guvench and A. D. MacKerell, Comparison of Protein Force Fields for Molecular
Dynamics Simulations, pp. 63–88. Totowa, NJ: Humana Press, 2008.

[74] S. Boonstra, P. R. Onck, and E. van der Giessen, “CHARMM TIP3P water model
suppresses peptide folding by solvating the unfolded state,” J. Phys. Chem. B, vol. 120,
no. 15, pp. 3692–3698, 2016.

[75] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grub-
müller, and A. D. MacKerell Jr, “CHARMM36m: an improved force field for folded
and intrinsically disordered proteins,” Nat. Methods., vol. 14, no. 1, pp. 71–73, 2017.

[76] R. B. Best, N.-V. Buchete, and G. Hummer, “Are current molecular dynamics force
fields too helical?,” Biophys. J., vol. 95, no. 1, pp. L07–L09, 2008.

[77] W. Wang, W. Ye, C. Jiang, R. Luo, and H.-F. Chen, “New force field on modeling
intrinsically disordered proteins,” Chem. Biol. Drug. Des., vol. 84, no. 3, pp. 253–269,
2014.

[78] Y. Zhang, H. Liu, S. Yang, R. Luo, and H.-F. Chen, “Well-balanced force field
ff03CMAP for folded and disordered proteins,” J. Chem. Theory Comput., vol. 15,
no. 12, pp. 6769–6780, 2019.

[79] S. Piana, J. L. Klepeis, and D. E. Shaw, “Assessing the accuracy of physical mod-
els used in protein-folding simulations: quantitative evidence from long molecular

79



dynamics simulations,” Curr. Opin. Struct. Biol., vol. 24, pp. 98–105, 2014. Folding
and binding / Nucleic acids and their protein complexes.

[80] J. Henriques, C. Cragnell, and M. Skepö, “Molecular dynamics simulations of in-
trinsically disordered proteins: Force field evaluation and comparison with experi-
ment,” J. Chem. Theory Comput., vol. 11, no. 7, pp. 3420–3431, 2015.

[81] A. D. Mackerell Jr., M. Feig, and C. L. Brooks III, “Extending the treatment of back-
bone energetics in protein force fields: Limitations of gas-phase quantum mechanics
in reproducing protein conformational distributions in molecular dynamics simula-
tions,” J. Comput. Chem., vol. 25, no. 11, pp. 1400–1415, 2004.

[82] R. B. Best and G. Hummer, “Optimized molecular dynamics force fields applied to
the helix−coil transition of polypeptides,” J. Phys. Chem. B, vol. 113, no. 26, pp. 9004–
9015, 2009.

[83] R. B. Best and J. Mittal, “Protein simulations with an optimized water model: Co-
operative helix formation and temperature-induced unfolded state collapse,” J. Phys.
Chem. B, vol. 114, no. 46, pp. 14916–14923, 2010.

[84] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and
D. E. Shaw, “Improved side-chain torsion potentials for the amber ff99sb protein
force field,” Proteins, vol. 78, no. 8, pp. 1950–1958, 2010.

[85] S. Piana, K. Lindorff-Larsen, and D. Shaw, “How robust are protein folding sim-
ulations with respect to force field parameterization?,” Biophys. J., vol. 100, no. 9,
pp. L47–L49, 2011.

[86] R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, and A. D. MacKer-
ell, “Optimization of the additive CHARMM all-atom protein force field targeting
improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles,”
J. Chem. Theory Comput., vol. 8, no. 9, pp. 3257–3273, 2012.

[87] R. B. Best, W. Zheng, and J. Mittal, “Balanced protein–water interactions improve
properties of disordered proteins and non-specific protein association,” J. Chem.The-
ory Comput., vol. 10, no. 11, pp. 5113–5124, 2014.

[88] F. Jiang, C.-Y. Zhou, and Y.-D. Wu, “Residue-specific force field based on the protein
coil library. RSFF1: Modification of OPLS-AA/L,” J. Phys. Chem. B, vol. 118, no. 25,
pp. 6983–6998, 2014.

[89] C.-Y. Zhou, F. Jiang, and Y.-D. Wu, “Residue-specific force field based on protein
coil library. rsff2: Modification of amber ff99sb,” J. Phys. Chem. B, vol. 119, no. 3,
pp. 1035–1047, 2015.

80



[90] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Sim-
merling, “ff14sb: Improving the accuracy of protein side chain and backbone para-
meters from ff99sb,” J. Chem. Theory Comput., vol. 11, no. 8, pp. 3696–3713, 2015.

[91] D. Song, R. Luo, and H.-F. Chen, “The idp-specific force field ff14idpsff improves
the conformer sampling of intrinsically disordered proteins,” J. Chem. Inf. Model.,
vol. 57, no. 5, pp. 1166–1178, 2017.

[92] P. Robustelli, S. Piana, and D. E. Shaw, “Developing a molecular dynamics force
field for both folded and disordered protein states,” Proc. Natl. Acad. Sci. U.S.A.,
vol. 115, no. 21, pp. E4758–E4766, 2018.

[93] H. Liu, D. Song, H. Lu, R. Luo, and H.-F. Chen, “Intrinsically disordered protein-
specific force field CHARMM36IDPSFF,” Chem. Biol. Drug. Des., vol. 92, no. 4,
pp. 1722–1735, 2018.

[94] H. Liu, D. Song, Y. Zhang, S. Yang, R. Luo, and H.-F. Chen, “Extensive tests and
evaluation of the CHARMM36IDPSFF force field for intrinsically disordered pro-
teins and folded proteins,” Phys. Chem. Chem. Phys., vol. 21, pp. 21918–21931, 2019.

[95] S. Yang, H. Liu, Y. Zhang, H. Lu, and H. Chen, “Residue-specific force field im-
proving the sample of intrinsically disordered proteins and folded proteins,” J. Chem.
Inf. Model., vol. 59, no. 11, pp. 4793–4805, 2019.

[96] J. Mu, H. Liu, J. Zhang, R. Luo, and H.-F. Chen, “Recent force field strategies for
intrinsically disordered proteins,” J. Chem. Inf. Model., vol. 61, no. 3, pp. 1037–1047,
2021.

[97] J. Huang and A. D. MacKerell, “Force field development and simulations of intrins-
ically disordered proteins,” Curr. Opin. Struct. Biol., vol. 48, pp. 40–48, 2018. Folding
and binding in silico, in vitro and in cellula • Proteins: An Evolutionary Perspective.

[98] S.-H. Chong, P. Chatterjee, and S. Ham, “Computer simulations of intrinsically
disordered proteins,” Annu. Rev. Phys. Chem., vol. 68, no. 1, pp. 117–134, 2017.

[99] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” J. Chem. Phys., vol. 21,
no. 6, pp. 1087–1092, 1953.

[100] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to
Applications. San Diego, CA, USA: Academic Press, 2nd ed., 2002.

[101] J. Reščič and P. Linse, “MOLSIM: A modular molecular simulation software,” J.
Comput. Chem., vol. 36, no. 16, pp. 1259–1274, 2015.

81



[102] M. Allen and D. Tildesley, Computer Simulation of Liquids. Oxford University Press,
1989.

[103] M. Abraham, B. Hess, D. van der Spoel, and E. Lindahl, GROMACS Reference
Manual version 2018.4. The GROMACS development teams, www.gromacs.org.

[104] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N·log(N) method
for ewald sums in large systems,” J. Chem. Phys., vol. 98, no. 12, pp. 10089–10092,
1993.

[105] C. W. Hopkins, S. Le Grand, R. C. Walker, and A. E. Roitberg, “Long-time-step
molecular dynamics through hydrogen mass repartitioning,” J. Chem. Theory Com-
put., vol. 11, no. 4, pp. 1864–1874, 2015.

[106] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, “Lincs: A lin-
ear constraint solver for molecular simulations,” J. Comput. Chem., vol. 18, no. 12,
pp. 1463–1472, 1997.

[107] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity
rescaling,” J. Chem. Phys., vol. 126, no. 1, p. 014101, 2007.

[108] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new
molecular dynamics method,” J. Appl. Phys., vol. 52, no. 12, pp. 7182–7190, 1981.

[109] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,
“Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81,
no. 8, pp. 3684–3690, 1984.

[110] D. Svergun, C. Barberato, and M. H. J. Koch, “Crysol– a program to evaluate x-ray
solution scattering of biological macromolecules from atomic coordinates,” J. Appl.
Crystallogr., vol. 28, no. 6, pp. 768–773, 1995.

[111] J. Henriques, L. Arleth, K. Lindorff-Larsen, and M. Skepö, “On the calculation of
SAXS profiles of folded and intrinsically disordered proteins from computer simu-
lations,” J. Mol. Biol., vol. 430, no. 16, pp. 2521–2539, 2018. Intrinsically Disordered
Proteins.

[112] P. Chen and J. Hub, “Validating solution ensembles from molecular dynamics simu-
lation by wide-angle X-ray scattering data,” Biophys. J., vol. 107, no. 2, pp. 435–447,
2014.

[113] Y. Hayashi, M. Ullner, and P. Linse, “Complex formation in solutions of oppositely
charged polyelectrolytes at different polyion compositions and salt content,” J. Phys.
Chem. B, vol. 107, no. 32, pp. 8198–8207, 2003.

82



[114] H. Arkın and W. Janke, “Gyration tensor based analysis of the shapes of polymer
chains in an attractive spherical cage,” J. Chem. Phys., vol. 138, no. 5, p. 054904, 2013.

[115] M. Kenward and M. D. Whitmore, “A systematic monte carlo study of self-
assembling amphiphiles in solution,” J. Chem. Phys., vol. 116, no. 8, pp. 3455–3470,
2002.

[116] W. Kabsch and C. Sander, “Dictionary of protein secondary structure: Pattern re-
cognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22, no. 12,
pp. 2577–2637, 1983.

[117] R. Chebrek, S. Leonard, A. G. de Brevern, and J.-C. Gelly, “PolyprOnline: polypro-
line helix II and secondary structure assignment database,” Database, vol. 2014, 11
2014. bau102.

[118] D. Frishman and P. Argos, “Knowledge-based protein secondary structure assign-
ment,” Proteins, vol. 23, no. 4, pp. 566–579, 1995.

[119] W. Humphrey, A. Dalke, and K. Schulten, “VMD – Visual Molecular Dynamics,”
J. Mol. Graph., vol. 14, pp. 33–38, 1996.

[120] Y. Zhang and C. Sagui, “Secondary structure assignment for conformationally irreg-
ular peptides: Comparison between DSSP, STRIDE and KAKSI,” J. Mol. Graph.
Model., vol. 55, pp. 72–84, 2015.

[121] L. Mavridis and R. W. Janes, “PDB2CD: a web-based application for the genera-
tion of circular dichroism spectra from protein atomic coordinates,” Bioinformatics,
vol. 33, pp. 56–63, 09 2016.

[122] G. Nagy, M. Igaev, N. C. Jones, S. V. Hoffmann, and H. Grubmüller, “Sesca: Pre-
dicting circular dichroism spectra from protein molecular structures,” J. Chem. The-
ory Comput., vol. 15, no. 9, pp. 5087–5102, 2019.

[123] E. Fagerberg, L. K. Månsson, S. Lenton, and M. Skepö, “The effects of chain length
on the structural properties of intrinsically disordered proteins in concentrated solu-
tions,” J. Phys. Chem. B, vol. 124, no. 52, pp. 11843–11853, 2020.

[124] S. Jephthah, F. Pesce, K. Lindorff-Larsen, and M. Skepö, “Force field effects in sim-
ulations of flexible peptides with varying polyproline II propensity,” J. Chem. Theory
Comput., 2021.

[125] P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara,
L. Å. Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel, L. G. M. Pettersson, and A. Nils-
son, “The structure of the first coordination shell in liquid water,” Science, vol. 304,
no. 5673, pp. 995–999, 2004.

83



[126] S. R. R. Campos and A. M. Baptista, “Conformational analysis in a multidimen-
sional energy landscape: Study of an arginylglutamate repeat,” J. Phys. Chem. B,
vol. 113, no. 49, pp. 15989–16001, 2009.

[127] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent de-
velopments,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 374, no. 2065, p. 20150202,
2016.

[128] A. Grossfield and D. M. Zuckerman, “Chapter 2 quantifying uncertainty and
sampling quality in biomolecular simulations,” vol. 5 of Annual Reports in Computa-
tional Chemistry, pp. 23–48, Elsevier, 2009.

[129] A. Grossfield, P. N. Patrone, D. R. Roe, A. J. Schultz, D. Siderius, and D. M. Zuck-
erman, “Best practices for quantification of uncertainty and sampling quality in mo-
lecular simulations [article v1.0],” Living Journal of Computational Molecular Science,
vol. 1, p. 5067, Oct. 2018.

[130] B. J. H. Kuipers and H. Gruppen, “Prediction of molar extinction coefficients of
proteins and peptides using uv absorption of the constituent amino acids at 214 nm
to enable quantitative reverse phase high-performance liquid chromatography–mass
spectrometry analysis,” J. Agric. Food Chem., vol. 55, no. 14, pp. 5445–5451, 2007.

[131] E. Mihalyi, “Numerical values of the absorbances of the aromatic amino acids in
acid, neutral, and alkaline solutions,” J. Chem. Eng. Data, vol. 13, no. 2, pp. 179–182,
1968.

[132] D. I. Svergun, M. H. J. Koch, P. A. Timmins, and R. P. May, Small Angle X-ray and
Neutron Scattering from Solutions of Biological Macromolecules. Oxford, UK: Oxford
University Press, 1st ed., 2013.

[133] J. Pérez and P. Vachette, A Successful Combination: Coupling SE-HPLC with SAXS,
pp. 183–199. Singapore: Springer Singapore, 2017.

[134] Guinier, André, “La diffraction des rayons x aux très petits angles : application à
l’étude de phénomènes ultramicroscopiques,” Ann. Phys., vol. 11, no. 12, pp. 161–237,
1939.

[135] V. Receveur-Bréchot and D. Durand, “How random are intrinsically disordered pro-
teins? a small angle scattering perspective,” Curr. Protein Pept. Sci., vol. 13, pp. 55–75,
2012.

[136] D. Orthaber, A. Bergmann, and O. Glatter, “SAXS experiments on absolute scale
with Kratky systems using water as a secondary standard,” J. Appl. Crystallogr., vol. 33,
pp. 218–225, Apr 2000.

84



[137] D. Durand, C. Vivès, D. Cannella, J. Pérez, E. Pebay-Peyroula, P. Vachette, and
F. Fieschi, “NADPH oxidase activator p67phox behaves in solution as a multidomain
protein with semi-flexible linkers,” J. Struct. Biol., vol. 169, no. 1, pp. 45 – 53, 2010.

[138] O. Glatter, “Data evaluation in small angle scattering: calculation of the radial elec-
tron density distribution by means of indirect fourier transformation,” Acta Phys.
Austriaca, vol. 47, no. 1-2, pp. 83–102, 1977.

[139] D. I. Svergun, “Determination of the regularization parameter in indirect-transform
methods using perceptual criteria,” J. Appl. Crystallogr., vol. 25, no. 4, pp. 495–503,
1992.

[140] D. A. Jacques and J. Trewhella, “Small-angle scattering for structural biology—
expanding the frontier while avoiding the pitfalls,” Protein Sci., vol. 19, no. 4,
pp. 642–657, 2010.

[141] F. Jin and F. Gräter, “How multisite phosphorylation impacts the conformations of
intrinsically disordered proteins,” PLoS Comput. Biol., vol. 17, no. 5, p. e1008939,
2021.

[142] A. Miles and B. Wallace, “Chapter 6 - circular dichroism spectroscopy for protein
characterization: Biopharmaceutical applications,” in Biophysical Characterization of
Proteins in Developing Biopharmaceuticals (D. J. Houde and S. A. Berkowitz, eds.),
pp. 109 – 137, Amsterdam: Elsevier, 2015.

[143] S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,”
Biochim. Biophys. Acta, Proteins Proteomics, vol. 1751, no. 2, pp. 119 – 139, 2005.

[144] L. Whitmore, A. J. Miles, L. Mavridis, R. W. Janes, and B. Wallace, “PCDDB:
new developments at the Protein Circular Dichroism Data Bank,” Nucleic Acids Res.,
vol. 45, pp. D303–D307, 09 2016.

[145] A. Abdul-Gader, A. J. Miles, and B. A. Wallace, “A reference dataset for the ana-
lyses of membrane protein secondary structures and transmembrane residues using
circular dichroism spectroscopy,” Bioinformatics, vol. 27, pp. 1630–1636, 04 2011.

[146] J. L. S. Lopes, A. J. Miles, L. Whitmore, and B. A. Wallace, “Distinct circular dichro-
ism spectroscopic signatures of polyproline II and unordered secondary structures:
Applications in secondary structure analyses,” Protein Sci., vol. 23, no. 12, pp. 1765–
1772, 2014.

[147] J. Tolchard, S. J. Walpole, A. J. Miles, R. Maytum, L. A. Eaglen, T. Hackstadt,
B. A. Wallace, and T. M. A. Blumenschein, “The intrinsically disordered tarp protein
from chlamydia binds actin with a partially preformed helix,” Sci. Rep., vol. 8, no. 1,
p. 1960, 2018.

85



[148] N. Sreerama and R. W. Woody, “Computation and analysis of protein circular di-
chroism spectra,” in Numerical Computer Methods, Part D, vol. 383 of Methods in
Enzymology, pp. 318 – 351, Academic Press, 2004.

[149] B. Schuler, A. Soranno, H. Hofmann, and D. Nettels, “Single-molecule fret spec-
troscopy and the polymer physics of unfolded and intrinsically disordered proteins,”
Annu. Rev. Biophys., vol. 45, no. 1, pp. 207–231, 2016.

[150] J. A. Riback, M. A. Bowman, A. M. Zmyslowski, K. W. Plaxco, P. L. Clark, and
T. R. Sosnick, “Commonly used fret fluorophores promote collapse of an otherwise
disordered protein,” Proc. Natl. Acad. Sci. U.S.A., vol. 116, no. 18, pp. 8889–8894,
2019.

[151] M. Carballo-Pacheco and B. Strodel, “Comparison of force fields for alzheimer’s a :
A case study for intrinsically disordered proteins,” Protein Sci., vol. 26, no. 2, pp. 174–
185, 2017.

[152] G. H. Zerze, W. Zheng, R. B. Best, and J. Mittal, “Evolution of all-atom protein
force fields to improve local and global properties,” J. Phys. Chem. Lett., vol. 10,
no. 9, pp. 2227–2234, 2019.

[153] E. W. Martin, A. S. Holehouse, C. R. Grace, A. Hughes, R. V. Pappu, and T. Mit-
tag, “Sequence determinants of the conformational properties of an intrinsically dis-
ordered protein prior to and upon multisite phosphorylation,” J. Am. Chem. Soc.,
vol. 138, no. 47, pp. 15323–15335, 2016.

[154] E. Bienkiewicz and K. Lumb, “Random-coil chemical shifts of phosphorylated
amino acids,” J. Biomol. NMR, vol. 15, no. 3, pp. 203–206, 1999.

[155] R. Zangi, R. Zhou, and B. J. Berne, “Urea’s action on hydrophobic interactions,” J.
Am. Chem. Soc., vol. 131, no. 4, pp. 1535–1541, 2009.

[156] L. Costantino, G. D’Errico, P. Roscigno, and V. Vitagliano, “Effect of urea and al-
kylureas on micelle formation by a nonionic surfactant with short hydrophobic tail
at 25 °c,” J. Phys. Chem. B, vol. 104, no. 31, pp. 7326–7333, 2000.

[157] N. Homeyer, A. H. C. Horn, H. Lanig, and H. Sticht, “Amber force-field paramet-
ers for phosphorylated amino acids in different protonation states: phosphoserine,
phosphothreonine, phosphotyrosine, and phosphohistidine,” J. Mol. Model., vol. 12,
pp. 281–289, Feb 2006.

[158] T. Steinbrecher, J. Latzer, and D. A. Case, “Revised amber parameters for bioorganic
phosphates,” J. Chem. Theory Comput., vol. 8, no. 11, pp. 4405–4412, 2012.

86



[159] G. A. Naganagowda, T. L. Gururaja, and M. J. Levine, “Delineation of conforma-
tional preferences in human salivary statherin by 1h, 31p nmr and cd studies: Sequen-
tial assignment and structure-function correlations,” J. Biomol. Struct. Dyn., vol. 16,
no. 1, pp. 91–107, 1998.

[160] K. T. Debiec, A. M. Gronenborn, and L. T. Chong, “Evaluating the strength of
salt bridges: A comparison of current biomolecular force fields,” J. Phys. Chem. B,
vol. 118, no. 24, pp. 6561–6569, 2014.

[161] M. C. Ahmed, E. Papaleo, and K. Lindorff-Larsen, “How well do force fields capture
the strength of salt bridges in proteins?,” PeerJ, vol. 6, p. e4967, June 2018.

[162] N. Errington and A. J. Doig, “A phosphoserine–lysine salt bridge within an α-helical
peptide, the strongest α-helix side-chain interaction measured to date,” Biochemistry,
vol. 44, no. 20, pp. 7553–7558, 2005.

[163] E. Fagerberg, S. Lenton, and M. Skepö, “Evaluating models of varying complexity
of crowded intrinsically disordered protein solutions against SAXS,” J. Chem. Theory
Comput., vol. 15, no. 12, pp. 6968–6983, 2019.

[164] C. Cragnell, L. Staby, S. Lenton, B. B. Kragelund, and M. Skepö, “Dynamical oli-
gomerisation of histidine rich intrinsically disordered proteins is regulated through
zinc-histidine interactions,” Biomolecules, vol. 9, no. 5, 2019.

[165] J. R. Long, W. J. Shaw, P. S. Stayton, and G. P. Drobny, “Structure and dynamics
of hydrated statherin on hydroxyapatite as determined by solid-state NMR,” Bio-
chemistry, vol. 40, no. 51, pp. 15451–15455, 2001.

[166] G. Goobes, R. Goobes, O. Schueler-Furman, D. Baker, P. S. Stayton, and G. P.
Drobny, “Folding of the c-terminal bacterial binding domain in statherin upon ad-
sorption onto hydroxyapatite crystals,” Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 44,
pp. 16083–16088, 2006.

[167] A. Amano, H. T. Sojar, J. Y. Lee, A. Sharma, M. J. Levine, and R. J. Genco, “Salivary
receptors for recombinant fimbrillin of porphyromonas gingivalis,” Infect. Immun.,
vol. 62, no. 8, pp. 3372–3380, 1994.

87





Paper i

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the terms of
the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 License.





Utilizing Coarse-Grained Modeling and
Monte Carlo Simulations to Evaluate the
Conformational Ensemble of Intrinsically
Disordered Proteins and Regions

Carolina Cragnell, Ellen Rieloff and Marie Skepö

Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

Correspondence to Marie Skepö: marie.skepo@teokem.lu.se
https://doi.org/10.1016/j.jmb.2018.03.006
Edited by Jianhan Chen

Abstract

In this study, we have used the coarse-grained model developed for the intrinsically disordered saliva protein
(IDP) Histatin 5, on an experimental selection of monomeric IDPs, and we show that the model is generally
applicable when electrostatic interactions dominate the intra-molecular interactions. Experimental and
theoretically calculated small-angle X-ray scattering data are presented in the form of Kratky plots, and
discussions are made with respect to polymer theory and the self-avoiding walk model. Furthermore, the
impact of electrostatic interactions is shown and related to estimations of the conformational ensembles
obtained from computer simulations and “Flexible-meccano.” Special attention is given to the form factor and
how it is affected by the salt concentration, as well as the approximation of using the form factor obtained
under physiological conditions to obtain the structure factor.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Intrinsically disordered proteins and regions (IDPs
and IDRs), from now on referred to as IDPs, are
characterized by a lack of stable tertiary structure
when the proteins exist as isolated polypeptide
chains under physiological conditions in vitro [1,2].
More recently, it has been shown that ~30% of all
proteins in eukaryotic organisms belong to this group
of proteins, and that IDPs are involved in a large
number of central biological processes and dis-
eases. This discovery challenged the traditional
protein structure paradigm, which stated that a
specific well-defined structure was required for the
correct function of a protein. Biochemical evidence
has since shown that IDPs are functional, and that
the lack of folded structures is related to their
functions [3,4].
There is a great interest in the research community

in the structure–function relationship for IDPs, and
one hypothesis is that upon adsorption to surfaces,
IDPs might adopt a structure, which gives rise to a
function. Hence, for that purpose it is of interest to
relate the properties of IDPs in solution with their
properties in the adsorbed state, as well as their

interaction with biological membranes. To be able to
obtain a molecular understanding of macromole-
cules, it is useful to combine experimental tech-
niques with atomistic and coarse-grained modeling.
There have been great advances regarding atomis-
tic simulations of IDPs, with the development and
justification of force fields and water models, where
the results have been validated against experimental
results such as Förster resonance energy transfer,
small-angle X-ray scattering (SAXS), and NMR. The
reader is referred to the literature for more informa-
tion [5–10]. The advantages of atomistic simulations
are that one uses a full-atom approach and takes the
water into account explicitly, whereas the limitation is
that one is restricted to relatively short proteins due
to the system size and computational power.
To be able to model longer proteins and more

complex systems, coarse-grained modeling and
Monte Carlo/molecular dynamics simulations are a
good alternative. Of course, there will be approxi-
mations and simplifications; nevertheless, the ap-
proach has been shown to work very well. For more
than 30 years, a coarse-grained model based on the
primitive model [11], in combination with Monte Carlo
s imu l a t i ons , has been used to mode l

0022-2836/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). J Mol Biol (2018) 430, 2478–2492
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polyelectrolytes and polyampholytes under various
conditions. Sometimes this model is also referred to
as the bead-necklace model. In this model, each
monomer corresponds to a bead of a certain radius
that can also have a charge associated with it. The
water is always treated as a dielectric continuum.
In this study, we have used the coarse-grained

model developed for the intrinsically disordered saliva
protein Histatin 5 [12], on an experimental pool of IDPs
obtained from different sources [13–18], as well as
new experimental SAXS data for Statherin, also a
saliva protein. We show that the model is generally
applicable when electrostatic interactions dominate
the intra-molecular interactions. For consistency, the
reader should notice that we restrict our comparisons
to experimental data obtained from SAXS. Focus will
be on experimental and theoretically calculated SAXS
data presented as Kratky plots, as well as comparison
with polymer theory and the self-avoiding randomwalk
(SARW) model. Furthermore, the impact of electro-
static interactions is shown and related to estimations
of the conformational ensembles obtained from
computer simulations and Flexible-meccano [19].

Results and Discussion

Polymer Model

The aim is to investigate if there exists a general
coarse-grained model that accurately captures the
structural properties of IDPs at both high and low salt
concentrations. To assure the generality, the model
developed for Histatin 5 [12] will be utilized on an
experimental pool of IDPs covering a sequence length
from 12 to 248 amino acids, and we will only compare
the finding with experimental SAXS data. The IDPs
have been characterized according to Das et al. [20],
using the concepts: net charge per residue (NCPR),

and fraction of charged residues (FCR), where
NCPR = (f+ − f−) and FCR = (f+ + f−), with f being
the fraction of positive/negative charges. According to
this approach, polyampholytes and polyelectrolytes
can be characterized to be either strong or weak,
where FCR ≥ 0.3 corresponds to the former and
FCR b 0.3 to the latter. Moreover, they can be neutral,
that is, NCPR ≈ 0, or have a net charge. Polyampho-
lytes have approximately an equivalent fraction of
opposite charges; thus, NCPR is low, whereas
polyelectrolytes have more of one type of charge.
The proteins used in this study are summarized in
Table 1. As shown, although the selection of proteins
might seem small, a fairly representative pool of IDPs
is given with respect to the charges, the number of
phosphorylated residues (Nphos), the number of
hydrophobic amino acids (Nhphob), and the proline
content. The number of hydrophobic residues is
based on the notion that all amino acids with a higher
hydropathy value than glycine in the Kyte–Doolittle
scale [21], are considered hydrophobic.
The level of compaction/extension has been ana-

lyzed by comparing the radius of gyration (Rg) from
SAXS with the corresponding analysis obtained from
Monte Carlo simulations, that is, comparison of
ensemble-averaged estimates as well as the full
conformational ensemble through the probability
distribution. Fig. 1a displays the radii of gyration from
the simulations versus the experimental counterparts.
As is clearly shown, there is a good correspondence
between the ensemble estimates. However, there are
proteins that display simulated radii of gyration that are
statistically different from the experimental data;
moreover, the experimental data are more extended
than the model predicts, that is: RNase E, two of the
phosphorylated proteins, namely, pAsh1, and pSic1,
as well as the proline-rich protein II-1ng. For RNase E,
we hypothesize that it is due to a slight degree of self-
association; for pAsh1 and pSic1, we expect it to be

Table 1. Details of the proteins within this study in terms of the length of the amino acid sequence, the number of
phosphorylated residues (Nphos), the FCR, the NCPR, the percentage of prolines, and the number of hydrophobic residues
(Nhphob). Furthermore, both the radii of gyration (Rg) obtained from experiments and simulations are included.

