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Abstract—The notion of Cloud RAN is taking a prominent
role in narrative for the next generation wireless infrastructure.
It is also seen as a mean to industrial communication systems.
In order to provide reliable wireless connectivity for industrial
deployments, by conventional means, the cloud infrastructure
needs to be reliable and incur little latency, which however, is
contradictory to the stochastic nature of cloud infrastructures. In
this paper, we investigate the impact of stochastic delay on a radio
resource allocation process deployed in Cloud RAN. We proceed
to propose a strategy for realizing timely cloud responses and
then adapt that strategy to a radio resource allocation problem.
Further, we evaluate the strategies in an industrial IoT scenario
using a simulated environment. Experimentation shows that, with
our proposed strategy, a significant performance improvement
on timely responses can be achieved even with noisy cloud
environment. Improvements in resource utilization can be also
attained for a resource allocation process deployed over Cloud
RAN with this strategy.

Index Terms—Cloud RAN, Latency-constraint network, Re-
source allocation, Industry 4.0

I. INTRODUCTION

The Fifth Generation Wireless Specifications (5G) is shap-

ing the narrative for the Industry 4.0 era. With high reliability,

high throughput and low latency, 5G is enabling many new

applications in that domain. Further, Cloud RAN is an in-

triguing candidate Radio Access Network (RAN) architecture

for 5G and beyond, as it promotes softwarization and resource

centralization in RANs.

The basic concept of Cloud RAN is to detach the Base-

Band processing Units (BBUs) from multiple legacy Radio

Base Stationss (RBSs), and centralize them into a BBU pool

built on cloud-native techniques. The remaining Remote Radio

Heads (RRHs) are only equipped with basic radio-frequency

functionalities, while the BBU pool allows for cooperative

base-band signal processing for multiple RRH sites. In addi-

tion, more elaborate decisions and system-wide optimizations

can be made when more of the system is orchestrated from

the same point, such as the case in Cloud RAN.

In a typical cloud service, a set of dynamic worker nodes

are deployed to support its workloads. Then a load-balancer,
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(ELLIIT), and the Nordic University Hub on Industrial IoT (HI2OT) funded
by NordForsk.

distributes incoming requests to those workers. The worker

nodes share virtualised resources and are subject to a resource

management strategy. Consequently, clouds and the extension

Cloud RANs, are stochastic and dynamic systems in their own

right. This so called cloud delay incurred by clouds includes

not only the network delays, but also the admission time and

execution time. From a Cloud RAN perspective, the stochastic

nature of clouds incurs detrimental delays in between signal

processing functions, which essentially introduce interruptions

to the signal processing function chain [1].

In many future wireless systems aimed at 5G and beyond,

for example, Massive Multiple Input Multiple Output (MIMO)

[2], the radio resource allocation is performed at the RRH.

There is a scheduler deciding how to allocate the available

radio resources to the User Equipments (UEs) according to

a policy. Often, the objective of the allocation policy is to

mitigate resource starvation, collision and congestion. When

deploying an allocation process over Cloud RAN, the deci-

sions are performed in the BBU pool and then actuated by the

RRH.

However, the stochastic properties of the Cloud RAN envi-

ronment will cause uncertainties in such an allocation process.

As the message exchanged between the BBU pool and RRH

will be delayed and may arrive out-of-order. In radio resource

allocation, this delay may cause false allocation to the UEs. We

presented in [1] the trade-offs between resource utilization and

transmission reliability over the communication system when

deploying a naive massive MIMO radio resource scheduler

over Cloud RAN. Therefore, there is a need of purpose-built

schedulers that can cope with the disturbances caused by the

Cloud RAN environment.

Some work addressed the resource allocation problem for

low-latency communication services in Cloud RAN under

different scenarios. In [3], the authors focused on an energy

consumption minimization problem for computation tasks for

a mobile edge cloud enabled Cloud RAN system. Also, in

[4], an energy efficient joint resource scheduling scheme was

proposed for a Cloud RAN system. There are some works

like [5] [6], which utilized distributed allocation algorithms

to minimize the response time or the computation latency in

Cloud RAN systems.

