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Abstract
Portal hypertension is the main non-neoplastic complication of chronic liver disease, being the cause of important life-
threatening events including the development of ascites or variceal bleeding. The primary factor in the development of portal 
hypertension is a pathological increase in the intrahepatic vascular resistance, due to liver microcirculatory dysfunction, 
which is subsequently aggravated by extra-hepatic vascular disturbances including elevation of portal blood inflow. Evidence 
from pre-clinical models of cirrhosis has demonstrated that portal hypertension and chronic liver disease can be reversible 
if the injurious etiological agent is removed and can be further promoted using pharmacological therapy. These important 
observations have been partially demonstrated in clinical studies. This paper aims at providing an updated review of the 
currently available data regarding spontaneous and drug-promoted regression of portal hypertension, paying special atten-
tion to the clinical evidence. It also considers pathophysiological caveats that highlight the need for caution in establishing 
a new dogma that human chronic liver disease and portal hypertension is reversible.

Keywords  Chronic liver disease · Cirrhosis · Hepatic hemodynamic · Hepatic circulation · Portal pressure · Liver sinusoid · 
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Introduction

Approximately 2 million people die each year from com-
plications of chronic liver disease (CLD) in spite of recent 
major progresses in this field [1]. CLD originates due to 
chronic injury, which induces excessive extracellular matrix 
(ECM) deposition and microvascular dysfunction that, over 

time, hinder intrahepatic circulation and induce portal 
hypertension (PH) [2].

PH is a clinical syndrome defined as an increased blood 
pressure in the portal venous system, being the primary 
cause of clinically relevant complications such as ascites, 
jaundice, variceal bleeding and an increased risk of spon-
taneous bacterial peritonitis or other bacterial infections, 
hepatic encephalopathy, hepatorenal syndrome and liver fail-
ure [3] (Fig. 1). The current gold standard for diagnosing and 
staging cirrhotic (sinusoidal) portal hypertension is HVPG 
measurement, which allows estimation of the portal pressure 
by calculating the difference between the wedged hepatic 
venous pressure (WHVP) and the free hepatic venous pres-
sure (FHVP).

In normal conditions, HVPG ranges from 1 to < 5 mmHg. 
Values greater than 5 mmHg indicate portal hypertension; 
while, a HVPG greater than 10 mmHg indicates clinically 
significant portal hypertension (CSPH), which may result 
in the above-described life-threatening clinical complica-
tions [3].

Initially, PH develops due to increased intrahepatic vas-
cular resistance (HVR) to blood flow. This increased HVR is 
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most commonly caused by chronic liver disease as a result 
of multiple pathological events in the sinusoidal circulation 
[4]. Indeed, during the process of liver injury, and regardless 
of the etiology, liver sinusoidal endothelial cells (LSECs) are 
rapidly de-regulated and begin to de-differentiate, acquir-
ing a “capillarized” phenotype. They become proinflam-
matory and produce soluble factors that reach neighboring 
cells and determine their phenotype [5]. At the same time, 
exogenous liver injury induces a transcriptional change in 
hepatocytes, promoting their proliferation and death. This, 
in turn, leads to the release of apoptotic bodies that further 
contribute to the activation of other hepatic cells [6, 7]. Due 
to these injuring stimuli, hepatic stellate cells (HSCs) leave 
their quiescent state, becoming proliferative, pro-contractile 
and start synthesizing ECM components, becoming the most 
direct contributors to hepatic fibrosis. Persistent fibrosis, 
then, leads to distortion of the liver parenchyma and vascu-
lar structures, contributing to the stiffening of the organ and 
perturbing many cellular functions [8], ultimately leading to 
increased HVR and PH (Fig. 2). In advanced stages of the 
disease, the splanchnic tissue senses the reduced blood flow 
and increased pressure upstream of the liver, and produces 
an extrahepatic vasodilatory response as a compensatory 
mechanism. However, this leads to increased blood flow to 

the portal vein (hyperdynamic circulation), further aggravat-
ing PH [9].

Currently, therapeutics for PH consist of drugs targeting 
the extrahepatic vascular bed (mostly non-selective beta-
blockers) that ameliorate systemic circulation and the hyper-
dynamic syndrome, leading to a reduction in portal blood 
flow. Despite the fact that these approaches may accom-
plish a reduction in PH in some cases, they do not have an 
effect on increased HVR (the primary cause of PH). Until 
recently, advanced fibrosis was thought to be irreversible, 
liver transplantation being the only option to cure CLD in 
most cases [10]. However, recent data from both human and 
animal models have challenged this view and suggest that 
after removal of the etiologic factor liver fibrosis and even 
cirrhosis may regress [11]. This is the case of a fraction of 
the patients cured from hepatitis B, hepatitis C, hepatitis 
Delta or metabolic hepatitis [12], that achieved normal or 
near-normal liver histology and function after the etiological 
agent was removed. Therefore, such insights may provide 
valuable data in determining the underlying mechanisms of 
PH and potential future therapeutic strategies.

