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Abstract Problem of thermocapillary convection is1

studied to analyze peculiarities of the flows arising in2

a gas – liquid system under action of an intense local3

thermal exposure. The “stream function – vorticity” for-4

mulation of the Navier – Stokes equations in the Boussi-5

nesq approximation are used to describe the fluid flows.6

The kinematic and dynamic conditions on the free boun-7

dary are stated in terms of tangential and normal ve-8

locities, while temperature conditions at the lower or9

upper boundary of the system take into account the10

presence of point heaters. Special attention is given to11

the study of the influence of the gravity intensity on12

the dynamics of heat and mass transfer in fluid layers13

and character of the interface deformations. Theoret-14

ical study of the thermocapillary convection includes15

development of the mathematical model and effective16

numerical algorithm. The results of numerical study of17

structure and nature of convective flows in the cavity18

being in the terrestrial or microgravity conditions and19

of the evolution of the interface allow one to validate20

the developed mathematical model, and to specify dom-21

inant mechanisms determining the flow regimes.22
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1 Introduction28

The range of problems associated with convective flows29

has been significantly expanded in the last decades.30

This tendency is occasioned by the new applications31

of the fluidic system in different technologies. Devel-32

opment of space research leads to a revision of many33

theoretical approaches, which found experimental and34

practical confirmation by study of the convection prob-35

lems in the terrestrial conditions. The adjoint problems36

of thermal gravitational and thermocapillary convec-37

tion occurring in the non-Boussinesq conditions need38

new approaches, more complicated statements and in-39

vestigation methods in order to take into account gov-40

erning factors and to determine main and secondary41

mechanisms of the flows. Modern mathematical models42

to describe the convection in microscales, weak gravi-43

tational and fast-variable temperature fields have been44

derived in [1] (see also the references therein [1]).45

Even without phenomena of phase transition the46

mathematical modeling of dynamics of various heat-47

and mass transfer processes remains rather difficult.48

The careful study of the problems of the thermal grav-49

itational and thermocapillary convection in the fluids,50

of interfacial processes, of coupling of convection in the51

liquids with interfacial phenomena is presented in [2–52

7]. Particular attention is always paid to formulation of53

the interface conditions between two moving media, to54

determination of an interfacial area (interfacial bound-55

ary), and to mathematical idealization of this area (or56

this surface). Any method of interface determination57

should guarantee fulfillment of the laws of mass, mo-58
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mentum and energy conservation, which are the basis of1

