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Abstract

The response of Al,O5:C optically stimulated luminescence detectors (OSLDs) was investigated in a

250 MeV pencil proton beam. The OSLD response was mapped for a wide range of average dose rates up
09000 Gy s, corresponding toa ~150 kGys ' instantaneous dose rate in each pulse. Two setups for
ultra-high dose rate (FLASH) experiments are presented, which enable OSLDs or biological samples to
be irradiated in either water-filled vials or cylinders. The OSLDs were found to be dose rate independent
for all dose rates, with an average deviation <1% relative to the nominal dose for average dose rates of
(1-1000) Gy's~ ' when irradiated in the two setups. A third setup for irradiations in a 9000 Gy s~ pencil
beam is presented, where OSLDs are distributed ina 3 x 4 grid. Calculations of the signal averaging of
the beam over the OSLDs were in agreement with the measured response at 9000 Gy s . Furthermore, a
new method was presented to extract the beam spot size of narrow pencil beams, which is in agreement
within a standard deviation with results derived from radiochromic films. The Al,O3:C OSLDs were
found applicable to support radiobiological experiments in proton beams at ultra-high dose rates.

1. Introduction

The use of radiotherapy with ultra-high dose rates (>40 Gy s~ ', termed FLASH) has been studied for decades
(Hornsey and Alper 1966, Town 1967) with renewed interest in recent years (Favaudon et al 2014, Vozenin et al
2019, Bourhis et al 2019a, 2019b). Whilst studies with FLASH intense electron beams have been undertaken at
clinical linear accelerators (Lempart et al 2019) or superconducting linear accelerators (Karsch et al 2012), less
attention has been devoted to FLASH therapy with proton beams. Patriarca et al (2018) presented a setup for
proton dose rates above 40 Gy s~ ', with Beyreuther et al (2019) and Diffenderfer et al (2020) using 100 Gy s~ "
and 78 Gy s~ ! proton beams, respectively, for irradiation of biological samples. Buonanno et al (2019) used
4.5 MeV protons to achieve a narrow beam with a dose rate of 1 kGy s ', and Darafsheh et al (2020) applied a
synchrocyclotron to achieve (100-200) Gy s~ ' dose rates for a 70 MeV beam. However, few experiments have
been conducted, if any, for dose rates >1000 Gy s~ ' in clinically relevant proton beams due to accelerator
limitations (Esplen et al 2020). For proton pencil beams with energies above 200 MeV, the highest dose rate is
generally achieved in the entrance regions before the beam undergoes scattering. For dosimetry in such beams to
support radiobiological experiments, one needs a detector capable of measuring a dose delivered with ultra-high
dose rates, and that can be placed in a water-filled container depending on the type of biological sample.

Whilst ionization chambers remain the golden standard in dosimetry, and despite a negligible amount of the
initial recombination in air-filled ionization chambers, the general recombination exceeds correctable levels for
proton beams at ultra-high dose rates (Christensen et al 2020a). Radiochromic films have been shown to be dose
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rate independent in electron beams (Jaccard et al 2017) and for proton beams <200 Gy s~ (Darafsheh et al
2020), but accurate dosimetry using radiochromic films is still challenging. Faraday cups (Goma et al2014) and
absorbed dose calorimetry (Christensen et al 2020b) are available to integrate the dose with high accuracy, but
inapplicable for measuring the dose under nominally same radiation conditions as a biological sample, in
particular if the samples need to be contained in water.

Luminescence detectors can potentially provide the small size, accuracy, water-resistance, and dose rate
independency required for dosimetry in vials with biological samples irradiated with FLASH intense proton
beams. Optically stimulated luminescence (OSL), in particular, is now a technique widely used in personal
dosimetry and well accepted in medical dosimetry (Akselrod et al 2007, Yukihara and McKeever 2008, Mijnheer
etal 2013, Kry et al 2020), having been used for postal audits by various countries (Casey et al 2013, Lye et al 2014,
Wesolowska et al 2017).

The OSL from Al,05:C has been shown to provide the possibility of high-precision dosimetry (< 1% per
detector) when using the bare detectors read by automated research readers capable of irradiating the detectors
in the reader, immediately after the readout. Hence, the signal from an experimental irradiation session can be
compared directly to the signal from a reference irradiation, providing a normalization signal to compensate for
variations in detector mass and sensitivity (Yukihara et al 2005). This means that small detectors can be prepared
from the original commercial ones, allowing precise dosimetry of small fields. The material has also been
characterized for dosimetry of proton and carbon ion beams used in radiation therapy and has been shown to
provide information on the ionization density of the radiation field (Yukihara and McKeever 2006, Sawakuchi
etal2010, Yukihara et al 2015). A general overview of the properties of Al,05:C OSL can be found in the report of
the Task Group 191 of the American Association of Physicist in Medicine (Kry et al 2020).

Not much information is available on the dose rate dependence of OSL detectors (OSLDs), although its
presence has been predicted theoretically for a simplified OSL model in limited conditions (Chen and
Leung 2001a,2001b). The dependence of Al,O5:C on dose rate has been experimentally investigated for the dose
rates normally encountered in radiation therapy, but no significant dependence was found (Jursinic 2007).
Another study looked at BeO at extremely high dose rates (0.2-2.8) x 10° Gy s " in electron beams (Karsch et al
2012) and also reported no significant dependence.

