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Abstract

We consider efficient methods for the partitioned time-integration of multiphysics prob-
lems, which commonly exhibit a multiscale behavior, requiring independent time-grids.
Examples are fluid structure interaction in e.g., the simulation of blood-flow or cool-
ing of rocket engines, or ocean-atmosphere-vegetation interaction. The ideal method for
solving these problems allows independent and adaptive time-grids, higher order time-
discretizations, is fast and robust, and allows the coupling of existing subsolvers, executed
in parallel.

We consider Waveform relaxation (WR) methods, which can have all of these properties.
WR methods iterate on continuous-in-time interface functions, obtained via suitable in-
terpolation. The difficulty is to find suitable convergence acceleration, which is required
for the iteration converge quickly.

We develop a fast and highly robust, second order in time, adaptive WR method for un-
steady thermal fluid structure interaction (FSI), modelled by heterogeneous coupled linear
heat equations. We use a Dirichlet-Neumann coupling at the interface and an analytical
optimal relaxation parameter derived for the fully-discrete scheme. While this method is
sequential, it is notably faster and more robust than similar parallel methods.

We further develop a novel, parallel WR method, using asynchronous communication tech-
niques during time-integration to accelerate convergence. Instead of exchanging interpol-
ated time-dependent functions at the end of each time-window or iteration, we exchange
time-point data immediately after each timestep. The analytical description and conver-
gence results of this method generalize existing WR theory.

Since WR methods allow coupling of problems in a relative black-box manner, we de-
veloped adapters to PDE-subsolvers implemented using DUNE and FEniCS. We demon-
strate this coupling in a thermal FSI test case.

Lastly, we consider adaptive time-integration for goal-oriented problems, where one is in-
terested in a quantity of interest (QoI), which is a functional of the solution. The state-
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of-the-art method is the dual-weighted residual (DWR) method, which is extremely costly
in both computation and implementation. We develop a goal oriented adaptive method
based on local error estimates, which is considerably cheaper in computation. We prove
convergence of the error in the QoI for tolerance to zero under a controllability assumption.
By analyzing global error propagation with respect to the QoI, we can identify possible is-
sues and make performance predictions. Numerical results verify these results and show
our method to be more efficient than the DWR method.
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Popular Science Summary

The foundation of modeling physical phenomena is their description by mathematical
models, most prominently differential equations (DE). DEs are used to model phenomena
in all natural sciences, engineering disciplines and more: Classical mechanical engineer-
ing applications such as construction or vehicle design, electrical field and circuit model-
ling, simulation of chemical reactions, climate and vegetation simulation, infectious disease
modelling and many more, are all based on DEs, albeit each with their own nuances and
flavors.

DEs relate rate of change to a given state and known inputs. Solving a DE means to
determine future states based on an initial state. An example is Newton’s second law: Force
= mass × acceleration. Acceleration is the rate of change of velocity, which is the rate of
change of position. Solving this DE means to determine future position based on a known
initial position, force and mass.

Analytical solutions, obtained via solving the DE by hand, are extremely rare. Instead,
with the rise of computers and computing power, we solve them using numerical methods,
algorithms designed to approximate their solutions. This enables the modelling of highly
complex physical phenomena. In particular, product design and development based on nu-
merical models is typically faster, cheaper and safer than traditional methods using physical
prototypes.

While artificial intelligence and machine learning are very hot topics right now, these are
unlikely to replace physical based modeling using DEs, since machine learning is mostly
used for finding patterns in data. However, most physical phenomena are well described
by DEs, the difficulty is to accurately, yet efficiently solve them. Thus, the development of
efficient numerical methods is of key importance, since it enables e.g., more precise weather
forecasts and climate change predictions. Additionally, current development on increased
computing power involves parallel machines and making use of them requires suitable nu-
merical methods.

This thesis consists of three parts centered around numerical methods for DEs. One solves
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these in a step-wise manner, yielding a solution at fixed time-points, e.g. weather data every
15 minutes. Smaller steps give a more accurate result, but increase the cost of computing
the whole solution. Another approach is to adaptively choose stepsizes. That is choosing
them as large as possible and as small as necessary to reduce computational cost, while
retaining a target accuracy. Adaptive approaches are based on estimating the accuracy and
then choosing a suitable stepsize.

In the first part of the thesis we developed and analyzed adaptive methods in the context
of goal-oriented problems. In practice, one solves DEs to answer questions such as ”How
much energy does this turbine produce?”, ”How fuel efficient is this vehicle design?”, ”Is
component X sufficiently cooled?” or ”How fast are the polar caps melting?”. Here, the goal
is the computation of a quantity of interest (QoI) (e.g., average energy produced, maximum
temperature, total ice loss per year) based on the solution of the DE, to answer the relevant
question.

We derived an adaptive method for the solution of goal-oriented problems that chooses step-
sizes to control the accuracy in the QoI. Additionally, we established mathematical condi-
tions for when such an approach is sensible, with guidelines to predict performance gains
or losses. Our new method shows notable performance improvements in various test cases.

The remaining part of the thesis concerns coupled problems. These are physical phenomena
described by a multitude of connected DEs. An example is thermal fluid-structure inter-
action in the cooling of rocket nozzles. This involves simulating the interaction between
extremely hot combustion products, the solid nozzle structure, liquid coolant within the
structure and the ambient air outside. Another example is climate simulation, featuring
connected DEs for atmosphere/ocean dynamics + chemistry, vegetation, cloud and ice
formation, and possibly more.

There are different approaches in designing simulation software for coupled problems. The
monolithic approach is to view the coupled problem as a whole and to design and implement
a tailor-made algorithm to solve it. However, changes or additions to the coupled problem
require changes to the whole algorithm. Additionally, designing an efficient algorithm
requires the combined expertise of doing so for all subproblems.

We consider the so-called partitioned approach, which aims to solve a coupled problem
using solvers for the subproblems combined with a suitable coupling method. Partitioned
coupling methods typically involve an iterative process in which the subproblems need to
be solved multiple times each. The advantage of the partitioned approach is that it allows
re-using existing specialized codes for the subsolvers. In particular, this does not necessarily
require a lot of specialized knowledge on the subproblems.

The re-use of software is a pre-requisite for sustainable software development and being able
to jointly work in larger groups. This approach makes it far easier to exchange subsolvers
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or add new components to a coupled problems.

We studied Waveform Relaxation (WR) methods, an iterative partitioned coupling method
that allows a large degree of independence in solving the subproblems. This is highly desir-
able when coupling different physical phenomena that require different numerical methods
or stepsizes for solving them.

First we developed a WR method for solving dynamic heterogeneous coupled heat equa-
tions. That is, modeling the time-dynamics of heat exchange between different materials as
e.g., present in the fluid-structure interaction when cooling rocket nozzles. The resulting
method performs better than existing methods, by using independent and adaptive stepsizes
when solving the subproblems, resolving the coupling reliably in very few iterations.

Secondly, we developed a novel parallel WR method, which requires fewer iterations than
classical parallel WR methods, by utilizing asynchronous communication techniques. The
resulting method shows promising performance results. Its analytical description and the-
oretical results generalize existing theory on WR methods.

Lastly, we developed software for solving coupled problems using WR methods. In partic-
ular, we are able to couple DEs implemented using certain free open-source packages that
provide a vast range of tools for solving complex DEs at relative ease. With this, we are able
to couple different DE subsolvers almost at a ”plug-and-play” principle, to create solvers
for multiphysics problems.
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Chapter 1

Introduction

Modern simulations typically involve modelling problems comprised of a multitude of
connected systems with different physics. Examples are coupled mechanical systems or
fluid-structure interaction in e.g., simulation of blood flow in large arteries [16] or cooling of
rocket engines [37, 38]. Another example is climate simulation, which involves simulation
of the ocean and atmosphere, the chemistry within them, as well as modelling of vegetation,
cloud formation and more.

When simulating such multiphysics problems one requires different computational methods
to solve the subproblems, commonly handled by different software. Additionally, mul-
tiphysics problems commonly exhibit multirate/multiscale behavior. I.e., processes oper-
ate on different spatial or temporal scales, requiring separate treatment. Consequently, the
development and analysis of methods to orchestrate the coupling of heterogeneous codes
and numerical methods is an important research topic.

Parellelization is an absolute necessity when performing large computational tasks. The
standard method to solve partial differential equations (PDEs) in parallel, is via the paral-
lelization of matrix vector products or using Domain decomposition [61, 82] techniques.
These correspond to subdividing the computational domain and each processor solves the
problem on a part of it. In multiphysics problems with different codes for each subproblem,
the evident idea is to solve the subproblems in parallel.

When solving differential equations using discrete time-integration, constant stepsizes are
the simplest and most straight-forward. However, to achieve computationally efficient
methods, one wants to use stepsizes as large as possible and as small as necessary. This
is particularly necessary if the differential equations have processes operating on different
scales, as is common in multiphysics problems. With adaptive methods one automatically
chooses stepsizes based on estimates to the accuracy of the solution.
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Thus, the ideal method for solving multiphysics problems executes different subsolver codes
in parallel, allowing independent and adaptive time-grids, and is both fast and robust. I.e.,
it works well for a wide range of problems. This task has been formulated as a major
challenge in computational sciences [11, 20, 65].

Additionally, practical simulations come with the objective of answering questions such
as: How fuel efficient is a vehicle design (lift over drag)? How much energy does a certain
turbine design produce [89]? Where to place wind/tidal turbines for maximal energy output
[22]? What is the expected average global temperature increase? What is the total ice loss
of the (ant)artic [29]? Is a building/room sufficiently heated/ventilated?

These are called goal oriented problems. In addition to solving the differential equations
modelling the relevant physical processes, one computes a quantity of interest (QoI) to an-
swer the original question. Using adaptive methods, one aims to control the accuracy in
the QoI, rather than the whole solution.

This thesis consists of three separate parts, corresponding to Paper I , Paper III and Paper
IV . (Paper II and Paper V represent early stage results of Paper I resp. Paper IV .) Paper
I presents a local error based goal-oriented time-adaptive method. The two remaining
parts concern Waveform relaxation (WR) methods for the partitioned time-integration
of coupled multiphysics problems. In Paper III we developed a highly robust WR method
for the particular application of thermal fluid structure interaction. Paper IV presents a
novel parallel WR method utilizing asynchronous communication. We now present the
individual topics in more detail.

1.1 Goal oriented adaptivity

The standard approach for adaptivity in goal oriented problems is the dual weighted residual
(DWR) method [4, 7, 60]. It is most commonly used in the context of space-adaptivity
for PDEs, but there is also work specifically on time-adaptivity [48, 49, 78]. DWR uses the
adjoint (dual) problem to perform a posteriori adaptivity to achieve error bounds in the
QoI.

In the time-dependent case, the adjoint problem is a terminal value problem, i.e., an initial
value problem (IVP) backwards in time. A single iteration of the DWR method consists
of solving both the original IVP and its adjoint problem on a given time-grid. Then, one
constructs the error estimate (error bound for linear problems) in the QoI using both solu-
tions, which may have considerable storage requirements. The error estimate contains local
information used to refine the time-grid. This procedure is repeated until a grid is found,
where the error estimate fulfills a target error bound. This algorithm is very costly not only
in terms of computation and possibly storage, but also in implementation, since adjoints

2



are specific to the IVP and the QoI.

With Paper I , we investigate easy to implement and computationally cheaper methods for
goal oriented time-adaptivity. Specifically, we consider local error based methods [73], in
which time-grids are constructed during time-integration, using local information. This
approach does not yield estimates of the global error, but is computationally cheap and
works well in practice. We develop a goal oriented adaptive method using estimates of the
local error in the QoI and show convergence in the QoI under a controllability condition.

We numerically verify our convergence results using a variety of tests. A performance com-
parison shows that local error based methods are much more efficient than the DWR
method for dissipative problems. Our new goal oriented adaptive method shows good
performance in most cases and significant speedups in some. Based on analyzing error
propagation w.r.t. the QoI, we can predict the performance of our new method w.r.t. clas-
sical, non goal-oriented local error based adaptive methods. It turns out to be relatively
easy to predict bad performance, but harder to predict performance improvements.

1.2 Coupled problems

Multiphysics simulations as a research field has emerged from the necessity of simulating
coupled problems in various scientific areas. As such, there is no established standard of
notation and we largely follow [20].

Consider the following coupled problem:

v̇(t) = g(t,v(t),w(t)), v(0) = v0 ∈ Rdv , (1.1a)

ẇ(t) = h(t,v(t),w(t)), w(0) = w0 ∈ Rdw , (1.1b)

with t ∈ [0,Tf ]. Here, (1.1a) and (1.1b) represent two systems of ordinary differential equa-
tions (ODEs), resp. semi-discrete PDEs, corresponding to different physical phenomena.
We call (1.1) the monolithic problem and refer to the individual problems as subproblems.
W.l.o.g., we consider two coupled systems, since the extension to more systems is largely
straight-forward from a theoretical point-of-view.

We particularly consider coupled problems with a strong bidirectional surface coupling. I.e.,
the subproblems have a strong interaction via a lower dimensional interface, as e.g., in
thermal fluid structure interaction. An example for a weak coupling is within climate sim-
ulation. There, ocean and atmosphere chemistry are slow processes and have only a weak
effect on the underlying fluid-dynamics.

The monolithic approach is to directly solve (1.1), using methods tailored to the specific
problem. In the partitioned approach one solves (1.1) by solving the subproblems in con-
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junction with a suitable coupling method, commonly called a partitioned time-integration
method, which facilitates the information exchange via the interface. With suitable coupling
methods, the subproblems can be solved using independent grids and numerical methods.
Strongly coupled problems require strongly coupled methods, which is also called an implicit
coupling. This typically requires an iteration on the interface solutions, to avoid stability
problems [14]. This iteration requires repeated solutions of the subproblems for varying
interface data.

Partitioned methods enable the re-use of existing specialized software for solving the sub-
problems. These may be highly efficient and sophisticated solvers with problem specific
discretizations, preserving e.g., mass, entropy or positivity. Additionally, open source lib-
raries such as deal-II [2], DUNE [6], FEniCS [41], Firedrake [62], OpenFOAM [35],
SU2 [19], or also commercial packages, enable the creation of single-physics PDE solvers at
relative ease.

Using suitable adapters [84] this allows for the construction of multiphysics simulations
almost at a ”plug-and-play” principle, see Figure 1.1. Examples are the coupling libraries
preCICE [13] or MpCCI [68]. These performs partitioned time-integration, accelerated
using a quasi-Newton method or classical over-relaxation, and have a variety of adapters
for open source or commercial libraries, c.f. [13, 64, 84] resp. [68].

Subsolver 1

(via Library A )

A-Adapter Coupling code B-Adapter Subsolver 2

(via Library B )

Figure 1.1: Coupling principle for the partitioned approach. Here, the coupling code executes the partitioned time-integration,
handling the information exchange between the subproblems. Adapters to subsolvers implemented via a certain
library are largely reusable.

Note that there exists no unified interface standard for coupling PDE solvers. The FMI-
Standard [53] for the co-simulation [1] of coupled systems is widely used for coupled mech-
anical systems. However, co-simulation is a loose coupling scheme and not suitable for
strongly coupled problems.

1.2.1 Waveform Relaxation

We consider Waveform Relaxation (WR), an iterative partitioned time-integration method,
in which subproblems exchange continuous interface functions in time. These are obtained
via suitable interpolation methods and enable the use of independent time-grids (includ-
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ing adaptivity) and time-integration methods. Thus, WR methods have few requirements
on the subproblems to be coupled and are suitable for the partitioned coupling of sur-
face coupled multiphysics problems. They are less suited for multiphysics problems with a
volumetric coupling, i.e., subproblems interacting on the whole computational domain, as
e.g., in magnetohydrodynamics [80], due to the storage required in saving the continuous
function in time.

WR methods were originally used for systems of ODEs in circuit simulation [40] and for
the first time to solve time dependent PDEs in [23, 36]. They are also used for coupled sys-
tems of (partial) differential algebraic equations ((P)DAEs) [52, 69]. In the literature, WR
is found under a variety of names, often depending on the subfield, the most common ones
are: Waveform relaxation/iteration, dynamic iteration/relaxation and Picard(-Lindelöf ) it-
eration.

WR methods require convergence acceleration to achieve fast convergence rates. The ca-
nonical way is to weight updates with relaxation parameters. Optimal relaxation parameters
are highly problem specific and suitable relaxation may be required to obtain a convergent
method in the first place [57]. Other acceleration techniques involve using an additional
convolution relaxation term [34, 63] or Krylov-subspace acceleration [43], see [43] for a
wider overview of different acceleration techniques. However, many of these are not applic-
able in the partitioned approach. Another option is to use black-box acceleration methods
such as quasi-Newton methods [18], which have been successfully applied for WR methods
[67].

1.2.2 Thermal Fluid Structure interaction

Conjugate heat transfer, thermal interaction between solids and liquids, plays an important
role in many applications and its simulation has proved essential [5]. Examples for thermal
fluid structure interaction are cooling of gas-turbine blades, thermal anti-icing systems of
airplanes [12], supersonic reentry of vehicles from space [30, 47], gas quenching, which is
an industrial heat treatment of metal work-pieces [28, 79] or the cooling of rocket nozzles
[37, 38].

Thermal fluid structure interaction (FSI) is a strongly surface coupled problem. A char-
acteristic feature is a significant jump in the material coefficients at the interface, which
makes for a natural geometry based splitting to obtain the coupled problem, which is also
known as Domain decomposition [61, 82]. The subproblems are commonly coupled via a
Dirichlet-Neumann (DN) coupling at the interface [61, 82]. That is, the subproblems use
Dirichlet resp. Neumann boundary conditions w.r.t. the interface and provide the other
subproblem with the suitable interface temperature or heat flux.
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Consequently WR is a suitable method for solving this coupled problem and has first
been considered for the heat equation in [23, 36]. Recent work considers the continuous
Dirichlet-Neumann Waveform relaxation (DNWR) and Neumann-Neumann Waveform
relaxation (NNWR) methods [24, 39, 45] with homogeneous materials. DNWR solves the
subproblems in sequence. NNWR consists of first solving two Dirichlet problems, fol-
lowed by two Neumann problems in parallel, in each iteration. In [54, 57] a fully discrete
NNWR method is derived along with a fully discrete optimal relaxation parameter (for
1D, implicit Euler and heterogeneous materials). While the iteration converges quickly,
observed convergence rates are far from achieving theoretical peak convergence rates.

With Paper III we continue the research in [54, 57], in order to develop a robust and fast
partitioned time-integration method for heterogeneous coupled heat equations. We im-
prove upon the NNWR method [57] and derive the corresponding fully discrete DNWR
method, including optimal relaxation. We show that the DNWR method is both fast and
robust. I.e., the derived optimal relaxation parameters for 1D and implicit Euler yields near
optimal convergence acceleration in 2D, the second order SDIRK2 scheme, as well as the
multirate and adaptive cases. In particular, our DNWR method is shown to be notably
more robust than the NNWR method. Overall, we obtain a fast, robust, multirate and
time adaptive partitioned solver for unsteady conjugate heat transfer.

1.2.3 Waveform Relaxation with asynchronous time-integration

The main flavors of WR methods are Gauss-Seidel WR (GS WR), solving subproblems in
sequence, and Jacobi WR, solving subproblems in parallel. GS WR convergence is typically
faster than for Jacobi WR, due to increased information exchange. If the parallelism of
Jacobi WR can outweigh a slower convergence rate is highly problem dependent due to
relaxation.

Standard WR methods exchange continuous time-dependent functions, resp. the discrete
interpolants after performing time-integration of a subproblem on the interval [0,Tf]. With
Paper IV we develop a novel parallel WR method with a faster convergence rate than clas-
sical parallel WR methods. Our ansatz is to increase communication by already exchanging
information during time-integration. That is, instead of communicating whole discrete
functions, we communicate the solutions of each new timestep and directly incorporate all
new information in the interpolants.

