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Realeasy: Real-Time capable Simulation to Reality Domain Adaptation*

Alexander Dürr1, Liam Neric1, Volker Krueger1, and Elin A. Topp1

Abstract— We address the problem of insufficient quality
of robot simulators to produce precise sensor readings for
joint positions, velocities and torques. Realistic simulations of
sensor readings are particularly important for real time robot
control laws and for data intensive Reinforcement Learning
of robot movements in simulation. We systematically construct
two architectures based on Long Short-Term Memory to model
the difference between simulated and real sensor readings
for online and offline application. Our solution is easy to
integrate into existing Robot Operating System frameworks
and its formulation is neither robot nor task specific. We
demonstrate robust behavior and transferability of the learned
model between individual Franka Emika Panda robots. Our
experiments show a reduction in torque mean squared error
of at least one order of magnitude. The collected data set,
the plug-and-play Realeasy model for the Panda robot and a
reproducible real-time docker setup are shared alongside the
code.2

I. INTRODUCTION

For many interesting robot control problems in complex
environments it is necessary to have a fast and reliable
controller. Model Predictive Controllers (MPC) estimate the
effect of a control action in such environments. However, the
non-linear model of the robot dynamics is usually approxi-
mated by a linear or quadratic model to allow calculations in
real-time. This model approximation creates an error in the
prediction. The resulting residual can cause the controller to
select sub-optimal control actions.

In Reinforcement Learning (RL) we face a related prob-
lem: To find a good policy, a lot of exploration of the
environment by the learning agent is needed. Ideally this
is handled in simulation, as it is fast and safe. However,
when the learned policy is deployed to the real environment,
the real robot state transitions usually look different from the
simulated state transitions despite being in the same situation.
This causes the policy to pick a possibly sub-optimal action
or to even fail completely. Several efforts to overcome this
issue have recently been reported (e.g., [1], [2], [3], [4], [5],
[6], [7], [8], [9]), most often focusing on a specific task and
application.

We investigate the discrepancies between the simulated
and real robot states for joint positions, velocities and torques
along the trajectories of free space movements, and propose
Realeasy, a general, task-independent approach to model the
residual between simulation and real environment.

*This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by Knut and Alice Wallen-
berg Foundation

1All authors are with the Dept. of Computer Science, Fac-
ulty of Engineering (LTH), Lund University, 221 00 Lund, Sweden
alexander.durr,elin_anna.topp,volker.krueger@cs.lth.se

2https://sites.google.com/ulund.org/realeasy
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Fig. 1. Our Realeasy module integrated into the ROS framework (red),
showing the learning pipeline to generate synthetic-realistic sensor data from
comparison of real (green) and simulated (blue) robot data

Although discrepancies between real robot and simulated
states might be easily visible for a human observer, formu-
lating a filter or rule to handle them is non-trivial. Thus,
we formulate a supervised learning problem based on two
position-aligned sets of position, velocity and torque readings
recorded from execution of the same trajectories once on a
real robot and once in a simulated environment respectively.
The dataset generation process for the supervised learning
problem is automated and does not need human intervention.
After having investigated several potential neural network
architectures we propose a systematically deduced explain-
able Long Short-Term Memory architecture for translating
the sequence of simulated joint states into a sequence of real
joint states, as depicted in Fig. 1. We also provide a carefully
designed and documented dataset for improving the learning
rate and the model’s performance. When deployed, the learnt
model simply adds the predicted residual to the joint states
along the simulated trajectory to generate synthetic realistic-
looking sensor data (see Fig. 1).

Our comprehensive evaluations show a reduction in mean
squared error in the residual of at least one order of magni-
tude. We also evaluate our trained model on a second real
Panda robot to demonstrate the possibility of a direct transfer
to other individual robots. Finally, we describe the benefits of
our approach over possible combinations with state-of-the-
art methods in the field of system identification [1], simulator
augmentation [2], [3], [4], [5] and action grounding [6], [7],
[8], [9].

In summary, our main contributions are:
1) two systematically developed neural network archi-

https://sites.google.com/ulund.org/realeasy


tectures to improve simulated robot state data, easily
integrated into the ROS framework [10], see Fig. 1;

2) the design description for our data set for the Franka
Emika Panda robot and the network parameters. In
addition, we aim to share our data set, a real-time
graphics-enabled docker image for robot control, re-
production of our results and direct reuse of our trained
model.

