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Abstract The theoretical approaches for mathemati-1

cal modelling of the convective flows with mass trans-2

fer through the liquid – gas interface are discussed. The3

special attention is payed to modelling with use of the4

classical Boussinesq approximation of the Navier –5

Stokes equations. The diffusion equation and the effects6

of thermodiffusion and thermal diffusivity (the Soret7

and Dufour effects) are taken into account additionally8

to describe vapor and heat transfer processes in the9

gas-vapor phase. The use of the Oberbeck – Boussinesq10

equations allows one to apply the group-analytical meth-11

ods in the theory of the evaporative convection and12

to construct the exact solutions of special type of the13

governing equations. Joint flows of the evaporating liq-14

uid and gas-vapor mixture are studied with the help of15

a partially invariant solution for the convection equa-16

tions. The 2D and 3D solutions are demonstrated to17

simulate two-phase flows in the infinite channels with18

interface being under action of a longitudinal tempera-19

ture gradient and perpendicularly directed gravity field.20

In the present paper the fluid flows with diffusive evapo-21
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ration/condensation in the terrestrial and microgravity22

conditions are studied in the stationary case. The new23

results obtained for combined thermal regime on the24

external rigid boundaries are presented.25
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1 Introduction32

1.1 Theoretical approaches for description of33

evaporation processes34

The need for theoretical study of problems with evap-35

oration or condensation is usually caused by extensive36

use of vapor-liquid environments in manufacturing pro-37

cesses and industrial equipment. Theoretical results ob-38

tained in this area can be applied in the development39

of advanced technologies, where the evaporating liquids40

and/or gas-vapor compounds are used as working me-41

dia. Such modern fluidic technologies are the possible42

alternative to enhance the effective parameters of cool-43

ing systems and thermostabilization technics of elec-44

tronic devices or complex packages, and to modify se-45

tups using evaporators and condensers. In our case,46

physical experiments carried out in the frame of in-47

ternational MAP Evaporation project have played the48

motivating role for theoretical study and development49

of refined models of convection. Doing analytical in-50

vestigation of liquid flows with phase transitions, it is51
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necessary not only to elaborate new mathematical mod-1

els, which adequately describe physical processes, but2

also to reveal the mechanisms of possible crisis phenom-3

ena, to determine capabilities to control arising regimes4

of the fluid motion, to specify the influence character5

of physicochemical factors on the flow structures and6

the evaporation/condensation effects, to estimate and7

to predict the experiment efficiency.8

A serious experimental and theoretical basis for9

study of fluid dynamics problems with evaporation have10

been laid in the 19th century. Starting with the work11

of Lame and Clapeyron [1], where the problem of the12

liquid ball solidification was considered and the first rig-13

orous formulation of the problem with the liquid – solid14

phase transition was given, these and later famous re-15

sults (see [2–9] formed the outlines for development of16

modern approaches in the study of evaporative convec-17

tion. In the experiments of the above cited authors the18

evaporation characteristics have been considered as the19

functions on working media flow rate and temperature,20

on system geometry and fluid properties.21

With rising costs for experiments the significance22

and importance of theoretical investigations also in-23

crease. Theoretical methods involves the development24

of a mathematical model, finding or obtaining new ex-25

act solutions of governing equations or generalizing26

known ones, their physical interpretation and valida-27

tion, and lastly, investigating the stability obtained so-28

lutions.29

Let us distinguish two different approaches to de-30

scribe the transfer processes of momentum and energy31

in the two-layer systems with evaporation. The first32

one implies consideration of these processes separately33

in each phase with appropriate coupling conditions at34

the interface (see, for example, [10,11]). By implemen-35

tation of such approach the Navier – Stokes equations36

are used, and at the interface the mechanical interac-37

tion, heat and mass transfer are taken into account. In38

works [10,12] the interface deformation as a result of39

pressure drop is considered. Evaporation is described40

here as a diffusion process and, correspondingly, as the41

diffusion problem. It is necessary to note a contradic-42

tion between diffusion theory and low evaporation rate,43

that has been discussed in [13]. Second approach pre-44

supposes, that the phases are distributed one into an-45

other according to some law, and one or both phases46

are continuous. At this, equations that characterize be-47

havior system are formulated for medium as a whole48

(see [14]).49

In general case, there is a region near the interface,50

where the flows are not described by the Navier – Stokes51

equations [15]. In this area the non-equilibrium pro-52

cesses should be taken into account. The kinetic theory53

of gases gives one of the possible ways to correctly de-54

scribe these phenomena. In this case the kinetic Boltz-55

mann equation is solved. In conditions, when evapo-56

ration is close to the global equilibrium state charac-57

terized by pressure and temperature values p0 and T0,58

we have so-called “weak evaporation” [16,17]. In that59

case it is possible to neglect the viscous dissipation and60

molecular kinetic energy of vapor in the energy and61

momentum balance equations.62

When constructing the mathematical models for de-63

scription of flows with evaporation a principal issue is64

the choice of a system of equations and formulation65

of general conditions on the interface, which should be66

based on conservation laws and should include the ad-67

ditional effects associated with phase transition. The68

most significant work, which gives a mathematical model69

to describe such processes, was presented by Margerit70

and co-authors [17]. It is based on classical principles71

of thermodynamics of irreversible processes. The ki-72

netic equation Hertz – Knudsen is used to determine73

the mass evaporation rate J taken into account in the74

mass balance equation and in the condition that speci-75

fies the heat flux jump on the interface. The saturated76

vapor temperature is determined using the Clapeyron –77

Clausius equation. The mathematical model proposed78

in [18] is a simplification of the above mentioned model79

[17].80

The feature of approach used in [19] is that it is81

not based on the Gibb’s theory for interface descrip-82

tion but on introduction of the concept of surface heat83

capacity. The following key provisions lie at the core of84

this model: the temperature continuity is not presup-85

posed; the surface divergence of the interface velocity is86

assumed to be zero; the statistical rate theory is used87

to determine the evaporation mass flow rate. In [20] the88

interface conditions are formulated on the basis of inte-89

gral conservation laws with use of the interface Gibbs90

theory when the surface tension coefficient is identified91

with surface specific free energy. The method of de-92

scription the diffusion nature of evaporation is similar93

to the approach in [17] and the presence of surfactants94

on interface are additionally accepted in [20]. In [21–95

23] the free boundary kinematic, dynamic and energy96

conditions are generalized for the case with evapora-97

tion/condensation at the interface. In the later papers98

the kinetic theory is used for the mass evaporation rate99

determination similarly to [17], and the latent heat of100

evaporation is defined as a jump in internal energy. We101

do not cite here the works where the Knudsen theory102

is developed and the Knudsen layer is introduced as103

a strong discontinuity to describe the problems with104

a phase transition.105
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1.2 Exact solutions of the evaporative convection1