Regression of portal hypertension: 
spontaneous mechanisms

Pre‑clinical evidence for PH regression 
upon etiologic treatment

Spontaneous resolution of fibrosis has been observed in 
the gold-standard models of cirrhosis, including the carbon 
tetrachloride (CCl4), thioacetamide (TAA) and bile duct 
ligation models [13, 14]. Furthermore, regression of fibro-
sis and PH was also observed in animals with NASH after 

Fig. 1   Schematic representation of complications of portal hyperten-
sion. Clinically significant portal hypertension may lead to hepatic 
encephalopathy, gastroesophageal varices prone to hemorrhage, liver 
failure, hepatorenal syndrome and ascites and it is also associated 
with an increased risk for hepatocellular carcinoma development. 
GEV gastroesophageal varices, SBP spontaneous bacterial peritonitis

Fig. 2   Main cellular mechanisms contributing to the progression of 
chronic liver disease in response to liver damage. Chronic liver injury 
induces the expression of cell adhesion molecules by LSEC, leading 
to a recruitment of macrophages to the tissue. These, together with 
liver damage, lead to necroinflammation, capillarization of LSEC, 
polarization of macrophages, HSC activation and liver fibrosis. aHSC 
activated hepatic stellate cell, cLSEC capillarized liver sinusoidal 
endothelial cell, dxHep dysfunctional hepatocyte
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replacement of the high-fat diet for standard diet [15], alto-
gether suggesting that reversion of fibrosis and PH may be 
achieved in different etiological backgrounds.

Indeed, Abdel-Aziz and colleagues studied the reversibil-
ity of fibrosis in experimentally induced cholestasis in rats. 
Three weeks after the ligation of bile ducts, they observed 
bile duct proliferation and periportal fibrosis. Three weeks 
after relief of the bile duct ligation, there was resorption 
normalization of periportal fibrosis, except for the persis-
tence of collagen IV in the sinusoids [13]. Iredale and col-
leagues examined spontaneous recovery from liver fibrosis 
in CCl4-treated rats. After four weeks of induction and four 
additional weeks of recovery, they observed dissolution of 
the collagen fibrous matrix and a return to essentially nor-
mal liver structure [16]. Additional studies confirmed these 
observations [17, 18].

Clinical evidence for PH regression upon etiologic 
treatment

As exposed above, one of the first and most important steps 
towards achieving regression of CLD is the removal of the 
injurious agent. The first observations regarding the issue 
date back in the early 1990s, when the resolution of esoph-
ageal varices was demonstrated in a small group of alco-
holic cirrhotics who managed to abstain from alcohol for a 
long period of time [19]. Also, one-year alcohol abstinence 
determined a 46% reduction in hepatic vein wedge pressure 
(as a surrogate of portal pressure) [20]. The importance of 
achieving this goal has been demonstrated in CLD of several 
etiologies (Table 1), most convincingly in viral CLD.

–	 HBV: Long-term studies (5–7 years) showed a histologi-
cally proven progressive reduction in necroinflammation 
and fibrosis scores in a vast majority of antiviral treat-
ment (AVT)-responsive patients with HBV advanced 
fibrosis or cirrhosis [21, 22]. In addition, several studies 
demonstrated the beneficial effects of viral suppression 
on non-malignant decompensating events [23, 24], low 
grade esophageal varices (EV) progression [25, 26], EV 
development rate [26], and clinical scores and transplant-
free survival [27]. Although the evaluation of EV dynam-
ics is based on subjective judgement, the evidence pro-
vided by these trials suggest an underlying decrease in 
PH. One study including 19 patients with HBV-related 
CSPH showed a median reduction of 18.7% in HVPG 
during the 12 months of follow-up, with no significant 
systemic hemodynamic changes [28], suggesting a reduc-
tion in HVR, possibly through decreased hepatic necro-
inflammation.