We facilitate the communication viaOne-sided communication, which is asynchronous. Un-
like the more common Point-to-Point communication, this does not require function calls
on the receiving processor and is thus most suitable for non-matching time-grids.

We prove convergence for our WR method with asynchronous time-integration, using ele-

6



mentary techniques. The analytical description and convergence results of this method gen-
eralize existing WR theory. We present an algorithm for optimal relaxation for two coupled
problems. Asynchronous communication is not deterministic and in our algorithm we
need to determine the realized communication at runtime to choose optimal relaxation.

Numerical results confirm theoretical convergence results and show good performance res-
ults for subproblems with approximately equal computational load. For our numerical
experiments we coupled subsolvers implemented using DUNE [6] and FEniCS [41]. Here,
we developed adapters to facilitate the coupling in a black-box manner w.r.t. space discret-
izations. We demonstrate this coupling via a thermal FSI problem, where the structure is
solved using a finite element discretization implemented in FEniCS and the fluid model is
solved using a discontinuous Galerkin discretization implemented in DUNE.

Here, we use optimal relaxation parameters based on the results of Paper III , with which
the WR method converges with very few iterations. This demonstrates that the optimal
relaxation parameters derived in Paper III yield good convergence acceleration for conjugate
heat transfer modelled using the compressible Euler equations.

1.3 Organization of thesis

The chapters in this thesis correspond to the topics presented in this introduction. Chapter
2 discusses general adaptive time-integration using local error estimates and Chapter 3 ex-
tends this to goal oriented problems, summarizing Paper I . Chapters 4 - 6 concern WR
method for the partitioned time-integration of coupled problems. Here, Chapter 4 dis-
cusses classical WR, basic convergence results, implementation and adapters for coupling
the open source packages DUNE and FEniCS. Chapter 5 presents the DNWR method from
Paper III and Chapter 6 presents WR with asynchronous time-integration from Paper IV .
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Chapter 2

Time-adaptivity using local error
estimates

Consider the following initial value problem (IVP):

u̇(t) = f(t,u(t)), t ∈ [0,Tf ], u(0) = u0, f : [0,Tf ]× Rd → Rd, (2.1)

with f continuous in the first component and Lipschitz-continuous in the second compon-
ent, i.e., ∀x,y ∈ Rd ∃ L > 0 : ∥f(t,x)− f(t,y)∥ ≤ L∥x−y∥. This guarantees existence
of a unique solution via the Picard-Lindelöf theorem [27].

When performing discrete time-integration, the time-grid 0 = t0 < . . . < tN = Tf can
greatly impact the accuracy of the solution. The simplest approach is to use an equidistant
time-grid with stepsizes Δtn := tn+1 − tn constant. However, this requires stepsizes to be
chosen to address the smallest timescales, which is inefficient for problems with processes
on varying time-scales.

We instead use non-equidistant time-grids obtained by an adaptive method, which we say
consists of a time-integration scheme for (2.1), an error estimator and a timestep controller. An
adaptive method requires an initial stepsize Δt0 and a tolerance TOL, which is used by the
timestep controller, as its inputs.

We consider adaptive methods using local error estimates. In each timestep we estimate
the local time-integration error and choose the following stepsize to set the local time-
integration error to equal to the tolerance TOL.

This adaptive approach works well in practice, in that it does result in time-grids with small
stepsizes when necessary and large ones when possible. It does not yield global error bounds
and is by no means optimal in the sense of minimizing the error for a given amount of steps.
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Another advantage is that it is ”light-weight” in terms of implementation. It can be applied
almost in a black-box manner, is not problem specific and does not requiring a lot of extra
tools.

Definition 2.1. An adaptive method for (2.1) is called convergent, if

∥u(Tf)− uN∥ → 0, for TOL→ 0,

where uN ≈ u(Tf).

The two standard classes of time-integration schemes are one-step methods, most promin-
ently Runge-Kutta methods, but also exponential integrators [31, 81], and linear multistep
methods (LMM), see Appendix 8.1. For one-step methods there exists a solid theory on
convergence for the variable stepsize case [25, 71] and there are inherently no zero-stability
problems. With LMM, one has to consider zero-stability, especially in the case of variable
stepsizes. There are no proofs on stability and convergence for arbitrary variable step sizes,
but they exist for smoothly varying stepsizes [27, pp.402], [77].

The here considered stepsize adaptivity is also commonly referred to as h-refinement, since
stepsizes are commonly denoted by h. Another option is p-refinement, which is to instead
adapt the order of the time-integration method to meet a target accuracy, or to preserve
stability. With LMM it is common to use both h and p-refinement, while one-step methods
typically only use h-refinement.

Overview over chapter

The core of this chapter is the derivation and convergence proof of classical local error based
time-adaptivity, which is also shown in Paper I . Here, we additionally discuss the variants
obtained from (not) using local extrapolation or error per (unit) step when constructing the
error estimate and timestep controller. In particular, Section 2.2 discusses the aspects of
time-invariance and asymptotic correctness in adaptive timestep control.

Notation in this chapter is largely identical to Paper I , differences are as follows: The default
time-interval is denoted by [0,Tf ], rather than [t0, te], and the tolerance in controllers is
denoted by TOL instead of τ .

2.1 Time adaptivity based on local error estimates

The following method is the standard in ODE solvers using one-step methods. It is based on
local error estimates and does not yield global error bounds or near optimal grids, but works
well in practice, is computationally cheap and convergent under a smoothness assumption.
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The results from this section for one-step methods and the deadbeat controller (2.10) are
in principal classic [71]. Here, we present a new convergence proof, following the same
principle techniques as in [71], but separating requirements on the error estimate, timesteps,
and Δt0, for one-step methods. This prepares convergence proofs for general controllers
and estimates, and we use it to show convergence in the QoI for the goal oriented adaptive
method in Section 3.1. We first introduce the relevant notation.

Definition 2.2. The flow [76] of an IVP (2.1) is the map

Mt,Δt : u(t)→ u(t+ Δt),

where t ∈ [0,Tf ] and t+ Δt ≤ Tf for Δt > 0.

The flow is the solution operator for u(t). To numerically solve an IVP means to approx-
imate the flow by a numerical flow map N t,Δt : Rd → Rd given by a numerical scheme,
commonly called a time-integration scheme. The solution after a timestep is written in the
form

un+1 = N tn,Δtnun.

The existence of a unique solution guarantees the existence of the flow mapMt,Δt. We
define the global error by

en+1 := un+1 − u(tn+1)

= (N tn,Δtn −Mtn,Δtn)un︸ ︷︷ ︸
global error increment

+Mtn,Δtnun −Mtn,Δtnu(tn)︸ ︷︷ ︸
global error propagation

. (2.2)

The flow map and the dynamics of global error propagation are usually not known. How-
ever, the global error increment has a known structure. Given a sufficiently smooth right-
hand side f in (2.1), the local error of a scheme N t,Δt of order p is

ℓn :=
(
N tn,Δtn −Mtn,Δtn

)
un = Δt p+1

n ϕ(tn,un) +O(Δt p+2
n )

with the principal error function ϕ, c.f. [27]. Here, O is defined as follows:

e(t) = O(t q), iff ∃C > 0, δ > 0 : ∥e(t)∥ ≤ Ct q, ∀ 0 < t ≤ δ.

The approach for local error based time-adaptivity is to estimate the global error increment,
which is equal to the local error of the time-integration scheme used to propagate the
solution. Based on this estimate, we control the timesteps Δtn, aiming to keep the global
error increment at the target tolerance TOL. This approach does not consider global error
propagation and consequently yields no global error bounds.
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2.1.1 Error estimation

Definition 2.3. A local error estimate ℓ̂n ≈ ℓn is called asymptotically correct [70, 74], if

lim
Δtn→0

∥ℓ̂n∥
∥ℓn∥

= 1.

I.e., a local error estimate is asymptotically correct, if it correctly estimates the leading Δt
term. We now present the most common techniques to estimate local errors for one-step
methods.

Embedded methods

First, we consider embedded Runge-Kutta (ERK) schemes [27]. The following applies to the
use of two schemes of different order, ERK schemes are very efficient in this, since one can
obtain two different solutions by using different weights.

Assume two schemes N t,Δt
+ ,N t,Δt

− with orders p and p̂, p > p̂. We define the local errors

ℓ−n := (N tn,Δtn
− −Mtn,Δtn)un = Δt p̂+1

n ϕ−(tn,un) +O(Δt p̂+2
n ), (2.3)

ℓ+n := (N tn,Δtn
+ −Mtn,Δtn)un = Δt p+1

n ϕ+(tn,un) +O(Δt p+2
n ), (2.4)

with principal error functions ϕ− and ϕ+. The difference of the two local errors, resp.
solutions, yields the local error estimate

ℓ̂n := ℓ
−
n − ℓ+n = (N tn,Δtn

− −N tn,Δtn
+ )un = Δt p̂+1

n ϕ−(tn,un) +O(Δt p̂+2
n ). (2.5)

It is asymptotically correct w.r.t. (2.3), differing only in terms of order O(Δt p+1
n ) and

higher. Similarly, ℓ̂n is not asymptotically correct w.r.t. (2.4).

Since we require two schemes for the error estimate, we can choose with which to propagate
the solution. The lower order scheme N t,Δt

− yields an asymptotically correct error estim-
ate, but a less accurate solution. However, using the higher order solution obtained from
N t,Δt

+ does not yields asymptotically correct error estimate. This case is also known as local
extrapolation [70] and is our default case.

Richardson extrapolation

Second, we consider Richardson extrapolation, which estimates the error by the difference
of the solution of a single step of length Δtn and two consecutive steps with stepsize Δtn/2
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each. With the time-integration scheme N t,Δt the error estimate is

ℓ̂n = N tn,Δtnun −N tn+Δtn/2,Δtn/2
(
N tn,Δtn/2un

)
.

It is generally not asymptotically correct. This can easily be seen in the following example.

Example 2.4. Consider the autonomous problem

u̇(t) = λu(t), u(0) = u0, t ∈ [0,Tf ], λ ∈ R \ {0}.

The explicit Euler scheme for this problem is N Δtn = 1 + λΔtn. This yields

N Δtn/2 ◦ N Δtn/2 =

(
1 +

λΔtn
2

)2

= 1 + λΔtn +
(λΔtn)2

4
,

which is not a second order accurate approximation to the flowMtn,Δtn = eλΔtn .

While this scheme does not yield an asymptotically correct error estimate and is computa-
tionally expensive, it is versatile in terms of application, since it does not require any other
time-integration schemes.

2.1.2 Timestep controller

We now discuss the construction of a timestep controller for the local error estimate.
W.l.o.g., we do this for the asymptotically incorrect error estimate obtained of an ERK
method and local extrapolation.

We model the global error increment using the principal error function of the local error
estimate (2.5), which is

mn := Δt p̂+1
n ϕ−(tn,un). (2.6)

Based on this model, the local error in the next step is

mn+1 = Δt p̂+1
n+1ϕ−(tn+1,un+1) = Δt p̂+1

n+1ϕ−(tn,un) +O(Δtn Δt p̂+1
n+1 ) (2.7)

=

(
Δtn+1

Δtn

) p̂+1

mn +O(Δtn Δt p̂+1
n+1 ) (2.8)

=

(
Δtn+1

Δtn

) p̂+1

ℓ̂n +O(Δtn Δt p̂+1
n+1 ). (2.9)

Here, we aim to choose Δtn+1 such that ∥mn+1∥ = TOL. This is commonly known as the
error per step (EPS) approach [71]. An alternative is the error per unit step (EPUS) approach,
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aiming for ∥mn+1∥ = Δtn+1TOL. Here we consider both approaches, starting with EPS.
Applying it to (2.7) - (2.9) gives

TOL =

(
Δtn+1

Δtn

)p̂+1

∥ℓ̂n∥+O(Δtn Δt p̂+1
n+1 ).

Neglecting higher order terms and using this as a rule for computing Δtn+1 gives the well-
known deadbeat controller

Δtn+1 = Δtn

(
TOL
∥ℓ̂n∥

)1/(p̂+1)

. (2.10)

Similarly, the EPUS approach yields

Δtn+1 = Δtn

(
TOL
∥ℓ̂n∥/Δtn

)1/p̂

, (2.11)

which is also a deadbeat controller, but with a different error estimate and exponent. These
controllers requires suitable initial stepsizes Δt0. Choosing a good initial stepsize with little
computational effort is a separate topic [86], here we use simple choices for Δt0.

In practice one typically bounds the rate by which timesteps change as follows [27, pp. 168]

Δtn+1 = Δtn min(fmax,max(fmin, ind)), ind =

(
TOL
ℓ̃n

)1/p∗

.

Here ℓ̃n and p∗ take a forms corresponding to (2.10) or (2.11). The aim is to provide more
computational stability by preventing too large stepsize changes. In practice, this does not
take effect for TOL→ 0.

Two additional common practices are as follows [27, pp. 168]: First, the usage of a safety
factor 0 < θ < 1, replacing TOL by θ · TOL, a common choice is θ = 0.9. Second,
rejection and repetition of timesteps, if the local error estimate exceeds the target tolerance.
The repeated timestep typically uses a fixed fraction of the original stepsize.

Advantages and disadvantage of using the different approaches of error estimation and con-
troller construction are discussed further in Section 2.2.

2.1.3 Convergence in the solution

A time-integration scheme, error estimate, timestep controller and initial stepsize Δt0 form
an adaptive method, for which we now analyse the global error (2.2). W.l.o.g., we do this
for the EPS based controller (2.10) and local extrapolation.
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We first consider the case of variable, non-adaptive timesteps. Here, we have the following
Lemma:

Lemma 2.5. ([25, pp. 68]) Consider Problem (2.1) and a scheme N t,Δt of order p. Assume a
grid 0 = t0 < · · · < tN = Tf with timesteps Δtn = tn+1 − tn given by a stepsize function
θ : [0,Tf ]→ [θmin, 1], θmin > 0 such that for a given base step size ΔT one has

Δtn = θ(tn)ΔT.

Then, the global error (2.2) fulfills ∥en∥ = O(ΔT p).

Assuming ϕmin
− := mint∈[0,Tf ] ∥ϕ−(t,u(t))∥ > 0, we define reference timesteps Δt refn by

a stepsize function θref and ΔTref as follows

θref(tn) :=
(

ϕmin
−

∥ϕ−(tn−1,u(tn−1))∥

)1/(p̂+1)

, θref(0) =
(
TOL
cref0

)1/(p̂+1)

, (cref0 > 0),

ΔTref =

(
TOL

min{cref0 , ϕ
min
− }

)1/(p̂+1)

.

(2.12)

These variable, non-adaptive timesteps meet the requirements of Lemma 2.5, yielding ∥en∥ =
O(ΔT p

ref) = O(TOL
p/(p̂+1)). Now, one can observe that Lemma 2.5 still holds for a grid

perturbed by
Δtn = θ(tn)ΔT+O(ΔT 2), (2.13)

see [71]. This is straight-forward to show using the scaling ansatz θ∗(tn) := θ(tn)/c +
O(ΔT ) with ΔT ∗ := cΔT. To prove convergence for the adaptive method with con-
troller (2.10), it thus suffices to show that the adaptive timesteps are a sufficiently small
perturbation of the reference steps Δt refn .

Theorem 2.6. Consider problem (2.1) and an adaptive method consisting of: A pair of schemes
N t,Δt

+ , N t,Δt
− with orders p, p̂, with p > p̂, error estimator (2.3), deadbeat controller (2.10),

and Δt0 = (TOL/c0)1/(p̂+1) +O(TOL2/(p̂+1)), c0,Δt0 > 0. If the principal error function
ϕ− to N t,Δt

− fulfills
min

t∈[0,Tf ]
||ϕ−(t,u(t))|| > 0, (2.14)

then the adaptive method is convergent with ∥en∥ = O(TOL p/(p̂+1)).

Proof. See Theorem 1 in Paper I .
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The assumption (2.14) in Theorem 2.6 is a requirement on controllability in the asymptotic
regime. The global error is not controllable by the local error if its estimate vanishes at some
time-point t. In practice, this can be prevented by manually enforcing a maximal stepsize.

Theorem 2.6 provides a structure with which one can prove similar results for different con-
trollers, e.g., PID controllers [75]. To prove convergence, it is sufficient to show Δt new cont

n =
Δt deadbeat

n +O((Δt deadbeat
n )2).

Remark 2.7. In Theorem 2.6 we considered EPS + local extrapolation. Using the EPUS based
controller (2.11) and possibly no local extrapolation, analogously yields the following convergence
rates:

• EPS: ∥en∥ = O(TOL p̂/(p̂+1)),

• EPUS: ∥en∥ = O(TOL p̂/p̂),

• EPUS + Local extrapolation: ∥en∥ = O(TOL p/p̂).

One typically uses schemes with orders p = p̂ + 1. With an asymptotically correct error
estimates, this keeps the extra cost for error estimation minimal. In the local extrapolation
setting, this keeps the degree of asymptotic incorrectness minimal. The case of p = p̂ + 1
yields ∥en∥ = O(TOL) for EPS + Local extrapolation and EPUS, which is also called
tolerance proportionality [72].

2.2 On time invariance and asymptotic correctness

We introduced the property of asymptotic correctness and presented both the EPS and
EPUS approach for constructing timestep controllers. The EPUS approach is not invariant
to a re-scaling of time. In this section we analyze this in more depth and quantify the effect
on timesteps and global error.

2.2.1 Time invariance

Consider problem (2.1) and re-scale time to s = αt, α > 0. The resulting problem is

ẏ(s) = f ∗(s,y(s)), y(0) = u0, s ∈ [0, Sf ], (2.15)

with y(s) = u(s/α), Sf = αTf and

f ∗(s,y(s)) =
1
α
f (s/α,u(s/α)). (2.16)
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We denote quantities related to the scaled problem with a superscript * and its timesteps
by Δsn.

Definition 2.8. Consider the IVP (2.1) and time-scaling (2.15) - (2.16), α > 0. An adaptive
method is called time-invariant, if Δsn = αΔtn for all timesteps.

Considering this property is not new, see e.g. [71], which states that an EPS approach results
in a time-invariant adaptive method, while EPUS does not. The latter part is intuitive, since
the size of a unit step changes under scaling. Here, we verify this and analyse how it affects
timesteps and solution in the EPUS case.

Time-invariance of Runge-Kutta schemes

First, we verify that the given time-integration scheme is time-invariant. That is, using
appropriately scaled stepsizes, the original and scaled IVPs yield the same solutions. Here,
we consider Runge-Kutta schemes

un+1 = un + Δtn
s∑

i=1

bi k i, where k i = f

tn + ci Δtn,un + Δtn
s∑

j=1

ai,j k j

 .

The scaled problem yields

yn+1 = yn + Δsn
s∑

i=1

bi k∗
i = yn + Δtn

s∑
i=1

bi αk∗
i

and

k∗
i = f ∗

sn + ci Δsn,yn + Δsn
s∑

j=1

ai,j k∗
j


(2.16)
=

1
α
f

tn + ci Δtn,yn + Δtn
s∑

j=1

ai,j (αk∗
j)

 .

From αk∗
i = ki, we see that the solutions are identical given u0 = y0. In practice, results

can vary slightly due to inaccuracies in solving nonlinear and linear systems.

