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ABSTRACT 73	
  

Advances in the use of molecular tools in ecological and biodiversity assessment 74	
  

of aquatic ecosystems 75	
  

Conservation and sustainable management of aquatic ecosystems is a priority in 76	
  

environmental programs worldwide. However, these aims are highly dependent on the 77	
  

efficiency, accuracy and cost of existent methods for the detection of keystone species 78	
  

and monitoring of biological communities. Rapid advances in eDNA, barcoding and 79	
  

metabarcoding promoted by high-throughput sequencing technologies are generating 80	
  

millions of sequences in a fast way, with a promising cost reduction, and overcoming 81	
  

some difficulties of the traditional taxonomic approaches. This paper provides an 82	
  

updated broad perspective of the current developments in this dynamic field presented 83	
  

in the special session (SS) “The use of molecular tools in ecological and biodiversity 84	
  

assessment of aquatic ecosystems” of the XIX Congress of the Iberian Association of 85	
  

Limnology (AIL2018), held in Coimbra, Portugal.  86	
  

Developments presented are mainly focused on the Iberian Peninsula (Portugal and 87	
  

Spain, including Atlantic Macaronesian islands) but include studies in France, 88	
  

Germany, Finland, Russia (Siberia) and South America. The networks within which 89	
  

these researchers are involved are yet even broader, profiting from existing molecular 90	
  

facilities, and traditional taxonomic expertise, which can be viewed as a characteristic 91	
  

of this new research area. It was evident in the SS that the use of molecular tools is 92	
  

widespread, being used to study a diversity of aquatic systems, from rivers’ 93	
  

headwaters to estuaries and coastal lagoons, and volcanic, mountain and frozen lakes 94	
  

to hot springs. The organisms targeted are likewise varied and include fish, 95	
  

macroinvertebrates, meiofauna, microalgae such as diatoms and dinoflagellates, other 96	
  

protists, fungi, and bacteria (cyanobacteria and other). Some studies address the 97	
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whole biodiversity (i.e., all species present independently of the taxonomic group) 98	
  

from environmental samples of water, biofilms and preservative solution from field 99	
  

samples (e.g., ethanol from macroinvertebrate samples). Great advances were 100	
  

acknowledged in the special session, namely in the use of metabarcoding for detecting 101	
  

hidden biodiversity, juvenile stages, low-abundance species, non-indigenous species 102	
  

and toxicity potential, and ultimately for ecological monitoring of diatoms and 103	
  

invertebrates. Yet, several drawbacks were highlighted and need further work, which 104	
  

include: taxonomic gaps in the reference databases (including gaps at species level 105	
  

and on intraspecific variability) or absence of public databases (e.g. for meiofauna), 106	
  

still high sequencing costs, the need of a substantial bioinformatics effort, difficulties 107	
  

in establishing the amount of environmental sample necessary for a good DNA 108	
  

extraction and the need for testing different genetic markers to obtain accurate results. 109	
  

Key words: eDNA, metabarcoding, conservation, ecological quality, species 110	
  

detection, rivers, lakes, thermal springs, estuaries, lagoons 111	
  

 112	
  

RESUMO 113	
  

Avanços no uso de ferramentas moleculares na avaliação ecológica e 114	
  

biodiversidade dos ecossistemas aquáticos 115	
  

A conservação e gestão sustentável dos ecossistemas aquáticos é uma prioridade nos 116	
  

programas ambientais em todo o mundo. No entanto, esses objetivos são altamente 117	
  

dependentes da eficiência, precisão e custo dos métodos existentes para detectar 118	
  

espécies e monitorizar comunidades biológicas. Avanços recentes no que respeita ao 119	
  

ADN ambiental e ‘barcoding’ e ‘metabarcoding’, promovidos por tecnologias de 120	
  

sequenciação designadas ‘high-throughput sequencing’, têm gerado milhões de 121	
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sequências de forma rápida, com uma promissora redução de custos num futuro 122	
  

próximo, e superando algumas dificuldades das abordagens taxonómicas tradicionais. 123	
  

Este artigo vem fornecer uma perspetiva atualizada e abrangente dos 124	
  

desenvolvimentos neste campo que foram apresentados na sessão especial (SE) “O 125	
  

uso de ferramentas moleculares na avaliação ecológica e da biodiversidade dos 126	
  

ecossistemas aquáticos”, no XIX Congresso da Associação Ibérica de Limnologia 127	
  

(AIL2018) realizado em Coimbra, Portugal. 128	
  

Os desenvolvimentos apresentados centram-se principalmente na Península Ibérica 129	
  

(Portugal e Espanha, incluindo as ilhas atlânticas), mas também em França, Alemanha, 130	
  

Finlândia e Rússia (Sibéria). No entanto, as redes em que estes investigadores estão 131	
  

envolvidos são ainda mais amplas, aproveitando as infraestruturas moleculares e o 132	
  

conhecimento taxonómico existentes. Ficou claro na SE que o uso de ferramentas 133	
  

moleculares está disseminado, sendo usado numa diversidade de sistemas aquáticos, 134	
  

desde as cabeceiras dos rios aos estuários e lagoas costeiras, e desde lagos vulcânicos, 135	
  

de montanha e congelados, a fontes termais. Os organismos estudados são também 136	
  

variados e incluem peixes, macroinvertebrados, meiofauna, microalgas tal como 137	
  

diatomáceas e dinoflagelados, outros protistas, fungos e bactérias (cianobactérias e 138	
  

outros). Alguns estudos abordam toda a biodiversidade a partir de amostras 139	
  

ambientais de água, biofilmes e solução conservante. Grandes avanços foram 140	
  

reconhecidos na sessão especial, nomeadamente no uso de ‘metabarcoding’ para a 141	
  

deteção de biodiversidade críptica, estádios juvenis, espécies de reduzida abundância, 142	
  

espécies não nativas, do potencial de toxicidade e, finalmente, para a monitorização 143	
  

ecológica de diatomáceas e invertebrados. No entanto, dificuldades também foram 144	
  

assinaladas, que necessitarão de mais investimento futuro, e que incluem: lacunas 145	
  

taxonómicas das bibliotecas de referência (incluindo ao nível da espécie e da intra-146	
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variabilidade de espécies), ausência de bibliotecas públicas (por exemplo, para 147	
  

meiofauna), altos custos de sequenciação, a necessidade de um esforço substancial de 148	
  

bioinformática, dificuldades em estabelecer a quantidade de amostra ambiental 149	
  

necessária para uma boa extração de DNA e a necessidade de testar diferentes 150	
  

marcadores genéticos para obter resultados precisos. 151	
  

Palavras-chave: eDNA, metabarcoding, conservação, qualidade ecológica, detecção 152	
  

de espécies, rios, lagos, fontes termais, estuários, lagoas 153	
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INTRODUCTION 169	
  

Biological diversity means the variability among living organisms from all sources 170	
  

including terrestrial, marine and other aquatic ecosystems and ecological complexes 171	
  

of which they are part; this includes diversity within species, between species and of 172	
  

ecosystems (Wilcox, 1984). Biodiversity reflects the ecosystem’s health and 173	
  

resilience to withstand and recover from a variety of disturbances. Therefore, it is 174	
  

essential to discover and understand the biodiversity present in the study area, which 175	
  

is a challenging task. Most of the traditional approaches for assessing biodiversity, 176	
  

where species are identified based on their morphological characters, are time-177	
  

consuming, expensive and require high taxonomic expertise (Leese et al., 2016). On 178	
  

the other hand, rapid assessment based on an estimation of the abundance and 179	
  

distribution of target species through molecular tools may be conducted in a short 180	
  

time more cheaply and easily (Minchin et al., 2016). For instance, using species-181	
  

specific DNA markers, the presence of one target species from water samples can be 182	
  

detected using PCR and simple electrophoresis in agarose gel. This is an efficient and 183	
  

convenient approach when the target species is known because it is a reproducible, 184	
  

fast and a cost-efficient method (Ardura et al., 2015a; Clusa et al., 2016; Devloo-185	
  