Length Nphos FCR NCPR % Prolines Nhphob Rg, SAXS
(Å)

Rg, Sim
(Å)

Hst 54–15 [16] 12 0 0.42 +0.42 0 2 9.2 ± 0.1 9.64 ± 0.02
Hst 5 [12] 24 0 0.38 +0.21 0 2 13.8 ± 0.1 13.77 ± 0.44
IB5 [15] 73 0 0.11 +0.08 40 5 27.9 ± 1.0 26.01 ± 0.05
Ash1 [13] 83 0 0.20 +0.18 15 12 28.4 ± 3.4 29.56 ± 0.02
Sic1 [14] 92 0 0.12 +0.12 16 20 28.8 ± 1.2 30.71 ± 0.05
II-1ng [15] 141 0 0. 19 +0.11 36 2 41.1 ± 1.0 38.24 ± 0.07
RNase E [17] 248 0 0.39 +0.05 6 55 52.6 ± 0.3 48.52 ± 0.11

Phosphorylated IDPs
Statherin, 43 2 0.28 −0.09 16.3 7 19.3 ± 0.2 18.05 ± 0.05
pAsh1 [13] 83 10 0.45 −0.06 14.5 12 27.5 ± 1.2 21.76 ± 0.02
pSic1 [14] 92 6 0.25 −0.01 16.3 20 32.2 ± 2.2 27.55 ± 0.05

The experimentalRg values for Sic1 and pSic1 were determined using SAXS data obtained from the Protein Ensemble Database [14], and
the Guinier approach.
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due to the high number of phosphorylated residues,
whereas for II-1ng it is due to the proline content
which, due to the cyclic structure of the amino acid,
gives the proline an exceptional conformational
rigidity. Nevertheless, the reader should notice that
the radii of gyration for the proline-rich proteins do
agree remarkably well.
For some polymers, such as the well-known

polymer polyethylene glycol, it is possible to define
an empirical expression for a simplistic estimation of
the Rg [22], according to the power-law Rg = ρ0N

υ.
In this context, υ refers to the Flory exponent, which
depends on the structural behavior of the polymer
chain in the solvent, N refers to the number of

monomers in the chain, and ρ0 is a prefactor. The
latter is a function of, among other things, the details
of the monomer as the radius, the persistence
length, and the bond geometry. This leads to the
question: Is it possible to define a similar expression
for IDPs as for polyethylene glycol? For a random
walk (also denoted ideal chain), the parameter υ is
equal to 0.5, whereas it is approximately 0.6 for a
SARW [23]. In the latter, the interactions between
the chain monomers (or for IDPs, the amino acids),
are modeled as excluded volumes, which cause a
reduction in the conformational possibilities of the
chain, in comparison with a random walk where all
bonds and torsion angles are equally probable. In
Fig. 1b, the experimentally obtained radii of gyration
(from SAXS) of our selection of model proteins are
shown as a function of sequence length. From the fit
to the curve, υ is estimated to be approximately 0.59,
which matches closely the exponent obtained from
the computer simulations (υ = 0.58), where only
excluded volumes are taken into account (data not
shown). Hence, it seems that the selection of IDPs
used in this study behave as SARWs under the
given solution conditions, that is, high ionic strength.
This is a reasonable conclusion when electrostatic
interactions dominate the intra-chain interactions,
which can be highly screened by the large amount of
salt present in the solution. This rationale is further
verified since the fractions of hydrophobic residues
of the used IDPs are rather low, ≤20% (see Table 1).
By fitting the experimentally obtained radii of

gyration as a function of the number of amino acids
for the proteins used in this study, we obtain a
prefactor ρ0 of approximately 2.13, which is in good
agreement with themodel in the computer simulations
where the radius of the amino acids is set to 2 Å. In the
literature, the Flory exponent varies between υ = 0.5
and 0.6 depending on the technique (Förster reso-
nance energy transfer or SAXS), protein, and solvent
used, that is, in the latter with or without denaturing
agents [24–30]. This is plausible since the Flory
exponent is sensitive to the intramolecular interactions
in the protein, thus the amino acid composition. A
more hydrophilic protein with a low fraction of
hydrophobic amino acids will obtain the higher value
of the Flory exponent, whereas the opposite occurs if
the fraction of charges is low and the number of
hydrophobic amino acids is high, where the latter has
been reported by Hofmann et al. [27]. It is very
interesting to notice though that hydrophobic disor-
dered proteins are expanded in water, as reported for
example by Riback et al. [31]. In the latter, the authors
of this paper hypothesize that the decrease in the
Flory exponentmight bedue to the hydrophobic effect;
that is, the final conformational state is driven by the
total minimization of the hydrophobic surface, which
manifests itself as an effective attractive force. Notice
also that the statistical basis in all experimental
studies presented is rather low; hence, the shape of

Fig. 1. (a) Radii of gyration obtained from simulations
versus the radii of gyration obtained fromexperimentswhere
black filled circles correspond to non-phosphorylated IDPs,
red filled circles to phosphorylated proteins where the
phoshate group is assumed to have a net charge of −2e,
and green filled circles to proline-rich proteins. (b) The
experimental radii of gyration as a function of the protein
sequence length on log–log scale. The ionic strength
corresponds to 150 mM, except for IB5 and II-1ng, where
it was 50 mM. For most of the reported values, the precision
is smaller than the marker in the plot; hence, the reader is
referred to Table 1 for more information.
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the curve is rather sensitive to the addition of a further
IDP.
As is well known, an IDP can exist in an infinite

number of spatial states due to its high flexibility and
fast dynamics. To obtain more information about the
conformational averages, the Monte Carlo simula-
tion technique is invaluable since it gives the
Boltzmann-weighted probability of finding a system
in a specific state. The properties of IDPs are of
course dependent on different parameters such as
the amino acid sequence and the temperature, as
well as the solution properties. It has been shown in
several papers [27,28,30], and above, that the IDPs
can be considered to behave as SARWs when only
steric interactions are taken into account due to high
salt concentration or the presence of a denaturing
agent. The next question is: How does the chain
length affect the conformational ensemble average
under such conditions? For this purpose, we have
analyzed the full width half maximum (FWHM) and
peak position of the probability distribution function
of the radius of gyration and the shape of the
adopted conformations using our model protein
without charges, that is, considering only steric
interactions. As expected and shown in Fig. 2, the
ensemble of possible conformations increases as a
function of the number of amino acids; cf. Rg spans
from 10 to 35 Å, and from 40 to 130 Å, for 50- and
500-amino-acid monomers, respectively. By analyz-
ing the FWHM as a function of the number of amino
acids in the protein sequence, an estimate of the
conformational entropy of the model protein can be
obtained such that the broader the peak, the larger
the chain entropy. The FWHM and the peak position
as a function of protein length show the same υ ≈ 0.6
scaling behavior as the radius of gyration (data not
shown).
The shape of the IDP can be defined as the ratio of

the mean-square end-to-end distance, 〈Ree
2 〉1/2, and

the mean-square radius of gyration 〈Rg
2〉1/2 (also

denoted Ree and Rg) according to: rshape = 〈Ree
2 〉/

〈Rg
2〉. In the rod-like limit, rshape = 12; for a flexible

chain in good solvent, rshape ≈ 6.3; and for an ideal
chain, rshape = 6. For all chain lengths, the shape
probability distribution is a symmetric bell-shaped
function with a broad maximum of only 0.15 at
rshape = 6. The latter number indicates that a specific
average conformation occurs during 15% of the
simulation length (data not shown). Hence, there is a
relatively high probability to accommodate all the
different possible shapes, for example, from a rather
contracted chain to a rigid prolate. Notice that
rshape = 1 does not necessarily indicate that an IDP
is a compact globule, rather that the chain is
contracted and that the mean-square end-to-end
distance and the mean-square radius of gyration are
of the same order.

The effect of electrostatic interactions on the
single molecular level

The impact of electrostatic interactions at the single
molecular level on the conformational ensemble of
IDPs, and how it affects the scattering spectra,
visualized asKratky plots, has also been investigated.
Of particular interest is when the ionic strength is
150 mM, since that is commonly applied in SAXS
experiments to determine the form factor. Here, the
study has been divided into two parts: (i) non-
phosphorylated and (ii) phosphorylated proteins.

Non-phosphorylated IDPs

Fig. 3 shows the obtained radii of gyration
calculated from simulations at 10 mM and 150 mM
salt, which corresponds to Debye screening lengths

Fig. 2. The conformational ensemble of radius of
gyration for different lengths of the model protein, where
only steric interactions through excluded volumes are
taken into account.

Fig. 3. The simulated radii of gyration of the chosen
IDPs at high and low ionic strength (150 and 10 mM).
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(κ−1) of approximately 30 and 8 Å, respectively. As
shown, it is clearly visible that upon the addition of
salt, some proteins attain polyelectrolytic behavior,
whereas other proteins exhibit polyampholytic be-
havior. In the former, the protein contracts, whereas
in the latter, it becomes more extended when the salt
concentration is increasing. Moreover, a clear trend
is also obtained with respect to the chain length; that
is, the screening effect is more accentuated for
longer proteins, which induces larger discrepancies
in the estimated extensions. Hence, in this respect,
the charge distribution obtained from the specific
amino acid sequence and the protein length due to
the higher probability to attain a larger population of
conformations are of importance.
The effect of salt on Rg and the conformational

ensemble has been further analyzed focusing on the
protein Ash1420–500 (hereafter referred to as Ash1).
This protein has been extensively studied in the paper
byMartin et al. [13]. Among other things, they showed
that Ash1 adopts coil-like conformations that are
expanded and well solvated. The Rg for Ash1 from
experiments and modeling with and without charges
at different ionic strengths are given in Table 2. There
is a clear trend in the simulated Rg, which decreases
as a function of salt concentration. The SAXS
measurements (150 mM salt) gave an Rg of 28.5 ±
3.4 Å, which means that all simulated radii of gyration
except the one obtained at 10 mM salt are within the
uncertainty. The simulations show that the conforma-
tional properties of SARW are reached first upon the
addition of 1000 mM salt, that is, when the Debye
screening length is shorter than the average bead-to-
bead distance in the model, cf. 3.04 Å for the former
with 4.1 Å for the latter. The reader should notice that
the more dramatic effects occur, of course, in the
lower salt regime, for example, between 10 and
150 mM salt. These results are clearly shown in the
probability distribution of the conformational ensemble
as given in Fig. 4a. Notice that a small change in the
ensemble average will affect the conformational
ensemble more remarkably, and that the electrostatic
interactions within the chain are quite pronounced

even at higher salt concentrations. As shown in
Fig. 4a, Ash1 behaves as a polyelectrolyte in the
sense that it contracts upon the addition of salt. The
FWHMs of the probability distribution ofRg for Ash1 at
an ionic strength of 10 and 150 mM are estimated to
be 13.70 ± 0.10 and 12.91 ± 0.18 Å, respectively.
These numbers confirm that the conformational
entropy of Ash1 is decreasing upon salt addition,
which is in line with the fact that the preferred shape is
more contracted at higher salt concentrations.
The asphericity ranges from 0 for a sphere to 1 for a

rod, and have been determined according to the
protocol by Angelescu and Linse [32]. The ensemble
averages of the asphericity as well as the shape factor
indicate that at low ionic strength, that is, 10 mM,Ash1
becomes more extended than a SARW, the values
being 0.6 and 6.6, respectively. At increased salt
concentrations, the values level off to approximately
0.5 for the asphericity and 6.3 for the shape, clearly
indicating conformations resembling aSARW.Hence,
at 150 mM and higher ionic strengths, it is possible to
model the form factor as a SARW, especially when

Table 2. Conformational properties and the FWHM of the
IDR in Ash1 as a function of salt obtained from simulation.

I (mM) κ−1 (Å) Rg (Å) Ree (Å) FWHM (Å)

10 30.4 34.54 ± 0.01 88.43 ± 0.05 13.70 ± 0.10
150 7.9 29.56 ± 0.02 74.33 ± 0.05 12.91 ± 0.18
300 5.6 28.68 ± 0.02 71.99 ± 0.05 12.71 ± 0.19
500 4.3 28.19 ± 0.02 70.69 ± 0.06 12.63 ± 0.20
1000 3.04 27.77 ± 0.01 69.62 ± 0.04 12.58 ± 0.20
SARW N.A. 27.28 ± 0.04 68.12 ± 0.13 12.47 ± 0.21
SAXS 7.9 28.5 ± 3.4 N.A. N.A.

Included also is the radius of gyration obtained from SAXS by
Martin et al. [13] at an ionic strength of 150 mM and the simulated
SARW for Ash1.

Fig. 4. The probability distribution of the radius of
gyration (a), that is, conformational ensemble, and the
dimensionless Kratky plot as a function of salt concentra-
tion for Ash1 (b). The red function corresponds to the
SARW, whereas 10 and 150 mM are shown as black-
dotted curves. In panel a, the full black line corresponds to
1000 mM.
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taking into account the resolution of SAXS experi-
ments. However, it is important to remember that it is
indeed an approximation, as true SARW behavior is
reached first at 1000 mM. At low salt concentration, it
is not possible to model the form factor as a SARW,
and additionally, the differences between 10 and
150 mMare quite pronounced. On the other hand, it is
also very difficult to measure the form factor of IDPs at
low salt concentrations by SAXS due to the contribu-
tion from the structure factor on the scattering curve.
An advantage with computer simulations is that it
enables discrimination of how intra- and inter-
molecular interactions affect the form factor. Fig. 4b
shows the unitless Kratky plot that qualitatively
assesses the overall conformational state and reveals
the flexibility/rigidity of the protein. Both the results
obtained from simulations at 10 and 150 mM salt, as
well as for a SARW, are shown for comparison. In this
representation, the salt effect is clearly visible and
these results confirm, indeed, that the form factor
depends on the salt concentration; that is, it is not
accurate to use the same form factor at high and low
ionic strength. This will of course have implications
when deriving the structure factor at low ionic
strengths using: I(q) = S(q) ⋅ P(q), where P(q) often
is determined at a higher salt concentration by SAXS.
HereS(q) andP(q) correspond to the structure and the
form factor, respectively.

Phosphorylated IDPs

Many of the IDPs belong to the family of phospho-
proteins; that is, for example, they often contain
phosphorylated serines or threonines. In this study,
three model proteins have been investigated:
Statherin, pSic1, and pAsh1. The first protein,
Statherin, contains two phosphorylated serines resid-
ing in the N-terminus, possesses an amphiphilic
structure, and has a tendency to self-associate. In
the second protein, pSic1, there are six phosphory-
lated groups, whereas in pAsh1, there are ten. The
reader is referred to Fig. 5 to achieve an overview of
the distribution of the phosphorylated as well as the
positively and the negatively charged amino acids.
Furthermore, according to Das et al. [20], FCR and
NCPR (denoted FCR:NCPR) for Statherin, pSic1, and
pAsh1 are 0.23:−0.05; 0.25:−0.01; and 0.46:−0.06.
Hence, the two former can be considered as weakly
charged polyelectrolytes/polyampholytes where
pSic1 is almost net neutral, whereas in this context,
pAsh1 is strongly charged. As a reminder, the
threshold for strongly charged polyelectrolytes is
FCR N 0.3.
Starting off with Statherin, our SAXS measure-

ments show that despite its tendency to self-
associate, it is possible to obtain a form factor for
Statherin at low protein concentrations. As shown in
Fig. 1a as well as given in Table 1, the experimen-
tally and simulated radii of gyration agree relatively

well; hence, the two phosphorylated serines at
position 2 and 3 do not seem to influence the
ensemble average to greater extent in that respect.
Fig. 6a shows the dimensionless Kratky plot, and as
clearly visible, the profiles from the experiment and
the simulation agree very well and display a random
coil behavior, that is, a linear rise to a plateau at
higher scattering angles. Interestingly, the simulation
snapshots indicate that the N-terminus where the
two phosphorylated serines reside seems to form a
cluster, while the rest of the chain is flexible, as
illustrated by Fig. 6b. From the simulations, it is also
shown that the Rg is not sensitive to salt (data not
shown).
pSic1 on the other hand is twice as long asStatherin

and contains six phosphorylated residues at positions
7, 35, 47, 71, 78, and 82, that is, relatively well
separated from each other. As shown in Fig. 1a, there
is a significant difference in the radii of gyration
obtained from the experiment versus the simulation,
where the former indicates a conformation more
expanded than a SARW, and the latter displays a
more compact conformation, less expanded than
SARW (28.94 ± 0.05 Å). From the simulations, it is
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Fig. 5. Charge distribution at pH 7 for Statherin (a), pSic1
(b), and pAsh1 (c), where positive charges are marked in
blue and negative charges in red. The N- and C-terminal
charges are not included.
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also shown that Rg is sensitive to salt and decreases
when the salt concentration is increased, from 31.11 ±
0.05 Å to 27.55 ± 0.05 Å at 10 and 150 mM salt,
respectively, which advocates the existence of
electrostatic attractive interactions within the chain.
The last phosphorylated protein in our study, pAsh1,

contains 10 phosphorylated residues, where nine out
of ten are within the 52 amino acids in the N-terminal
(positions 7, 9, 12, 25, 33, 35, 38, 48, 52, and 74). As
shown in Fig. 1a, there is a discrepancy between the
experimental and simulated data, where the simula-
tion again advocates a more contracted ensemble
average than the experiment as well as SARW
(27.28 ± 0.04 Å). Experimentally, it has been shown
that upon phosphorylation of Ash1 at ten distinct sites,
the global conformational properties of pAsh1 are
indistinguishable from those of unphosphorylated
Ash1. The obtained ensemble averages of the radii of
gyration from SAXS measurements were determined

to be 28.4 ± 3.4 Å and 27.5 ± 1.2 for Ash1 and pAsh1,
respectively, at 150 mM NaCl [13]. Simulations of the
ensemble average of the radius of gyration as a
function of salt clearly indicate that Ash1 displays a
polyelectrolytic and pAsh1 a polyampholytic behavior
(see Fig. 7) and that realistic trends are captured.
Our conclusion is that depending on the number of

phosphorylated sites and their distribution, short-
ranged attractive electrostatic interactions could
influence the conformational properties quite dra-
matically. For Ash1/pAsh1, the radius of gyration
decreases with ≈ 26%, whereas the corresponding
numbers for Sic1/pSic1 and Statherin system are
10% and 1%, respectively. Moreover, the shape of
the proteins deviates more dramatically when phos-
phorylated groups are introduced, cf. protein with and
without phosphorylation. The effect is enhanced with
an increasing number of phosphorylated residues, as
visualized in the Kratky plots obtained from simula-
tions in Fig. 8. The dependence of the amino acid
distribution is further strengthened by the partial
radial distribution function between the positively
charged amino acids and the phosphorylated resi-
dues in Fig. 9, which emphasizes the effect of short-
ranged attractive electrostatic interactions. More-
over, as shown in Fig. 10, a substantial amount of
salt is needed to screen this short-ranged attractive
electrostatic interaction; that is, κ−1 needs to be
shorter than the distance between the amino acids
within the chain.

Fig. 6. (a) Dimensionless Kratky plot for experimental
data at pH 8.1 (gray filled circles) and for the simulated
data (black filled circles) at an ionic strength of 150 mM for
Statherin. (b) Representative snapshot of a chain confor-
mation obtained in a simulation at 150 mM salt. Blue
spheres are positively charged amino acids, red spheres
are negatively charged amino acids, and the dark red
spheres represent phosphorylated serines with the charge
Zphos = −2e, whereas the gray spheres correspond to
neutral amino acids. The salt was treated implicitly, and the
counterions are omitted for clarity. The dashed line circles
the N-terminal part of the chain.

Fig. 7. The ensemble average of the radius of gyration
in Å as a function of the salt concentration in mM, for Ash1
in black circles and the 10-sites phosphorylated counter-
part pAsh1 in open circles. The salt is assumed to be of 1:1
nature with respect to the charge. The dashed line
corresponds to the estimated radius of gyration utilizing
the SARW. The reader should keep in mind that the
experimentally obtained values of Rg for the two proteins
correspond to 28.5 ± 3.4 Å and 27.5 ± 1.2 Å, [13], re-
spectively, which is approximately the same number as
obtained from the SARW model. The precision of the data
is too small in comparison with the marker to be visible.
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A plausible explanation to the difference between
the experimental and simulated radius of gyration for
pAsh1 could be due to the physicochemical properties
of the phosphorylated residue. Phosphorylation
changes the characteristics of the amino acids,
especially due to introducing charge. The first pKa of

the phosphate group is below 3, while the second pKa
value is slightly below 6 [33,34], meaning that at
physiological pH, the phosphate group should carry a
−2e charge. However, pKa values between 6.9 and
7.2 have also been found in Web-based tools for
calculating the point of zero charge (see http://
scansite.mit.edu/calc_mw_pi.html and ProMoST)
[35]. Hence, the radius of gyration has also been
determined by simulating the corresponding proteins

Fig. 8. The simulated dimensionless Kratky plot for
Statherin with and without phosphorylated residues
(a), Sic1/pSic1 (b), and Ash1/pAsh1 (c), where open
circles represent the phosphorylated protein and filled
circles the non-phosphorylated counterpart. The reader
should notice that the number of phosphorylated groups is
increasing from two to six to ten, for the phosphorylated
proteins in panels a, b, and c, respectively.

Fig. 9. Partial radial distribution function between
positively charged amino acids and phosphorylated
residues at 150 mM salt for Statherin (a), pSic1 (b) and
pAsh1 (c), where the phosphate groups have the charge −
2e (open circles) or 0 (filled circles, corresponding to non-
phosphorylated protein).
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for the phosphorylated proteins where the phosphate
group carries a charge Zphos = −1e. As shown in
Table 3, it gives a much better agreement with the
experiments. However, no such interpretation should
be made as the phosphorylated residues carry the
charge Zphos = −1e at physiological pH. Other possi-
bilities could be that there is a distribution of
phosphorylated residues in the experimental sample
which does not exist in the model, or that some
phosphorylated residues are neutralized due to their
binding affinity to, for example, calcium. Monte Carlo
simulations provide an exact solution to the model
used; hence, traces of other proteins,multivalent ions,
and so on, do not exist, which should be kept in mind
when comparison are performed with the experimen-
tal counterpart.

Model adjustability

The total potential energy of the coarse-grained
model presented in this study includes a short-ranged
attractive interaction between all amino acids, as well

as explicit charges depending on the nature of the
amino acid. Moreover, the protein is modeled as
totally flexible in the sense that steric interactions are
included only through the excluded volume of the
amino acid; that is, the chain entropy might be
overestimated and the protein too fluidic. This can,
of course, be opposed by introducing, for example, an
angular potential or increasing the amino acid
excluded volume to decrease the flexibility, which is
of relevance for the group of proline-rich proteins.
Here we compare our modeling results with the non-
glycosylated proline-rich saliva proteins, IB5 and
II-1ng [15], whose amino acid sequences contain
approximately 40% prolines. The experimental and
simulated radii of gyration are approximately equiva-
lent, taking the uncertainties into consideration.
Although the radius of gyration agrees very well, that
might not be the case for the shape. Thiswill be further
analyzed by focusing on IB5. As shown in the Kratky
plot in Fig. 11, there is a discrepancy between the
experimental and simulated curves. From the exper-
imental Kratky profile, one can conclude that the
ensemble is biased toward more stiff conformations,
in comparison to the unperturbedmodel (black curve),
which, most probably, is an effect of the high proline
content.
One possibility to improve the agreement between

SAXS and simulations is by introducing an angular
potential. The effect of the prolines has been taken
into account in the simulations by adding an angular
potential of 0.0023 kJ mol−1 deg−2; that is, the
average angle between three consecutive beads
increased from approximately 103° to 141°, that is, a
quite dramatic change (see red curve). The resulting
radius will then be overestimated but the flexibility/
rigidity ismore realistic. Another possibility would be to
induce a local stiffness within the chain representing

Fig. 10. Peak value of the partial radial distribution
function at 4.5 Å between positively charged amino acids
and phosphorylated residues as a function of salt
concentration, for pAsh1. The precision is within the data
marker.

Table 3. Number of phosphorylated residues, Nphos, and
simulated radii of gyration (Rg) for phosphorylated
IDPs, expressed in Å, at 150 mM monovalent salt for
phosphorylated residues with the net charge of Zphos = −1e
or Zphos = −2e

Nphos Rg, exp [Å] Rg, sim [Å]
Zphos = −1

Rg, sim [Å]
Zphos = −2

Statherin 2 19.3 ± 0.2 18.24 ± 0.04 18.05 ± 0.05
pSic1 6 28.6 ± 0.5 29.00 ± 0.06 27.55 ± 0.05
pAsh1 10 27.5 ± 1.2 25.61 ± 0.08 21.66 ± 0.12

The experimental SAXS data for pAsh1 and pSic1, respectively,
are obtained from Martin et al. [13] and Mittag et al. [39].

Fig. 11. Dimensionless Kratky representation of IB5 from
SAXS measured by Boze et al. [15] (gray), the flexible
protein model (black), and the model with an additional
angular potential, kangle = 0.0023 kJ mol−1 deg−2 (red).
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the segments consisting of several prolines. This is,
however, out of the scope for the current study, since
weare aiming for a generalmodel,which can beeasily
adjusted to all IDPs with a few parameters.

Conclusions

To summarize our findings, the coarse-grained
model, based on the primitivemodel, is well applicable
for IDPs where the intra-chain interactions are
dominated by electrostatic interactions. By extending
the model to include, for example, angular potentials,
and/or a short-ranged attractive interaction preferably
between the hydrophobic amino acidswithin the chain,
in principle it is possible to tune the fitting parameters to
obtain an agreement between the simulations and the
experimental data for a specific protein.
A popular method for analyzing SAXS spectra of

IDPs and to achieve information about the ensemble
average of the radius of gyration is by utilizing
Flexible-meccano. Comparisons between the re-
sults obtained from Monte Carlo simulations and
Flexible-meccano agree well. As shown in Fig. 12,
this method works well for the unphosphorylated
IDPs used in this study and it is definitely a valuable
tool to obtain information about the most probable
conformations and Rg distributions. The take-home
message is that coarse-grained modeling and Monte
Carlo simulations can contribute when the aim is to
understand the underlying physics and the intricate
balance between the different contributions regard-
ing the intra-chain interactions. The model seems to
be generally valid when electrostatic interactions
dominate, and it can be adjusted to correspond to
any IDP/IDR by tuning the intra-chain potentials.

Furthermore, it is possible to use an empirical
expression to achieve an estimate of the radius of
gyration of the monomeric protein when the dominant
intra-chain interactions are electrostatic in nature. This
could be of practical importance when performing
experiments to achieve a rapid understanding of, for
example, the association state of the protein or if there
exist residual elements of local structure.
Coarse-grainedmodeling andMonteCarlo/molecular

dynamics simulations are valuable approaches when
the aim is to achieve an understanding of how the
structure and the inter- and intramolecular interactions
are affected by variations in pH, salt concentration, and
protein point mutations. It is also useful for studying
more complex systems, such as the effect of protein
concentration, interaction with other macromolecules
(e.g., proteinsandsurfactants), aswell as the interaction
with surfaces and biological membranes. In the latter,
the distribution and valency of the surface charges, the
surface charge density, and the bilayer composition can
be evaluated. The information from these simulations
can then be correlated with the function.

Model and Method

Coarse-grained model

The monomers of the proteins, that is, the amino
acids, are represented by hard spheres (beads) that
mimic their excluded volume including the hydration
layer and are connected via harmonic bonds. The N-
and C-termini are included explicitly to account for the
extra charge. The bead radiuswas set to 2 Å providing
a realistic contact separation between the charges and
an accurate Coulomb interaction. The non-bonded
spheres interact through a short-ranged attractive
interaction and electrostatic interactions, where the
interparticle electrostatic interactions are described on
the Debye–Hückel level. The simulations are per-
formed at constant pH with point charges. Each
monomer is negative, positive, or neutral, depending
on the amino acid sequence, as illustrated in Fig. 13.
The total potential energy of the simulated system

contains bonded and non-bonded contributions, and
is given by:

U tot ¼ Unonbond þ Ubond ¼ Uhs þ Uel þ Ushort þ Ubond

ð1Þ
where the non-bonded energy is assumed to be
pairwise additive according to:

Unonbond ¼
X
ib j

uij r ij
� �

; ð2Þ

where rij = |Ri − Rj | is the center-to-center distance
between two monomers, and R refers to the

Fig. 12. The ensemble average of radius of gyration as
a function of the length of the amino acid sequence in the
protein on a log–log scale for the experimental pool of
proteins where the full line including black data markers
corresponds to a power law fit of the experimental values,
the red filled circles to the results obtained from Flexible-
meccano, and the blue filled circles from Monte Carlo
simulations.

2487Coarse-Grained Modeling and Monte Carlo Simulation



coordinate vector. The excluded volume is taken into
account through the hard-sphere potential, Uhs,
given by:

Uhs ¼
X
i b j

uhs
ij r ij
� �

; ð3Þ

which sums up over all amino acids. The hard-
sphere potential, uij

hs(rij), between two monomers in
the model is given by:

uhs
ij r ij
� � ¼ 0; r ij ≥Ri þ R j

∞; r ij bRi þ R j
;

�
ð4Þ

where Ri and Rj denote the radii of the beads. The
electrostatic potential Uel, is given by an extended
Debye–Hückel potential according to:

Uel ¼
X
ij

uel
ij r ij
� �

¼
X
i b j

Z iZ je2

4ε0εr

exp −κ r ij− Ri−R j
� �� �� �

1þ κRið Þ 1þ κR j
� � 1

r ij
; ð5Þ

where e is the elementary charge, κ denotes the
inverse Debye screening length, ε0 is the vacuum
permittivity, and εr the dielectric constant for water. The
short-ranged attractive interaction between the mono-
mers is included through an approximate arithmetic
average over all amino acids, given by:

Ushort ¼ −
X
ib j

ε
r 6ij

; ð6Þ

where ε reflects the polarizability of the proteins and
thus sets the strength of the interaction. In thismodel, ε
was set to 0.6 × 104 kJ Å6/mol giving an attractive
potential of 0.6 kT at closest contact. The bonded
interaction, a harmonic bond, is given by:

Ubond ¼
XN−1

i¼1

kbond

2
r i ;iþ1−r 0
� �2 ð7Þ

where ri,i + 1 denotes the distance between two
connected monomers with the equilibrium separation
r0 = 4.1 Å, and the force constant kbond = 0.4 N/m,
whereas N denotes the number of monomers of the

Fig. 13. Schematic description of the coarse-grained model showing the N-terminal fragment of the saliva protein
Statherin. Blue spheres have the charge Z = +1e; bright red spheres, Z = −1e; and dark red spheres, Z = −2e. Gray
spheres correspond to neutral amino acids. The four structures depicted are aspartic acid, phosphorylated serine, lysine,
and leucine. The N-terminal is modeled explicitly as a positively charged sphere.
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protein. The proteins are assumed to be totally
flexible, except for when the effect of intrinsic stiffness
is evaluated. An angular dependent component,
expressed below, is then added to the potential:

Uangle ¼
XN−1

i¼2

kangle

2
α i−α0ð Þ2: ð8Þ

Here, αi is the angle formed by the vectors ri + 1–ri and
ri − 1–ri, made by three consecutive beads with the
equilibrium angle α0 = 180° and the force constant
kangle. In addition to the angular potential, the
electrostatic interactions among the segments as
well as the volume of the hard spheres also contribute
to the rigidity of the protein.

Simulation aspects

The equilibrium properties of the model systems
were obtained applyingMonteCarlo simulations in the
canonical (NVT) ensemble, that is, constant volume,
number of beads, and temperature (T = 298 K),
utilizing the Metropolis algorithm. The protein chain
was enclosed in a cubic box of variable volume, which
was dependent on the protein length. Periodic
boundary conditions were applied in all directions.
The long-rangedCoulomb interactionswere truncated
using the minimum image convention. Four different
types of displacements were allowed: (i) translational
displacement of a single bead, (ii) pivot rotation,
(iii) translation of the entire chain, and (iv) slithering
move, in order to accelerate the examination of the
configurational space [36]. The probability of the
different trial moves was weighted to enable single-
particle moves 20 times more often than the other
three. Initially, the protein was randomly placed in the
box and an equilibrium simulation of typical 2 × 105

trial moves/bead was performed, whereas the pro-
ceeding production run comprised 106 passes divided
into 10 subdivisions. The radius of gyration and end-
to-end distance probability distribution functions of the
proteins, that is, the conformational ensembles, were
analyzed to confirm that the simulationswere sampled
accurately. The reported uncertainty of simulated
quantities is one standard deviation of the mean. It is
estimated from the deviation among the means of the
subdivisions of the total number of MC passes
according to:

σ2 xh ið Þ ¼ 1
ns ns−1ð Þ

Xns

s¼1

xh is− xh i� �2
; ð9Þ

where 〈x〉s is the average of quantity x from one
subdivision, 〈x〉 the average of x from the total
simulation, and ns the number of subdivisions. The
simulations were performed by using the integrated
Monte Carlo/molecular dynamics/Brownian dynamics
simulation package Molsim [37].

Structural analysis

The model was validated by comparing the
simulated scattering intensities with the experimen-
tal scattering intensities obtained by SAXS. For a
system containing N identical scattering objects, the
structure factor is given by:

S qð Þ ¼ 1
N

∑
N

j¼1
exp iq � r j

� �����
����
2

* +
: ð10Þ

The total structure factor can further be decom-
posed into partial structure factors given by:

S ij qð Þ ¼ 1

NiN j
� �1=2 XNi

i¼1

exp iq � rið Þ
" # XN j

j¼1

exp −iq � r j
� �" #* +

:

ð11Þ

The total and partial S(q) are related through:

S qð Þ ¼
XNi

i¼1

XN j

j¼1

NiN j
� �1=2

N
Sij qð Þ: ð12Þ

For a point scatterer, the form factor is constant,
inferring that the scattering intensity is proportional to
the structure factor. In order to account for an
approximate effective particle/residue form factor,
the scattering profile further needs an appropriate
normalization, such that I0 coincides with the
experimental scattering profile.

FWHM analysis

To obtain the FWHM of the radius of gyration
probability distribution, the curve was fitted with a
Gaussian function on the form:

f xð Þ ¼ a � exp −
x−bð Þ2
c2

" #
; ð13Þ

where a, b, and c are fitting parameters. The FWHM
was calculated from the parameter c, according to:

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2ð Þ

p
� c ð14Þ

and is reported with a 95% confidence interval.