many mathematical theories for fluid flow description.2

Rigorous and detailed derivation of the free boundary3

conditions can be found in [8,9] for stationary and non-4

stationary problems. They are based on the assumption5

that the interface is a moving smooth material surface6

similar to the image of a fixed surface in the space of7

Lagrangian coordinates defined by the liquid motion. In8

the usual free boundary problem statements these con-9

ditions are working excluding mass transport through10

the interface. Derivation of the dynamic condition is11

based on the law of momentum conservation. The rela-12

tion sets a balance of the bulk and surface forces; the13

latter forces act on the boundary of the contact region14

of two fluids in a material volume. The different forms15

of the energetic conditions describe an energy trans-16

fer across the interface. They are based on the law of17

total energy conservation. In [1] the derivation of the18

free boundary conditions are explained in depth, using19

the appropriate formulae of differential geometry and20

the relations between classical translation formula and21

its surface analogue. The hypotheses allows one to de-22

scribe motion of a viscous incompressible liquid with23

interfaces or free surfaces by the Navier – Stokes equa-24

tions or their Oberbeck – Boussinesq approximation. It25

should be noted that use of the equations is often fairly26

adequate even as the interfaces becomes unstable and27

changes in the interface topology take place, provided28

that fluids remain to be immiscible. However, use of the29

Navier – Stokes equations or their approximations is not30

fully defensible in case of the development of secondary31

instability of the interface and a decrease in character-32

istic scales of the flow. A rational description of motion33

of similar system should be given in terms of mechan-34

ics of heterogeneous media. The additional continuity35

conditions postulated on the interface, use of thermody-36

namical laws and some further assumptions of the inter-37

face thermodynamics have been also discussed therein38

[1]. Theoretical study of the problem of convection in39

a two-layer system with the finding of deformable in-40

terface position is extremely difficult. Without dwelling41

any more on problems in the non-stationary statements42

including the dynamic contact angle question, we turn43

to the numerical research based on those mathematical44

models of fluid flows with an interface, in which this45

question is correctly solved (see, for instance, [10,11]).46

Specific substantial point is determination of a real47

interface or free boundary position, that evidently is48

solved with the help of the interface conditions. We49

note that the real interface position can be obtained50

as a result of numerical investigation of the stability of51

flows computed in a domain with fixed boundaries. In52

this case the system of the equations for “main flow”53

perturbations and of the dynamic or kinematic inter-54

face condition, as an interface equation, are used. In55

the frame of original problem the question of inter-56

face position finding arises most acutely when using57

the finite-difference methods in computations of flows in58

the domains with interfaces. We do not concern numer-59

ical studies on this subject that are carried out within60

the framework of the thin layer approximation. In the61

context of the Oberbeck – Boussinesq model of convec-62

tion the thermocapillary flows caused by action of the63

thermal point sources in a two-layer system were inves-64

tigated [12]. The structure of the temperature and ve-65

locity fields and dynamics of changing the thermocapil-66

lary interface topology were calculated with the help of67

the original numerical method [13,14]. This method in-68

cludes (i) formulation of the problem in terms of stream69

function and vorticity; (ii) transition to new variables70

(or straight line procedure); (iii) the stabilizing-correc-71

tion finite-difference scheme characterized by full ap-72

proximation of equation on the fractional step and, with73

it, by correction procedure with the aim of improving74

stability on second step; (iv) finding of the interface po-75

sition at all the time moments with use of the kinematic76

conditions; (v) determination of normal and tangential77

velocities at the interface points. In [10] the computa-78

tional algorithm to calculate the free boundary position79

at any time steps has been described in details. In [10]80

and [11] the “stream function – vorticity” formulation81

of the problem is performed also. But in comparison82

with [13,14], the dynamic interface condition, that is83

the normal stress balance condition, is used to compute84

the interface position.85

The heightened interest to the problems of convec-86

tion under the phase transition at interfaces is caused87

by ground and space experiments [15,16]. In [15] the88

results of a systematic experimental study of the com-89

plex thermal patterns corresponding to the coupling of90

interfacial effects induced by evaporation, thermocap-91

illary forces and shear flow were presented. Physical92

experiments [16] were carried out to study the liquid93

dynamics in the horizontal layers or cavities, the pro-94

cesses on the liquid – gas interface of the limited size95

under co-current dry or wet gas flows. They allowed us96

to obtain data of quantitative measurements of aver-97

age velocities of vortex structures in the liquids, of the98

surface temperature and temperature gradients, and of99

the characteristics of the interface movements caused100

by the gas flows.101

Experimental study of breakdown of the thin hor-102

izontal layers of ethanol and water by a local heating103

from the substrate has been performed in [17]. The ba-104

sic stages of process of the liquid layer rupture has105

been determined and the time of a dry spot forma-106
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tion has been measured. Thermocapillary deformations1

