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Model optimization for autotuners in industrial control systems

Magnus Lundh, Alfred Theorin, Tore Hägglund, Jonas Hansson, Magnus Svensson,
Karl Johan Åström, Kristian Soltesz

Abstract—Automatic tuning of PID controllers us-
ing relay feedback experiments has received attention
on and off since it was first proposed and industrially
implemented in a control system in the 1980s. While
optimal experiment design and modern system iden-
tification easily outperform the original automatic
tuner, they rely on computational resources that are
not always available in industrial control systems.
Here we present a combination of experiment and
subsequent output-error identification of continuous-
time first-order time-delayed (FOTD) system models,
that requires very little in terms of computations and
memory. The method has been extensively evaluated
in simulation, and a prototype has been implemented
for the ABB AC 800M controller family.

I. Introduction

A. Background

The idea to use relay feedback to obtain a system
response that self-oscillates at the critical −180◦ phase
shift angular frequency of the process dynamics was first
presented in [1] and lay the ground for automatic PID
tuning, as originally implemented in the NAF SDM20
system, and later also in systems by several other major
vendors. The main strength of the original auto-tuner
is that its experiment automatically detects the critical
freqency ω0 of the process dynamics. Its main weaknesses
are that a relatively long experiment is required for
convergence to a steady limit-cycle at ω0, and the fact
that the process model provided by the original auto-
tuner comprised only of ω0 and |G(iω0)|.
Numerous extensions and improvements have been

proposed, as exemplified by e.g. [2]–[6]. We have previ-
ously shown [7]–[9] how the combination of a short asym-
metric relay experiment and optimization techniques
outperform the original relay autotuner [1]. However,
such improvements have not yet made it into the product
lines of major vendors. We believe the relatively high
complexity of the optimization-based model identifica-
tion to be the main reason for this situation.
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B. The FOTD process model

The first-order time-delayed (FOTD) system

G(s) = K

sT + 1e
−sL (1)

is sufficient for modelling a vast majority of industrial
processes, where the purpose of modelling is PID control.
The phase lag introduced through the delay L makes
the FOTD model a good approximation of higher-order
dynamics in the phase-range of interest for PID control,
and the normalized time-delay τ = L/(L + T ) provides
an important characterization of the dynamics. A small
τ & 0 means that the dynamics are dominated by the
lag T � L; a large τ . 1 means that the dynamics are
dominated by the delay L � T . Note also that (1) can
be used to model integrating processes if T � 1.

C. Output error identification

If FOTD dynamics (1) are to be identified from a
pair of time-aligned and equi-temporally spaced input
samples u = [u1 . . . un]> and corresponding measure-
ment samples y = [y1 . . . yn]>, where the measurements
are corrupted by additive, uncorrelated and identically
distributed Gaussian noise (a common noise model for
many sensors), it is well-known that the FOTD model
with output ŷ that minimizes the output error ‖y − ŷ‖22
is optimal in the maximum likelihood sense.

Here we show how this model can be estimated from
asymmetric relay experiment data in a lightweight way,
that does not require software libraries for linear algebra,
optimization, etc. This makes our approach readily appli-
cable to industrial implementation, and we are currently
evaluating it within the ABB AC 800M controller family.

II. Method

A. Experiment

A relay experiment, as the one shown in Fig. 1, is
conducted using an asymmetric relay as described in
[9], with two relay switches and no chirp. Since the
relay automatically matches experiment duration to the
process time scale, a dynamic buffer of length 128 ≤ n ≤
256 was used. If the buffer got full before the experiment
terminated, half of its samples were discarded and the
sampling period thus doubled.



B. Loss function evaluation
The objective is to find parameters θ = [K̂ T̂ L̂]>

of an FOTD model Ĝ that minimizes the output error
norm

V (θ|u, y) = ‖y − ŷ(θ)‖22 = (y − ŷ)>(y − ŷ). (2)

To do so, we need to evaluate ŷ(θ) at different candidates
θ. Since the control signal u is zero-order hold (ZOH)
sampled in industrial control systems, we can use the
exact ZOH discretization of (1) to simulate candidate
systems. If the sampling period is h, we need to ZOH
discretize the system

G̃(s) = K

sT + 1e
−L̃s, (3)

where L̃ = mod(L, h), and then delay its simulated
output d = bL/hc samples. ZOH sampling of the system
with delay L̃ is conducted by writing (1) on state-space
form (where subscript c denotes continuous time)

˙̃yc(t) = − 1
T︸︷︷︸

A

ỹc(t) + K

T︸︷︷︸
B

uc(t− L̃), (4)

and solving for

ỹc(h) = eAh︸︷︷︸
Φ

yc(0)+
∫ L̃

0
eAtdt︸ ︷︷ ︸
Γ1

uc(0)+
∫ h−L̃

0
eAtdtB︸ ︷︷ ︸

Γ0

uc(h).