Flexible-meccano

We have used the program Flexible-meccano [19]
with default settings to generate a pool of 10,000
possible polypeptide backbones by randomly select-
ing specific amino-acid conformations from a library of
non-secondary structural elements of high-resolution
X-ray crystallographic structures.
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Experiments

Sample preparation

Statherin was purchased fromGenemedSynthesis,
Inc.. A 20 mM Tris [N99.9%, CAS (77-86-1); Saveen
Werner AB] buffer with 150 mM NaCl [reagent grade,
CAS (7647-14-5); Sharlau] was prepared with Milli-Q
water, and the pH was set to 8.1 by dropwise addition
of 1 M HCl, and thereafter, it was filtered through a
hydrophilic polypropylene 0.2 μm membrane (Pall
Corporation). The protein powder was dissolved in
buffer by a small addition of NaOH to increase the pH,
since the protein powder contained trifluoroacetate. A
concentrating cell (Vivaspin 2, 2000MWCO,Prod. No.
VS02H92; Sartorius, Cambridge, United Kingdom)
was used to remove low-molecular-weight impurities.
The sample was rinsed with buffer corresponding to
30 times the sample volume, by centrifugation at
1600 rpm at 8°C. To ensure an exact background in
the SAXS measurements, the sample was dialyzed
(Slide-A-Lyzer Dialysis Cassette, 2000 MWCO, Prod.
No. 66203; Thermo Scientific, Waltham, MA, USA)
overnight at 6°C. Before the SAXS measurements,
the sample was centrifuged at 14,000 rpm at 6°C for
at least 2 h to remove aggregates. Thereafter, it was
diluted to a concentration series, and the protein
concentration was determined with a nanodrop
spectrometer at the beamline using λ = 280 nm and
ε = 8740 M ‐1 cm−1. The samples were centrifuged in
small PCR tubes imminent to the SAXS measure-
ments to remove any bubbles.

SAXS measurements

SAXS experiments were performed at BM29,
ESRF-Grenoble, France. The incident beam wave-
length was 0.99 Å, and the distance between sample
and detector (PILATUS 1M) was set to 2867 mm,
giving the scattering vector 0.0039–0.49 Å−1. The
scattering vector, q, is defined as q = 4π sin (θ)/λ,
where 2θ is the scattering angle and λ is the
wavelength of the incident beam. Several successive
frames of the scattering from the samples were
recorded with a 0.5-s exposure time. The scattering
from the pure solvent, which was measured before
and after each sample for the same exposure times,
was subtracted from the sample scattering. All
measurements were performed at 20°C, and I0 was
converted to absolute scale by measuring the
scattering of water. SAXS data were measured either
after passing through a size exclusion chromatography
(SEC) columnorwithin a flowing capillary. For the inline
SEC-SAXS, 5 mg/mL protein was injected through
a 100-μL loop into a Superdex 75 10/300 GL column
(GE Healthcare), equilibrated in 20 mM Tris, with
150 mM NaCl and a pH of 8.1. During SEC-SAXS,
data were collected with a 1 s exposure time.

SAXS analysis

TheSAXSandSEC-SAXSdatawere extracted and
processed using PRIMUS [38] and ScÅtter (available
at www.bioisis.net), respectively. Special attention
was paid to radiation damage by comparing the

Fig. 14. SAXS data obtained for Statherin at 20 mMTris
and 150 mM NaCl (pH 8.1) at BM29, ESRF-Grenoble,
France. Form factor (a), dimensionless Kratky plot (b), and
pair distance distribution function, P(r) (c). The black
circles correspond to data obtained from SEC in combi-
nation with SAXS, and the gray circles refer to continuous
flow SAXS. If the precision is not visible, it is within the size
of the data marker.
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successive frames prior to background subtraction,
and any affected data were rejected from further
analysis. The form factor was obtained at the protein
concentration 0.24 mg/mL, as shown in Fig. 14. From
the pair distance distribution, P(r), the radius of
gyration, Rg, was determined to be 19.8 ± 0.6 Å.
The molecular weight was determined to be 5.29 kDa
based on I0 obtained from P(r). This is in good
agreement with the theoretical molecular weight of
5.38 kDa, confirming that monomeric Statherin was
obtained. The scattering curve from the peak in SEC-
SAXS, also presented in Fig. 14, is in excellent
agreement with the curve measured at 0.24 mg/mL,
and Rg obtained from P(r) was determined to be
19.3 ± 0.2 Å. Hence, it is consistent with the mea-
surement at 0.24 mg/mL. Since the protein concen-
tration in the eluent from the SEC column was
unknown, no molecular weight was obtained. How-
ever, due to the perfect agreement between the
data obtained from SEC-SAXS and measured at
0.24 mg/mL, the less noisy SEC-SAXS data were
used for comparison with simulations.
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Abstract

Attractive interactions between intrinsically disordered proteins can be crucial for the functionality or, on the
contrary, lead to the formation of harmful aggregates. For obtaining a molecular understanding of intrinsically
disordered proteins and their interactions, computer simulations have proven to be a valuable complement to
experiments. In this study, we present a coarse-grained model and its applications to a system dominated by
attractive interactions, namely, the self-association of the saliva protein Statherin. SAXS experiments show
that Statherin self-associates with increased protein concentration, and that both an increased temperature
and a lower ionic strength decrease the size of the formed complexes. The model captures the observed
trends and provides insight into the size distribution. Hydrophobic interaction is considered to be the major
driving force of the self-association, while electrostatic repulsion represses the growth. In addition, the model
suggests that the decrease of association number with increased temperature is of entropic origin.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Intrinsically disordered proteins (IDPs) are char-
acterized by a lack of stable tertiary structure under
physiological conditions in vitro [1,2] and hence are
best described by conformational ensembles [3,4].
Bioinformatic studies have led to the conclusion that
10%–20% of the eukaryotic proteins are intrinsically
disordered, and even more proteins contain intrinsi-
cally disordered regions (IDRs) [5–8]. It has also
been established that IDPs and IDRs are involved in
many biological processes and diseases, and that
the lack of folded structure is related to their
functions [7,9].
Attractive interactions between IDPs can lead

to the formation of aggregates, which in the case
of diseases such as Parkinson's disease and
Alzheimer's disease is harmful [10]. IDP attractions
can also be fundamental for a desired outcome, such
as in the formation of proteinaceous membrane-
less organelles [11–14], which are condensed liquid
droplets often enriched in IDPs and IDRs and
commonly found in the cell cytoplasm and nucleus

[15]. Various pieces of evidence suggest that liquid–
liquid phase separation is a driving force for the
formation of some proteinaceous membrane-less
organelles [11–14], and that the phase separation
itself is driven by weak multivalent interactions
between disordered proteins [16,17].
For understanding IDPs and their interactions,

computer simulations are a useful complement to
experiments [18,19]. There have been considerable
advances regarding atomistic simulations of IDPs,
where development and justification of force fields
and water models have been validated against
experimental results [20–24]. The full-atom ap-
proach and explicit water treatment in atomistic
simulations are great advantages for gaining a
molecular understanding, however, atomistic simu-
lations are computationally demanding, both regard-
ing execution time and data storage. Hence, this
poses limitations on the accessible timescale and
system size, and therefore, a coarse-grained ap-
proach is a more viable option for studying complex
systems, such as the examples above. Recently, a
coarse-grained model based on the primitive model,

0022-2836/© 2018 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Journal of Molecular Biology (2019) 431, 511–523
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in combination with Monte Carlo simulations, has
proven capable of capturing bulk properties at dilute
conditions for a range of IDPs [25]. We aim to
develop this model to also account for more complex
systems, and first is the investigation of a model
system dominated by intermolecular attractions,
namely, the self-association of the saliva protein
Statherin. Statherin has a distinct amphiphilic char-
acter in its primary sequence, shown in Fig. 1.
Almost all charges are located in the N-terminal part,
starting with a block of negative charges, followed
by a block of positive charges. From the hydropathy
values in the Kyte–Doolittle scale [26], it is shown
that overall the hydropathy is rather low, which is
typical for IDPs. However, residues 15–43 contain
seven tyrosines, whose aromatic side chains have
been established to be of importance for liquid–liquid
phase separation [27,28]. Statherin also consists of
16%proline residues, which are denoted as “disorder-
promoting” [29].
In this work, Statherin is characterized experimen-

tally at monomeric conditions through the use of
small-angle X-ray scattering (SAXS) and circular
dichroism (CD), and at self-associating conditions
through SAXS experiments and simulations. The
simulation model is validated against the experiments
and is demonstrated to be useful for describing
polydispersity and the interplay betweenelectrostatics,
hydrophobic interactions, and entropy in the self-
association process.

Results and Discussion

The experimental results for Statherin at mono-
meric conditions are presented first, followed by the
self-association studied both experimentally and by
Monte Carlo simulations.

Monomeric behavior

In Fig. 2a–c, data for monomeric Statherin
obtained by SAXS coupled with size-exclusion
chromatography (SEC’ taken from Ref. [25]) is
presented. From regular SAXS measurements at
low protein concentration (0.24 mg/mL), the molec-
ular weight was determined to be 5.29 kDa, based
on the forward scattering, I0, obtained from the
pair distance distribution function, P(r) [25]. This is in
good agreement with the theoretical molecular
weight of 5.38 kDa, confirming monomeric condi-
tions. As seen in Fig. 2a, Statherin shows the typical
featureless scattering profile of an IDP. The IDP
character is also verified by the dimensionless
Kratky plot in Fig. 2b, where the profile has an
uprise slope and reaches a plateau at higher q
values, typical for flexible chains. In addition, the
CD data presented in Fig. 2d confirm a random coil
behavior with some presence of secondary struc-
ture. The global minimum is located at 205 nm,
which is slightly higher than the usual 198 nm for
random coils; however, it is typical for poly-proline II
(PPII) structure. The shallow minimum close to
222 nm might suggest a small presence of α-helix.
Several studies of Statherin with CD or NMR have
suggested that the charged N-terminal has a
propensity for forming α-helix and that a part of
the middle adopt PPII structure. Nevertheless, the
overall structure is still disordered in aqueous
solution [30–34]. Fig. 2d also shows that there are
no large differences in structure due to salt
concentration.
The radius of gyration for monomeric Statherin in

150 mM NaCl has been reported as 19.3 ± 0.2 Å,
based on theP(r) presented in Fig. 2c [25]. With urea,
the radius of gyration is increased to 22.1 ± 0.2 Å for
4 M urea and to 23.7 ± 0.3 Å for 8 M urea. The
dimensionless Kratky plot, shown in Fig. 3a, also
indicates an increase in stiffnesswhen urea is added.
From CD measurements it is seen that the mean
residue ellipticity ([θ]MRW) at 228 nm, presented
in Fig. 3b and c, increases linearly with increased
urea concentration and also becomes positive at high
urea concentrations. This corresponds to an in-
crease of PPII content, in agreement with the study
by Whittington et al. [35], reporting that urea
promotes PPII formation. PPII conformation is more
extended than both random coil and α-helix; hence,
this explains the changes observed in the SAXS
measurements.

Fig. 1. (a) Amino acid sequence of Statherin with the
charge distribution at pH 8 and certain amino acids
highlighted. Positive residues are marked in blue, negative
in red, phosphorylated serines with the charge −2e in
dark red, and prolines in lilac and tyrosines in green. (b)
Charge distribution and (c) hydropathy values using the
Kyte–Doolittle scale, where −4.5 is the most hydrophilic
and +4.5 is the most hydrophobic [26].
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Temperature also induces changes in secondary
structure. With increased temperature, the [θ]MRW
increases at 205 nm and decreases at 228 nm, as
shown in Fig. 4, suggesting a loss of PPII as described
by Kjaergaard et al. [36] for other IDPs. The loss of
PPII appears rather proportional to temperature.

Self-association

Experimental results

With increased protein concentration, Statherin
self-associates into complexes, which is evident
from an increase in forward scattering. The average
number of proteins per complex was determined
from the forward scattering and is presented against
the protein concentration in Fig. 5a for the reference
system with 150 mM NaCl. Panels b and d in the
same figure present corresponding data from simula-
tions and will be discussed in the next section. The
growth is linear with respect to concentration up to
10 mg/mL, and afterward, the slope decreases, which
might suggest a maximum size of the Statherin
complex. Likewise, the radius of gyration follows the
same trend, although a plateau is reached earlier.
However, a depression of the forward scattering at
higher concentrations due to a structure factor cannot

be ruled out, and therefore, the high concentration
data should be interpreted with care. Especially since,
at 24 mg/mL and higher concentrations, inter-particle
interference is visible in the P(r) as a decrease below
zero at long distances. The scattering curves, Guinier
plots, and I0 and radius of gyration determined by
both Guinier and P(r) are provided in Supplemental
information.
The Kratky plot in Fig. 5c shows a transition from

flexible chain behavior to more globular when the
complexes are formed. The complexes are also
more spherical in shape than the free proteins, which
is evident from the pair distance distribution function
presented in Fig. 6, plotted to enhance the differ-
ences compared to a sphere.
Since urea weakens hydrophobic interactions

[37], the effect of urea on the Statherin complexes
was studied. With 8 M urea, no increase in forward
scattering was observed even when reaching
32 mg/mL in protein concentration. The only effect
observed was a lowering of the forward scattering
due to a structure factor emerging. This indeed
suggests hydrophobic interactions as a driving force
for the self-association in Statherin. With 4 M urea,
it was a downshift at intermediate q when going from
2 to 4 mg/mL and that continued for even higher
protein concentrations (data not shown). This in

Fig. 2. SAXS data for Statherin obtained by SEC-SAXS, at 150 mM NaCl and 20 mM Tris buffer with pH 8, from
Ref. [25]. (a) Form factor, (b) dimensionless Kratky plot, and (c) pair distance distribution function. (d) CD spectra for
Statherin in 10 and 150 mMNaF and 20 mM phosphate buffer (pH 8) with a protein concentration of 0.11 and 0.13 mg/mL,
respectively, measured at 20 °C.
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combinationwith a decrease in slope in the Kratky plot
with increasing concentration suggests that there are
still complexes forming in 4 M urea. For surfactants,
both the critical micelle concentration and the micelle
size have been reported to change with the concen-
tration of urea [38–40].
Self-association has been observed no matter

the salt concentration, which supports hydrophobic
interactions being the major driving force. However,

the average association number appears to increase
with increased ionic strength, as presented in Fig. 7a.
Due to the possibility of structure factor influence on
the scattering data at lower ionic strength, the effect
of electrostatic interactions is further discussedwithin
the framework of the simulations (data presented in
Fig. 7b).
Changing the temperature also affects the self-

association, as shown by a decrease in association
number with increased temperature in Fig. 8. The
average radius of gyration follows the same trend
(data not shown). The decrease of the association
number with temperature has also been observed
for surfactants with ionic or zwitterionic headgroups
[41], while non-ionic surfactants have shown the
opposite temperature dependence [41,42]. For the
intrinsically disordered milk-protein β-casein, the
association number increases with increased tem-
perature at neutral pH [43], as for non-ionic surfac-
tants. Although β-casein and Statherin have similar
block structures, the overall hydrophobicity is higher
in β-casein. Hence, it is not unreasonable that the
temperature dependence is different.

Fig. 4. Temperature dependenceofmonomeric Statherin
(0.13 mg/mL) with 150 mMNaF in 20 mM phosphate buffer
at pH 8. (a) CD spectra and (b) mean residue ellipticity at
205 nm (black circles) and 228 nm (gray squares).

Fig. 3. Effect of urea. (a) Dimensionless Kratky plot for
Statherin at 150 mM NaCl measured by SEC-SAXS and
with 8 M urea measured by SAXS at a protein concentra-
tion of 4 mg/mL, (b) CD spectra and (c) mean residue
ellipticity at 228 nm for Statherin (0.12–0.14 mg/mL)
versus urea concentration, obtained from CD measure-
ments at 20 °C and pH 8.
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Simulation results

We have simulated the Statherin system using
a modified version of the coarse-grained model
presented in Ref. [25]. Therein it was shown that the
coarse-grained model works well for Statherin at
monomeric conditions. However, to capture the

self-association, an additional attractive interaction
is needed. We have implemented a short-ranged
potential corresponding to 1.32 kT at closest contact
between neutral amino acids, mimicking a smeared
hydrophobic interaction, which causes the proteins
to associate upon increased concentration. For the
reference system, 150 mM salt, the simulation data
follow the linear trend described in experimental data
up to approximately 7 mg/mL, according to Fig. 5b.
Then it deviates, by forming large complexes, which
shall be interpreted as that the model is reliable only
at lower protein concentrations. The model is able to
capture the experimentally established transition to a
more globular state with increased protein concen-
tration in the Kratky plot, c.f. Fig. 5d and c, although
the single chain is too compact due to the extra
attraction. To capture the behavior at both mono-
meric conditions and higher protein concentrations,
an angular potential can be included as well.
However, since the goal with this model is to capture
general trends, an exact matching with the experi-
mental Statherin data is not important, and hence,
the results of the model without further modifications
are presented.
The simulations show that the complexes are

polydisperse; see the complex size probability distri-
bution in Fig. 9a. At 7 mg/mLand lower concentrations,

Fig. 6. Pair distance distribution function normalized to
enhance deviations in shape from a homogeneous hard
sphere, where rmax corresponds to the value of r where
P(r) has its maximum, for the reference system (20 mM
Tris, 150 mM NaCl, pH 8, 20 °C).

Fig. 5. (a) Average number of proteins per complex (black circles) and radius of gyration (gray squares) versus protein
concentration determined from SAXS. (b) Average number of proteins per complex versus protein concentration from
simulations. (c) Dimensionless Kratky plot from experiments. (d) Dimensionless Kratky plot from simulations. The data is
reported for the reference system (experimental conditions: 20 mM Tris, 150 mM NaCl, pH 8, 20 °C; simulation
conditions: 150 mM implicit salt, 20 °C). In panel a, the error bars on the association number represent a 10% uncertainty.
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the monomer is the dominating specie and the amount
of the different species decreases with increasing size.
The polydispersity and monomeric dominance is also
evident from the snapshot in Fig. 9b, which furthermore
suggests that it is the middle and C-terminal part that
forms the core of the complex and that the charged N-
terminal part is located on the surface of the complex.

The contact probability between residues of different
chains is presented in Fig. 9c and confirms indeed that
it is the neutral amino acids that are mostly in contact
with other chains. In Fig. 9d, the radial number density
distribution from the complex center of mass is
presented. It again confirms that the core consists of
neutral residues. The negatively charged residue 26
is also part of the core of the complex. The other
charged residues are located closer to the surface of
the complex.
The experimental P(r) in Fig. 5d shows that the

complexes are more spherical than the monomers,
due to the change with increasing concentration.
However, the experiments only provide the average
over all different complex sizes. In the simulations,
we have calculated the principal moments of the
gyration tensor and from that the asphericity for
the complexes of different sizes. It indeed confirms
that the monomers are not spherical, having an
asphericity value of 0.41. The asphericity decreases
with increasing association number until six, where
it stabilizes around 0.13 also for larger complexes.
If the asphericity is less than 0.1, the object is
normally considered spherical [44]. The decrease in
asphericity agrees with the experimental results and
furthermore shows that the complexes are close to
the spherical limit. However, for complexes consist-
ing of seven protein chains, 〈R1

2〉, 〈R2
2〉 and 〈R3

2〉were
323.5 ± 7.1 Å2, 158.2 ± 1.2 Å2, and 91.1 ± 0.5 Å2,
respectively, showing that the instantaneous shapes
of the complexes are still not spherical.
The increaseof size of the complexeswith increased

ionic strength observed in SAXS experiments is also
captured by the simulations, as seen in Fig. 7b, even
if the effect is slightly overestimated compared to
experiments (Fig. 7a). This confirms that although
the hydrophobic interaction is the major driving force
for self-association, electrostatic repulsion stabilizes
the system and depresses the growth. To further
investigate the electrostatic effect, we performed
simulations without phosphorylated serines, which
increases the net charge from −4 to 0. This shifts
the complex size probability distribution toward
larger sizes, depicted in Fig. 10. The overall contact
probability also increases from 0.36 ± 0.03 with
phosphorylated serines to 0.41 ± 0.01 without phos-
phorylations at a protein concentration of 2 mg/mL,
while the contact profile remains similar in shape. This
demonstrates that phosphorylations indeed affect
the electrostatic interactions and that it is of impor-
tance for the self-association.
Another mutation that illustrates the importance

of electrostatics is the point mutation of residue 26,
glutamic acid, changing the negatively charged
residue located in the middle of the neutral block to
a neutral residue. Already in a simulation at 2 mg/mL,
the majority of the chains join in one large complex,
while for comparison, the reference system rarely
exhibits complexes larger than tetramers at the same

Fig. 7. Average association number determined (a) by
SAXS and (b) from simulations, as a function of Statherin
concentration for different concentrations of NaCl, at 20 °C.
The error bars in panel a represent a 10% uncertainty.

Fig. 8. Average number of proteins per complex deter-
mined by SAXS versus protein concentration at 150 mM
NaCl for 10–50 °C. The error bars represent a 10%
uncertainty. The data at 20 °C correspond to the data at
150 mM NaCl in Fig. 7a.
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concentration. This shows that specific residues
can make a great difference for the self-association
(results not shown).
With increased temperature, the average associa-

tion number, displayed in Fig. 11, decreases, again in
accordancewith experimental results. Since Statherin

has a net charge of −4e, the overall electrostatic
interaction is repulsive. Increased temperature en-
hances electrostatic interactions, and hence, it would
counteract self-association by enhancing the net
electrostatic repulsion between Statherin monomers.
In addition, the effect of entropy, also opposing
self-association, increases with temperature as well.
Note that the hydrophobic interaction is regarded
temperature-independent in this model. Simulations
of the Statherin system without charges at a con-
centration of 4 mg/mL show a decrease in average
association number between 20 and 50 °C, from
3.06 ± 0.63 to 1.39 ± 0.01, compared to 2.24 ± 0.15
to 1.40 ± 0.01 for the same systemwith charges. This
suggests entropy as the main contribution to the
temperature effect.
Temperature also affects the structure of the

complexes. Overall, the asphericity increases as a
function of temperature for complexes of the same
size, as seen in Fig. 11b. In addition, the radius of
gyration also shows the same trend, for example,
for complexes of seven proteins, the Rg goes
from 22.8 ± 0.1 to 29.8 ± 0.2 Å when temperature
changes from 15 to 50 °C. These changes reflect an

Fig. 9. Simulation data at 5 mg/mL with 150 mM implicit salt. (a) Complex size probability distribution. (b) Snapshot with
excluded counterions, where gray beads represent neutral residues, red beads represent negatively charged residues,
and blue beads represent positively charged residues. (c) Chain contact probability profile. (d) Radial number density for
different bead types, normalized by the number of beads of each type in the protein, as a function of distance from the core
center of mass, for complexes consisting of seven proteins. Z represents the charge of each bead type.

Fig. 10. Complex size probability distribution for 2 mg/mL
Statherin with and without phosphorylated serines at
150 mM ionic strength.
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increased flexibility in the complexes, which is
expected due to the entropy increase. Although
it was shown in the monomeric section that the
structure of the individual protein chain changes
upon temperature increase, it is expected to be of
minor importance for the self-association process, due
to the model capturing the trends without including
such detail.

Model limitations and improvements

From the simulations, it is apparent that the model
breaks down at higher concentrations. The exact
concentration depends on the conditions, especially
temperature and ionic strength. At the lower-salt
concentrations (10 and 60 mM), no breakdown is
observed even at 20 mg/mL. The breakdown can
be connected with the implicit treatment of salt, since
simulations with 150 mM explicit salt and 20 mg/mL
protein or more still give an average size less than
10 chains/complex. Hence, an explicit treatment of
electrostatics is suggested to provide better results,
although at a high computational cost. In the model,
the hydrophobic interaction, mimicking the effect
of both the enthalpic contribution and the entropic
effect on the water molecules, is regarded temper-
ature independent. Including temperature depen-
dence would change the exact values to a certain
extent, although the trend would remain. Hence, it
would not affect the conclusion that entropy in the
system is the largest contributor to the temperature
effect for this protein.

Conclusions

A modified version of the coarse-grained model
in Ref. [25] have been shown capable to describe
the Statherin complexes at lower concentration and
provide extra insight regarding the structure of the
complexes, as well as aiding in explaining the effect
of external conditions on the self-association, in
terms of a balance between different interactions
and entropy. The findings are summarized in Fig. 12.
Hydrophobic interaction is shown to be the major
driving force for the self-association, due to urea
inhibiting complex formation. The size decrease as a
result of increased temperature is regarded as an
entropic effect, while electrostatic interactions were

Fig. 11. (a) Average association number as a function
of temperature at 5 mg/mL. (b) Asphericity versus asso-
ciation number at 15, 37 and 50 °C.

Fig. 12. Summary of what was shown to affect the Statherin association state. External factors are printed in green,
chain characteristics in blue, and energetic and entropic factors in purple. In the snapshots, gray beads represent neutral
residues; blue, positively charged residues; and red, negatively charged residues. The phosphorylated serines are marked
in dark red. Counterions are omitted for clarity.
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still shown to be of importance by balancing the
hydrophobic attraction. In addition, it was demon-
strated that mutations affecting the charge distribu-
tion can have a major effect on the self-association.
The self-association of Statherin is only one

example of an IDP system dominated by intermolec-
ular attractions; however, the similarities to micelle
formation suggest that the established interactions
are common formany systems, althoughwith varying
balance. It is therefore of interest to apply this model
to other interacting IDPs in the future, as well as
to continue the development for studies of systems
with a higher complexity. Computational studies of
IDP systems are advantageous in that it allows for
separation of different contributions and a faster
screening of mutations. In combination with experi-
ments, it opens up for a deeper understanding of the
function and behavior of IDPs.

Methods and Model

SAXS

Sample preparation

Thebuffers, all containing20 mMTris [N99.9%,CAS
(77-86-1); Saveen Werner AB], and varying concen-
trations of NaCl [reagent grade, CAS (7647-14-5);
Sharlau] and urea [ReagentPlus ≥99.5%, CAS (57-
13-6); Sigma-Aldrich] were prepared with Milli-Q
water, and by dropwise addition of 1 M HCl, the pH
was set at room temperature to correspond to 8.1 at
the measuring temperature. Thereafter, the buffers
were filtered through a hydrophilic polypropylene
0.2 μm membrane (Pall Corporation).The Statherin
powder (purchased from Genemed Synthesis, Inc.)
was dissolved in buffer with a small addition of NaOH
to increase thepH, since theprotein powder contained
trifluoroacetate. Concentrating cells (Vivaspin 2, 2000
MWCO, Prod. No. VS02H92; Sartorius, Cambridge,
United Kingdom)were used to remove low-molecular-
weight impurities. The sampleswere rinsedwith buffer
corresponding to 30 times the sample volume, by
centrifugation at 358g at 8 °C. To ensure an exact
background in the SAXSmeasurements, the samples
were dialyzed (Slide-A-Lyzer Dialysis Cassette, 2000
MWCO, Prod. No. 66203 or Slide-A-Lyzer MINI
Dialysis Unit, 2000 MWCO, Prod. No. 69580; Thermo
Scientific, USA) overnight at 6 °C. Before the SAXS
measurements, the samples were centrifuged at
18,400g at 6 °C for at least 2 h to remove impurities.
Thereafter, they were diluted to a concentration
series, and the protein concentration was determined
with a nanodrop spectrometer using λ = 280 nm and
ε = 8740 M−1 cm−1. The samples were centrifuged in
small PCR tubes imminent to the SAXS measure-
ments to remove any bubbles.

Measurements and analysis

SAXS experiments were performed at BM29,
ESRF-Grenoble, France. The incident beam wave-
length was 0.99 Å, and the distance between sample
and detector (PILATUS 1M) was set to 2867 mm,
giving the scattering vector 0.0039 – 0.49 Å−1. The
scattering vector, q, is defined as q = 4π sin(θ)/λ,
where 2θ is the scattering angle and λ is the
wavelength of the incident beam. Several successive
frames of the scattering from the samples were
recorded with an exposure time of 0.5 or 1 s,
depending on concentration and system. The scat-
tering from the pure solvent, which was measured
before and after each sample for the same exposure
times, was subtracted from the sample scattering.
Measurements were performed at 10, 20, 37 and
50 °C at 150 mM NaCl, and the forward scattering, I0,
was converted to absolute scale by water calibration.
At 20 °C measurements were also performed for 10,
60 and 300 mM NaCl and 4 and 8 M urea. The data
were processed and analyzed using the ATSAS
package [45]. Special attention was paid to radiation
damage by comparing the successive frames prior to
background subtraction, and any affected data were
rejected from further analysis. Both I0 and Rg were
determined from P(r), although the Guinier approach
was also used for comparison. The molecular weight
used for calculating the association number was
determined from I0 (see Supplemental information).
Considering standard uncertainties of the used
values, the uncertainty of the association number
can be estimated as approximately 10% [43,46].
For a description of the SEC inline with SAXS,

used for obtaining the form factor of monomeric
Statherin, we refer to Ref. [25].

CD

Protein was dissolved in and purified with 20 mM
phosphate buffer (sodiumphosphate dibasic dihydrate
[Reag. Ph. Eur., CAS (10028-24-7); Sigma-Aldrich]
and sodiumphosphatemonobasicmonohydrate [ACS
reagent, CAS (10049-21-5); Sigma-Aldrich]) at pH 8,
using a concentrating cell, as described for the SAXS
samples. The protein was diluted to approximately
0.13 mg/mL using 20 mM phosphate buffer with 10
or 150 mM NaF [≥99%, CAS (7681-49-4); Sigma-
Aldrich] and for the 150 mM NaF with 0–8 M urea
[ReagentPlus ≥99.5%, CAS (57–13-6); Sigma-
Aldrich]. The samples were filtered using a 0.22-μm
Millex–GV filter (Merk Millipore Ltd). CD spectra
between 190 and 260 nm at temperatures 4 – 60 °C
were recorded on a JASCO J-715 instrument with a
PTC-348WI Peltier type cell holder for temperature
control, averaging over three spectra for each sample,
using a quartz cuvette with a 1-mm path length
(HellmaAnalytics) and 20-nm/min scanning speed,
2-s response time, 1-nm band width, and 100-mdeg
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sensitivity. At 20 °C, further measurements were
performed for samples with 150 mM NaF and
2–8 M urea. The ellipticity reported is the mean
residue ellipticity, defined as

θ½ �MRW ¼ θ �MRW= 10 � d � cð Þ; ð1Þ
where θ is the observed ellipticity (mdeg), d the path
length of the cell (cm), and c the protein concentration
(mg/mL). The mean residue weight, MRW, is the
molecular weight (Da) divided by the number of peptide
bonds. The spectra were smoothed using a Savitzky–
Golay filter. The effect of the Savitzky–Golay filter is
presented in Fig. S4 in Supplemental information.

Coarse-grained model

We have employed a coarse-grained model in
which each amino acid is modeled as a hard sphere,
further described in Ref. [25]. For the inclusion of
hydrophobic interaction, a short-ranged potential is
added to the model:

Uhphob ¼ −
X
neutral

εhphob
r 6ij

ð2Þ

where the summation extends over all neutral amino
acids, rij = ∣ Ri − Rj∣ is the center-to-center distance
between two beads and R refers to the coordinate
vector. εhphob is 1.32 · 104 kJ Å/mol, which corre-
sponds to an attraction of 1.32 kT at closest contact,
determined by comparing the average complex size
with experimental results on the reference system.