–	 HCV, pre-DAA: While sustained virological response 
(SVR) after HCV therapy is significantly higher since the 
introduction of direct-acting antivirals (DAA), several 
pre-DAA studies already held promise of PH regression 
induced by etiological intervention. As is the case with 
HBV AVT, treatment of HCV can also prevent the devel-
opment of EV or slow down progression towards decom-
pensation [29]. However, it seems that this effect is less 
consistent once EV is already present before treatment 
initiation, suggesting a reduced effect on already estab-
lished PH [29, 30]. Moreover, in spite of PH decrease, 
decompensation is not always prevented and regression 
below the CSPH threshold is not always achievable, even 
with long-term follow-up (5.2 years after end of treat-
ment) [31]. Short-term hemodynamic and/or histology 
studies in compensated patients demonstrated HVPG 
reduction paralleled by reduction in necroinflammatory 
scores, but either no or very weak reduction in fibro-
sis scores, possibly due to the short follow-up time [32, 
33]. Around 60% of treated HCV patients with advanced 
fibrosis or cirrhosis followed up over a long time period 
(2–5 years) showed a progressive reduction in fibrosis 
score on repeated biopsy and significant reduction in scar 
collagen content, even in those without obvious fibrosis 
regression [34–36]. However, no changes in sinusoidal 
capillarization, as assessed by CD34 positivity or α-SMA 
staining, were observed, pointing towards lack of intra-
hepatic vascular remodeling [34].

–	 HCV, DAA: With the emergence of DAAs, even patients 
in advanced stages of CLD can achieve viral eradica-
tion, which leaves open the question whether and to 
what degree their disease can be reversed. It is now clear 
that SVR after DAA can result in clinically significant 
(≥ 10–20%) decrease in HVPG [37, 38], even in those 
patients with baseline CSPH and in difficult to treat pop-
ulations, such as HCV-HIV co-infected patients [38]. 
However, this effect seems less pronounced and more 
heterogeneous in those patients with advanced-stage 
CLD (high Child–Pugh score, HVPG > 16 mmHg) [37, 
39]. A study on post-transplant graft HCV reinfection 
showed fibrosis regression and HVPG decrease in 67% 
and 66% of patients which achieved SVR, however, 
among F4 biopsies, none of the patients displaying thick 
fibrous septa (Laennec C cirrhosis) had cirrhosis regres-
sion [40]]. Histological data show that HVPG reduction 
is lower in those patients who still have necroinflamma-
tory activity after SVR [38], which points towards an 
initial phase of reduction in HVPG through decreased 
intrahepatic inflammation [41]. However, it seems that 
HVPG decreases progressively over a longer time period, 
suggesting a long-term possibility of further decrease in 
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HVPG based on mechanisms other than reduced inflam-
mation. Still, in a relatively high proportion of patients, 
CSPH did not resolve, leaving them a risk for future 
decompensation [42–44].

	   A significant decrease in HVPG in patients without 
baseline CSPH is particularly important given its poten-
tial to prevent progression of disease (Fig. 3). Indeed, 
achieving SVR seems to decrease disease severity 
(Child–Pugh and MELD scores), decompensation risk 
and EV grade [39, 45, 46]. These important improve-
ments in HCV-induced CLD management are also mir-
rored in the shift in transplant indication from the pre-
DAA era and even within the last few years [47]. The 
effect of DAA on systemic hemodynamics is still not well 
established, with some studies showing mild but signifi-
cant increase in MAP and systemic vascular resistance 
[37]; whereas, others described no influence [38].

–	 NAFLD: The vast majority of patients benefit from differ-
ent weight loss surgery approaches, with normalization 
or reduction in tissue fibrosis [48, 49], although this is 
more evident in early fibrosis [50]. Lifestyle interventions 
have an important role in obese CLD patients (any etiol-
ogy), with 42% of patients showing a significant decrease 
(≥ 10%) in HVPG from baseline after 16 weeks, par-
alleled by a decrease in insulin resistance and plasma 
leptin levels, giving an insight into possible mechanisms 
of regression in this patient population [51]. Moreover, 
this last study showed no change in portal blood flow, 
thus reinforcing the probable effect on HVR of etiologi-
cal treatment in CLD. A subsequent study investigating 
the effects of physical activity in cirrhotic patients with 
CSPH (compensated or decompensated) also demon-
strated a reduction in HPVG [52].

Cellular and molecular events limiting spontaneous 
regression of PH

It is now evident that cirrhosis is at least partly reversible. 
However, the extent to which resolution can occur seems 
to be highly dependent on disease stage. Some of the most 
important elements that render PH resistant to regres-
sion are fibrotic tissue composition and stiffness, presence 
or absence of specific cell populations, and the profound 

Fig. 3   Stage-specific features determining the probability of regres-
sion of portal hypertension and chronic liver disease. It is accepted 
that the likeliness of regression is inversely correlated to the severity 

of the disease, usually determined by factors such as HVPG, thick-
ness of fibrous septa or acellularization. HVPG hepatic venous pres-
sure gradient, HE hepatic encephalopathy

Fig. 4   Molecular mechanisms modulating regression of chronic liver 
disease. Regression of cirrhosis and portal hypertension is usually 
impaired by liver architecture (altered extracellular matrix and acel-
lularization) and microcirculatory dysfunction. All these may induce 
an activation response to hepatic cells, promoting progression rather 
than regression of chronic liver disease. On the other hand, modula-
tion of the phenotype of hepatic cells (green box) may inhibit said 
alterations and represent potential targets for regression of chronic 
liver disease. ECM extracellular matrix, HSC hepatic stellate cell, 
LSEC liver sinusoidal endothelial cell
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(micro) vascular changes (Fig. 4), all elements which are 
significantly different in early versus advanced CLD.