Time-invariance of controllers

Next, we analyze the timestep controllers (2.10) and (2.11) on time-invariance. We do this
in the asymptotic regime TOL → 0, by comparing the reference timesteps (2.12). In the
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EPS case, this yields

Δs refn =

(
TOL

∥ϕ ∗(sn,y(sn))∥

)1/(p̂+1)

, (2.17)

where ϕ ∗ is the principal error function corresponding to local errors of the scaled IVP.
Given sufficient smoothness, the principal error functions for a time-integration scheme of
order p are

ϕ(tn,u(tn)) = c f (p)(tn,u(tn)) and ϕ∗(sn,y(sn)) = c∗ f ∗(p)(sn,y(sn)),

cf. [27, pp. 156], where c, c∗ are constants. For ERK methods with appropriately scaled
timesteps the solutions and thus local errors are identical. This yields the following relation

c f (p)(tn,u(tn)) = c∗ f ∗(p)(sn,y(sn))
(2.16)
= c∗ α−1f (p)(sn/α,u(sn/α))

Basic differentiation rules then yield c = α p+1c∗ and thus

ϕ ∗(sn,y(sn)) = α−(p̂+1)ϕ(tn,u(tn)). (2.18)

Inserting this into the stepsize formula (2.17) gives

Δs refn = αΔt refn ,

thus, the deadbeat controller (2.10) from the EPS approach is time-invariant. Similarly, the
EPUS based approach yields the following reference timesteps

Δt refn =

(
TOL

∥ϕ(tn,u(tn))∥

)1/p̂

, resp. Δs refn =

(
TOL

∥ϕ ∗(sn,y(sn))∥

)1/p̂

,

and (2.18) gives
Δs refn = α(p̂+1)/p̂Δt refn . (2.19)

This shows that the EPUS based controller is not time-invariant and how scaling affects the
stepsizes in the asymptotic regime.

Number of steps under scaling

Since the EPS approach yields a time-invariant adaptive method, the remainder focuses on
the EPUS approach. In particular, we analyse how time-scaling affects the total number of
timesteps N resp. N ∗ and the global errors.

We define the average stepsizes

Δ̄t := Tf/N and Δ̄s := Sf/N ∗,
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and assume they fulfill the relation (2.19). This yields

α 1/p̂N ∗ ≈ N, (2.20)

i.e., time-scaling has an effect on the number of timesteps an adaptive method takes to solve
a given problem. This effect is less pronounced for higher order methods.

Global error under scaling

With the global error, we need to look at the form of en, before it is reduced to ∥en∥ =
O(ΔT p). In [25, pp. 60] it is given due to the bound

∥en∥ ≤ DΔT p e LTf − 1
L

.

Here, L is the Lipschitz-constant w.r.t. the second argument of f in (2.1), i.e.,

∥f(t,v)− f(t,w)∥ ≤ L∥v −w∥, ∀ v,w ∈ Rd, v ̸= w.

The constant D is the max-norm of the principal error function of the global error incre-
ment

D := max
t∈[0,Tf ]

∥ϕ(t,u(t))∥.

The constants L and D are affected by scaling as follows:

D∗ (2.18)
= α−(p+1)D, L∗ (2.16)

= L/α.

This yields the following global error bound

∥e ∗
n ∥ ≤ D ∗ΔS p e L

∗ Sf − 1
L ∗ = α p/p̂D ΔT p e LTf − 1

L
.

Assuming the global errors have similar distances to their respective bounds, we get

∥e ∗
n ∥ ≈ α p/p̂ ∥en∥. (2.21)

This suggests that scaling affects the global error with at least the order of the scaling, as
p/p̂ > 1 due to p > p̂.
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Numerical test

We test the relations (2.20) and (2.21) using the following linear test problem

u̇(t) = Au(t), A =

(
−1 1
0 −5

)
, t ∈ [0, 2], u(0) =

(
1
1

)
. (2.22)

We solve both the original and scaled problems, and use (2.20) and (2.21) to predict N ∗

and ∥e∗n∥ under scaling with α ∈ {0.01, 100}.

We use the classical Runge-Kutta scheme of order p = 4 with an embedded third order
(for autonomous problems) solution given by b̂ = 1

3(1, 1, 0, 1)T, local extrapolation,
Δt0 = TOL1/(p̂+1)Tf and the controller (2.11).

Figure 2.1 shows the predictions (2.20) and (2.21) are accurate for TOL → 0. Based on
these results we make the following Conjecture, which seems to hold based on numerical
experiments, but we have not been able to prove it yet.
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Figure 2.1: Tolerance vs. Error (left) and Tolerance vs. Steps (right) when solving problem (2.22) for various time-scalings.

Conjecture 2.9. Given a linear IVP u̇(t) = Au(t), t ∈ [0,Tf ] andu(0) = u0, the relations
(2.20) and (2.21) hold with equality for TOL→ 0.

A more interesting quantity is the grid quality, measured in error vs. steps. Assume ∥en∥ =
c1ΔT p = c2N−p, with c1, c2 > 0, by Conjecture 2.9 the error from the scaled problem
fulfills

∥e ∗
n ∥

(2.21)
= ∥en∥α p/p̂ = c1ΔT pα p/p̂ = c2N−pα p/p̂ (2.20)

= c2N ∗−p, TOL→ 0.

As a result, we expect the grid quality in terms of error vs. steps to follow the same paramet-
erized curve. This result is seen in Figure 2.2, suggesting that the efficiency of an adaptive
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Figure 2.2: Steps vs. Error when solving problem (2.22) for various time-scalings.

method in terms of error over steps is not affected by time-scaling.

However, it is not entirely clear how grid quality relates to computational time, which for
most practical purposes is more interesting. With implicit schemes ones needs to solve
(non)linear problems during time-integration. While the conditioning of the (non)linear
problems with smaller stepsizes is better, it is hard to make a statement about the total
computational cost of time-integration under scaling. This would be subject to further
research.

2.2.2 Asymptotic correctness

In Section 2.1.1 we introduced asymptotic correctness as a property of error estimates, which
we now discuss in more detail. When using local extrapolation, the global error increment
(2.2) is the local error of the higher order scheme (order p), i.e.,

ℓn := Δt p+1
n ϕ+(tn,un) +O(Δt p+2

n ),

where ϕ+ is the principal error function. We chose the error model (2.6) and thus effect-
ively make the following approximation

ϕ+ ≈ ϕ−, (2.23)

neglecting higher order terms. To analyse the quality of this approximation, we consider
the linear, autonomous case

u̇(t) = Au(t).

The principal error functions are based on higher order derivatives of the right-hand side
and method dependent constants, which we denote by c and c−. As examples, the explicit

21



Euler scheme has c = 1/2 and Crank-Nicolson scheme has c = −1/12. In the linear case
the principal error functions are

ϕ(tn,un) = cA p+1un and ϕ−(tn,un) = c−A p̂+1un.

Given c and c− of similar magnitude, the approximation (2.23) is particularly bad if A has
coefficients small or large in magnitude. In general terms we have one of the three following
cases:

∥cA p+1un∥ = ∥c−A p̂+1un∥, the error estimate is asymptotically correct.

∥cA p+1un∥ < ∥c−A p̂+1un∥, the error is overestimated. (2.24)

∥cA p+1un∥ > ∥c−A p̂+1un∥, the error is underestimated. (2.25)

Neglecting the unlikely first case, overestimation of the global error increment leads to a
timestep smaller than necessary, resulting in a higher precision at increased computational
cost. Underestimation results in larger timesteps and global error increments exceeding the
target tolerance.

In problems with strong global error dampening, the consequences of underestimating the
local error are not severe, as the larger global error increments are dampened. In general,
error underestimation can be problematic, as it may leave dynamics of the system under-
resolved.

The criteria (2.24) and (2.25) are already in the linear case not usable in practice. Con-
sidering not overly stiff nonlinear problems we can make the rule of thumb that for fast
processes, the error will be underestimated and for slow processes, the error will be overes-
timated. Here, slow (fast) processes are characterized by small (large) derivatives due small
(large) values in A.

Yet, the question is: Is asymptotic correctness important or not? Should one use local
extrapolation? Taking aside asymptotic considerations, the purpose of time-adaptivity is to
choose small timesteps when necessary and large timesteps when possible. Except for very
stiff problems, this is achieved when using local extrapolation.

Furthermore, one should note that the grid in the limit of TOL → 0, obtained from
an asymptotically correct error estimate, is by no means optimal. It is uncertain if a grid
from local extrapolation is better or worse. However, the order gain from propagating
the numerical solution with the higher order method is certain and likely to outweigh the
benefit of more accurate error estimates. As a consequence, we focus on the case of using
local extrapolation for EPS based controller.
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Chapter 3

Goal-oriented time-adaptivity using
local error estimates

We now consider the IVP (2.1) in combination with the QoI

J (u) :=
∫ Tf

0
j(t,u(t))dt, j : [0,Tf ]× Rd → R. (3.1)

Here, j is also called the density function and may correspond to integrals in space, if the
original IVP is a semi-discrete PDE. The examples from Section 1.1 qualify if one considers
unsteady flows.

We consider embedded Runge-Kutta schemes for time-integration and approximate J by
Jh using quadrature:

Jh(uh) :=
N−1∑
n=0

Δtn
s∑

k=0

σk j
(
t(k)n ,u(k)

n

)
≈
∫ Tf

0
j(t,u(t)) dt = J (u).

Here, uh ≈ u denotes the discrete solution. The quadrature nodes and weights are t(k)n and
σk, with u

(k)
n ≈ u(t(k)n ).

We derive a goal oriented adaptive method, using local error estimates in the QoI. The goal
is to be more efficient than both the dual-weighted residual (DWR) method and the non
goal oriented adaptive method using local error estimates, by having a cheap error estimate
and focusing on direct error contributions to the QoI. The only additional computational
costs, w.r.t. the classical adaptive approach from Chapter 2, are evaluations of j when com-
puting the error estimate. This makes it notably less intrusive to implement compared to
the DWR method and suitable for partitioned approaches to coupled systems.
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Definition 3.1. An adaptive method for (2.1), (3.1) is called convergent in the QoI, if

|J (u)− Jh(uh)| → 0, for TOL→ 0.

For our new adaptive method, we show convergence in the QoI under a controllability
assumption with additional requirements on the timesteps.

Overview over chapter

This chapter corresponds to the material presented in Paper I . Here, we sketch the main
idea and present the key results. Paper I additionally includes discussion on similar ap-
proaches used in the literature. In particular, with our new results we are able to explain
their performance results and issues.

See Paper I or [50] for a brief summary of the DWR method in the context of time-
dependent problems, or see [4, 7, 60] for a comprehensive overview.

3.1 Goal oriented time adaptivity based using local error estimates

We now consider the goal oriented setting (3.1) for problem (2.1) and are only interested in
the QoIJ (u). First, we establish the connection between convergence rates in the solution
and the QoI.

Theorem 3.2. Consider problem (2.1), (3.1) with j sufficiently smooth, a grid 0 = t0 < . . . <
tN = Tf with timesteps Δtn = O(TOL1/q), and an approximation Jh ≈ J by a quadrature
scheme of order r. For an approximation uh ≈ u with

uh(t)− u(t) = O(TOLp/q), ∀t ∈ [0,Tf ],

the error in the QoI fulfills eJ := |J (u)− Jh(uh)| = O(TOLmin(r,p)/q), TOL→ 0.

Proof. The idea is to split the error in the QoI as follows

eJ ≤ |J (u)− Jh(u)|︸ ︷︷ ︸
quadrature error

+ |Jh(u)− Jh(uh)|︸ ︷︷ ︸
time-integration error

and treat both errors separately. See Theorem 2 in Paper I for the full proof.
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3.1.1 Error estimate and timestep controller

Based on the idea of splitting the error into time-integration and quadrature error con-
tributions, we construct local error estimates for both step-wise contributions to the error
in the QoI. Following the same principles as in Chapter 2, using local extrapolation, this
yields the following local error estimates:

Time-integration: ℓ̂Jh
n := j

(
tn+1,N tn,Δtn

− un

)
− j
(
tn+1,N tn,Δtn

+ un

)
,

Quadrature: ℓ̂
JQ
n :=

∣∣∣Ĵ r
h,n(uh)− Ĵ r̂

h,n(uh)
∣∣∣ . (3.2)

Here,

Ĵ r
h, n(u) := Δtn

s∑
k=0

σk j
(
t(k)n ,u(t(k)n )

)
,

is an r-th order quadrature scheme applied to the solution on the time-interval [tn, tn+1].
With r̂ < r, this follows the local extrapolation principle for constructing the error estimate
using an additional lower order scheme.

The resulting deadbeat-type timestep controller is

Δtn+1 = Δtn

 TOL∣∣∣ℓ̂Jh
n

∣∣∣+ ∣∣∣ℓ̂JQ
n

∣∣∣
1/(p̂+1)

. (3.3)

Here, one can choose to use only one of the two error estimates.

See Paper I for the detailed derivation of the error estimates and controller. Furthermore,
see [50] for details on the non local extrapolation and error per unit step variants.

3.1.2 Convergence in the quantity of interest

We show convergence in the QoI for the adaptive timesteps (3.3) following the structure
from Section 2.1.3. Consider

ψ(t) =
∣∣∣∣∂j(t,u(t))∂u

ϕ−(t,u(t))
∣∣∣∣+ |φ−(t,u(t))| , (3.4)

where ϕ− is the principle error function of the lower order time-integration scheme, and
φ− is the analogous principle error function of the lower order quadrature scheme. We
assume

ψmin := min
t∈[0,Tf]

ψ(t) > 0, (3.5)
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i.e., the combined error estimates do not vanish. We define non-adaptive reference timesteps
Δt refn = θref(tn)ΔTref as follows:

θref(tn) :=
(

ψmin

ψ(tn−1)

)1/(p̂+1)

, θref(0) :=
(
TOL
cref0

)1/(p̂+1)

, (cref0 > 0),

ΔTref :=

(
TOL

min{c0, ψmin}

)1/(p̂+1)

.

We now show that our adaptive timesteps (3.3) are a sufficiently small perturbation (2.13) of
the above reference steps. This yields convergence in the solution by Lemma 2.5 and then
convergence in the QoI by Theorem 3.2.

Theorem 3.3. Consider problem (2.1), (3.1) and assume j to be sufficiently smooth. Assume
an adaptive method consisting of: Time-integration schemes N t,Δt

+ , N t,Δt
− with orders p, p̂,

p > p̂, quadrature schemes of order r, r̂ = p̂, and r > r̂, a scheme N̂ t,Δt to obtain solu-
tions of order p − 1 for intermediate points, the error estimates (3.2), controller (3.3), and
Δt0 = (TOL/c0)1/(p̂+1) + O(TOL2/(p̂+1)), c0,Δt0 > 0. If the principle error func-
tions corresponding to the lower order schemes fulfill (3.5), then eJ = |J (u) − Jh(uh)| =
O(TOLmin(r, p)/(p̂+1)).

Proof. See Theorem 3 in Paper I .

The assumption (3.4) is a controllability requirement in the asymptotic regime, ensuring
non-zero error estimates. Using both the quadrature and time-integration error estimate
makes the adaptive method more robust, as ψmin = 0 requires a common zero in both
principle error functions.

In Paper I , Section 4.3, we analyze the global error dynamics w.r.t. the error in the QoI and
its zero-set to make a qualitative statement about the obtained grid. With this, we estab-
lish guidelines to predict grid quality and thus performance of the goal-oriented adaptive
method.

Consider a QoI with a nontrivial zero-set. Global errors can accumulate in the zero-set of
the QoI and then be propagated to the image of the QoI, since local error based adaptive
methods do not control global error propagation. The resulting error increases are not
controllable using local error based methods. Advection dominated PDEs with spatially
local QoIs are particularly prone to this type of behavior. See Paper I , Section 4.3 for the
details.
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3.2 Numerical results and conclusions

See Section 5 in Paper I for the numerical experiments and results. Here, we provide a short
summary of the results.

Similar to the classical local error based adaptive method from Chapter 2, we derived a
simple and easy to implement goal oriented local error estimator. We showed convergence
and determined convergence rates of the error in the QoI. The expected convergence orders
from Theorems 2.6, 3.2 and 3.3 are achieved in experiments. Using both the quadrature and
time error estimate in the goal oriented controller (3.3) yields a more robust method than
using only one error component.

We test the analysis on global error dynamics w.r.t. the QoI in a scalar test problem with a
multitude of different QoIs, and a convection dominated Convection-Diffusion problem,
with a spatially local QoI and source term. The DWR method produces high quality grids
(small error using few timesteps), but is computationally very costly and thus less efficient
than local error based methods. It is easy to predict and explain when the goal oriented
method performs poorly, but it is harder to predict performance gains w.r.t. the classical
time-adaptive adaptive from Chapter 2.

The goal oriented method is easily applicable to coupled problems, as demonstrated using
a system of two coupled heterogeneous heat equations, c.f. Chapter 5. There, the QoI is
the heat flux between the two subproblems. The goal oriented method shows performance
improvements when compared with classical local error based adaptivity using norms, see
Figure 3.1.
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Figure 3.1: Left: Computational efficiency comparison of goal oriented adaptive method with classical norm based local error
control. ”Goal T” and ”Goal Q” refer to the controller (3.3), using only the time -or quadrature error estimate. Using
both estimates yields a better results. Right: Stepsizes over time for TOL = 10−5. The spike shaped increases in
stepsize when using only the time -or quadrature estimate, indicate possible zeroes in the corresponding principle
error functions, c.f. (3.4).
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In this test case, we do not consider the DWR method, since it is not suited for parti-
tioned approaches for solving coupled problems. There, one would first need to derive
the monolithic adjoint problem. Then, one needs to a find suitable coupling conditions
(e.g., a Dirichlet-Neumann coupling, c.f. Chapter 5) to formulate the adjoint problem as a
coupled problem. Finally, one requires a suitable partitioned time-integration method and
subsolvers to solve the coupled adjoint problem.
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Chapter 4

Waveform Relaxation

Relaxation refers to iterative methods, which commonly use weighting of updates by so
called relaxation parameters to accelerate convergence. The name ”Waveform relaxation”
(WR) originates from the initial application in the context of electronic circuit simulation
[40]: ”This method essentially uses an iterative relaxation scheme [...] in which the elements
of the relaxation are waveforms of unknown variables.” and : ”...the waveform of a signal is
the shape of its graph as a function of time, ...”¹. In a more general sense, WR is relaxation
of time-dependent functions.

Overview over chapter

This chapter serves as an introduction to WR methods for the following chapters. We first
introduce the time-continuous and time-discrete WR methods in the general nonlinear
setting. Then, convergence is analyzed in the linear setting in Section 4.3. Afterwards we
discuss relaxation and the successive application of WR on time-windows in Sections 4.4
resp. 4.5. These theoretical results are not novel and largely based on [32, 33, 34, 58, 59, 85,
87].

Section 4.6 discusses our framework for technical implementation, in particular w.r.t. coup-
ling subsolvers implemented using DUNE [10] and FEniCS [41]. The numerical tests utiliz-
ing this coupling are presented in Paper IV .

¹Source: https://en.wikipedia.org/wiki/Waveform, Accessed: 7. December 2020
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4.1 Continuous Waveform relaxation method

Consider problem (1.1) and let v(k) and w(k) be given. A single iteration of a general
continuous Waveform Relaxation method consists of solving two differential equations
and performing two relaxation steps as follows:

˙̂v(k+1)(t) = g
(
t, v̂(k+1)(t),w(k)

∗ (t)
)
, v̂(k+1)(0) = v0, t ∈ [0,Tf ], (4.1a)

v(k+1) = v(k) +Θv(v̂
(k+1) − v(k)), (4.1b)

˙̂w(k+1)(t) = h
(
t,v(k)

∗ (t), ŵ(k+1)(t)
)
, ŵ(k+1)(0) = w0, t ∈ [0,Tf ], (4.1c)

w(k+1) = w(k) +Θw(ŵ
(k+1) −w(k)), (4.1d)

with nonsingular diagonal matricesΘv ∈ Rdv×dv ,Θw ∈ Rdw×dw for relaxation. Extensions
to more than two systems are straight-forward, c.f. [85]. Here, one iteration consists of
solving two differential equations over the time-interval [0,Tf ] and two relaxation steps.
The specific WR method is defined by the choices for v(k)

∗ and w
(k)
∗ .