Delva et al., 2016; Ardura et al., AIL2018). 186	
  

The special session “The use of molecular tools in ecological and biodiversity 187	
  

assessment of aquatic ecosystems” of AIL2018 (XIX Iberian Association of 188	
  

Limnology meeting in Coimbra, Portugal, June 2018) aimed to present and discuss 189	
  

recent studies undertaken in the Iberian Peninsula, other European countries and 190	
  

South America, in order to promote knowledge exchange and envisage on future 191	
  

research directions in this area. The authors represented 13 countries and 46 192	
  

institutions (including research institutions, official agencies and companies), which 193	
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highlights the fast development of this area around the world and the importance of 194	
  

broad networks in the advancement of this particular research field (Fig.1). 195	
  

The different ways of using molecular approaches in the context of ecological and 196	
  

biodiversity assessment in aquatic ecosystems highlighted in the studies presented in 197	
  

the SS (Table 1) were synthesized in the section “Perspectives on the use of molecular 198	
  

tools.” From those studies, we extracted the main contributions for the area (section 199	
  

“Main findings”), as well as the main problems or gaps identified by the researchers 200	
  

(section “Main drawbacks”) and ended with general inferences and future research 201	
  

directions (section “Conclusions”). 202	
  

 203	
  

PERSPECTIVES ON THE USE OF MOLECULAR TOOLS 204	
  

I. Improvement of biodiversity detection and biological quality monitoring with 205	
  

molecular tools 206	
  

Biodiversity 207	
  

Molecular tools are particularly useful to assess the diversity of concealed 208	
  

communities, allowing a more accurate species detection and distribution in a specific 209	
  

ecosystem. This is the case of the meiofauna, which comprises organisms between 210	
  

30-1000 µm (Higgins & Thiel, 1988). Due to their small size, morphotaxonomic 211	
  

inventories can largely fail to identify accurately (Alves et al., 2015). Various 212	
  

taxonomic meiofaunal groups of an estuary in the North of Portugal have been 213	
  

detected by a target region (Fais et al., AIL2018). Phytoplankton and general 214	
  

microeukaryotic plankton dynamics under the formation of ice-and-snow cover were 215	
  

studied in a Siberian mountain lake through molecular techniques (Díaz-Quijano et al., 216	
  

AIL2018).  217	
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Other examples of detection of small organisms are the microalgae dinoflagellates or 218	
  

diatoms, which have additionally high morphological similarities and lack of unique 219	
  

characteristics between different species (Lin et al., 2009). The eDNA analysis has 220	
  

been used in French coastal lagoons to detect a set of signal species using 221	
  

mitochondrial cytochrome oxidase I gene (COI), such as, 21 genera of Dinoflagellates 222	
  

and 9 genera of diatoms, including Chaetoceros and Nitzschia involved in harmful 223	
  

algal blooms (HABs); and invasive invertebrate species (barnacles, copepods, 224	
  

polychaeta and ascidians), some of them being pollution indicators (Polydora cornuta, 225	
  

Ficopomatus enigmaticus and Hydroides elegans) (Ardura et al., AIL2018). 226	
  

Ecological impact of algal toxicity is also being investigated through molecular tools 227	
  

(Cordeiro et al., AIL2018). Toxins are transferred along the food chain, from different 228	
  

microalgae (mainly Dinoflagellates, Cyanobacteria, and Diatoms) and HABs can be 229	
  

responsible for massive fish mortality (Thangaraja et al., 2007), while the presence of 230	
  

toxins in fish or shellfish can cause severe human diseases (e.g., diarrheic shellfish 231	
  

poisoning). In the Azorean archipelago (Portugal), the potential for cyanotoxin 232	
  

production was assessed in thermal environments and freshwater lakes, which are 233	
  

common in these volcanic islands. The confirmation of cyanobacteria’s DNA and 234	
  

potential risk of cyanotoxin production in the eDNA samples (Cordeiro et al., 235	
  

AIL2018), revealed to be an efficient method for monitoring these ecosystems and 236	
  

help to prevent threats to public and environmental health (Pearson & Neilan, 2008; 237	
  

Salmaso et al., 2017). 238	
  

Genetic tools have been increasingly used for studying invasions, because it allows 239	
  

species identification (e.g. Ardura et al., 2010; Ardura & Planes, 2017), determination 240	
  

of the region of origin (Ardura et al., 2013) and time of initial incursion of non-241	
  

indigenous species (Hilbish et al., 2000; Rius et al., 2014; Teske et al., 2014). This is 242	
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especially important as the number of introduced species has been increasing during 243	
  

the last decades, in freshwater ecosystems (Elvira & Almodóvar, 2001; Anastácio et 244	
  

al., 2018). One example is the minnow species (Phoxinus genus), a freshwater fish 245	
  

that has been used as live bait since the 1900s. Individuals were sampled in the Douro 246	
  

basin (Portugal) and morphologically identified as Phoxinus bigerri, a common 247	
  

minnow in the Iberian Peninsula. Nevertheless, barcoding showed that the population 248	
  

caught closer to the Atlantic Ocean is phylogenetically closer to Phoxinus phoxinus 249	
  

from Charente river in France, confirming for the first time the presence of this 250	
  

species in the Douro basin (Garcia-Raventós et al., AIL2018).  251	
  

Apart from the tools used for single and mixed-organism samples, other sources of 252	
  

DNA have been explored for faster biodiversity assessment such as, DNA from 253	
  

sediment samples, water or sample preservation liquids (e.g., Aylagas et al., 2016; 254	
  

Deiner et al., 2017; Hajibabaei et al., 2012). These approaches avoid the traditional 255	
  

sampling protocols that require a large investment in human resources with many 256	
  

specialists studying different biological elements. In these cases, DNA is extracted 257	
  

directly from environmental samples (e.g., water) followed by high-throughput 258	
  

sequencing (HTS) metabarcoding. Taking into account previous results of DNA 259	
  

extraction directly from the water (Ardura et al., 2015a; Zaiko et al., 2015; Ardura & 260	
  

Planes, 2017) a HTS tool was developed to obtain a baseline of biodiversity from 10 261	
  

different coastal lagoons (Ardura et al., AIL2018).  262	
  

Alternatively, Martins and collaborators (CIBIO/InBIO University of Porto, 263	
  

Aqualogus company and Polytechnic Institute of Bragança) are exploring the option 264	
  

of DNA metabarcoding from preservative ethanol of freshwater macroinvertebrate 265	
  

samples (Martins et al., AIL2018). This approach requires following the Water 266	
  

Framework Directive (WFD; European Union 2000) sampling protocols but avoids 267	
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the sorting step of separating animals in a sample from vegetation, sediment and litter, 268	
  

which is very time-consuming. The authors are examining the performance of 269	
  

different laboratory procedures on species detection based on the preservative liquid, 270	
  

and compared taxa recovery with the conventional morphological method. More than 271	
  

half of the taxa found in ethanol were macroinvertebrates targeted by WFD, while the 272	
  

remaining percentage was identified as, e.g., bacteria, Stramenopiles, terrestrial 273	
  

invertebrates, amphibians and fishes (Martins et al. AIL2018). 274	
  

Biological quality monitoring 275	
  

The use of molecular tools in biological quality monitoring is becoming more and 276	
  

more realistic and several studies highlighted its potential (e.g., Filipe et al., 2018; 277	
  