II. RELATED WORK

We present major insights of related work and present the
differences to our approach with respect to the most popular
simulation to reality transfer techniques.

A. System Identification

System identification (SI) is the area of identifying a set
of dynamic parameters of a specific system, as presented
for example by Gaz et al., who solve the problem for
the Franka Emika Panda robot through using penalty-based
optimization [1]. With those parameters a robot physics
simulator is improved. Their approach gives overall reliable
results which are valid in most of the robot’s work space, yet
the limitations lie in the physics model itself which excludes
dynamic effects like change in friction in the joints through
movement over time. SI in general gives a good baseline for
a simulator’s parameters, but calibration for each individual
robot can be required depending on the task. Furthermore,
to ensure a good match the parameters of the simulation,
e.g., masses of links, are the only free variables which can
result in unrealistic results in favor of simulation and reality
alignment. As a comparison, our approach can be based
on realistic estimates of the simulation parameters, such as
friction and link masses.

B. Simulator Augmentation

Tobin et al. [2] use Domain Randomization (DR) by
imposing a prior distribution over the parameters of the sim-
ulator to find a robust control policy to achieve a certain task.
DR has the disadvantage that it requires domain knowledge
and handcrafting of the parameter randomization. Since the
policy is robust for many possible sets of parameters, it finds
a sub-optimal solution for reality and fails if the task at
hand requires high precision. Our approach does not rely on
parameter randomization as we align the simulation closely
to reality. Yet, this general approach can be combined with
ours, thus allowing smaller disturbances facilitating a near-
optimal policy required for high precision tasks.

Zeng et al. [3] show with Tossingbot how a robot arm can
learn to throw different objects precisely. Their work in the
field of Domain Adaptation (DA) calculates the throwing
velocity with a physics engine first, and then corrects the
residual in velocity with a Convolutional Neural Network.
Their work showcases a successful integration of simulated
and real environment. Similar to our approach the simulator’s
state output is corrected. In contrast to their work, however,
we capture several physical phenomena that require correc-
tion, such as friction and inertia based on a sequence of

previous events. Our approach is general and does not need
specification of which phenomenon needs correction.

Ajay et al. [4] implement a recurrent neural network
(RNN) predicting a residual between simulated and real
data in the case of planar pushing with focus on modelling
uncertainty in prediction. The hybrid model consisting of a
deterministic physics engine and a stochastic neural network
generalizes to different objects and requires little data. They
demonstrate that stochastic augmentation can improve the
simulation to reality transfer of a learned policy.

Golemo et al. [5] show with their Neural Augmented
Simulator (NAS) that an LSTM can learn with a given dataset
describing the transitions (real state - action - simulated next
state) as input to predict the next real state by observing
the differences between simulated next states and real ones.
When deployed, the next state outputted from the LSTM
is used to hard-set the new initial state of the simulation,
thus changing potentially non-smoothly positions, velocity
and acceleration in the simulation. Obvious problems can be
that by changing the position the robot might collide with
objects in the simulated environment. We want to highlight
their idea that the LSTM’s cell state acts as the long-term
memory of previous state-action-state transformations from
simulation to reality. The NAS approach is closest to ours,
yet the major difference is that our LSTM merely needs the
simulated states as input, making the taken action implicit.
We do not see a compelling reason why the action would be
needed as explicit input for improving the Panda simulation.
Furthermore, we do not need to hard-set the simulation to
the LSTM’s output since we align the trajectories in position.
This ensures collision-free augmentation and speeds up the
data collection significantly.

C. Action Transformation

Hanna et al. [6] show with their work in Action Trans-
formation (AT) how sending transformed actions to the
simulator can cause the simulated result to better match
real execution. A forward model trained on real data, which
gives for a state action pair the next state, is followed by an
inverse model trained on simulated data, which gives for a
(state, next state) pair the action required. They successfully
demonstrate their framework with an RL agent trained for
bipedal movement in the RoboCup league. Their Grounded
Action Transformation (GAT) approach is based on the
assumption that it is possible to alter the action to achieve
the same state transition as desired by the policy in reality.

The same research group recently improved the GAT
algorithm with Karnan et al. [7] Reinforced Grounded Ac-
tion Transformation (RGAT), Desai et al. [8] Stochastic
Grounded Action Transformation (SGAT) and Desai et al. [9]
Generative Adversarial Reinforced Action Transformation
(GARAT). Compared to GAT, RGAT trains by alternating
between learning an action transfer policy while holding
a target policy fixed and learning said task-specific target
policy while keeping the action transfer policy fixed. SGAT
introduces stochastic behavior for action transfer. GARAT is
an adversarial approach where RGAT acts as the generator



and a discriminator learns the difference between RGAT
output and real data.