The most common WR methods are Gauss-Seidel (GS) and Jacobi WR, c.f., [85, 87]. Con-
tinuous GS WR is given by

v
(k)
∗ = v(k+1) and w

(k)
∗ = w(k). (4.2)

GS WR is sequential, solving (4.1a) - (4.1d) in order, which makes it sensitive to the order
of the systems in (1.1).

The Gauss-Seidel iteration with relaxation is also commonly referred to ”Successive Over
Relaxation” (SOR) [34, 90]. We do not differentiate between SOR WR and GS WR, since
relaxation is essential in obtaining good convergence rates. Furthermore, no relaxation, i.e.,
v(k+1) = v̂(k+1) corresponds to trivial relaxation with Θv = I.

Jacobi WR is given by

v
(k)
∗ = v(k) and w

(k)
∗ = w(k), (4.3)

allowing parallel computation of (4.1a), (4.1b) and (4.1c), (4.1d).

With u = (vT,wT)T ∈ Rdv+dw , the iteration is typically terminated via one of the fol-
lowing two criteria:

∥u(k+1) − u(k)∥ < TOLWR, or ∥u(k+1)(Tf )− u(k)(Tf )∥ < TOLWR. (4.4)

I.e., if the update is smaller than a given tolerance. The update can be measured in a
function (semi)norm or also commonly in a vector (semi)norm at t = Tf, where updates
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tend to be the largest. One commonly uses a seminorm, measuring the update only in the
subset of unknowns of v resp. w that h resp. g in (1.1) depend on.

Algorithms 4.1 and 4.2 show pseudocodes of the continuous GS and Jacobi WR methods,
the latter one in a parallel version. The trivial initial guesses arev(0) ≡ v0 resp. w(0) ≡ w0.

Pseudocode: Continuous GS WR
1: w(0) ← initial guess
2: for k = 0, . . . , kmax − 1 do
3: v̂(k+1) ← Solve (4.1a)
4: v(k+1) ← Relaxation (4.1b)
5: ŵ(k+1) ← Solve (4.1c)
6: w(k+1) ← Relaxation (4.1d)
7: Check (4.4), break if true
8: end for

Algorithm 4.1: Pseudocode of the continuous GS WR algorithm. Here, v(k)
∗ and w(k)

∗ in (4.1) are given by (4.2). In the steps 3
and 5 one needs to exactly solve a differential equation over the time-interval [0, Tf ].

Pseudocode: Continuous Jacobi WR

Process 0 (p0)
: w(0) ← initial guess
: for k = 0, . . . , kmax − 1 do
: v̂(k+1) ← Solve (4.1a)
: v(k+1) ← Relaxation (4.1b)
: v(k+1) → Send to p1
: w(k+1) ← Recv. from p1
: Check (4.4), break if true
: end for

Process 1 (p1)
v(0) ← initial guess
for k = 0, . . . , kmax − 1 do

ŵ(k+1) ← Solve (4.1c)
w(k+1) ← Relaxation (4.1d)
w(k+1) → Send to p0
v(k+1) ← Recv. from p0
Check (4.4), break if true

end for

Algorithm 4.2: Pseudocode of the continuous Jacobi WR algorithm. Here, v(k)
∗ and w(k)

∗ in (4.1) are given by (4.3). In step 3
one needs to exactly solve differential equations over the time-interval [0, Tf ].

4.2 Time-discrete Waveform relaxation method

When using discrete time-integration to solve (4.1a) and (4.1c), we want to use independent
time-grids and time-integration schemes. This is since the two subproblems in (1.1) may
correspond to different physical phenomena, requiring different time-integration schemes
and stepsizes. We enable this by using interpolants of the respective discrete solutions in
the right-hand sides, which can then be evaluated in all t ∈ [0,Tf ]. We denote discrete
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solutions by

v(k) := {v(k)
n }n=0,...,N (k)

v
and w(k) := {w(k)

n }n=0,...,N (k)
w
,

on time-grids

0 = t(v),(k)0 < . . . < t(v),(k)
N (k)
v

= Tf and 0 = t(w),(k)0 < . . . < t(w),(k)
N (k)
w

= Tf.

The interpolants are continuous functions:

I(v(k)) ∈ C
(
[0,Tf ];Rdv

)
and I(w(k)) ∈ C

(
[0,Tf ];Rdw

)
.

Here, we omit the time-grids as input to the interpolants for ease of notation. We obtain
a time-discrete WR method by using discrete time-integration to solve

˙̂v(k+1)(t) = g
(
t, v̂(k+1)(t), I(w(k)

∗ )(t)
)
, v̂(k+1)(0) = v0, t ∈ [0,Tf ], (4.5a)

˙̂w(k+1)(t) = h
(
t, I(v(k)

∗ )(t), ŵ(k+1)(t)
)
, ŵ(k+1)(0) = w0, t ∈ [0,Tf ], (4.5b)

and choosing v(k)
∗ , w(k)

∗ in accordance with e.g., (4.2) or (4.3).

We consider polynomial interpolation. Then, relaxation is performed in the discrete data-
points as follows

v(k+1)
n = (I−Θvvv) I(v(k))(t(v),(k+1)

n ) +Θvvvv̂
(k+1)
n , n = 1, . . . ,N (k+1)

v , (4.6a)

w(k+1)
n = (I−Θwww) I(w(k))(t(w),(k+1)

n ) +Θwwwŵ
(k+1)
n , n = 1, . . . ,N (k+1)

w . (4.6b)

Pseudocodes of the time-discrete GS and Jacobi WR algorithms are shown in Algorithm 4.3
and 4.4. We use interpolation with evaluation at run-time. I.e., we define the interpolants
once using fixed data-structures for v ∗ and w ∗. We then update v ∗ and w ∗ during the
iteration, affecting the results of subsequent evaluations.

4.3 Convergence Analysis

Similar to [32, 33, 58, 59] we analyze convergence in the linear setting. Consider the follow-
ing monolithic system

Bu̇(t) +Au(t) = f(t), u(0) = u0 ∈ Rd, t ∈ [0,Tf <∞], B nonsingular,
(4.7)
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Pseudocode: Time-discrete GS WR
1: v(0) discrete initial guess + initialize v ∗ and I(v ∗)
2: w(0) discrete initial guess + initialize w ∗ and I(w ∗)
3: for k = 0, . . . , kmax − 1 do
4: w ∗ ← w(k) Update interpolant
5: v̂(k+1) ← Discr. solve (4.5a)
6: v(k+1) ← Relaxation (4.6a)
7: v ∗ ← v(k+1) Update interpolant
8: ŵ(k+1) ← Discr. solve (4.5b)
9: w(k+1) ← Relaxation (4.6b)

10: Check (4.4), break if true
11: end for

Algorithm 4.3: Pseudocode of the time-discrete GS WR method. Here, v(k)
∗ and w(k)

∗ in (4.5) are given by (4.2). Here, one can
use a trivial initial guess for v(0), since it is not used in the iteration.

Pseudocode: Time-discrete Jacobi WR

Process 0 (p0)
: w(0) discrete initial guess
: Initialize w ∗ and I(w ∗)
: for k = 0, . . . , kmax − 1 do
: w ∗ ← w(k) Update interpolant
: v̂(k+1) ← Discr. solve (4.5a)
: v(k+1) ← Relaxation (4.6a)
: v(k+1) → Send to p1
: w(k+1) ← Recv. from p1
: Check (4.4), break if true

: end for

Process 1 (p0)
v(0) discrete initial guess
Initialize v ∗ and I(v ∗)
for k = 0, . . . , kmax − 1 do

v ∗ ← v(k) Update interpolant
ŵ(k+1) ← Discr. solve (4.5b)
w(k+1) ← Relaxation (4.6b)
w(k+1) → Send to p1
v(k+1) ← Recv. from p1
Check (4.4), break if true

end for

Algorithm 4.4: Pseudocode of the time-discrete Jacobi WR method. Here, v(k)
∗ and w(k)

∗ in (4.5) are given by (4.3).

withB,A∈ Rd×d and f Lipschitz-continuous. Here, one can express classical WR method
such as Jacobi and GS WR via constant splittings [33, 58]

B = MB −NB and A = MA −NA, MB nonsingular, (4.8)

and the iteration

MBu̇
(k+1)(t) +MAu

(k+1)(t) = NBu̇
(k)(t) +NAu

(k)(t) + f(t),

u(k+1)(0) = u0, t ∈ [0,Tf ].
(4.9)

The particular splitting (4.8) depends on the WR method, e.g., Jacobi or GS WR, and in-
clude relaxation. We omit dependencies of the splitting matrices on the relaxation matrices
for readability.
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Consider for example the following system of ODEs:(
B1 B2
B3 B4

)
︸ ︷︷ ︸

B

(
v̇(t)
ẇ(t)

)
︸ ︷︷ ︸

u̇(t)

+

(
A1 A2
A3 A4

)
︸ ︷︷ ︸

A

(
v(t)
w(t)

)
︸ ︷︷ ︸

u(t)

=

(
f1(t)
f2(t)

)
︸ ︷︷ ︸

f(t)

,

(
v(0)
w(0)

)
︸ ︷︷ ︸

u(0)

=

(
v0
w0

)
︸ ︷︷ ︸

u0

,

with t ∈ [0,Tf ] and B1, B4 nonsingular. Then, Jacobi WR, without relaxation, is given
by (

B1 000
000 B4

)
u̇(k+1)(t) +

(
A1 000
000 A4

)
u(k+1)(t)

=

(
000 −B2
−B3 000

)
u̇(k)(t) +

(
000 −A2
−A3 000

)
u(k)(t) + f(t),

(4.10)

with t ∈ [0,Tf ] and u(k+1)(0) = u0. The inherent parallelism of this method is reflected
by the block-diagonal structure of the matrices on the left-hand side.

Consider the additive block decomposition B = DB + LB +UB, analogous for A, into
block diagonal and lower & upper triangular parts. Then, Jacobi WR is given byMB = DB
and MA = DA, see (4.10). Analogously, GS WR is given by the block-splittings MB =
DB + LB and MA = DA + LA.

The structures of these splittings are identical to GS and Jacobi methods for solving linear
equation systems [90]. There, one solves the linear equation system

Ax = b, A ∈ Rd×d, x,b ∈ Rd

via a splitting A = MA −NA, with MA nonsingular, and the iteration

xk+1 = M−1
A (NAxk + b) , k = 0, 1, . . . ,

given an initial guess x0 ∈ Rd. As such, WR can be seen as the function space extension
[34].

We can now determine the convergence properties of continuous WR methods by ana-
lyzing the iteration (4.9). Similarly, time-discrete WR methods are described via time-
discretizations of (4.9).

4.3.1 Continuous iteration

The solution of the monolithic problem (4.7) is

u(t) = e−B−1Atu0 +

∫ t

0
eB

−1A(s−t)B−1f(s) ds. (4.11)
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Applying this solution formula to (4.9) yields

u(k+1)(t) = eM
−1
B MAtu0 +

∫ t

0
eM

−1
B MA(s−t)M−1

B

(
NBu̇

(k)(s) +NAu
(k)(s) + f(s)

)
ds.

Here, we replace the u̇(k)(s) term using integration by parts:∫ t

0
eM

−1
B MA(s−t)M−1

B NBu̇
(k)(s)ds =

[
eM

−1
B MA(s−t)M−1

B NBu
(k)(s)

]t
0

−
∫ t

0
eM

−1
B MA(s−t)M−1

B MAM
−1
B NBu

(k)(s)ds.

Then, basic rearrangement yields the solution

u(k+1)(t) = Ku(k)(t) +
∫ t

0
Kc(t− s)u(k)(s) ds+φ(t), (4.12)

with

K = MB
−1NB,

Kc(t) = e−M−1
B MAtMB

−1 (NA −MAMB
−1NB

)
,

φ(t) = e−M−1
B MAt(I−MB

−1NB)u0 +

∫ t

0
eM

−1
B MA(s−t)M−1

B f(s)ds.

By construction via the splittings (4.8), the monolithic solution (4.11) is a fixed point to
(4.12). Consider the error

e(k) := u(k) − u, (4.13)

where u is the monolithic solution (4.11). Taking the difference between (4.12) and (4.11)
yields

e(k+1)(t) = Ke(k)(t) +
∫ t

0
Kc(t− s)e(k)(s)ds, e(k+1)(0) = 000, t ∈ [0,Tf ].

The source term f from (4.7) does not appear here, i.e., it does not affect the WR error.

Let a vector norm ∥ · ∥ be given. For the following theorem, we define the (vector)
function norm ∥e∥[0,t] := supτ∈[0,t] ∥e(τ)∥ and (matrix) function norm ∥A∥[0,t] :=
supτ∈[0,t] ∥A(τ)∥, based on the induced matrix norm.

Theorem 4.1. ([33]) Consider the iteration (4.9) for problem (4.7) with splittings (4.8) and
Tf <∞. Then, the error (4.13) fulfills

∥e(k)∥[0,t] ≤

 k∑
j=0

(
k
j

)
∥K∥k−j∥Kc∥

j
[0,t]

t j

j !

 ∥e(0)∥[0,t], (4.14)

where ∥e(k)∥[0,t] := supτ∈[0,t] ∥e(k)(τ)∥.
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Also see Theorem 6.3, which generalizes this result.

The term ∥Kc∥
j
[0,t]

t j
j ! decreases super-linearly for j →∞, but can lead to large bounds for

large t and small k.

Corollary 4.2. Consider splittings (4.8), Tf <∞ and ρ(K) = ρ(M−1
B NB) < 1. Then, the

iteration (4.9) converges to the solution (4.11).

The continuous WR operator is defined by

W : C([0,Tf ])→ C([0,Tf ]), u→ Ku+Kc ⋆ u+φ,

with the convolution
Kc ⋆ u(t) =

∫ t

0
Kc(t− s)u(k)(s) ds. (4.15)

The spectrum ofW is given by K and is independent of Tf < ∞, since the convolution
has a zero spectrum [33]. However, this no longer holds for Tf =∞. In [33, 85] an example
with convergence for Tf <∞ and ρ(W) > 1 for Tf =∞ is shown. I.e., the spectrum of
the WR operator with Tf =∞ is not the limit of the finite time WR operator for Tf →∞.

It is shown in [42], that the WR operator (for B = MB = I) is nonnormal and its conver-
gence behavior is better described by its Pseudospectrum [83] for large Tf. In particular, the
Pseudospectrum of the finite time WR operator converges to the infinite time one [42].

4.3.2 Time-discrete iteration

Similar to [32, 59], we consider the time-discrete case using convergent and zero-stable
linear multistep methods (LMM), see Appendix 8.1, for constant and matching stepsizes.
Since we consider the linear system of ODEs (4.7), LMM and the linear splittings (4.8)
for WR, we get the relation visualized in Figure 4.1. I.e., one can either apply the WR
splitting to (4.7) to create the iteration (4.9), and then discretize in time, or first discretize
the monolithic problem and then apply the splittings (4.8) in the resulting linear system.

Here, we first discretize in time, which gives

m∑
ℓ=0

(aℓB+ bℓΔtA)un+ℓ = Δt
m∑

ℓ=0

bℓf(tn+ℓ). (4.16)

Then, we use the splittings (4.8) to construct the iteration

m∑
ℓ=0

(aℓMB+bℓΔtMA)u
(k+1)
n+ℓ =

m∑
ℓ=0

(aℓNB+bℓΔtNA)u
(k)
n+ℓ+Δt

m∑
ℓ=0

bℓf(tn+ℓ). (4.17)
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Monolithic ODE Continuous WR

Time-discrete ODE Time-discrete WR

WR split.

time discr. time discr.

WR split.

Figure 4.1: Diagram to visualize the relationship between the monolithic and time-discrete ODE resp. WR. Given a linear ODE,
linear time-integration method and matching time-discretizations, this diagram is commutative.

By construction via the splittings (4.8), the solution to (4.16) is a fixed-point to (4.17). We
define the time-discrete WR error

e(k)n := un − u(k)
n . (4.18)

The difference of (4.16) and (4.17) yields

m∑
ℓ=0

(aℓMB + bℓΔtMA)e
(k+1)
n+ℓ =

m∑
ℓ=0

(aℓNB + bℓΔtNA)e
(k)
n+ℓ. (4.19)

The starting values u(k+1)
ℓ define the starting errors e(k+1)

ℓ , ℓ = 0, . . . ,m− 1. We denote
the above matrices as follows:

Cℓ := aℓMB + bℓΔtMA, Dℓ := aℓNB + bℓΔtNA, ℓ = 0, . . . ,m. (4.20)

In the following Theorem we consider convergence in terms the vector

e (k) := (e(k)m , . . . , e
(k)
N )T ∈ Rd(N−m+1),

representing the discrete solution all in time-points, not including starting values.

Theorem 4.3. ([32]) Consider iteration (4.17) with

Cm nonsingular, ρ(C−1
m Dm) < 1,

exact starting values u(k+1)
i = ui, i = 0, . . . ,m − 1, ∀k ≥ 0 and an initial guess e(0) ∈

Rd(N−m+1). Then, the iteration converges to the solution of (4.16).
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Proof. Consider the so-called ”all-at-once” system

Cm 000 . . . . . . . . . 000
... Cm

. . .
...

C0
. . . . . .

...

000
. . . . . . . . .

...
...

. . . . . . . . . 000
000 . . . 000 C0 . . . Cm


︸ ︷︷ ︸

=:C

e(k+1) =



Dm 000 . . . . . . . . . 000
... Dm

. . .
...

D0
. . . . . .

...

000
. . . . . . . . .

...
...

. . . . . . . . . 000
000 . . . 000 D0 . . . Dm


︸ ︷︷ ︸

=:D

e(k),

c.f. (4.20), with C, D ∈ R(d(N−m+1))×(d(N−m+1)). Both block-lower triangular and
block-Toeplitz structures are preserved under inversion and multiplication with D. Thus,
the iteration matrix C−1D is block-lower triangular and block-Toeplitz, with C−1

m Dm on
its block diagonal, which gives

ρ
(
C−1D

)
= ρ

(
C−1

m Dm
)
. (4.21)

As such, ρ(C−1
m Dm) < 1 is a sufficient criterion for convergence of the iteration.

The assumption of Cm nonsingular is a solvability assumption on the occurring linear sys-
tems in (4.17) resp. (4.19). The result of Theorem 4.3 is consistent with the continuous result
of Corollary 4.2, in that assumptions and asymptotic convergence rate align for Δt → 0.
Furthermore, it is sufficient to look at a single timestep to determine the spectral radius,
which is consistent with the continuous asymptotic convergence rate being independent of
Tf, if Tf <∞.

The iteration matrix is not normal, c.f. Theorem 8.5 in Appendix 8.2. Thus, the spectral
radius is the asymptotic convergence rate for k → ∞. In particular, this can lead to an
initial error growth, which is consistent with the continuous error bound in Theorem 4.1.
The degree of non-normality can be quantified by analyzing the Pseudospectrum [42, 83].

Similar to the continuous iteration, which can be described via the convolution (4.15), the
discrete iteration is a discrete convolution [32].

Definition 4.4. Let f, g defined on Z. A discrete convolution is defined by

(f ⋆ g)[n] :=
∞∑

i=−∞
f [n− i ] g[i ].

In our case, we have compact support and the relationship

e(k+1)
n =

((
C−1D

)
∗ e(k)

)
n
=

n∑
i=1

(
C−1D

)
n−i+1, 1 ei, n = m, . . . ,N,
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due to the Toeplitz structure of C−1D. Here, e(k+1)
n ∈ Rd and

(
C−1D

)
i,j ∈ Rd×d refer

to blocks.