Simulation aspects

The equilibrium properties of the model systems
were obtained by Metropolis Monte Carlo simulations
in the canonical (NVT) ensemble, utilizing the simula-
tion package Molsim [47], version 4.8.8. Forty-five
protein chains were enclosed in a cubic box of varying
volume, dependent on the protein concentration.
Periodic boundary conditions were applied in all
directions. The long-ranged Coulomb interactions
were truncated using the minimum image convention.
To accelerate the examination of the configura-

tional space, five different types of displacements
were allowed: (i) translational displacement of a
single bead, (ii) pivot rotation [48,49], (iii) translation
of the entire chain, (iv) slithering move [50], and
(v) cluster displacements. Counterions were only
moved individually by translation. The cluster dis-
placement was performed as a translational dis-
placement of the chain of a selected particle as
well as all chains whose center of mass were less
than 40 Å away from the selected particle. The
cluster displacement was automatically rejected if
the number of particles within the cluster changed,

that is, if the displacement caused two clusters
to merge. The probability of the different trial moves
was weighted so that 80% of the trial moves were
single bead displacements, 5% were pivot rotations,
5% were chain displacements, 3% were slithering
moves, and 7% were cluster moves. Initially, the
proteins were randomly placed in the box and an
equilibrium simulation of typically 3 · 105 trial
moves/bead was performed. The proceeding pro-
duction run comprised at least 106 passes divided
into subdivisions of 105 passes. To ensure accu-
rately sampled simulations, the contact probability of
each chain individually and the variations of contact
number along the propagation of the simulation
were analyzed (data not shown).
For all simulated quantities except the average

association number, the reported uncertainty is one
standard deviation of the mean. It is estimated from
the deviation among the means of the subdivisions
of the total number of MC passes, according to

σ2 xh ið Þ ¼ 1
ns ns−1ð Þ

Xns

s¼1

xh is− xh i� �2
; ð3Þ

where 〈x 〉s is the average of quantity x from one
subdivision, 〈x 〉 the average of x from the total
simulation, and ns the number of subdivisions.
For the average association number, the reported
uncertainty is the standard deviation of the means of
all subdivisions.

Analyses

The calculation of the scattering profile from
simulation is described in Ref. [25]. In the analyses
of complexes, two chains were assigned to the same
complex if the center-to-center distance between
two beads in the two different chains was less than
5 Å. The same geometric condition was used for
defining if a bead was in contact with another chain,
which was the basis for monitoring the variations of
contact number along the propagation, and calcu-
lating the contact probability for beads along the
chain. Contact probability for the beads is defined as
the number of passes in which the bead is in contact
with at least one bead from another chain, divided
by the total number of passes in the simulation.
Similarly, contact probability for a chain is calculated
as the number of passes in which the chain is in a
complex divided by the total number of passes in the
simulation and the overall contact probability is the
average over all chains. The complex size probability
distribution was calculated according to

Pn ¼ n Ncomplex
n

� �X
n

n Ncomplex
n

� � ; ð4Þ

520 Self-Association of IDPs



where hNcomplex
n i is the average number of complexes

consisting of n chains, and
X
n

nhNcomplex
n i is equal to

the number of chains in the system, due to chain
conservation. Note thatPn is weighted by the number
of chains in a complex. The average association
number was calculated from the complex size
probability distribution, as

Nassoc ¼
X
n

nPn: ð5Þ

The radial number density profile was calculated
for each complex size and bead type individually.
The radial number density at each distance is
defined as the number of beads within a shell at
that distance from the center-of-mass of the complex
core, divided by the shell volume. The complex core
was defined to consist of the beads 15–44 in each
chain.
The shape of the complexes was quantified by the

principal moments of the gyration tensor and the
asphericity. The gyration tensor was defined as

S ¼ 1
N

XN
i

X 2
i

XN
i

X iY i

XN
i

X iZ i

XN
i

X iY i

XN
i

Y 2
i

XN
i

Y iZ i

XN
i

X iZ i

XN
i

Y iZ i

XN
i

Z 2
i

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð6Þ

where Ai = (ai − acom) for a = x, y, z, and N is the
number of beads in the complex. Transformation to a
principal axis system such that

S ¼ diag R2
1;R

2
2;R

2
3

� � ð7Þ
diagonalizes S and R1

2 ≥ R2
2 ≥ R3

2 are the eigen-
values of S, also called the principal moments of
the gyration tensor. In the simulations, the ensemble
averages of the eigenvalues were calculated for
each complex size separately. The asphericity,
defined as

αs ¼
R2

1

� �
− R2

2

� �� �
R2

2

� �
− R2

3

� �� �
R2

3

� �
− R2

1

� �� �
2 R2

1

� �þ R2
2

� �þ R2
3

� �� �2 ; ð8Þ

ranges between 0 for a perfect sphere and 1 for
a rod.
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aTheoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
bEuropean Synchrotron Radiation Facility (ESRF), Grenoble, France

Analysis of Small-angle X-ray scattering data

Here we present collected SAXS curves and additional information regarding the determination of forward

scattering and radius of gyration for the data collected at 20 ◦C with 10 and 150 mM NaCl. The data at

other salt concentrations and temperatures were treated in the same way. Figure S1 shows the scattering

curves for Statherin with increasing protein concentration measured at 20 ◦C, for 150 and 10 mM NaCl. At

higher concentrations than presented in the figure, a clear depression at low q was shown, and therefore such

data was excluded from analysis. The forward scattering and radius of gyration were determined by both the

Guinier method and from the pair distance distribution function, P(r). Guinier plots with fits to the used

range are presented in Figure S2 for the data at 150 mM NaCl and in Figure S3 for the data at 10 mM NaCl.

The used range in the Guinier method was limited to qRg < 0.8, or extended to qRg < 1.0 when appropriate,

since that is usually the linear region for an IDP [1]. The figures also include the fits in the P(r) analysis. The

resulting values are presented in Table S1 and Table S2. Overall the agreement between the two methods are

good, although the radius of gyration from the pair distance distribution is slightly larger. Since it is known

that the Guinier law is less appropriate for describing an unfolded chain and therefore can underestimate the

size of intrinsically disordered proteins, we have presented the values from the pair distribution function in

the article.

The molecular weight, Mw, was calculated using the following equation:

Mw =
I0 · I0w,ref ·NA

I0w,meas · c([ρp − ρs]νp)
(1)

where the forward scattering I0 is given in arbitrary units, I0w,ref is the absolute scattering of water, NA

is the Avogadro constant, I0w,meas the measured scattering of water in arbitrary units, and c the protein

∗Corresponding author
Email addresses: ellen.rieloff@teokem.lu.se (Ellen Rieloff), marie.skepo@teokem.lu.se (Marie Skepö)
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concentration. The electron density of the protein, ρp, was determined from the number of electrons in the

protein and the molecular weight, while the electron density of the solvent, ρs, was calculated with MulCh

[2] based on the Tris and NaCl concentrations. The partial specific volume of the protein, νp, was calculated

from the amino acid sequence using Sednterp [3], assuming no effect from phosphorylations.
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Figure S1: Overlayed scattering curves for Statherin with (a) 150 mM NaCl and (b) 10 mM NaCl, and 20 mM Tris, pH 8.1, at

20 ◦C.



Table S1: Forward scattering, I0, and radius of gyration, Rg, determined both by the Guinier approximation and from the pair

distribution function, for the data at 150 mM NaCl and 20 ◦C.

c (mg/mL) I0,Guinier/c (a.u.) I0,P(r)/c (a.u.) Rg,Guinier (Å) Rg,P(r) (Å)

0.26 5.9 ± 0.1 6.0 ± 0.1 17.1 ± 0.6 19.0 ± 0.4

0.29 6.5 ± 0.1 6.4 ± 0.1 20.7 ± 0.9 20.1 ± 0.3

0.96 7.3 ± 0.1 7.4 ± 0.1 20.0 ± 0.2 20.8 ± 0.2

2.23 10.5 ± 0.1 10.5 ± 0.1 22.5 ± 0.2 23.1 ± 0.2

4.59 17.0 ± 0.1 17.1 ± 0.1 25.8 ± 0.2 26.9 ± 0.3

9.94 30.6 ± 0.1 30.7 ± 0.1 31.4 ± 0.8 31.8 ± 0.1

16.63 39.5 ± 0.1 39.7 ± 0.1 32.2 ± 0.3 32.7 ± 0.1

24.79 44.4 ± 0.1 45.4 ± 0.1 31.9 ± 0.6 33.2 ± 0.1

Table S2: Forward scattering, I0, and radius of gyration, Rg, determined both by the Guinier approximation and from the pair

distribution function, for Statherin at 10 mM NaCl and 20 ◦C.

c (mg/mL) I0,Guinier/c (a.u.) I0,P(r)/c (a.u.) Rg,Guinier (Å) Rg,P(r) (Å)

0.51 6.7 ± 0.1 6.8 ± 0.1 19.8 ± 0.9 21.9 ± 0.8

0.74 7.5 ± 0.1 7.5 ± 0.1 22.7 ± 0.5 24.2 ± 0.7

1.02 8.0 ± 0.1 8.0 ± 0.1 22.0 ± 0.3 23.1 ± 0.4

1.51 8.8 ± 0.1 9.0 ± 0.1 22.2 ± 0.3 23.9 ± 0.3

2.04 9.4 ± 0.1 9.5 ± 0.1 21.9 ± 0.3 23.4 ± 0.3

4.13 11.3 ± 0.1 11.5 ± 0.1 21.8 ± 0.2 23.1 ± 0.1
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Figure S2: Guinier plots (the two left columns) and SAXS curves with the fits obtained in the P(r) analysis (the two right

columns) for the reference system, obtained with 150 mM NaCl, 20 mM Tris, pH 8.1, at 20 ◦C. The red straight lines in the

Guinier plots are the Guinier fits in the used range. The red curves are obtained in the indirect transform for obtaining P(r),

using the ATSAS package [4].
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Figure S3: Guinier plots with red lines corresponding to the Guinier approximation in the used range (the two left columns) and

SAXS curves with the fits obtained in the P(r) analysis given in red (the two right columns) for Statherin with 10 mM NaCl,

20 mM Tris, pH 8.1, at 20 ◦C. The red straight lines in the Guinier plots are the Guinier fits in the used range. The red curves

are obtained in the indirect transform for obtaining P(r), using the ATSAS package [4].



Circular Dichroism data

To provide an estimate of the variation in the circular dichroism data, Figure S4 shows how the smoothened

data achieved by applying a Savitzky–Golay filter relates to the raw data for two replicates at 4 and 28 ◦C.

For each replicate a new sample was prepared and the measurements of the different replicates were made on

different days. At 4 ◦C the agreement between the two replicates is excellent, while there is a small difference

between the replicates at 28 ◦C. Factors contributing to the variation involves noise as well as uncertainties

in the measured concentration.
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Figure S4: Raw data (dotted lines) and smoothened data (solid lines) from two different circular dichroism measurements (blue

and black) for Statherin at (a) 4 ◦C and (b) 28 ◦C, in 20 mM phosphate buffer, 150 mM NaF, pH 8. The insets are enlargements

of the data around the minimum.
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ABSTRACT: Phosphorylation is one of the most abundant types of post-translational
modifications of intrinsically disordered proteins (IDPs). This study examines the
conformational changes in the 15-residue-long N-terminal fragment of the IDP statherin
upon phosphorylation, using computer simulations with two different force fields: AMBER
ff99SB-ILDN and CHARMM36m. The results from the simulations are compared with
experimental small-angle X-ray scattering (SAXS) and circular dichroism data. In the
unphosphorylated state, the two force fields are in excellent agreement regarding global
structural properties such as size and shape. However, they exhibit some differences in the
extent and type of the secondary structure. In the phosphorylated state, neither of the force
fields performs well compared to the experimental data. Both force fields show a
compaction of the peptide upon phosphorylation, greater than what is seen in SAXS experiments, although they differ in the local
structure. While the CHARMM force field increases the fraction of bends in the peptide as a response to strong interactions between
the phosphorylated residues and arginines, the AMBER force field shows an increase of the helical content in the N-terminal part of
the peptide, where the phosphorylated residues reside, in better agreement with circular dichroism results.

1. INTRODUCTION

Intrinsically disordered proteins (IDPs) lack a well-defined
three-dimensional structure in solution under physiological
conditions.1,2 Despite this, they are functional and participate in
the regulation of many biological processes,3,4 in which disorder
can enable interactions of high specificity coupled with low
affinity.5 These interactions are in part regulated by post-
translational modifications, such as phosphorylation, which is
reversible. Phosphorylation sites are prevalent in both
disordered regions and IDPs.5−7

Disordered phosphoproteins regulate, for example, physio-
logical biomineralization, by involvement at various stages.8

Statherin, a saliva IDP, is involved in the regulation of tooth
mineralization by inhibiting spontaneous precipitation and
crystal growth of calcium phosphates.9−11 Caseins and
osteopontin are examples of IDPs that can sequester amorphous
calcium phosphate through interaction with phosphorylated
residues, and by this, stabilize supersaturated fluids.12−14 IDPs
susceptible to phosphorylation can also be involved in diseases,
for instance the tau protein, for which abnormal hyper-
phosphorylation has been related to amyloid fibril formation
in Alzheimer’s disease.15

The addition of a phosphoryl group changes the properties of
the residue, the most prominent change being the addition of a
double-negative charge at physiological pH. The phosphoryl
group also allows for multiple hydrogen bonds, which can
drastically affect the protein conformation or interaction with a
binding partner, hence affecting the affinity.16 The possible
effects of phosphorylation involve transition between disorder

and order, changes in association state, and activation or
inhibition of a protein.16

The most occurring phosphorylated residue is phosphoser-
ine,17 and it is known to act as either a stabilizer or a destabilizer
of α-helices, depending on the position in the helix, and residues
in the surroundings.18,19 In the N-terminal end of a helix,
phosphoserine acts as a stabilizer because of hydrogen-bonding
with the backbone NH groups that do not take part in the i, i + 4
hydrogen bonding pattern characteristic of α-helices, and
electrostatic interaction with the helix macrodipole.18 The
presence of a phosphoserine four steps away from a lysine also
stabilizes helices, through formation of a salt bridge between the
phosphate group and the positively charged side chain of lysine.
Other positively charged side chains are suggested to have the
same type of stabilizing effect.19 Phosphoserines have also been
shown to be involved in strong interactions with arginines,
through salt bridge formation with the guanidinium group of the
side chain.20,21 These interactions can play an important role in
the conformational response and recognition.16

Since IDPs possesses vast conformational ensembles, their
structure can be rather challenging to study experimentally.
Hence, computer simulations have emerged as a useful tool to
complement experiments.22,23 During recent years, there has
been considerable advancements in atomistic simulations of
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IDPs, because of the development and justification of force fields
and water models against experimental results.24−28 Therefore,
atomistic simulation studies of IDPs have become more
common and also phosphorylated IDPs have been studied
with various force fields.29−38 However, the parameters for
phosphorylated residues precede many of the more recent
optimizations of force fields for IDPs, and might therefore not
work as intended with the latest force field developments.
Hence, there is a need to examine the performance of newer
force fields with the extensions available for phosphorylated
residues. To the authors’ knowledge, only few studies have
assessed the performance of force fields for phosphorylated
residues. Recently Vymet̆al, Juraśkova ́ and Vondraśěk presented
a study of the effects of phosphorylation on dipeptides, showing
inconsistencies in the conformational changes among the tested
force fields:39 AMBER ff99SB40 extended by the phosaa10
parameters for phosphorylated residues, developed by Homeyer
et al.41 and Steinbrecher et al.,42 AMBER ff0343 with
phosphorylated parameters from Forcefield_PTM,44 and
CHARMM36m.45 Although the intrinsic conformational
preferences of phosphorylated residues are of importance for
the conformational changes in a protein, long-range interactions
with other residues, such as salt bridge formation, can play a
major role. Therefore, it is necessary to systematically investigate
force field effects in longer peptide sequences.
In this study, the effect of phosphorylated serines in a model

peptide is investigated using two different force fields: (i)
AMBER ff99SB-ILDN46 with the TIP4P-D25 water model,
extended by the phosaa10 parameters , and (i i)
CHARMM36m45 with the CHARMM-modified TIP3P water
model,47 which already contains parameters for phosphorylated
residues. The model peptide used in this study is the 15-residue-
long N-terminal fragment of the saliva IDP statherin. Previous
studies on this fragment have shown that phosphorylation
affects the secondary structure, and that the unphosphorylated
peptide has a reduced ability to adhere to hydroxyapatite
surfaces and to inhibit mineralization.11 Hence, phosphorylation
regulates the functionality of statherin, and it is therefore of
interest to further investigate the possible conformational effects
induced by phosphorylation. The results from the simulations
are compared with experimental data collected by small angle X-
ray scattering (SAXS) and circular dichroism (CD), to assess the
performance of the force fields regarding both overall shape and
secondary structure.

2. METHODS
2.1. Computational Methods. The initial configuration of

the nonphosphorylated peptide (SN15n) was built as a linear
chain in PyMOL,48 whereas the phosphorylated peptide
(SN15p) was built as a linear chain in Avogadro 1.2.0,49 in
which the structure was optimized using the auto-optimization
tool. The molecular dynamics simulations were performed using
the GROMACS package version 2018.4,50−54 with two different
force fields and water models: (i) AMBER ff99SB-ILDN46 with
the TIP4P-D25 water model and parameters for the phosphory-
lated residues fromHomeyer et al.41 and Steinbrecher et al.,42 as
presented in the parameter set phosaa10 found in, for example,
the Supporting Information to Steinbrecher et al.,42 and (ii)
CHARMM36m45 with the CHARMM-modified TIP3P water
model,47 using the included parameters for phosphorylated
residues.
The peptide was solvated in a rhombic dodecahedron box,

having a minimum distance between the peptide and the box

edges of 10 Å. One chloride ion or three sodium ions were added
to neutralize the system, for SN15n and SN15p, respectively.
The number of solvent molecules is specified in Table 1.

Periodic boundary conditions were employed in all directions.
The Verlet leapfrog algorithm55 with a time step of 2 fs was used
to integrate the equations of motion. Nonbonded interactions
were treated with a Verlet list cutoff scheme. The short-ranged
interactions were calculated using neighbor lists with cutoffs of
10 and 12 Å, for AMBER and CHARMM force fields,
respectively. When using the CHARMM force field, the
Lennard-Jones interactions were switched off smoothly (force-
switch) between 10 and 12 Å. Long-ranged dispersion
corrections were applied to energy and pressure when using
the AMBER force field. Long-ranged electrostatic interactions
were treated by particle mesh Ewald56 with a cubic interpolation
and 1.6 Å grid spacing. Solute and solvent were separately
coupled to temperature baths at 298 K using the velocity
rescaling thermostat57 with a 0.1 ps relaxation time. The
pressure was set to 1 bar by the Parrinello−Rahman pressure
coupling58 with a 2 ps relaxation time and 4.5 × 10−5 bar−1

isothermal compressibility. Using the LINCS algorithm,59 the
bond lengths were constrained for all bonds in the AMBER force
field simulations, and only for bonds with hydrogen atoms in the
CHARMM simulations.
Energy minimization was performed by the steepest descent

algorithm until the system was converged within the available
machine precision. Initiation of replicates was performed
separately in two steps using position restraints on the peptide.
The first step was 500 ps of NVT simulation (constant number
of particles, volume, and temperature) performed to stabilize the
temperature, followed by the second step of 1000 ps of NPT
simulation (constant number of particles, pressure, and
temperature) to stabilize the pressure. The production run
comprised five replicates of at least 2 μs each in the NPT
ensemble. Exact simulation times used are presented in Table 1.
Energies and coordinates were saved every 10 ps.

2.2. Analysis. Simulation analyses were performed using
GROMACS package version 2018.4,50−54 the MDTraj Python
library version 1.9.3,60 and the DSSP program version 2.2.1.61

Error estimates of the end-to-end distance (Ree) and the radius
of gyration (Rg) were calculated using block averaging analysis as
implemented in the gmx analyze routine in GROMACS. SAXS
intensities were calculated using CRYSOL version 2.8.3.62 The
energy landscapes were calculated using principal component
analysis following the Campos and Baptista approach,63 with the
differences described by Henriques et al.26 Representative
snapshots from the simulations were produced using VMD
1.9.3.64−66

Convergence was checked by performing each simulation in
five replicates and comparing their end-to-end distance and

Table 1. System Specificationa

peptide force fieldb Nwater simulation length (μs)

SN15n A99 8839 2.0 + 3.0 + 3.4 + 2.0 + 4.0
SN15n C36 8861 3.0 + 3.0 + 4.4 + 4.0 + 3.0
SN15p A99 9703 4.4 + 4.4 + 4.4 + 4.4 + 4.4
SN15p C36 9508 4.0 + 4.0 + 4.0 + 4.0 + 4.0

aNumber of water molecules and the simulation length of each
replicate. bA99 = AMBER ff99SB-ILDN with the TIP4P-D water
model, C36 = CHARMM36m with the CHARMM-modified TIP3P
water model.
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radius of gyration distributions, and their energy landscapes, as
well as observing the auto-correlation function and block
average error estimate of the concatenated simulation. The
reader is referred to the Supporting Information for a detailed
assessment of the convergence and the sampling quality. Before
final analysis, the first 0.15 μs were removed from each replicate
of the phosphorylated peptide, as this time span showed signs of
equilibration. For the nonphosphorylated peptide, the initial
time was not removed, as the equilibration was fast enough for
the effect to be negligible.
2.3. Experimental Methods. 2.3.1. Sample Preparation.

20 mM Tris [Ultrapure >99.9%, CAS 77-86-1; Saveen Werner
AB] buffer at pH 7.5 (20 °C) with 150 mM NaCl [AnalaR
NORMAPUR, CAS 7647-14-15; VWR Chemicals, Belgium]
was prepared with Milli-Q water, and the pH was adjusted by
drop-wise addition of 1 M HCl. This buffer was used for the
SAXS samples. As Tris absorbs light at low wavelengths, 20 mM
phosphate buffer (Na2HPO4·2H2O [Reag. Ph. Eur., CAS
10028-24-7; Sigma-Aldrich, Germany] and NaH2PO4·2H2O
[ACS reagent, CAS 10049-21-5; Sigma-Aldrich, Germany]), pH
7.5, prepared with Milli-Q water and drop-wise addition of 1 M
NaOH to adjust the pH, was used for the CD samples.
Peptide in the form of a lyophilized powder (synthesized by

TAG Copenhagen A/S, Denmark) was dissolved in buffer, and
dialyzed using membranes with a cutoff of 500−1000 Da
(Spectra/Por, Biotech-Grade CE Dialysis Tubing) in buffer of a
volume≥ 400 times the sample volumewhile stirring. The buffer
was exchanged four times during a total dialysis time of 48 h, in
which the first 7 h of dialysis was performed in room
temperature, and the remaining time at 6 °C.
For the CD samples, a concentrated stock peptide solution

was purified and then diluted to the desired concentration for
measurements using 20 mM phosphate buffer with 150 mM
NaF [99.5%, CAS 7681-49-4; VWR Chemicals, Germany], as
also chloride ions absorb strongly below 200 nm.
2.3.2. Small-Angle X-ray Scattering. The SAXS experiments

were performed at beamline B21 of the Diamond Light Source,
United Kingdom. The stock solution and dialysis buffer were
centrifuged at 14,000 rpm at 8 °C for 4 h to remove potential
large aggregates and/or impurities, before diluting to the desired
concentrations (a series of approximately 1, 2, 4, and 6 mg/mL).
Because of the limitations of the NanoDrop 1000 instrument,
the protein concentration was determined by absorption at 257
nm, using an extinction coefficient of 390 cm−1 M−1. This is
based on the peptide containing two phenylalanines and that the
absorption of phenylalanine at 257 nm is 195 cm−1 M−1.67 The
concentration determined at 257 nmwas approximately equal to
the concentration determined at 214 nm. Because of low
absorbance yielding unreliable results, for the SN15n peptide,
the absorption was only measured for the highest concentration,
and the other concentrations were calculated based on the
dilution scheme.
The distance between the sample and the Pilatus 4M detector

was 4.014 m at 12.4 keV, corresponding to a q-range of 0.0034−
0.44 Å. The scattering vector, q, is defined as q = 4π sin θ/λ,
where 2θ is the scattering angle and λ is the wavelength of the
incident beam, 1 Å. The measurements were performed using
the BioSAXS sample robot, loading the samples into a flow-
through quartz capillary. Fifteen consecutive frames were
recorded using an exposure time of 2 s each, at 20 °C. The
dialysis buffer, that is the background, was measured first in each
concentration series. For the lowest concentrations, measure-

ments were performed in several replicates, and then final
averages were determined in the data processing stage.
Data processing and analysis were performed using the

ATSAS package.68 Prior to averaging and buffer subtraction, the
consecutive frames were checked for signs of radiation damage,
and affected frames were removed. The forward scattering, I0,
and radius of gyration, Rg, were determined both from Guinier
analysis and the pair distance distribution, P(r). From I0, the
molecular weight was calculated using a conversion factor
determined from a measurement on a bovine serum albumin
standard.

2.3.3. Circular Dichroism. Before measurement, the sample
was filtered through a 0.22 μm filter (Millex-GV, Merck
Millipore Ltd.), and the peptide concentration was determined
from the absorption at 214 nm measured with a NanoDrop
2000, using an extinction coefficient of 24,000 M−1 cm−1.69 The
protein concentration was ∼0.17 mg/mL. CD spectra were
recorded between 185 and 260 nm for the samples and the
buffer at 20 °C using a JASCO J-715 instrument with a PTC-
348WI Peltier type cell holder for temperature control, in a 0.1
mm quartz cuvette (Hellma Analytics). The scanning speed was
20 nm/min, the response time 2 s, the bandwidth 1.0 nm, the
data pitch 0.1 nm, and the sensitivity 100 mdeg. Each of the
spectra was averaged over five recordings.
The reported ellipticity is expressed as mean residue

ellipticity, defined as

θ θ[ ] = · · ·d cMRW/(10 )MRW (1)

where θ is the observed ellipticity (mdeg), d the path length of
the cell (cm), and c the protein concentration (mg/mL). The
mean residue weight, MRW, is the molecular weight (Da)
divided by the number of peptide bonds.
To assess the partition of secondary structural elements in the

peptides, the data were analyzed with BeStSel70,71 through a
web-server (http://bestsel.elte.hu/index.php).

3. RESULTS AND DISCUSSION
An N-terminal fragment of statherin, namely, the first 15 amino
acids with the sequence presented in Figure 1, has been studied

in the unphosphorylated state (SN15n), and with two
phosphorylated serine residues (SN15p), using two different
force fields: AMBER ff99SB-ILDN (hereafter A99) and
CHARMM36m (hereafter C36). The results for the two
different peptides are presented together in the same figures,
but are initially discussed separately. First, the force fields are
compared for SN15n and SN15p separately, followed by a
discussion regarding the effect of phosphorylation in the SN15
sequence, as well as a comparison to experimental data.

3.1. SN15n: The Nonphosphorylated Peptide. Both the
end-to-end distance and the radius of gyration, shown in Figure
2, sample rather broad distributions for the SN15n peptide. This
is the expected behavior for IDPs, which generally exhibit a wide
range of conformations. For both properties, there is good
agreement between the two different force fields, suggesting that
they sample the same global properties. The calculated SAXS
intensities, presented in Figure 3 as a dimensionless Kratky plot,

Figure 1. Sequences of the two peptides SN15n and SN15p. Negatively
charged amino acids are marked in red, and positively charged residues
in blue. Note that each phosphorylated serine has a charge of −2e.
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are also indistinguishable, which is expected when the global
properties are the same. Furthermore, the Kratky plot shows that
the behavior of SN15n resembles that of a random coil, which is
typical for many IDPs.
Regarding the local properties, more specifically the

secondary structure, disagreement between the two force fields
is visible. It has already been pointed out, for example by Zerze et
al.72 when comparing three generations of AMBER03 force
fields, that agreement on global properties does not imply
agreement on local properties. In this case, the secondary
structure determined byDSSP, presented in Figure 4, shows that
for both force fields, the peptide is dominated by an irregular
structure, such that the structure content overall is rather low.
However, the A99 force field gives a larger helical content,
specifically more 310-helix, between residues 3 and 8 than C36.
Another view of the secondary structure is provided by the
Ramachandran plots shown in Figure 5, where population atϕ =
−75 ± 20°, ψ = 145 ± 20° signalizes polyproline type II (PPII)
structure, which is not sampled by the DSSP program. The
Ramachandran plot shows a larger distribution in accessible ϕ

andψ values for A99 thanC36. In addition, for A99 there are two
clear maxima in the areas usually corresponding to β-strand and
PPII structure, and a third smaller maximum in the helical
region, indicating a 310-helix. The C36 simulation shows only
one distinct maximum, in the PPII area, and a smaller maximum
corresponding to α-helical structure.
Qualitatively, the secondary structure analysis fromDSSP and

the Ramachandran plot agree rather well, besides the
Ramachandran plot capturing the PPII structure. The A99
simulation shows more sampling in the β-strand region of the
Ramachandran plot than the C36 simulation, and slightly more
β-sheet and β-bridge in the DSSP analysis. The identification of
helicity is also in good agreement between the two methods,
especially as A99 contains more 310-helical than α-helical
structure, whereas the opposite is true for C36, a conclusion
from both the Ramachandran plots and the DSSP analysis.
The rather unstructured peptide conformation is further

confirmed by the contact map in Figure 6. Some residues have a
higher probability of being close to each other than to others, but
overall it is in good agreement with a broad and interchangeable
conformational ensemble without clear specificity. There are
some differences between the two force fields, the most apparent
one being a 40% probability of having Arg10 and Phe14 close
(smallest distance between atoms <4 Å) in A99, whereas the
corresponding probability of C36 is 25%. This close distance is
probably related to the Gly12 often being in a bend, as shown by
Figure 4. In C36, a bend centered around Phe7 is associated with
an increased probability of having residues Glu5 and Arg9 close
together, an interaction that is electrostatically favorable. For
A99, in the segment of residues 2−9, there is an increased
probability of being close to residues three neighbors away,
which is connected to the higher occurrence of 310-helix in this
segment.
Although A99 showed a larger helical content in the N-

terminal part of the peptide, this difference is not visible in the
number of intrapeptide hydrogen bonds, shown in Figure 7. The
distribution of the number of hydrogen bonds in a conformation
is very similar between the two force fields, especially focusing
on the type of hydrogen bonds that characterize helices.
To summarize the similarities and differences between the

two force fields, energy landscapes complemented with
representative structures of each minimum, shown in Figure 8,
provide a good overview of the simulated system. It is worth
pointing out that the first two components only account for
approximately 40−50% of the variance in the simulations.
Hence this analysis does not provide a complete picture of all the
conformational classes. Despite that, it still provides an overview
and is adequate for a brief comparison between the two force
fields. From the figure, it is clear that the conformational space is
similar for the two force fields, and that the most common
conformation is rather stretched and irregular. Whereas the
percentage stating the part of all sampled conformations
belonging to each basin in the energy landscape is approximate,
it remains clear that the conformations with more secondary
structure are found in much less-populated minima. Whereas
both force fields show a small share of the β-sheet structure, only
A99 show conformations with a large part of the peptide in a 310-
helix. This is in agreement with the DSSP analysis.

3.2. SN15p: The Phosphorylated Peptide. In the case of
the phosphorylated peptide, SN15p, the differences between the
two force fields are much larger than for the nonphosphorylated
counterpart. Figure 2 shows that the probability distributions of
both Ree and Rg are more narrow and centered around smaller

Figure 2. Density estimate of the end-to-end distance, Ree (a), and the
radius of gyration, Rg (b), of SN15n and SN15p simulated with AMBER
ff99SB-ILDN and CHARMM36m, obtained using a Gaussian kernel
estimator. The legend applies to both panels.

