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Abstract 18 

In the conifer tree rings, each tracheid goes through three phases of 19 

differentiation before becoming an element of the stem water-conducting structure: 20 

division, extension, and cell wall thickening. These phases are long-lasting and 21 

separated temporally, especially cell wall thickening. Despite the numerous lines 22 

of evidence that external conditions affect the rate of growth processes and the 23 

final anatomical dimensions during the respective phases of tracheid 24 

differentiation, the influence of the environment on anatomical dimensions during 25 

the cell division phase (cambial activity) has not yet been experimentally 26 

confirmed. In this communication, we provide indirect evidence of such an effect 27 

through observations of the small fluctuations in the latewood cell wall thickness 28 

of rapidly growing tree rings, which exhibit a high cell production rate (more than 29 

0.4 cells per day on average). Such small fluctuations in the cell wall thickness 30 

cannot be driven by variations in external factors during the secondary wall 31 

deposition phase, since this phase overlaps for several tens of latewood cells in the 32 

rings of fast-growing trees due to its long duration. 33 

Keywords: conifers, quantitative wood anatomy, tracheidogram, regulation 34 

of xylogenesis. 35 

 36 

Introduction 37 

The relative simplicity of the anatomical structure of conifer xylem, which 38 

consists of more than 90% the radial files of tracheids [1, 2, 3], has attracted the 39 



3 

attention of not only wood anatomists, but also other scientists: ecophysiologists, 40 

biophysicists, biomathematicians, information technology specialists, technical 41 

engineers, etc. [4, 5, 6, 7, 8, 9, 10, 11]. In the sequence of tracheids in the radial 42 

file, each cell can be characterized by simple basic dimensions: the radial diameter 43 

(D) and cell wall thickness (CWT) [12, 13, 14]. Together with the total number of 44 

cells in a tree ring (N), these characteristics can also be integrated into other 45 

characteristics frequently used in dendroclimatology, e.g., tree-ring width and 46 

maximum wood density [15] It is well known that each tracheid, before becoming 47 

a functional element of the conifer xylem, passes through three stages of 48 

differentiation: 1) cell production by xylem mother cells in the cambial zone, 2) 49 

cell expansion, and 3) cell wall thickening, i.e., synthesis and lignification of the 50 

secondary cell wall [12, 16, 17, 18, 19]. A number of recent sophisticated works on 51 

seasonal growth kinetics made it possible to more thoroughly assess the dynamics 52 

of the cell number in the cambial zone, the cell expansion zone, and the maturation 53 

(cell wall thickening) zone, ending with apoptosis [18, 20, 21, 22]. Estimates of the 54 

duration of cell expansion are obtained for individual tracheids, generally 55 

decreasing from ~20 to ~10 days during the season; similar estimations of cell wall 56 

thickening indicate the opposite pattern of increasing duration from ~10 days in 57 

earlywood to >30 days in latewood [23, 24, 25]. Moreover, the duration of the 58 

respective growth process has a greater contribution than its rate to the final D, and 59 

the contribution of rate and duration to CWT is similar [7, 23, 26, 27]. The analysis 60 

of seasonal kinetics is important for identifying and understanding the external 61 

signal perception during xylem formation and its “recording” in the final tree-ring 62 
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anatomical structure. In several of our works, it was clearly shown that 63 

morphometric parameters of tracheids perceive growth-limiting effects of climatic 64 

factors for short intervals during the growing season [28, 29, 30]. However, it is 65 

still unresolved which of the three phases of tracheid differentiation is the most 66 

sensitive to external influence [12, 31, 32, 33]. 67 

In this study, we considered this question based on tracheidograms 68 

(intraseasonal dynamics of cell morphometric parameters) of tree rings producing 69 

various numbers of cells per ring. We hypothesized that extremely wide tree rings 70 

as high-resolution images of cell parameters’ intra-seasonal variation can provide 71 

proxy assessment of the contribution of climatic conditions during corresponding 72 

and previous stages of tracheid differentiation to this variation even in absence of 73 

direct observations of its kinetics. Since cell production in tree ring (radial growth) 74 

generally decreases in colder conditions [34, 35] and is depressed at any 75 

environmental limit of the species growth [12, 36], we selected lower part of forest 76 

zone in South Siberian mountains (habitat with relatively warm and moderately dry 77 

conditions) as convenient testing ground to find trees with wide range of cell 78 

number per ring and significant climatic influence. 79 

Materials and methods 80 

The study was conducted in the foothills of the Borus Ridge, Western Sayan 81 

(South Siberia, Russia), in the lower part of the species altitudinal range in the 82 

region. The sampling site (52.83°N 91.45°E, 500-550 m a.s.l.) is located in the 83 

valley of the small Talovka River with 10-25° slopes facing south–north, in the 84 
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“Shushensky Bor” National Park. The forest stand at the site is mixed: Scots pine 85 