Consider B = MB = I and an explicit LMM characterized by bm = 0. This yields
Dm = 000. As such, the iteration matrix has the spectral radius 0, i.e., convergence is super-
linear. In particular, C−1D is nil-potent and the iteration yields the discrete monolithic
solution after at most N iterations, where N is the number of timesteps.

4.4 Relaxation

We now consider relaxation in the linear setting from Section 4.3. Then, the first step for
both Jacobi and GS WR, omitting the f term, is

B1 ˙̂v
(k+1)(t) +A1v̂

(k+1)(t) = −B2ẇ
(k)(t)−A2w

(k)(t),

v̂(k+1)(0) = v0, t ∈ [0,Tf ],

v(k+1) = v(k) +Θv(v̂
(k+1) − v(k)).

Substitution to eliminate the intermediate solution v̂(k+1), c.f. [34], yields

B1Θ
−1
v v̇(k+1) +A1Θ

−1
v v(k+1) = B1

(
Θ−1

v − I
)
v̇(k) +A1

(
Θ−1

v − I
)
v(k)

−B2ẇ
(k)(t)−A2w

(k)(t), v(k+1) = 000, t ∈ [0,Tf ].

The second steps for both Jacobi and GS WR work analogously. Defining

Θ :=

(
Θv 000
000 Θw

)
and using the same additive block-decompositions from Section 4.3, we get Jacobi WR
with the splittings MB = DBΘ

−1 and MA = DAΘ
−1. Similarly, we get GS WR by

adding LB resp. LA to MB resp. MA. This shows that the splitting description of WR
methods from Section 4.3 includes relaxation.

The error bound (4.14) consists of a linear and a super-linear component. In choosing
relaxation we focus on the linear term K, since it is independent of t and constitutes the
asymptotic convergence rate. Choosing relaxation to minimize the impact of the super-
linear term can lead to better observed convergence rates for large Tf, by reducing possible
initial error growth associated with the super-linear term. This approach is pursued in
[34, 63], using an additional convolution relaxation term.

The canonical relaxation is Θ = ΘI, Θ ∈ R \ {0} and yields MB(Θ) and MA(Θ) with
e.g., MB(Θ) = 1

ΘDB + LB in the GS case. Then, the optimal relaxation parameter Θopt
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is given by
Θcont

opt = argminΘ∈R\{0}ρ
(
M−1

B (Θ)NB(Θ)
)
.

In the time-discrete setting, we have the result (4.21), i.e., in a given time-discretization,
one only needs to consider a single timestep to determine the spectral radius of the iteration
matrix, we get

Θdiscr
opt = argminΘ∈R\{0}ρ

(
C−1

m (Θ)Dm(Θ)
)
.

In particular, Θdiscr
opt depends on Δt and Θdiscr

opt → Θcont
opt for Δt→ 0.

4.5 Windowing

As shown in Theorem 4.1, the WR error bound critically depends on t. In practice, a
large Tf can lead to observed convergence rates slower than the asymptotic ones, or even
an initial error growth. Thus, a common technique [59] is to divide [0,Tf ] into windows
0 = T0 < . . . < TM = Tf and successively perform WR on them. Sufficiently small
time-windows can prevent initial error growth due to the super-linear term in (4.14), resp.
reduce degree of non-normality of C−1D.

The initial value in the time-window [Tm,Tm+1] is u(Tm), the final value of the previous
time-window. The initial value for each time window includes an additional error due to
termination of the iteration when the update is below a given tolerance, see (4.4). With
TOLWR sufficiently small, this error is negligible w.r.t. the time-integration error.

Time-point relaxation [8] is the case when stepsize and window size are equal, i.e., one
timestep per time-window. Thus, it is a special case of WR. Additionally, using only a single
iteration per time-window constitutes an operator splitting, c.f. [20]. In these two variants,
replacing the single timestep per time-window by several steps is referred to subcycling [20].

Lastly, as a practical consideration, the use of time-windows can greatly reduce the memory
cost of storing the interpolants.

4.6 Implementation

Here we provide an overview the implementation framework used, see [51] for the code.
We implemented the WR algorithms in C++, since the WR methods in Chapter 6 resp.
Paper IV require asynchronous MPI functionality only available in C++ or Fortran.

We use a Waveform class for the interpolants from Section 4.2. Evaluation at a time-point
t performs the interpolation. Otherwise, the class has a variety of functions for computing
updates, relaxation and convenient data handling.
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WR methods pose few restrictions on the problems to be coupled and we choose an imple-
mentation framework with minimal requirements on the subproblems. The subproblems
resp. subsolvers only interact via the subset of unknowns of v orw that the respective other
right-hand side in (1.1) depends on. We call these the exchange variables and differentiate
between the input and output variables for a given subproblem.

Since WR methods do not require access to the internal unknowns of a subsolver, we treat
spatial discretizations of PDE subsolvers as black-boxes. We use exchange variables in the
form of real vectors of fixed length. With PDE subsolvers this corresponds to exchanging
e.g., temperatures or heat fluxes in a fixed set of points in space.

We represent a subsolver by the following abstract WRproblem class:

class WRproblem{
protected:
/* ... */
public:

// implementation required
virtual void get_u0(double *uout);
virtual void do_step(double t, double dt, double *uout,
Waveform *WF) = 0;
virtual void create_checkpoint() = 0;
virtual void reset_to_checkpoint() = 0;

// implementation optional
virtual double get_norm_factor(){return 1;};
virtual void callback_iteration(){};
virtual void callback_window(){};
virtual void callback_finalize(){};

};

The purpose of this class is to define the minimal necessary functionality a subsolver needs
to implement for partitioned time-integration using WR methods. The above functions
allow the WR algorithm to control time-integration. It is designed to enable a black-box
coupling.

Figure 4.2 shows the architecture for the parallel Jacobi WR method run with two pro-
cessors, one for each subsolver. With sequential WR methods, such as GS WR, the rela-
tions between the WR code the WRproblem instances are analogous.

The role of an adapter is to be the connecting piece to libraries such as DUNE or FEniCS.
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process 0

WRproblem instance

Library
e.g., FEniCS

Adapter

get_u0

do_step

WR code

Window loop

WR loop

Time-int. loop

Initialization

process 1

WRproblem instance

Library
e.g., DUNE

Adapter

get_u0

do_step

WR code

Window loop

WR loop

Time-int. loop

InitializationComm.

Comm.

Figure 4.2: Our architecture of a parallel WR method, e.g., Jacobi WR, run on two processors. Not shown in this figure: Ter-
mination check (4.4), creation and restoration of checkpoints, and calls of callback functions.

We discuss details on the adapter in Section 4.6.1.

A parallel WR algorithm is executed on each processor and called with an instance of the
WRproblem class each. In the initialization of the WR method the processors exchange
necessary information on in -and output lengths. Additionally, get_u0 is called to obtain
an initial guess of the output exchange variables. These initial guesses are exchanged and
used to initialize the interpolant on the respective other processor.

The WR loop is described by Algorithm 4.4 and time-integration is performed by repeated
calls of the do_step function, which facilitates a single step of time-integration. We cur-
rently assume fixed time-grids with constant, but not necessarily matching stepsizes. As
such, t and Δt are known in advance for every timestep. The output uout is the output
exchange variable at t + Δt. Here, the input exchange variable is represented by a single
interpolant resp. Waveform instance. This does not allow the exchange of intermediate
solutions obtained in the time-integration of a subproblem when using e.g., RK schemes.

Note that with the WR methods shown in this chapter, the WRproblem class could instead
use a function for performing time-integration on the whole time-window. Our choice of
controlling time-integration from the WR loop was done to be consistent with the WR
algorithms presented in Chapter 6 resp. Paper IV , which require this functionality.

Not shown in Figure 4.2 are the create_checkpoint and reset_to_checkpoint
functions, used to create and restore checkpoints of the internal unknowns. A checkpoint
is created at the beginning of each time-window and is restored at the end of each WR
iteration, unless the termination criterion is met.

In the termination criterion (4.4) we compute the 2-norm of the update in either a single,
or both exchange variables combined, at the (window) end-point. By using an additional
weighting factor provided by the WRproblem class, we can create e.g., interface L2 norms.
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The callback functions are invoked at the end of each iteration, time-window and upon
finalizing the simulation. These can be used to e.g., (re)set time-integration related para-
meters or to write internal states of a given problem to disk for visualization.

4.6.1 Adapter

Here, we present the role of the adapter in the context of coupling subproblems solved
with the open source packages DUNE [6] and FEniCS [41]. Our adapter for e.g., DUNE is
not a universal piece of code to couple any conceivable PDE solved with DUNE, but rather
a collection of tools for solving common issues to enable the coupling.

The libraries DUNE and FEniCS offer convenient and efficient tools for constructing PDE
subsolvers, in particular space discretizations. The solutions resp. unknowns are stored
using library specific data-structures. The core role of the adapter is to handle conversion
from and to these data-structures, since we use real vectors in the data exchange. Obtaining
the output exchange variable of a given subproblem requires construction of the solution
in the set of points used for the interface information exchange. The input requires conver-
sion of the discrete interface data to the suitable internal data-structures. With DUNE and
FEniCS this consists of interpolating the input data to discrete function spaces. Note that
both of these operations are performed with every call of do_step.

The development and maintenance of an adapter requires developer rather than mere user
level knowledge of the given libraries to be coupled [84]. The DUNE adapter has been de-
veloped in close collaboration with Robert Klöfkorn [17]. Our FEniCS adapter has been
developed jointly with Benjamin Rodenberg [66] and has been further developed to a uni-
versal adapter for the coupling of FEniCS based subsolvers in preCiCe [64].

When trying to couple an existing subsolver code, one first needs to ensure all involved
libraries support the coupling, e.g., all instances of MPI_COMM_WORLDmust be replaced by
suitable communicators (currently MPI_COMM_SELF). The next step is to restructure the
given subsolver code to fit the abstract WRproblem class, processing inputs and providing
outputs using the correct data-structures. Another likely step is to re-structure existing
time-integration routines, such that they can be called in a step-wise manner using the
do_step function.

Lastly, using external libraries might require crossing the programming language barrier. In
the case of DUNE and FEniCS this means to embed Python in C++, i.e., call Python func-
tions from C++. The most straight-forward way is to use the same principle WRproblem
class structure in e.g., Python and call the respective functions using the C++ to interface
to Python. The latter part is largely independent of the actual problem to be coupled.
Here, both DUNE and FEniCS use the same code for this embedding.
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4.6.2 Discussion

With adaptive time-grids we want subsolvers to choose their own stepsizes. Then, a sub-
solver requires Tf, resp. the endpoint of the current time-window, and needs to output
the stepsize used. With adaptive grids, interpolants are defined by a variable number of
time -and data-points. Then, one requires data-structures that allow efficient allocation of
extra memory at runtime. Alternatively, one estimates an upper bound for the number of
timesteps and allocates sufficient memory.

Changing the WR methods from this chapter to work with adaptive time-grids is straight-
forward. However, our main use of the classical WR methods presented in this chapter
is as reference for the WR methods presented in Chapter 6 resp. Paper IV . There, the
use of adaptive time-grids is not straight-forward. Since optimal relaxation depends on the
stepsizes used, see Section 4.4, we would then want the relaxation parameters to be provided
by a function of the WRproblem class, rather than as input parameters.

Our current implementation, as shown in Figure 4.2, does not support parallelism in the
subsolvers. Changing the code to do so would foremost require a WRproblem instance
to take a MPI_Comm instance as input during initialization. This communicator can then
be used to construct and store the space discretization using multiple processors, which is
standard functionality in DUNE and FEniCS.

The difficulty is to facilitate efficient and scalable communication via the interface. E.g.,
preCiCe establishes fixed communication channels between the processors of the subsolv-
ers whose discretizations include the coupling interface [13, 67]. With surface couplings,
this greatly reduces the number of processors involved in communication between the sub-
problems. However, it severely restricts possibilities for spatial adaptivity and dynamic
load-balancing on the subsolvers.
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Chapter 5

Dirichlet-Neumann Waveform
Relaxation for heterogeneous coupled
heat equations

Consider the linear heat equation on a domain Ω ⊂ Rd as follows:

α(x)∂tu(t,x)−∇ · (λ(x)∇u(t,x)) = 0, (t,x) ∈ (0,Tf ]× Ω,

u(t,x) = 0, (t,x) ∈ [0,Tf ]× ∂Ω,

u(0,x) = u0(x), x ∈ Ω.

(5.1)

Here, λ is the thermal conductivity of the material. The thermal diffusivity D is defined by

D = λ/α, with α = ρcp,

with density ρ and specific heat capacity cp. In particular, we consider Ω = Ω1 ∪Ω2, with
α(x) and λ(x) constant on the subdomains Ω1 and Ω2. We thus denote αm = α

∣∣
Ωm

,
λm = λ

∣∣
Ωm

and um = u
∣∣
Ωm
, m = 1, 2.

Problem (5.1) is equivalent to

αm∂tum(t,x)− λmΔum(t,x) = 0, (t,x) ∈ (0,Tf ]× Ωm, (5.2a)

um(t,x) = 0, (t,x) ∈ [0,Tf ]× Ωm \ Γ, (5.2b)

um(0,x) = u0(x), x ∈ Ωm, m = 1, 2. (5.2c)
u1(t,x) = u2(t,x), (t,x) ∈ (0,Tf ]× Γ, (5.2d)

λ1∇u1(t,x) · n1 = −λ2∇u2(t,x) · n2, (t,x) ∈ (0,Tf ]× Γ, (5.2e)
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in a weak sense [61, Chap.7]. Here, (5.2) is commonly referred to as the unsteady transmission
problem, with transmission conditions (5.2d) and (5.2e) at the interface Γ = ∂Ω1 ∩ ∂Ω2.

We thus consider the following two coupled problems: The Dirichlet problem defined by
(5.2a) - (5.2c) for m = 1 and (5.2d), and the Neumann problem defined by (5.2a) - (5.2c)
for m = 2 and (5.2e).

Overview over chapter

In this chapter, resp. Paper III , we develop a fast and highly robust, time-adaptive WR
method for the specific application of solving heterogeneous coupled heat equations. In
particular, we consider the GS type Dirichlet-Neumann Waveform relaxation (DNWR)
method, while also comparing results to the closely related parallel Neumann-Neumann
Waveform relaxation (NNWR) method.

In Paper III we first derive the continuous, and then semi-discrete DNWR method. We
then discretize the individual subproblems using the implicit Euler resp. second order
SDIRK2 methods to obtain fully discrete DNWR methods. By individually discretizing the
subproblems of the semi-discrete DNWR method, the use of non-matching and adaptive
time-grids is straight-forward.

Here, we present a different approach to deriving the same methods, which provides more
insight into important details when constructing higher order partitioned schemes. We
construct the fully discrete DNWR methods following the same approach used in the time-
discrete WR analysis in Section 4.3.2. That is, we first derive a fully discrete method solving
the monolithic problem (5.1) and then apply suitable splittings (4.8) to obtain a fully discrete
DNWR method. This approach guarantees that solution to the fully discrete monolithic
problem is a fixed point of the resulting iteration, for matching stepsizes. Here, we follow
the notation of Chapter 4, which slightly differs from Paper III .

5.1 Dirichlet-Neumann Waveform relaxation

In the WR approach to DNWR we require the semi-discrete problem as a starting point.
See Section 3 in Paper III for the continuous (space and time) DNWR method.

5.1.1 Semi-discrete iteration

Assume a space discretization in which the unknowns correspond to the nodal values of
a subdivision (e.g., triangulation) of Ω. Then, splittings (4.8) of the semi-discrete PDE
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Ω1 Γ Ω2

Figure 5.1: Example for triangulations of Ω1 and Ω2 with matching nodes on Γ. The different colored circles mark the interior
resp. interface nodes.

corresponds to a decomposition of the spatial domain Ω.

Here, the jump in the coefficients α(x) resp. λ(x) defines a natural decomposition and
we thus consider a subdivision of Ω that aligns at Γ. I.e., subdivisions of Ω1 and Ω2
with matching nodes on Γ. Furthermore, the union of the subdivisions of Ω1 and Ω2 is a
subdivision of Ω without hanging nodes. An example is shown in Figure 5.1.

Consider u =

(
u
(1)
I

T
,u

(2)
I

T
,uT

Γ

)T

∈ Rd1+d2+s as the unknowns on Ω. Here dm, m =

1, 2 is the number of interior unknowns in Ωm and s the number of unknowns on the
interface. Then, a general semi-discretization of (5.1) can be written as

Bu̇(t) +Au(t) = 000, u(0) = u0, t ∈ [0,Tf ], (5.3)

with

B =

B
(1)
II 000 B

(1)
IΓ

000 B
(2)
II B

(2)
IΓ

B
(1)
ΓI B

(2)
ΓI B

(1)
ΓΓ +B

(2)
ΓΓ

 , A =

A
(1)
II 000 A

(1)
IΓ

000 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI A

(1)
ΓΓ +A

(2)
ΓΓ

 . (5.4)

For the consideration of the splitting, we neglect relaxation, i.e., Θ = I. Then, the semi-
discrete DNWR method is given by the iteration

MBu̇
(k+1)(t) +MAu

(k+1)(t) = NBu̇
(k)(t) +NAu

(k)(t), u(0) = u0, t ∈ [0,Tf ],
(5.5)

47



c.f. (4.9), with the splittings

MB =

B
(1)
II 000 000
000 B

(2)
II B

(2)
IΓ

B
(1)
ΓI B

(2)
ΓI B

(2)
ΓΓ

 , MA =

A
(1)
II 000 000
000 A

(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI A

(2)
ΓΓ

 . (5.6)

This result can be summarized with the diagram shown in Figure 5.2. It shows that with our
meshes, the solution of the semi-discrete PDE converges to the solution of the monolithic
PDE for Δx → 0, and by construction, the solution of the semi-discrete PDE is a fixed-
point to the semi-discrete DNWR method.

Monolithic PDE Continuous DNWR

Semi-discrete PDE Semi-discrete DNWR

DN iter.

space discr. space discr.

WR split.

Figure 5.2: Commutative diagram to visualize the relationship between the continuous and semi-discrete PDEs -and DNWR
methods. This guarantees that the solution of semi-discrete PDE is a fixed point to the semi-discrete DNWR method.
The different steps are commutative due to the triangulations of Ω1 and Ω2 sharing the same nodes and interface
unknowns on Γ.

In Paper III we use the common Domain Decomposition approach [82, pp.3] of using
Green’s formula to approximate the semi-discrete heat-flux in a finite element setting as
follows:

λ1

∫
Γ
(∇u1 · n1)ϕj dS = λ1

∫
Ω1

(Δu1ϕj +∇u1∇ϕj)dx

= α1

∫
Ω1

d
dt
u1ϕj dx+ λ1

∫
Ω1

∇u1∇ϕj dx,

with basis functions ϕj to a suitable finite element space. This results in the semi-discrete
heat flux

q(k+1)(t) = B
(1)
ΓI u̇

(1),(k+1)
I (t) +A

(1)
ΓI u

(1),(k+1)
I (t) +B

(1)
ΓΓu̇

(k)
Γ (t) +A

(1)
ΓΓu

(k)
Γ (t). (5.7)

Here, we get the same semi-discrete heat flux by gathering u
(1),(k+1)
I and u

(k)
Γ terms, in-

cluding derivatives, in the third block row of the iteration (5.5).

Paper III also discusses the related Neumann-Neumann Waveform relaxation (NNWR)
method [39, 56, 57], which is based on the same subproblems. It first solves a Dirichlet
problem on each sub-domain, followed by a Neumann problem on each sub-domain, in
parallel. It is not clear how to derive the NNWR method on a WR splitting basis.
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5.2 Time-discretization

We now discuss time-discretizations using implicit Euler and the second order SDIRK2
scheme. Since both the problems and time-integration schemes are linear, we get the same
type of relationship as shown in Figure 4.1. In the context of the DNWR method, the
analogue relationships are shown in Figure 5.3. Here, we follow the same approach as

Semi-discrete PDE Semi-discrete DNWR

Fully-discrete PDE Fully-discrete DNWR

DNWR iter.

time discr. time discr.