Figure 3. Dimensionless Kratky plot of SN15n and SN15p simulated
with AMBER ff99SB-ILDN and CHARMM36m.
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values in the case of C36. The Kratky plot (Figure 3) also
indicates a more compact, globule-like structure for C36 than for
A99.
The differences on the global structural properties continues

on the local properties. From Figure 4, it is clear that the A99
force field gives a much larger helical content in the N-terminal
end (between residues two and nine) than C36. Instead, C36
shows a larger content of bends, especially in the middle of the
peptide. Overall, A99 gives a wider range of different structures,
as also more β-strands are sampled. This is also evident from the
Ramachandran plot in Figure 5, where A99 shows a larger
distribution than C36, in accordance with the nonphosphory-

lated peptide. For A99, the largest maximum is located in the
helical region and indicates more 310-helix than α-helix, in
agreement with the DSSP analysis. Other maxima are located in
the β-strand and PPII region. As for SN15n, C36 shows a strong
maximum in the PPII region and a secondarymaximum in the α-
helical region.
Both force fields show some specific contacts involving the

phosphorylated serines, although the effect is much stronger for
C36. Figure 6 reveals that around 85% of the sampled
conformations using C36 have a distance < 4 Å between
atoms in residue pSer2 and Arg13. A closer investigation shows
that hydrogen bonds are formed between the side group of

Figure 4. Stacked bar chart of the secondary structure content determined by DSSP of each amino acid in the SN15n (left column) and SN15p (right
column) peptides, simulated with AMBER ff99SB-ILDN (top row) and CHARMM36m (bottom row). The legend applies to all panels.

Figure 5. Ramachandran plots of SN15n (left column) and SN15p (right column) simulated with AMBER ff99SB-ILDN (top row) and
CHARMM36m (bottom row). The color scale shows the population density.
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arginine and the phosphate group. Around 75% of the
conformations also have the Arg9 close to pSer2, and 65%
have Arg10 close. Approximately 90% of the conformations have
Arg10 and Arg13 in close vicinity, which probably is because of
both of them coordinating to a phosphate group simultaneously.
The contact map also suggests that in many conformations all
three arginines are coordinated simultaneously to the two
phosphorylated serines. Such a coordination explains the
presence of a bend in the middle of the peptide, as was shown
by the DSSP analysis, and agrees with a more compact
conformation with a smaller end-to-end distance. The high
occurrence of such conformations can be explained by the
strength of the interaction between the phosphate group and the
guanidinium group of the arginine side chain, as this interaction
has been shown to be of covalent-like stability.20 However, this
interaction appears stronger in the C36 force field than in A99,
as the A99 simulation shows a lower amount of coordination
between the arginines and the phosphate groups. The most
probable close contact in the A99 simulation is between pSer3
and Lys6, and secondary between pSer2 and Glu5, as well as
between pSer2 and Lys6. Overall, between residues 2 and 7,
there is an enhanced contact between residues three or four
steps away, compared to the C36 simulation. This is connected
to the higher probability of helical structure, especially 310-helix,
in this region of the peptide. Errington and Doig have shown
that phosphorylation of a serine four neighbors away from a
lysine stabilizes the α-helical structure through a strong
interaction between the phosphate group and the positively
charged lysine side chain. Having the lysine further away, the
phosphorylation instead destabilizes the α-helix.19 The
enhanced contact between Ser2 and Lys6 upon phosphorylation
is observed in both force fields, although the contact between
Ser3 and Lys6 is preferential.
An analysis of the number of intrapeptide hydrogen bonds in

each conformation (Figure 7) confirms that A99 shows more

helical hydrogen bonds than C36. The C36 simulation depicts
instead more hydrogen bonds between residues more than five
neighbors away from each other, which is the category that the
pSer−Arg hydrogen bonds fall into.
A comparison between the energy landscapes of the two force

fields confirms the large differences between them, see Figure 9.
First of all, C36 does exhibit a much smaller conformational
landscape, in agreement with the narrower Ree and Rg
distributions. Although the A99 simulation has an overall higher
content of helical structure in the N-terminal end, evident from
Figures 4 and 5, this is not observed in the conformations of the
energy minima. However, upon closer inspection of the other
conformations in basin b0 that are located very close to the
minimum, it is revealed that some of them have a helical
structure in the N-terminal part of the peptide, around the twist
in the snapshot shown in Figure 9b of basin b0, which
corresponds to residues 4−6. Hence, it appears that the
conformations with helical structure mostly fall within this
basin. The most striking difference between the snapshots
shown in Figure 9b,d is that almost all of the C36 conformations
exhibit the same bend in the middle, whereas the two termini are
allowed to point in more opposing directions for A99. The
reason behind the bent structure in the C36 simulation is the
electrostatic interaction and hydrogen bonding between the
phosphate groups and arginine side chains as discussed above,
which is shown in Figure 10. This figure also confirms that the
same phosphate group can form hydrogen bonds with several
arginines simultaneously, which was suggested by the contact
map.

3.3. Effect of Phosphorylation and Experimental
Comparison. The end-to-end distance and the radius of
gyration distributions (Figure 2) show that in both force fields,
phosphorylation gives rise to a compaction of the peptide. On
average, the radius of gyration is reduced from 9.99 ± 0.13 to
8.98± 0.12 Å for A99, and from 9.87± 0.08 to 8.13± 0.09 Å for

Figure 6.Contact map showing the probability of atoms in different residues being closer than 4 Å in SN15n (left column) and SN15p (right column)
simulated with AMBER ff99SB-ILDN (top row) and CHARMM36m (bottom row). The two closest residues on each side as well as the residue itself
are excluded from the analysis and therefore shown in white.
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C36. The increased compactness is also captured by the
calculated SAXS spectra, shown in Figure 3 as a dimensionless
Kratky plot.
To assess the performance of the force fields, experimental

SAXS data were collected for the two peptides. The full
concentration series are available in the Supporting Information,
Figure S29. For SN15n, the different concentration curves agree,
suggesting monomeric protein and no protein−protein
interactions affecting the curves. The molecular weight, Mw,
was calculated to be between 2.03 and 2.09 kDa for all the
protein concentrations, see Table S1 in the Supporting
Information, which is approximately 15% larger than the
theoretical Mw of 1.80 kDa. Normally, the uncertainty of the
molecular weight determined from SAXS is around 10%, but
considering a higher uncertainty of the determined concen-
tration in these measurements, 15% is acceptable. Hence, the
SN15n peptide is regarded as monomeric and the collected
SAXS data correspond to the form factor. In the case of the
phosphorylated peptide, SN15p, the SAXS curves differ slightly
with concentration; especially the forward scattering increases
with concentration. This corresponds to an increase in
molecular weight from 2.06 kDa at 1 mg/mL, to 3.01 kDa at 6
mg/mL (see Table S2), which compared to the theoretical value

1.96 kDa is 5 and 54% larger, respectively. Hence, this system
shows some form of self-association with increased concen-
tration, which is not unreasonable considering that phospho-
serine can form strong interactions with arginines. However,
since the molecular weight determined at 1 mg/mL is in good
agreement with the theoretical value, these data are expected to
correspond to the form factor. The form factor of SN15n and
SN15p is presented in Figure 11a together with the form factors
calculated from the simulations. It is shown that for the
nonphosphorylated peptide both force fields agree with the
experimental SAXS data, whereas for the phosphorylated
peptide C36 is in disagreement, and possibly A99 as well. The
radius of gyration of SN15n was determined to be 10.5 ± 0.2 or
9.9 ± 0.1 Å, using the pair distance distribution function or the
Guinier approximation, respectively. Corresponding values for
SN15p are 10.5 ± 0.2 and 9.6 ± 0.6 Å, respectively. Hence, the
decrease in Rg upon phosphorylation observed in simulations is
not supported by the experiments. However, from the upturn at
low q for SN15p in Figure 11a, it is clear that the SAXS data show
some aggregation of the sample, which might affect the full
curve. Therefore, these data are less reliable than the SN15n
data, and the Rg might be slightly overestimated. Nonetheless, it
is unlikely that the effect would be large enough to make the
simulations and experiments agree.
The Kratky plot in Figure 11b shows that there is good

agreement in shape between the experiments and simulations
for SN15n. For SN15p, the data are too noisy to state with
certainty how the force fields compare. However, by comparing
the simulations to the regularized curve fitted to the
experimental data in the P(r) determination, a difference is
observed as shown in Figure 12. The phosphorylated peptide is
slightly less stiff/extended than the nonphosphorylated one,
although the effect is much smaller than what both force fields
predict. In addition, it appears that the self-association in the
phosphorylated system has aminor effect on the shape. Hence, it
appears reasonable to conclude that both force fields accurately
capture the shape of the nonphosphorylated peptide, whereas
they overestimate the compactness induced by phosphorylation.
This is especially true for the C36 force field, but whereas A99
performs better, it is still not in agreement with the experimental
data. Hence, neither of the force fields appears to accurately
represent the phosphorylated residues.
Regarding the secondary structure, the two force fields give

different responses to phosphorylation. For A99, there is an
increase in the helical content in the N-terminal region, whereas
C36 mostly shows an increase of bends. Experimental studies
have shown that phosphoserine in the N-terminal position of a
α-helix, or in an i, i + 4 position with lysine, stabilizes the α-
helix,18,19 which is the situation in the SN15p peptide. In the
Ramachandran plot (Figure 5), a shift toward higher helical
content for A99 is visible, whereas phosphorylation gives no
clear effect in the Ramachandran plot for C36. Vymet̆al,
Juraśkova,́ and Vondraśěk39 recently published a study
comparing the microscopic details, including conformational
preferences, for terminally capped phosphorylated residues and
their normal variants, obtained in three different force fields,
including AMBER ff99SB with the phosaa10 parameters and
CHARMM36m. They noticed that upon phosphorylation, the
amount of extended and PPII-like conformations for serine
decreased, whereas the amount of helical conformations
increased, for the AMBER force field. The CHARMM force
field on the other hand, showed decreasing amount of extended
conformations, increasing amount of PPII-like conformations,

Figure 7. Probability distribution of the number of intrapeptide
hydrogen bonds in total (a), associated with helices, that is, between
residue n and n + i, where i = 3, 4, 5 (b), and between residue n and n + i,
where i ≥ 6 (c). The legend applies to all panels.
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and no significant changes in the helical content. Using the same
classifications of extended, PPII-like and helical conformations
for the serines in this study, the A99 force field gives a 20
percentage point decrease of extended conformations, a 32
percentage point decrease of PPII-like structures, and a 43
percentage point increase of helical conformations upon
phosphorylation, in qualitative agreement with their study

using the predecessor of the A99 force field. The C36 force field
shows a 19 percentage point decrease of extended conforma-
tions, an 18 percentage point increase of PPII-like conforma-
tions, and a 15 percentage point increase of helical
conformations upon phosphorylation, hence showing the
same trend in extended and PPII-like structure as the study by
Vymet̆al et al. Therefore, it appears that the force fields are

Figure 8. Energy landscape for SN15n using the first two principal components, and the conformation in each minimum from simulations with the
AMBER ff99SB-ILDN (a,b) andCHARMM36m (c,d) force field. The energy landscapes were constructed using the same basis set, whichmakes them
directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4. The minimum of each basin is represented by a
marker:●: energy≤ 1RT,▲:≤2RT, and×:≤3RT. The peptide conformations are color-coded according to the secondary structure determination in
VMD, where silver is irregular (coil), cyan is turn, magenta is α-helix, yellow is β-sheet, and tan is β-bridge. TheN-terminus of each conformation is the
leftmost/topmost end.

Figure 9. Energy landscape for SN15p using the first two principal components, and the conformation in each minimum from simulations with the
AMBER ff99SB-ILDN (a,b) andCHARMM36m (c,d) force field. The energy landscapes were constructed using the same basis set, whichmakes them
directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4. The minimum of each basin is represented by a
marker: ●: energy ≤ 1RT, ▲: ≤2RT, ×: ≤3RT, and ■: ≤4RT. The peptide conformations are color-coded according to the secondary structure
determination in VMD, where silver is irregular (coil), cyan is turn, blue is 310-helix, and tan is β-bridge. The N-terminus of each conformation is the
leftmost end.
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biased toward different conformations of the phosphorylated
residues, although the surrounding residues also affect the
outcome.
For experimental reference, CD measurements were

performed and the resulting spectra are shown in Figure 13.

There is a clear difference between the nonphosphorylated and
phosphorylated peptides, where phosphorylation induces a
small shift of the global minimum towards higher wavelengths, a
deeper secondary minimum around 222 nm, as well as a higher
peak at 191 nm. All these changes are associated with an increase
in α-helical structure. The experimental data are in qualitative
agreement with measurements earlier performed by Raj et al.11

To achieve an assessment of the partition of secondary
structural elements in the peptides, the data were analyzed with
BeStSel. It is important to keep in mind that it is challenging to
obtain highly accurate partitions from a CD spectrum, which is
evident from different algorithms often giving different results.
However, based on the quality of the fits to the experimental
data, shown in Supporting Information Figure S30, and the
normalized root mean square deviation being <0.02 for both
peptides, the BeStSel results appears to be of adequate quality.
The resulting secondary structure content is summarized in
Table 2 and shows that the helical content is indeed increased
upon phosphorylation, mostly at the expense of “others”, which
includes what in DSSP is classified as 310-helix, π-helix, bends, β-
bridge, and irregular/loop. Also worth noticing is that the
analysis suggests that the peptide contains a substantial amount

Figure 10. Snapshots of the peptide conformations in the minimum of
basin b0 (a), b1 (b), and b2 (c) in the energy landscape in Figure 9c. All
atoms are shown in residues pSer2, pSer3, Arg9, Arg10, and Arg13. The
orange dashed lines represent the hydrogen bonds between atoms in
the side groups of the named residues.

Figure 11. Form factor for SN15p and SN15n obtained by SAXS at 1.2
and∼4 mg/mL, respectively, at 20 °C, 150 mMNaCl, 20 mMTris, and
pH 7.5 shown as the scattering intensity (a) and a dimensionless Kratky
plot (b). The simulated curves are included for comparison. The legend
applies to both panels.

Figure 12.Dimensionless Kratky plot of the regularized curves fitted to
the experimental SAXS data in the P(r) determination, for the data
obtained at 20 °C, 150 mM NaCl, 20 mM Tris, and pH 7.5. The blue
solid lines correspond to SN15n, whereas the red solid lines correspond
to SN15p. The color gradient shows the different concentrations, where
the darkest color is the lowest concentration. The simulated curves are
included for comparison.

Figure 13. CD spectrum of SN15p and SN15n, measured at 20 °C in a
20 mM phosphate buffer at pH 7.5, with 150 mM NaF.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01190
J. Chem. Theory Comput. 2020, 16, 1924−1935

1932



(∼20%) of antiparallel β-strands, and that it increases upon
phosphorylation.
Comparing the BeStSel results with the DSSP analysis of the

simulations (Figure 4) is not straight-forward, because of the
challenges of obtaining good estimates from the experimental
data, as well as the experiments only providing an overall average
and not information on residue level. Despite this, it is clear that
the experimental analysis shows a higher structure content, since
the simulations are highly dominated by irregular and bends,
which is what BeStSel classifies as others. Hence, the simulations
are not quantitatively comparable to the experiments regarding
the secondary structure. However, the A99 force field captures
an increase of helical structure upon phosphorylation. For β-
strands, the content is low in all simulations, yet, as shown in
Figures 8 and 9, β-strands and β-sheets do occur in local energy
minima in all simulations except for the C36 simulation of
SN15p. As these minima in some cases are separated by
relatively high energy barriers, the sampling of them might
however not be sufficient. This can be investigated further by
employing enhanced sampling techniques. Overall, neither of
the force fields shows an increase of β-sheetstructures on average
upon phosphorylation.
For both force fields, the presence of phosphorylated residues

gives rise to specific interactions between certain amino acids,
shown in the contact map in Figure 6. It is clear that it is the
phosphorylated residues that are involved in the more
prominent contacts and mainly with positively charged residues.
The effect is especially large for C36, where phosphorylation
causes highly conserved contacts between pSer and Arg. These
contacts are formed by hydrogen bonds in addition to
electrostatic interaction, which explains why there is an increase
of intrapeptide hydrogen bonds after phosphorylation (Figure
7). This increase is observed for both force fields, whereas Figure
7b,c reveals that the type of hydrogen bonds differs. The C36
force field gives the same number of hydrogen bonds associated
with helices (i.e., bonds between a residue and another residue
three to five residues away) for the phosphorylated as well as the
nonphosphorylated peptides, whereas the number of hydrogen
bonds between more distant residues is much higher in the
phosphorylated case. Hydrogen bonds between pSer and Arg all
fall into this last category. The A99 force field shows an increase
in both the number of helix hydrogen bonds and hydrogen
bonds between more distant residues upon phosphorylation.
The increase in helix hydrogen bonds is related to the increase in
helical content.
Overall, the agreement between the experimental data and the

simulations are worse for the C36 force field than the A99 force
field. The main difference between the force fields is attributed
to the highly conserved contacts between the phosphorylated
serines and arginines in the C36 simulation, causing more
compact and less interchangeable conformations. Hence, it

appears that the interaction between phosphate and arginine,
even though experiments have shown that it can be exceptionally
strong for an intermolecular interaction,20 is too strong in this
force field and that A99 gives a better representation of this
peptide. However, the agreement is still not satisfactory,
showing the need for new parameterizations of phosphorylated
amino acids in force fields suitable for IDPs.

4. CONCLUSIONS
AMBER ff99SB-ILDN with the TIP4P-D water model and
CHARMM36m with the CHARMM-modified TIP3P water
model give overall similar results for the SN15n peptide.
Differences were only observed in the secondary structure,
where A99 gave a larger content of 310-helix than C36. Both
force fields showed great agreement with the experimental SAXS
data, whereas experimental CD data suggested a higher structure
content than what was observed in the simulations. Therefore, it
is concluded that both force fields are in experimental agreement
regarding size and shape, whereas improvements can be made
regarding capturing the secondary structure.
In the simulation of the phosphorylated peptide, SN15p, the

AMBER force field was complemented with phosaa10
parameters for the phosphorylated serines, whereas this was
already included in the CHARMM force field. Both force fields
showed a compaction of the peptide compared to the
nonphosphorylated peptide, but this effect was further enhanced
for C36, in which multiple hydrogen bonds between the
phosphate groups and arginines trapped the peptide in more
bent conformations. A99 gave an increase of helical content in
the N-terminal part of the peptide upon phosphorylation,
whereas C36 showed no differences in structure content. CD
data showed an overall increase in both α-helical and β-strand
content, therefore suggesting that A99 qualitatively can capture
some of the aspects of phosphorylation in IDPs, while still giving
too compact conformations. Hence, revision of the parameters
for phosphorylated residues is encouraged for both force fields.
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Simulations of Intrinsically Disordered Proteins: Force Field Evaluation
and Comparison with Experiment. J. Chem. Theory Comput. 2015, 11,
3420−3431.
(27) Rauscher, S.; Gapsys, V.; Gajda, M. J.; Zweckstetter, M.; de
Groot, B. L.; Grubmüller, H. Structural Ensembles of Intrinsically
Disordered Proteins Depend Strongly on Force Field: AComparison to
Experiment. J. Chem. Theory Comput. 2015, 11, 5513−5524.
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1 Convergence and sampling in the simulations

Assessing the sampling quality and uncertainty of the simulations is important for ensuring

reliable result. In this study each system has been simulated in five replicates that have been

combined to a single trajectory before performing the final analysis. In this section the five

replicates are compared to assess sampling quality, by visual analysis of the energy landscapes

obtained from principal component analysis (PCA), as well as by the time evolution and

probability distribution of the end-to-end distance (Ree) and the radius of gyration (Rg).

Furthermore, error estimates of Ree and Rg from the concatenated simulation trajectory

have been obtained by block averaging, and the sampling has been assessed by observing

the auto-correlation function. Below the results are presented for each system.
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1.1 SN15n with AMBER ff99SB-ILDN

The energy landscapes obtained from PCA analysis using the first two principal components,

presented in Figure S1, are overall similar in shape for all replicates. Hence, apart from

the third replicate, the replicates appear to be sampling the same conformational space.

Regarding the third replicate, the lowest energy minimum is located in a narrow basin in the

right side of the plot, which is an area not sampled in the others. Apart from this minimum

the conformational landscape is similar in distribution to the other replicates.

From the time evolution of the end-to-end distance and the radius of gyration, presented

in Figure S2, it is suggested that the low-energy basin in the third replicate contains more

compact conformations than otherwise sampled. For the replicates overall, Ree and Rg
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Figure S1: Energy landscapes for the five replicates and the concatenated trajectory of
SN15n in AMBER ff99SB-ILDN, using the two first principal components. All plots have
been constructed using the same basis set and are therefore directly comparable. Contour
lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4.
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Figure S2: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of SN15n using AMBER ff99SB-ILDN. The horizontal
solid line represents the average in each replicate, with the dashed lines showing the standard
deviation.

changes rapidly during the simulations, which is expected for intrinsically disordered proteins.

However, some replicates, especially the third one, show time periods of a drastically lower Rg

and Ree, which suggests that the peptide can temporary get stuck in a more compact folded

structure. The relatively long period of compact conformations in the third replicate results

in a lower mean Ree and Rg than the other replicates, although still within the standard

deviation of the others. These compact conformations give rise to a peak at lower values in

the density distributions of Ree and Rg, presented in Figure S3. Apart from this peak, there

is an overall good agreement between the density distributions of the different replicates.

Replicate two and five also show some minor peaks at low values, which is expected from

Figure S2.

The more compact conformations that occur in replicate number two, three, and five, are

shown in Figure S4. It is clear that these conformations contain more secondary structure

than the majority in the ensemble. Since the energy landscapes in Figure S1 contain sec-

ondary basins with low minimum energy for these replicates, it is suggested that these folded

structures also have low energy, but are separated from the primary unstructured basin by
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Figure S3: Density estimates of the end-to-end distance, Ree (a), and the radius of gyration,
Rg (b), for the five replicates in the simulation of SN15n using AMBER ff99SB-ILDN, ob-
tained from a Gaussian kernel estimator. The dashed purple line shows the distribution for
the five replicates combined.
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Figure S4: Snapshots representing the compact conformations identified from the end-to-end
distance and radius of gyration time evolution of the simulations of SN15n using AMBER
ff99SB-ILDN. The numbers above state the replicate where they occur. The peptide is
colored according to secondary structure, as determined by VMD. Silver corresponds to
irregular (coil), cyan to turn, tan to β-bridge, yellow to β-sheet, and magenta to α-helix. The
N- and C-termini are marked with N or C, respectively.

energy barriers of different heights. Therefore, it still remains uncertain whether these more

compact conformations are over-represented or not sampled enough. However, they appear

to have relatively small impact on the overall ensemble, such that this simulation still can

be compared qualitatively to the other force field and sequence.

Figure S5 shows the autocorrelation function and the standard error as a function of

the block length, for the end-to-end distance and radius of gyration in the concatenated
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Figure S5: Autocorrelation function (C(t)) and error estimate from block averaging of the
end-to-end distance (left) and the radius of gyration (right) for the concatenated simulation
of SN15n using AMBER ff99SB-ILDN.

trajectory of simulation length 14.4 μs. For both Ree and Rg, the autocorrelation decreases

to zero within approximately 0.5 μs, although with time it fluctuates around zero and some

smaller peaks are visible. However, the error estimate converges with increased block size,

suggesting that these observables have been sufficiently sampled. Hence, it appears that the

sampling is not completely satisfying, although adequate for obtaining a representation of

the dominating structures of the conformational ensemble. However, it is important to keep

in mind that exact numbers can change upon further sampling, although the trends observed

when comparing to the other simulations are expected to remain.

5



1.2 SN15n with CHARMM36m

The energy landscapes for the different replicates show the same overall distribution, see

Figure S6. The first three replicates also display the same secondary basin in the right side

of the plot. In analogy to the previously discussed force field, these are probably more folded

conformations. The fourth replicate also displays a separated basin, but in another part

of the plot. However, overall it appears that all replicates have sampled approximately the

same conformational space.

The narrow basins observed in Figure S6 appear to once again be related to short periods

of drastically lower Ree and Rg, as shown in Figure S7. The third replicate has both a

mean Ree and Rg slightly smaller than the others, although still equal within the standard
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Figure S6: Energy landscapes for the five replicates and the concatenated trajectory of
SN15n in CHARMM36m, using the two first principal components. All plots have been
constructed using the same basis set and are therefore directly comparable. Contour lines
are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4.
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deviation. This is not surprising as it was this replicate that showed the largest deviation

from the others in Figure S6.

Overall, for the probability distribution of the end-to-end distance shown in Figure S8a,

there is good agreement between the replicates. However, the corresponding plot for the

Figure S7: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of SN15n using CHARMM36m. The horizontal solid
line represents the average in each replicate, with the dashed lines showing the standard
deviation.
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Figure S8: Density estimates of the end-to-end distance, Ree (a), and the radius of gyration,
Rg (b), for the five replicates in the simulation of SN15n using CHARMM36m, obtained
from a Gaussian kernel estimator. The dashed purple line shows the distribution for the five
replicates combined.
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C

N

Figure S9: Representative snapshot of the conformation with low Ree and Rg in the third
replicate in the simulation of SN15n with CHARMM36m. The peptide is colored according
to secondary structure, as determined by VMD. Silver corresponds to irregular (coil), cyan
to turn, and tan to β-bridge. The N and C mark the corresponding terminus.

radius of gyration (Figure S8b) shows more variation. The main difference appears from the

third replicate that contains a well-defined secondary peak around 7 Å. This peak corresponds

to the conformations around 3-3.2 μs which display Rg values well below the average. A

representative snapshot of this range shown in Figure S9 reveals that both ends of the peptide

are close together, exhibiting β-strand formation near the end parts of the peptide. However,

overall this conformation appears to have a limited influence on the total simulation, as shown

by the rather smooth distributions of Ree and Rg when combining all the replicates (Figure

S8).

The correlation functions for both the Ree and the Rg decrease to zero within 0.5 μs

for the concatenated trajectory, and afterwards they fluctuates around zero with no major

correlation, see Figure S10. This suggests that the total simulation of 17.4 μs is long enough.

The error estimate from the block analysis, presented in the same figure, points towards the

same conclusion.
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Figure S10: Autocorrelation function (C(t)) and error estimate from block averaging of the
end-to-end distance (left) and the radius of gyration (right) for the concatenated simulation
of SN15n using CHARMM36m.

1.3 SN15p with AMBER ff99SB-ILDN

For the phosphorylated peptide, simulated in AMBER ff99SB-ILDN, the energy landscapes

of the five replicates (Figure S11) once again show equal distribution, although the first

and third replicate display smaller areas of energy ≤ 1RT than the others. From the time

evolution of the Ree and the Rg in Figure S12 it is clear that these two replicates posses

smaller mean values than the others, although equal within the standard deviation. Both

show clear periods of at least 1 μs in which the radius of gyration is distinctly lowered. These

regions mainly consist of conformations with some β-strand structure, such as exemplified in

Figure S13.

The density distribution of the end-to-end distance, presented in Figure S14, reveals two

9



Figure S11: Energy landscapes for the five replicates and the concatenated trajectory of
SN15p in AMBER ff99SB-ILDN, using the two first principal components. All plots have
been constructed using the same basis set and are therefore directly comparable. Contour
lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4.

Figure S12: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of SN15p using AMBER ff99SB-ILDN. The horizontal
solid line represents the average in each replicate, with the dashed lines showing the standard
deviation.
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different groups: replicate one and three are in good agreement, while the remaining ones

also show good agreement with each other. The total simulation, of all replicates combined,

still shows a smooth distribution. The radius of gyration density distribution, displayed in

the same figure, shows an even larger variety. The peak positions are once again split into

N

C

Figure S13: Representative snapshot of the more compact conformation in the first and third
replicate in the simulation of SN15p with AMBER ff99SB-ILDN. The peptide is colored
according to secondary structure, as determined by VMD. Cyan corresponds to turn, tan to
β-bridge, blue to 310-helix, and silver to irregular (coil). The N and C mark the corresponding
terminus.
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Figure S14: Density estimates of the end-to-end distance, Ree (a), and the radius of gyra-
tion, Rg (b), for the five replicates in the simulation of SN15p using AMBER ff99SB-ILDN,
obtained from a Gaussian kernel estimator. The dashed purple line shows the distribution
for the five replicates combined.
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the same two groups; where the first and third have their main peaks at a smaller radius of

gyration. Still, the density distribution of the total simulation is relatively smooth, with an

elongated tail at larger values.

Focusing on the concatenated trajectory of all the replicates together, the autocorrelation

function of the end-to-end distance (Figure S15) decreases to zero within 0.5 μs, and stays

close to zero afterwards. The autocorrelation of the radius of gyration first reaches zero after

approximately 1 μs, but continues to oscillate in a regular pattern, suggesting that some

correlation still remains. However, the error estimates from block analysis, shown in the

same figure, converges nicely, suggesting a sufficiently long simulation (21.25 μs).
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Figure S15: Autocorrelation function (C(t)) and error estimate from block averaging of the
end-to-end distance (left) and the radius of gyration (right) for the concatenated simulation
of SN15p using AMBER ff99SB-ILDN.
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1.4 SN15p with CHARMM36m

The SN15p peptide simulated with CHARMM36m shows the most diversity in the energy

landscape between different replicates, as seen in Figure S16. This suggests that the simu-

lation is not sampled well enough. In addition, compared to the other conditions, the area

of the energy landscape is smaller, suggesting that there is less variation in the conforma-

tional ensemble. Indeed, the time evolutions of Ree and Rg (Figure S17) show smaller spread

compared to AMBER ff99SB-ILDN. Neither of the replicates show any periods of drastically

different Ree, except for replicate four, which exhibits a decrease in the end of the trajectory.

The Rg on the other hand shows some different plateau values in the first, fourth, and fifth

replicate. However, the difference is too small to give noticeable differences in the trajectory
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Figure S16: Energy landscapes for the five replicates and the concatenated trajectory of
SN15p in CHARMM36m, using the two first principal components. All plots have been
constructed using the same basis set and are therefore directly comparable. Contour lines
are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4.
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Figure S17: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of SN15p using CHARMM36m. The horizontal solid
line represents the average in each replicate, with the dashed lines showing the standard
deviation.

upon visual inspection. In contrary to the previously described simulations, there are no

regions showing a significant amount of secondary structure.

The rather narrow density distributions of the end-to-end distance and radius of gyra-

tion, shown in Figure S18, confirm the smaller conformational ensemble, compared to the

other force field. For the Ree, the replicates are arranged in two groups; the first consisting

of the first three replicates and the second one of the last two replicates. Within the groups

there is good agreement, while the peak values of the two groups are separated by approxi-

mately 7 Å. The density distribution of the concatenated simulation shows a rather smooth

distribution with peak value in between the two groups. For the radius of gyration, the five

replicates display approximately the same range, however, different distributions within the

range. Replicate four and five display a bimodal distribution, while the second replicate

shows a smooth gaussian-like distribution coinciding with one of the peaks in the bimodal

distribution. The remaining replicates show a “peak with shoulder”-distribution, where the

first replicate has a significant shoulder at higher values than what is sampled in the other

replicates. Overall, this suggests that more sampling might be required for obtaining reliable
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Figure S18: Density estimates of the end-to-end distance, Ree (a) and the radius of gyration,
Rg (b), for the five replicates in the simulation of SN15p using CHARMM36m, obtained
from a Gaussian kernel estimator. The dashed purple line shows the distribution for the five
replicates combined.

results, although it appears that the actual average values will not change drastically.

The autocorrelation function and error estimate from block averaging for Ree and Rg

of the total simulation is presented in Figure S19. It appears that the correlation time is

rather long for the Ree, as the autocorrelation function reaches zero first after almost 4 μs.