(Pinus sylvestris L.), Siberian larch (Larix sibirica Ledeb.), Siberian spruce (Picea 86 

obovata Ledeb.), common aspen (Populus tremula L.), and silver birch (Betula 87 

pendula Roth.). For anatomical measurements, cores of 5 spruce trees (at the river 88 

bank and bottom of the northern slope) and 5 pine trees (at the bottom of the 89 

southern slope) were selected from larger number (~30 cores from 15-18 trees of 90 

each species) collected for dendrochronological purposes in 2015 by standard 91 

techniques [37]. Permission for sample collection was given by Tolmachev V.A., 92 

Director of the "Shushensky Bor" National Park. Involved in the study species are 93 

not endangered or protected. Adult dominant healthy trees were sampled, and cores 94 

selected for anatomical measurements were from trees of age >80 years (to exclude 95 

juvenile wood from consideration) and tree diameter at breast height 35-50 cm. N, 96 

D, and CWT were measured on the microphotographs of safranin-stained thin (<20 97 

μm) cross-sections for five radial files in each ring over 50 years (1965-2014, a 98 

total of 250 rings for each species) with an accuracy of 0.01 μm, using Lineyka 99 

software [38]. This program manually or semi-automatically provides consequent 100 

measurements of double call wall and lumen along the selected path for the 101 

particular radial file of cells in the image of tree ring, and then transforms them in 102 

series of D and CWT. To allow generalization between 5 radial files with different 103 

N values, the tracheidograms of D and CWT were normalized (i.e., stretched or 104 

compressed [39]) to the average N in each ring. In the CWT tracheidograms, in 105 

addition to the general seasonal trend (stationary value in earlywood, gradual 106 

increase during transition to latewood, and decrease for the last tracheids), 107 
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fluctuations with small amplitudes and lengths were observed in latewood. For 108 

each ring, the number of such fluctuations was counted. For distinction of small 109 

fluctuations, we used the mean±SE range of CWT over the same cell in 5 measured 110 

files, counting as the fluctuation deviations of CWT from the seasonal trend 111 

exceeding this range. Deviations of the same direction in several consequent cells 112 

were counted as one fluctuation. The observed fluctuations lasted on average 6–8 113 

cells; in some rings, they were accompanied by synchronous fluctuations in D 114 

(Fig 1). 115 

 116 

Fig. 1 Examples of tracheidograms for wide rings. D, cell radial diameter (gray 117 

lines), CWT, wall thickness (black lines). Tree rings of Pinus sylvestris (individual 118 

trees PS15 and PS17) are presented in the left column of panels, tree rings of Picea 119 

obovata (individual trees PO14 and PO17) are presented in the right column of 120 

panels. In each column, panels are sorted with the cell number N increasing from 121 

top to bottom. Shaded error bars represent the SE range calculated from 5 122 

measured radial files of tracheids. 123 

 124 

As the data sources on the seasonal kinetics of xylogenesis and the possible 125 

temperature thresholds, we used 3-weekly direct observations for both pine and 126 

spruce by micro-core sampling at the same site in 2019 (unpublished data) and 127 

daily temperature series from the Cheryomushki weather station (52.87°N 91.42°E, 128 

330 m a.s.l., 5 km from site) smoothed by a 21-day moving average. We also used 129 

earlier 10-day observations of pine xylem phenology under relatively similar 130 
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conditions (2013 and 2014, 53.65°N 91.58°E, 320 m a.s.l.; [10, 40]) to overcome 131 

low temporal resolution of local data, and compared these observations with the 132 

temperature data from the Minusinsk weather station (53.68°N 91.67°E, 260 m 133 

a.s.l., 9 km from site). 134 

The climate of the study region is sharply continental [41]. At the 135 

Cheryomushki station, the average temperature of the cold season (T<0°C, 136 

November-March) is 5–11°C below zero, the average temperature of the warm 137 

season is +11–13°C, and the annual precipitation is 360-540 mm. To take into 138 

account the elevation of the sampling site, we adjusted the temperature series using 139 

the estimate of the temperature lapse rate of 0.65°C per 100 m [42, 43]. 140 

In previous studies we found significant climatic response in radial growth 141 

and wood anatomy of both species in the study area. Cell production and radial 142 

growth is limited mainly by soil water availability in May-June (positive 143 

correlations with precipitation and negative ones with temperature), latewood 144 