(5)
Inserting expressions for A and B from (4) into (5) and
evaluating the integrals gives

Φ = e−h/T , (6a)
Γ1 = KΦ (γ − 1) , (6b)
Γ0 = K (1− Φγ) , (6c)

where γ = eL̃/h. We finally apply a time-shift to obtain

y(k) = Φy(k− 1) + Γ1u(k− 2− d) + Γ0u(k− 1− d), (7)

which we can use to simulate Ĝ to obtain ŷ and the loss
(2).

Here we limit ourselves to asymptotically stable sys-
tems with positive stationary gain and non-zero delay,
θ � 0. The cases where T̂ = 0 or L̂ = 0 are practically
indistinguishable from cases where the two parameters
are small but non-zero. Explicit treatment of T̂ = 0
is nonetheless straightforward, but relies on coefficients
that differ from (6).

C. Loss function minimization
The approach taken in [10] was to compute the gra-

dient ∂V/∂θ and perform local optimization in search
of the minimizer θo. There are no guarantees that V is
convex in θ and examples where it is not can indeed
be devised. This means that the optimization could
get stuck in a local minimum other than θo, unless
cleverly initialized. The optimization itself also relies on

the computation of the cost gradient and possibly the
associated Hessian, which alongside line-search, requires
software libraries.

One alternative to the local (gradient-based) approach
is to use a global (gradient-free) approach comprising
of simply gridding the parameter space, evaluating V
at every grid-point, and reporting the grid point that
minimizes V .

Here we do something in between—an iterative grid
search—inspired by simple bisection search. A continu-
ous scalar function f with f(a) < 0 and f(b) > 0 implies
f(x) = 0 for some x between a and b. In bisection search,
this is used to bisect the search interval by evaluating the
sign of f(a+b)/2 and discarding either half of the original
interval based on it. This procedure is then repeated until
desired accuracy has been obtained.

Here, we are not looking for zero-crossing of V (θ), but
instead of its gradient ∂V/∂θ. The argument θ is not
scalar, and furthermore, we cannot rule out the presence
of multiple local minima of V , translating into equally
many zero-crossings of ∂V/∂θ.

What we have done is to consider the marginal loss
V (τ̂ |L,K). This is the loss associated with the free
parameter τ̂ = L̂/(L̂ + T̂ ), provided that L̂ = L and
K̂ = K. We hypothesize that this marginal loss is almost
convex in the sense that any local minima are shallow
compared to the global minimum V (τ, L,K) and parti-
tion the closed interval [0, 1] into m − 1 equally spaced
sub-intervals using m grid points τ̂1 = 0, . . . , τ̂m = 1, at
which we evaluate V using the method of Sec. II-B. If
V (τ̂k) > V (τ̂k+1) < V (τ̂k+2), we know that the marginal
loss has a (local) minimum between τk and τk+2, and can
confine the next iteration to search [τk, τk+2]. If there are
multiple local minima, the one with lowest marginal loss
is chosen; if there are no local minima the interval can be
reduced down to [τ̂1, τ̂2] or [τ̂m−1, τ̂m], based on whether
the marginal cost is largest at τ̂1 or τ̂m.

The same type of marginalization is also conducted
with respect to L̂, resulting in a nested identification
algorithm, while optimization of K̂ is explicitly handled
as explained under Sec. II-D.1. The nested optimization
algorithm can thus be summarized:
• perform an iterative grid search for τ̂ , starting with

[τ̂1 = 0, τ̂m = 1];

• for each candidate τ̂ , perform an iterative grid
search for L̂ staring with [L̂1 = 0, L̂m = Lmax];

• optimize K̂ at each candidate pair τ̂ , L̂.

D. Implementation aspects

1) Optimizing the gain parameter: Since ŷ is linear in
K̂, finding the optimal K̂ for any candidate pair τ̂ , L̂ is
done through minimizing

V (K̂|τ̂ , L̂) = (y−K̂ŷ)>(y−K̂ŷ) = y>y−2K̂y>ŷ+K̂2ŷ>ŷ,
(8)



where ŷ is the output of the model with K̂ = 1.
The quadratic form (8) is minimized by K̂o|τ̂ , L̂ =
ŷ>y/(ŷ>ŷ).
2) Grid density: The number of grid points, m(i),

in iteration i of the grid search constitutes a trade-off
between speed and safeguard against local minima. For
m ≥ 4 we discard m − 3 or m − 2 of the m − 1 sub-
intervals between neighbouring grid points. The worst-
case for interval length reduction per loss evaluation is
thus g(m) = (m − 3)/(m(m − 1)). Solving dg/dx = 0
and discretely maximizing g at all m with |m − x| < 1
suggests the use of either m = 5 or m = 6 grid points.
If we store evaluated V from iteration i to iteration

i + 1, the values of V at the new interval end-points do
not need to be re-evaluated. Additionally, ifm is odd, the
mid-point can (sometimes) be re-used. The worst-case
for interval length reduction per loss evaluation is then
g(m) = (m− 3)/((m− 1)(m− 2− mod(m, 2))), which is
maximized for m = 5. We therefore choose m = 5 grid
points for all iterations.
3) Termination criterion: Since one or two sub-

intervals are kept between consecutive iterations, N it-
erations provide a relative accuracy σ satisfying(