Filipe et al. AIL2018). Comparison between morphology and metabarcoding-based 278	
  

approaches to determine species composition at estuarine sites indicated that species 279	
  

richness, one of the metrics frequently used in bioassessment, would be considerably 280	
  

underestimated if only morphological methods were used (Lobo et al., 2017).  281	
  

In the ecological quality assessment of rivers, diatoms are one of the obligatory 282	
  

elements, according to the WFD. Thus, a considerable effort has been made to 283	
  

develop diatom metabarcoding and optimize different stages of the process (choice of 284	
  

primers, Kermarrec et al., 2014; diatom barcode database, Rimet et al., 2016; DNA 285	
  

extraction, Vasselon et al., 2017a; quantification bias, Vasselon et al., 2018; 286	
  

bioinformatics treatment, Coissac et al. 2012). In France, diatom metabarcoding has 287	
  

been applied successfully at small (80 samples, Vasselon et al., 2017b) and larger 288	
  

monitoring networks (447 samples). In rivers of Central Portugal, the comparison 289	
  

between the Portuguese official monitoring index for diatoms (IPS – Indice de 290	
  

Polluosensibilité Spécifique), calculated based on morphological identification data 291	
  

and on Operational Taxonomic Units (OTUs) converted into species data, showed a 292	
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high correlation (Mortágua et al., AIL2018). Besides, more than half (ca. 56%) of the 293	
  

samples shared the same water quality class either using the conventional or the 294	
  

molecular approach. These results show the potential for adaptation of present 295	
  

taxonomic indices to molecular data, as it was concluded in studies in Mayotte island, 296	
  

France (Vasselon et al., 2017b) and in the UK (Kelly et al., 2018).  297	
  

The benthic invertebrates are another compulsory quality element of the WFD. In 298	
  

Portugal, five sites sampled in Tua river (Douro basin) were classified to the same 299	
  

quality status through both morphological identification and ethanol-based DNA 300	
  

metabarcoding (Martins et al., AIL2018) when applying the Iberian Biological 301	
  

Monitoring Working Party (IBMWP) index with presence/absence data, at family 302	
  

level (Alba-Tercedor et al., 2002). However, only about half of the species identified 303	
  

by metabarcoding were detected by morphology, whereas the former missed about 304	
  

20% of the species identified morphologically, corresponding to taxa with a low 305	
  

frequency (<5 individuals). 306	
  

In Valencia, the Laboratorios Tecnológicos de Levante (Pujante et al., AIL2018) in 307	
  

the context of the European project BIOWAT-KIT (DNA-based kit for biodiversity 308	
  

assessments and biomonitoring of European water bodies), are developing and 309	
  

validating a genomic tool for the identification and assessment of diversity of benthic 310	
  

invertebrate communities in Europe, with the aim of improving and facilitating the 311	
  

bioassessment. An audit (made by taxonomists) to an official European freshwater 312	
  

monitoring program, based on macroinvertebrate samples, revealed that 29-30% of 313	
  

the specimens had been overlooked by the primary taxonomists (Haase et al., 2010). 314	
  

For 16% of the samples, these discrepancies led to different final ecological 315	
  

assessment and demonstrated the need for adequate quality control and auditing in 316	
  

freshwater monitoring. Múrria and collaborators (University of Barcelona, Spain and 317	
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Salford, Manchester, UK) used metabarcoding techniques to compare the estimates of 318	
  

the ecological status using traditional morpho-taxonomy against high-throughput 319	
  

DNA sequencing of: 1) bulk sampling (after sorting individuals from multi-habitat 320	
  

Surber samples), 2) eDNA (water samples) and 3) invertebrate drift sampling 321	
  

(intervals of 1 hour). Results showed that while the traditional and bulk sampling 322	
  

approaches detected essentially riverine species, the eDNA also captured terrestrial 323	
  

associated fauna (Múrria et al., AIL2018). 324	
  

Development of indices based on molecular information for the monitoring of aquatic 325	
  

ecosystems (i.e., ecological status or conservation status) is the purpose of the work 326	
  

developed at the University of Cantabria. Yet here, the main goal is a global 327	
  

assessment of water bodies through eDNA from water and sediment (Sainz-Barain et 328	
  

al., AIL2018). Additionally, the study of bacterial diversity and primary producers 329	
  

through metagenomics is aimed, which could give complementary information on 330	
  

ecosystem functions (e.g., organic matter degradation or primary production under 331	
  

different conditions). 332	
  

Molecular analysis constitutes, in addition, a simpler way of analysing the impact of 333	
  

anthropogenic and natural alterations in complex communities composed of 334	
  

microorganisms. A study in mesocosms run by Calapez and collaborators 335	
  

(Universities of Aveiro and Coimbra, Portugal) analysed stream biofilm responses to 336	
  

multiple-stressors typical of Mediterranean streams and found biofilm community 337	
  

shifts induced by flow stagnation, organic loads and grazing activity. Specifically, the 338	
  

OTUs determination helped to investigate how biofilm microbial communities’ 339	
  

proportions changed under the different stressor combinations more quickly. The 340	
  

interaction of those three stressors altered algae, fungi and bacteria diversity 341	
  

proportions within the biofilm, with a synergistic effect on fungal diversity, while 342	
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algae and bacteria had an antagonistic response to stressors’ interaction (Calapez et al., 343	
  

AIL2018). 344	
  

 345	
  

II. Molecular analysis in aquatic water bodies 346	
  

Different aquatic systems have been studied through molecular techniques by the 347	
  

teams present in the SS: rivers and streams, lakes, thermal waters and estuaries and 348	
  

coastal lagoons. 349	
  

Rivers and streams 350	
  

Rivers of NW Iberian Peninsula (Portugal and Spain) have been studied under the 351	
  

FRESHING project (Next-generation biomonitoring: freshwater bioassessment and 352	
  

species conservation improved with metagenomics) by CIBIO/InBIO, covering up to 353	
  

150 sampling sites (Filipe et al., AIL2018). Each site was sampled using conventional 354	
  

methods along with water sampling from different microhabitats in order to maximize 355	
  

the detection of several taxa present in the water body through eDNA. However, 356	
  

results shown in the special session focused on freshwater fish. In central Portugal, 357	
  

the studies of the University of Coimbra and Aveiro and partners from INRA Thonon, 358	
  

France, include 88 sites located in the catchments of rivers Vouga, Mondego and Lis 359	
  

in a total area of 11 215 km2. These sites were sampled for algae and 360	
  

macroinvertebrates, but present results report to diatoms only (Mortágua et al., 361	
  

AIL2018; Mortágua et al., 2019). 362	
  

In the BIOWAT-KIT project, three rivers from each country (Spain, Finland and 363	
  

Germany) have been selected to test a genomic tool across different European regions 364	
  

covering a variety of climatic and geomorphological conditions. In Spain, the rivers 365	
  

are typically Mediterranean with different characteristics: Júcar is a calcareous 366	
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mountain river; Mijares is a low-mountain river with high mineralization; while the 367	
  