CWT has positive correlation with temperature in the end of summer [29, 44, 45]. 145 

 146 

Results and discussion 147 

Assessment of seasonal kinetics 148 

The comparison of the seasonal kinetics of conifer xylogenesis in the study 149 

region during several seasons ([10, 40], also unpublished data) with the 150 

corresponding temperature series showed that the threshold temperatures 151 

coinciding with the onset of cambial activity are approximately 8°C for both 152 
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species (cf. range of threshold temperatures 5.6–8.5°C reported by Rossi et al. 153 

[46]). According to data from the Cheryomushki station (1951-2015), at the 154 

sampling site, this threshold usually occurs in the first half of May: 155 

mean±SD=128±8 DOY (April 30 – May 16). On the other hand, cambial activity 156 

in all observations for the region ended at the end of July – beginning of August 157 

(210–220 DOY, 29 July – 8 August), probably due to the regulation of growth 158 

cessation by daylength [47, 48, 49]. Since the early onset of cambial activity is 159 

associated with a longer duration due to the gradual regulation of the growth 160 

process rates by morphogens [14, 20, 21, 50, 51, 52], the most likely duration of 161 

cell production in the study area can be estimated as 75–101 days. However, this 162 

estimation can be exceeded if spring is particularly early (cf. early onset of pine 163 

cambial activity on April 11 (101 DOY) and its duration of 110 days in 2014 at the 164 

other site [40]). 165 

In fast-growing trees, a large number of cells can undergo cell wall 166 

thickening at the same time, especially in latewood. Simple estimates show that 167 

with the duration of cambial activity of 75–101 days and, for example, N=100 and 168 

50 cells, the average cell production rates would be 0.99–1.33 and 0.50–0.67 cells 169 

per day, respectively. From aforementioned studies, we may take 30 days as a 170 

modest estimate of the duration of the cell wall thickening for latewood tracheids 171 

in the study area. Then for our two examples of N, 30–40 and 15–20 cells have 172 

partially overlapping period of cell wall thickening. However, it is logical to expect 173 

increased N as a result of increased duration of cambial activity, making the lower 174 

boundary of these estimations more realistic. Indeed, direct observations of 175 
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seasonal kinetics in the study region showed that the maximum number of cells in 176 

the zone of cell wall thickening occurred in August (i.e., for latewood), which 177 

accounted for 20-34% of the total cell production, i.e., 20–34 and 10–17 cells, 178 

respectively, for the given examples of N ([40] and unpublished data). This finding 179 

can also be partially explained by the fact that the cell production rate is not 180 

stationary during the season, and latewood cells are produced closer to the end of 181 

the cambial activity period, when this rate already decreases below its average 182 

value. 183 

Observations of the small CWT fluctuations in latewood 184 

The numbers of the small CWT fluctuations in the tree rings of pine and 185 

spruce, averaged for groups of rings classified by total seasonal cell production, are 186 

presented in Fig2a. It is easy to see that with an increase in the cell number (and 187 

subsequently tree-ring width), the number of observed small CWT fluctuations 188 

increases. According to our observations for very wide rings (>80 cells), 1–3 small 189 

CWT fluctuations are recorded in each ring. The numbers in Fig 2a are well 190 

described by linear approximation functions: 191 

 192 

npine=0.0206·(N–31), R=0.963, p<0.0001, 193 

nspruce=0.0241·(N–31), R=0.967, p<0.0001. 194 

 195 
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Fig. 2 Relationships between cell number N and number of small CWT 196 

fluctuations per ring: (a) ratio of small CWT fluctuations’ number to the number 197 

of tree rings in different ranges of N; (b) mean values of N and ratio of small CWT 198 

fluctuations per ring for individual trees over 1965-2014. PS (filled markers), Scots 199 

pine (Pinus sylvestris); PO (empty markers), Siberian spruce (Picea obovata). 200 

 201 

It can be seen from the above equations that with cell production no more 202 

than 31 cells per growth season, small CWT fluctuations are unlikely (in the study 203 

area, one such fluctuation was recorded for each species in the range of N=20–204 

30 cells). This result approximately corresponds to the average production rate of 205 

0.31–0.41 cells per day (1 cell per 2.4–3.3 days) and the maximum presence of 6–206 