Apart from the studies on resource allocation, the charac-

teristics of the fronthaul link delay and the jitter of the delay

in Cloud RAN systems were investigated in [7] [8]. Some

works proposed solutions that compensate the communication



Fig. 1. Target system architecture.

delays or reduce the impact of delays for different networked

systems, for example [9] and [10].

To the best of our knowledge, very few studies have

addressed the stochastic nature of a Cloud RAN system in

a radio resource allocation problem. In our work, we embrace

the fact that delays over Cloud RAN systems are unavoidable

and has stochastic characteristics. In this paper, we propose

a radio resource allocation strategy for Cloud RANs. The

proposed solution is then evaluated as massive MIMO pilot

scheduler in an Industry 4.0 scenario with simulations. Our

contributions in this paper can be summarized as follows:

• We propose a purpose-built radio resource allocation

strategy for Cloud RAN that will mitigate the impact of

the stochastic cloud delay.

• We develop a simulation model for the system and eval-

uates the proposed solution in an Industry 4.0 scenario.

• We show that our strategy significantly improves the radio

resource utilization of the system without compromising

the communication reliability.

II. TARGETED SYSTEM

In this paper, we target a Cloud RAN architecture that

provides wireless communications in an industrial Internet of

Things (IoT) scenario. A schematic overview is given in fig. 1.

A. Industry 4.0 scenario

In this paper we address an indoor factory automation

scenario, where industrial UEs communicate over the network

provided by Cloud RAN. In the envisioned industrial IoT

scenario [11], the number of UEs can be extensive, with a

density of 10, 000 devices per km2.

We define two main types of UEs, Critical Units (CUs)

and non-Critical Units (non-CUs). First, CUs are sensors,

controllers, and actuators. The CUs generate control sig-

nals, usually periodically, and typically have strict Quality of

Service (QoS) requirements. For example, latency less than

10ms and availability within the range of 95%-99.999%. For

simplicity, we call all the signals exchanged among the UEs

as transmissions via the network. Each transmission from a

CU has a hard deadline, the transmission attempt failed If the

CU is not assigned radio resource within its deadline. The

number of CUs that have transmissions simultaneously must

be limited and never overload the communication system, in

order to guarantee transmission reliability.

Second, non-CUs represent collectively other types of de-

vices and can be a much larger amount. Characteristically,

they have less stringent requirements and usually sporadic

transmissions. The traffic generated by non-CUs is considered

as background traffic in the system.

B. Cloud RAN system

A Cloud RAN system consists of a set of RRHs connected

with a BBU pool over a front-haul link. The BBU pool is de-

ployed in a cloud-native execution environment. Consequently,

the functions offered by the BBU pool are subject to stochastic

delays. Also, due to opaque cloud management policies, any

messages sent between the RRHs and the BBU pool may come

out-of-order.

Since we mainly focus on a radio resource allocation

process running over Cloud RAN, which is a MAC layer

function of RBS, we assume that the Physical Layer (PHY)

functionalities are operated on the RRH and no raw base-

band data blocks are transmitted over the front-haul link to the

BBU pool. For a manufacturing process, the communication

distance is generally within 200m [12], thus we assume that

all the UEs can be covered by the radio range of one RRH

in our target scenario. The radio resource allocation process is

adopted for a single-cell system. However, this is not a limiting

factor on our work.

C. Radio resource allocation

In this paper, we adopt a massive MIMO up-link pilot

scheduling as the use case of our resource allocation process

deployed across a Cloud RAN. An up-link pilot is the pre-

requisite for a UE to be permitted to transmit during a

coherence interval of massive MIMO. The coherence interval

is determined by for how long the wireless channel state is

considered to be coherent. Pilot scheduling is performed for

each coherence interval. If a UE is allocated a pilot, we call

its transmissions can be served within the next coherence

interval, and it can use the rest radio capacity in this coherence

interval for its data transmission. Irrespective of how many

transmission a UE have to make, it needs one pilot to be

allowed to transmit during an interval.

The scheduler is located in the BBU pool of a Cloud RAN

system and determines when and how to allocate the pilots,

based on an explicit objective. The RRH allocates the up-

link pilots to allow for the UEs transmissions in the network.

From this point on, the resource allocation problem is simply

referred to as pilot scheduling. The scheduling process over

Cloud RAN can be divided into the the following processes:

• The allocation process on RRH that allocates the pilots

to the UEs with pending transmissions.