–	 Fibrotic tissue properties: In a murine CCl4 model of 
CLD, followed up for 1 year after cessation of toxicant 
administration, regression was only partial, with trans-
formation from micronodular to macronodular pattern 
and incomplete resolution of broad mature septa [14]. 
This mirrors changes described during human cirrho-
sis regression [53]. In humans, small nodule size and 
increased septal thickness have both been correlated with 
higher HVPG and seem to be predictive of decompen-
sation [54] and patients with Laennec C cirrhosis are 
unlikely to have a significant HVPG decrease even after 
removal of etiological agent [40]. In murine models, 
enzymes such as tissue-transglutaminase (tTG) and lysil 
oxidases (LOX) induce the cross-linking of collagens 
and elastins, creating acellular areas that are resistant to 
degradation [14, 55, 56]. A study using tTG2 KO mice 
showed that this molecule is not indispensable during 
fibrogenesis and mice lacking it do not have a resolution 
advantage compared to wild-type mice [57]. This could 
suggest alternative collagen cross-linking pathways. In 
this regard, elastin also plays an important role in the 
irreversibility of advanced fibrosis. Elastin to collagen 
ratio increases with disease progression and, despite an 
early increase in expression, its marked accumulation 
only occurs in advanced stages. This points towards an 
imbalance between synthesis and removal, also suggested 
by the increase in matrix metalloproteinase 12 (MMP12) 
bound to tissue inhibitor of matrix metalloproteinase-1 
(TIMP-1), which renders it inactive. Moreover, MMP12 
KO mice display significantly higher level of bridging 
fibrosis, further suggesting a defect in elastin removal 
[58]. Depletion of macrophages results in additional 
accumulation of elastin compared to wild-type mice and 
with failure of tissue remodeling. Indeed, pro-resolution 
macrophages are an important source of MMPs [58, 59].

–	 Role of HSCs: Activated HSCs (aHSC) play a key role 
in fibrosis, and an important event necessary for its reso-
lution is their disappearance through either senescence, 
apoptosis or inactivation [60]. HSCs situated within 
mature insoluble septa seem to be less prone to undergo 
apoptosis [14]. Indeed, it seems that persistence of scar 
tissue is associated with the maintenance of aHSC [61], 
which importantly also highlights the role of the underly-
ing matrix in influencing cell phenotype [62]. aHSC are 
a major source of TIMPs and TIMP-1 overexpressing 
murine models fail to show resolution of fibrosis [63]. 
Moreover, it has been shown that TIMP-1 itself promotes 
survival of aHSC [64]. Although HSC inactivation may 
occur during fibrosis regression, these cells seem to 

remain more sensitive to renewed exposure to fibrogenic 
stimuli compared to their normal counterparts [65].

–	 Vascular phenotype: In addition to fibrosis, the other cru-
cial component and the major causative factor of patho-
physiological consequences of cirrhosis are the vascular 
changes, both intra- and extrahepatic. Hepatic endothelial 
de-differentiation and neo-angiogenesis depend on the 
initial injury pattern and it may well be that the endothe-
lial and vascular changes are in fact the most impor-
tant determinants of regression capacity [5, 66, 67]. As 
recently proposed by Wanless, advanced stage CLD can 
progress independent of the initial etiological agent, due 
to a vicious circle in which vascular injury promotes vas-
cular obstruction which leads to renewed vascular injury 
and hepatocellular damage; the so-called ‘congestive 
escalator’ [68]. In line with this, a recent study in murine 
cirrhosis shows persistent liver hyperarterialization, in 
spite of cirrhosis regression [69].

–	 Aging and other factors: Advanced age has been shown to 
be an important determinant of CLD severity in murine 
models, results that were corroborated by HVPG and 
gene expression differences in human CLD patients with 
more advanced age [70]. Age seems to also be involved 
in CLD regression capacity, as shown in a murine CCl4 
model, in which old mice were significantly less prone 
towards CLD reversal, as assessed by liver histology 
and ECM remodeling pathways (including macrophage 
populations) compared to their young counterparts [71]. 
Moreover, genetic and epigenetic factors likely play a 
role in the capacity and speed of CLD regression [72]. 
Last but not least, it is important to consider additional 
pro-fibrogenic factors which could influence the rate of 
regression in patients even after causative treatment, such 
as metabolic risk factors or excessive alcohol intake.