These techniques work well given an initial guess for the
target policy which solves the task, but the action transfer
policy is only valid in the vicinity of the target policy’s state
and action space. In contrast, our approach is target policy
agnostic and generalizes over the whole state and action
space. Interestingly, our base robot simulator is already
precise in position and velocity sensor readings. What is
needed is an improvement of the insufficient performance in
torque simulation without worsening position and velocity
at the same time. In our case, changing the action means
changing the torque applied to a joint of the Panda robot, but
this would also change the position as well as the velocity.

The analysis of related work leaves us with only one
possible angle of attack: the simulator’s state output through
DA for the following reasons:

• SI is limited by the model and its parameters which can
not cover all present physical phenomena.

• DR results in sub-optimal policy making it unsuitable
for high precision tasks.

• AT is unable to change position, velocity and accelera-
tion independently.

III. BACKGROUND AND NOTATION

In this section, we describe the technical background for
our approach and introduce some notation as referred to in
the later parts of the paper.

A. The Robot System

The Franka Emika Panda robot has seven revolute joints
with torque sensors, giving seven degrees of freedom (DOF).
The torque sensors are on the side of the links, allowing
direct measurement of the torque. Other robots approximate
the torque by measuring voltage and current applied to
the joint motors and have the issue of backlash in the
gearbox between motor and link [11]. The robot can be
controlled through the Franka Control Interface (FCI) by
either sending position, velocity, or torque commands. For
position and velocity commands an internal Joint Impedance
or a Cartesian Impedance controller are available.

The dynamic model of a robot can be described by the
Euler-Lagrange equation [12]

M(p)a + S(p,v)v + g(p) = τ . (1)

with position p, velocity v, acceleration a and torque τ vec-
tors of the size of the robot’s DOFs, the inertia matrix M(p),
the gravity vector g(p) and the Coriolis and centrifugal
forces captured by S(p,v)v. A physics simulator can solve
the dynamic problem given the dynamic parameters for each
link of the robot, consisting of link mass, center of mass,
symmetric inertia matrix entries and friction. Retrieval of
feasible dynamic parameters is a SI problem [1, for example],
which we will not describe in detail here.

B. Long Short-Term Memory (LSTM) networks

To ground the description of our design for the Realeasy
architecture, we will give a rather detailed explanation of
recurrent neural networks and especially LSTMs [13]. A
typical application of LSTM architectures is Natural Lan-
guage Processing where they are either used for classification
of text or to translate text sequences of one language into
another. Hence, we want to clarify that this association with
sequence to sequence learning as it is presented by Sutskever
et al. [14] is not connected to our paper. A related field which
uses LSTMs for regression is time series forecasting, i.e., the
task of, given a history of temporal events X<T , predicting
the next N future events X[T,T+N ].

In sequence to sequence regression learning, instead of
predicting future values, an entire temporal sequence is
mapped through regression to another temporal sequence.
Based on a sequence X with elements Xt, t ∈ {0, . . . , T}
an entire sequence Y over the same time steps is inferred.

For our approach as later described in detail, we assume
the following: An LSTM cell at time t takes as input xt, the
output ht−1 and cell state ct−1 of an LSTM cell at t− 1. The
previous output ht−1 forms the short-term memory, whereas
the previous cell state ct−1 forms the long-term memory
which was passed and edited by all previous LSTM cells.
The notation of an LSTM unit contains the input weights
Wf , Wi, Wo, recurrent weights Uf , Ui, Uo, biases bf , bi, bo
and activation σf , σi, σo of the forget gate (2) [15], update
gate (3), and output gate (4) respectively. A candidate cell
state c̃t is calculated for the current inputs with the weights
Wc, recurrent weights Uc, biases bc and activation σc (5).
To form the new cell state ct (6), the forget gate vector ft
decides which entries of the previous cell state ct−1 to keep
and remove. The update gate vector it decides on which
entries of the candidate state c̃t to add to ct. The output gate
vector ot selects the entries of the activation σh (ct) to form
the output ht (7). The forward pass of the LSTM is described
as

ft = σf (Wfxt + Ufht−1 + bf ) (2)
it = σi (Wixt + Uiht−1 + bi) (3)
ot = σo (Woxt + Uoht−1 + bo) (4)
c̃t = σc (Wcxt + Ucht−1 + bc) (5)
ct = ft ◦ ct−1 + it ◦ c̃t (6)
ht = ot ◦ σh (ct) . (7)