• The updating process that sends the updates about the

pending transmissions to the BBU pool by the RRH.

• The scheduling decision process that makes the schedul-

ing decisions in the BBU pool and sends the decisions to

the RRH.
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III. SYSTEM MODEL

In this section, we detail a model of the targeted system as

presented in section II. The basic components of the system

are; a set of UEs, a Cloud RAN infrastructure inclusive of a

RRH and a BBU pool. Update messages are sent from the

RRH to the BBU in the Cloud RAN, to which the BBU

responds with a scheduling decision. Both update and decision

messages are delayed due the the stochastic cloud system. An

overview of the system and the relationship between those

components is shown in fig. 2. In this paper, we consider the

CUs in the pilot scheduling problem, since these are the UEs

with prioritized traffic. Other UEs, that is the non-CUs, will

get the remaining pilots after all CUs have been served in a

coherence interval.

A. Cloud Delay

Radio resource allocation over Cloud RAN includes in-

formation dissemination between the RRH and the BBU, as

described in section II. Here we denote “update” message

as the information sent by the updating process at RRH to

the scheduling decision process resides in the BBU pool.

Likewise, a “decision” message originates from the BBU pool

to the allocation process at RRH.

The cloud, its opaque management systems, shared infras-

tructure, and intermediate network incur a stochastic delay.

This delay is represented as two independent stochastic vari-

ables, dupdate and ddecision, representing the time for making and

delivering update and decision messages. The two delays are

inclusive of all execution times, admission and queuing delays

in the cloud, as well as delays along the path of a message. In

the following, we refer both delays to cloud delays incurred

by the system.

B. Industrial Applications

We denote the number of active CUs covered by the radio

range of the RRH, U . CUu is the uth active CU, where

u ∈ {1, 2, ..., U}. Each CUu triggers transmissions according

to a stochastic processes to the RRH. The inter-arrival time

between subsequent transmissions from CUu is denoted cu.

A CU can only have successful transmission in a coherence

interval if it is assigned a pilot. Each transmission triggered

by CUu has a deadline Du. A transmission is discarded and

fails if it is not served by a pilot before its deadline.

C. Massive MIMO Pilot Scheduling

For each coherence interval, the Massive MIMO up-link

pilot scheduling process allocates pilots to the resident CUs.

For general applicability, a coherence interval is now referred

to as a slot, and the length of a slot if denoted as Tc. Also,

we assume that the BBU pool and the RRH are synchronized

in time, which means that a slot k represents the same time

interval at both the BBU pool and the RRH.

At the beginning of a slot k, the RRH updates the BBU

about its current state, that is the number of pending trans-

missions from each CUu, denoted Qu(k). In the following,

we will call Qu(k) for the state of CUu. The state of all CUs

at slot k is then denoted as Q(k) = {Q1(k), Q2(k)..., QU (k)}.

The BBU pool performs the scheduling decision process

and then responds the RRH with the decision message, which

is actuated by the RRH. We denote a scheduling decision to be

applied at slot k by P(k) = {P1(k), P2(k), ...Pu(k)}, where

Pu(k) =

{

1 allocate pilot to CUuat slot k

0 not allocate pilot to CUuat slot k
(1)

At every slot k, the RRH allocates pilots to the active CUs

according to the decision P(k). We define that, in total, p
pilots are available per slot. Consequently, at most p CUs can

be assigned pilots per slot. If Pu(k) = 1, N transmissions

from CUu can be served at slot k. Thus, k is the actuation

slot of P(k).

IV. PROBLEM DEFINITION

In this section, we detail the challenges incurred by the

stochastic properties of a Cloud RAN system on the scheduling

process. We begin with describing the main obstacles when a

naive pilot scheduling scheme is deployed to a Cloud RAN, in

which the inherent delays is not accounted for in the scheduler.

This evaluation of this deployment was performed in [1]. Here,

the scheduler is triggered every time an update message is

delivered to the BBU pool. Upon completion, a scheduling

decision is sent to the RRH. A round trip of an update and

decision messages delivery needs be finished within one slot,

as the state of the RRH may change at the next slot, and new

update will be sent to request for new decisions.