In addition, the error estimate is not fully converged either, which together suggest the need

of longer simulation time. The autocorrelation function of the Rg decreases faster to zero,

although still relatively slow. However, the error estimate appears to be almost converged.

All together, this system would benefit of longer simulation time. Nonetheless, each replicate

has been run for 4 μ s, which after concatenation and removal of initial equilibration time

resulted in a 19.25 μs long simulation of the system. Therefore, the usage of an enhanced

sampling technique is probably more relevant. However, from the overall appearance of

this system we do not expect drastically changed average values of the properties analyzed,

with more sampling. Therefore this system is regarded as sufficiently sampled for allowing

comparison to the other systems in this work.
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Figure S19: Autocorrelation function (C(t)) and error estimate from block averaging of the
end-to-end distance (left) and the radius of gyration (right) for the concatenated simulation
of SN15p using CHARMM36m.

2 Effect of salt concentration in simulations

The simulations in this study were all performed using only ions to neutralize the net charge

in the system, while the experiments were performed at an ionic strength of 150 mM. This

section compares simulations without salt and with salt corresponding to a concentration of

150 mM for the phosphorylated peptide, using the CHARMM36m force field, to show that

the salt-free simulations are still comparable with the experiments.
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2.1 Convergence and sampling in the simulation of SN15p using

CHARMM36m and 150 mM NaCl

The SN15p peptide simulated with CHARMM36m and 150 mM NaCl shows rather broad

diversity in the energy landscape between different replicates, as seen in Figure S20, where

especially replicate number two, three and five all have narrow, almost non-overlapping

distributions in space. This suggest that especially replicate two and five samples a limited

set of conformational space. The first and the fourth replicate show wider distributions with

good agreement between them. The third replicate, and to some extent the second, appears

to sample subspaces of the first and fourth replicate, while the fifth replicate samples a

different conformational space. A visualization of the trajectories shows that in the second
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Figure S20: Energy landscapes for the five replicates and the concatenated trajectory of
SN15p in CHARMM36m with 150 mM NaCl, using the two first principal components. All
plots have been constructed using the same basis set and are therefore directly comparable.
Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 4.
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Figure S21: Time evolution of the end-to-end distance (Ree) and the radius of gyration
(Rg) for the five replicates in the simulation of SN15p using CHARMM36m with 150 mM
NaCl. The horizontal solid line represents the average in each replicate, with the dashed
lines showing the standard deviation.

replicate almost all conformations show hydrogen bonding between the arginines and one

of the phosphoserines, while the other phosphoserine coordinates to lysine. In the fifth

replicates all three arginines are hydrogen bonded to both phosphoserines. It appears that

these conformations with a lot of hydrogen bonds (salt bridges) are so favourable that it can

be problematic to break the interactions and change to another favourable conformation.

Like the salt-free simulation, the time evolutions of Ree and Rg (Figure S21) show rather

small spread, in agreement with a limited conformational ensemble. Only the first and the

fourth replicate show time periods of drastically different Ree or Rg. The drastic increase in

Ree and Rg in the first replicate around 0.9 μs is due to a conformational change where Arg13

is no longer hydrogen bonding to either phosphoserine, which allows for a more stretched

out conformation. The same change is observed in the end of the fourth replicate. The

density distributions of the end-to-end distance, shown in Figure S18a, are clearly bimodal,

which is explained by the peptide having the ends close together or further away depending

on whether Arg13 is hydrogen bonding to the phosphoserines or not. All replicates show

distributions in the same range and only the peak height of the two main peaks differs,
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Figure S22: Density estimates of the end-to-end distance, Ree (a) and the radius of gyration,
Rg (b), for the five replicates in the simulation of SN15p using CHARMM36m with 150
mM NaCl, obtained from a Gaussian kernel estimator. The dashed purple line shows the
distribution for the five replicates combined.

hence, the combined trajectory appears to give a rather good description of the system.

The Rg density distributions (Figure S22b) are in better agreement than the Ree density

distributions, since they all are centered around almost the same value, only having slightly

different widths.

The autocorrelation function of the total simulation, presented in Figure S23 is decreas-

ing towards zero relatively fast, although later on showing some fluctuations around zero for

both the end-to-end distance and radius of gyration. However, the error estimates from block

averaging, shown in the same figure, converge nicely. It therefore appears that although the

energy landscapes of some of the replicates showed little resemblance, the combined simu-

lation is sampled well enough to allow comparison with the corresponding system without

salt.
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Figure S23: Autocorrelation function (C(t)) and error estimate from block averaging of the
end-to-end distance (left) and the radius of gyration (right) for the concatenated simulation
of SN15p using CHARMM36m with 150 mM NaCl.

2.2 SN15p with CHARMM36m, with and without 150 mM NaCl

In Figure S24 the density estimates of Ree and Rg, and the shape in the form of a dimen-

sionless Krakty plot, is compared between having no salt except for counterions and having

Na and Cl ions corresponding to a salt concentration of 150 mM. It appears that the added

salt has no effect on these properties.

Regarding the secondary structure, the Ramachandran plots in Figure S25 are close to

identical, with the only difference being a slightly more populated turn region and alpha-

helical region in the presence of 150 mM NaCl. The higher turn content is supported by the

DSSP analysis, see Figure S26. The simulation without salt instead shows a higher bend
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Figure S24: Density estimates of the end-to-end distance, Ree (a) and the radius of gyration,
Rg (b), and a dimensionless Kratky plot of SN15p simulated using CHARMM36m with and
without 150 mM NaCl.
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Figure S25: Ramachandran plots of SN15p, simulated with CHARMM36m without (left)
and with (right) 150 mM NaCl. The color scale shows the population density.

content, while in both cases the content of β-sheets, β-bridges, and helices are very low.

The area where the salt is expected to have the largest effect is in the contacts between

phosphoserine and arginine. The contact map, see Figure S27, shows great similarity between

having additional salt or not. On average, the probability of contact between arginine

and phosphoserine is reduced by approximately 10 percentage points, although the contact

between pSer3 and Arg9 is increased. Also the contact between phosphoserine and lysine is

increased. Since both of the simulations would benefit of more sampling before extracting

exact numbers with high certainty, some variation is expected. The important part is that
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Figure S26: Stacked bar chart of the secondary structure content determined by DSSP of
each amino acid in the SN15p peptide, simulated with CHARMM36m without (left) and
with (right) 150 mM NaCl. The legend applies to both panels.
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Figure S27: Contact map showing the probability of atoms in different residues being closer
than 4 Å in SN15p simulated with CHARMM36m without (left column) and with (right
column) 150 mM NaCl. The two closest residues on each side as well as the residue itself
are excluded from the analysis and therefore shown in white.

even in the presence of 150 mM NaCl, the interactions between arginine and phosphoserine

are highly conserved. Also the total number of intrapeptide hydrogen bonds are highly

similar in the two different conditions, see Figure S28. However, there is a higher probability

for having a few more helical hydrogen bonds in a conformation in the presence of 150 mM

NaCl, which is balanced out by the most probable number of more distant hydrogen bonds
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Figure S28: Probability distribution of the number of intrapeptide hydrogen bonds in total
(a), associated with helices, i.e, between residue n and n+i, where i=3, 4, 5 (b), and between
residue n and n+i, where i≥ 6 (c). The legend applies to all panels.

being lowered by one. This is in agreement with the lysine–phosphoserine contact being

more probable, which falls in the helical category due to the residues separation, and the

probability of arginine–phosphoserine contacts being lower.

To summarize, neither the overall shape or size of the peptide is affected by the ionic

strength. There are some differences in the dominating secondary structure being irregu-

lar, bend or turn for individual amino acids, while both simulations agree on the structural

content being low. The probability of arginine–phosphoserine contacts is reduced by approx-

imately 10 percentage points in the presence of salt, although still being highly conserved.

In addition, the probability of lysine–phosphoserine contact is instead increased, suggesting

that the electrostatic interactions and hydrogen bonds within the peptide is still of high

importance in the presence of 150 mM NaCl. Altogether it can be concluded that the effect

of salt on the simulations of this system is minor, especially on the global structural which

the experimental data describes. Hence, it is valid to compare the simulations with the

experimental data, despite them lacking the ionic strength of 150 mM which was used in

experiments.
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3 Small angle X-ray scattering data

The full concentration series measured are shown in Figure S29, with the determined radius

of gyration and molecular weight presented in Table S1 and S2.
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Figure S29: SAXS data for SN15n (a,c,e) and SN15p (b,d,f) obtained at 20 mM Tris, 150 mM
NaCl, pH 7.5, and 20 ◦C. Scattering intensity curve (a,b), dimensionless Kratky plot (c,d)
and pair distance distribution function, P(r) (e,f). The legends in the upper panels apply to
the full column.
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Table S1: Radius of gyration and molecular weight for the SN15n samples. The molecular
weight is calculated from the I0 determined from P(r).

c (mg/mL) Rg,P(r) (Å) Rg,Guinier (Å) Mw (kDa)
1 9.9± 0.2 9.1± 0.3 2.09
2 10.0± 0.2 9.6± 0.1 2.03
4 10.5± 0.2 9.9± 0.1 2.09

6.4 10.9± 0.1 10.2± 0.2 2.05

Table S2: Radius of gyration and molecular weight for the SN15p samples. The molecular
weight is calculated from the I0 determined from P(r).

c (mg/mL) Rg,P(r) (Å) Rg,Guinier (Å) Mw (kDa)
1.19 10.5± 0.2 9.6± 0.6 2.06
2.51 10.9± 0.1 10.1± 0.8 2.54
4.02 11.1± 0.1 10.5± 0.8 2.92
6.05 11.3± 0.1 10.7± 0.1 3.01

4 Analysis of circular dichroism spectra with BeStSel

To obtain the partition of secondary structure in the peptides, the experimental data were

analyzed with BeStSel. Figure S30 shows the fit in comparison to the experimental data.
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Figure S30: Experimental CD data and the fit from BeStSel expressed as the molar differ-
ential extinction coefficient, ∆ε, for SN15n (a), and SN15p (c), with corresponding residuals
in (b) and (d), respectively.
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Abstract: Phosphorylation is a common post-translational modification among intrinsically disor-
dered proteins and regions, which helps regulate function by changing the protein conformations,
dynamics, and interactions with binding partners. To fully comprehend the effects of phospho-
rylation, computer simulations are a helpful tool, although they are dependent on the accuracy
of the force field used. Here, we compared the conformational ensembles produced by Amber
ff99SB-ILDN+TIP4P-D and CHARMM36m, for four phosphorylated disordered peptides ranging
in length from 14–43 residues. CHARMM36m consistently produced more compact conformations
with a higher content of bends, mainly due to more stable salt bridges. Based on comparisons
with experimental size estimates for the shortest and longest peptide, CHARMM36m appeared to
overestimate the compactness. The difference between the force fields was largest for the peptide
showing the greatest separation between positively charged and phosphorylated residues, in line
with the importance of charge distribution. For this peptide, the conformational ensemble did not
change significantly upon increasing the ionic strength from 0 mM to 150 mM, despite a reduction of
the salt-bridging probability in the CHARMM36m simulations, implying that salt concentration has
negligible effects in this study.

Keywords: intrinsically disordered proteins; phosphorylation; force fields

1. Introduction

Intrinsically disordered proteins (IDPs) are characterized by a lack of a tertiary struc-
ture under physiological conditions [1,2], which means that they are better described by
an ensemble of different conformations than a single structure. This is reflected in their
free energy landscapes, which normally are rather flat without a deep energy minimum
as for globular proteins [3]. The flattened energy landscape makes IDPs very sensitive to
changes in the environment and post-translational modifications (PTMs) of the sequence.
A common type of reversible PTM is phosphorylation, which introduces extra negative
charges and the possibility of forming hydrogen bonds and salt bridges [4]. Phosphory-
lation is commonly employed by cells as a regulatory mechanism, as it can change both
the conformational ensemble and the dynamics, as well as the interaction with a binding
partner, and therefore affect function. The functional implications of phosphorylation can
be drastic, such as for the disordered neuroprotein tau, for which hyperphosphorylation
has been related to amyloid fibril formation in Alzheimer’s disease [5]. In proteins such as
statherin and caseins, the phosphorylated residues are essential for their ability to bind to
the tooth surface [6,7] or sequester calcium [8].

Experimental techniques such as small-angle X-ray scattering (SAXS) and fluores-
cence resonance energy transfer (FRET) have been used to provide information on global
conformational changes upon phosphorylation of intrinsically disordered proteins or
regions, while circular dichroism spectroscopy and nuclear magnetic resonance (NMR)
have detected changes in secondary structure or other local arrangements such as salt
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bridges [9–14]. However, due to the vast conformational ensembles possessed by IDPs,
computer simulations are often a useful complement to obtain more detailed information,
though this requires accurate models and force fields. We have previously shown that
a coarse-grained "one bead per residue model" has proven to accurately predict average
radius of gyration (Rg) and scattering curves for various IDPs, including statherin, although
producing overly compact conformations of other more phosphorylated IDPs [15]. The
two-site UNRES model has recently been extended with parameters for phosphorylated
residues [16] and applied to study phosphorylation-induced folding of an IDP [17]. Al-
though coarse-grained models are more computationally efficient and generally easier to
interpret than atomistic models, they can lack in detail. In atomistic modelling, there is con-
tinuous development of force fields and water models towards more accurately describing
IDPs, and some important adjustment have been the refinement of the backbone dihedral
angles and balancing the water–protein and protein–protein interactions; see for example
the following reviews and references within [18,19]. However, we recently showed that
while the commonly used force fields CHARMM36m and Amber ff99SB-ILDN+TIP4P-D
accurately captured the global dimensions of the 15-residue-long N-terminal fragment of
Statherin in the nonphosphorylated state, it overestimated the compactness in the phospho-
rylated state [20]. More recently, overcompaction was also observed for two approximately
80-residue-long phosphorylated IDPs in several force fields, where it was suggested to
depend on an overestimation of charge–charge interactions [21], in line with an oversta-
bilization of salt bridges in standard force fields [22]. In this study, we made a further
comparison of the two aforementioned force fields, by applying them to four phospho-
rylated peptides, namely two different fragments from tau, specifically residues 173-183
(Tau1) and 225-246 (Tau2), the first 25 amino acids in the milk protein β-casein (bCPP) and
the saliva protein statherin (Stath). For all peptides, CHARMM36m was shown to sample
more compact conformations than Amber ff99SB-ILDN+TIP4P-D, associated with a much
higher probability for salt bridges. The effect was more pronounced in sequences with large
separation between phosphorylated residues and positively charged residues, showing
the importance of charge distribution. In bCPP, which showed the largest differences
between the force fields, the addition of 150 mM NaCl did not change the average size
estimates and shape significantly, despite a significant reduction of salt bridge occurrence
in CHARMM36m. This implies that salt bridges are still of importance at 150 mM salt and
that we can ignore the effects of salt concentration in this study.

2. Results and Discussion

Four phosphorylated peptides, shown in Table 1, were simulated at physiological
pH using two different force fields: Amber ff99SB-ILDN [23] with the TIP4P-D [24] water
model and parameters for the phosphorylated residues from Homeyer et al. [25] and
Steinbrecher et al. [26] (A99) and CHARMM36m [27] with the CHARMM-modified TIP3P
water model [28] (C36). The peptides were chosen based on availability of experimental
data to compare with and size considering the computational expense.

Table 1. Full name and sequence of the peptides included in this study. Positively charged residues
are marked in blue, negatively charged in red, and phosphorylated residues highlighted with yellow.
Note that Tau1 includes three additional residues in accordance with [11], to allow for experimental
comparison.

Name Protein Sequence

Tau1 Tau173-183 CAKTPPAPKTPPAW

Tau2 Tau225-246 KVAVVRTPPKSPSSAKSRLQTA

bCPP β-casein1-25 RELEELNVPGEIVESLSSSEESITR

Stath Statherin DSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTF
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2.1. Size and Shape

For all four peptides, the two force fields produced different conformational ensembles,
as seen by the distributions of the Rg and the end-to-end distance (Ree) in Figure 1. The C36
distributions were narrower and centered on values lower than the A99 distributions. For
Tau2 and bCPP, the Rg distribution had a sharp peak at low values. From the average Rg
and Ree presented in Table 2, it is clear that Tau1 showed the smallest differences between
the force fields, while bCPP showed the largest differences. The discrepancy was larger
for Ree than Rg. For Tau1, Chin et al. [11] determined the average Ree to be ∼3.17 nm,
based on FRET. To obtain an Ree distance distribution from the FRET data they assumed a
semi-flexible polymer model, and the resulting distribution was skewed towards longer
distances, with the peak value located at 3.64 nm (Figure 4A in ref. [11]). Comparing A99
and C36 to the experimental average, A99 overestimated it approximately as much as C36
underestimated it. However, the skewed shape and peak position at 3.64 nm produced
in A99 was in better experimental agreement than C36, since the distribution in C36 was
more symmetrical with multiple peaks and had the main peak located at 3.03 nm.
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Figure 1. Distribution of the radius of gyration (top row) and the end-to-end distance (bottom row) of Tau1, Tau2, bCPP,
and Stath simulated with Amber ff99SB-ILDN (A99) and CHARMM36m (C36). The legend applies to all panels.

Table 2. Average radius of gyration and end-to-end distance of the peptides simulated with Amber ff99-SB-ILDN (A99) and
CHARMM36m (C36). The difference between the force fields is expressed in relation to A99.

Peptide Radius of Gyration (nm) End-to-End Distance (nm)

A99 C36 Difference (%) A99 C36 Difference (%)

Tau1 1.17 ± 0.01 1.12 ± 0.01 4 3.44 ± 0.04 2.88 ± 0.07 16

Tau2 1.29 ± 0.03 1.06 ± 0.10 18 3.27 ± 0.17 2.10 ± 0.32 36

bCPP 1.43 ± 0.03 1.08 ± 0.02 24 3.09 ± 0.15 1.65 ± 0.10 47

Stath 1.73 ± 0.09 1.41 ± 0.04 18 4.05 ± 0.17 2.74 ± 0.20 32
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For Stath, earlier published SAXS data [15] provided an Rg of 1.93 ± 0.2 nm; hence, Rg
was 10% smaller in A99 and 27% smaller in C36. Since Rg determined from SAXS includes
a hydration shell, it was expected that Rg calculated from simulations would be slightly
smaller, although not to that extent. Since it is not straightforward which contrast to use for
the hydration shell in the calculations of scattering curves for IDPs [29], in Supplementary
Figure S1 and Table S2, we compared the curves calculated using different contrasts of
the hydration shell to the experimental curve for Stath. While the highest contrast used
(0.03 e/Å3) yielded the best agreement with the scattering curve, it provided the worst
agreement with the Kratky plot. Henriques et al. [29] showed that the optimal contrast for
IDPs was often between 0.01 e/Å3 and 0.02 e/Å3, although varying with both force field
and protein. The optimal values for A99 and C36 were suggested to be around 0.0075 e/Å3

and 0.02 e/Å3, respectively. While the suggested optimal value gave reasonable agreement
with the experimental form factor for A99, this was not the case for C36. For C36, all
contrasts > 0 clearly showed larger compaction than the experimental Kratky plot.

Even without experimental scattering curves to compare to, the dimensionless Kratky
plot, presented in Figure 2, is a good way of comparing the average shape of the peptides
in the two different force fields. The short peptide Tau1 exhibited a more extended shape
than the other three peptides, which in A99 were shown to have more of the typical IDP
behavior, resembling a Gaussian chain. For all four peptides, the Kratky plot produced
in C36 had a lower slope, and for the three longest peptides, the curve started to move
towards the bell-shaped curve typical of globular proteins. Hence, this implies that C36
sampled more compact or well-defined conformations than A99, in accordance with the
Rg and Ree distributions. Notice also that the Kratky plot of Stath in A99 was in excellent
agreement with the experimental data, while the curve corresponding to C36 fell below, as
shown in Figure 2d.
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Figure 2. Dimensionless Kratky plot from simulations with Amber ff99SB-ILDN and CHARMM36m for (a) Tau1, (b) Tau2,
(c) bCPP, and (d) Stath. In Panel (d), experimental data from Cragnell et al. [15] are included for comparison. The legend in
Panel (a) is applicable to all panels.

2.2. Salt Bridges and Secondary Structure

Since our previous study [20] suggested that overstabilized salt bridges are the reason
why C36 produces more compact conformations than A99, we calculated the occupancy of
the possible salt bridge interactions involving the phosphorylated residues. Figure 3 indeed
shows that salt bridges were formed much more in C36 than A99, for all the peptides.
In Tau2 and bCPP, the strong salt bridges in C36 restricted the conformational ensemble,
which explains the smaller and narrower distributions of Rg and Ree. In bCPP, the salt-
bridging residues were well separated in the sequence, therefore having a larger effect
on the Rg and Ree distributions. In Tau1, the salt bridge interactions almost exclusively
appeared between the adjacent residues and between pT175 and the N-terminal.
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For Tau2, there is experimental evidence of the following salt bridges, detected by
NMR experiments: pT231–R230, pS237–K240, and pS238–R242 [12]. pT231–R230 and
pS238–R242 are indeed two of the most often occurring salt bridges in A99, while pS237–
R242 is more common than pS237–K240. Several other salt bridges are also as frequently
present as pS237–K240. In C36, pT231–R230 is the most occurring salt bridge, but both
pS327–R242 and pS235–K234 are more probable than pS237–K240. Hence, while both
force fields captured the experimentally established salt bridges, they also suggested other
salt bridges to be present and some of them to be more common than the experimentally
established ones.

Advancing to the secondary structure, Figure 4 shows that the peptides were mainly
irregular, although Tau1 contained much of the polyproline type II (PPII) structure as
well. In fact, all peptides contained a significant amount of PPII, as well as a significant
content of bends. The content of the helical structure (α- and 310-helix) and β-strands was
low in all peptides. Tau1 exhibited the largest differences between the force fields, where
A99 produced 16 percentage points more of the PPII structure than C36, which instead
contained a more irregular structure. For the other peptides, the differences were smaller.
Overall, the peptides only had one significant difference in common, which was a higher
content of bends in C36 than A99. Inspecting the content along the sequence, it was evident
that it was mostly the same parts of the peptide that were enriched in a certain type of
structure in both force fields (see Supplementary Figure S3). However, in C36, the helical
content was completely missing from the first ten residues of Stath, which is concerning
since the N-terminal region has been shown to possess helical propensity in water, although
being mainly disordered [6,30]. Another striking difference between the force fields for
Stath is that some residues centered on residues Y21 and Y41 occasionally formed a β-sheet
or β-bridge in C36, but not in A99. Notice also that for Tau2, the bend propensity at residues
V228–V229 was much higher in C36 than in A99. Since these residues were located right
between K225 and pT231, which in C36 formed a stable salt bridge, this suggested that
the bend was formed as a result of the salt bridge. Furthermore, for Tau2, NMR data have
suggested approximately 40% α-helical propensity in region A15-R18 [12]. Both A99 and
C36 sampled the helical structure in this region, however, to a lower extent than what the
experimental data suggested.

2.3. Energy Landscapes

The differences between the force fields in this study is well summarized by the
energy landscapes in Figures 5–8. Tau2, bCPP, and Stath all showed a narrower energy
landscape in C36, in line with a more restricted conformational ensemble. Tau1, which
is rather short and stiff, actually gained a larger conformational landscape in C36, due to
sampling more bent conformations in addition to being more stretched out as in A99; see
Figure 5. Notice also that in C36, the global minimum, which was the most populated,
contained conformations that were not entirely stretched out. Instead, the N-terminal end
was folded over, such that a salt bridge was formed between pT175 and the positively
charged N-terminus.

Although the energy landscapes of Tau2 in A99 and C36 were located in almost the
same area, the energy levels differed; see Figure 6. The most populated basin in the C36
simulation was a deep and narrow minimum, while the A99 simulation had a larger
area of energy ≤1RT, containing several basins, more typical of IDPs. The salt bridges
creating more compact conformations were evident in the C36 conformations, while the
A99 conformations were more stretched out with fewer salt bridges. Notice that the
phosphorylated residues in C36 had a tendency to interact with several positively charged
residues simultaneously. In both force fields, a basin minimum with a helical region starting
with pS237 and pS238 was found, in line with the secondary structure analysis.
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Figure 4. Average content of different types of the secondary structure in (a) Tau1, (b) Tau2, (c) bCPP, and (d) Stath simulated
with Amber ff99SB-ILDN (A99) and CHARMM36m (C36). The legend applies to all panels. The helix includes the α- 310-
and a negligible content of the π-helix, while the β-strand also includes β-bridge. Error bars correspond to errors calculated
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Figure 5. Energy landscapes and conformations in selected minima of Tau1. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: l: energy ≤ 1RT, s: ≤ 2RT. In the conformations, the
phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds. The
peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is irregular
(coil) and cyan is turns. The N-terminus of each conformation is the leftmost end.

For bCPP, there was indeed many more elongated conformations in the A99 simu-
lation (see Figure 7), and it is clear that what caused the more compact conformations
in C36 was the salt bridges between the phosphorylated serines and the arginines. In
C36, all depicted conformations contained at least one salt bridge between phosphoserine
and arginine, while this was much rarer in A99, explaining why the energy landscapes
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Figure 6. Energy landscapes and conformations in selected minima of Tau2. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: l: energy ≤ 1RT, s: ≤2RT, 6: ≤3RT. In the conformations,
the phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds.
The peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is
irregular (coil), cyan is turns, magenta is the α-helix, and blue is the 310-helix. The N-terminus of each conformation is the
leftmost end.

looked so different. Regarding Stath, comparing the conformations in Figure 8, there
were two striking differences. First, there was a higher presence of salt bridges between
phosphoserine and positively charged residues in C36, keeping the N-terminal end in a
more bent conformation. Secondly, in C36, the β-strand and β-bridge formation between
the middle region and C-terminal region detected in Supplementary Figure S3 contributed
to making the conformations more compact compared to A99.

2.4. Effect of Salt Concentration

Since the salt bridges formed between phosphorylated and positively charged residues
were shown to influence the conformational ensemble, it is of importance to also consider
the effect of the screening of the electrostatic interactions. Here, we focused on bCPP, which
due to showing the largest differences between force fields and having the highest fraction
of charged residues in combination with the largest charge separation (see Supplementary
Table S1), was expected to show the largest response to ionic strength. Figure 9 shows that in
C36, four of the salt bridges were dramatically reduced upon the addition of 150 mM NaCl;
however, the probability of two other salt bridges increased, whereas in A99, only one salt
bridge was significantly reduced. At 150 mM salt, the salt-bridging probability was more
comparable between A99 and C36, although overall still higher in C36. Supplementary
Figure S3 shows the changes in the contact map upon the addition of 150 mM NaCl for
bCPP simulated in A99 and C36. For A99, we clearly saw that the preference for the
N-terminal end to be in contact with the phosphorylated and negatively charged region
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Figure 7. Energy landscapes and conformations in selected minima of bCPP. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: l: energy ≤ 1RT, s: ≤2RT, 6: ≤3RT. In the conformations,
the phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds.
The peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is
irregular (coil) and cyan is turns. The N-terminus of each conformation is the leftmost end.

(residues 14–21) diminished. In C36, the strongly conserved R1–pS17 and R1–pS18 contacts
were greatly decreased, while the contact of R1 with surrounding residues in the negatively
charged region was increased. Hence, this suggested an increased mobility, while still
maintaining contact with the negatively charged region. In C36, the cross-diagonal lines
also signalized a decrease of the β-sheet; however, the content was relatively low from the
beginning.

By comparing the energy landscapes in Figure 10, it is clear that screening of the
electrostatic interactions indeed broadened the conformational ensemble, but mainly in
C36, which also showed the largest change in salt bridge probability. In C36, the addition
of 150 mM NaCl led to the exploration of more stretched out conformations; however, more
compact conformations still clearly dominated. A99 also showed an increased probability
of visiting more stretched out conformations after the addition of 150 mM NaCl. This shift
in the conformational ensemble was also observed in the distributions of Rg and Ree shown
in Supplementary Figure S4. However, the changes were actually rather small, such that
the average values were indistinguishable. Upon the addition of salt, the Rg changed from
1.43 ± 0.03 nm to 1.45 ± 0.03 nm for A99 and from 1.08 ± 0.02 nm to 1.08 ± 0.03 nm for C36.
The changes in Ree were from 3.09 ± 0.15 nm to 3.37 ± 0.13 nm and from 1.65 ± 0.10 nm to
1.67 ± 0.10 nm, respectively. The effect of salt on the calculated scattering curves was also
so small that it could be deemed negligible; see Supplementary Figure S5.
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Figure 8. Energy landscapes and conformations in selected minima of Stath. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: l: energy ≤ 1RT, s: ≤2RT, 6: ≤3RT. In the conformations,
the phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds.
The peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is
irregular (coil), cyan is turns, blue is the 310-helix, yellow is the β-sheet, and tan is the β-bridge. The N-terminus of each
conformation is the leftmost/topmost end.
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Figure 10. Energy landscapes of bCPP simulated with the two force fields Amber ff99SB-ILDN (A99)
and CHARMM36m (C36) in the presence of 0 mM or 150 mM NaCl.

3. Conclusions

C36 produced more compact conformations of all four peptides, which indeed was
expected to be caused mainly by salt bridge stability. In Tau1, the salt bridges pT175–K174
and pT181-K180 were formed without much effect on the overall conformation; however, an
additional salt bridge between the N-terminus and pT175 decreased Ree and Rg in C36. In
Stath, the salt bridges contributed to the discrepancy by restricting the conformation of the
first 15 residues, in the same way as previously shown for that fragment studied alone [20].
However, also the β-bridge and β-strand formation between the middle and C-terminal
region were shown to contribute to more compact conformations. While C36 produced
good results of nonphosphorylated short IDPs, it has been shown to underestimate the size
of larger IDPs (>60 residues) [32,33]. Since Stath was 43 residues long, and thus the longest
peptide included in this study, it is reasonable to believe that other effects also play a role.
That bCPP showed the largest difference between the force fields and Tau1 the smallest
implies that the separation between the phosphorylated and positively charged residues
controls how much the conformational ensemble is influenced by stable salt bridges. This
is in accordance with the importance of considering the level of charge separation for
predicting the conformational ensemble of IDPs with a high fraction of charges [31].

When comparing to experimental data, it is important to consider the effect of salt,
since most experiments are performed in the presence of buffer and additional salt. In
bCPP, the addition of 150 mM NaCl was shown to dramatically reduce the probability
of some of the salt bridges in C36, whereas the probability of other salt bridges actually
increased. In A99, only one salt bridge was significantly reduced, which suggests that salt
bridges still are of importance at 150 mM NaCl. Considering the changes in salt bridge
probability for bCPP with salt concentration, it is plausible that the discrepancies between
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the simulations and experimental reference for Tau2 were caused by nonmatching ionic
strength, since the experiments were performed with 50 mM phosphate buffer. At the same
time, it can be hard to discern the salt bridges involving close-by residues experimentally,
such as for pS237, pS238, K240, and R242.