For a multi-layered LSTM architecture with L ∈ N layers
the defined variables are indexed with the layer number l
in the exponent. The first LSTM layer is denoted LSTM0.
One LSTM0 cell has as input x0t the element Xt of the time
series X . For layers l > 0 the input is the output hl−1

t of
the LSTM cell in the layer below. The input weights W ,
recurrent weights U and biases b are shared between each
LSTM cell of the same layer. The forward pass of one single
LSTM cell of layer l is expressed as

hlt = LSTMl(hl−1
t , hlt−1) for l > 0 . (8)



The output of a full neural network architecture (NN) given
a sequence X is simply denoted as NN(X).

The specifics of our proposed LSTM architecture are
explained in the following section, in particular in subsection
IV-C.

IV. APPROACH AND METHOD

Dynamic parameters identified through SI [1], give rise to
the possibility to select a robust and stable robot controller
to reach positions in the robot’s work space. We can use
the dynamic parameters as well in a robot physics simulator
like Gazebo [6], [16], which returns satisfying position and
velocity sensor readings as well as a tolerable estimate
for torque in the robot’s whole configuration space. Direct
application of Machine Learning techniques to the robot’s
high-dimensional continuous state and action space would
be a fruitless endeavor. We use thus DA to only learn the
residual [3], [17] of the temporal position, velocity and
torque sequence to correct the simulation output with a
recurrent neural network architecture [4].

A. Custom Loss

As a measure of difference between simulated trajectory
X and real trajectory Y we can apply the mean squared error
(MSE) formula on the residual to describe a loss function.
However, instead of minimizing the residual, our aim is to
learn the residual as such to later add it to the simulated
trajectory. Hence, we need a custom loss function, which we
base on MSE and call mean squared residual error (MSrE)

MSrE(X) = MSE(X + NN(X)) (9)

=
1

T

T∑
i=1

(Yt − (Xt + NN(Xt)))
2
. (10)

Since we compare the elementwise difference of the two
time series, other losses that deal well with outliers (mean
absolute error or Huber loss) would be the wrong choice for
our type of data.

B. Data set and Preprocessing

To apply our approach, we create a data set of simulated
and real trajectory pairs with position, velocity and effort
data for each of the robot joints. The trajectories are planned,
executed and tested for feasibility on the real robot. If the
trajectory plan is successful, it is also executed in simulation
to create the pair. For training, the data set contains only
joint movements to avoid trajectories with way points in
this training data set. Since moves containing way points
consist of short piece-wise joint moves, we can conclude
that this brings no negative effect. Furthermore, to improve
the learning rate, the data set contains a significant amount
of single joint movements to increase observations of causal
effects. If only one joint is moving, we observe no changes
in position and velocity in all other joints, but a change in
torque, which we are interested in. The remaining data set
contains all possible combinations of joints moving together
at the same time. All movements are at different speeds and
fill the whole robot work space.

For testing, a test set sample from the original data set is
drawn. To measure generalizing behavior, a second test set
consisting of Cartesian linear moves containing way points
is collected.

Preprocessing of the data set starts with alignment of the
time series pairs by start point detection. This is possible
when the recording contains the robot resting before and after
trajectory plan execution by observing movements outside
the confidence interval. Compared to time-series alignment
with cross-correlation the first method is more precise and
adds value. The robot accelerating and decelerating captures
inertia and elastic behavior. Afterwards, the trajectories are
cut and normalized by using the specifications of the robot
joint limits, which makes the data set and model easy to
improve with new data later on. Normalization of the data set
to the interval [0, 1] brings numerical stability to the chosen
neural network architecture later on.

C. Neural Network Architecture Design Process

Starting simple, applying a fully connected dense neural
network to a single element of the time series X can capture
static differences in configuration, but without capability to
have temporal information about previous movements it can
not capture the dynamic effects we are facing.

RNNs function well for short-term time series, but lack
in performance when considering causes of effects which
show a long delay. Since typical robot recordings are at
100-1000Hz, this architecture can not be applied. LSTMs
as introduced in III-B have the capacity to solve the task
and our problem. For the activation of the forget, input and
output gates σf , σi and σo, a standard sigmoidal function
is chosen to keep the properties of forgetting and storing
information by simple multiplication with a value in [0, 1].