and breakdown of a thin layer of viscous incompressible2

volatile liquid with a free surface have been modelled on3

the basis of lubrication approximation [18]. Numerical4

algorithm for the joint solving the equations of energy5

and layer thickness evolution has been developed and6

free surface deformations have been calculated with use7

of the finite volume method.8

New experiments [19] are devoted to study the flows9

arising in a two-layer system due to a laser beam heat-10

ing on the free boundary and to investigations of the11

deformable surface behavior. Profiles of the thermocap-12

illary deformations of both internal interface and free13

surface were measured. Time of appearing the station-14

ary rupture of the upper layer as well as time of full15

relaxation of the gap (“healing” of the layer by turning16

off the pump laser) were ascertained depending on the17

upper layer thickness for different types of working liq-18

uids. Dependence of the rupture diameter on the ther-19

mal load intensity was obtained. To study exhaustively20

mechanisms determining the dynamics of observed pro-21

cesses in the two-layer systems under conditions of lo-22

cal heating or/and phase transfer at the interfaces one23

needs to perform a mathematical modeling of the inter-24

acted processes. The main points are the choice of basic25

model (it implies form of governing equations) and for-26

mulation of the interface conditions. The correct mathe-27

matical statement of the investigated problems enables28

to develop rather fine computational methods, which29

will give one a possibility to calculate the flow patterns30

and real position of the interfaces.31

In the present paper we develop the mathemati-32

cal model of the thermocapillary convection in a two –33

layer system of fluids bounded by rigid walls. The lo-34

cal thermal load is applied to the system from below35

or above. The original model is based on the Navier –36

Stokes equations in the Oberbeck – Boussinesq approxi-37

mation. A variant of the numerical algorithm described38

in [13,14] is elaborated. It allows one to find correctly39

the shape of the internal deformable interface having40

parts with strongly changing curvature. A series of cal-41

culations for the case of one heater centrally arranged42

on the lower or upper wall of the cuvette was performed.43

Typical patterns of velocity and temperature fields in44

the nitrogen – ethanol system being in the terrestrial or45

microgravity conditions are presented. The position of46

the interface for all considered cases is calculated, and47

character of the interface deformations is analyzed.48

Fig. 1 Geometrical configuration of the two-layer system

2 Mathematical model49

2.1 Governing equations and general parameters50

The problem of convection in a system of two immisci-51

ble fluids (liquid and gas) with a common thermocap-52

illary interface is studied under assumption that both53

media are the viscous incompressible liquids. The two –54

layer system fill a cavity with solid impermeable walls.55

Mathematical model for description of the thermocapil-56

lary flows includes the Navier – Stokes equations in the57

Oberbeck – Boussinesq approximation, the initial condi-58

tions determining the initial state of the two – layer sys-59

tem, boundary conditions on the external boundaries of60

the cell and matching conditions on the internal inter-61

face. One of the relations on the surface should provide62

a finding the interface position at each time step.63

Let the Cartesian coordinate system be chosen so

that the gravity acceleration vector g is directed oppo-

site to the Oy axis (g = −gi, i is the unit vector of

the Oy axis). Two viscous incompressible liquids fulfill

a rectangular domain Ω with boundary ∂Ω. Regions

Ω1 and Ω2

Ω1 = {(x, y) : 0 < x < X, f(x, t) < y < Y )},

Ω2 = {(x, y) : 0 < x < X, 0 < y < f(x, t)}

are the parts of Ω, and they are filled by gas and liquid,64

respectively (see (Fig. 1)). The domains are separated65

by the thermocapillary interface Γ defined by equation66

y = f(x, t). The external boundaries of the cuvette are67

rigid walls, so that corresponding parts of ∂Ω that con-68

fine domains Ω1 and Ω2 are defined by sets of the rec-69

tilinear segments: ∂Ω1 = {x = 0, x = X, y = Y } and70

∂Ω2 = {x = 0, x = X, y = 0}.71

Let the upper layer thickness h1 at the initial in-72

stant t = 0 be chosen for the characteristic length.73

The characteristic values of velocity and temperature74

are denoted by u∗ and T∗. The characteristic value for75

pressure was chosen equal to ρ2u
2
∗. To describe convec-76

tive motion of j-th medium the Oberbeck – Boussinesq77
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approximation of the Navier – Stokes equations is used.1

In the non-dimensional form the governing equations2

are written as follows:3

∂tvj + (vj · ∇)vj =

= −∇pj + Re−1j ∆vj −GrjRe−2j Tj i,
(2.1)4

div vj = 0, (2.2)5

∂tTj + vj · ∇Tj = Pr−1j Re−1j ∆Tj , (2.3)6

Here and thereinafter the indexes j = 1, 2 are related7

to the upper (j = 1) and lower (j = 2) fluids, respec-8

tively; vj = (uj , vj) is the velocity vector, Tj is the tem-9

perature, pj is the pressure (deviation of pressure from10

the hydrostatic one). Following parameters arise in the11

transition to the dimensionless problem statement: the12

Reynolds number Rej = u∗h1/νj , the Prandtl number13

Prj = νj/χj , the Grashof number Gr = βjT∗gh
3
1/ν

2
j .14

Here νj , χj , βj are the kinematic viscosity, thermal dif-15

fusivity and thermal expansion coefficients of the fluids,16

respectively. The previous notations for time and spa-17

tial variables, their variation ranges, and also interface18

equation are kept unchanged.19

2.2 Conditions on the interface20

Consider the surface Γ = {(t, x, y) : y = f(x, t)} be-21

tween the upper Ω1 and lower Ω2 layers. We assume22

that Γ is a thermocapillary interface, along which the23

tangent forces act. At this the surface tension coefficient24

σ(T ) linearly depends on temperature σ(T ) = σ0 −25

σT (T − T0), where σ0, σT are given positive constants,26

T0 is a reference temperature. The dimensionless form27

of the relation for σ is given by σ(T ) = 1−MaCa(T−T0)28

with the Marangoni number Ma = (σTT∗)/(ρ2u∗ν2)29

and the capillary number Ca = ρ2u∗ν2/σ0.30

To formulate the interface conditions we introduce

the unit tangent and normal vectors on the interface

s =
(

1/
√

1 + ∂2xf, ∂xf/
√

1 + ∂2xf
)
,

n =
(
− ∂xf/

√
1 + ∂2xf, 1/

√
1 + ∂2xf

)
.