equations having the group nature2

The most developed systematic approach to classifica-3

tion and obtaining of the solutions of the governing4

equations is related to application of the group anal-5

ysis methods of differential equations. Ovsyannikov’s6

work [24] laid the foundations of systematic study of7

the group properties of the differential equations of me-8

chanics. The integer-valued characteristics of solutions9

(rank and defect of invariance) have been introduced10

by Ovsyannikov to perform a solution classification,11

and rather simple and effective algorithms have been12

proposed to obtain solutions. Invariant and partially13

invariant solutions of rank 1 and 2 are classified as14

the exact solutions of differential equations [25], widen-15

ing set of solutions classically referred to “exact” ones16

(i. e. written in the form of perfect formulae, quadra-17

tures, series or special functions). Exact solutions that18

have a group nature are particularly valuable because19

they allow one to effectively study the fundamental and20

secondary features of the physical processes described21

by governing equations. The Navier – Stokes or Ober-22

beck – Boussinesq equations provide the natural sym-23

metry properties of space – time and of spatial fluid24

movement implied in deriving these relations.25

A temperature gradient arises in the liquid in the26

presence of evaporation/condensation. For the first time,27

in the framework of the Boussinesq approximation an28

exact solution describing convective flow of the two-29

layer liquid in the presence of a longitudinal tempera-30

ture gradient and mass transfer through the interface31

was presented in [26]. Later the solution was general-32

ized for case of the liquid – vapor-gas mixture system33

with a thermocapillary interface for 2D [27] and 3D34

[28] cases. The group nature of these solutions, that can35

be referred to as the Ostroumov – Birikh type solutions36

(see review in [23]), of their analogues and generaliza-37

tions, including the unsteady case, was proved in [29]38

and [30].39

The idea to use the exact Ostroumov – Birikh so-40

lution to model the joint liquid and gas flows with re-41

spect to evaporation processes at interface is resulted42

from analysis of the experimental results [31–33]. The43

measurement data on the mass flow rate of evaporating44

liquid from the liquid layer surface blown by dry or wet45

gas, as well as the results of quantitative measurements46

of the average velocities of the vortex structures and47

the interface temperature gradient were obtained. The48

experimental data became a starting point for analy-49

sis of the 2D and 3D generalizations of this solution,50

their properties and applicability to modelling real joint51

flows of evaporating liquid and gas-vapor flux in differ-52

ent conditions, including different boundary regimes for53

the vapor concentration and temperature [34,35], and54

conditions of low gravity [36,37].55

2 Mathematical model of evaporative56

convection57

2.1 Basic assumptions and governing equations58

We study the stationary two-layer flows of a volatile59

liquid and vapor-gas mixture in the horizontal chan-60

nel with solid walls (Fig. 1). The vapor is considered61

as a passive component in the gas. The heat and mass62

transfer in the system is described with the help of the63

Boussinesq approximation of the Navier – Stokes equa-64

tions. The vapor transport in the gas is described by65

the diffusion equation, that is a result of the Fick laws66

and of a more general Maxwell – Stefan equation con-67

cerning diffusion in the multi-component systems. Note,68

that in contrast to liquid compounds the Fick laws can69

be applied for description of intermolecular diffusion of70

gases not only under low concentration of an admixture71

but also under modern one [38]. The velocity vectors72

vi = (ui, vi, wi), functions of pressure pi (deviation of73

pressure p′ from the hydrostatic one, p = p′ − ρg · x,74

x = (x, y, z)), temperature Ti and vapor concentration75

C satisfy the convection equations:76

(vi · ∇)vi = − 1

ρi
∇pi + νi∆vi − g(βiTi + γC), (2.1)77

div vi = 0, (2.2)78

vi · ∇Ti = χi(∆Ti + δ∆C), (2.3)79

v2 · ∇C = D(∆C + α∆T2). (2.4)80

Here the index i (subscript or superscript) is responsi-81

ble for belonging to the lower liquid layer Ω1 if i = 1,82

or to the upper gas-vapor layer Ω2 if i = 2, ρi is density83

of i-th fluid, νi, βi, χi are the kinematic viscosity, ther-84

mal expansion, heat diffusivity coefficients of the fluids,85

respectively. Parameters γ and D are the concentration86

coefficient of the gas density and the diffusion coefficient87

of vapor in the gas. The diffusive thermal conductivity88

and thermodiffusion effects are taken into account in89

the gas-vapor layer, and coefficients δ and α character-90

ize the Dufour and Soret effects, respectively. Equation91

(2.4) and underlined terms in (2.1) and (2.3) are used92

to model the motion in the gas-vapor layer only.93

The liquid and gas-vapor mixture have a common94

interface Γ that admits a mass transfer from liquid95

to gas phase due to evaporation or condensation. We96

will suppose that Γ is a weakly deformable boundary.97

Along the surface the thermocapillary forces act. It is98
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Fig. 1 Geometry of flow domain