To be robust against outliers in the input data X , Dropout
can be used to skip a percentage of the input. This also
reduces the need for learning an informative and robust
cell state. If xt is skipped, it has an immediate effect on
equations (2)-(5). This requires the previous cell state ct−1

to be informative enough to be used again for the current
LSTM cell, promoting long-term memory. For the activation
σc of (5) and σc of (7) the standard tanh function and
the linear function were used, since they give a symmetric
output in the positive and negative range. The maximally
achievable absolute residual error is the distance between the
joint limits. Given that we normalized the data set, this means
that all possible values for the residual lie in [−1,+1]. With
Dropout, the linear version becomes numerically unstable,
whereas the stability is kept by the tanh function which
only covers the feasible interval of the residual. This function
behaves in the vicinity of its root linearly which is also a
requirement to capture the linear-proportional character of
the problem.

Considering a single LSTM layer LSTM0, the first LSTM
cell LSTM0(x0, h

0
−1) has an empty cell state c0 at the

beginning of a time series and will be filled with each
new observation xt. This results in inaccurate predictions
at the beginning that improve along the time series until an



informative cell state is reached after which the performance
plateaus. An additional layer on the same level, which runs
from t = T to t = 0, shows the opposite behavior of being
inaccurate at t = T and improving towards t = 0. Simple
addition of the outputs does not resolve the issue, so we
concatenate the outputs to pairs [h0f , h

0
b ] and add another

bidirectional LSTM layer on top which takes the pairs as
input, denoted LSTM1([h0f , h

0
b ], h1). If the forward LSTM

layer LSTM1 has an empty state, this layer disregards the
first element of the pair h0 since it is the output of the
forward LSTM in LSTM0. By summing the output of the
second bidirectional Layer, we remove the start point issue
and capture the temporal effects of the dynamic movement
along the trajectory. When the robot is resting, we observe
that this architecture predicts a constant offset from the real
trajectory because the dynamic component is missing. To
capture static differences between the trajectories, a final
DENSE layer connecting the entries of output hlt is added.

To make it real-time capable and simplify the architecture,
i.e., Realeasy, the bidirectional character is removed. If
the problem allows a short period of initialization with no
prediction, the cell state can be updated quickly to become
informative within a few time steps. The LSTM architecture
is only passing information forward in time. Thus, when a
new state XT+1 is observed, the hidden states c0T , c

1
T , h

0
T

and h1T of the previous LSTM cells LSTM0 and LSTM1

can directly be used to calculate the new prediction in real-
time. Our experiments show that this computation consisting
of two consecutive (8) calculations takes less than 0.39ms,
since the matrix-vector multiplications in (2)-(5) are 21-
dimensional.

D. Training

When the data set contains trajectories in which the
robot is always resting at the beginning and end of the
trajectories, the LSTM would learn after how many steps
to rest. To remove this effect completely, the windowing
technique is applied. Windowing takes a random sub interval
of a trajectory and uses it for training. We use a mix of
learning in random batches of trajectory intervals, where
the shortest trajectory of a batch is determined. A fraction
of the shortest length is used as the sub trajectory length.
For other, longer trajectories in the batch a sub trajectory is
drawn. This method results in a mix of longer and shorter
trajectories. Since we built our LSTM architecture bottom up,
focused on capturing the bare minimum of behavior, we did
not give it the capacity to overfit on the training data. Batch
normalization has no effect on the learning. Experiments with
regularizers show that the L1 regularizer can not be used in
any configuration.

E. Inference

Control based on the bidirectional version of Realeasy for
precise calculation of the residual is shown in Algorithm 1.
The bidirectional layers are applied to a generated time series
from the simulator and results in an overall precise perfor-
mance especially at both ends of the time series compared

Algorithm 1 Precise Realeasy LSTM Integration

1: procedure CONTROL ON PRECISE INFERENCE
2: while execution = true do
3: h0

t,f = LSTM0(xt,h
0
t−1, c

0
t−1)

4: h0
t,b = LSTM0(xt,h

0
t−1, c

0
t−1)

5: h1
t,f = LSTM1([h0

t,f ,h
0
t,b],h

1
t−1, c

1
t−1)

6: h1
t,b = LSTM1([h0

t,f ,h
0
t,b],h

1
t−1, c

1
t−1)