Despite significant differences in the salt-bridging probability in C36, the effect of salt
concentration on the global conformational level, such as Rg and Ree, was small enough to
be negligible for both force fields. In fact, the calculated form factor was indistinguishable,
implying that comparing simulations performed without salt with experimental SAXS data
collected at 150 mM NaCl indeed can be valid. Since bCPP is the peptide for which we
expected the largest effects of salt concentration, this further strengthens the comparison
with SAXS data for Stath collected at 150 mM NaCl, which showed that A99 was in good
agreement, while C36 overestimated the level of compaction. Although the effects of ionic
strength seem negligible in this study, this is generally not the case. For example, Jin and
Gräter needed 350 mM of salt in simulations with A99 to reach experimental agreement
for IDPs that are approximately 80 residues long [21], which suggested that also A99
overestimate the strength of salt bridges. Here, both Tau1 and Stath were compared to
experimental size estimates, and only C36 was with certainty shown to underestimate
the size. Hence, a possible overestimation of salt bridge stability in A99 is not expected
to be a major issue for describing the conformational ensemble of the short IDPs studied
in this work. This emphasizes the importance of benchmarking against IDPs of different
length and sequence when developing and evaluating force fields. While a reduction of the
strength of salt bridges appears to be a crucial step in improving the performance of C36, it
appears less critical in A99. However, note that this statement is based only on the global
conformational properties and that it might be different for studies of dynamics. Based on
observations that many force fields have a tendency to overstabilize salt bridges, which
seems to be related to side-chain partial charges [22,34–36], we suggest that readjusting
the side-chains’ partial charges, especially of the phosphorylated residues, is a way of
improving the force fields.

Another area which has not been touched upon in this work is the influence of charge
regulation and pH. The simulations have been performed with fixed charges in a state
corresponding to physiological pH, where the phosphorylated residues have have a charge
of −2e. Since the pKa of the phosphorylated residues is around six [37], in reality it
can fluctuate between −1e and −2e. Recent studies have suggested the importance of
the protonation state of phosphorylated residues for molecular interactions [38], hence
influencing salt bridge formation and the conformational ensemble. Therefore, this is
suggested to be included in future investigations.

Considering the secondary structure, the only general difference between the force
fields was a higher content of bends in C36. In Tau2, it was focused on regions between
salt-bridging-forming partners, suggesting that highly stable salt bridges can enforce bends
depending on the separation between the salt-bridging residues. For Tau2, it was suggested
that both force fields underestimated the helical propensity, and in Stath, a lack of helix
propensity in the N-terminal regions was concerning for C36. However, to properly assess
the performance of force fields regarding the secondary structure, detailed experimental
references are important. Hence, we see that NMR experiments of phosphorylated IDPs
recording coupling constants, NOEs, and chemical shifts, which capture the effects of both
the secondary structure and salt bridges, are an essential part of improving force fields.
Since atomistic simulations can be used to carefully detect the secondary structure and salt
bridges and their dynamics, it is an important tool in understanding the mechanism behind
the regulation of IDP function by phosphorylation, provided that sufficient accuracy of the
force fields is achieved.

4. Materials and Methods

Fraction of charged residues and κ, a parameter describing how segregated the charged
residues are in the sequence [31] were calculated in CIDER [39], by equalizing the phos-
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phorylated residues to other negatively charged residues. The value of κ is normalized
against the most segregated sequence for that sequence composition, therefore adopting a
value in the range 0–1, where 1 corresponds to the most segregated sequence possible.

The simulations listed in Supplementary Table S3 were performed in GROMACS
2018.4 [40–44], using two different force fields: Amber ff99SB-ILDN [23] with the
TIP4P-D [24] water model and parameters for the phosphorylated residues from
Homeyer et al. [25] and Steinbrecher et al. [26], and CHARMM36m [27] with the
CHARMM-modified TIP3P water model [28]. Initial configurations of the peptides were
constructed from the sequence as linear chains using Avogadro 1.2.0 [45], optimizing
the structure with the auto-optimization tool. Each peptide was solvated in a rhombic
dodecahedron box, having a minimum distance between the peptide and the box edges
of 1 nm. Sodium ions were added to neutralize the system, and two systems were also
simulated with sodium and chloride ions in a concentration corresponding to 150 mM.
Periodic boundary conditions were employed in all directions. The equations of motion
were integrated using the Verlet leapfrog algorithm [46] with a time step of 2 fs. Nonbonded
interactions were treated with a Verlet list cutoff scheme. The short-range interactions were
calculated using neighbor lists with cutoff 1 nm or 1.2 nm, for the Amber and CHARMM
force fields, respectively. For the CHARMM force field, the Lennard–Jones interactions
were switched off smoothly (force-switch) between 1 nm and 1.2 nm. Long-range disper-
sion corrections were applied to energy and pressure in the case of the Amber force field.
Long-range electrostatic interactions were treated by particle mesh Ewald [47] with a cubic
interpolation and a 1.6 Å grid spacing. The LINCS algorithm [48] was used to constrain
all bond lengths in the case of Amber and only bonds with hydrogen atoms in the case of
CHARMM. The solute and solvent were separately coupled to temperature baths at 298 K
using the velocity rescaling thermostat [49] with a 0.1 ps relaxation time. Parrinello–Raman
pressure coupling [50] was used to keep the pressure at 1 bar, using a 2 ps relaxation time
and 4.5 · 10−5 bar−1 isothermal compressibility.

Energy minimization was performed by the steepest descent algorithm until the
system converged within the available machine precision. Initiation of five replicates per
system with different starting seeds was performed separately in two steps using position
restraints on the peptide. The first step was 500 ps of NVT simulation (constant number of
particles, volume, and temperature) performed to stabilize the temperature, followed by
the second step of 1000 ps of NPT simulation (constant number of particles, pressure, and
temperature) to stabilize the pressure. Production runs of the five replicates per system
were performed in the NPT ensemble, for at least 1 μs per replicate. The total simulation
time per system is stated in Supplementary Table S3. Energies and coordinates were saved
every 10 ps. Supplementary Tables S4 and S5 compile a few differences applied to the salt
simulations to reduce the computational time.

Analysis

The convergence and sampling quality were assessed in the following ways. The time
evolution of the Rg and the Ree in the simulations were observed for signs of equilibration
in the initial stage. Based on this, the first 30 ns were removed from each replicate of bCPP
in CHARMM36m and the first 50 ns of each replicate of Tau2 in CHARMM36m before final
analysis (see Supplementary Figures S21 and S24). In other systems the equilibration was
deemed fast enough to be negligible. The distributions of the Rg and the Ree as well as the
energy landscapes were compared between replicates, since similarity indicates sufficient
sampling. The autocorrelation function and block average error estimates of the Rg and
the Ree in the concatenated simulation were calculated and observed for an estimate of
the correlation time and convergence of the error estimates. All this data is presented in
the Supplementary Figures S6–S33. Although some systems showed greater dissimilarity
between replicates than desired, based on the assessment of the concatenated trajectory, it
was deemed sufficiently sampled to allow for a comparison between the force fields.
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Rg and Ree were calculated using GROMACS 2018.4 [40–44]. Reported error estimates
were calculated using block averaging analysis as implemented in the gmx analyze routine
in GROMACS. Scattering curves were calculated using CRYSOL Version 2.8.3 [51] with the
contrast of the hydration shell being 0.0075 e/Å3 for Amber ff99SB-ILDN+TIP4P-D and
0.02 e/Å3 for CHARMM36m, as suggested by [29]. The presented curve is the average
over 10,000 equally spaced frames. In Supplementary Figure S1 and Table S2, the effect
of different contrasts of the hydration shell is shown for Stath. The quality of fit to the
experimental curve is computed as:

χ2( f , c) = N−1
q

Nq

∑
i=1

[
Iref(qi)− ( f Iobs(qi) + c)

σref(qi)

]2

, (1)

where N−1
q is the number of points in the reference curve, Iref and Iobs are the reference

and observed intensities, respectively, and σref(qi) is the error associated with each data
point of the reference curve. The function was minimized using the Nelder–Mead method
[52], as implemented in Scipy [53], using linear interpolation to produce Iobs at the same q
points as the reference [29]. AUTORG in the ATSAS program [54] was used to determine
the Rg from Guinier analysis. The secondary structure was determined using the DSSP
program Version 2.2.1 [55] with an extension to detect the polyproline type II structure
[56,57]. The MDTraj Python library Version 1.9.3 [58] was used to calculate contact proba-
bility and analyze salt bridges. Contact between two residues was defined as when the
shortest distance between two atoms < 0.4 nm. Since salt bridges are formed as a result
of hydrogen bonding and electrostatic interactions, they were assessed by analyzing the
presence of hydrogen bonds based on the criterion in [59], as implemented in MDTraj.
Energy landscapes were calculated following the Campos and Baptista approach [60],
with the differences described by Henriques et al. [61]. In short, principal component
analysis was applied to the Cartesian coordinates of the backbone atoms of the protein,
obtained after translational and rotational least squares fitting on the central structure of
the simulation. The conditional free energy was calculated from the probability density
function in the representation space constructed by the first two principal components,
obtained by Gaussian kernel density estimation. The basins and minima were assigned as
described by Campos and Baptista [60]. It is worth noting that the first two components
were shown to account for 46–60% of the variance, hence not providing a complete picture
of the conformational classes, but at least an overview sufficient for comparison between
the force fields. Snapshots from the simulations were produced using VMD 1.9.3 [62–64].
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A99 Amber ff99SB-ILDN with TIP4P-D water
C36 CHARMM36m with CHARMM-modified TIP3P water
FRET Fluorescence resonance energy transfer
IDP Intrinsically disordered protein
NMR Nuclear magnetic resonance
PPII polyproline type II
Rg Radius of gyration
Ree End-to-end distance
SAXS Small-angle X-ray scattering
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• Table S1: Fraction of charged residues and κ of the peptides studied.

• Table S2: Radius of gyration and χ2 of calculated scattering curves using different contrast
of hydration shell (δρ) for Stath.

• Table S3: Details of the simulations performed in this work.

• Table S4: Differences in the setup of systems with 150 mM NaCl.

• Table S5: Starting configuration used in simulations of system bCPP 150 mM C36.

• Figure S1: Calculated scattering curves of Stath using different contrast of the hydration
shell.

• Figure S2: Content of different secondary structure elements along the sequence for the
four peptides.

• Figure S3: Difference in contact probability for bCPP between 0 and 150 mM NaCl.

• Figure S4: Distribution of radius of gyration of end-to-end distance for bCPP with 0 and
150 mM NaCl.

• Figure S5: Calculated scattering curves for bCPP with 0 and 150 mM NaCl.

• Figure S6-S8: Plots for assessing convergence and sampling quality of the simulations of
Tau1 in Amber ff99SB-ILDN.

• Figure S9-S11: Plots for assessing convergence and sampling quality of the simulations of
Tau2 in Amber ff99SB-ILDN.

• Figure S12-S14: Plots for assessing convergence and sampling quality of the simulations
of bCPP in Amber ff99SB-ILDN.

• Figure S15-S17: Plots for assessing convergence and sampling quality of the simulations
of Stath in Amber ff99SB-ILDN.

• Figure S18-S20: Plots for assessing convergence and sampling quality of the simulations
of Tau1 in CHARMM36m.

• Figure S21-S23: Plots for assessing convergence and sampling quality of the simulations
of Tau2 in CHARMM36m.
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• Figure S24-S26: Plots for assessing convergence and sampling quality of the simulations
of bCPP in CHARMM36m.

• Figure S27-S29: Plots for assessing convergence and sampling quality of the simulations
of Stath in CHARMM36m.

• Figure S30-S31: Plots for assessing convergence and sampling quality of the simulations
of bCPP with 150 mM NaCl in Amber ff99SB-ILDN.

• Figure S32-S33: Plots for assessing convergence and sampling quality of the simulations
of bCPP with 150 mM NaCl in CHARMM36m.

Table S1: Fraction of charged residues (FCR) and level of charge separation described by κ of
the peptides studied.

Peptide FCR κ

Tau1 0.29 0.05
Tau2 0.41 0.12
bCPP 0.52 0.46
Stath 0.23 0.32

Table S2: Radius of gyration and χ2 of calculated scattering curves using different contrast of
hydration shell (δρ) for Stath simulated with Amber FF99-SB-ILDN (A99) and CHARMM36m
(C36). The Rg is obtained from Guinier analysis using AUTORG in the ATSAS program [1],
and the error reported is the estimated error given by AUTORG.

A99 C36
δρ(e/Å3) Rg (Å) χ2 Rg (Å) χ2

0 17.2 ± 0.6 2.0 13.9 ± 0.4 6.7
0.01 17.5 ± 0.6 1.6 14.2 ± 0.3 5.3
0.02 17.8 ± 0.5 1.4 14.6 ± 0.3 4.4
0.03 18.1 ± 0.5 1.3 14.9 ± 0.3 3.7

Table S3: Details of the simulations performed in this work.
Peptide Force

field
Salt
concen-
tration
(mM)

Box
volume
(nm3)

Number
of solvent
molecules

Number
of sodium
ions

Number
of chloride
ions

Total sim-
ulation
length (µs)

Tau1 A99 0 263.66 8637 2 0 5
Tau2 A99 0 722.941 23816 3 0 11
bCPP A99 0 1002.41 32815 13 0 6
Stath A99 0 942.11 30942 4 0 12
Tau1 C36 0 263.75 8495 2 0 11
Tau2 C36 0 722.93 23519 3 0 8.05
bCPP C36 0 1002.48 32381 13 0 6.75
Stath C36 0 950.87 30708 4 0 6
bCPP A99 150 1002.41 32633 104 91 7
bCPP C36 150 1002.48 32199 104 91 9.49

*A99 = Amber ff99SB-ILDN with the TIP4P-D water model, C36 = CHARMM36m with the
CHARMM-modified TIP3P water model.
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Table S4: Differences in the setup of the systems with 150 mM NaCl.
System Number of replicates Minimum simulation

length of replicate (µs)
Saving frequency (pS)

bCPP 150 mM A99 10 0.7 40
bCPP 150 mM C36 10 0.48 50

Table S5: Starting configuration used in simulations of system bCPP 150 mM C36.
Replicate number Starting configuration

1 Linear
2 Linear
3 Linear
4 Linear
5 Linear
6 t=58 ns in replicate #1
7 t=58 ns in replicate #2
8 t=58 ns in replicate #3
9 t=58 ns in replicate #4
10 t=58 ns in replicate #5
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Figure S1: Calculated scattering curves of Stath using different contrast of the hydration shell
presented as a semi-log plot (a) and dimensionless Kratky plot (b). Solid lines correspond to
Amber ff99SB-ILDN+TIP4P-D and dashed lines to CHARMM36m. The experimental curve is
the form factor of Statherin first presented in reference [2].
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Figure S2: Content of different secondary structure elements along the sequence for the four
peptides. The legend in the lower left panel applies to all panels. The position of phosphorylated
residues are highlighted in yellow, and the position of positively charged residues in blue. Helix
contains both α-, 310- and π-helix, and β-strand contain also includes β-bridge.
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Figure S3: Difference in contact probability between 0 and 150 mM salt for bCPP simulated
with Amber ff99SB-ILDN (a) and CHARMM36m (b).
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with Amber ff99SB-ILDN (A99) and CHARMM36m (C36) in the presence of 0 or 150 mM NaCl.
The legend applies to both panels.
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Figure S5: Calculated form factor (a) and dimensionless Kratky representation (b) of bCPP
simulated with Amber ff99SB-ILDN (A99) and CHARMM36m (C36) in the presence of 0 or 150
mM NaCl. The legend applies to both panels.

Figure S6: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Tau1 in Amber ff99SB-ILDN. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure S7: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Tau1 in Amber ff99SB-ILDN,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S8: Energy landscapes for the five replicates and the concatenated trajectory of Tau1 in
Amber ff99SB-ILDN, using the first two principal components. All plots have been constructed
using the same basis set and are therefore directly comparable. Contour lines are drawn for
integer energy levels in the interval 1 ≤ RT ≤ 5.

Figure S9: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Tau2 in Amber ff99SB-ILDN. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure S10: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Tau2 in Amber ff99SB-ILDN,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S11: Energy landscapes for the five replicates and the concatenated trajectory of Tau2 in
Amber ff99SB-ILDN, using the first two principal components. All plots have been constructed
using the same basis set and are therefore directly comparable. Contour lines are drawn for
integer energy levels in the interval 1 ≤ RT ≤ 5.

Figure S12: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of bCPP in Amber ff99SB-ILDN. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure S13: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of bCPP in Amber ff99SB-ILDN,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S14: Energy landscapes for the five replicates and the concatenated trajectory of bCPP in
Amber ff99SB-ILDN, using the first two principal components. All plots have been constructed
using the same basis set and are therefore directly comparable. Contour lines are drawn for
integer energy levels in the interval 1 ≤ RT ≤ 5.

Figure S15: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Stath in Amber ff99SB-ILDN. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure S16: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Stath in Amber ff99SB-ILDN,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S17: Energy landscapes for the five replicates and the concatenated trajectory of Stath in
Amber ff99SB-ILDN, using the first two principal components. All plots have been constructed
using the same basis set and are therefore directly comparable. Contour lines are drawn for
integer energy levels in the interval 1 ≤ RT ≤ 5.

Figure S18: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of Tau1 in CHARMM36m. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure S19: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Tau1 in CHARMM36m,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S20: Energy landscapes for the five replicates and the concatenated trajectory of Tau1 in
CHARMM36m, using the first two principal components. All plots have been constructed using
the same basis set and are therefore directly comparable. Contour lines are drawn for integer
energy levels in the interval 1 ≤ RT ≤ 5.

Figure S21: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of Tau2 in CHARMM36m. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
The region removed before final analysis is plotted in gray.
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Figure S22: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Tau2 in CHARMM36m,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S23: Energy landscapes for the five replicates and the concatenated trajectory of Tau2 in
CHARMM36m, using the first two principal components. All plots have been constructed using
the same basis set and are therefore directly comparable. Contour lines are drawn for integer
energy levels in the interval 1 ≤ RT ≤ 5.

Figure S24: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of bCPP in CHARMM36m. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
The region removed before final analysis is plotted in gray.
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Figure S25: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of bCPP in CHARMM36m,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.

19



5 0 5
PC 1

5

0

5
PC

 2
#1

5 0 5
PC 1

5

0

5

PC
 2

#2

5 0 5
PC 1

5

0

5

PC
 2

#3

5 0 5
PC 1

5

0

5

PC
 2

#4

5 0 5
PC 1

5

0

5

PC
 2

#5

5 0 5
PC 1

5

0

5

PC
 2

tot

0
1
2
3
4
5
6

En
er

gy
 /R

T

0
1
2
3
4
5
6

En
er

gy
 /R

T

0
1
2
3
4
5
6

En
er

gy
 /R

T

0
1
2
3
4
5
6

En
er

gy
 /R

T

0
1
2
3
4
5
6

En
er

gy
 /R

T

0
1
2
3
4
5

En
er

gy
 /R

T

Figure S26: Energy landscapes for the five replicates and the concatenated trajectory of bCPP
in CHARMM36m, using the first two principal components. All plots have been constructed
using the same basis set and are therefore directly comparable. Contour lines are drawn for
integer energy levels in the interval 1 ≤ RT ≤ 5.

Figure S27: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of Stath in CHARMM36m. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure S28: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Stath in CHARMM36m,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.
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Figure S29: Energy landscapes for the five replicates and the concatenated trajectory of Stath
in CHARMM36m, using the first two principal components. All plots have been constructed
using the same basis set and are therefore directly comparable. Contour lines are drawn for
integer energy levels in the interval 1 ≤ RT ≤ 5.
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Figure S31: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the ten replicates and the concatenated simulation of bCPP with 150 mM NaCl
in Amber ff99SB-ILDN, obtained from a Gaussian kernel estimator. Autocorrelation function
(C(t)) and error estimate from block averaging of the end-to-end distance (b,c) and the radius
of gyration (e,f) for the concatenated simulation.

24



Fi
gu

re
S3

2:
T
im

e
ev
ol
ut
io
n
of

th
e
en
d-
to
-e
nd

di
st
an

ce
(R

ee
)a

nd
th
e
ra
di
us

of
gy

ra
tio

n
(R

g)
fo
rt

he
te
n
re
pl
ic
at
es

in
th
e
sim

ul
at
io
n
of

bC
PP

w
ith

15
0
m
M

N
aC

li
n
C
H
A
R
M
M
36
m
.
T
he

ho
riz

on
ta
ls

ol
id

lin
e
re
pr
es
en
ts

th
e
av
er
ag
e
in

ea
ch

re
pl
ic
at
e,

w
ith

th
e
da

sh
ed

lin
es

sh
ow

in
g
th
e
st
an

da
rd

de
vi
at
io
n.

25



0 2 4 6
Ree (nm)

0

1

2
De

ns
ity

(a)
#1
#2
#3
#4
#5
#6

#7
#8
#9
#10
total

0 2 4
Time ( s)

0.5

0.0

0.5

1.0

C(
t)

(b)

0 1000 2000
Block size (ns)

0.000
0.025
0.050
0.075
0.100

Er
ro

r e
st

im
at

e 
(n

m
) (c)

1.0 1.5
Rg (nm)

0.0

2.5

5.0

7.5

10.0

De
ns

ity

(d)
#1
#2
#3
#4
#5
#6

#7
#8
#9
#10
total

0 2 4
Time ( s)

0.5

0.0

0.5

1.0
C(

t)
(e)

0 1000 2000
Block size (ns)

0.000

0.005

0.010

0.015

0.020

Er
ro

r e
st

im
at

e 
(n

m
) (f)

Figure S33: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the ten replicates and the concatenated simulation of bCPP with 150 mM NaCl in
CHARMM36m, obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and
error estimate from block averaging of the end-to-end distance (b,c) and the radius of gyration
(e,f) for the concatenated simulation.
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Abstract: Intrinsically disordered proteins are involved in many biological processes such as signal-
ing, regulation, and recognition. A common strategy to regulate their function is through phosphory-
lation, as it can induce changes in conformation, dynamics, and interactions with binding partners.
Although phosphorylated intrinsically disordered proteins have received increased attention in recent
years, a full understanding of the conformational and structural implications of phosphorylation
has not yet been achieved. Here we have performed all-atom molecular dynamics simulations of
five disordered peptides originated from tau, statherin, and β-casein, in both phosphorylated and
non-phosphorylated state, to compare changes in global dimensions and structural elements. The
changes are in qualitative agreement with experimental data, and we observe that the net charge
is not enough to predict the impact of phosphorylation on the global dimensions. Instead, the
distribution of phosphorylated and positively charged residues throughout the sequence has great
impact due to the formation of salt bridges. In statherin, a preference for arginine–phosphoserine
interaction over arginine–tyrosine accounts for a global expansion, despite a local contraction of
the phosphorylated region, which implies that also non-charged residues can influence the effect of
phosphorylation.

Keywords: intrinsically disordered proteins, phosphorylation, force fields

1. Introduction

Intrinsically disordered proteins (IDPs) lack tertiary structure under physiological
conditions [1,2], such that they adopt a range of different interchanging conformations
rather than a single structure. This is reflected in their rather flat free energy landscapes
[3], making them sensitive to environmental changes and post-translational modifications
(PTMs), which helps to regulate function. Many IDPs also demonstrate the ability to bind
to several targets, and adopt different folds depending on the target. These characteristics
of IDPs are advantageous in signaling, regulation, and recognition processes, where IDPs
are abundantly involved [4,5].

Phosphorylation is a reversible type of PTM, especially prevalent among intrinsi-
cally disordered regions and proteins [6–8]. The addition of a bulky phosphoryl group to
residues such as serine or threonine adds extra negative charge and enables formation of
hydrogen bonds and salt bridges [9], which can induce drastic changes in the conforma-
tional ensemble and the dynamics of the IDP. In a simplistic view, assuming electrostatics
to be the major determinant of IDP conformation, a net positively charged IDP is expected
to contract upon phosphorylation, while a negatively charged or neutral IDP will expand.
In a recent atomistic simulation study by Jin and Gräter this prediction was shown to hold
true for multisite phosphorylation of the four peptides studied [10]. Generally, net charge
and hydropathy provide good indications of the level of compaction of a protein only in
some cases, while many require an additional inspection of the fraction of charged residues
and charge pattern, due to their polyampholytic nature [11,12].

In recent years, phosphorylated IDPs have received increased attention [10,13–23].
Changes in global conformation, secondary structure, and local arrangements upon phos-
phorylation of disordered proteins and regions have been studied experimentally by
techniques such as small angle X-ray scattering (SAXS), fluorescence resonance energy
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transfer, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) [13–
15,20,24–26]. Due to the vast conformational ensembles possessed by IDPs, a combination
of different techniques is required and often well complemented by atomistic simulations,
which through detailed information can provide further insight. After many years of
important adjustments, such as refinement of backbone dihedral angles and balancing
the water–protein and protein–protein interactions, there are several force field and water
model combinations that can be applied to IDPs [27,28]. Less attention has been given
to charge–charge interactions, although it has been determined that many standard force
fields have a tendency to overestimate salt bridges [29,30]. More recently, it has been shown
that for phosphorylated peptides this can cause serious discrepancies between simulations
and experiments [10,20,31]. However, in our most recent work, Amber ff99SB-ILDN in
combination with the TIP4P-D water model have showed promising results in describing
the conformational ensemble of short disordered peptides [20,31].

Here we have used all-atom molecular dynamics simulations with the Amber ff99SB-
ILDN force field to study the conformational and structural effects upon phosphorylation of
five disordered peptides, to gain better insight into the controlling factors. By experimental
comparison we also detect limitations of the force field. Two of the peptides are fragments
from the neuroprotein tau, involved in stabilizing neuronal microtubules [32]. Phosphory-
lation of tau regulate its function, and hyperphosphorylation has been implicated to cause
pathological effects by involvement in amyloid fibril formation in Alzheimer’s disease
[33,34]. Another two of the peptides are the saliva protein statherin and its fifteen residue
long N-terminal fragment, SN15. Statherin maintains a supersaturated environment of
calcium phosphate in the saliva, by preventing spontaneous precipitation and crystal
growth [35–37]. This functionality is closely associated with the N-terminal fragment con-
taining the phosphorylated residues [37]. The last peptide is the 25 residue long N-terminal
fragment of β-casein, which naturally contains four phosphorylated serines that sequester
calcium and promotes the formation of calcium phosphate nanoclusters [38–40].

We observe that for these peptides, ranging in length from 11 to 43 residues, that net
charge is not enough to predict the change in global dimensions upon phosphorylation
at two to four sites. Instead, salt bridge formation has great impact, depending on the
distribution of phosphorylated and positively charged residues throughout the sequence.
Further, in statherin, a preference for arginine–phosphoserine interactions over arginine–
tyrosine interactions explains the phosphorylation induced changes.

Results and Discussion
Net charge is not enough to explain phosphorylation induced changes

Atomistic simulations of five different disordered peptides in both non-phosphorylated
and phosphorylated state, shown in Table 1, have been performed at physiological pH.
The peptides were chosen based on the availability of experimental data and their size,
considering computational expense.

Table 1. Full name and sequence of the peptides included in this study. Positively charged residues are marked in blue, negatively
charged in red, and phosphorylation sites are highlighted with yellow. The number of residues (Nres), net charge of the non-
phosphorylated variant (Zno) and the phosphorylated variant (Zph) are also shown.

Name Peptide Sequence Nres Zno Zph

Tau1 Tau173–183 AKTPPAPKTPP 11 +2 -2

SN15 Statherin1–15 DSSEEKFLRRIGRFG 15 +1 -3

Tau2 Tau225–246 KVAVVRTPPKSPSSAKSRLQTA 22 +5 -3

bCPP β-casein1–25 RELEELNVPGEIVESLSSSEESITR 25 -5 -13

Stath Statherin DSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTF 43 0 -4
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SN15, Tau2, and bCPP all contract upon phosphorylation, as shown from the peak
shift towards lower values of the distributions of radius of gyration (Rg) and end-to-end
distance (Ree) in Figure 1, as well as the average values of Rg and Ree presented in Table 2.
For SN15 and Tau2 the width of the distribution also decreases, while bCPP keeps the same
range, only the shape of the distribution changes. Stath and Tau1 both expand, shown
from a peak shift towards larger values in the distributions. For Tau1 the expansion is more
clear observing the Rg distribution than the Ree distribution, which only changes shape
by the disappearance of a shoulder at lower values. This however causes the average Ree,
presented in Table 2, to increase. An increase of Ree upon phosphorylation of Tau1 has
been detected by fluorescence resonance energy transfer measurements, as reported by
Chin et al. [15].
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Figure 1. Radius of gyration (Rg) and end-to-end distance (Ree) density distributions of the non-phosphorylated (n) and phosphorylated
(p) variants. The SN15 data are taken from ref. [20].

Table 2. Average radius of gyration (Rg) and end-to-end distance (Ree) of the non-phosphorylated (n)
and phosphorylated (p) variants.

Radius of gyration (nm) End-to-end distance (nm)

Peptide n p n p

Tau1 0.93 ± 0.01 0.98 ± 0.01 2.74 ± 0.06 2.89 ± 0.02

SN15 1.00 ± 0.01 0.90 ± 0.01 2.54 ± 0.09 2.30 ± 0.03

Tau2 1.46 ± 0.02 1.29 ± 0.03 3.83 ± 0.09 3.27 ± 0.17

bCPP 1.53 ± 0.03 1.43 ± 0.03 3.80 ± 0.08 3.09 ± 0.15

Stath 1.56 ± 0.04 1.73 ± 0.09 3.30 ± 0.24 4.05 ± 0.17
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The shape factor, presented in Figure 2 can be used as an estimate of the shape of
the peptide. If it behaves as a Gaussian coil, the shape factor is approximately 6, whereas
for a stiff rod, it is around 12. SN15, Tau2, and bCPP are shown to behave rather coillike
in non-phosphorylated state, while Tau1 is more stiff, and Stath more contracted. Upon
phosphorylation bCPP becomes more contracted than a Gaussian coil, while Stath expands
to become more coillike.
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Figure 2. The shape factor of the non-phosphorylated (n) and phosphorylated (p) variants. The
dashed line corresponds to the shape factor of a Gaussian coil. The error bars are based on error
propagation of the error estimates determined for Rg and Ree by block averaging.

Comparing the induced changes of Rg and Ree with the net charge of the non-
phosphorylated peptides, it is clear that the prediction of Jin and Gräter, i.e., that net
charge controls the effect of phosphorylation [10], only holds for SN15, Tau2, and Stath.
bCPP contracts despite having a negative net charge, and Tau1 expands despite the positive
net charge. Hence, to understand the effect of phosphorylation of these peptides we need
to investigate changes in secondary structure and specific interactions.

Phosphorylation of Tau1 favours expanded conformations

The average secondary structure content of the non-phosphorylated and phosphory-
lated variants of the peptides are shown in Figure 3. First, please notice that these peptides
are all intrinsically disordered, as they are dominated by irregular structure. Several of
the peptides are also shown to contain a substantial amount of polyproline type II helix
(PPII), especially Tau1, which possess 46% and 51% PPII in the non-phosphorylated and
phosphorylated state, respectively. Elam et al. [41] have predicted close to 50% PPII content
in this region of Tau, and CD measurements of this segment indicate an increase of PPII
content upon phosphorylation [15]. In Figure 4 it is shown that all structural changes
upon phosphorylation at T175 and T81 take place at the C-terminal end of the peptide,
from residue 179 and forward. The propensity for bends and turns at residue 179–181
decreases, while the PPII content increases at residue 181–182. There is occasional salt
bridge formation between the phosphothreonines and their respective neighbouring lysine.
Specifically, the probability of salt bridge formation is 7 ± 2% for pT175–K174 and 9 ± 2%
for pT71–K180. The most occurring salt bridge is however formed between pT175 and the
N-terminal, with a probability of 49 ± 9%. However, due to the close proximity between
the salt bridging residues, the effect on the overall dimensions of the peptide is small. The
conformational effects of phosphorylation of Tau is well summarized by Figure 5, showing
the energy landscape and conformations. The energy landscape of non-phosphorylated
Tau1 contains several minima, of which the minimum containing expanded conformations
dominate, in line with the relatively high shape factor. Other less populated minima
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contain conformations with a kink in the C-terminal, originating from a bend or turn. Upon
phosphorylation, the minima with kinked conformations disappears, leaving only the
minima with expanded conformations. This explains the change in shape of the Rg and Ree
distributions, from a peak with preceding shoulder to a single peak.
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Figure 3. Average secondary structure content of the non-phosphorylated (n) and phosphorylated (p) variants. Helix includes α-helix and
310-helix. β-strand includes also β-bridge.