Regression of portal hypertension: 
therapy‑driven strategies

Despite the evidence of spontaneous regression after 
removal of the etiologic cause, there is still a great percent-
age of patients whose disease does not regress or even pro-
gresses. Therefore, in the recent years, there has been an 
increasing effort to develop new therapies that could have 
an impact in regression of cirrhosis and PH [73]. Indeed, 
regression of PH has been assessed by targeting the dif-
ferent intrahepatic alterations associated with the disease, 
which are the primary cause of increased HVR (Table 2). 
These approaches mainly achieve vasodilation or reduced 
inflammation, leading to amelioration of the dynamic and 
structural components of HVR.
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Vasomodulators

Statins: the first studies testing statins in humans evaluated 
acute hemodynamic responses to simvastatin and dem-
onstrated a decrease in estimated HVR accompanied by 
increased hepatic NO production and a 50% reduction in 
post-prandial splanchnic hyperemia [74]. Longer periods of 
simvastatin treatment contributed to a significant decrease 

in PP as measured by HVPG [75, 76], to an improvement 
in liver function measured as IGC [75] and to a significant 
survival benefit related to decreased mortality due to EV 
bleeding and infection [77]. Importantly, the decrease in 
HVPG was further augmented when statins were used in 
combination with propranolol. Similarly, a study investi-
gating simvastatin addition to carvedilol non-responders 
had positive results, increasing the number of patients with 

Table 2   Effects of CLD therapies on portal hypertension regression

Treatment strategies are classified according to their effect on HVPG (beneficial effect—acute/chronic hemodynamic response—or no effect) 
and the number/size of the existing studies; ↓ = acute hemodynamic response; ↘ = chronic hemodynamic response; ≈ = no effect on HVPG; 
MAP mean arterial pressure, SVR systemic vascular resistance, HVR hepatic vascular resistance, PBF portal blood flow, IGC indocyanine green 
clearance, EV esophageal varices, BL baseline

Drug/substance Drug/substance class Effect on HVPG Other effects

Beneficial effect on HVPG Statins Simvastatin [74–77, 79] ↓, ↘ ↓ mortality, ↑ IGC
Renin–angiotensin–aldos-

terone system antagonists
ARBs/ACEIs/AAs 

[82–84]
↘ Renal effects, ↓ MAP (CPS 

B and C), reduction in 
fibrosis progression

Galectin 3 inhibitor Belapectin [98] ↘ (study without BL EV) Prevention of de novo EV, ↓ 
hepatocyte ballooning

FXR agonist Obeticholic acid [100] ↘
Rho-kinase inhibitor Fasudil [89] ↘ ↓ SVR, ↓ MAP
Multikinase inhibitor Sorafenib [101] ↘ ↓ VEGF, PDGF, PlGF, 

RhoA and TNFα mRNA 
levels

Probiotic VSL#3 [103–105] ≈/↘ ↑ serum Na2 + , ↓ plasma 
TNFα levels

↑ NSBB response rate
Essential amino acid Taurine [102] ↘
PDE-5 inhibitors Udenafil [86] ↓

Vardenafil [85] ↓
Sildenafil [87, 88] ≈ (↓ HVR and ↑PBF) ↓ MAP

Antioxidants Dark chocolate [106] ↓ Attenuation of postpran-
dial HVPG increase

↑ MAP

Ascorbic acid [107] ↓ Attenuation of postpran-
dial HVPG increase

Endothelin receptor 
antagonists

BQ-123 (ETA)—intrahe-
patic administration [94]

↓

Ambrisentan (ETA) [94] ↓ ↓ MAP
No effect on HVPG Endothelin receptor 

antagonists
Tezosentan [91] (dual ETA 

& ETB)
≈

BQ-123 (ETA) [92] ≈ ↓ MAP, ↓ SVR
BQ-788 (ETB) [92] ≈ ↑ MAP, ↑ SVR

LOXL2 inhibitor Simtuzumab [108–110] ≈
Pan-caspase inhibitor Emricasan [112, 113] ≈
Tetrahydrobiopterin analog Sapropterin [96] ≈
Relaxin-2 analog Serelaxin [97] ≈ (trial stopped prema-

turely)
Antibiotics Norfloxacin [114–116, 

121]
≈ ↑ MAP, ↑ SVR

Rifaximin [117–120] Undetermined ↓ inflammation and bacte-
rial translocation serum 
markers additive effect to 
b-blocker therapy
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hemodynamic response [78]. In contrast, a recent study in 
the same patient category, using carvedilol in combination 
with simvastatin over a period of 3 months failed to show 
any additional benefit of combination therapy in reducing 
HVPG [79]. Ongoing trials are further testing statins in the 
context of CLD [80, 81].