assumed, that the surface tension σ linearly depends1

on the temperature T : σ = σ0− σT (T − T0); σ0, T0 are2

the reference values of the surface tension and liquid3

temperature, respectively, σT > 0 is the temperature4

coefficient of the surface tension. External boundaries5

of the system defined by equations x = −x0, x = x06

and y = 0, y = 1 are the rigid impermeable walls.7

2.2 Boundary conditions8

The required functions vi, pi, Ti, C should provide cor-9

rect description of the two-layer flows with interface in10

the channel with fixed boundaries, and satisfy not only11

the governing equations, but also definite additional re-12

lations. The following boundary conditions should be13

fulfilled on the boundaries. Relations on Γ contain the14

kinematic and dynamic conditions at thermocapillary15

surface, which in the stationary case can be written as16

follows:17

v1 · n = v2 · n = 0, (2.5)18

(P1 −P2)n = 2σHn +∇Γσ. (2.6)19

Here n is the unit vector of the external normal to Γ di-20

rected from domain Ω1 into Ω2, Pi = −piI+2ρiνiD(vi)21

is the stress tensor of i-th fluid, D(vi) is the velocity-22

strain tensor, H is the mean curvature of Γ (assume23

that H > 0 if the surface is bent outward relative24

to lower layer), ∇Γ is the vector differential operator25

which denotes the surface gradient (∇Γ = ∇−n(n·∇)).26

Projection of full dynamic condition (2.6) on the nor-27

mal and two tangential vectors to the interface gives28

the following scalar relations:29

−p1 + p2 + 2
(
ν1ρ1D(v1)− ν2ρ2D(v2)

)
n · n =

= 2σH,
(2.7)30

2
(
ν1ρ1D(v1)− ν2ρ2D(v2)

)
n · e1,2 = ∇Γσ · e1,2.

Here, the vector triple n, e1, e2 includes the normal

(external relative to Ω1) and tangential vectors at the

interface. In the non-dimensional form the first condi-

tion in (2.7) is written as follows:

Ca
(
− Re(p1 − p2) + 2(D(v1)− ρνD(v2))

)
=

= 2σH,
(2.7)′

where Re = u∗h/ν1 is the Reynolds number, Ca =

ρ1ν1u∗/σ0 is the capillary number, u∗ is the character-

istic velocity, h is the characteristic length, ρ = ρ2/ρ1,

ν = ν2/ν1. On the assumption of that Γ is a weakly de-

formable interface, or the same, the capillary number is

small (Ca� 1), the relations H = 0 and

−Re(p1 − p2) + 2(D(v1)− ρνD(v2)) = 0 (2.7)′′

are a leading term and a consequence of the first order31

term in the expansion of (2.7)′ in this small parameter,32

respectively. The first equality H = 0 means that the33

interface remains a flat surface defined here by x = 0.34

The evaporation/condensation effects are taken into35

account only in the heat balance equation at interface36

similarly to [18]. The heat transfer condition with re-37

spect to the diffusive mass flux due to evaporation/con-38

densation and the mass balance equation are formu-39

lated at the interface Γ in the form:40

κ1
∂T1
∂n
− κ2

∂T2
∂n
− δκ2

∂C

∂n
= −LM, (2.8)41

M = −Dρ2
(
∂C

∂n
+ α

∂T2
∂n

)
. (2.9)42

Here κi is the heat conductivity coefficient, L is latent43

heat of evaporation, M is the evaporative mass flow.44

The function M is the qualitative characteristics that45

is indicative of specifity of the phase transition phe-46

nomena. If M > 0 then the liquid evaporation occurs,47

negative values of M correspond vapor condensation in48

the system. This parameter is introduced specially to49

define the relationship between the thermal and mass50

balance conditions at the interface. Besides, M is an ad-51

ditional quantitative parameter for comparing the ana-52

lytical and experimental results.53

Condition (2.8) takes into account evaporation of54

diffusive type, which is regarded as the weak evapora-55

tion occurring under the conditions of modern temper-56

ature drops. Note that requirement for modern tem-57

perature drop in the system provides a correct applica-58

tion of the Oberbeck – Boussinesq approximation in the59

problem under study.60

The linearized form of an equation for saturated va-61

por concentration on the interface being a consequence62

of the Clapeyron – Clausius equation and Mendeleev –63

Clapeyron equation for an ideal gas is used [35]:64

C
∣∣
Γ

= C∗(1 + ε∗(T2 − T0)
∣∣
Γ

). (2.10)65
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Here C∗ denotes the saturated vapor concentration at1

T2 = T0 (T0 will be equal to 20oC in this paper),2

ε∗ = Lµ/(R∗T 2
0 ), µ is the molar mass of the evapo-3

rating liquid, R∗ is the universal gas constant.4

The continuity conditions of the tangential veloci-5

ties and temperature at Γ are set additionally:6

v1 = v2, T1 = T2. (2.11)7

In the present work we assume that the upper and8

lateral fixed walls of the channel at x = x0, y = 09

and y = 1 to be thermal insulated, i. e. the following10

conditions are imposed for the temperature functions11

on these external boundaries12

∂T2
∂n

+ δ
∂C

∂n
= 0. (2.12)13

But on the substrate at x = −x0 the thermal load is14

applied according to linear law with respect to longitu-15

dinal coordinate:16

T1 = −A1z + T10. (2.13)17

In (2.13) value A1 defines a longitudinal temperature18

gradient and characterizes intensity of thermal load.19

Conditions defining the boundary thermal regime20

can be various. All the boundaries can be heat-insulated21

and relations of form (2.12) should be set, upon that the22

longitudinal temperature gradient are formed only on23

the interface, as well as thermal load according to some24

law can be applied at all the external walls. The real-25

ization of these configurations in experimental setups is26

possible due to arrangement of a number of the ther-27

moelectric modules of a small size on walls (in the first28

case these modules are placed on end wall of a long cu-29

vette away from the test section). The elements can be30

operated independently of each other and to set various31

temperature.32

The no-slip conditions for the velocity fields are ful-33

filled on all the external rigid boundaries of the system:34

vi = 0. (2.14)35

In this paper we consider the case of absence of va-36

por flux on the walls at x = x0 and partially at y = 0,37

y = 1 :38

∂C

∂n
+ α

∂T2
∂n

= 0. (2.15)39

It should be noted that another type of boundary con-40

ditions for vapor concentration on the upper and lat-41

eral rigid boundaries can be used, namely, zero vapor42

concentration condition C = 0. Characteristics of the43

two-layer flows with evaporation under different condi-44

tions for function of vapor concentration C have been45

studied in the 3D statement (see [35]).46

3 Generalization of the Ostroumov – Birikh47

solution48

3.1 General form of exact solution49

Since further mathematical modelling will be based on

exact solutions of the governing equations, we consider

that an infinite channel located in transversely directed

gravity field will be chosen for a canonical region: an

infinite channel with a rectangular cross section in 3D

case (see Fig. 1) and an infinite strip in 2D case (sec-

tion of the 3D channel by a plane y = 0). Let the

gravitational vector be directed opposite to the Ox axis

(g = (−g, 0, 0)). We consider two layers Ω1 and Ω2 in

the 3D case (see Fig. 1)