Turia river is a low altitude river (Pujante et al., AIL2018). Another Mediterranean 368	
  

river from Catalonia, the Llobregat (156 km in length), was studied by Múrria and 369	
  

collaborators, which covers a gradient of pollution and anthropogenic impact. This is 370	
  

a well-studied river (Munné & Prat, 2004, 2011), which includes a pollution gradient 371	
  

from pristine headwater reach, through site located downstream of a big reservoir or 372	
  

salt mining, to urban and agricultural landscapes at lowlands. A sampling of 373	
  

macroinvertebrates was done in 5 sites along the river (Múrria et al., AIL2018). 374	
  

In Cantabria, two rivers, Pas and Asón (Spain), with temperate hyper-oceanic climate 375	
  

with sub-Mediterranean characteristics were studied with molecular tools to compare 376	
  

diversity under pristine and polluted conditions. In addition, water and biofilm 377	
  

samples were recently collected from 96 river sites belonging to the Douro, Ebro and 378	
  

Cantabrian basins (Spain). These sites were sampled to determine the total 379	
  

biodiversity from microorganisms to vertebrates and are currently being identified 380	
  

(Sainz-Barain et al., AIL2018).  381	
  

Lakes 382	
  

The studies presented in the SS addressed a wide diversity of freshwater lakes. The 383	
  

Azores archipelago (Portugal) located in the North Atlantic Ocean is composed of 384	
  

nine islands, which are very important and unique in terms of biodiversity, climate, 385	
  

volcanic activity and geomorphology (Antunes & Rodrigues, 2011). Fifteen 386	
  

freshwater lakes from the Archipelago of the Azores in São Miguel, Pico, Flores and 387	
  

Corvo islands were studied to investigate cyanotoxin production potential.  388	
  

In France, diatom metabarcoding has been applied to assess the structure of diatom 389	
  

community and the ecological status of the littoral zone of Lake Bourget (deepest 390	
  



	
   17	
  

French lake). The structure of the assemblages based on the morphological (taxa lists) 391	
  

and molecular (OTUs lists) identification of diatoms were well correlated. However, 392	
  

the ecological status of the lake varied between these two methods since floristic 393	
  

inventories differed significantly (Rivera et al., 2018; Rivera et al., AIL2018). The 394	
  

main reason for this discrepancy was the incompleteness of the diatom reference 395	
  

database (R-Syst::diatom) (Rimet et al., 2016). 396	
  

In Cantabria, five mountain lakes were sampled for molecular analysis of 397	
  

environmental samples (water and sediment). The first is located at ca. 1870 m of 398	
  

altitude in the Liordes Valley, a unique ecosystem in the Picos de Europa massif, 399	
  

located in a glacial-karst depression surrounded by calcareous walls. The Lloroza 400	
  

lakes (ca. 1800 m of altitude) are small lagoons of karstic nature located in Picos de 401	
  

Europa National Park in the Cantabria province. Finally, the Enol and Ercina (at ca. 402	
  

110m of altitude) are two glacial lakes forming the Covadonga lakes located within 403	
  

the Picos de Europa National Park in the Asturias province.  These samples are still 404	
  

being processed (Sainz-Barain et al., AIL2018). 405	
  

In Siberia, the Oiskoe mountain lake is being studied with phytoplankton samples 406	
  

through metabarcoding from a conservation perspective (Diaz-de-Quijano et al., 407	
  

AIL2018). Located in the Ergaki Natural Park, West Sayan Mountains, is a poorly 408	
  

studied area due to its extreme climate with a wide range of annual temperatures (-409	
  

41°C to +32°C). The lake is surrounded by a mosaic landscape of bogs, sparse taiga 410	
  

forest, scree and alpine tundra and biodiversity has particular adaptations to these 411	
  

conditions (Anishchenko et al., 2015). However, human activities, namely tourism 412	
  

and global warming in South Siberia and Central Asia, are the present threats to these 413	
  

ecosystems. 414	
  

Thermal waters 415	
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In São Miguel island, in the Azorean archipelago, environmental samples were 416	
  

collected from 21 thermal sites, including hot springs, thermal pools and ponds, 417	
  

thermal streams and hydrothermal vents, with temperatures ranging from 28˚C to over 418	
  

90˚C (Cordeiro et al., AIL2018). Cyanobacteria were isolated from these samples and 419	
  

deposited in BACA-Banco de Algas e Cianobactérias dos Açores (Universidade dos 420	
  

Açores), which is part of REBECA (Red de excelencia en biotecnología azul (algas) 421	
  

de la región de la Macaronesia). From the 40 strains isolated, 24 strains and 422	
  

environmental samples were targeted for cyanotoxin production potential through 423	
  

conventional PCR. Preliminary results show that none of the studied cyanobacteria 424	
  

strains have cyanotoxin production potential (Cordeiro et al., AIL2018). 425	
  

Estuaries and coastal lagoons 426	
  

Finally, studies have been undertaken in estuaries and coastal lagoons. A proof-of-427	
  

concept study (Lobo et al., 2017b) on the application of DNA metabarcoding for 428	
  

monitoring estuarine macrozoobenthic communities has been conducted in the Sado 429	
  

estuary (SW Portugal). The metabarcoding approach was able to discriminate 430	
  

macrozoobenthic communities among sampling sites successfully and provided biotic 431	
  

index levels comparable to the morphology-based approach (Lobo et al., 2017b). Up 432	
  

north, in river Lima (NW Portugal), the estuarine area has become an important 433	
  

Portuguese harbour, used for commercial navigation and fishing activities and is 434	
  

subjected to constant dredging as well as the input of agricultural run-off and urban 435	
  

and industrial sewage (Sousa et al., 2007). The University of Minho (Portugal) team 436	
  

is monitoring meiofauna communities of this estuary through metabarcoding, 437	
  

annually, whose preliminary results were presented at the AIL conference (Fais et al. 438	
  

2018, AIL2018). 439	
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In Cantabria, five sediment and five water samples were taken from 3 estuaries (Pas, 440	
  

Miera, and Asón) characterized by large intertidal surfaces and dominated by the tidal 441	
  

dynamic, making them well-mixed estuaries. This coast is subjected to various 442	
  

anthropogenic pressures. These sites have been sampled to determine general 443	
  

biodiversity through molecular analysis. 444	
  

The team from the University of Oviedo (Spain) has been using metabarcoding 445	
  

(eDNA) to determine the biodiversity and detect particular organisms in the coastal 446	
  

lagoons of Gulf of Lyon, in the French Mediterranean coast (Ardura et al., AIL2018). 447	
  

Ten lagoons were analysed: Berre, Beaduc, Bages-Sigean, La Palme, Leucate, Mejean, 448	
  

Prevost, Thau, Vic and Canet. These ecosystems provide habitat for many species, 449	
  

nursery areas and feeding grounds for marine and estuarine fish (Perez-Ruzafa et al., 450	
  

2011). They support important fisheries and allow for intensive aquaculture 451	
  

exploitation (Cataudella et al., 2015). Despite their being most of them under 452	
  

protection, they still suffer from several threats derived from human activities such as 453	
  

pollution, eutrophication, climate change and introduction of non-native species (≈100 454	
  

non-indigenous species were identified; Reizipoulou et al., 1996; Chapman, 2012).  455	
  

 456	
  

III. Selection of adequate barcode genes for each group of organisms  457	
  

The selection of barcode genes varies with the target taxonomic group studied and the 458	
  

focus of the studies. The researchers took different options in the studies presented in 459	
  

the SS: 460	
  

COI 461	
  

The DNA barcode region elected most frequently for the identification of 462	
  

individualized specimens is a fragment of the mitochondrial COI gene (Herbert et al., 463	
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2003). The Cytochrome c (COI) is an amino acid sequence that is highly conserved in 464	
  

eukaryotes, differing by only a few residues. There are robust universal primers for it 465	
  

that recover most animal phyla, and thousands of reference sequences are available in 466	
  

public databases such as BOLD and GenBank (Ratnasingham & Herbert, 2013).  467	
  

(Herbert et al. 2013). However, the high variability in the third position of the COI 468	
  

codons makes it difficult to design universal primers for metabarcoding DNA studies 469	
  