11 cells simultaneously in the zone of cell wall thickening. For pine rings, only 1–2 207 

fluctuations per ring were observed even in the widest rings, but for spruce rings, 3 208 

small CWT fluctuations per ring were sometimes observed for N>90. 209 

The close relationship between the number of small CWT fluctuations and 210 

cell production is also supported by the data averaged for individual trees (Fig 2b). 211 

With an increase in the average growth rate, the number of small CWT fluctuations 212 

also increases (R = 0.96 and R = 0.75 for pine and spruce, respectively). 213 

Reflection of the small CWT fluctuations in wood density 214 

Small CWT fluctuations should be distinguished from intra-annual density 215 

fluctuations (IADF), which are the subject of intense research on the conditions of 216 

the influence of various stress factors, such as intraseasonal droughts, on tree 217 
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growth [10, 53, 54, 55, 56, 57]. First, IADFs are not observed in the study area, 218 

either in pine or in spruce xylem. Second, small CWT fluctuations have a lesser 219 

amplitude (up to 1 μm) compared to IADF and, as shown in Fig 1, may or may not 220 

be combined with corresponding fluctuations in D. Third, small CWT fluctuations 221 

occur more frequently in extremely wide rings formed under favorable conditions, 222 

i.e. they are not associated with severe stress as IADF. Partly because individual 223 

trees in the same year have different N, we were not able to statistically 224 

significantly identify the relationships of small CWT fluctuations with the climatic 225 

conditions of particular calendar years. Nevertheless, the dependence of the 226 

occurrence of small CWT fluctuations on N indicates that the reason for small 227 

CWT fluctuations is related to the cell production rate. 228 

Any deviations in CWT, especially in latewood, are reflected in the wood 229 

density, since density is directly proportional to the ratio of the cell wall area to the 230 

total cell area [58]. However, these fluctuations may not be registered on the 231 

density profiles, since density is automatically averaged over several neighboring 232 

cells across the width of the optical probe for small latewood tracheids [59]. Such 233 

deviations in density profiles are more likely to be seen as noise. 234 

Possible reasons behind the small CWT fluctuations 235 

Since small CWT fluctuations are synchronous within all measured radial 236 

files in the ring, they are characteristic of a specific ring in a particular tree, 237 

although they may not be observed in other trees or be asynchronous between trees 238 

for the same year. For wide tree rings where these fluctuations occur, a large 239 



12 

number of cells can simultaneously be in the zone of cell wall thickening, thus 240 

having the same external conditions affecting the respective growth process. This 241 

result indicates that the observed deviations of CWT over 6-8 cells are unlikely to 242 

be driven by climatic fluctuations during secondary wall deposition. It is more 243 

probable that the climatic signal was somehow “picked up” by the cell during its 244 

time in the cambial zone, i.e., before transition to the cell expansion zone [12]. 245 

The process of tracheid differentiation is rather strictly regulated internally 246 

by the sequential activation of enzyme systems and genes, the end result of which 247 

is apoptosis [60, 61, 62, 63]. The two main processes of differentiation, cell 248 

expansion and cell wall thickening, are stretched in time; many cells are 249 

simultaneously located in the corresponding zones. Thus, only the transition of the 250 

cell from the cambial zone to maturation can be subject to a short-term influence of 251 

external conditions, even if tracheids leave the cambial zone in packets rather than 252 

one-by-one  [64]. On the other hand, during the formation of IADF during a 253 

drought, a sharp decrease in the cell number in the cambial zone (i.e., in the cell 254 

production rate) is observed and then transmitted to zones of subsequent tracheid 255 

differentiation [10, 65]. This finding also supports the hypothesis of climatic signal 256 

registration in the cambial zone. However, since the small CWT fluctuations 257 

observed in the study area are not always accompanied by respective changes in D, 258 

the question of the transport mechanism of this signal remains open for further 259 

studies. 260 

 261 
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Conclusion 262 

Small fluctuations in latewood CWT observed in wide tree rings supports 263 

hypothesis that CWT tracheidogram register climatic variation not only during cell 264 

wall deposition, but also has input from conditions during previous stages of the 265 

tracheid differentiation, beginning from cambial activity. Thus, we offer a new 266 

fine-scaled tool in the range of methods for investigating the influence of internal 267 

and external factors on xylem structure formation: the analysis of small CWT 268 

fluctuations in tracheids of extremely wide conifer tree rings. We believe that 269 

automated measurements of conifer tracheidograms will expand the possibilities of 270 

such an analysis for proposing and testing new hypotheses about the regulation of 271 

xylem growth and differentiation. 272 
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