Ω1 = {(x, y, z) : −x0 < x < 0, 0 < y < 1,−∞ < z <∞},

Ω2 = {(x, y, z) : 0 < x < x0, 0 < y < 1,−∞ < z <∞}

filled by a volatile liquid and gas-vapor mixture with50

an interface Γ ; Γ is defined here by equation x = 051

and assumed to be nondeformed (flat) interface when52

constructing the exact solution (see consequences of the53

dynamic condition (2.7)′ in Subsection 2.2).54

We construct the solution of system (2.1) – (2.4) as55

follows. The velocity vector components (ui, vi, wi) de-56

pend on the transversal coordinates (x, y) only. Tem-57

perature, pressure and vapor concentration functions58

have summandsΘi, qi, Φ also depending on the transver-59

sal coordinates (x, y):60

ui = ui(x, y), vi = vi(x, y), wi = wi(x, y), (3.1)61

pi = −Aρiβig xz + δ2iBρ2γ g xz + qi(x, y), (3.2)62

Ti = −Az +Θi(x, y), (3.3)63

C = Bz + Φ(x, y). (3.4)64

This solution is the partially invariant solution of rank 265

and defect 3 and can be referred to as an “exact” so-66

lution in the comprehensive sense [25]. Coefficients A67

and B specify the constant longitudinal gradients of68

the temperature and vapor concentration along the in-69

terface; δ2i is the Kronecker delta. Presented solution70

is the generalization of the Ostroumov – Birikh solution71

for thermoconcentration convection equations.72

We interpret solution (3.1) – (3.4) as a solution de-73

scribing the three-dimensional flow with the phase tran-74

sition in the working area [0, z0] in a sufficiently long75

cavity. Structure of the exact solution provides preser-76

vation of the flow topology in any two cross-sections z1,77

z2 since the velocity components do not depend on the78

longitudinal coordinate. Furthermore, the solution sat-79

isfies exactly all the governing equations and boundary80

conditions on the interface, and it does not presuppose81

an axial symmetry.82
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3.2 2D analogue of the exact solution1