7: h1
t = h1

t,f + h1
t,b

8: x̃t = DENSE(h1
t ) . generate synth. state

9: u = CONTROLLER(x̃t) . use synth. state
10: xt+1 = EXECUTE_ON_ROBOT(u)
11: end while
12: end procedure

Algorithm 2 Load and Initialize Realeasy LSTM

1: function INITIALIZE_HIDDEN_STATES( )
2: Load Realeasy LSTM model
3: Load Realeasy Parameters W , U , b
4: Initialize hl−1 and cl−1

5: for t ≤ TWarmup do
6: h0

t = LSTM0(xt,h
0
t−1, c

0
t−1)

7: h1
t = LSTM1(h0

t ,h
1
t−1, c

1
t−1)

8: u = CONTROLLER(xt)
9: xt+1 = EXECUTE_ON_ROBOT(u)

10: end for
11: return hl

TWarmup
clTWarmup

12: end function

to a plain feed forward approach. This architecture can be
useful for short time sequences, since the calculation effort
which comes with the backwards LSTM is data intensive.
The upper layers have to wait for the lower ones. The output
for each new time step is a time series of residuals of the
past states. The controller or agent can make decisions based
on the whole time series of residuals.

For real-time calculation we remove the Bidirectional part
of the LSTM architecture and remain with two forward pass
LSTM layers LSTM0 and LSTM1. Algorithm 2 describes
the initialization of the Realeasy model, where the controller
decides directly on the simulator state xt for a period of
time TWarmup, because of the empty cell state c0 resulting
in bad performance as discussed in Sec. IV-C. Algorithm 3
describes the integration into real-time control. After initial-
ization of the hidden states, the forward LSTM is capable
of giving satisfactory results. At each new time step the cell
can reuse the hidden states of the previous step. The output
at each new time step is one residual for the current time
step.

V. EXPERIMENTAL SETUP AND RESULTS

We evaluate our approach extensively and quantitatively to
show its value in improving the simulation of robot trajectory
executions in free space. Regarding the direct applicability



Algorithm 3 Real-time Realeasy LSTM Integration

1: procedure REAL-TIME CONTROL ON INFER-
ENCE

2: hl
0, c

l
0 =INITIALIZE_HIDDEN_STATES( )

3: while execution = true do
4: h0

t = LSTM0(xt,h
0
t−1, c

0
t−1) . Sec.IV-C

5: h1
t = LSTM1(h0

t ,h
1
t−1, c

1
t−1)

6: x̃t = DENSE(h1
t ) . generate synth. state

7: u = CONTROLLER(x̃t) . use synth. state
8: xt+1 = EXECUTE_ON_ROBOT(u)
9: end while

10: end procedure

of our approach in a concrete learning scenario, we have
restricted ourselves to theoretic considerations and compar-
isons with related methods, as we had periodically limited
access to our laboratory during the covid-19 pandemic. These
are presented in section VI. Here, we present the evaluation
scenario, for which we made the design decision to develop
the approach in a docker container [18], so that the solution
is easy to share and our results are reproducible for others. To
control the robot, all communications need to be in real-time,
including those between the FCI, the connected computer,
the docker container as well as the ROS nodes.

Our ROS framework for these experiments is configured
so that the real robot and the simulated robot in Gazebo
are controlled with joint trajectory controllers. For the real
environment, the joint trajectory controller sends position
commands to the FCI which uses the internal joint impedance
controller to create joint torque commands to move the robot
arm. We chose to use the FCI internal joint impedance
controller to ensure the real robot trajectories to be reliably
reproducible. For the simulated environment, the joint trajec-
tory controller directly transforms the commands into torque
commands. Internally a PID controller is used to approximate
the robot behavior. Our approach will learn to correct for this
difference on the lowest controller level, which is for both
environments to operate at 1kHz. The sensor readings are
recorded and processed on a higher level at 100Hz.

MoveIt Motion Planning [19] is used to generate trajectory
plans and execute them with different velocity scaling. The
collected data set contains random 850 multi-joint and 870
single joint movements which fill the robot’s work space.
Of this data set, 80% were used for training, 15% for
validation, and 5% for testing. Additionally, another test
set was collected, containing 50 different Cartesian linear
movements in xz, xy, and yz direction.