For the lower liquid n is the unit vector of the outer31

normal to the interface Γ . Then, the velocity of points32

lying on the interface can be presented in the form v =33

vnn + vss, where vn, vs are the normal and tangent34

components of the velocity vector. We postulate in the35

proposed mathematical model, that velocities of fluid36

particles for both liquids on Γ are the same.37

The interface conditions based on the conservation38

laws and some additional assumptions [1,7] have the39

following dimensionless form:40

(v2)n = (v1)n = V, V = −∂tf/
√

1 + ∂2xf, (2.4)41

−p2 + 2 Re−12 n ·D(v2)n = −p1 + 2 ρ̄Re−11 n ·D(v1)n+42

+ 2 Ca−1Re−12 σH, (2.5)43

2 s ·D(v2)n− 2 ρ̄ν̄ s ·D(v1)n = −Ma ∂sT, (2.6)44

where (vj)n = vj ·n are the normal components of the45

velocity vectors vj (j = 1, 2), V is the interface velocity46

in the normal direction, D(v) is the stress tensor, ρ̄ =47

ρ1/ρ2, ν̄ = ν1/ν2 are the ratios of fluids densities and48

kinematic viscosities.49

The additional interface condition follows from the50

assumption about velocity continuity at the interface51

Γ and leads to the equality of the tangential velocities52

(vj)s (j = 1, 2):53

(v1)s = (v2)s. (2.7)54

The temperature conditions at the interface Γ is55

written as continuity conditions of temperature and56

heat fluxes57

T1 = T2 , ∂nT2 − κ̄∂nT1 = 0, (2.8)58

where κ̄ = κ1/κ2 is the ratio of fluids thermal conduc-59

tivities.60

2.3 Boundary conditions at cavity walls61

The boundary conditions for the velocity functions at62

solid surfaces x = 0, x = X, y = 0, y = Y correspond63

to no-slip condition for viscous fluids:64

vj | ∂Ωj
= 0. (2.9)65

Boundary conditions of the first kind for the tempera-66

ture function are set at the lateral walls:67

Tj | x=0 = 0, Tj | x=X = 0. (2.10)68

Conditions for the temperature at the lower and upper69

boundary take into account the presence of local heater.70

In general form the conditions are written as follows:71

T1 | y=Y, x/∈Hup = 0, T1 | y=Y, x∈Hup = θup(t),

T2 | y=0, x/∈Hs = 0, T2 | y=0, x∈Hs = θs(t),
(2.11)72

where H is the area occupied by heater, θ is the tem-73

perature of the heater. When placing heater on a sub-74

strate Hup = � and θup(t) = 0, and the temperature75

T1 = 0 is maintained on the entire upper wall. If the76

thermal source is arranged from above, then Hs = �77

and θs(t) = 0, i.e. the temperature of the lower bound-78

ary is constant everywhere equal to T2 = 0. Areas H79

and values θ in conditions (2.11) are determined de-80

pending on the requirements of specific problems. In81

the present work we consider case of centrally arranged82

heater on the lower or upper wall with commutated83

mode of heating, when the heater temperature can be84

changed abruptly. Size of heater and thermal regime85

are given in the corresponding sections along with the86

results of numerical calculations.87
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3 “Stream function – vorticity” formulation of1