(Ficetola et al., 2010). For fish identification, most used barcode markers in DNA 470	
  

reference collections are the COI and cytochrome b (Cytb) genes, other mitochondrial 471	
  

genes, which can confirm taxonomic identification at the species level. However, 472	
  

some studies are showing that COI might not be the best option for assessing and 473	
  

monitoring freshwater fish diversity using environmental DNA from water because 474	
  

this marker might not contain suitably conserved regions (e.g., Deagle et al., 2014). 475	
  

Instead, the potential of using the MiFish region from the ribosomal 12S is under 476	
  

consideration (Miya et al., 2015; Filipe et al., AIL2018).  477	
  

For Iberian freshwater macroinvertebrates, public repositories for COI DNA barcodes 478	
  

cover 35% of the taxa (3348 morphospecies) (Múrria et al., AIL2018). However, this 479	
  

coverage is highly variable across taxonomic groups. For instance, Odonata (79 480	
  

species, 54.43%), Hemiptera (81 species, 54.32%), Mollusca (65 species, 53.85%), 481	
  

Trichoptera (390 species, 50.77%) and Crustacea (10 species, 50.5%) were the best-482	
  

represented groups, whereas Diptera (1693 species, 23.21%), and Plecoptera (135 483	
  

species, 31.11%) were the less barcoded orders. Portuguese invertebrate communities 484	
  

sampled were also processed for metabarcoding using a small COI fragment (313bp) 485	
  

by Martins and collaborators in CIBIO (AIL2018). The HTS data were identified 486	
  

against the invertebrate collection of the InBIO Barcoding Initiative (at CIBIO-UP) 487	
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that includes hundreds of specimens of macroinvertebrate taxa from northeast 488	
  

Portugal. 489	
  

Macroinvertebrates and marine fish have been the target of comprehensive DNA 490	
  

barcoding campaigns across multiple coastal ecosystems in continental Portugal. The 491	
  

primary marker was the COI, occasionally supplemented by other markers (e.g., 492	
  

Borges et al., 2012). In the Lima estuary, DNA from meiofauna communities was 493	
  

extracted from intertidal sediments. In this case, the target genes were the COI and 494	
  

18S ribosomal RNA (18S rDNA) gene. MiSeq amplicon sequences were processed in 495	
  

mothur (version 1.39.5, Schloss et al., 2009) by using appropriate bioinformatic 496	
  

procedures; while the taxonomy of the processed sequences were assessed by blasting 497	
  

against the full ntNCBI database (Fais et al., AIL2018). This database was chosen due 498	
  

to the lack of adequate reference sequences in better-known databases, such as BOLD 499	
  

(Ratnasingham and Hebert, 2007) and Silva (Pruesse et al., 2007). In the French 500	
  

coastal lagoons, the invertebrate communities were as well analysed from eDNA with 501	
  

COI marker. 502	
  

18S, rbcL and 16S 503	
  

In the project BIOWAT-KIT a preliminary evaluation of different genomic regions 504	
  

using publicly available sequence data was carried out in order to identify the best-505	
  

suited DNA barcode marker for the identification of 141 families of invertebrates 506	
  

belonging to four different phyla (Platyhelminthes, Annelida, Mollusca, and 507	
  

Arthropoda). Several primer pairs have been designed, including a degenerate primer 508	
  

pair and a cocktail of group-specific primers, which will presumably amplify all the 509	
  

target invertebrate taxa present in freshwater samples. Based on the results, the 510	
  

mitochondrial 16S gene was selected for the DNA metabarcoding analysis of 511	
  

freshwater invertebrate communities within this project, since it combines both 512	
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conserved regions suitable for primer design, and variable regions with good 513	
  

taxonomic resolution at the family level (and potentially, also at the genus or species 514	
  

level) (Pujante et al., AIL2018).  515	
  

In Thonon (France), the INRA team targeted several genes for diatoms (18S, COI, 516	
  

rbcL) (Kermarrec et al., 2013). While COI is found in mitochondrial DNA of 517	
  

eukaryotic organisms, the 18S is part of the ribosomal RNA of eukaryotes and the 518	
  

ribulose-1,5-bisphosphate carboxylase/oxygenase (rcbL) is present in plants 519	
  

chloroplasts. The rcbL showed to be the most suitable barcode for biomonitoring 520	
  

purposes with diatoms (Kermarrec et al., 2013; Kermarrec et al., 2014; Pawlowski et 521	
  

al., 2016). Thus, DNA metabarcoding of periphytic diatom community samples from 522	
  

Portuguese and French rivers included a step for DNA extraction using commercial 523	
  

kit NucleoSpin® Soil and a second step for DNA sequencing with MiSeq system 524	
  

(Illumina) using rbcL plastid gene (312 bp barcode) (Mortágua et al., AIL2018, 525	
  

Mortágua et al. 2019, Rivera et al., 2018). Sample sequences obtained from 526	
  

metabarcoding were then analysed using the software mothur (version 1.39.5, Schloss 527	
  

et al., 2009). Taxonomic assignment of OTUs was based on the R-Syst::diatom 528	
  

database (Rimet et al., 2016, version 17-05-2017, http://www.rsyst.inra.fr/en). In 529	
  

French lagoons, the process was similar, but the DNA extraction was done with the 530	
  

kit Power Water DNA Isolation MOBIO® and sample sequences obtained from 531	
  

metabarcoding were then analysed using the software QIIME (https://qiime2.org). 532	
  

In Azorean lakes and thermal springs, DNA was extracted up to 24h after sample 533	
  

collection, according to the gram-negative bacteria protocol of PureLinkTM Genomic 534	
  

DNA Mini Kit (Invitrogen, Carlsbad, CA, USA), followed by amplification of genes 535	
  

targeting 16S rDNA and cyanotoxins (Microcystin, Saxitoxin and Anatoxin-a) using 536	
  

conventional PCR and electrophoresis protocols (Cordeiro et al., AIL2018). All 537	
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protocols used were modified from existing ones available in the scientific literature 538	
  

(Ouahid et al., 2005; Ballot et al., 2010; Ledreux et al., 2010; Rantala-Ylinen et al., 539	
  

2011; Casero et al., 2014). 540	
  

Biofilms from central Portugal and their response to multiple stressors in mesocosms 541	
  

were assessed through their OTUs composition in a study by Calapez et al. 542	
  

(AIL2018). DNA was extracted from a portion of the biofilm using PowerSoil® DNA 543	
  

Isolation Kit (Mobio Laboratories Inc., Carlsbad, CA, USA), followed by a PCR to 544	
  

amplify rDNA genes for each studied biofilm community, using a Taq DNA 545	
  

polymerase. The bacterial V3 region of 16S gene, fungi and eukarya of 18S gene 546	
  

were amplified using universal primers pairs ITS1F-GC and ITS2, the V3 region of 547	
  

bacterial 16S rDNA gene was amplified with the primer pair 338F-GC and 518R for 548	
  

16S and Euk1A and Euk516r-GC for 18S. Then a Denaturing Gradient Gel 549	
  

Electrophoresis (DGGE) was run for each community, conducted in a DCode system 550	
  