However, without taking into account the stochastic delays

of update messages and scheduling decisions, a decision P(k),
which is a response to an update message Q(k), may fail to

be actuated at slot k timely. This would lead to false allocation

in pilot scheduling, as the state may change at the RRH, and

further yields unwanted performances as we discovered in [1].

We herein mainly consider two performance metrics: timely

applied decisions, and pilot utilization, to examine whether

a scheduling process performs properly across Cloud RAN

system. The prerequisite of taking into account the utilization

performance is when the reliability requirements from the CUs

are meet. We have investigated the reliability performance of

the system in [1] and showed that, the availability range of

this system can achieve over 95%, which meet the industrial

requirements depicted in section II-A. Thus, we note that,



in this paper, the reliability performance is not presented. If

it is not indicated explicitly, all the performance evaluations

are within availability range of over 95%. Below we define

timely decision and utilization performances, as well as a set

of challenges based on the two properties.

A. Timely Applied Decisions (R)

The cloud delay may cause a stale decision to actuate

allocation. In this case, the decision is considered not timely

applied. Conversely, at slot k, the decision P(k) is applied,

we call this timely applied decision at k.

The ratio between timely applied decisions and all decisions

is denoted R. Also, we denote Rki:kj
as the ratio of timely

applied decisions from slot ki to kj . When a decision is

applied at a slot it is not intended to be, the state of pending

transmissions may deviate. Further, false allocation may occur,

leading to performance degradation in pilot utilization in pilot

scheduling problem.

B. Pilot Utilization (β)

We use pilot utilization to to evaluate the performance of

the pilot scheduling strategy. Under the industrial scenario

described in section II-A, the non-CUs will get the remaining

pilots in a slot when all transmissions from the CUs have

been served. Therefore, unused, or wasted, pilots is highly

undesirable. A pilot is wasted every time it is assigned to a

CU that has nothing to transmit. This can occur if a scheduling

decision is based on an outdated RRH state and if scheduling

decisions are not delivered timely.

The decision P(k) determines a set of CUs to be allocated

pilots at k, as the number of available pilots is p in a slot, the

decision should satisfy
∑U

1
Pu(k) ≤ p.

For each CU has assigned a pilot, the number of transmis-

sions that can be served is N . However the actual number

of pending transmissions from CUu at this moment is Qu(k).
This will yield the following number of wasted pilots, denoted

ωu(k), for CUu at slot k:

ωu(k) = max(0, (1−
Qu(k)

N
)Pu(k)) (2)

which leads to the pilot utilization β(k) for all CUs in this

allocation:

β(k) = 1−

∑U
u=1

ωu(k)
∑U

u=1
Pu(k)N

(3)

C. Research challenges

Now that we have a model and defined the performance

metrics of the scheduler we can begin the discuss the inherent

challenges with radio resource allocation over Cloud RAN.

Firstly, we can now define the objective of the scheduler as

follows:

• Assign pilots to all CUs with pending transmissions, in

a fair manner, before their transmissions have expired.

• While avoiding starving the background traffic, which is

a consequence of resource waste.

Scheduling Decision

Process

P(k),P(k) Allocation

Process

Updating

Process

Q(k′), c(k′),ddecision(k
′), Rk′

−Ts/Tc:k′

Fig. 3. Overview of the scheduling process over Cloud RAN at slot k′, when
an update message was sent from the RRH to the BBU pool and allocation
is actuated based on an arrived decision P(k′). Meanwhile, the BBU pool
performs a decision for a future slot k and sends this decision to the RRH.

We have shown in [1], that a naive scheduling method

over Cloud RAN, is feasible when meeting the reliability

requirements for industrial standards, by keeping the loss

under 5%. However, a naive scheduling would also lead to

huge amounts of pilot waste. Therefore, in the next section,

given the stochastic nature of Cloud RAN, we propose a new

allocation strategy that is focused on improving the resource

utilization for time-critical applications without compromising

transmission reliability, that is keeping the loss under 5%.

V. PROPOSED SOLUTION

In this section, we propose an novel scheduling strategy over

Cloud RAN that addresses the challenge of timely arrival of

decisions, as detailed in section IV. Our proposed solution

can handle the delayed and out-of-order messages that is an

effect of a stochastic Cloud RAN environment. Thereby, the

pilot utilization is radically improved, without compromising

reliability performance. An overview of the proposed solution

is shown in fig. 3.