the original problem2

To use the approach suggested in [13,14] for numerical3

investigation of the fluid flows and heat transfer pro-4

cesses in the liquid layers Ωj one should transition to5

the “stream function – vorticity” variables in the orig-6

inal problem. New required functions ψ (stream func-7

tion) and ω (vorticity) are related to the physical vari-8

ables (velocity fields and pressure) as follows:9

uj = ∂yψj , vj = −∂xψj , ωj = ∂xvj − ∂yuj . (3.1)10

Then, convection equations (2.1) – (2.3) in the variables11

ψ, ω and T , take the following form:12

∂tωj + ∂x
(
ωj∂yψj

)
− ∂y

(
ωj∂xψj

)
= Re−1j ∆ωj+13

+GrjRe−2j ∂xTj , (3.2)14

∆ψj + ωj = 0, (3.3)15

∂tTj +∂x
(
Tj∂yψj

)
−∂y

(
Tj∂xψj

)
= Pr−1j Re−1j ∆Tj .(3.4)16

Here T is the temperature function, as before.17

Relations (2.4) – (2.7) on the interface and boundary18

conditions (2.9) should be formulated in terms of ψ−ω.19

Upon that balance conditions (2.5) and (2.6) will be20

derived as relations for vorticity functions in the terms21

of normal and tangential velocities vn = −∂sψ, vs =22

∂nψ.23

Using the definition of normal velocity component24

and its connection with stream function, the kinematic25

condition (2.4) at the interface Γ can be rewritten in26

the form:27

∂tf +
√

1 + ∂2xf ∂sψ2 = 0. (3.5)28

The dynamic conditions (2.5), (2.6) at the interface Γ29

can be presented as follows:30

ω2 − ρ̄ν̄ω1 = F1(t, x), (3.6)31

∂nω2 − ρ̄ν̄∂nω1 = F2(t, x). (3.7)32

The first equality is the analogue of the tangent com-33

ponent of the dynamic condition, and the second one34

expresses equivalent of its normal component. Function35

F1 takes into account the thermocapillary force action,36

and F2 includes a contribution of pressure-jump and37

effects of the problem nonstationarity:38

F1 = Ma ∂sθ + 2(1− ρ̄ν̄)
(
∂svn + vsR

−1),39

F2(t, x) = −2
[
∂s
(
∂n(v2)n − ρ̄ν̄ ∂n(v1)n

)]
+40

+ 2
[(

1− ρ̄ν̄
)
∂s
(
∂xfvsR

−1)]+41

+ Ca−1∂s
[(

1−MaCaT
)
R−1

]
−42

−
(
Gr2Re−12 − ρ̄ν̄Gr1Re−11

)
T ∂xf/

√
1 + ∂2xf+43

+ GaRe2(1− ρ̄)∂xf/
√

1 + ∂2xf44

+ Re2
[
(ρ̄− 1)∂tvs + (ρ̄− 1)vs ∂svs+45

+ (1− ρ̄) ∂xfv
2
nR
−1 + vn(ω2 − ρ̄ω1)

]
.46

Here R is the interface curvature radius (1/R = ∂xxf/47

(1 + ∂2xf)3/2), Ga = gh/u2∗ is the Galileo number. Note48

that a procedure of derivation of conditions (3.6) and49

(3.7) implies the use of equation (3.3) supposed to be50

valid at interface, relation, that is a consequence of dif-51

ferentiation of the kinematic condition (3.5) along the52

interface, and conditions of equality of the tangential53

velocities (2.7) and their tangential derivatives on Γ .54

Besides, equation (2.1) scalarly multiplied by n was55

used to transform condition (2.5).56

Due to the equality of the tangential velocities of57

fluids filling Ω1 and Ω2 at the interface Γ (2.7) and to58

the volume preserving conditions for each medium, we59

obtain the following conditions at this interface:60

ψ1 = ψ2, ∂nψ2 − ∂nψ1 = 0. (3.8)61

Thermal boundary regime is determined, as before,62

by relations (2.10), (2.11).63

No-slip conditions (2.9) for the velocity vectors at64

rigid walls x = 0, x = X, y = 0, y = Y lead to the65

relations for the stream functions:66

ψj |∂Ωj
= 0, ∂nψj |∂Ωj

= 0. (3.9)67

To find values of vorticity functions ωj at solid bound-68

aries ∂Ωj we will use the Tom’s condition [20] after69

problem discretization in time and space.70

4 General scheme of solution of the coupled71

problem72

We restrict ourselves only to several comments relative73

to numerical technique. Specific elements of the compu-74

tational procedure developed in [13,14] are: (i) transi-75

tion from the domains Ωj with curvilinear boundaries76

to the canonic computation regions (here the squares77

[0, 1]× [0, 1]) and calculations of unknown functions ψj ,78

ωj , Tj in the regions with straight limiting lines; (ii)79

the use of “the finite-difference scheme of stabilizing80

correction” (a variant of alternating direction methods81

[21,22]). This scheme is unconditionally stable one and82

has formally the second order of accuracy. As a final of83

approximation we will obtain the systems of linear alge-84

braic equations which can be stably solved by the vari-85

ants of the Gaussian elimination usual sweep method or86

the Thomas algorithm in the spatial variable directions.87

1. We will proceed from a given state that is charac-88

terized by known distributions ψj , ωj , Tj and po-89

sition of the interface f(t, x). It is considered that90
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the fluids are at rest and have constant tempera-1