Due to the group properties of system (2.1) – (2.4) three-2

dimensional solution (3.1) – (3.4) has two-dimensional3

analogue. The 2D solution are characterized by the lin-4

ear dependence of the temperature, vapor concentra-5

tion and pressure functions on the longitudinal coordi-6

nate z; only the longitudinal components of velocity are7

not equal to zero and depend on the transverse coordi-8

nate x:9

ui = 0, wi = wi(x), pi = pi(x, z),

Ti = (ai1 + ai2x)z + ϑi(x), C = (b1 + b2x)z + φ(x).
(3.5)10

It possesses an invariant property with respect to group11

of transformations ∂t, ∂y and Z = −A−1∂z + ρβgx∂p +12

∂T − ρ2γ(B/A)gx∂p2 − (B/A)∂C and, therefore, it is13

solution of rank 1 and defect 3. Exact expressions for14

unknown functions are defined easily as a result of sub-15

stitution of relations (3.5) into the governing equations.16

All the required functions are presented in the polino-17

mial form:18

wi = Li4x
4 + Li3x

3 +
ci1
2
x2 + ci2x+ ci3, (3.6)19

Ti = (ai1 + ai2x)z +N i
7x

7 +N i
6x

6 +N i
5x

5 +N i
4x

4+20

+N i
3x

3 +N i
2x

2 + ci4x+ ci5, (3.7)21

C = (b1 + b2x)z + S7x
7 + S6x

6 + S5x
5 + S4x

4+22

+S3x
3 + S2x

2 + c26x+ c27, (3.8)23

pi =
[
di3
x2

2
+ di2x+ di1

]
z+24

+Ki
8x

8 +Ki
7x

7 +Ki
6x

6 +Ki
5x

5 +Ki
4x

4 +Ki
3x

3+25

+Ki
2x

2 +Ki
1x+ ci8. (3.9)26

The coefficients Lik, N i
j , S

i
j , K

i
l (i = 1, 2; k = 3, 4;27

j = 2, ..., 7; l = 1, ..., 8) are expressed through the physi-28

cal parameters, solution coefficients aim, bm (i,m = 1, 2)29

and integration constants cil (i = 1, 2; l = 1, ...8). The30

exact expressions for these coefficients are presented in31

[39]. All the unknown integration constants cil are deter-32

mined by the boundary conditions. The solution param-33

eters b1, b2, ai1, a
i
2 also satisfy certain relations imposed34

by the boundary conditions. The temperature continu-35

ity condition in (2.11) leads to the relations a11 = a21 =36

A. To uniquely determine all the constants in the frame37

of 2D formulation it is necessary establish an additional38

condition. To correctly close the problem statement the39

mass flow rate of the gas is set40

Q =

h2∫
0

ρ2u2 (x) dx. (3.10)41

When choosing the additional closing condition we take42

into account the configuration of real experimental setup43

that allows to control a flow rate both of a gas/vapor-44

gas mixture and a liquid.45

Algorithm of finding all the integration constants46

and solution parameters in the case of boundary condi-47

tions (2.12) and (2.13) for the temperature functions is48

given in Appendix 1.49

Structure of solution (3.5) allows one to use dif-50

ferent types of boundary conditions for the tempera-51

ture functions. In the framework of the 2D problems52

the characteristics of the two-layer flows with evapora-53

tion/condenstaion described by (3.5) have been studied54

most completely for the case, when the linear in the lon-55

gitudinal coordinate distribution of the temperature on56

both external walls is set (see works cited in Subsec-57

tion 2). Case of combined thermal regime on the rigid58

wall has not been studied systematically yet. In [40]59

the applicability of the Neumann boundary conditions60

for the temperature functions have been discussed, and61

some characteristics of the flows have been presented.62

3.3 Determination of the required functions in the 3D63

case64

Form of solution (3.1) – (3.4) allows one to reduce the65

original three-dimensional problem to the chain of two-66

dimensional problems for finding the unknown func-67

tions (here ui, vi, wi, Θi, Φ). In this case the analytical68

research should be complemented by numerical inves-69

tigations (in comparison with the 2D case, when the70

exact solution construction is carried out fully analyt-71

ically). The reduction procedure of the 3D problem to72

a set of two-dimensional ones is specified in [35]. The73

2D problems are solved numerically with the help of the74

developed numerical algorithm and with use of the au-75

thor’s code. Numerical algorithm is based on the longi-76

tudinal transverse finite difference scheme of second or-77

der approximation being unconditionally stable. Com-78

putation of qi functions will not be needed because of79

reformulation of problems for transverse velocity com-80

ponents in terms of new functions, which are the third81

components of the vector potential and rotor of velocity.82

Description of the general scheme of numerical realiza-83

tion to model the 3D convective two-layer flows with84

evaporation at the interface on the basis of solution85

(3.1) – (3.4) is given in [35] (some additional details for86

this numerical algorithm are given in [37]).87
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4 Characteristics of flow regimes1