To remedy stochastic delays, the updating process and

scheduling decision process are handled asynchronously in

our proposed solution. The scheduling decisions are generated

periodically at the BBU pool for a future actuation slot

k, based on the predicted arrival time of this decision and

estimated RRH state at k. In this manner, the actual state

Q(k) may not be delivered at the BBU when the decision is

made. The state estimation is made based on all the historical

information in previously delivered update messages. Add-on

concepts such as message buffering and redundancy are also

utilized to guarantee the decisions to be timely applied. Below

we describe the details of our proposed scheduling strategy.

A. Updating Process

At each slot k′, the RRH sends an update message to the

BBU, for the purpose of state estimation of the RRH in the

BBU pool. The update message includes the following:

• The number of pending requests Q(k′) for each user.

• The inter-arrival times of the transmissions from each

CU c(k′) = {c1(k
′), c2(k

′), ...cU (k
′)}, which arrived

during slot k′ − 1. Here, cu(k
′) is the set of all inter-

arrival samples of CUu measured during slot k′−1, thus

cu(k
′) = {cu[n1], cu[n2], ...}.
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• The measured delay samples from scheduling deci-

sion messages that have arrived during slot k′ − 1.

ddecision(k
′) = {ddecision[m1], ddecision[m2], ...}.

Further, every Ts, the RRH includes timely applied de-

cisions during last Ts in the update message. The timely

applied decision is noted as Rk′
−Ts/Tc:k′ if sent at slot k′. This

information contributes to the horizon prediction of decision

arrivals in the scheduling decision process.

B. Allocation Process

At each slot k, after sending the update message, the RRH

applies a received decision to allocate the pilots to the active

CUs. The allocation process is detailed in fig. 4.

As the decisions performed by the BBU are intended to

be actuated in specific slots, there needs to be a solution

for decisions that arrive earlier than intended, late or out-of-

order. Therefore, we propose that the RRH buffers all arrived

decisions and applies them at the intended actuation slot. If

one decision fails to be delivered before its intended actuation

slot, the RRH takes a buffered scheduling decision P(k̄) that

is intended for slot k̄, which is nearest to k, and applies this

decision instead. This is based on the assumption that the state

estimation for the nearest slot will, on average, is the second

most accurate.

C. Scheduling Decision Process

The scheduling decision process in our proposed solution

can be divided into several sequential sub-processes as pre-

sented fig. 5. In the following, we detail every sub-process as

illustrated in the figure.

1) Scheduling Decision: The scheduler performs a schedul-

ing decision, P(k), to be applied at a future slot k. The

decision is based on the estimated state of the RRH on all

active CUs at slot k.

In this paper, we implement a greedy allocation strategy,

however, other scheduling methods can of course be used.

The decision for CUu is, Pu(k) = 1 if Qu(k) is non-zero and

has one of the p largest values among the set Q(k).

Send Decisions

Scheduling Decision

Queue

Estimation

Arrival

Estimation

Horizon

Prediction

received update

at slot nearest to k′
cu(k)

Qu(k)

ddecision(k)

Rk−Ts

Tc
:k

λ̂+
u Ĥ(k′)

Q̂u(k)

Pu(k)

{Pu(k),Pu(k)}

Fig. 5. Scheduling Decision process in the BBU pool at slot k′, taking into
account the updates sent by the RRH at time k, which is the nearest slot to
k′ among all the delivered updates. The process performs a decision expected
to be applied by the RRH at slot k, where k ≥ k′

The scheduling decision message includes both the newly

made decision P(k) and h redundant scheduling decisions

P(k) = {P(k−1),P(k−2), ...P(k−h)}, where the intended

actuation slots are before k. Using redundant messages means

that if a decision intended for slot k is delayed and thereby

arrives later than its intended actuation slot, later decision

messages may be able to deliver this decision for slot k in time

to the RRH. This not only significantly improves the timely

applied decisions, but also benefits the utilization performance,

as it will be shown in the results.