Renin–angiotensin–aldosterone system (RAAS) inhibi-
tors: angiotensin converting enzyme inhibitors (ACEIs), 
angiotensin receptor blockers (ARBs) and aldosterone 
antagonists (AAs) have shown beneficial effects on fibrosis 
in other organs. In CLD, they could potentially target the 
excess sodium and water retention while acting as antifibrot-
ics. NAFLD patients under treatment with ACEIs or ARBs 
had slower fibrosis progression rate, more pronounced in a 
subgroup with concomitant type 2 diabetes mellitus [82]. 
Conversely, in the HALT-C cohort, a post hoc analysis did 
not show any differences in fibrosis progression compared 
to untreated controls [83]. Regarding their effect on HVPG, 
it seems that ARBs and/or ACEIs (possibly with the addi-
tion of mineralocorticoid antagonists) could be useful in 
Child–Pugh A patients, but probably not in more advanced, 
where the risk of adverse events (renal, electrolytic distur-
bances, hypotension) is much greater [84].

PDE5 inhibitors: Clinical results using several PDE5 
inhibitors are contradictory, with some studies showing 
an acute HVPG decrease [85, 86], and other observing no 
change in HVPG probably due to simultaneous increase in 
PBF counteracting the decrease in HVR [87]. Considering 
certain systemic effects of PDE5 inhibitors [88], and that 
even a relatively minor decrease in MAP can be deleterious 
in patients with advanced CLD, the combination of these 
agents with NSBB may be unsafe in advanced CLD. This 
approach might be promising in patients in early disease 
stages, given the importance of HVR as pathogenetic mecha-
nism and the still relatively normal systemic hemodynamic.

Rho-kinase inhibitors: Fasudil produced a statistically 
significant acute hemodynamic response in HVPG and 
reduction in portal vascular resistance in a small RCT, but 
with negative systemic hemodynamic effects evidenced by 
significantly decreasing MAP and SVR [89].

Endothelin antagonism has shown promising results in 
treating PH complications, such as hepatorenal syndrome 
and portopulmonary hypertension [90]. Regarding PP, 
continuous infusion of tezosentan (dual endothelin recep-
tor antagonist) did not cause relevant changes in HVPG, 
hepatic blood flow or IGC in a cohort of cirrhotic patients 
with CSPH [91]. ETA or ETB receptor antagonists in 
Child–Pugh A cirrhotic patients showed opposing actions on 
systemic hemodynamics: while blocking of ETA decreased 
MAP, MPAP and systemic vascular resistance, inhibition 
of ETB increased MAP and SVR, with no effect on pulmo-
nary hemodynamics [92], but no net effect on HVPG was 
observed. Since there might be a shift in the ETA to ETB 

receptor ratio in the liver during the development of cirrhosis 
[93], and the responsiveness to ET1 may be altered during 
the course of CLD, a more selective targeting of this path-
way is required. Indeed, a recent study has shown a benefi-
cial effect of intrahepatic administration of ETA antagonist, 
highlighting the important local effects. Additionally, the 
same study has demonstrated the efficacy of ambrisentan on 
lowering PP, without clinically significant systemic changes, 
even in advance CLD [94]. Currently, a clinical trial investi-
gating the effect of the ETA antagonist ambrisentan on PH 
is recruiting patients [95].

Sapropterin, an oral synthetic analog of tetrahydrobiop-
terin (BH4), which is an essential co-factor for NO synthesis 
and is reduced in cirrhotic livers, has not shown an effect 
on HVPG, IGC or markers of endothelial dysfunction and 
oxidative stress during a 2-week period of treatment in cir-
rhotic patients with CSPH [96].

Serelaxin, a recombinant human relaxin-2 analog has 
demonstrated no effect in HVPG acute response; however, 
the trial cohort was small due to permanent drug discontinu-
ation [97]. It is conceivable that, in an accurately powered 
trial, the drug might show an effect on PP.

Therapies leading to reduced inflammation/fibrosis

Belapectin: this galectin 3 inhibitor did not show significant 
changes in HVPG, liver histology or development of com-
plications in a phase 2 NASH trial, with the exception of a 
subgroup of patients without band-ligated varices, where 
there was a significant decrease in HVPG and in the devel-
opment of de novo EV [98]. There is an ongoing trial in this 
category of patients [99].

The FXR agonist obeticholic acid (OCA) is currently 
under evaluation in several trials. In a small trial presented 
in abstract form, OCA treatment for 7 days significantly 
reduced HVPG in more than half of the cohort of alcoholic 
cirrhosis patients investigated, opening an avenue for future 
investigations in this direction [100].

Sorafenib, a multikinase inhibitor used as HCC therapy, 
decreased baseline HVPG by ≥ 20% in 36% of cirrhotic 
patients with HCC after 2 weeks of treatment. Moreover, it 
significantly decreased liver tissue mRNA levels of VEGF, 
PDGF, PlGF, RhoA kinase and TNFα [101].