(Bio-Rad, Hercules, CA, USA). DGGE images were converted, normalized, and 551	
  

analysed with the software BioNumerics 7.6 (Applied Maths, Sint-Martens-Latem, 552	
  

Belgium) to obtain the relative abundances according to gel band intensity (OTUs). 553	
  

In the Russian lake Oiskoe, planktonic microeukaryotes were assessed before and 554	
  

after ice-and-snow cover formation (Díaz-Quijano et al., AIL2018). The focus was set 555	
  

on phytoplankton and general protists, but other eukaryotic actors of the microbial 556	
  

loop, such as ciliates and fungi were assessed as well. General eukaryote primer pair 557	
  

targeting the V4 region of the small subunit 18S rRNA gene was used (Balzano et al., 558	
  

2015). This is a modification of Stoeck’s primer pairs (Stoeck et al., 2010), with an 559	
  

extra degenerate nucleotide position, which allows haptophytes to be targeted.  560	
  

Total biodiversity (from microorganisms to vertebrates) has also been addressed in 561	
  

projects developed in Cantabria, with the addition of 16S and 18S primers for 562	
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prokaryotes and eukaryotes (Bact02 and Euka02 primers, respectively), besides COI 563	
  

for macroinvertebrates (Sainz-Barain et al., AIL2018). 564	
  

 565	
  

IV. New database entries 566	
  

Continuous incorporation of data from new or updated biological surveys is essential 567	
  

to develop a good species database (Olenin et al., 2016). Many of the studies 568	
  

presented in the SS originated important new barcode data that fed different databases. 569	
  

Fish and invertebrates 570	
  

For marine life, core COI reference databases for the most prominent groups of 571	
  

Portuguese and Iberian fish and macroinvertebrates were made publicly available on 572	
  

BOLD systems. Regarding fish, in addition to the Portuguese marine ichthyofauna 573	
  

(Costa et al., 2012), reference databases have been generated for the Mediterranean 574	
  

(Landi et al., 2014), the North Sea and British Isles species (Knebelsberger et al. 575	
  

2014). A published compilation for all European marine fish species is available as 576	
  

well (Oliveira et al., 2016). For freshwater fish species, the reference database for 577	
  

European species is almost complete concerning standard DNA barcodes (COI) and 578	
  

public data can be found in GenBank and BOLD databases. However, there is only 579	
  

very limited 12S sequence data available that can be used as a reference to 580	
  

taxonomically annotate eDNA derived OTUs. Among the invertebrates there are 581	
  

published databases and other scattered DNA barcode contributions available for 582	
  

annelids, namely Polychaeta (Lobo et al., 2016; Ravara et al., 2017), for molluscs 583	
  

(Gastropoda: Borges et al., 2016; bivalve woodborers: Borges et al., 2012), and for 584	
  

crustaceans (e.g. Amphipoda; Lobo et al., 2017b).   585	
  

Meiofauna 586	
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Concerning meiofauna, to the best of our knowledge, there are no specific databases. 587	
  

Yet, Tang and collaborators (2012) gathered a total of 12 000 sequences (generated 588	
  

and retrieved from GenBank) across 55 meiofaunal datasets comprising 3 taxonomic 589	
  

ranks (15 species complexes, 26 genera, and 14 higher taxa above the genus level, 590	
  

including orders, classes, and phyla), using either 18S or COI markers. 591	
  

Diatoms 592	
  

For diatoms, R-Syst::diatom, a specific reference barcoding database has been 593	
  

developed (http://www.rsyst.inra.fr/) (Rimet et al., 2016) and was used in the studies 594	
  

presented at AIL2018 conducted in Portugal by Mortágua et al. (AIL 2018; 2019) and 595	
  

in France by Rivera et al. (AIL 2018). This database is open access and contains 18S 596	
  

and rbcL barcodes. In addition, R-Syst::diatom provides information concerning 597	
  

morphological diatom features (e.g., biovolumes, chloroplasts, etc.), ecological 598	
  

features (taxa preference to pollution) and life-forms (mobility, colony-type). The 599	
  

database is uploaded and curated every six months. The	
  sequences	
  obtained	
  in	
  the	
  600	
  

Russian	
  study	
  are	
  not	
  attributed	
  to	
  any	
  taxocenose-­‐specific	
  database	
  but	
  should	
  601	
  

be	
   made	
   available	
   to	
   the	
   builders	
   of	
   a	
   cryophyllic	
   diatom	
   and	
   green	
   algae	
  602	
  

ribosomic	
  RNA	
  database	
  at	
  the	
  Helmholtz	
  Centre	
  for	
  Polar	
  and	
  Marine	
  Research	
  603	
  

in	
  Potsdam,	
  Germany	
  (shuang@awi.de).	
  604	
  

 605	
  

V. Multidisciplinary international networks 606	
  

The metagenomics is an area where extended networks tend to be formed in order to 607	
  

easily tackle all the fields involved, encompassing fieldwork and sample collection to 608	
  

laboratory procedures, taxonomic expertise and molecular analyses. This need is clear 609	
  

in the global distribution of authors of the SS (Fig. 1).  610	
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The University of Minho team (Portugal) has integrated the Consortium for the 611	
  

Barcode of Life (CBOL) from early stages and later the International Barcode of Life 612	
  

(iBOL) and in collaboration with the Museu Nacional de História Natural e Ciência,, 613	
  

Instituto Português do Mar e da Atmosfera, the Portuguese Institute of Malacology, 614	
  

the research institutes IMAR, CIIMAR and CNC/Biocant, and the Universities of 615	
  

Guelph (Canada), Bangor (UK) and Vigo (Spain) works to build core reference 616	
  

databases for marine life. 617	
  

The teams from the Universities of Aveiro and Coimbra (Portugal) have been 618	
  

working with INRA at Thonon-les-Bains (France) in the laboratorial treatment of 619	
  

periphytic biofilms, from extraction, amplification, sequencing of DNA and 620	
  

bioinformatic analyses. MARE team is also collaborating with CIBIO (Portugal) for 621	
  

the assessment of freshwater invertebrate communities and biological quality through 622	
  

DNA. For the FRESHING project (CIBIO/InBIO, Portugal) the laboratory procedures 623	
  

and the HTS (MiSeq v2, 2x250bp PE) were performed in CIBIO-UP (Portugal) while 624	
  

fieldwork have been done in collaboration with the company Aqualogus and the 625	
  

taxonomical identification at Instituto Politécnico de Bragança (Portugal). These 626	
  

teams, like those from Universities of Minho, Coimbra and Aveiro (Portugal), 627	
  

Cantabria and Barcelona (Spain), are part of the larger network of the European 628	
  

COST action DNAqua-Net, which among other tasks are tackling problems such as 629	
  

an adaptation of currently used biotic indices for metabarcoding data. 630	
  

Samples from the Cantabrian coast (Spain), Gulf of Lion (South France), Polynesian 631	
  

ports and Spanish rivers are being processed in molecular facilities of the University 632	
  

of Oviedo. DNA sequencing will be done at the Massive Sequencing Service Unit 633	
  

from the IBBTEC (CSIC - Universidad de Cantabria – Sodercan). The University of 634	
  

Barcelona team is currently collaborating with the University of Salford (UK) and 635	
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University of Tromsø (Norway) for sequencing facilities and bioinformatics. In the 636	
  

Azores, all molecular laboratory work is conducted in the laboratories of the 637	
  