We compared a manually fine-tuned set of parameters
for Gazebo and controller Φ0 with the parameters given
by Gaz et al. [1] without damping (Φ1) and with damping
(Φ2) to determine which dynamic parameters would bring
the simulation closest to reality. A comparison of the MSE
given the simulator parameters is presented in Table I. For
the following experiments we use the manually fine-tuned

TABLE I
MEAN SQUARED ERROR OVER ALL ROBOT STATE VARIABLES

FOR GAZEBO SIMULATOR OVER DYNAMIC PARAMETERS

Simulator Parameters Φ0 Φ1 Φ2

MSE 1.50e-3 1.549e-2 1.62e-2

set of dynamic parameters Φ0 for the Gazebo simulator.

Results

We show in Fig. 2 the torque sensor readings of an
exemplary trajectory (in data set, No. 18) of the real robot
(green), the simulated sensor readings (blue) and the im-
provement by our Precise Realeasy LSTM architecture (red).
It is shown how the Realeasy model removes fluctuations
from simulation while also adjusting to the behaviour of the
real robot. Joint 1, 2 and 3 are moving, while the other
joints remain still in position and velocity. The effects of
one joint on the other joints are modeled precisely by our
LSTM architecture. It also demonstrates how the model
manages to capture characteristics particular to each joint, for
example following the ground truth while being consistent
for different magnitudes of torque.

The improvements of torque prediction are not unique to
the presented example trajectory in Fig. 2, but improvement
is seen across both test sets, as shown in Table II. The
MSE of the synthetic-realistic torque readings for multi-
joint moves is reduced by at least one order of magnitude.
With the cartesian linear test set we show that our model
can generalize to linear trajectories as well. A subset of the
cartesian linear test set was evaluated on another Franka
Emika Panda robot at Örebro University resulting in a
reduction in MSE in torque of 53%.

For position and velocity data, where the simulation is
already accurate, our model did not improve the accuracy.
However, we argue that this is not a shortcoming of the
model. Since residuals in position, velocity, and torque were
all weighted equally in the loss function, the model practi-
cally only optimized for torque since this torque residual was
several orders of magnitude higher. A user of our approach
can choose to weigh position, velocity and torque differently.

VI. DISCUSSION

Let us summarize and connect the related work section II,
approach and method IV and our experiments V.

SI is general and task independent but can result in
unrealistic simulation parameters as seen in [1]. Our dataset
as presented in Section IV-B is similar to the one used
in their work in respect to that it can be collected be-
fore learning a control policy. Yet we allow any random
moves, whereas typical SI approaches, including [1], rely
on trajectories based on periodic motions as an assembly of
different frequencies.The inflexibility of SI with the restric-
tive underlying kinematic model make it unable to capture
the additional observed physical phenomena. If realistic but



TABLE II
MEAN SQUARED ERROR OF TORQUE SENSOR READINGS FOR EACH JOINT. SYNTHETIC-REALISTIC SENSOR DATA CREATED FROM OUR

PRECISE Realeasy LSTM ARCHITECTURE.

Test Set Joint 0 1 2 3 4 5 6
Multi- Simulation (Nm)2 3.64e+01 2.52e+01 2.42e+01 1.96e+01 1.23e+01 7.17e+00 7.15e+00
Joint Realeasy (Nm)2 1.52e+00 2.84e+00 1.51e+00 1.56e+00 7.38e-02 1.02e-01 6.93e-02

Cartesian Simulation (Nm)2 1.23e+01 6.67e+00 7.52e+00 5.34e+00 2.13e+00 2.60e+00 1.65e+00
Linear Realeasy (Nm)2 9.02e-01 1.21e+00 9.21e-01 7.68e-01 5.89e-02 5.19e-02 1.18e-01
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Fig. 2. The joint torques for the 7-degrees of freedom Franka Emika
Panda robot in Nm. Ground truth shows real robot joint torque (green). The
baseline simulation with gazebo shows vibrant behavior (blue), but follows
the trend of the ground truth. The Precise Realeasy residual correction of
the simulated sensor readings follows the ground truth closely.

guessed parameters are not good enough to fit the simulator
model to reality, SI is necessary to find initial simulator
parameters as the capabilities of our approach are restricted
through its architecture (see Section IV-C). Our approach can
be used on top of SI to diminish the inaccuracies that the
basic model is unable to capture. This shows that SI and our
approach can be seen as complementary.

The AT approaches [6], [7], [8], [9] are task specific,
whereas ours is task independent as the augmentation is
independent of the target policy. Furthermore, our approach
does not only focus on desired simulator output but keeps po-
sition and velocity of the robot in the simulated environment
intact, which is impossible for AT. We argue that by changing
the action while leaving the simulator model as is, we can
not create the observed realistic states. Changing parts of
the state the simulator delivers as output are imperative,
e.g. leaving position and velocity as is while modifying

the torque. If one would just change the action, one of the
variables will inevitably be unrealistic due to the unchanged
underlying kinematic model.