Phosphorylation increases the helix propensity and induces salt bridge formation in SN15 and Tau2

SN15, Tau2, and Stath all report an increase of helicity upon phopshorylation. The
helical region, shown in Figure 4, corresponds to "pSpSEEKFLR" in SN15 and Stath,
and "pSpSAKSR" in Tau2. The sequences, hence, share two characteristics: 1) the helical
region starts with two phoshorylation sites, and 2) three or four steps away from the
phosphorylation site is a positively charged residue positioned. Phosphorylation has been
shown to stabilize α-helices if the phosphorylation site is located in the N-terminal end of
the helix, by electrostatic interaction between phosphorylated serines and the macrodipole
of the helix, and by hydrogen bonding with the amide backbone [42]. With a i, i + 4 spacing
between a phosphorylated serine and a lysine, phosphorylation also stabilizes α-helices
through salt bridge formation between the side groups [43].

For Tau2 a phosphorylation-induced increase of α-helical structure from 5 to 40% in
region A239–R242 has been reported [13]. In these simulations the main helical increase
upon phosphorylation is associated with region S237–K240, where the increase is from
4 to 26%. However, the helical increase is mainly due to 310-helix, since the increase of
α-helix is only from 1 to 5%. Hence, the simulations are in qualitative agreement with the
experiments, but the quantitative results should be treated with caution. Also in SN15 the
larger part of the helical increase is due to 310-helix, and an increase of α-helix is supported
by CD spectroscopy [20], once again giving qualitative support to the findings in this study.
Notice also that while it is hard to make quantitative comparisons with CD data, our study
on SN15 suggested that the simulations underestimate the structural content [20], which is
the same as observed for Tau2.

While helix formation decreases the Rg and Ree also salt bridge formation can con-
tribute to the compaction observed upon phosphorylation. In SN15 the salt bridges pS2–K6,
pS3–K6, pS3–R9, and pS3–R10 are the most probable and all form with an approximately
25% occurrence. From the contact map in Supplementary Figure S1, it appears that the
pS2–K6 and pS3–K6 salt bridges contribute to stabilize the formed helix. The pS3–R9 and
pS3–R10 salt bridges are also visible in the contact map and contribute to an increase in the
amount of more compact conformations. In the energy landscape in Figure 6, it is shown
that phosphorylation shifts the position of the main minima in the energy landscape, from
an area of more coil-like structures to a more compact state. The non-phosphorylated
peptide also samples conformations that are more compact with a higher content of sec-
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Figure 4. Secondary structure content along the non-phosphorylated (n) and phosphorylated (p) sequence. Helix includes α-helix and
310-helix. β-strand includes also β-bridge. The position of phosphorylated and positively charged residues are highlighted in yellow and
blue, respectively. The SN15 data are taken from ref. [20].

ondary structure, but more rarely than the phosphorylated peptide. The conformation
corresponding to the minimum in the most populated basin in the phosphorylated peptide
have residue pS2 and K6 close enough to be in contact, however, there is no helix, but
instead a turn at residues E4–E5. This shows that it is favourable to have pS2 and K6 in



7 of 19

Figure 5. Energy landscapes and conformations in minima of Tau1. Left: non-phosphorylated, right: phosphorylated. The energy
landscapes are constructed using the first two components from principal component analysis, applying the same basis set for both
variants. Hence, they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the
minimum of each basin is represented by a marker depending on the energy: l: ≤ 1RT, s: ≤ 2RT. A thick line corresponds to the most
populated basin, while dashed lines to the least populated basins. In the conformations positively charged residues are shown in blue,
and phosphorylated residues in yellow.

contact, but that the interaction does not necessarily imply helix formation. In Figure 4, it
was shown that also the turn content in region S3–E5 increases upon phosphorylation, not
only the helix content. There is also an increase of turn content in region F7–R11, which
is partly caused by occasional β-strand formation, as shown in the other conformation
in Figure 6, and partly by residues pS3 and R9 coming close to form a salt bridge. Both
of these changes give rise to more compact conformations. We must however note that
SAXS measurements have indicated that a compaction upon phosphorylation is plausible,
but probably smaller than shown in the simulations [20]. While Jin and Gräter found
that changes in the hydration shell upon phosphorylation can hide global conformational
changes in SAXS measurements, they also concluded that the force field used in this study
overestimates the charge effect, thus providing two different explanations of the deviations
between the simulations and experiments [10].

In Tau2 several salt bridges have been established from NMR measurements, specif-
ically pT231–R230, pS237–K240, and pS238–R242 [13]. pT231–R230 and pS238–R242 are
indeed the two most occurring salt bridges according to Table 3, while pS237–R242 is the
third most common. Apart from the increase of helical content related to phosphorylation,
Figure 4 reveals an interesting pattern of bends after phosphorylation, where the charged
residues R, K, pT, and pS are enriched in bends. The conformations in Figure 7 illustrate
how the salt bridges contribute to the formation of bends. Since the probability of a turn at
A227-V229 is roughly the same as the probability of the pT231–K225 salt bridge (see Figure
4 and 3), and V228 is located right between K225 and pT231, we conclude that also this
turn is a result of a salt bridge interaction. Hence, also this peptide show that salt bridge
formation induces bends and turns.

Comparing the energy landscapes of non-phosphorylated and phosphorylated Tau2
in Figure 7, it is shown that for both peptides more extended conformations, such as
in the minima furthest to the right, are sampled, but to different extent. These type
of conformations are more common in the non-phosphorylated variant, while the most
populated basin contains conformations with the N-terminal end folded over, to come
closer to the phosphorylated residues. While K225 rarely involves in a proper salt bridge
with other residues than pT231, it is still energetically favourable to be in rather close
vicinity of the phosphorylated region, considering both the charged side chain and the N-
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K6

pS2 pS3

Figure 6. Energy landscapes and conformations in the lowest energy minima of SN15. Left: non-phosphorylated, right: phosphorylated.
The energy landscapes are constructed using the first two components from principal component analysis, using the same basis set for
both variants. Hence, they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the
minimum of each basin is represented by a marker depending on the energy: l: ≤ 1RT, s: ≤ 2RT. A thick line corresponds to the most
populated basin, while dashed lines to the least populated basins. In the conformations, positively charged residues are shown in blue,
negatively charged residues in red, and phosphorylated residues in yellow. Phosphorylated and positively charged residues that are close
are shown explicitly.

Table 3. Probability of salt bridge formation (%) between phosphorylated residues and positively
charged residues in Tau2, where NT is the N-terminus. The values printed in bold corresponds to the
experimentally established salt bridges [13].

Residue NT K225 R230 K234 K240 R242

pT231 1 ± 1 10 ± 3 37 ± 10 3 ± 2 ∼ 0 ∼ 0

pS235 < 1 2 ± 1 < 1 15 ± 4 17 ± 2 6 ± 3

pS237 2 ± 1 4 ± 3 3 ± 10 17 ± 2 19 ± 2 29 ± 2

pS238 4 ± 1 5 ± 2 3 < 1 ∼ 0 5 ± 4 35 ± 6

terminus. This type of conformations give rise to an increased contact probability within the
N-terminal part of the chain, see Supplemental Figure S2. Ignoring the contacts close to the
diagonal, which indicates helical structure and certain salt bridges, the non-phosphorylated
variant has a higher probability of contacts within the C-terminal end. The two minima
in the left part of the energy landscape in Figure 7 are examples of such conformations,
which originates from the electrostatic attraction between the C-terminus and the positively
charged residues. Notice however, that the probability of conformations with one end
folded over is much higher after phosphorylation, which explains the decrease in Rg and
Ree. The conformation corresponding to the minimum in the most populated basin for
the phosphorylated peptide additionally shows a helix in the C-terminal end, which also
contributes to a decreased Rg and Ree.

Salt bridge formation shifts the conformational ensemble of bCPP

For bCPP the secondary structure content is highly similar in phosphorylated and non-
phosphorylated state, as shown by Figure 3, in agreement with CD spectroscopy results by
Farrell et al. [25]. The small difference that occurs upon phosphorylation at S14, S17, S18,
and S19 is a change from helix and turn to irregular structure in region E14–S17, see Figure



9 of 19

pT231
pS235 K240

pS238
R242

R242
pS237

R230

Figure 7. Energy landscapes and conformations in the lowest energy minima of Tau2. Left: non-phosphorylated, right: phosphorylated.
The energy landscapes are constructed using the first two components from principal component analysis, using the same basis set for
both variants, hence making them directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and
the minimum of each basin is represented by a marker depending on the energy: l: ≤ 1RT, s: ≤ 2RT, 6: ≤ 3RT. Thick lines correspond
to the most populated basins, while dashed lines to the least populated basins. In the conformations positively charged residues are
shown in blue, and phosphorylated residues in yellow.

4. The vanishing of helical content is in agreement with the conclusion of Andrew et al.,
that phosphorylation of a residue in the interior of a helix, without a positively charged
residue within suitable distance, destabilizes the helix [42]. Since disruption of a short helix
would not cause a contraction of the peptide, the conformational changes in bCPP upon
phosphorylation is not explained by secondary structure. Instead, the contraction is due to
electrostatic attraction including salt bridge formation between the positively charged end
residues and the phosphorylated residues, as seen in Table 4. Although both end residues
are arginines, there is preference of R1 to interact with the phosphorylated region over R25,
due to the respective charges of the terminii. This is evident from the fact that also the
N-terminus involves in salt bridges with the phosphorylated residues, and further shown
in the contact map in Supplementary Figure S3. When R1 interacts with the phosphorylated
residues, it causes the peptide to fold over, reducing Rg and Ree substantially. From the
energy landscape in Figure 8, it is shown that before phosphorylation the minima with
lowest energy contain more extended conformations, while after phosphorylation the
minima with lowest energy instead showcase the N-terminal part being folded over.

Based only on the net charge of non-phosphorylated bCPP, it was expected that it
would expand upon phosphorylation. Considering only region E13–E21, which contains
the four phosphorylation sites, this effect was noticed. The average distance between
the Cα atoms of residue 13 and 21 increases from 1.91 ± 0.03 nm to 2.12 ± 0.03 nm upon
phosphorylation. However, due to the strong electrostatic interaction between the arginines
and the phosphorylated region that are far apart in the sequence, the global result is
compaction. Hence, the relative position of charged residues is very important to consider
for the effects of phosphorylation on the overall dimensions of the peptide.
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Table 4. Probability of salt bridge formation (%) between phosphorylated residues and positively
charged residues in bCPP, where NT is the N-terminus.

Residue NT R1 R25

pS15 2 ± 1 6 ± 1 2 ± 1

pS17 3 ± 1 7 ± 1 7 ± 2

pS18 4 ± 1 13 ± 4 12 ± 4

pS19 1 ± 1 10 ± 4 15 ± 4

Figure 8. Energy landscapes and conformations in selected minima of bCPP. Left: non-phosphorylated, right: phosphorylated. The energy
landscapes are constructed using the first two components from principal component analysis, using the same basis set for both variants.
Hence, they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the minimum of
each basin is represented by a marker depending on the energy: l: ≤ 1RT, s: ≤ 2RT, 6: ≤ 3RT. A thick line corresponds to the most
populated basin, while dashed lines to the least populated basins. In the conformations positively charged residues are shown in blue,
negatively charged residues in red and phosphorylated residues in yellow.

We previously showed that addition of 150 mM NaCl had negligible effects on the
salt bridges and global conformational properties of phosphorylated bCPP [31]. The
same applies to non-phosphorylated bCPP, as presented in Supplementary Figure S4–S5.
However, although the average values of Rg at 0 and 150 mM are within error, there is
a slight increase in the phosphorylated variant and decrease in the non-phosphorylated
variant, see Table 5. Hence, at 150 mM NaCl, the difference observed in Rg between the two
variants vanishes, considering the associated error. Note however that the distributions
still have distinctly different shapes, hence we argue that the conformational ensembles are
still different. The same trend is observed in the average Ree values, although a difference
with respect to phosphorylation state still remains at 150 mM NaCl, see Table 5. Also in the
calculated scattering curve (Supplementary Figure S5) is the effect of salt smaller than the
effect of phosphorylation. The difference between the form factor of non-phosphorylated
and phosphorylated bCPP is however still rather small, so we suspect that it can be hard
to detect experimentally with SAXS. Based on the fraction of charged residues and level
of charge separation, we expect the other peptides in this study to show smaller effects in
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regards to salt concentration than bCPP. Hence, we expect the results observed here to be
valid also at 150 mM NaCl.

Table 5. Average radius of gyration and end-to-end distance of the non-phosphorylated (n) and
phosphorylated (p) bCPP in the presence of 0 and 150 mM NaCl.

Radius of gyration (nm) End-to-end distance (nm)

0 mM 150 mM 0 mM 150 mM

n 1.53 ± 0.03 1.48 ± 0.02 3.80 ± 0.08 3.64 ± 0.09

p 1.43 ± 0.03 1.45 ± 0.03 3.09 ± 0.15 3.37 ± 0.13

Arginine–phosphoserine interactions outshines arginine–tyrosine interactions in Stath

Upon phosphorylation of Stath, the three largest changes in secondary structure is
a decrease of β-strand structure, an increase of helical structure, and an increase of turns.
Figure 4 implies that residues R10, Y18, Y21, and Y41 are of extra importance for the
formation of β-sheet. The cation-π interaction that can occur between aromatic residues,
such as tyrosine, and cationic residues, such as arginine, have been shown to be common
in proteins [44]. A correlation between β-strands and cation-π interactions have also been
established [45]. Table 6 show that the cation-π interaction indeed is more occurring in
non-phosphorylated Stath than in phosphorylated Stath, suggesting that it drives the
formation of β-strands. The conformations in Figure 9i-iii show examples of the cation-
π interaction in non-phosphorylated Stath. Although the aromatic–cation interactions are
more common in non-phosphorylated Stath, they still occur in phosphorylated Stath, as
exemplified by Figure 9. Upon phosphorylation the occurrence of cation–π interaction
decreases substantially, while salt bridge formation appears according to Table 7. Notice
that R10, which was shown to interact with tyrosines, is involved in one of the most
probable salt bridges, pS3–R10. Hence, the arginine–phosphoserine interaction is deemed
stronger than the arginine–tyrosine interaction. The replacement of arginine–tyrosine
interaction with arginine–phosphoserine causes the β-strands to vanish, which explains
the observed expansion.

Table 6. Probability of cation–π interaction (%) for certain pairs of residues in non-phosphorylated
(n) and phosphorylated (p) Stath.

Residues n p

R10–Y18 13.8 ± 6.3 1.6 ± 0.9

R10–Y21 32.0 ± 8.6 3.9 ± 0.7

R10–Y41 9.2 ± 4.3 0.4 ± 0.2

Table 7. Probability of salt bridge formation (%) between phosphorylated residues and positively
charged residues in Stath, where NT is the N-terminus.

Residue NT K6 R9 R10 R13

pS2 < 1 23 ± 7 23 ± 8 12 ± 1 8 ± 1

pS3 12 ± 3 9 ± 1 30 ± 8 32 ± 7 6 ± 3

As presented above, SN15, which is the first fifteen residues of Stath, contracts upon
phosphorylation, which was explained by the increased helicity and formation of salt
bridges. Supplementary Figure S6 shows that in phosphorylated Stath, the global dimen-
sions of the first fifteen residues, Stath1–15 agree with those of the fragment (SN15). In the
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Figure 9. Energy landscapes and conformations in the minima of the most populated basins of Stath. Left: non-phosphorylated, right:
phosphorylated. The energy landscapes are constructed using the first two components from principal component analysis, using the same
basis set for both variants, hence making them directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5
and the minimum of each basin is represented by a marker depending on the energy: l: ≤ 1RT, s: ≤ 2RT, 6: ≤ 3RT. A thick line corresponds
to the most populated basin, while dashed line to the least populated basin. In the conformations positively charged residues are shown in
blue, negatively charged residues in red and phosphorylated residues in yellow. The circles show specific interactions within the peptide in the
conformations corresponding to the letters.

non-phosphorylated variant the distributions are also rather similar, except for a sharp peak
in both the Rg and Ree distributions, which corresponds to a basin in the energy landscape
with the conformation shown in Supplementary Figure S6c. Regarding the secondary
structure, according to Supplementary Figure S7, the largest difference between SN15 and
Stath1–15 is caused by β-strand not forming in SN15, due to lacking its partner further on
in the sequence. There are also some differences in bends and turns, but the increase of
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helical propensity is similar. Hence, overall, the first fifteen residues of Stath behaves rather
similarly in the full peptide and as a standalone fragment, although especially the presence
of the rest of the sequence induces β-strand formation. Despite this discrepancy, we can
conclude that phosphorylation of Stath causes a contraction of the first fifteen residues, but
an expansion of the full peptide, due to disruption of β-sheets.

Conclusions

Some of the peptides in this study contracted upon phosphorylation, while others
became more expanded. However, the net charge was not enough to predict the effect.
Instead, we have identified factors that appeared to be of greater importance, of which
the first is the distribution of charged residues, in line with the influence of linear charge
distribution on the conformational ensemble of IDPs [46]. Especially the relative position
of phosphorylated and positively charged residues mattered, considering that salt bridges
formed between residues far from each other in the sequence had the largest effect on
the overall dimensions of the peptide. Regarding salt bridges, Kumar et. al have shown
that phosphorylation can re-wire salt bridges by competing with already present E–R
salt bridges [47], but no such tendencies were observed for these peptides. Here the
possible salt bridges in the non-phosphorylated peptides were either low in probability or
did not change much upon phosphorylation. In Stath, competitive interactions between
positively charged residues, aromatic residues, and phosphorylated residues accounted for
the changes upon phosphorylation. This shows that for peptides which include arginine,
it can be of importance to also consider aromatic residues. In both bCPP and Stath,
phosphorylation induced the opposite effect on the local and global dimensions, hence, to
understand the purpose/implications of the phosphorylated residues, both length-scales
should be studied. This is especially important dealing with longer IDPs where local/non-
local effects can have larger compensatory effect than observed for short peptides [14].

Regarding secondary structure, the separation between phosphorylated and positively
charged residues were shown to control the helix propensity, and salt bridges additionally
induced changes in the amount of bends and turns. Comparison with experimental data
on secondary structure for SN15 and Tau2 indicates that the simulations underestimate the
structural content. For these peptides a preference of 310- over α-helix was also observed,
while the experimental data only considered α-helix. Hence, the simulations were better
at indicating trends than produce exact measurements of secondary structure. Overall,
the simulation results were often in qualitative agreement with available experimental
data, suggesting that despite the deficiency related to secondary structure and the reported
tendency of the force field to overestimate charge–charge interactions, simulations with
this force field can still contribute to an increased understanding of the implications of
phosphorylation.

As a final note, this study shows that there are several factors contributing to the
outcome of phosphorylation, and that they are of varying importance in different peptides.
This shows that phosphorylation indeed is complex, however, it is still possible to obtain a
better understanding of these factors individually. Therefore, we have an ongoing project in
which the number of phosphorylated residues and their positions are varied in a controlled
manner, to investigate the effects of those factors systematically.

Materials and Methods

All-atom molecular dynamics simulations of the systems shown in Table 8 were
performed using GROMACS version 2018.4 (version 4.6.7 for simulation of Stathn) [48–
52] with the AMBER ff99SB-ILDN [53] force field and the TIP4P-D [54] water model.
Parameters for phosphorylated residues were derived from Homeyer et al. [55] and
Steinbrecher et al. [56].

Initial configurations of the peptides were constructed from the sequence as linear
chains using Avogadro 1.2.0 [57], optimizing the structure with the auto-optimization tool.
SN15n and Stathn were constructed as linear chains in PyMOL [58]. Each peptide was
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Table 8. Details of the simulations performed in this work. The suffix n stands for non-
phosphorylated peptide, while the suffix p stands for phosphorylated.

Peptide Box
volume
(nm3)

Number
of solvent
molecules

Number
of sodium
ions

Number
of chloride
ions

Total sim-
ulation
length (µs)

Tau1n 157.63 5130 0 2 10.0
Tau1p 140.55 4594 2 0 5.0
Tau2n 724.974 23862 0 5 6.0

SN15na 272.13 8839 0 1 14.4
SN15pa 294.52 9703 3 0 22.0
Tau2pb 722.941 23816 3 0 11.0
bCPPn 1009.24 32975 5 0 5.0

bCPPn, 150 mM 1009.24 32793 96 91 5.0
bCPPpb 1002.41 32815 13 0 6.0

bCPPp, 150 mMb 1002.41 32633 104 91 7.0
Stathn c 930.47 30651 0 0 17.0
Stathpb 942.11 30942 4 0 12.0

a Previously published [20].
b Accepted for publication [31].
c Using GROMACS version 4.6.7.

placed in a rhombic dodecahedron box with a minimum distance between the peptide
and the box edges of 10 Å, and solvated. The number of water molecules is specified in
Table 8, alongside the number of chloride and sodium ions that were added to neutralize
the system and in two cases obtain a salt concentration of 150 mM. Periodic boundary
conditions were employed in all directions. The equations of motion were integrated using
the Verlet leapfrog algorithm [59] with a time step of 2 fs. Non-bonded interactions were
treated with a Verlet list cutoff scheme. The short-ranged interactions were calculated
using neighbour lists with cutoff 10 Å. Long-ranged dispersion corrections were applied
to energy and pressure and long-ranged electrostatic interactions were treated by Particle
Mesh Ewald [60] with a cubic interpolation and 1.6 Å grid spacing. All bond lengths were
constrained using the LINCS algorithm [61]. Solute and solvent were separately coupled
to temperature baths at 298 K using the velocity rescaling thermostat [62] with a 0.1 ps
relaxation time. Parrinello-Raman pressure coupling [63] was used to keep the pressure at
1 bar, using a 2 ps relaxation time and 4.5 · 10−5 bar-1 isothermal compressibility.

Energy minimization was performed by the steepest descent algorithm until the
system was converged within the available machine precision. Initiation of five replicates
per system with different starting seeds were performed separately in two steps using
position restraints on the peptide. The first step was 500 ps of NVT simulation (constant
number of particles, volume, and temperature) performed to stabilize the temperature,
followed by the second step of 1000 ps of NPT simulation (constant number of particles,
pressure, and temperature) to stabilize the pressure. Production runs of the five replicates
per system were performed in the NPT ensemble, for at least 1 µs per replicate. bCPPp
with 150 mM salt was simulated in 10 replicates for 0.7 µs each. The total simulation time
per system is stated in Table 8. Energies and coordinates were saved every 10 ps, except for
in the simulations with 150 mM NaCl. There the saving frequency was every 50 or 40 ps,
for bCPPn and bCPPp, respectively.

Analysis

Rg and Ree were calculated using GROMACS 2018.4 and the gmx analyze routine was
used to obtain averages and error estimates from block averaging analysis. Distributions
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were obtained by Gaussian kernel estimation using the SciPy package version 1.5.4 [64].
The shape factor, rs, was calculated from the average values of Rg and Ree according to:

rs =
R2

ee
R2

g
. (1)

Secondary structure was determined using the DSSP program version 2.2.1 [65] with
an extension to detect polyproline type II structure [66,67], on 10 000 equally spaced
frames from the combined trajectory. The MDTraj Python library version 1.9.3 [68] was
used to obtain contact maps, analyze salt bridges, and cation–π interactions. Since salt
bridges are formed as a result of hydrogen bonding and electrostatic interactions, they
have been assessed by analyzing the presence of hydrogen bonds based on the criterion in
reference [69], as implemented in MDTraj. Cation–π interactions were analyzed based on
the position of the NZ atom in arginine and CG and CZ in tyrosine. Interaction was defined
to occur when both the distances R:NZ–Y:CG and R:NZ–Y:CZ were ≤ 6 Å [44]. The energy
landscapes were calculated using principal component analysis following the approach
described by Campos and Baptista [70], with the differences described by Henriques et al.
[71]. In short, principal component analysis was applied to the cartesian coordinates of
the backbone atoms of the protein, obtained after translational and rotational least square
fitting on the central structure of the simulation. The conditional free energy was calculated
from the probability density function in the representation space constructed by the first
two principal components, obtained by Gaussian kernel density estimation. Snapshots
from the simulations were produced using VMD 1.9.3 [72–74]. Data were plotted using
Jupyter Notebook [75] with Python version 3.6.4 and packages NumPy version 1.19.5 [76]
and Matplotlib version 2.1.2 [77].

Convergence and sampling quality were assessed by comparing the Rg and Ree
distributions, and energy landscapes, between the replicates, as well as by observing the
auto-correlation function and convergence of the block average error estimate of Rg and
Ree in the concatenated simulation. These data are available in Supplementary File S2.

Supplementary Materials: Supplementary File S1 contains supplementary figures of contact maps,
salt effects, and SN15 versus Stath1-15. Supplementary File S2 contains figures for sampling and
convergence assessment of the simulations.

Funding: Financial support has been given by the Royal Physiographic Society in Lund and the
Bertil Andersson’s foundation.

Acknowledgments: The simulations were performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at the Center for Scientific and Technical Computing at Lund
University (LUNARC).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IDP Intrinsically disordered protein
SAXS Small-angle X-ray scattering
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Figure S1: Contact map of a) non-phosphorylated and b) phosphorylated SN15. Probability

of atoms in di�erent residues being closer than 4 Å, with the two closest residues on each side

as well as the residue itself excluded from analysis and therefore shown in white. The data are

taken from ref. [1].

1



Figure S2: Contact map of a) non-phosphorylated and b) phosphorylated Tau2. Probability of

atoms in di�erent residues being closer than 4 Å, with the two closest residues on each side as

well as the residue itself excluded from analysis and therefore shown in white.

Figure S3: Contact map of a) non-phosphorylated and b) phosphorylated bCPP. Probability of

atoms in di�erent residues being closer than 4 Å, with the two closest residues on each side as

well as the residue itself excluded from analysis and therefore shown in white.
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Figure S4: Distribution of a) radius of gyration and b) end-to-end distance of non-

phosphorylated (n) and phosphorylated (p) bCPP simulated with 0 or 150 mM NaCl.

Figure S5: a) Calculated form factor and b) dimensionless Kratky plot of non-phosphorylated

(n) and phosphorylated (p) bCPP simulated with 0 or 150 mM NaCl.
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Figure S6: a) Radius of gyration and b) end-to-end distance distributions of non-phosphorylated (n) and

phosphorylated (p) Stath1-15 and SN15. c) Snapshot of the type of conformation giving rise to the sharp

peak in the Stathn1-15 distributions, where residue 16-43 is traced in light gray. The SN15 data are taken

from ref. [1].

Figure S7: Secondary structure content along the sequence in non-phosphorylated (n) and phosphorylated (p)

Stath1-15 and SN15. Helix includes a-helix and 310-helix. b-strand also includes b-bridge. The SN15 data are

taken from ref. [1].
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The time evolution, density distribution, autocorrelation function, and error estimate from block
averaging of end-to-end distance and radius of gyration, as well as the energy landscapes con-
structed from principal component analysis have all been used to assess the convergence and
sampling quality of the simulations in this work. For SN15n and SN15p we refer to the support-
ing information of ref. [1] and for Tau2p, bCPPp, and Stathp we refer to the supplementary
material to ref. [2]. The remaining peptides are presented in the following order:

• Tau1n: Figure A1–A3

• Tau1p: Figure A4–A6

• Tau2n: Figure A7–A9

• bCPPn: Figure A10–A12

• bCPPn 150 mM: Figure A13–A14

• Stathn: Figure A15–A17

Figure A1: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Tau1n. The horizontal solid line represents the average
in each replicate, with the dashed lines showing the standard deviation.
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Figure A2: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration (Rg)
(d) for the five replicates and the concatenated simulation of Tau1n, obtained from a Gaussian
kernel estimator. Autocorrelation function (C(t)) and error estimate from block averaging of
the end-to-end distance (b,c) and the radius of gyration (e,f) for the concatenated simulation.
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Figure A3: Energy landscapes for the five replicates and the concatenated trajectory of Tau1n,
using the first two principal components. All plots have been constructed using the same basis
set and are therefore directly comparable. Contour lines are drawn for integer energy levels in
the interval 1 Æ RT Æ 5.

Figure A4: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Tau1p. The horizontal solid line represents the average
in each replicate, with the dashed lines showing the standard deviation.
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Figure A5: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration (Rg)
(d) for the five replicates and the concatenated simulation of Tau1p, obtained from a Gaussian
kernel estimator. Autocorrelation function (C(t)) and error estimate from block averaging of
the end-to-end distance (b,c) and the radius of gyration (e,f) for the concatenated simulation.
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Figure A6: Energy landscapes for the five replicates and the concatenated trajectory of Tau1p,
using the first two principal components. All plots have been constructed using the same basis
set and are therefore directly comparable. Contour lines are drawn for integer energy levels in
the interval 1 Æ RT Æ 5.

Figure A7: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Tau2n. The horizontal solid line represents the average
in each replicate, with the dashed lines showing the standard deviation.
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Figure A8: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration (Rg)
(d) for the five replicates and the concatenated simulation of Tau2n, obtained from a Gaussian
kernel estimator. Autocorrelation function (C(t)) and error estimate from block averaging of
the end-to-end distance (b,c) and the radius of gyration (e,f) for the concatenated simulation.
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Figure A9: Energy landscapes for the five replicates and the concatenated trajectory of Tau2n,
using the first two principal components. All plots have been constructed using the same basis
set and are therefore directly comparable. Contour lines are drawn for integer energy levels in
the interval 1 Æ RT Æ 5.

Figure A10: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of bCPPn. The horizontal solid line represents the average
in each replicate, with the dashed lines showing the standard deviation.
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Figure A11: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of bCPPn, obtained from a
Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate from block av-
eraging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the concatenated
simulation.

8



Figure A12: Energy landscapes for the five replicates and the concatenated trajectory of bCPPn,
using the first two principal components. All plots have been constructed using the same basis
set and are therefore directly comparable. Contour lines are drawn for integer energy levels in
the interval 1 Æ RT Æ 5.

Figure A13: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg)
for the five replicates in the simulation of bCPPn with 150 mM NaCl. The horizontal solid line
represents the average in each replicate, with the dashed lines showing the standard deviation.
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Figure A14: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of bCPPn with 150 mM NaCl,
obtained from a Gaussian kernel estimator. Autocorrelation function (C(t)) and error estimate
from block averaging of the end-to-end distance (b,c) and the radius of gyration (e,f) for the
concatenated simulation.

Figure A15: Time evolution of the end-to-end distance (Ree) and the radius of gyration (Rg) for
the five replicates in the simulation of Stathn. The horizontal solid line represents the average
in each replicate, with the dashed lines showing the standard deviation.
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Figure A16: Density estimates of the end-to-end distance (Ree) (a) and the radius of gyration
(Rg) (d) for the five replicates and the concatenated simulation of Stathn, obtained from a Gaus-
sian kernel estimator. Autocorrelation function (C(t)) and error estimate from block averaging
of the end-to-end distance (b,c) and the radius of gyration (e,f) for the concatenated simulation.
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Figure A17: Energy landscapes for the five replicates and the concatenated trajectory of Stathn,
using the first two principal components. All plots have been constructed using the same basis
set and are therefore directly comparable. Contour lines are drawn for integer energy levels in
the interval 1 Æ RT Æ 5.
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modelling of phosphorylated 
intrinsically disordered proteins

In this thesis, computational and experimental methods are applied 
to study the conformational ensembles of intrinsically disordered 
proteins. The main goals have been to investigate the relation 
between sequence and structure, focusing on the impact of 
phosphorylation, and to investigate different models applicable 
for studying intrinsically disordered proteins.
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