University of Azores (UAc) and CIBIO. The cyanobacteria cultures were established 638	
  

and maintained in BACA-Banco de Algas e Cianobactérias dos Açores (UAc), which 639	
  

is part of the REBECA network. The team works on this topic with the Ecotoxicology 640	
  

team from CIIMAR, University of Porto. In Russia, the molecular facility used was 641	
  

the Laboratory of Experimental Hydroecology, at the Biophysics Institute (Siberian 642	
  

branch of the Russian Academy of Sciences). Sequencing (Illumina MiSeq) was 643	
  

performed in three facilities: Konstantin V. Krutovsky lab, at the Sukachev Institute 644	
  

of Forest; the Centre for Collective Use of the Institute of Bioorganic Chemistry, 645	
  

Novosibirsk, Russia; and the company Evrogen (Moscow). 646	
  

 647	
  

MAIN FINDINGS 648	
  

The SS showed several interesting results at the technical level but also new insights 649	
  

for the ecology and conservation of aquatic systems. 650	
  

Technical aspects 651	
  

It was found that the choice of the markers to target particular primer pair can 652	
  

considerably influence the metabarcoding-based analyses output. For estuarine 653	
  

meiofaunal. up to 85% of the species constituting a mock community were detected 654	
  

by using a combination of 3 primer pairs targeting the COI region, while only 30 to 655	
  

60% were recovered by using any primer set alone (Hollatz et al., 2017; Fais et al., 656	
  

AIL218). Also, the amount of starting material from the sample for eDNA extraction 657	
  

is critical for a comprehensive assessment of meiofaunal communities in estuarine 658	
  

ecosystems. 659	
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The use of preservative ethanol from field samples seems to be a promising solution 660	
  

for macroinvertebrate biodiversity assessment, with faster processing of samples in 661	
  

the lab for DNA metabarcoding. However, the results are sensitive to various 662	
  

laboratory procedures, namely DNA extraction methods and/or the storage and 663	
  

collection timing of preservative ethanol (Martins et al., AIL2018).  664	
  

Ecology and conservation 665	
  

Molecular analyses in aquatic ecosystems brought not only new information but also 666	
  

new questions. DNA barcoding studies on Portuguese marine life have been revealing 667	
  

numerous cases of comparatively high intra-specific divergences, suggesting the 668	
  

existence of considerable hidden diversity and putative cryptic species across diverse 669	
  

marine taxa, including fish and major groups of invertebrates (Fais et al., AIL2018). 670	
  

These findings suggest that populations of marine organisms may be much more 671	
  

structured than previously thought, calling for a continuous effort on the description 672	
  

of the hidden diversity and further completion of the reference databases. In order to 673	
  

improve the efficiency of amplification of COI barcodes from marine 674	
  

macrozoobenthos, Lobo et al. (2013) developed a new pair of degenerate primers 675	
  

with a broad scope of amplification success across a phylogenetically diverse range of 676	
  

marine metazoan taxa. 677	
  

In the very first study based on molecular data of freshwater diatom communities in 678	
  

Portugal, the total number of diatom taxa identified was 125 from 88 river samples 679	
  

which corresponded to about 41% of the number of taxa identified by using the light 680	
  

microscope (Mortágua et al. AIL2018; Mortágua et al., 2019). These results, 681	
  

somewhat unexpected, were in accordance with results registered in studies 682	
  

performed in other countries (Vasselon et al., 2017b; Rivera et al., 2018 and Keck et 683	
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al., 2018). A possible explanation might be the high number of unassigned reads, 684	
  

which is a consequence of the incompleteness of the reference database.  685	
  

The molecular approach was also found important in the detection of new 686	
  

introductions of fishes and tracking introduction histories, which can be relevant for 687	
  

designing proper management plans. It is the case of the species P. phoxinus that was 688	
  

recorded for the first time in the Douro Basin. This species can be easily misidentified 689	
  

as other species from the same genus when using only morphological identifications 690	
  

in the field.,  691	
  

 The eDNA and metabarcoding approaches were found efficient to obtain accurate 692	
  

baseline information to be used in conservation planning and ongoing management of 693	
  

coastal lagoons in the south of France. Despite their different status of conservation 694	
  

within Natural Parks, Reserves or Natura 2000 Network, they are already 695	
  

contaminated with non-indigenous species, some of them already described as 696	
  

invasive species. 697	
  

New records of cyanobacteria species presence were detected in the Azores through 698	
  

molecular analyses (Cordeiro et al., AIL2018). In addition, some of the sampled lakes 699	
  

cyanotoxins production potential was confirmed, mainly associated with 700	
  

eutrophication and anthropogenic effects, which shows the potential of molecular 701	
  

tools for monitoring cyanotoxin risk in aquatic systems. 702	
  

In Russia, a unique dataset of early winter lake water microbial communities was 703	
  

produced as winter dynamics are usually out of the scope of limnological studies in 704	
  

Siberia, due to the harsh fieldwork conditions (Diaz-de-Quijano et al., AIL2018). The 705	
  

Cryptomycota clade LKM11, which was previously found in ice-covered lakes of 706	
  

Antarctica (Rojas-Jimenez et al., 2017), represented up to 6-10% of the reads in 707	
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intermediate and deep layers of the water column of the ice-covered Oiskoe lake. 708	
  

Metabarcoding of microbial but also macroscopic communities enabled an easier 709	
  

calculation of phylogenetic diversity metrics, and testing hypotheses on the ecological 710	
  

mechanisms governing community assemblages. 711	
  

 712	
  

MAJOR DRAWBACKS 713	
  

Different technical drawbacks were signalized in the SS, in spite of the potential 714	
  

advantages of molecular approaches in biodiversity and ecological assessment of 715	
  

aquatic ecosystems.  716	
  

Taxonomic gaps 717	
  

In the SS it was often referred to the existence of taxonomic gaps in the reference 718	
  

databases when considering local fauna. One example is the study in the Lima estuary 719	
  

and in the Tua river in Portugal with benthic invertebrates, where a fair number of 720	
  

OTUs could not be assigned to phylum or other lower taxonomic rank due to the 721	
  

primers used for targeting the COI region (Mortágua et al., 2019). A similar issue was 722	
  

reported for the diatoms as previously referred, in spite of the large database and 723	
  

diatom cultures existing in Thonon-les-Bains, INRA, with a high number of 724	
  

unassigned reads (67%). The increase in the number of diatom barcodes in reference 725	
  

databases will allow for a complete study of diversity, namely in what concerns to 726	
  

rare taxa. In some cases, databases are not sufficient for assigning species and they 727	
  

must be assigned at genus level; in these cases, previous taxonomic work is necessary. 728	
  

In the French coastal lagoons, only ca. 10% of reads obtained were identified to the 729	
  

species level and those that could not be described to the species level had multiple 730	
  

best BLAST hits or the best BLAST hit had no species-level information available. In 731	
  



	
   31	
  

addition, local databases covering intra-specific variability are important, especially 732	
  

when geographical barriers can lead to high intra-specific variability (e.g., Douro 733	
  

River Basin). 734	
  

Extraction of eDNA 735	
  

Protocols need further adjustments and should be adapted to the environments and 736	
  

types of samples (e.g., biofilms scrapings or preservative liquid of bulk samples 737	
  

instead of water). eDNA extraction was the biggest setback. This was found through 738	
  

the development of the work with cyanobacteria as they have a wide range of 739	
  

morphological characteristics, like mucilage sheaths (Codd et al., 2017), that makes 740	
  