WR split.

Figure 5.3: Diagram to visualize the relationship between the semi -and fully-discrete PDEs -and DNWR methods. With carefully
chosen time-integration schemes, c.f. Section 5.2.1, 5.2.2, and matching time-grids, this is a commutative diagram.

in Section 4.3.2, by first discretizing in time and then applying the splittings (5.6) to the
resulting linear systems. By construction, this guarantees a fully-discrete DNWR method
with the solution of the fully-discrete PDE as its fixed-point.

However, the resulting method is not partitioned, since it is based on a time-discretization
of the full semi-discrete PDE. I.e., it uses matching time-grids, relying on the time-point
solutions of the respective other sub-domain. We demonstrate how to obtain the corres-
ponding partitioned method, allowing independent time-grids and adaptivity, by example
for the implicit Euler method.

5.2.1 Implicit Euler

The implicit Euler scheme applied to (5.3) is

(B+ ΔtA)un+1 = Bun

with matrices (5.4). Applying the splittings (5.6) gives the iteration

(MB + ΔtMA)u
(k+1)
n+1 −MBu

(k+1)
n = (NB + ΔtNA)u

(k)
n −NBu

(k)
n ,
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with u
(k+1)
0 = u0. We start the partitioning by splitting this system along the following

marked lines

MB =

 B
(1)
II 000 000
000 B

(2)
II B

(2)
IΓ

B
(1)
ΓI B

(2)
ΓI B

(2)
ΓΓ

 , NB =

 000 000 B
(1)
IΓ

000 000 000
000 000 B

(1)
ΓΓ

 ,

MA, NA analogous, to create two separate iterations for the internal unknowns of Ω1 and
Ω2 plus Γ. In this, we replace all off-diagonal terms by evaluations of suitable interpolants
of the corresponding solutions. The iteration for the internal unknowns in Ω1 is(

B
(1)
II + ΔtA(1)

II

)
u
(1),(k+1)
I,n+1

= B
(1)
II u

(1),(k+1)
I,n −

(
B

(1)
IΓ + ΔtnA

(1)
IΓ

)
I(u(k)

Γ )(tn+1) +B
(1)
IΓ I(u

(k)
Γ )(tn).

Here we replaced u
(k)
Γ,n and u

(k)
Γ,n+1 by evaluations of the interpolant I(u(k)

Γ ). Analogous
replacements for the iteration corresponding to the internal unknowns of Ω2 and Γ yield:(

B
(2)
II + ΔtA(2)

II B
(2)
IΓ + ΔtA(2)

IΓ
B

(2)
ΓI + ΔtA(2)

ΓI B
(2)
ΓΓ + ΔtA(2)

ΓΓ

)(
u
(2),(k+1)
I,n+1

u
(k+1)
Γ,n+1

)

=

(
B

(2)
II B

(2)
IΓ

B
(2)
ΓI B

(2)
ΓΓ

)(
u
(2),(k+1)
I,n

u
(k+1)
Γ,n

)
+ Δt

(
000

−I(q(k+1))(tn+1)

)
.

Here, the interpolated heat-flux I(q(k+1)) is based on the discrete heat fluxes

q
(k+1)
n+1 =

(
B

(1)
ΓI /Δtn +A

(1)
ΓI

)
u
(1),(k+1)
I,n+1 −B

(1)
ΓI /Δtnu

(1),(k+1)
I,n

+
(
B

(1)
ΓΓ/Δtn +A

(1)
ΓΓ

)
I(u(k)

Γ )(tn+1)−B
(1)
ΓΓ/ΔtnI(u

(k)
Γ )(tn).

which is a discretization of (5.7), where the derivatives are approximated by backward dif-
ferences, as defined by the implicit Euler scheme. The computation of the discrete heat-flux
uses evaluations of the interpolant I(u(k)

Γ ) rather than the discrete solutions, since heat-
fluxes and interface temperatures are computed on potentially different time-grids.

The resulting partitioned method exchanges information in the form of the interface tem-
peratures u(k)

Γ and the heat flux q(k+1). We require an initial heat-flux q(k+1)
0 for interpol-

ation, which we obtain by (5.7), approximating derivatives using forward differences. See
Algorithm 1 in Paper III for a pseudocode of this method.
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5.2.2 SDIRK2

See Section 6.2 in Paper III for the definition of the SDIRK2 scheme. Applying it to (5.3)
yields the iteration(

B+ aΔtA 000
−βB B+ aΔtA

)(
U1
un+1

)
=

(
Bun

(1− β)Bun

)
,

with a = 1− 1
2

√
2, β = (1− a)/a. Here U1 is the stage solution. We apply the splittings

(5.6) to all blocks to construct a fully discrete DNWR SDIRK2 method as follows(
MB + aΔtMA 000
−βMB MB + aΔtMA

)(
U

(k+1)
1

u
(k+1)
n+1

)
−

(
MBu

(k+1)
n

(1− β)MBu
(k+1)
n

)

=

(
NB + aΔtNA 000
−βNB NB + aΔtNA

)(
U

(k)
1

u
(k)
n+1

)
−

(
NBu

(k)
n

(1− β)NBu
(k)
n

)
,

with u
(k+1)
0 = u0. This method is an iteration on both the time-point solutions u(k)

n+1 and
the stage solutions U(k)

1 . Partitioning this method as shown for the implicit Euler scheme
then yields an iteration on the interface temperatures and heat fluxes for both the stage
values and time-points. We denote the stage interface temperatures by U

(k)
1,Γ, the stage

heat fluxes by q(k)
1 , and the respective time-point solutions by u(k)

Γ and q
(k)
2 . Note that we

require interpolants for each of these 4 solutions.

The SDIRK2 stage solution is equivalent to an implicit Euler step with stepsize aΔtn and
thus first order accurate. With sufficiently accurate interpolation of the second order ac-
curate time-point solutions, the interpolants of the stage solution and stage flux appear
redundant. Thus, we consider the following replacements:

I(U(k)
1,Γ)← I(u

(k)
Γ ) and I(q(k+1)

1 )← I(q(k+1)
2 ), (5.8)

i.e., replacing evaluations of the stage solution resp. stage flux interpolants by the corres-
ponding interpolants based on the time-point solutions. This yields a total of 4 methods by
applying none, one or both of the above replacements. The fully-discrete DNWR SDIRK2
method in Paper III is the one obtained by only replacing I(U(k)

1,Γ).

First, we consider convergence of these 4 fully-discrete DNWR methods for TOLWR → 0
and a fixed Δt. We want the methods to converge to the solution of the fully-discrete
monolithic PDE. By construction, only the ”no repl.” method should achieve this, since
any replacements introduce an additional error in dependence of Δt. Figure 5.4 shows
exactly this result.
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Figure 5.4: WR splitting error (discrete L2 norm on Ω) w.r.t. the fully-discrete DNWR SDIRK2 method for N = 100 timesteps
and using Θ = 0.6 for relaxation, c.f. Section 5.3. Left: 1D, Δx = 1/51. Right: 2D, Δx = 1/33.

We now consider convergence of the given fully-discrete DNWR methods to the solution
of the semi-discrete PDE, c.f. Figure 5.3, for TOLWR,Δt→ 0. To this end, we measure the
error of the fully-discrete DNWR SDIRK2 methods w.r.t. the solution of the semi-discrete
PDE, by usingTOLWR = 10−13 and a monolithic reference solution with sufficiently small
Δt. Figure 5.5 shows that using both replacements (5.8) results in order reduction.

Figure 5.5: Combined time-discretization and WR splitting error of the fully-discrete DNWR SDIRK2 methods with TOLWR =
10−13 and Θ = 0.6. Left: 1D, Δx = 1/51. Right: 2D, Δx = 1/33.

The ”stage repl.” method presented in Paper III is second order convergent. While it is evidently
not the one with the smallest error, it is more robust than the other second order convergent
variants. That is, observed convergence rates in the multirate and time-adaptive setting are
faster. This is discussed in more detail at the end of Section 5.3.
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5.2.3 Multi-rate and adaptive partitioned time-integration

After the partitioning, it is straight-forward to use non-matching time-grids, including
time-adaptivity, as presented in Chapter 2, when solving the subproblems. Paper III shows
details on the controllers, Δt0 and how to choose TOL in a timestep-controller (2.10) w.r.t.
TOLWR in the WR termination criterion, c.f. (4.4). Algorithm 2 in Paper III shows a
pseudocode for the time-adaptive DNWR SDIRK2 method.

5.3 Optimal relaxation parameter

In the DNWR method we perform relaxation with Θ ∈ R on u
(k)
Γ only, i.e.,

u
(k+1)
Γ,n+1 ← Θu

(k+1)
Γ,n+1 + (1−Θ)u

(k)
Γ,n+1

As shown in Section 4.4, one only needs to consider a single timestep to determine Θopt.
Using the general space discretization from Section 5.1.1, one can determine the iteration
matrix w.r.t. u(k)

Γ using the Schur-complement [82, pp.5], which is

u
(k+1)
Γ,n+1 =

−ΘS(2)−1
S(1)︸ ︷︷ ︸

=:Σ

+(1−Θ)I

u
(k)
Γ,n+1 +ψ,

with S(m) defined by

S(m) :=
(
B

(m)
ΓΓ + ΔtA(m)

ΓΓ

)
+
(
B

(m)
ΓI + ΔtA(m)

ΓI

)(
B

(m)
II + ΔtA(m)

II

)−1 (
B

(m)
IΓ + ΔtA(m)

IΓ

)
.

In the 1D case Σ is a scalar, since the interface is a single point. Then, optimal relaxation
is given by

Θdiscr
opt =

1
|1 +Σ|

.

For linear finite elements on a uniform space discretization in 1D and an implicit Euler
time-discretization, an analytical expression for Σ was computed in [54].

This derivation most notably requires the inverse of the tridiagonal matrixB(m)
II +ΔtA(m)

II .
While this inverse is both large and dense, both matrices multiplied with the inverse are
mostly zero. Using the known Toeplitz structure of B(m)

II + ΔtA(m)
II , one can exactly

formulate its inverse via an Eigendecomposition, yielding an exact expression for S(m).
See [54, 55] for the detailed steps and Paper III for the resulting expression. In particular,
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this result is consistent with analysis of the 1D continuous DNWR method for constant
material coefficients [24, 45].

In the multirate case, i.e., equidistant but non-matching time-grids, we use Θdiscr
opt based on

the larger stepsize. This strategy was determined on a heuristic basis, see Paper III for the
experiments. In the time-adaptive case, we compute the average stepsize on each grid and
then use Θdiscr

opt based on the larger average stepsize. Here, Θdiscr
opt needs to be re-computed

with every iteration, since time-grids may change.

In the previously discussed fully-discrete DNWR SDIRK2 methods, one additionally needs
to perform relaxation on the stage interface temperature U(k)

1,Γ. The computation of this
stage solution is equivalent to a timestep of the implicit Euler scheme with the stepsize
αΔtn and we thus know the optimal relaxation parameter.

However, relaxation in the multirate or time-adaptive case no longer has an exact analytical
basis. Consequently, convergence acceleration for the stage solution and the time-point
solution can differ. For the SDIRK2 methods utilizing interpolants of the stage solution,
this resulted in worse observed convergence rates in the multirate case and failure of the
time-adaptive method. There, a worse convergence acceleration for the stage solution U

(k)
1,Γ

lead to the local error estimate becoming independent of Δtn. This causes the stepsize
control to fail since the local errors do not vanish for Δtn → 0. The method presented in
Paper III avoids this problem, replacing I(U(k)

1,Γ) by I(u(k)
Γ ), only requiring relaxation for

u
(k)
Γ .

5.4 Summary of numerical results

See Section 9 in Paper III for details on the numerical experiments and results. The numer-
ical results for material combinations of air, water and steel can be summarized as follows:

All presented methods (DNWR/NNWR + implicit Euler/SDIRK2 + adaptivity) are shown
to retain their orders of convergence w.r.t. time-integration, i.e., for k → ∞ and Δt → 0
(resp. TOL→ 0 for timestep-adaptivity).

Now, we consider the convergence rates of the WR. SinceΘopt is derived for 1D and implicit
Euler, the important question is the robustness of Θopt. I.e., if the observed convergence rates
match the theoretical ones, and how fast the methods converge in the 2D, SDIRK2 and
the multirate resp. time-adaptive setting. The main results are shown in Figures 5.6 and
5.7, where we measure the convergences rate via the average update reduction rate.

The observed 1D convergences rates align extremely well with the expected rates for both
DNWR and NNWR. Observed 2D convergence rates for DNWR are generally slower than
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Figure 5.6: Left: Air-water. Centre: Air-steel. Right: Water-steel. Observed convergence rates for DNWR algorithm, see Paper
III for details.

Figure 5.7: Left: Air-water. Centre: Air-steel. Right: Water-steel. Observed convergence rates for DNWR algorithm, see Paper
III for details.

the 1D ones, but Θopt is shown to be near optimal. The multirate and singlerate (matching
stepsizes) convergence rates turned out to be indistinguishable. Similarly implicit Euler and
SDIRK2 convergence rates are almost identical. Here it is important to note that DNWR is
convergent regardless of the choice of Θ in our examples. Furthermore, the results appear to
extend well into non-square geometries, as shown for |Ω1| = 9|Ω2|, see Paper III .

The observed NNWR 2D convergence rates align well with the 1D ones in the air-water
and air-steel test-cases, but the method diverges withΘopt in the water-steel case. Unlike for
DNWR, the NNWR method requires a well chosen Θ to be convergent and the range of
convergent Θ is extremely narrow. In particular, it can be smaller than the range defined by
the spatial and temporal limits of the analytical expression for Θdiscr

opt , which is highlighted
in blue in Figures 5.6 and 5.7.

On average, the observed DNWR convergence rates are at least one order of magnitude faster
then the corresponding NNWR rates. These experiments show that DNWR is notably more
robust than the NNWR method.

Finally, we compared performance of the multirate and time-adaptive DNWR methods,
in terms of error vs. number of timesteps. See Figure 5.8 for the results in one test case,
which shows the adaptive method is more efficient.

The time-adaptive method is generally favored, due to the difficulty of finding suitable
stepsize ratios and suitable TOLWR for the termination criterion in the multirate setting.
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Figure 5.8: Left: Air-water. Centre: Air-steel. Right: Water-steel. DNWR work over error comparison for 2D test case, see Paper
III for details on the computational setup.

With the time-adaptive method, both the termination criterion and stepsizes are controlled
via a single tolerance and suitable stepsizes are determined automatically. In our comparison
we based the multirate stepsizes on the material parameters, aiming for comparable CFL
numbers. Tests with two different initial conditions result in notably different stepsize
ratios from the time-adaptive method, showing the adaptive approach to be more robust.
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Chapter 6

Waveform Relaxation with
asynchronous time-integration

We construct a novel and inherently parallel WR method with more information exchange
than Jacobi WR. Our ansatz to increase communication is to exchange the results of each
timestep directly after computation. Any new information is directly incorporated by up-
dating the interpolants, affecting their subsequent evaluations. This increases the informa-
tion exchange and thus enhances convergence rates. We resolve the communication using
asynchronous One-sided-communication in MPI.

Overview over chapter

See Section 4 in Paper IV for a brief introduction to One-sided communication using MPI,
which is asynchronous. Here, we present the principle idea and analytical description of
our new WR method. Additionally, we present the convergence results, which generalize
Theorems 4.1 and 4.3. Paper IV shows the algorithm for practical relaxation as well as the
numerical experiments, which feature the DUNE-FEniCS coupling discussed in Section 4.6.

6.1 Waveform relaxation with asynchronous communication

We use interpolation with evaluation at run-time as described in Section 4.2. I.e., we define
the interpolants once using fixed data-structures corresponding to v ∗ and w ∗. Then, any
updates to the interpolant data directly affect subsequent evaluations. By exposing v ∗ and
w ∗ via MPI_Window objects, one can remotely update interpolants.
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We start with the parallel Algorithm 4.4 and modify it to increase communication. We
move relaxation and communication to the time-step level, i.e., into the time-stepping
loop. We asynchronously communicate new time-point solutions, remotely updating the
corresponding values in v ∗ resp. w ∗ on the other process, using MPI_Put.

Algorithm 6.1 shows the pseudocode for two coupled problems, with a different number
of timesteps Nv ̸= Nw for each subproblem.

Pseudocode: WR with asynchronous time-integration

Process 0 (p0)
: w(0) discrete initial guess
: Initialize w ∗ ← w(0) and I(w ∗)
: Expose w ∗ via MPI_Window
: for k = 0, . . . , kmax − 1 do
: for n = 1, . . . ,Nv do
: v̂

(k+1)
n ← Solve* (4.5a)

: v
(k+1)
n ← Relaxation (4.6a)

: v
(k+1)
n → Put to v ∗ on p1

: end for
: Sync. + Termination check
: end for

Process 1 (p1)
v(0) discrete initial guess
Initialize v ∗ ← v(0) and I(v ∗)
Expose v ∗ via MPI_Window
for k = 0, . . . , kmax − 1 do

for n = 1, . . . ,Nw do
ŵ

(k+1)
n ← Solve* (4.5b)

w
(k+1)
n ← Relaxation (4.6b)

w
(k+1)
n → Put to w ∗ on p0

end for
Sync. + Termination check

end for

Algorithm 6.1: New proposed method using asynchronous communication during time-integration. Note that obtaining the
initial guesses involves communication. Solve* denotes a single discrete timestep in solving (4.5a) resp. (4.5b),
with the interpolants defined in Line 2 in the right-hand sides.

Our new method is defined by

(v
(k)
∗ )n =

{
v
(k+1)
n , if available

v
(k)
n , else

, (6.1)

w
(k)
∗ analogous. Since interpolants are remotely updated, availability is determined by the

present data when evaluating the interpolant. Unlike with GS and Jacobi WR, our v(k)
∗

and w
(k)
∗ can vary for different timesteps and with k, since asynchronous communication

is not deterministic. Due to remote updates, evaluations of the interpolants at the same
time-point but at different real-life times can differ. The analogous continuous WR method
is (4.1) with general v(k)

∗ and w
(k)
∗ varying in both time and with k.

It is possible that we obtain Jacobi or GS WR. Since optimal relaxation matrices can notably
differ for Jacobi and GS WR, constant relaxation is unlike to achieve optimal convergence
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acceleration in our new method. We instead consider relaxation varying with t and k, i.e.,

v(k+1)(t) = v(k)(t) +Θ(k+1)
v (t)

(
v̂(k+1)(t)− v(k)(t)

)
,

w(k+1)(t) = w(k)(t) +Θ(k+1)
w (t)

(
ŵ(k+1)(t)−w(k)(t)

)
,

(6.2)

where Θ(k+1)
v (t) and Θ

(k+1)
w (t) are non-singular diagonal matrices. In Section 7 of Paper

IV we present an improved algorithm with variable relaxation based on the realized com-
munication. There, one needs to deduce v(k)

∗ and w
(k)
∗ , in each timestep, from the realized

communication, to then pick appropriate relaxation for every time-point solution.

6.2 Convergence analysis

Similar to Section 4.3, we analyze convergence in the linear setting for problem (4.7). The
fixed v(k)

∗ andw(k)
∗ in Chapter 4 correspond to the iteration (4.9) with fixed splittings (4.8).

Here, the variable v(k)
∗ and w

(k)
∗ analogously correspond to the iteration

M
(k+1)
B (t)u̇(k+1)(t) +M

(k+1)
A (t)u(k+1)(t)

= N
(k+1)
B (t)u̇(k)(t) +N

(k+1)
A (t)u(k)(t) + f(t), u(k+1)(0) = u0, t ∈ [0,Tf].