2) Queue Estimation: The decision P(k) is indented to be

applied at a future slot k. Thereby a state estimation at k needs

to be provided, which is denoted by Q̂(k).
Considering that at slot k′, we take the state Qu(k) of CUu

from all the received update messages at the BBU pool, where

k ≤ k′ and nearest to k′. If the average arrival rate of the

requests from CUu is λu, and the predicted time horizon for

when a decision should be actuated is H(k′), the queue sizes

for slot k, Q̂u(k), can be estimated as follows:

Q̂u(k) = Qu(k) + λu(k − k)−
k−1
∑

κ=k

Pu(κ)

where k = k′ +H(k′)

(4)

The term
∑k−1

κ=k Pu(κ) corresponds to all decisions that are

presumably to be applied from slot k to k − 1.

3) Arrival Process Estimation: In eq. (4), the term λu(k−
k)Tc is used to predict the number of transmissions for CUu

that have been triggered from k to k. We use an Exponential

Moving Average (EMA) estimator in order to estimate average

inter-arrival time ĉu of requests for CUu, which gives:

ĉ+u = αcĉ
−

u + (1− αc)cu (5)



Here, cu is taken from the inter-arrival time sample cu(k)
informed in the most recent update message. We denote by

ĉ+u the new estimate on cu. ĉ−k is the old estimate and αc is

the weight of the EMA estimator. Further, the average arrival

rate of CUu can trivially be derived as:

λ̂+
u = 1/ĉ+u (6)

4) Predicted Time Horizon: A decision message is per-

formed in slot k′ and should be applied in slot k, where k ≥ k′.
k − k′ is defined as the predicted time horizon, Ĥ(k′). The

predict time horizon is a crucial part of our proposed strategy,

since it determines how delayed a decision message can be. A

longer predicted time horizon will increase the ratio of timely

applied decision, however, at the same time introduce more

inaccuracies in the stare estimation.

Therefore, in this paper, we propose to calculate the pre-

dicted time horizon by using an estimate of the average

decision delay d̂decision, and adding an offset σ, as follows:

Ĥ(k′) =
⌈ d̂+decision

Tc

⌉

+ σ+ (7)

Here, d̂+decision is the estimation of the average decision delay

given by an EMA with weight αd:

d̂+decision = αdd̂
−

decision + (1− αd)ddecision (8)

Similar to the average inter-arrival time estimator in section

V-C3, ddecision is a sample of the decision delay, informed in the

update message ddecision(k). d̂
−

decision is the previous estimate of

the average decision delay.

The offset value σ+ is an output of a step controller via

eq. (9) when a new update on the average timely applied

decision ratio Rk−Ts
Tc

:k has arrived.

σ+ =

{

σ− + 1 if Rk−Ts
Tc

:k < r

σ− Otherwise
(9)

Here, σ− is the previous offset value and initialized as 0. r
is the lower bound reference value for timely applied decisions

ratio. A prerequisite of applying eq. (9) based on σ− is when

the average network delay has minor changes or increases.

If the estimated mean delay has decreased, σ− is reset to 0,

and the controller searches for a new offset value again. The

feedback Rk−Ts
Tc

:k should be calculated from a sequence of

past slots and the measurements size should be large enough

to be confident. We thus define the sampling time of the step

controller as Ts, which is much greater than the scheduling

time slot length Tc. Therefore, Rk−Ts
Tc

:k is collected through

every Ts/Tc slots. In this way, the mean estimation on d̂decision

is made every Tc but σ is made every Ts.

With the step controller, if the number of discarded de-

cisions exceeds a set point, the predicted time horizon is

extended by increasing the offset value. So that the probability

that a decision arrives before its indented actuation time is

increased. If a decision is performed at slot k′, the indented

actuation slot k is given as k = k′ + Ĥ(k′).

TABLE I
PARAMETERS OF TRANSMISSION ARRIVAL PROCESS

Parameter name Value Symbol

inter-arrival time mean 10 ms c

inter-arrival time std 0.0005 δ

Number of CUs 20 U

Deadline of a transmission from CUu 10 ms Du

VI. EXPERIMENTS

In this section, we describe our experiments for evaluating

the performance of our proposed pilot scheduling strategy over

Cloud RAN. In our evaluation, we address the performance

metrics described in section IV, timely applied event and pilot

utilization. We examine how these performance metrics are

affected by the stochastic properties of a Cloud RAN.