ture at initial instant t = 0; upon that, the interface2

between them is flat. With given basic character-3

istics we solve numerically the equation (3.5) and4

find new position of Γ ; thereby normal velocity vn5

at the interface is defined for all points lying on the6

interface.7

2. At each time step we introduce new spatial variables8

which are connected with x, y for lower fluid in Ω29

as x = ξ, y = ηf(ξ, t), and for upper fluid in Ω110

as x = ξ, y = η(Y − f(ξ, t)) + f(ξ, t). At this all11

boundaries of computational domains, including the12

interface, will coincide with coordinate lines of a new13

mesh.14

3. Sweep procedure coefficients are calculated to solve15

the motion and heat transfer equations for both lay-16

ers of the system.17

4. Boundary conditions are determined to find hydro-18

dynamic characteristics. For this tangential velocity19

vs at Γ is computed, then functions F1 and F2 can20

be defined.21

5. The unknown functions Tj are found numerically22

on the basis of equations (3.4) and boundary con-23

ditions (2.8) at interface and (2.10), (2.11) on the24

fixed boundaries.25

6. Knowing functions T and f for all grid points of26

corresponding computational domains, we solve nu-27

merically equations (3.2) with boundary conditions28

(3.6), (3.7) on the interface and with Tom’s condi-29

tions resulted from (3.9) on the fixed boundaries to30

find ωj .31

7. In each time step we introduce the iteration pro-32

cesses to compute problem (3.3), (3.5), (3.8), (3.9)33

and to find the unknown functions ψj . Iteration pro-34

cess is organized with using of the convergence cri-35

teria. The velocity vector components uj , vj can be36

recalculated due to (3.1).37

8. With found functions Tj , ωj and ψj we solve numer-38

ically equation (3.5) to compute new position of the39

interface Γ and new values of vn.40

9. Transition to the step 2 is carried out.41

The proposed mathematical model and numerical42

algorithm allow one to describe a formation of gap in43

liquid layer. If condition f < 10−3 is fulfilled at some44

instant, it will be interpreted as a rupture of the lower45

fluid.46

5 Numerical investigations of fluid flow regimes47

We consider nitrogen (gas) and ethanol (liquid) as work-48

ing media. So far as the upper layer is taken as a ref-49

erence, and the characteristic velocity is chosen to be50

equal to the velocity of viscous stresses relaxation, then51

the Reynolds number for gas layer Re1 is equal to 1.52

The thicknesses of domains Ω1 and Ω2 at rest (at ini-53

tial time t = 0) are assumed to be the same, h1 =54

h2 = 5 · 10−3 m. The characteristic temperature drop55

is taken equal to T∗ = 10 K, the length of the test56

section is X = 0.2 m. In all cases, the size of the57

heater is the same 4h1 = 0.02 m. The thermophysi-58

cal properties of the fluids are given below in the order59

{nitrogen (1), ethanol (2)}, while the value of temper-60

ature coefficient of surface tension is specified only for61

ethanol: ρ = {1.25, 0.79 · 103} kg/m3, ν = {0.15 · 10−4,62

0.15 · 10−5} m2/s, β = {3.67 · 10−3, 0.108 · 10−2} K−1,63

χ = {0.3 · 10−4, 0.89 · 10−7} m2/s, κ = {0.02717,64

0.1672} W/(m·K), σT = 0.8 · 10−4 N/(m·K) [23]. All65

calculations are carried out with the following values66

of the defining dimensionless criteria: Ca = 2 · 10−3,67

Ma = 112, Pr1 = 0.5, Pr2 = 16.8, Re2 = 10. Val-68

ues G = 545, Gr1 = 200, Gr2 = 5751 correspond to69

the terrestrial gravity (g = g0 = 9.81 m/s2). If micro-70

gravity conditions are considered then these parame-71

ters have the following magnitudes: G = 5.45, Gr1 = 2,72

Gr2 = 57.51 (g = g0 · 10−2).73

We consider case of the commutated heating mode.74

In this regime the temperature of the heater increases75

abruptly from zero to a certain limit value at given76

instants in time and then the temperature drops to77

zero. Similar temperature regime simulates activating78

the heater, its switching to more intensive modes and79

the shutdown.80

5.1 Commutated heating from below81

We investigate the behavior of the system characteris-82

tics when one heater is arranged in the center of the83

substrate. The heater after switching on has a temper-84

ature θs(0) = 0.1, then the temperature is increased85

abruptly at fixed intervals: θs(10) = 0.25, θs(20) = 0.5,86

θs(30) = 0.75, θs(40) = 1, θs(50) = 0.87

When a thermal source is switched on, we first ob-88

serve the formation of convective cells generated by the89

action of mass forces. A hotter liquid rises up under90

the effect of buoyancy forces (Fig. 2(a)). Double-vortex91

flow pattern is formed in both liquid and gas layer. The92

heat from the thermal source is transferred into the liq-93

uid bulk by convective transport. Once the heat reaches94

the interface, surface forces come into action. The ther-95

mocapillary effect induces spreading the liquid along96

the interface and transferring heat from hot pole to the97

periphery (in domains with a lower temperature). It98

causes the formation of additional vortices and inter-99

face deformation. The transition from two-vortex flow100

pattern to quadruple-vortex structure occurs in both101
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fluids (Fig. 2(b)). With each changeover of the heater1