4.1 Plane case2

The 2D stationary solutions of type (3.5), that describe3

the convective flows with evaporation, allowed one to4

extend the Napolitano classification [41] for flows aris-5

ing in two-layer systems with the themocapillary inter-6

face. In deriving the classification, the processes of mass7

transfer through the interface were not taken into ac-8

count. Napolitano singled out the flows of the purely9

thermocapillary, mixed and Poiseuille’s flow types, de-10

pending on the dominant effects that define the typical11

velocity profiles in the system.12

We specified the same three classes of flows, analyz-13

ing types of the currents that occurs in a plane channel14

with rigid walls subjected to thermal load distributed15

by linear law of the form (2.13) on each solid boundary:16

Ti = −Aiz + Ti0. (4.1)17

Here, if i = 1 or i = 2 then last condition sets ther-18

mal regime on the lower (x = −x0) or upper (x = x0)19

wall, respectively. In general case different thermal load20

can be applied on the external boundaries (with vari-21

ous gradients Ai and terms Ti0). If the thermocapillary22

effect is a main mechanism of the motion and dominate23

over other factors, then the purely thermocapillary flow24

with a fully return movement in the liquid phase will25

be realized. Mixed flow is characterized by a splitting of26

the velocity profile near the interface. The “layering” is27

caused by interaction of the tangential and thermocap-28

illary forces. The Poiseuille flow will be realized with29

velocity profile close to parabolic one in both phases30

(liquid and gas), when the thermocapillary mechanism31

is suppressed by others (gravity force or significant tan-32

gential stresses due to quite large gas flow rate). The33

flow types are observed independently of the bound-34

ary regime type for the vapor concentration function35

(both zero vapor flux and zero vapor concentration con-36

ditions can be imposed). Essential feature of the flows37

with evaporation/condensation is that in the classifica-38

tion of flow regimes which can be described using exact39

solution (3.5), one should take into account not only40

the velocity profile structure but also the temperature41

distribution in the system. In case when conditions of42

form (4.1) on both walls are set a combined action of43

the thermocapillary effect and evaporation can leads to44

formation of a thermal field with non-uniform temper-45

ature gradients in the transverse direction. As a result,46

in the system the regimes with a thermocline near the47

interface or within the liquid, as well as regimes with48

inclined temperature gradient can appear [42,43].49

As pointed out above, solution (3.5) admits realiza-50

tion of the flow with different temperature gradients Ai51

on the walls and non-zero transverse temperature drop52

when T10 6= T20. Upon that a resulting gradient A on53

the interface is formed. Its value is determined by spe-54

cial conditions of constraint and depends on values of55

Ai, geometry system (fluid layer thicknesses), thermal56

properties of the media and the inclusion/exception of57

the thermodiffusion effects [34,43]. In general case three58

subtypes of mixed flows are identified. The first type of59

mixed flow (mixed flow I) is characterized by a velocity60

profile stratification near the interface and the emer-61

gence of zones with a return current near the interface.62

The main flow mechanisms are the oppositely directed63

tangential stresses induced by the gas flux in the up-64

per layer and thermocapillary forces. Mixed flows of65

the second type (mixed flow II) have a velocity pro-66

file stratification near the interface with a positive lon-67

gitudinal component. Here the co-directed tangential68

stresses and thermocapillary forces are the main flow69

mechanism. Third type mixed flow (mixed flow III) is70

defined by the structure of the velocity field close to the71

Couette profile in one of the phases or simultaneously72

in both.73

Under different thermal load applied on the walls74

there are three subclasses among the Poiseuille’s type75

flows. The first class or classical purely Poiseuille’s flow76

(Poiseuille’s flow I) found also by Napolitano includes77

the regimes with velocity profiles that are close to para-78

bolic ones in the fluids. The Poiseuille’s flow I is char-79

acterized by positive values of the longitudinal veloc-80

ity in each phase, and the pressure gradients are the81

main flow mechanisms. The second class or the first82

type conditionally Poiseuille’s flow (Poiseuille’s flow II)83

is distinguished by formation of reverse movement in84

the near wall area in one of the layers. The pressure85

gradients and viscous forces are the main flow mech-86

anisms. Regimes where the liquid is in the rest state87

due to the thermocapillary effect and the velocity pro-88

file in gas is close to parabolic one refer to the third89

class or the second type conditionally Poiseuille’s flow90

(Poiseuille’s flow III). Here the thermocapillary effect91

and tangential stresses induced by co-current gas flux92

are the main and competing mechanisms. It is empha-93

sized that mixed flows of the second type, as well as94

the conditionally Poiseuille’s flows of both types, can95

appear only under conditions of different thermal loads96

applied on the outer channel walls (at different values97

of longitudinal temperature gradients prescribed at the98

rigid boundaries).99

This expansion of the Napolitano classification for100

motion types was obtained for the case when conditions101

of form (4.1) on both walls were fulfilled. If the com-102

bined thermal regime on the rigid boundaries is set (i. e.103

conditions (2.12) and (2.13) are imposed), then all the104



8 V. B. Bekezhanova1,2, O. N. Goncharova3

-2.2413 0.4016 3.0445
-2.5

0

5

 u, mm/s

 y, mm

0 0.02 0.04
 x, m

292.9

293.5

294.1

 T, C
o

0 0.02 0.04
 x, m

0.461

0.464

0.469

 C

(a) (b) (c)

Fig. 2 Distributions of the longitudinal velocity w(x) (a), temperature T (x, z) (b) and vapor concentration C(x, z) (c) in the
system with A1 = A = −7 K/m under terrestrial gravity (g = g0 = 9.81 m/s2) at x0 = 2.5 mm, Q = 9.6 · 10−6 kg/(m·s2)

same subclasses of the flows can be realized. Examples1

of configurations with pure thermocapillary (Fig. 2),2

mixed (Fig. 3), and Poiseuille’s (Fig. 4) flows are given3

for system like “HFE-7100 – nitrogen” with upper ther-4

mally insulated wall. In all cases the gas layer thick-5

ness x0 and length of test section z0 were chosen to6

be equal to x0 = 5 mm and z0 = 5 cm, respectively.7

The physico-chemical parameters of the media are pre-8

sented in Appendix 2 [44]. In Figs. 3(a,d,g) profiles of9

velocity of mixed I, mixed II, mixed III flow types are10

shown, respectively, as well as Figs. 4(a,d,g) present11

profiles of Poiseuille’s I, Poiseuille’s II, Poiseuille’s III12

flow types. Thus, the use of the different types of bound-13

ary conditions for the temperature functions does not14

lead to additional expansion of the Napolitano classifi-15

cation based only on the analysis of velocity field pat-16

tern in the system.17

As for the structure of the temperature field one18

should note that thermal insulation of the upper bound-19

ary provides mostly conditions for formation of the tem-20

perature field that is uniform in the transversal direc-21

tion with potentially stable (Figs. 2(b), 3(e,h), 4(e)) or22

unstable (Figs. 4(b,h)) temperature stratification. How-23

ever, regimes with the thermocline (Fig. 3(b)) can ap-24

pear in the considered case also. In this case in the25

system the domains with gravitationally stable and un-26

stable stratification coexist, therefore, additional mech-27

anisms of instability can appear.28

4.2 Three-dimensional flows29

Numerical investigations of the evaporative convection30

regimes on the basis of 3D solution of form (3.1) – (3.4)31

are carried out to compare the characteristics of pos-32

sible regimes, obtained in the frame of 2D and 3D ap-33

proaches, to understand impact of the third spatial di-34

mension, and to elucidate feasibility of 2D solution for35

description of real physical flows.36

We investigate the flow topology, distributions of37

the temperature in the channel and vapor concentra-38

tion in the upper layer computed for the same system39

of working media and the same configurations (layer40

thicknesses, gravity field intensity, etc.) as for 2D case.41

In the 3D pictures the fluid tube projections on the42

z = 0 and z = 2.5- cross-sections and trajectories of the43

fluid particles (Figs. 5(a,b), 6(a)), fields of temperature44

in the system (Figs. 5(c,d), 6(b)) and vapor concentra-45

tion distribution in the gas layer (Figs. 5(e,f), 6(c)) are46

presented for several cases. Basic characteristics shown47

in Figs. 5, 6 correspond to configurations for the flows48

of the purely thermocapillary (Figs. 5(a,c,e)), mixed II49

(Figs. 5(b,d,f)) and Poiseuille’s III (Fig. 6) types in 2D50

case.51

The 3D solution allows us to describe the roll-type52

convection when ordered patterns with the centerlines53

directed along the longitudinal axis appear. Upon that54

the planforms of the flows, that are the projections of55

the fluid tubes on the (x, y)-plane, are changed depend-56

ing on the character of the applied thermal load, gravity57

level, and liquid layer thickness (compare topological58

structure of the flows in Fig. 5(a,b), 6(a)). For consid-59

ered cases the motion has mainly translatory charac-60

ter that is occasioned by the thermocapillary effect ac-61

tion. Rotational motion is just weak. In order to show62

a presence of the rotational component of the flows we63

multiply the first and second velocity components of64

the liquid by factor 105 for all the configurations un-65

der consideration. The fluid trajectories are rounded66

the fluid tubes along the channel. The Marangoni force67

induces a movement of the liquid from hot domain to68

cold one, thus direction of the motion in the subsur-69

face depends on value of the temperature gradient A.70

But the thermocapillary effect can both dominate and71
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Fig. 3 Distributions of the longitudinal velocity w(x) (a,d,g), temperature T (x, z) (b,e,h) and vapor concentration C(x, z)
(c,f,i) in the system being under terrestrial gravity with A1 = A = −18 K/m at x0 = 3.5 mm, Q = 9.6 ·10−5 kg/(m·s2) (a – c),
with A1 = A = 7 K/m at x0 = 3 mm, Q = 9.6 ·10−6 kg/(m·s2) (d – f), with A1 = A = 20 K/m at x0 = 1.5 mm, Q = 9.6 ·10−6

kg/(m·s2) (g – i)