We evaluated our proposed strategy in a simulated environ-

ment built on SimPy [13] and the system model described

earlier. We ran all experiments for a simulated system time

of T = 200s and the results are based on the average of 20
repetitions. As a result, all confidence intervals are within 10%

of the corresponding average value.

A. Simulation Parameters

The system model includes several system parameters that

need to be set. These are described below.

1) Arrival process of transmissions: To generate traffic

that can correspond to time critical industrial applications,

we use the industry and IoT traffic models summarized in

[12]. Each CUu generates transmissions according to a ho-

mogeneous periodic stochastic process, with inter-arrival time

cu ∼ N (c, δ2). Table I lists all parameters related to the

arrival process of the transmissions and the values used in

our simulations.

2) Stochastic delay: In this paper, we use the exponential

distribution family to generate the two parameters representing

the cloud delay, dupdate and ddecision. For all distributions,

the average delay was µ. We examine how different delay

distributions and µ affect the system performance.

In the simulations, we evaluated the system performance

when the cloud delays are deterministic, Erlang distributed,

Exponential distributed, and Hyper-exponential distributed.

Correspondingly, the coefficient of variance, CV 2, was

{0, 0.5, 1, 2}. The average delay, µ, was varied from 0ms to

4ms, where µ = 0 represents a system with a scheduler co-

located with the RRH.

3) Scheduling strategy: The values of the parameters in

the allocation process, placed in the RRH, are shown in

Table II. The values of these parameters correspond to the

radio spectrum parameters of our massive MIMO test-bed

[14]. Table III lists the values for the parameters used in the

scheduling decision process placed in the BBU pool.

B. Evaluation Methods

The objective of the evaluation is to show that our proposed

pilot scheduling strategy efficiently mitigates the negative

effects of the stochastic properties of the Cloud RAN, and



TABLE II
PARAMETERS OF THE ALLOCATION PROCESS IN THE RRH

Parameter name Value Symbol

Scheduling time slot length 0.5 ms Tc

Number of available pilots per slot 12 p

Number of requests served by a pilot 1 N

TABLE III
PARAMETERS OF THE DECISION MAKING PROCESS AT BBU

Component Parameter name Value Symbol

Arrival Estimation EMA weight 0.999 αc

Horizon Prediction
EMA weight 0.999 αd

Lower bound reference 90% r
Sampling time 2000ms Ts

Redundant Decisions No. of redundancy 2 h

thereby improves the pilot utilization without compromising

reliability performance. Since such a strategy needs to mitigate

the delayed and out-of-order decision messages, we will in

the result section show how our proposed solution performs

in comparison with three other methods that do not include

the full set of remedy strategies. The strategies we used in

the evaluation and their corresponding system parameters are

summarized in Table IV. The details for the Naive Scheduling

method under the same scenario is studied in [15].

In the experiments, we refer to the 95% availability indus-

trial requirement noted in section II-A and set the maximum

permissible loss to 5% for all the transmissions, then exam-

ine the pilot utilization performance when this condition is

satisfied.

VII. RESULTS

In this section, we present and discuss our simulation

results. We show that our proposed scheduling strategy of

increasing the number of timely applied decisions, signifi-

cantly improves pilot utilization, while meeting the industrial

reliability requirement as noted in section II-A. Below we first

present the results of our strategy for timely applied decisions.

Then we present the results of the pilot scheduling process that

relies on the ratio of timely applied decisions.

A. Timely Applied Decisions

With a high proportion of timely applied decisions, the

scheduling strategy has been able to successfully mitigate the

adverse effects of a Cloud RAN system. As a reference point,

fig. 6 shows that when a naive scheduler is employed, no

decision will be timely applied. This is because, the naive

scheduler does not take into account the cloud delays incurred

in the system, all decisions will arrive later than their intended

actuation slot.