1
m− 1

)N

≤ σ ≤
(

2
m− 1

)N

. (9)

The iterations required for a relative accuracy σ is thus⌈
− log σ

log(m− 1)

⌉
≤ N ≤

⌈
log σ

log 2− log(m− 1)

⌉
. (10)

4) Iterative computations: There is no need to store
the entire simulation output ŷ to evaluate either of the
loss V or to optimize the static gain K̂. The loss can be
written as the scalar product V (ŷ) = (y − ŷ)>(y − ŷ). It
can thus be computed iteratively as V (k) = V (k − 1) +
(yk − ŷk)2, with V (0) = 0, and eventually yielding
V = V (n). Similarly, the expression (8) only depends on
similar scalar products, and it is sufficient to iteratively
evaluate y>ŷ, y>y, and ŷ>ŷ.

III. Results

We evaluated the proposed identification algorithm
across a previously published [11] batch of 134 well-
damped models representative for industrial processes.

The method was executed using m = 5 grid points in
all iterations, and terminated once a relative accuracy
of σ = 0.01 had been reached, resulting in 4 ≤ N ≤ 7
iterations in accordance with (10).

In interest of space, we have limited the presentation
here to include only a few representative results1. The
true (unknown) dynamics for these examples are an
FOTD process (11a); an integrating process (11b);

1Additional results and further description of the methodology
are found in [12].

a process with higher-order dynamics (11c):

G1(s) = 1
10s+ 1e

−s, (11a)

G2(s) = 0.1
s(0.1s+ 1)e

−0.9s, (11b)

G3(s) = 1
(s+ 1)(0.5s+ 1)(0.25s+ 1)(0.125s+ 1) .

(11c)
The outcome of the relay experiments and output

of the obtained FOTD models are shown in Fig. 1–3.
The noise-corrupted output y resulting from the input
u is shown in grey; the noise-free (unknown) output is
shown in blue; the output of the identified model is
shown in red. (Both u and y denote deviations from a
stationary working point [u0, y0] = [0 0], explaining
their occasionally negative values.) The dashed black
lines indicate the relay hysteresis level, explained in [1].
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Fig. 1. Experiment and model fit for the FOTD process (11a).
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Fig. 2. Experiment and model fit for the integrating process (11b).

Identifying FOTD models this way involved median
(min, max) 236 (193, 238) unique simulations (loss eval-
uations) per experiment, to be compared with 104 unique
simulations required to obtain the same accuracy using
dense gridding. For each model, we performed the expen-
sive grid computation, as illustrated in Fig. 4, to verify
that m = 5 is sufficient when identifying representative
process industrial dynamics.

Good agreement between ŷ and y results in a small
loss V , but not necessarily in a useful model. For PID
tuning purposes, the latter additionally requires a suffi-
ciently high signal-to-noise ratio close to ω0, necessary
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Fig. 3. Experiment and model fit for the higher-order process
(11c).

for good model fit close to the −180◦ phase shift of the
process dynamics. To investigate this, we also plotted the
Bode diagrams of the process model dynamics for each
batch process, together with that of the identified FOTD
model. A representative example is shown in Fig. 5 and
all plots are available in [12].
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Fig. 4. Representative loss V (τ̂ , L̂) with K̂ optimized to minimize
V at each grid point.
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Fig. 5. Bode diagram for the higher-order process (11c) (black)
and identified model (red).

IV. Discussion
We have demonstrated how output error identification

of continuous-time FOTD models from asymmetric re-
lay experiment data can be conducted in a lightweight
manner. The method requires no software libraries, and
is straightforward to implement within an embedded
industrial controller—even one with very limited com-
putational power and memory. The use of a very short

experiment reduces the risk of the experiment being
corrupted by severe sporadic load disturbances.

The obtained FOTD models can be used for PID con-
troller tuning, but also for other purposes. The method
was initially implemented in MATLAB, where it has
undergone thorough investigation and validation. A pro-
totype for the ABB AC 800M industrial controller family
has also been implemented and successfully evaluated in
combination with existing PID tuning rules, and thus
proven to be a capable autotuner suitable for implemen-
tation in industrial control systems.
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