Taurine: In a trial of 28-day taurine treatment in cirrhotic 
patients with CSPH, 58% of treated patients had a drop 
of ≥ 10% in HVPG, without any systemic hemodynamic 
effects [102].

Probiotics: While some authors described an important 
decrease in HVPG after VSL#3 probiotic treatment, with 
a higher proportion of patients achieving hemodynamic 
response in case of concomitant NSBB treatment [103], 
other patients seem to not benefit from this [104]. In addi-
tion, other beneficial effects of VSL#3 have been described, 
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such as improvement in systemic hemodynamics, decrease 
in plasma TNFα levels [105] and improvement in serum Na+ 
concentration [103].

Antioxidants: acute administration of dark chocolate 
decreased the magnitude of postprandial increase in HVPG 
when compared to the control group, without significantly 
affecting PBF, suggesting a possible intrahepatic mechanism 
of action. Moreover, patients receiving dark chocolate had 
a mild increase in mean arterial pressure [106]. Similarly, 
a clinical trial using ascorbic acid attenuated post-prandial 
increase in HVPG without changing HBF [107].

Simtuzumab, a monoclonal antibody against lysis oxi-
dase-like 2 (LOXL2), has shown no effect on any of the 
study endpoints in NASH fibrosis or cirrhosis, HCV/HIV 
or primary sclerosing cholangitis [108–110]. However, 
targeting LOX family members could still be a promising 
approach, as highlighted in a recent review [111], with new 
molecules engaging intracellular LOXL2 or targeting several 
other LOX family members.

Emricasan, a pan-caspase inhibitor, significantly 
decreased HVPG and aminotransferases in a subgroup of 
cirrhotic patients (any etiology) with CSPH ≥ 12 mmHg in 
an exploratory study [112]. However, in a follow-up RCT, 
emricasan did not achieve a significant reduction in HVPG 
in NASH cirrhosis patients with severe PH [113].

Antibiotics: 4 weeks of norfloxacin treatment was either 
non-superior to placebo or showed a non-significant trend 
towards HVPG reduction [114–116]. However, norfloxa-
cin showed systemic hemodynamic effects in these stud-
ies, by increasing SVR and MAP. It is possible that, due to 

decreased NO caused by attenuated bacterial translocation, 
norfloxacin causes a decrease in portal blood flow and an 
increase in HVR, which counteract each other and could 
explain the lack of HVPG effect [114, 116]. Rifaximin has 
shown a significant effect on short-term HVPG decrease 
[117] and also reduced the risk of developing complica-
tions and improved survival when administered for up to 
5 years [118]. However, this last study included only the 
HVPG responders from the previous short-term study, which 
might bias results. Conversely, a more recent RCT failed 
to demonstrate any effect of short-term rifaximin treatment 
on hepatic or systemic hemodynamics [119]. It seems that 
addition of rifaximin to NSBB has a further favorable effect 
[120].

Studies not evaluating HVPG

Several studies, although not directly assessing HVPG 
reduction, have investigated the potential of different drugs 
to modify either components of CLD, such as fibrosis, or the 
natural history of the disease (Table 3).

Biomarkers of PH regression

While HVPG measurement remains the gold-standard 
approach for monitoring the dynamics of PP, a multitude 
of non-invasive tests have been designed and evaluated for 
diagnosis, stratification of disease severity and progression 
monitoring [132]. However, these are likely inaccurate for 

Table 3   Studies evaluating regression of CLD but not evaluating portal hypertension

PVT portal vein thrombosis, GLP-1 glucagon-like peptide-1, ASK1 apoptosis signal-regulating kinase 1, CCR​ C-C chemokine receptor, FXR 
farnesoid X receptor, PPAR peroxisome proliferator-activated receptors, G-CSF granulocyte-colony stimulating factor, CD cluster of differentia-
tion

Drug (drug class) Effects

Enoxaparin (anticoagulant) [122] ↓ probability of PVT development
↑ survival
*A trial with rivaroxaban, another anticoagulant, is currently ongoing [123]

Liraglutide (GLP-1 analog) [124] ↓ progression of fibrosis (but no significant improvement)
NASH resolution

Selonsertib (ASK1 inhibitor) [125] No effect on fibrosis
Cenicriviroc (CCR2 and CCR5 antagonist) [126] Improvement in fibrosis (effect more pronounced on patients with more advanced 

disease)
↓ in collagen area by morphometry,
↓ in systemic inflammation biomarkers
*currently tested as monotherapy in a phase 3 trial (AURORA) or in combination 

with the FXR agonistc(TANDEM trial) in F2/3 NASH patients [127, 128]
Pioglitazone (PPAR γ agonist) and vitamin E [129] Improvement in NASH (vitamin E but not pioglitazone)

No improvement in fibrosis for any of the trial drugs
Lanifibranor (PPAR α/δ/γ agonist) [130] NASH resolution

Improvement in fibrosis
G-CSF or G-CSF followed by CD133 + cells (cell 

therapy) [131]
No improvement in liver function tests, non-invasive fibrosis markers, MELD or CPS
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evaluating regression of fibrosis and PH [72, 133]. Further-
more, treatment or removal of etiological agents can modify 
individual score components independently of the evolution 
of the underlying CLD [134, 135]. A summary of studies 
investigating noninvasive markers can be found in Table 4.