Since the AT approaches are task specific and augment
the simulation in the vicinity of the target policy, these
approaches need less real training data than ours if an initial
good guess for a target policy is present. If no such initial
target policy working in reality exists, the AT approaches
will fail. Our approach will capture the most important
physical phenomena not covered by the kinematic model
just from random movements generalizing in the whole state
and action space. In contrast, AT captures the discrepancies
between simulation and reality that are present when execut-
ing a target policy, leaving out general physical phenomena.
This shows that one of our trained models can be shared
between researchers to improve the simulator from the start,
requiring no real training data at all. We suggest finding a
target policy in the augmented simulator which is more likely
to work well in reality and apply AT approaches to fine tune
the target policy.

Inspired by [3], [4] and [5] we can confirm that in our
case a hybrid model of physics simulator and residual neural
network is a good choice to give valid results in the whole
robot work space. Our custom loss (see Section IV-A) causes
our approach to learn the residual that needs to be added to
the simulator output. This restricts the range we generate as
augmentation and assures that given a state input we will stay
close to it’s vicinity. Our approach differs from the previously
mentioned work by a) applying DA to higher dimensional
spaces and b) task independence. Compared to the closest
approach to ours, NAS [5], we solely rely on state transitions
without actions which makes our approach generalize well
and we do not need to reset the simulator state after each
iteration. We use the basic capabilities of an LSTM to capture
physical phenomena and by systematically constructing an
underfitting architecture as described in Section IV-C, we
use it as a smart filter e.g. to diminish swinging and offsets
as seen in Fig.2. A limitation of our approach is visible in
the plots for joint 0 and 4 where the underfitting character
dampens the swinging too much and takes some time to
correct the offset of joint 6.

The approaches [5], [6], [7], [8], [9] cover a slightly
different problem for transferring a policy from simulation to
reality. Their augmentation is only valid for a given working
initial target policy, or operate on a restricted state and
action space, e.g., their state space has only position and



velocity but no torque and their actions are limited to position
control. This allows AT and NAS to change actions as they
disregard the effect on torque (AT) or allow discontinuity
through resets of the simulator (NAS). For this reason a direct
comparison of their approaches with ours in one benchmark
is not possible or would lead to an unfair comparison.

Our experiments show a comparison between our approach
and SI [1] as we want to showcase the improvements of the
simulator quality in general that is valid over all states and
policies applied.

VII. CONCLUSION

We considered the problem of subpar simulation, and
propose and demonstrate an easy-to-use LSTM architecture
for improving simulated data. The approach and method
are formulated generally and are easy to adapt by other
researchers to related problems.

We did not explore all possible neural network architec-
tures to find an optimal architecture, but show that with
considerations regarding the limitations of the robot, its
sensors and physics, we could find a feasible solution. Our
efforts result in an at first glance relatively small and un-
complicated neural network. After thorough examination we
conclude that bigger would not have been better. The smaller
network size naturally ensures a generalizing behavior of the
network, while our results demonstrate that residual torque
is consistently reduced in simulation. A well-generalizing
solution is robust to changes of robot individuals and changes
in types of motions. We leave our network and software open
for other researchers to further investigate the specification
of the loss function, the network itself, regularizers and
their data set proportions. This work inspires to consider
the simplistic approaches that can still be highly effective
and efficient as demonstrated with our real-time capable
implementation.

Potential extensions to this work are various because of
its general character. With the mentioned related work in
mind, investigation of Simulation to Reality policy transfer
of control policies trained in RL can be a valuable ex-
tension that could make the connection with comparative
benchmarks stronger. Yet we want to highlight that our
approach is applied before policy training and merely makes
the simulation more realistic through DA. Our approach is
limited by the capability of the policy training algorithm to
be able to deal with realistic data. We argue that removing
unrealistic behavior such as swinging and offsets while
improving simulated friction can only improve the transfer
of a control policy trained in simulation. We also found
indications that it is possible to use our trained model to
identify situations when the robot physics simulator is far off
from reality. This knowledge enables us to get a confidence
measure for the simulation of robot manipulators. This can
be used as guidance for learning approaches. We consider
further investigations in this direction as future work.
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