An extended predicted time horizon can improve the ratio

of timely applied decisions, as revealed by the comparison

between Naive Scheduling, Short Horizon and Single Decision

methods in fig. 6, wherein the prediction horizon increases in

turn. However this it is rather logical that, a longer predicted

time horizon leads to an earlier arrival than the actuation time,

and thereby a decision can be timely applied. Fig. 6 also shows

TABLE IV
EVALUATED SCHEDULING STRATEGIES IN THE EXPERIMENTS

Method Name Parameters

Proposed Solution Indicated in TABLE III

Single Decision Same as Proposed Solution but h = 0
Short Horizon Same as Proposed Solution but h = 0, σ ≡ 0
Naive Scheduling Described in section IV
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Fig. 6. Timely applied decision for the four methods (a) under different
delay distributions when µ=2ms and (b) when µ increases for exponentially
distributed delays.

that when adding redundant messages in Proposed Solution,

the ratio of timely applied decisions is further improved, for

all experiments.

Fig. 6 also reveals that the ratio of timely applied decision

is not greatly affected by the length of the average delay, as it

is remedied by the estimation on the average decision delays.

Furthermore, a larger variance in the distribution may even

improve the timely applied decisions. This result is mainly

an effect of the different distributions we used for simulating

cloud delays. For certain hyper-exponentially distributions, the

probability that ddecision ≤ µ is higher than the one in other

distributions.

In summary, the ratio of timely decisions is highly correlated

to the delay distribution and the perdition horizon. In this

paper. We make use of the strategy detailed in section V-C4

to determine the prediction horizon. But it is an open question

and various methods can be adopted to make the prediction.

B. Pilot Utilization

Fig. 7 shows the resulting average pilot utilization for our

proposed up-link pilot scheduling strategy, compared with

pilot utilization when Naive Scheduling. We note that with

both our Proposed Solution and the Naive Scheduling, the

loss of the transmissions is below 5%, as is required by the

industrial standards. The Naive Scheduling method meets the

transmission deadlines by keeping assigning redundant pilots

to serve a single transmission. Although the Single Decision

and Short Horizon methods significantly improved the timely
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Fig. 7. Pilot utilization (a) under different delay distributions when µ=2ms
and (b) as µ increases for exponentially distributed delay. Performances in
dashed lines indicate that the methods didn’t meet the reliability requirements.

applied ratio comparing to the naive scheduling method, the

loss with these two methods does not meet the industrial

standards, as the increment in timely applied decisions is not

high enough to compensate the inaccuracy in state estimation

long prediction horizon.

Comparing to a Naive Scheduling, our Proposed Solution

increases the pilot utilization from less than 20% to over

90%. This means that the stochastic delays and out-of-order

messages are effectively mitigated, which are the main effects

of the Cloud RAN system. When less pilots are wasted on the

CUs, the system becomes more capable to serve the traffic

from non-CUs, and avoid starvation of these applications.

Comparing fig. 7 and fig. 6, it is clear that the pilot

utilization is considerably impacted by the ratio of timely

applied decisions. Briefly speaking, when more decisions are

timely applied, less pilots are wasted. But we also see that

the utilization is not completely decided by the timely applied

decisions, but also the mean delays. As longer delay yields

longer prediction horizon, which leads to more inaccuracies

in the state estimation of the RRH.

VIII. CONCLUSIONS

In this paper, we investigated how radio resource allocation

can be performed over Cloud RAN. We focused on the

stochastic characteristics incurred by the Cloud RAN. We

proposed a resource allocation strategy and implemented it

for a massive MIMO up-link pilot scheduling problem. The

proposed strategy mitigates the impacts of the Cloud RAN,

in particular the stochastic delays and out-of-order messages.

We have evaluated our proposed strategy with simulations. The

effects of the Cloud RAN are mainly mitigated by including

a predicted time horizon, estimated RRH state and sending

redundant decisions, which are used to perform a scheduling

decision for a future time slot. Our experiment results have

shown that the proposed strategy significantly improves the

pilot utilization by increasing the ratio of timely applied

decisions, without compromising the industrial requirements

on transmission reliability.

We also note that, there is a trade-off between the length of

the predicted time horizon and the accuracy of state estimation.

In this paper, we have not presented this trade-off, however,

this will of course be performed in future work. Redundancy

is introduced to mitigate the impacts from long predicted

horizons. In this paper, we have not tried to optimize the

number of redundant decisions, just showing the advantageous

of including them. However, the optimal number of redundant

decisions will of course depend on the available bandwidth of

the front-haul link and the cloud delay, which will be further

investigated.
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