Regarding the monitoring of CLD complications during 
PH regression, recently, the Baveno VI criteria for EV sur-
veillance have been validated in HBV and/or HCV compen-
sated patients, post-SVR [139].

Serum biomarkers of fibrogenesis and fibrolysis are 
another area of research. Collagen fragments can serve 
as such biomarkers: PRO-C3 and C6M have been shown 
to identify progressors, while PRO-C5 identified fibrosis 
regressors [140]. Moreover, combinations of these mark-
ers have been shown to correlate with the degree of portal 
hypertension [141, 142]. However, if and to what extent 
these markers correlate with HVPG reduction and clini-
cal outcomes during cirrhosis regression, especially in 
patients with advanced CLD, remains a subject of future 
investigations.

Conclusions and future perspective

Alcohol, NASH and viral hepatitis are the most common 
etiologies of CLD. Even if these are usually treatable (even 
more so after the recent development of direct antiviral strat-
egies), removal of the etiologic agent may stop progression 

of the disease and lead to regression of fibrosis only in some 
of the cases.

The mechanisms of cirrhosis regression are still widely 
unknown, in part due to the limitations of preclinical models, 
which develop and partially revert cirrhosis in a short time as 
opposed to the slow clinical progression and regression of 
the disease. This is also true for the study of pharmacologic 
therapies, which are usually prophylactic during the pre-
clinical induction of CLD or administered for a short time 
after mild disease is established, while in the case of clinical 
trials require consistent study design and usually repeated 
assessment with invasive techniques like liver biopsy. Other 
factors including the age and gender of the animals used in 
pre-clinical studies may also play a key role for future suc-
cessful developments [143].

Despite these limitations, new advances in the study of 
PH regression point towards a clear role of the sinusoidal 
biomechanical properties in CLD, which could determine 
the cellular phenotype, vascular function, proliferation and 
overall drive the disease towards progression or regression.
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Table 4   Biomarkers of portal hypertension regression

ELF score Enhanced Liver Fibrosis score, which measures hyaluronic acid (HA), procollagen III amino-terminal peptide (PIIINP), and tissue 
inhibitor of matrix metalloproteinase 1 (TIMP-1), HREV high-risk esophageal varices, LS liver stiffness, SS spleen stiffness, TE transient elas-
tography, VITRO von Willebrand antigen to platelet ratio score

Biomarker Short description of study

Liver stiffness [39] In a cohort of DAA-treated HCV patients, LS decrease (measured by TE) was associated with HVPG 
response. However, its accuracy was lower in patients with BL CSPH

Liver stiffness [37, 44] In a cohort of DAA-treated patients, LS ≥ 21 kPa had a good performance in ruling in the persistence of 
CSPH after SVR (positive predictive value 82–91%); however, the lower cut-off of 13,6 kPa did not 
perform well in ruling out CSPH persistence

Liver stiffness [136] In this small cohort of DAA-treated HCV patients, a cut-off value of < 12 kPa was accurate in ruling out 
CSPH after SVR

Liver stiffness and ELF score [40] In a cohort of LT patients with HCV reinfection, LS was accurate in ruling in our out the persistence of 
CSPH (cut-off values < 11.3 and > 23 kPa resp) and the persistence of advanced fibrosis. Conversely, 
ELF showed good accuracy for CSPH, but was not associated with fibrosis regression

Liver stiffness and VITRO score [43] In this cohort of DAA-treated HCV patients, TE and VITRO score performed well in ruling in/out CSPH 
after SVR. Their accuracy was especially high if used in a sequential manner, leaving 25% of patients 
unclassifiable

Spleen stiffness [137] In this cohort of DAA-treated HCV patients, SS decreased significantly after SVR, more so in patients 
without BL CSPH. However, the presence and grade of PP was estimated based on LS, and no direct 
HVPG measurements were performed

Spleen stiffness [138] This proof-of-concept study demonstrated that a decrease in spleen stiffness accurately predicts the hemo-
dynamic response to primary prophylaxis with NSBB (Carvedilol) in patients with HREV. A prediction 
model containing SS had an AUC > 0.8 in both derivation and validation cohorts
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