determine completely the hydrodynamical structure of1

arising regime and compete with other mechanisms. In2

the case corresponding to the purely thermocapillary3

flow a fully counter motion in the liquid is predicted by4

the 3D solution in exactly the same way as by its 2D5

analogue (compare Figs. 2(a) and 5(a)). The visualized6

trajectories in Fig. 5(a) are given for liquid particles7

with initial location at z = 2. Influence of rival mech-8

anisms can be seen distinctly in Fig. 5(b) obtained for9

the case appropriate to the mixed flow II. The liquid10

motion is reverse at the bottom of liquid layer where11

liquid particles shift in the opposite direction of the z-12

axis, whereas near the interface the liquid moves to re-13

gion with lower temperature (in the direction of z-axis).14

In the figure the trajectories are given for fluid particles15

with initial location at z = 1. The velocity profile pre-16

sented in Fig. 3(d) for this flow type in the plane case17

forecasts similar topological pattern. It should be noted18

that in the 3D case a complication of spatial structure of19

the flow occurs in comparison with other configurations20

under consideration. The rolls are splitted into smaller21

shafts; “stratification” of the liquid is observed with22

formation of a two-layered roll-type structure. At this,23

defective rolls arise in the lower part of the liquid layer24

(compare planforms in Fig. 5(b) and in other cases).25

Any distortion of the regular form for the thermocap-26
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Fig. 4 Distributions of the longitudinal velocity w(x) (a,d,g), temperature T (x, z) (b,e,h) and vapor concentration C(x, z)
(c,f,i) in the system with A1 = A = −2 K/m at x0 = 5 mm, Q = 9.6 · 10−6 kg/(m·s2), g = g0 (a – c), with A1 = A = 5 K/m
at x0 = 5 mm, Q = 9.6 · 10−6 kg/(m·s2), g = g0 (d – f), with A1 = A = −5 K/m at x0 = 3 mm, Q = 9.6 · 10−5 kg/(m·s2),
g = g0 · 10−2 (g – i)

illary rolls points to a presence of a competitive mech-1

anism. For the Poiseuille’s III type flow an intensifica-2

tion of rotational movement takes place in the 3D case3

(compare liquid particle trajectories in Figs. 6(a) and4

5(a,b)), whereas the 2D solution describes the regime5

with quiescent liquid. Impact of the transversal spatial6

dimensions is manifested in this way. Thus, alteration of7

the planforms, and consequently, of a spatial structure8

of the flows allows one to gauge a character and na-9

ture of influence of particular factors. But in the plane10

case the velocity profile gives qualitative information11

with respect to a possible topological structure of the12

two-layer flows.13

As for thermal characteristics and vapor content for14

the two-layer flow regimes one can see that a good qual-15

itative agreement between 2D and 3D distributions of16

the temperature and vapor concentration takes place.17

It suffices to compare the corresponding patterns of the18

temperature and vapor concentration fields for plane19

and three-dimensional configurations (Figs. 2(b),(c) and20

Figs. 5(c),(e) for the purely thermocapillary flow,21

Figs. 3(e),(f) and Figs. 5(d),(f) for the mixed type flow,22

and Figs. 4(h),(i) and Figs. 6(b),(c) for the Poiseuilles’s23

flow), and one can conclude that the 2D solution pre-24

dicts exactly structure of the thermal field and vapor25

content in the gas. Thus, we can forecast an appearance26
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Streamlines and trajectories (a,b), temperature (c,d) and vapor concentration (e,f) in the system being under terrestrial
gravity (g = g0) with x0 = 2.5 mm, A1 = −7 K/m (a,c,e); with x0 = 3 mm, A1 = 7 K/m (b,d,f)

of the regimes with potentially stable or unstable tem-1

perature stratification and evaluate parameters related2

to the evaporation/condensation effects (for example,3

mass flow rate) or to boundary thermal regime in the4

frame of 2D approach. It simplifies significantly prepa-5

ration and design of physical experiments with regard6

to determination of required parameters for experimen-7

tal setup and to elicitation of the influence of different8

system parameters, including thermophysical proper-9

ties of working media. Since the results obtained with10

the help of the 2D and 3D exact solutions under study11

are in agreement among themselves and with known12
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(a) (b)

(c)

Fig. 6 Streamlines and trajectories (a), temperature (c) and vapor concentration (e) in the system being in microgravity
(g = g0 · 10−2) with x0 = 3 mm, A1 = −5 K/m

experiment data it is reasonable to expect that charac-1

teristics of the stability derived on the basis of the 2D2

solution for different configurations in [34,36] can be3

used to define parameters of the control actions which4

guarantee the stability of the arising flow regimes. Then5

in solving the stability problem for 2D solution it is6

much easier to determine the mechanisms suppressing7

undesirable perturbations.8

The main feature of the 3D solution is that it de-9

scribes appearance of thermocapillary longitudinal shafts10

observed in the physical experiments [32,33,45] and of11

different assemblies of convective cells being the ele-12

ments of a space-periodic structure of the flow. In ad-13

dition, the spatial size of the cells can be determined14

depending on the system configuration and parameters15

of external actions. We use the “cell” term to refer to16

a pair of adjacent rolls (or shafts with defects) with17

opposite circulation. The question of what planforms18

can be observed in real conditions is the part of the19

general issue of flow feasibility. Once again we stress20

that the exact solution was obtained without any as-21

sumptions relating to the axial symmetry. Let us note22

that the 3D solution under study allows one to describe23

a formation of the regimes with a thermocline and with24

more complex patterns of temperature field like thermal25

rolls, thermal shafts with a defect (so-called thermal26

“horns”), thermal “plume” structure [35,37]. Further-27

more, the different pattern of the vapor concentration28

field can be predicted, for example, solutal shafts and29

concentration “plume” [37].30

5 Concluding remarks31

Exact solutions of the evaporative convection equations32

allows one to generalize the Napolitano classification33

of the two-layer flow types both in 2D and 3D case.34

This generalization implies consideration of the plan-35

form type and of the thermal pattern form realized36

in a concrete liquid – gas system under certain condi-37

tions. A classification regarding the vapor content is38

not needed since the solution provides the qualitative39

agreement of the temperature and concentration char-40
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acteristics, and distribution of the vapor concentration1