its temperature is increased and the system responds2

to a change in the thermal load with a certain lag time.3

In the four-vortex regime under heater switching the4

thermocapillary deflection of the interface in the zone5

of thermal exposure has two local dimples (Fig. 3(a)).6

These concave meniscus are located above the areas of7

ascending flows in each pair of vortices with opposite8

circulation. Between these grooves there is an inflection9

zone with a positive curvature (the surface is convex10

outward).11

Further increase of the thermal load leads to the12

hysteresis phenomena that appear by the oscillations13

of the interface and wave generation on the surface,14

and formation of the drifting vortices. Shapes of the15

interface with two menisci appear with the short-term16

lag period at every switching the heater. With time the17

surface oscillations damp, and form of the thermocap-18

illary deflection is stabilized (Fig. 3(c,e)). In commu-19

tated heating regime small vortices are generated near20

the hot spot in each layer. They are split out and travel21

to the side walls (Fig. 2(c,d)). Such oscillatory regimes22

arise only in the heater operation mode, when temper-23

ature θs is changed abruptly. If the temperature of the24

thermal sources does not change, then a stabilization of25

the secondary regime takes place. Upon that, a steady26

thermocapillary flexure of the interface with a negative27

curvature is formed in zone of thermal exposure.28

The scenario of the system behavior is the same29

both in the terrestrial and microgravity conditions. Sub-30

sequent transition from two-vortex pattern to quadruple-31

vortex flow, and formation of vibrational modes that32

are accompanied by appearance of traveling vortices33

and oscillations of the interface under every changeover34

of the heater are observed in low gravity also. But we35

have elucidated essential differences for amplitudes of36

the interface deformations and transverse size of ther-37

mal patterns and planforms. At the same thermal expo-38

sure the interface in the system being in weak force field39

undergoes much greater deformations (compare ampli-40

tudes of deformations for the interface in Figs. 3(a,c,e)41

and (b,d,f)). Upon that, the delay time during which42

the system responds to a change in the temperature of43

heater is increased. It is explained by a weaker action44

of the buoyancy forces, hence, a longer convective ris-45

ing the hot liquid and heat transport to the surface. It46

results in decelerated alteration of thermal field (com-47

pare distribution of the temperature near the interface48

in Figs. 3(a,c,e) and (b,d,f)). It should be noted also49

that under almost identical transversal size of thermo-50

capillary deflection the crosswise size of hot spot is sub-51

stantially smaller in microgravity in comparison with52

this under normal gravity. Emphasize that a further in-53

tensification of thermal load (increasing the heater tem-54

perature) leads to critical deformations and a rupture55

of the liquid layer at considered values of the gravity56

acceleration (g = g0 · 102).57

When the thermal element is switched off the heat58

transfer in the system is supported only by the ther-59

mocapillary forces for some time (Fig. 4). In course of60

time a rest zone is formed in the central part of test sec-61

tion. At this, the transverse size of planforms in each62

layer and amplitude of thermocapillary deflection are63

decreased gradually (Fig. 5(a)). In the weak field of64

mass forces the system relaxes more slowly than in the65

terrestrial conditions. The process is accompanied by66

visible oscillations of the interface with a formation of67

two menisci (Fig. 5(b)) and longtime existence of vor-68

tices with two cores (Fig. 4(b)).69

According to the results obtained we can talk about70

the instability of the equilibrium state of the two-layer71

system subjected by a local non-stationary heating from72

below. The instability is caused by the joint action of73

convective and thermocapillary mechanisms, and is ev-74

ident as oscillatory regimes. It should be taken into ac-75

count that in microgravity conditions significant ther-76

mal load and commutated heating can lead to a rupture77

of a liquid layer and formation of dry spot. Therefore, it78

should be possible to have alternative variants of opera-79

tion mode for the heater to provide fail-safe functioning80

the system.81

5.2 Commutated heating from above82

One of the ways to avoid critical deformations of the in-83

terface in the two-layer system under microgravity con-84

ditions is to arrange the heater on the upper wall of the85

working section. In this case even under commutated86

heating mode, which is the most unfavourable regime87

of thermal exposure, the interface will be less sensitive88

to the thermal load (Figs. 6, 7). Presented results are89

obtained for the case when one heater is arranged in the90

center of the upper wall, and the thermal load is applied91

according to the rule: θup(0) = 0.1, θup(10) = 0.25,92

θup(20) = 0.5, θup(30) = 0.75, θup(40) = 1, θup(50) =93

0.94

The deformation amplitudes are much smaller than95

those where system is heated from below. When the in-96

tensity of the thermal load is changed, no vibrational97

phenomena are observed in the system. In contrast to98

situations, when the heater is located on the substrate,99

we observe the inertial behavior of fluids, when system100

resists monotonically to changes in its state caused by101

local heating from above. The lack of the effect of the102

convective mechanism leads to a significant stabiliza-103

tion of the interface and the entire system. The heat104
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Fig. 2 Evolution of the thermal field and topological pattern of the flow in the system under commutated heating by a heater
on substrate at t = 3 s (a), t = 16 s (b), t = 33 s (c), t = 44 s (d).