(6.3)

with the variable splittings

B = M
(k)
B (t)−N

(k)
B (t), A = M

(k)
A (t)−N

(k)
A (t), M

(k)
B (t) nonsingular, (6.4)

for all t ∈ [0,Tf], k > 0. Similar to the constant splitting case, this formulation does
include variable relaxation (6.2). We omit the dependency on the relaxation matrices for
readability.

6.2.1 Time-discrete WR with asynchronous communication

We describe Algorithm 6.1 by an iteration analogous to (4.17), using convergent and zero-
stable LMM with constant and matching stepsizes. Here, the splitting matrices (4.8) can
differ for each ℓ, n and k. This yields the iteration

m∑
ℓ=0

(
aℓM

(k+1)
B,n,ℓ + bℓΔtM

(k+1)
A,n,ℓ

)
u
(k+1)
n+ℓ

=

m∑
ℓ=0

(
aℓN

(k+1)
B,n,ℓ + bℓΔtN

(k+1)
A,n,ℓ

)
u
(k)
n+ℓ + bℓΔt f(tn+ℓ).

(6.5)

59



Here, the concrete matrices M(k+1)
B,n,ℓ and M

(k+1)
A,n,ℓ are, for each ℓ, n and k, determined

by v
(k)
∗ and w

(k)
∗ , as emerging from the realized communication in e.g., Algorithm 6.1,

including relaxation. These matrices fulfill the splitting property B = M
(k+1)
B,n,ℓ −N

(k+1)
B,n,ℓ ,

A analogous, by which (4.16) is a fixed point to (6.5).

The iteration (6.5) differs from a time-discretization of (6.3) in that e.g., both M
(k+1)
B,n,ℓ and

M
(k+1)
B,n+1,ℓ−1 correspond to M

(k+1)
B (tn+ℓ), but may differ. This is due the remote update of

the interpolant data, by which evaluations of the same time-point, but at different real-life
times can differ.

By taking the difference between (4.16) and (6.5), we see that the discrete WR error (4.18)
fulfills

m∑
ℓ=0

C
(k+1)
n,ℓ e

(k+1)
n+ℓ =

m∑
ℓ=0

D
(k+1)
n,ℓ e

(k)
n+ℓ, (6.6)

with
C

(k)
n,ℓ := aℓM

(k)
B,n,ℓ + bℓ ΔtM(k)

A,n,ℓ, D
(k)
n,ℓ := aℓN

(k)
B,n,ℓ + bℓ ΔtN(k)

A,n,ℓ.

The starting values u(k+1)
ℓ define the starting errors e(k+1)

ℓ , ℓ = 0, . . . ,m− 1.

Theorem 6.1. Let the splittings

B = M
(k)
B,n,ℓ −N

(k)
B,n,ℓ and A = M

(k)
A,n,ℓ −N

(k)
A,n,ℓ, M

(k)
B,n,ℓ nonsingular,

with
C(k)

n,m nonsingular, ∥C(k)
n,m

−1
D(k)

n,m∥ < 1, n = m, . . . ,N (6.7)

and an initial guess

e(0) :=

(
e(0)m

T
, . . . , e

(0)
N

T
)T

∈ Rd(N−m+1)

be given. Then, the iteration (6.5) converges to the solution of (4.16).

Proof. This theorem requires a proof that is structurally different to the one of Theorem 4.3,
since the iteration matrix varies with k. Consider the general iteration e(k+1) = A(k)e(k).
Here, ρ(A(k)) < 1 for all k, is not sufficient to guarantee limk→∞ ∥e(k)∥ = 0.

The proof of this theorem is based on a contraction argument utilizing the specific structure
of the iteration matrices. See Theorem 6.1 in Paper IV for the full proof.

For constant splittings, this result coincides with Theorem 4.3. The assumption of C(k)
n,m

nonsingular in (6.7) is a solvability assumption on the occurring linear systems in (6.6).
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Remark 6.2. Consider Algorithm 6.1 with matching time-grids, i.e., N = Nv = Nw and
constant relaxation. Then, the splitting matrices M(k)

B,n,ℓ resp. M
(k)
A,n,ℓ match those of Jacobi or

GS WR for each ℓ, n, k, due to matching (v(k)
∗ )n and (w

(k)
∗ )n, for each n, see (6.1). Thus, one

only needs to consider three distinct cases for the matrices (6.7). Each one of these is a convergence
requirement for either Jacobi or GS WR. Consequently, time-discrete convergence of Jacobi and
GS WR (in either ordering of (1.1)) means (6.7) is met.

6.2.2 Continuous WR with asynchronous communication

In the previous section, we considered the convergence of the fully discrete WR iteration
(6.5) for Δt fixed for k→∞, which gives (4.16). Here, we instead discuss the convergence
of the continuous iteration (6.3) for k→∞. Before doing so, we would like to point out
that we cannot guarantee that we obtain (6.3) from (6.5) in the limit Δt→ 0. The reason is
that the splittings chosen and thus the matrices M(k+1)

B,n,ℓ resp. M(k+1)
A,n,ℓ in (6.5) can change

with every time step. This would yield M
(k)
B , M(k)

A discontinuous everywhere in the limit
and (6.3) would not be well defined.

The typical scenario for (6.5), as implemented via Algorithm 6.1, is that splittings match
those of Jacobi WR until one subsolver is at least one timestep ahead of another subsolver.
From then on, the splitting matrices match those of GS WR. I.e., for a given k, M(k)

B and
M

(k)
A are piece-wise constant, with a single discontinuity.

We thus assume that the limit has only a finite number of jumps and consider (6.3) in a
piece-wise sense with piece-wise Lipschitz-continuous data. This guarantees existence of a
piece-wise solution of (6.3) for all k > 0. Additionally, we assume that splitting matrices
corresponding to the same time-point, in the same iteration, are identical. E.g., in (6.5)
both M

(k+1)
B,n,ℓ and M

(k+1)
B,n+1,ℓ−1 correspond to tn+ℓ. This can be guaranteed by implement-

ation, storing interpolant evaluations. Now we analyze the convergence properties of (6.3)
under these assumptions.

Consider (4.7) in a piece-wise sense. Its solution with A, B, f time-dependent and piece-
wise Lipschitz-continuous is

u(t) = e−C(t)
(
u0 +

∫ t

0
eC(s)B−1(s)f(s)ds

)
, (6.8)

where
C(t) =

∫ t

0
B−1(s)A(s)ds.

We apply this solution formula to (6.3). Replacing u̇(k) via integration by parts and per-
forming lengthy, but straight-forward rearrangements similar to the fixed splitting case in
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Section 4.3.1, yield the solution

u(k+1)(t) = K(k+1)(t)u(k)(t) +
∫ t

0
K(k+1)

c (s)u(k)(s)ds+φ(k+1)(t), (6.9)

with

K(k)(t) = M
(k)
B

−1
(t)N(k)

B (t),

C(k)(t) =
∫ t

0
M

(k)
B

−1
(s)M(k)

A (s)ds,

K(k)
c (t) = eC

(k)(s)−C(k)(t)
(
M

(k)
B

−1
(s)NA(s)−

d
ds

(
eC

(k)(s)
)
K(k)(s)− d

ds
K(k)(s)

)
,

φ(k)(t) = e−C(k)(t)
((

I−K(k)(0)
)
u0 +

∫ t

0
eC

(k)(s)M
(k)
B

−1
(s)f(s)ds

)
,

(6.10)

where
d
ds

(
eC

(k)(s)
)
=

∫ 1

0
eαC

(k)(s) dC(k)(s)
ds

e(1−α)C(k)(s)dα,

c.f. [88].

Taking the difference between (6.9) and (6.8) yields the following relation for the WR error
(4.13):

e(k+1)(t) = K(k+1)(t)e(k)(t) +
∫ t

0
K(k+1)

c (s)e(k)(s)ds, e(k+1)(0) = 000, t ∈ [0,Tf ].

In the following Theorem, we use the same function norms as in Theorem 4.1.

Theorem 6.3. Let splittings (6.4) withM(k)
B ,M(k)

A and e(0) piece-wise Lipschitz-continuous,
and a finite set of discontinuities over all k > 0 be given. Then, the error (4.13) fulfills

∥e(k)∥[0,t] ≤

 k∑
j=0

(
k
j

)
Kmax(t)k−jKmax

c (t)j
t j

j !

 ∥e(0)∥[0,t],
where Kmax(t) := supk∈N ∥K(k)∥[0,t] and Kmax

c (t) := supk∈N ∥K(k)
c ∥[0,t], c.f. (6.10).

Proof. See Theorem 6.2 in Paper IV .

This result is consistent with constant splitting result in Theorem 4.1 and the time-discrete
result of Theorem 6.1 for Δt→ 0, under the aforementioned assumptions. The asymptotic
convergence rate for k→∞ is bounded by ∥Kmax∥[0,t].
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6.3 Summary of numerical results

See Paper IV for the full details on the experiment descriptions and numerical results. Here,
we provide a brief summary.

We developed a novel parallel WR method, using asynchronous communication on the
time-integration level. Its analytical description and convergence proofs, in the continuous
and time-discrete setting for linear problems, generalizes existing WR theory. In Section 7
of Paper IV we present the algorithm for choosing optimal variable relaxation at runtime.

Our first test case is the problem from Chapter 5 resp. Paper III , here, on matching time-
grids. This test case is conform with the setup in the time-discrete convergence analysis. In
the variable relaxation algorithm we additionally require relaxation parameters for Jacobi
WR and GS WR in the opposite ordering of the subproblems. We derive these using the
established relationships between heat-flux and interface temperature from [54], which are
also presented Paper III , Section 5.3.

The numerical results demonstrate that our new method is convergent, see Figure 6.1, nu-
merically verifying Theorem 6.1. The convergence rates are slower than for GS WR, but
faster than for Jacobi WR. Since our method is parallel, the resulting performance, in terms
of error over (wall-clock) runtime, is slightly better than for the classical WR methods.

Figure 6.1: Left to right: Air-steel, air-water and water-steel. kmarks the number of iterations until (4.4), with TOLWR = 10−10,
is met. We measure the error of the interface temperature w.r.t. a lower tolerance reference solution.

The second experiment is a gas quenching test case in 2D, in which we model the cooling
of a hot steel plate using pressurized air, see Figure 6.2. The solid steel plate is modeled by
the nonlinear heat equation and the air is modelled via the compressible Euler equations.
The subproblems are coupled via a Dirichlet-Neumann approach. The solid solver uses a
finite element discretization implemented in FEniCS [41] and the fluid solver uses a 1st
order finite volume discretization implemented in DUNE [6, 17]. While this test case is
outside the scope of our time-discrete analysis, our methods shows rapid convergence of
the iteration, and demonstrates the DUNE-FEniCS coupling.
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Figure 6.2: Gas quenching test case, cooling of a hot steel plate (bottom) with pressurized air.
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Chapter 7

Conclusions and future work

7.1 Summary and conclusions

Goal oriented time-adaptivity

Similar to previously proposed methods, we derived a simple and easy to implement goal
oriented local error estimator. Implementation comes with little to no extra work and is
well-suited for partitioned approaches to coupled systems.

For the resulting goal oriented adaptive method we show convergence and determine con-
vergence rates w.r.t. the error in the QoI. To obtain tolerance proportionality, sufficiently
high order solutions in all quadrature evaluation points are needed. The proof is construct-
ive and gives rise to a principle to formally show convergence for closely related stepsize
controllers.

Performance of the goal oriented method deteriorates if local errors of underresolved pro-
cesses accumulate in the zero-set of the density function and later shift into its image.
Convection dominated problems are particularly prone to this type of behavior. It is less
problematic for dissipative problems, where slow and global processes dominate the error.

Numerical experiments designed to test these guidelines show them to work well and con-
firm the results on convergence rates. The tests show that bad performance of the goal
oriented method can be predicted and thus avoided. For dissipative test cases, the DWR
method is notably more expensive and outperformed by local error based method. The goal
oriented adaptive method shows good performance in most cases and significant speedups
in some.
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Waveform relaxation

We presented a implementation framework for WR, which enables partitioned coupling of
PDE subsolvers with different space discretizations. In particular, we developed adapters
to enable the coupling of subsolvers implemented in DUNE and FEniCS.

Dirichlet-Neumann Waveform Relaxation for heterogeneous coupled heat equa-
tions

We derived first and second order, multirate resp. time-adaptive DNWR methods for
heterogeneous coupled linear heat equations. The optimal relaxation parameter Θopt for
WR coincides with the one for the time-point relaxation DN iteration (one timestep per
time-window). We experimentally show how to adapt Θopt in the multirate case. The
observed convergence rates using an analytical Θopt for 1D implicit Euler are shown to be
very robust, yielding fast convergence rates for a second order method and in2D, for various
material combinations and multirate settings on long time intervals.

The same tests for the related parallel NNWR method, using identical Dirichlet and Neu-
mann subsolvers, using an analogous analytical Θopt for 1D implicit Euler, show a lack of
robustness. Convergence rates are slower than for the DNWR method and the iteration
diverges in some cases.

The time-adaptive DNWR method is experimentally shown to be favorable over the mul-
tirate DNWR method, i.e., constant but non-matching Δt, due ease of use and superior
performance. The latter is due to the resulting stepsizes being more suitably chosen than
those of the multirate DNWR method. Overall, we obtain a fast, robust, time-adaptive (on
each domain), partitioned time-integration method for unsteady conjugate heat transfer.

Waveform relaxation with asynchronous time-integration

We developed a novel parallel WR method, using asynchronous communication on the
time-integration level. We present an analytical description of our new method and con-
vergence proofs in the continuous and time-discrete setting for linear problems. This gen-
eralizes existing WR theory.

We discuss algorithms for the necessary technical implementation using One-sided com-
munication in MPI. This particularly includes an algorithm for choosing optimal variable
relaxation for two coupled problems.

In numerical tests we demonstrate convergence of our method. For two problems with an
approximately equal computational workload, our new method shows an improved per-
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formance over classical WR methods. This is due an improved convergence rate combined
with solving the subproblems in parallel. In case of not well load-balanced problems, our
new method reverts to classical GS WR.

We demonstrate the functionality of the DUNE-FEniCS coupling in a gas quenching test
case. The problem consists of the compressible Euler equations and the nonlinear linear
heat equation, coupled using a Dirichlet-Neumann approach. Here we use the same relax-
ation parameters as in Chapter 5, leading to rapid convergence of the iteration.

7.2 Future work

Goal oriented time-adaptivity

It would be interesting to test the proposed goal oriented method in the context of PDE-
constrained optimization. There, one repeatedly solves a given PDE for varying parameters.
This could lead to considerable speedups for the optimization process as a whole.

Our analysis is based on a specific type of QoI. It is natural to try to extend our results to
more general QoIs, e.g., point-wise evaluations in time.

One could further generalize this work by using a density function jest in error estimation,
that is not the density function j from the QoI. This adds a degree of freedom in construct-
ing the goal oriented method and can be used to overcome possible weaknesses, such as
vanishing error estimates. This requires further testing and gives rise to the question on
how to choose jest.

Waveform Relaxation

Aside from adding the features discussed in Section 4.6.2, i.e., time-adaptive grids and
parallelism in space for the subsolvers, application to more diverse examples is desired. The
gas quenching example can be refined by using non-cartesian and possibly adaptive spatial
grids, and including viscous fluxes, i.e., using the compressible Navier-Stokes equations.

Dirichlet-Neumann Waveform Relaxation for heterogeneous coupled heat equa-
tions

With both non-matching domain sizes and SDIRK2 one can derive Θopt following the
same principles as in [54]. While this is likely extremely tedious, it would be interesting to
see differences to the Θopt formula presented in Section 5.3 resp. Paper III .
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As remarked at the end of Section 5.1.1, there is no evident way of constructing the NNWR
method via splittings. By possibly introducing some redundancy in the original system,
one might be able to find a corresponding splitting.

The principle recipe for constructing the fully-discrete DNWR SDIRK2 method can be
used in conjunction with higher-order time-integration schemes such as SDIRK3. Lastly,
it is not yet clear why the replacement of both the stage flux and stage solution for the
SDIRK2 method, c.f. Section 5.2.2, only results in a first order accurate method.

Waveform relaxation with asynchronous time-integration

We extended the linear WR theory from Chapter 4 to variable splittings, on finite time-
intervals. Since there already exists theory on the infinite time case and nonlinear WR
[9, 46], it would be interesting to extend these to variable splittings.

It would be highly desirable to extend the variable relaxation algorithm, see Section 7 in
Paper IV , to include adaptive time-grids. This likely results in a technically very involved
method. There, another aspect to consider is how to choose optimal relaxation. In Paper III
we used the heuristic approach of choosing relaxation based on the maximum of the average
stepsizes between both time-grids. Yet, at runtime we have incomplete information about
the time-grids. As such, we need to develop strategies for choosing optimal relaxation based
on local information about the time-grids. Any insights gained from working strategies
should also be applicable to the adaptive DNWR method from Paper III .

Our new method is, similar to Jacobi WR, a parallel in time method. As such, finding
suitable load-balancing techniques is necessary for competitive parallel performance. In
the context of simulations with parallelism in space on each subsolver, a suitable allocation
of computational resources among the subsolvers can help with load-balancing.

WR is a two-stage algorithm [21], most notable by two the nested for-loops in Algorithm 6.1.
The outer-stage is the WR iteration loop over k and the inner-stage is the time-integration
loop.

Our method is a inner-stage asynchronous WR method, since we kept the synchronization
point of the outer loop and use asynchronous communication in the inner time-integration
stage. Outer-stage asynchronous WR has been considered in [21, 46], showing potential
for speed-ups. These two concepts for using asynchronous communication in WR meth-
ods can be combined to construct a inner -and outer stage asynchronous WR method.
Finding and implementing suitable cancellation criteria is nontrivial in outer-stage asyn-
chronous methods, c.f. [3, 15, 44]. This is likely even more difficult with asynchronous
time-integration.
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Chapter 8

Appendix

8.1 Linear multistep methods

See e.g. [27, Chap.3.2] for a comprehensive introduction to linear multistep methods
(LMM).

Definition 8.1. A m-step LMM for (2.1) defined by coefficients aℓ, bℓ, ℓ = 0, . . . ,m and

m∑
ℓ=0

aℓ un+ℓ = Δt
m∑

ℓ=0

bℓ f(tn+ℓ,un+ℓ). (8.1)

We assume ak ̸= 0 and either a0 ̸= 0 or b0 ̸= 0. A m-step LMM requires m initial values
ui, i = 0, . . . ,m− 1, typical obtained by using LMM with an increasing number of steps
or one-step methods. The coefficients aℓ, bℓ, ℓ = 0, . . . ,m define the so called characteristic
polynomials

ρ(z) =
m∑

ℓ=0

aℓzℓ and σ(z) =
m∑

ℓ=0

bℓzℓ.

Definition 8.2. A consistent LMM is called zero-stable if all roots of ρ fulfill |z| ≤ 1 and roots
with |z| = 1 are simple.

8.2 On (block)normal matrices

The following results are included for the sake of completeness. They are not novel and
likely found in many standard textbooks on Linear Algebra.
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The following is based on the Wikipedia article on normal matrices¹.

Lemma 8.3. If R ∈ Rn×n is upper triangular and normal, i.e., RRT = RTR, then R is
diagonal.

Proof. R has the columns Rei and rows RTei. It is diagonal, if

|ri,i| = ∥Rei∥2 = ∥RT ei∥2, ∀ i = 1, . . . , n. (8.2)

We have

|r1,1|2 = ∥Re1∥22 = eT1R
TRe1

R normal
= eT1RRTe1 = ∥RT e1∥22.