is determined by the temperature.2

The two-dimensional analogue of the solution gives3

adequate description of the hydrodynamic, thermal and4

concentration characteristics of the regimes of evapo-5

rative convection that arise in a two-layer system. The6

results derived with the help of 2D solution can be used7

to obtain preliminary evaluations of effective parame-8

ters for the system, to specify a dependence of the flow9

characteristics on the problem parameters and to have10

a possibility to forecast transient regimes and poten-11

tial crisis phenomena related to the loss of stability of12

the basic state of system. The three-dimensional solu-13

tion allows one to describe complicated motions with14

different symmetry and competitive roll structures and15

thermally different flow classes with dissimilar pattern16

of the temperature field.17

Both 2D and 3D solution enable to test different18

types of boundary conditions for the temperature and19

vapor concentration functions and to study influence of20

the boundary regimes on the characteristics of two-layer21

flows with diffusive type evaporation/condensation in22

long channels or in the test sections of the fluidic path.23

Results obtained on the basis of the presented solutions24

help us to move forward in understanding mechanisms25

of formation of different regimes in the systems with26

phase transition.27

6 Appendix 128

When constructing the solution the case with the con-29

stant evaporation mass flow rate M = const is consid-30

ered. The deceptively simple case allows one to perform31

the comparison with the values of M obtained in exper-32

iments and presented as trendlines [46].33

Note that if the Dufour and Soret effects are taken34

into account simultaneously in boundary conditions for35

the temperature and vapor concentration (2.12) and36

(2.15), then these conditions can be replaced by equal-37

ities38

∂T2
∂n

= 0,
∂C

∂n
= 0. (A.1)39

Due to conditions (A.1) we have a22 = 0, b2 = 0 and

c26 = − (x0)4

24

g

ν2
E1E2 −

(x0)3

6
E2c

2
1−

− (x0)2

2
E2c

2
2 − x0E2c

2
3,

where coefficients E1, E2 and B1 are expressed in the

following form:

E1 = β2A+γb1, E2 =
b1
D
−αB1, B1 =

DA− χ2δb1
Dχ2(1− αδ)

.

Continuity conditions for the velocity and tempera-40

ture (2.11) at the interface result in equalities of coeffi-41

cients c13 = c23, c15 = c25.42

Parameter a12 is defined by relation a12 = (A−A1)/x043

owing to linear temperature distribution (2.13) on the44

lower wall x = −x0.45

Heat balance condition (2.8) leads to the following46

equalities:47

κ1a
1
2 − κ2a22 − δκ2b2 = 0,

κ1c
1
4 − κ2c24 − δκ2c26 = −LM,

(A.2)48

where the mass flow rate of evaporating liquids is deter-

mined by relation M = −Dρ2(c26 + αc24) obtained from

the mass balance equation (2.9). Since a22 = b2 = 0

the first condition in (A.2) implies that a12 = 0. Con-

sequently, equality of the temperature gradients on the

lower wall and the interface is fulfilled: A1 = A. The sec-

ond condition in (A.2) allows one to express constant

c14:

c14 =
LDρ2(c26 + αc24)κ2c

2
4 + δκ2c

2
6

κ1
.

Condition for saturated vapor concentration (2.10)49

has as a consequence the relations b1 = C∗ε∗A and50

c27 = C∗(1 + ε∗c
2
5).51

Dynamic conditions (2.7) defines correlations be-

tween coefficients c11 and c21, c12 and c22:

c12 = ρνc22 +
σTA

ρ1ν1
, c11 = ρνc21.

Notation ρ and ν have been introduced in Subsection 2.252

(see formula (2.7)′).53

Integration constant c21, c22, c23 are determined as

a solution of the equation system obtained from the

no-slip conditions on both walls of the channel (2.14)

and additional condition (3.10):

x20
2
ρνc21 − x0ρνc22 + c23 =

σTA

ρ1ν1
x0 +

gβ1A

6ν1
x30,

(x0)2

2
c21 + x0c22 + c23 = − g(x0)3

6ν2
E1,

(x0)3

6
c21 +

(x0)2

2
c22 + x0c23 =

Q

ρ2
− (x0)4

24

g

ν2
E1.

From knowing c21, c22, c23, constants c11, c12, c13, c26 can be54

calculated.55

Then, constant c24 is defined with the help of con-

dition of zero heat flux on the upper wall x = x0 (the

first equality in (A.1)):

c24 = − (x0)5

120

4g

ν2
B2E1 −

(x0)4

24

g

ν2
B1E1 +

+
(x0)3

6
B1c

2
1 −

(x0)2

2
B1c

2
2.
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Now value of c14 can be found through known c26 and c24.1

And finally, to define constant c15 condition (2.13) is

used:

c15 = T10 +
x50

120χ1

gβ1A
2

ν1
− x40

24χ1
Ac11+

+
x30
6χ1

Ac12 −
x20
2χ1

Ac13 + c14x0.

It allows one to found successively c25 and c27.2

The pressure functions pi are defined up to an ad-3

ditive constants ci8. Without loss of generality we can4

put the constants to be equal to zero.5

7 Appendix 26

The physico-chemical parameters of working fluids are7

presented below in the order {HFE-7100, nitrogen} (or8

only HFE-7100):9

ρ = {1.5 · 103, 1.2} kg/m3;10

ν = {0.38 · 10−6, 0.15 · 10−4} m2/s;11

β = {1.8 · 10−3, 3.67 · 10−3} K−1;12

χ = {0.4 · 10−7, 0.3 · 10−4} m2/s;13

κ = {0.07, 0.02717} W/(m·K);14

σT = 1.14 · 10−4 N/(m·K);15

D = 0.7 · 10−5 m2/s;16

L = 1.11 · 105 W·s/kg;17

C∗ = 0.45;18

γ = −0.5;19

ε∗ = 0.04 K−1;20

Dufour coefficient δ = 10−5 K;21

Soret coefficient α = 5 · 10−4 K−1.22
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