Fig. 3 The interface location and temperature near the surface under commutated heating by a heater on substrate at t = 16 s
(a,b), t = 33 s (c,d), t = 44 s (e,f) in the terrestrial (a,c,e) and microgravity (b,d,f) conditions.

transfer from the heater to the interface is provided only1

by the thermal properties of the upper fluid (Fig. 6).2

Upon that, the flow structures in the liquid and gas are3

similar: a double-vortex flow is formed in each layer.4

With an increase in the intensity of the thermal load5

produced by the heater, the size of the vortices does6
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Fig. 4 The thermal field and topological pattern of the flow in the system 5 seconds after switching off the heater on substrate
in the terrestrial (a) and microgravity (b) conditions.

Fig. 5 The interface location and temperature near the surface 5 seconds after switching off the heater on substrate in the
terrestrial (a) and microgravity (b) conditions.

not changed, and slight thermocapillary deflection is1

formed on the interface (Fig. 7).2

Under normal gravity similar flow pattern is ob-3

served in the system. A steady thermocapillary deflec-4

tion is formed on the interface, and amplitude of the5

flexure is much less than this in microgravity condi-6

tions.7

Thus, the loss of equilibrium stability for the con-8

sidered two-layer system at a local commutated heating9

from above is accompanied by a formation of double-10

vortex pattern both in the upper gas layer and in the11

lower liquid layer. Since the thermal conductivity of the12

gas is low, the heat from the thermal source to the in-13

terface is transmitted poorly, and the movement in the14

liquid layer is rather weak compared to the case where15

the heaters are located on the substrate. The liquid mo-16

tion is induced by the action of Marangoni forces, which17

cause thermocapillary spreading of the liquid along the18

interface from the zones with higher temperature to the19

cold domains, and the subsequent vortex flow in the20

bulk of liquid due to the properties of the medium con-21

tinuity. Note, that at the initial stage of heating more22

intense movement in the gas phase is observed. It is ex-23

plained by significantly different viscous properties of24

working fluids. It is the viscosity that characterizes the25

ability of media to resist gradual deformation of shear26

and/or tensile stresses. Over time, the intensity of flows27

in the layers is equalized due to the thermocapillary ef-28

fect.29

6 Conclusions30

The problem of convection onset in a two-layer system31

subjected by a local heating has been considered. The32

mathematical model based on the Oberbeck – Boussi-33

nesq convection equations was used to describe the mo-34

tion and heat transfer in system with internal interface35

under a local thermal exposure. Formulation of all the36

boundary conditions, including relations on the inter-37

face, in explicit form is presented. The suggested ap-38

proach allows one to take fully into account the influ-39

ence of the vertical velocity component and the contri-40

bution of convective summands to the formation of the41
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Fig. 6 Evolution of the thermal field and topological pattern of the flow in the system subjected to commutated heating from
above in microgravity conditions at t = 16 s (a), t = 44 s (b).

Fig. 7 The interface location and temperature near the surface under commutated heating from above in microgravity at
t = 16 s (a), t = 44 s (b).

observed flow regimes, both in terms of hydrodynamic1

and thermal aspects.2

The appearance of motions with different planforms3

caused by the combined action of convective and ther-4

mocapillary mechanisms, and various scenarios of the5

surface behavior under low and normal gravity have6

been described. With the help of numerical simulation7

it was shown that occurrence of hysteresis phenomena8

may be resulted in non-stationary thermal load with9

discontinuous changes of heater temperature. There is10

a certain lag time during which the system responds11

to a change in the intensity of thermal exposure. The12

delay period depends on the intensity of gravity field,13

in a weak force field the lag time is increased. Further-14

more, under microgravity non-uniform heating can lead15

to a rupture of liquid layer due to the critical deforma-16

tions generated by the thermocapillary effect. Action17

of the Marangoni forces causes a significant growth of18

the tangential velocity along the interface, which is the19

main reason of the appearance of the critical flexure of20

the surface between fluids. In deactivating the thermal21

load in the weak field of mass forces the system relaxes22

more slowly than in the terrestrial conditions. Arrange-23

ment of the heater from above allows one to reduce the24

convective mechanism action. It results in an essential25

stabilization of the interface and the inertial behavior26

of the system instead of hysteresis.27
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