DNA extraction more complicated. Different methods were tested to improve cell 741	
  

lysis, like sonication, enzymatic lysis and readjustments of temperature and 742	
  

incubation time (Kim et al., 2009). Similar results were found using ethanol from the 743	
  

preservation of macroinvertebrate samples where different DNA extraction methods 744	
  

retrieved different species diversity across time. 745	
  

Amount of environmental sample  746	
  

The amount of sample needed for good DNA extraction can be harder to determine 747	
  

since it depends not only on the type of sample (e.g., water, sediment) but also on the 748	
  

study site. For example, in eutrophic lakes, there is a higher abundance and diversity 749	
  

of phytoplankton, while in thermal springs there is lower abundance and diversity of 750	
  

phytoplankton. Preliminary research employing metabarcoding on eDNA extracted 751	
  

from sediments at an estuarine site in the North of Portugal revealed that more OTUs 752	
  

assigned to meiofauna were recovered by using higher amounts of sediment samples 753	
  

(Fais et al., AIL2018). 754	
  

Genetic markers 755	
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Different genetic markers and bioinformatics pipelines must be considered to obtain 756	
  

the most accurate results. For fish, it is hard to find a single nuclear marker with 757	
  

enough resolution to delimit closely related species (Filipe et al., AIL2018). Despite 758	
  

the appropriateness of COI and CytB markers for the majority of the species, some 759	
  

genera such as Achondrostoma or Cobitis can represent a bigger problem to identify 760	
  

the specimens taxonomically to species-level. 761	
  

Cost of sequencing 762	
  

The cost of HTS is still significantly high and highly variable, which limits their 763	
  

present use in large monitoring programs. Especially in Russia, the purchase of 764	
  

reagents and materials from western countries might take up to 6 months and cost up 765	
  

to twice their price in the West, which makes it difficult to match financing and 766	
  

project calendars, when it comes to using metabarcoding in a particular project. 767	
  

 768	
  

CONCLUSIONS 769	
  

Studies presented in AIL2018 meeting enhanced the importance and applicability of 770	
  

molecular techniques in environmental studies, towards fast and significant 771	
  

information acquisition. This information can be used in biodiversity and ecological 772	
  

quality assessments, conservation and management of aquatic water bodies. 773	
  

During the SS, it became clear that molecular tools, and particularly the 774	
  

metabarcoding approach, could provide fine-scale taxonomical resolution data, 775	
  

contribute to detect new invasions and allow for unveiling hidden biodiversity 776	
  

resulting from low-abundance, small sizes and poor-developmental stages. 777	
  

Yet, a lot of work and investment is still needed before molecular tools can be used 778	
  

routinely in monitoring programs, namely in the completion of databases, 779	
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optimization and standardization of both laboratory and field protocols, in automation 780	
  

in sample handling and bioinformatics analyses and ultimately in reducing analyses 781	
  

costs. Moreover, considering the adaptation to the WFD, which requires reaching a 782	
  

quality status that could actually replace the existing ones based on taxonomy, it is 783	
  

necessary to establish new reference values for different types of rivers and other 784	
  

water bodies (Feio et al., 2014) or check existing ones with molecular data, and 785	
  

establish clear responses to disturbance gradients (Filipe et al., 2018). This however, 786	
  

might soon become a reality for diatoms, macroinvertebrates and fish. The relatively 787	
  

well-developed taxonomy and autoecology of diatoms make them an ideal case to 788	
  

compare genetic, morphological and ecological determination of species. On the other 789	
  

hand, by the use of primer pairs that target a phylogenetic range wider than diatoms, 790	
  

(e.g., targeting eukaryotes) studies could include a wider spectrum of autoecologies 791	
  

with more power to inform about the ecological state of aquatic ecosystems. 792	
  

Despite most studies presented, in the special session being from Europe, the 793	
  

perspectives, main findings and drawbacks are likely to be common to other 794	
  

geographic areas across the globe. Therefore, we expect this review to be useful to 795	
  

other researchers across the world, dealing with molecular tools for ecological and 796	
  

biodiversity assessment of aquatic ecosystems. 797	
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Table 1.  Biological groups, water bodies and barcode genes assessed in studies 1202	
  
presented in the special session “The use of molecular tools in ecological and 1203	
  
biodiversity assessment of aquatic ecosystems” of the XIX Congress of the Iberian 1204	
  
Association of Limnology (AIL2018). Grupos biológicos, massas de água e barcodes 1205	
  
analisados nos estudos apresentados na sessão especial ”O uso das ferramentas 1206	
  
moleculares na avaliação ecológica e biodiversidade dos ecossistemas aquáticos”, 1207	
  
do XIX Congresso da Associação Ibérica de Limnologia (AIL2018) 1208	
  

Biological group  Type of water 
body/location 

Barcode gene Reference 

Total biodiversity – eDNA 
(water) 

Coastal lagoons of 
Gulf of Lyon - 
France 

COI, 18S Ardura et al., 
AIL2018 

Total biodiversity – eDNA 
(water, sediment) 

Rivers and estuaries 
– Pas, Asón, Miera 
rivers (Cantabria), 
Douro, Ebro 

COI, 18S, 
16S 

Sainz-Barain et 
al., AIL2018 

Fish Rivers –	
  Douro 
catchment 

12S – MiFish 
region 

Filipe et al., 
AIL2018 

Fish (non-indigenenous species) 
– Phoxinus phoxinus 

Rivers - Douro 
catchment 

COI, Cytb Garcia-Raventós 
et al., AIL2018 

Macroinvertebrates and eDNA 
(ethanol) 

Rivers – Tua (Douro 
catchment) 

COI Martins et al., 
AIL2018 

Macroinvertebrates Rivers – Spain 
(Mediterranean 
rivers), Finland and 
Germany 

16S Pujante et al., 
AIL2018 

Macroinvertebrates and eDNA 
(water) 

Rivers – Lobregat, 
(Mediterranean river, 
Catalonia) 

COI Múrria et al., 
AIL2018 

Diatoms Rivers – central 
Portugal 

rbcL Mortágua et al. 
AIL2018; 
Mortágua et al., 
2019 

Diatoms Lakes – Bourget, 
France 

rcbL Rivera et al., 
2018; Rivera et 
al. AIL2018 

Biofilms (bacteria, fungi, 
microalgae) 

Rivers (mesocosms) 16S, 18S Calapez et al., 
AIL2018; Calapez 
et al., 2019 

Phytoplankton Mountain lake - 
Oiskoe, Siberia 

18S Díaz-Quijano et 
al., AIL2018 

Algae (toxicity, Cyanobacteria) Thermal waters and 
freshwater lakes – 
Azores islands 

16S and sxtA, 
sxtI, sxtH, 
sxtG for 

Cordeiro et al., 
AIL2018 
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saxitoxinas, 
anaC, anaF 
for anatoxina, 
and mcyC, 
mcyD, mcyE, 
mcyG for 
microcistina 
	
   

Meiofauna (sediment) Estuary – Lima river, 
Portugal 

COI, 18S Fais et al., 
AIL2018 
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Figure 1. Distribution of the contributors to the special session “The use of molecular 1218	
  
tools in ecological and biodiversity assessment of aquatic ecosystems” of the XIX 1219	
  
Congress of the Iberian Association of Limnology (AIL2018) in the World. Image 1220	
  
produced in Google Maps (2019). Distribuição dos autores da sessão especial “O uso 1221	
  
das ferramentas moleculares na avaliação ecológica e biodiversidade dos 1222	
  
ecossistemas aquáticos”, do XIX Congresso da Associação Ibérica de Limnologia 1223	
  
(AIL2018) no mundo. Imagem produzida no Google Maps (2019). 1224	
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