This means the first row is zero, except for the diagonal element. We then get (8.2) via
induction.

Theorem 8.4. Consider A ∈ Rn×n regular. A is diagonalizeable iff A is normal.

Proof. Consider A diagonalizeable, i.e. A = VTDV with V orthonormal and D diag-
onal, then

ATA = (VTDV)TVTDV = VTDV(VTDV)T = AAT.

Consider A normal. For any regular matrix there exists a decomposition A = WTRW
with W orthonormal and R upper triangular. We have

ATA = (WTRW)TWTRW = WTRTRW,

AAT = WTRW(WTRW)T = WTRRTW,

⇒ RTR = RRT.

That is, the matrix R obtained via the Schur-decomposition is normal. By Lemma 8.3, we
know that triangular normal matrices are diagonal, meaning the Schur-decomposition is
in fact a diagonalization.

Theorem 8.5. Let R ∈ Rn×n upper block-triangular. R is normal, iff R is block diagonal
with normal diagonal blocks.

Proof. Consider

R =

(
A B
000 C

)
.

¹https://en.wikipedia.org/wiki/Normal_matrix, accessed: 2019-08-20.
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R normal implies
BBT = ATA−AAT.

Using ∥ · ∥2F = trace(·), where ∥ · ∥F is the Frobenius norm, we get

trace(ATA−AAT) = 0 = ∥BBT∥2F ⇔ BBT = 000

and thus B = 000. Similarly this implies that A and C are normal. This extends to matrices
with more blocks by applying the same argument to different groupings of blocks.

Showing the reverse direction is straight forward.

71





Bibliography

Bibliography

[1] C. Andersson. Methods and tools for co-simulation of dynamic systems with the functional
mock-up interface. Dissertation, Lund University, 2016.

[2] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver,
T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak,
I. Tomas, B. Turcksin, Z. Wang, and D. Wells. The deal. II library, version 9.2.
Journal of Numerical Mathematics, 2020.

[3] J. M. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier. A decentralized conver-
gence detection algorithm for asynchronous iterative algorithms. IEEE Transactions
on Parallel and Distributed Systems, 16(1):4–13, 2005.

[4] W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equa-
tions. Birkhäuser, 2013.

[5] A. Banka. Practical Applications of CFD in heat processing. Heat Treating Progress, 5
(5):44–46, 2005.

[6] P. Bastian, M. Blatt, A. Dedner, N. A. Dreier, C. Engwer, R. Fritze, C. Gräser,
C. Grüninger, D. Kempf, R. Klöfkorn, M. Ohlberger, and O. Sander. The DUNE
framework: Basic concepts and recent developments. Computers and Mathematics
with Applications, 81:75–112, 2021. ISSN 08981221. doi: 10.1016/j.camwa.2020.06.
007.

[7] R. Becker and R. Rannacher. An optimal control approach to a posteriori error es-
timation in finite element methods. Acta Numerica 2001, 10:1–102, 2001.

[8] A. Bellen, Z. Jackiewicz, and M. Zennaro. Time-point relaxation Runge-Kutta for
ordinary differential equations. J. Comp. Appl. Math., 45:121–137, 1993.

73



[9] M. Bjørhus. A note on the convergence of discretized dynamic iteration. BIT Nu-
merical Mathematics, 35(June 1994):291–296, 1995.

[10] M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C. Gersbacher,
C. Gräser, F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müth-
ing, M. Nolte, M. Piatkowski, and O. Sander. The Distributed and Unified Numerics
Environment, Version 2.4. Archive of Numerical Software, 4(100):13–29, 2016.

[11] D. L. Brown, J. Bell, D. Estep, B. Hendrickson, S. Keller-McNulty, D. Keyes, J. T.
Oden, L. Petzold, and M. Wright. Applied Mathematics at the U.S. Department of
Energy: Past, Present and a View to the Future. Bulletin of the AmericanMathematical
Society, 56:539–541, 2008.

[12] J. M. Buchlin. Convective heat transfer and infrared thermography (IRTh). Journal
of Applied Fluid Mechanics, 3(1):55–62, 2010.

[13] H. J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, and
B. Uekermann. preCICE – A fully parallel library for multi-physics surface coupling.
Computers and Fluids, 141:250–258, 2016.

[14] P. Causin, J. F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned
algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and
Engineering, 194(42-44):4506–4527, 2005.

[15] J. C. Charr, R. Couturier, and D. Laiymani. A decentralized and fault tolerant con-
vergence detection algorithm for asynchronous iterative algorithms. Journal of Super-
computing, 53(2):269–299, 2010.

[16] P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarter-
oni. Fluid-structure interaction simulation of aortic blood flow. Computers and Fluids,
43(1):46–57, 2011.

[17] A. Dedner and R. Klöfkorn. Extendible and efficient python framework for solving
evolution equations with stabilized discontinuous galerkin methods. arXiv, 2020.
ISSN 23318422.

[18] J. E. Dennis, Jr and J. J. Moré. Quasi-Newton Methods, motivation and theory.
SIAM Review, 19(1):46–89, 1977.

[19] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso. SU2:
An open-source suite for multiphysics simulation and design. AIAA Journal, 54(3):
828–846, 2016.

[20] D. E. et al. Keyes. Multiphysics simulations: Challenges and opportunities. Interna-
tional Journal of High Performance Computing Applications, 27(1):4–83, 2013.

74



[21] A. Frommer and D. B. Szyld. On asynchronous iterations. Journal of Computational
and Applied Mathematics, 123(1-2):201–216, 2000.

[22] S. W. Funke, P. E. Farrell, and M. D. Piggott. Tidal turbine array optimisation using
the adjoint approach. Renewable Energy, 63:658–673, 2014.

[23] M. J. Gander and A. M. Stuart. Space-time continuous analysis of Waveform Relax-
ation for the heat equation. 19(6):2014–2031, 1998.

[24] M. J. Gander, F. Kwok, and B. C. Mandal. Dirichlet-Neumann and Neumann-
Neumann waveform relaxation algorithms for parabolic problems. Electronic Trans-
actions on Numerical Analysis, 45:424–456, 2016.

[25] C. W. Gear. Numerical initial value problems in ordinary differential equations. Prentice
Hall PTR, 1971.

[26] M. Geveler and S. Turek. How applied sciences can accelerate the energy revolution
- A pleading for energy awareness in scientific computing. Newsletter of the European
Community on Computational Methods in Applied Sciences, 2017.

[27] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I.
Springer, Berlin, 1993.

[28] U. Heck, U. Fritsching, and K. Bauckhage. Fluid flow and heat transfer in gas jet
quenching of a cylinder. International Journal of Numerical Methods for Heat & Fluid
Flow, 2001.

[29] M. M. Helsen, W. J. Van De Berg, R. S. Van De Wal, M. R. Van Den Broeke, and
J. Oerlemans. Coupled regional climate-ice-sheet simulation shows limited Green-
land ice loss during the Eemian. Climate of the Past, 9(4):1773–1788, 2013.

[30] M. Hinderks and R. Radespiel. Investigation of hypersonic gap flow of a reentry
nosecap with consideration of fluid structure interaction. In 44th AIAA Aerospace
Sciences Meeting and Exhibit, 2006.

[31] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19(2010):
209–286, 2010.

[32] J. Janssen and S. Vandewalle. Multigrid waveform relaxation on spatial finite element
meshes: the discrete-time case. SIAM Journal on Scientific Computing, 17(1):133–155,
1996.

[33] J. Janssen and S. Vandewalle. Multigrid Waveform Relaxation on Spatial Finite Ele-
ment Meshes : The Continuous-Time Case. SIAM Journal on Numerical Analysis, 33
(2):456–474, 1996.

75



[34] J. Janssen and S. Vandewalle. On SOR waveform relaxation methods. SIAM Journal
on Numerical Analysis, 34(6):2456–2481, 1997.

[35] H. Jasak and A. Jemcov. OpenFOAM: A C++ library for complex physics simulations.
International Workshop on Coupled Methods in Numerical Dynamics, m:1–20, 2007.

[36] R. Jeltsch and B. Pohl. Waveform relaxation with overlapping splittings. SIAM J. Sci.
Comput., 16(1):40–49, 1995.

[37] D. Kowollik, V. Tini, S. Reese, and M. Haupt. 3D fluid–structure interaction analysis
of a typical liquid rocket engine cycle based on a novel viscoplastic damage model.
International journal for numerical methods in engineering, 94(13):1165–1190, 2013.

[38] D. S. C. Kowollik, P. Horst, and M. C. Haupt. Fluid-structure interaction analysis
applied to thermal barrier coated cooled rocket thrust chambers with subsequent local
investigation of delamination phenomena. 4:617–636, 2013.

[39] F. Kwok. Neumann–Neumann Waveform Relaxation for the Time-Dependent Heat
Equation. Domain Decomposition Methods in Science and Engineering XXI, pages 189–
198, 2014.

[40] E. Lelarasmee. The Waveform Relaxation Method for time domain analysis of large scale
integrated circuits: Theory and Applications. Phd thesis, U.C. Berkeley, 1982.

[41] A. Logg, K.-A. Mardal, and G. Wells. Automated solution of differential equations by
the finite element method: The FEniCS book, volume 84. Springer, 2012.

[42] A. Lumsdaine and D. Wu. Spectra and Pseudospectra of Waveform Relaxation oper-
ators. SIAM J. Sci. Comput., 18(1):286–304, 1997.

[43] A. Lumsdaine and D. Wu. Krylov subspace acceleration of waveform relaxation.
SIAM Journal on Numerical Analysis, 41(1):90–111, 2003.

[44] F. Magoulès and G. Gbikpi-Benissan. JACK: an asynchronous communication kernel
library for iterative algorithms. Journal of Supercomputing, 73(8):3468–3487, 2017.

[45] B. C. Mandal. Convergence analysis of substructuring Waveform Relaxation methods for
space-time problems and their application to Optimal Control Problems. PhD thesis,
Université de Genève, 2014.

[46] S. Martin. Parallel asynchrone Waveform-Relaxation für Anfangswertprobleme. Diplo-
marbeit, Bergische University Wuppertal, 1999.

[47] R. Mehta. Numerical computation of heat transfer on reentry capsules at mach 5. In
43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.

76



[48] D. Meidner and T. Richter. Goal-oriented error estimation for the fractional step
theta scheme. Computational Methods in Applied Mathematics, 14(2):203–230, 2014.

[49] D. Meidner and T. Richter. A posteriori error estimation for the fractional step theta
discretization of the incompressible Navier-Stokes equations. Computer Methods in
Applied Mechanics and Engineering, 288:45–59, 2015.

[50] P. Meisrimel. Goal Oriented Time Adaptivity using Local Error Estimates. Licentiate
thesis, Lund University, 2018.

[51] P. Meisrimel. Waveform relaxation with asynchronous time-integration, 2021. URL
https://gitlab.maths.lth.se/PeterMeisrimel/asynch-WFR.

[52] U. Miekkala. Dynamic iteration methods applied to linear DAE systems. Journal of
Computational and Applied Mathematics, 25(2):133–151, 1989.

[53] Modelica Association Project. Functional Mock-up Interface Standard. URL https:
//fmi-standard.org/.

[54] A. Monge. Partitioned methods for time-dependent thermal fluid-structure interaction.
Ph.d., Lund University, 2018.

[55] A. Monge and P. Birken. On the convergence rate of the Dirichlet–Neumann iteration
for unsteady thermal fluid–structure interaction. Computational Mechanics, pages 1–
17, 2017.

[56] A. Monge and P. Birken. Towards a Time Adaptive Neumann-Neumann Waveform
Relaxation Method for Thermal Fluid-Structure Interaction. Proceedings of the 25th
Domain Decomposition conference, pages 1–8, 2018.

[57] A. Monge and P. Birken. A Multirate Neumann–Neumann Waveform Relaxation
Method for Heterogeneous Coupled Heat Equations. SIAM Journal on Scientific
Computing, 41(5):S86–S105, 2019.

[58] O. Nevanlinna. Remarks on Picard-Lindelöf Iteration, Part I. BIT Numerical Math-
ematics, 29(April 1988):328–346, 1989.

[59] O. Nevanlinna. Remarks on Picard-Lindelöf Iteration, Part II. BIT Numerical Math-
ematics, 29(April 1988):535–562, 1989.

[60] S. Prudhomme. A Posteriori Error Estimates of Quantities of Interest. Encyclopedia
of Applied and Computational Mathematics, pages 1–5, 2015.

[61] A. Quarteroni and V. Alberto. Domain decomposition methods for partial differential
equations. Oxford University Press, 1999.

77

https://gitlab.maths.lth.se/PeterMeisrimel/asynch-WFR
https://fmi-standard.org/
https://fmi-standard.org/


[62] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. McRae, G. T.
Bercea, G. R. Markall, and P. H. Kelly. Firedrake: Automating the finite element
method by composing abstractions. ACM Transactions on Mathematical Software, 43
(3), 2016.

[63] M. W. Reichelt, J. K. White, and J. Allen. Optimal convolution SOR accelera-
tion of Waveform Relaxation with application to paralla simulation of semiconductor
devices. SIAM Journal on Scientific Computing, 16(5):1137–1158, 1995.

[64] B. Rodenberg, I. Desai, R. Hertrich, A. Jaust, and B. Uekermann. FEniCS-preCICE:
Coupling FEniCS to other Simulation Software. arXiv preprint, 2021. URL http:
//arxiv.org/abs/2103.11191.

[65] U. Rüde, K. Willcox, L. C. McInnes, and H. De Sterck. Research and education in
computational science and engineering. SIAM Review, 60(3):707–754, 2018.

[66] B. Rüth and P. Meisrimel. FEniCS-preCICE adapter. URL https://github.
com/precice/fenics-adapter.

[67] B. Rüth, B. Uekermann, M. Mehl, P. Birken, A. Monge, and H. J. Bungartz. Quasi-
Newton waveform iteration for partitioned surface-coupled multiphysics applica-
tions. International Journal for Numerical Methods in Engineering, pages 1–22, 2020.

[68] F. SCAI. MpCCI 4.6.1-1 Documentation. Technical Report March 21, Fraunhofer
SCAI, 2021.

[69] S. Schöps, H. De Gersem, and A. Bartel. A cosimulation framework for multirate
time integration of field/circuit coupled problems. IEEE Transactions on Magnetics,
46(8):3233–3236, 2010.

[70] L. F. Shampine. Local Extrapolation in the Solution of Ordinary Differential Equa-
tions. Mathematics of Computation, 27(121):91, 1973.

[71] L. F. Shampine. The step sizes used by one-step codes for ODEs. Applied Numerical
Mathematics, 1(1):95–106, 1985.

[72] L. F. Shampine. Tolerance proportionality in ODE codes. Numerical Methods for
Ordinary Differential Equations, pages 118–136, 1989.

[73] L. F. Shampine. Error Estimation and Control for ODEs. J. Sci. Comput., 25(1):3–16,
2005.

[74] L. F. Shampine and H. A. Watts. Comparing error estimators for Runge-Kutta meth-
ods. Mathematics of computation, 25(115):445–455, 1971.

78

http://arxiv.org/abs/2103.11191
http://arxiv.org/abs/2103.11191
https://github.com/precice/fenics-adapter
https://github.com/precice/fenics-adapter


[75] G. Söderlind. Digital filters in adaptive time-stepping. ACM Transactions on Math-
ematical Software, 29(1):1–26, 2003.

[76] G. Söderlind. The logarithmic norm. History and modern theory. BIT Numerical
Mathematics, 46(3):631–652, 2006.

[77] G. Söderlind, I. Fekete, and I. Faragó. On the zero-stability of multistep methods on
smooth nonuniform grids. BIT Numerical Mathematics, pages 1–19, 2018.

[78] C. Steiner and S. Noelle. On adaptive timestepping for weakly instationary solutions
of hyperbolic conservation laws via adjoint error control. International journal for
numerical methods in biomedical engineering, 26(6):790–806, 2010.

[79] P. Stratton, I. Shedletsky, and M. Lee. Gas quenching with helium. Solid State Phe-
nomena, 118, 2006.

[80] R. Teyssier and B. Commerçon. Numerical Methods for Simulating Star Formation.
Frontiers in Astronomy and Space Sciences, 6(July), 2019.

[81] M. Tokman. A new class of exponential propagation iterative methods of Runge-
Kutta type (EPIRK). Journal of Computational Physics, 230(24):8762–8778, 2011.

[82] A. Toselli and O. B. Widlund. Domain Decomposition Methods – Algorithms and
Theory. Springer, 2005.

[83] L. N. Trefethen and M. Embree. Spectra and pseudospectra: the behavior of nonnormal
matrices and operators. Princeton University Press, 2005.

[84] B. Uekermann, H. J. Bungartz, L. Cheung Yau, G. Chourdakis, and A. Rusch. Of-
ficial preCICE Adapters for Standard Open-Source Solvers. Proceedings of the 7th
GACM Colloquium on Computational Mechanics for Young Scientists from Academia,
2017.

[85] S. Vandewalle. Parallel multigrid waveform relaxation for parabolic problems. Springer-
Verlag, Berlin, 2013.

[86] H. A. Watts. Starting step size for an ODE solver. Journal of Computational and
Applied Mathematics, 9(2):177–191, 1983.

[87] J. K. White and A. Sangiovanni-Vincentelli. Relaxation Techniques for the Simulation
of VLSI Circuits. Kluwer Academic Publishers, Boston, 1987.

[88] R. M. Wilcox. Exponential operators and parameter differentiation in quantum phys-
ics. Journal of Mathematical Physics, 8(4):962–982, 1967.

79



[89] W. Xudong, W. Z. Shen, W. J. Zhu, J. N. Sørensen, and C. Jin. Shape optimization
of wind turbine blades. Wind Energy, 12(8):781–803, 2009.

[90] D. M. Young. Iterative solution of large linear systems. Academic Press, 1971.

80


	Introduction
	Goal oriented adaptivity
	Coupled problems
	Waveform Relaxation
	Thermal Fluid Structure interaction
	Waveform Relaxation with asynchronous time-integration

	Organization of thesis

	Time-adaptivity using local error estimates
	Time adaptivity based on local error estimates
	Error estimation
	Timestep controller
	Convergence in the solution

	On time invariance and asymptotic correctness
	Time invariance
	Asymptotic correctness


	Goal-oriented time-adaptivity using local error estimates
	Goal oriented time adaptivity based using local error estimates
	Error estimate and timestep controller
	Convergence in the quantity of interest

	Numerical results and conclusions

	Waveform Relaxation
	Continuous Waveform relaxation method
	Time-discrete Waveform relaxation method
	Convergence Analysis
	Continuous iteration
	Time-discrete iteration

	Relaxation
	Windowing
	Implementation
	Adapter
	Discussion


	Dirichlet-Neumann Waveform Relaxation for heterogeneous coupled heat equations
	Dirichlet-Neumann Waveform relaxation
	Semi-discrete iteration

	Time-discretization
	Implicit Euler
	SDIRK2
	Multi-rate and adaptive partitioned time-integration

	Optimal relaxation parameter
	Summary of numerical results

	Waveform Relaxation with asynchronous time-integration
	Waveform relaxation with asynchronous communication
	Convergence analysis
	Time-discrete WR with asynchronous communication
	Continuous WR with asynchronous communication

	Summary of numerical results

	Conclusions and future work
	Summary and conclusions
	Future work

	Appendix
	Linear multistep methods
	On (block)normal matrices

	Bibliography
	Paper i: Goal Oriented Time Adaptivity Using Local Error Estimates
	Paper ii: On Goal Oriented Time Adaptivity using Local Error Estimates
	Paper iii: A time adaptive multirate Dirichlet–Neumann waveform relaxation method for heterogeneous coupled heat equations
	Paper iv: Waveform Relaxation with asynchronous time-integration
	Paper v: Waveform Iteration with asynchronous communication