The objective of this work was to investigate the dose rate dependence of Al;05:C OSLDs for proton beams
with dose rates in the 1-9000 Gy s~ ' range. The high dose rates were achieved using a single pencil beam, where
the OSLDs were placed at the central beam axis of the beam. The final aim is to develop a setup with detectors to
support future radiobiology experiments with ultra-high proton dose rates at the Paul Scherrer Institute (PSI)
Proton Therapy Center.

2. Materials and methods

2.1.Beam size and dose rate definition

Single pencil beams were used for all experiments. The beam is quasi-continuous with the RF frequency of the
COMET cyclotron being 72.85 MHz, so a pulse is delivered every 14 ns with each pulse being 0.8 ns. The dose
rate within a pencil beam referred to in this work, if not otherwise specified, is an average value estimated from
the proton beam current derived from the delivery time of each spot as measured by the control system and the
number of delivered protons as measured with a Faraday cup. The accuracy of the delivered time is within 50 ps.
The instantaneous dose rate within a pulse, according to the cyclotron frequency and pulse width, is about 17
times higher than the above estimated average dose rate. The combined uncertainties of the Faraday cup
measurements, the beam spread, and the delivery time amounts to a dose rate uncertainty of 5%. The beam was
degraded by means of range shifter plates for the (1-1000) Gy s~ ' dose rates to scatter the beam and thus obtain a
4 mm diameter field with a maximum 5% deviation from the maximum dose at the central axis. The dose profile
was verified independently with a scintillating screen and a CCD camera with a spot size variation less than 1%
between irradiations, and was independent of the deposited dose. The dose rate was increased to 9000 Gy's
(~150kGy s ' instantaneous dose rate in each pulse) at the central beam axis by removing the range shifter
plates, which in turn decreases the pencil beam spot size. A smaller beam size gives a smaller evaluated dose due
to the signal averaging of the beam over the OSLD surface. Hence, when the dose rate is increased by decreasing
the beam size, the measured central dose is underestimated when the averaging effect in a detector is not taken
into account. This is a result of the signal averaging effect varying with the spot size, which needs to be
distinguished from an actual dose rate effect of the OSLD response. The signal averaging is examined by
integrating a two-dimensional Gaussian, approximating the experimentally relevant pencil beams, over the
OSLD surface for a given beam spot center.
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Figure 1. (a) The experimental setup with (A) the Faraday cup and (B) side-view of setup A. (b) Setup A where the 12 water-filled vials
with OSLDs are visible at the bottom of each vial. (c) Setup B where the PMMA frame contains 12 cylinders. The OSLDs in the
cylinders are not visible. (d) Setup C where 3 x 4 OSLDs are placed in a grid before being wrapped in opaque tape. The setup details
and dimensions are given in the text.

2.2. Optically stimulated luminescence detectors

The OSLDs were prepared from the same type of detectors used in the Luxel ™ dosimetry system (Landauer),
consisting of Al,05:C powder mixed with a binder and enclosed within two polymer sheets (Akselrod et al 2000)
forminga 0.3 mm thick detector film. The detector film is chemically stable and allows for irradiation in water.
The original detectors were cut by hand to approximately 1 mm by 1 mm sizes from the same batch. The
detectors were bleached using a green LED (525 nm) filtered by Schott GG495 filters (3 mm thickness)

before use.

2.3. Experimental design

The experiments were carried out at Gantry 1 at PSI (Lin et al 2009) with a 250 MeV proton pencil beam
(Nesteruk et al 2020). A Faraday cup (Goma et al 2014) was placed behind the target as shown in figure 1(a) and
used to measure the number of protons to verify the delivered dose. The OSLDs were irradiated in a blacked out
room and placed in opaque packages after each irradiation for subsequent readout. The biological samples are to
be stored in water and, therefore, the OSLDs were irradiated under similar conditions in identical water-filled
containers. Two setups were tested to accommodate OSLDs or biological samples and a third only for OSLDs as
described below.

2.3.1. Setup A: water-filled vials

A plastic frame was used to confine the 12 vials (0.2 ml PCR tubes, Eppendorf AG, Germany) as shown in
figure 1(b). The frame was immersed in a water tank that also accommodates a radiochromic film
(Gafchromic™ EBT3, Ashland, USA) visible in figure 1(b) behind the vials. The vials were filled with water and
either OSLDs or biological samples were placed at the bottom of each vial. Five frames with 12 vials each and a
single frame containing eight vials were irradiated with dose rates between (5-1000) Gy s~ ' in this way. The
pencil beam width for this setup was o, = 0, = 6.2 mm, where x and y denote the horizontal and vertical
directions, respectively.




10P Publishing

Phys. Med. Biol. 66 (2021) 085003 ] B Christensen et al

0.8
—— Dose > 10Gy: a2 =38+08,b = (6+1) kGy~!

=== Dose <10Gy:a=15+04,b= (15+4) kGy !
061 K4 OSLDs (k=1)

0.5 1

0.7 1

0.4 1

S/Sr

0.3 1

0.2 1 a8

Deviation [%]

o

i
et

I

1

1

1
——

0 5 10 15 20 25 30 35
Dose [Gy]
Figure 2. The ratio of the signal S from the experimental irradiation to the reference irradiation Sg as a function of the dose measured

with an ionization chamber. Equation (1) is fitted separately to the data above and below 10 Gy. The lower figure shows the deviation
of the data points to the fit. The 5.5 Gy irradiation was repeated to investigate the reproducibility.

2.3.2. Setup B: water-filled PMMA cylinders

A5 cm thick PMMA plate, partly shown in figure 1(c), accommodates 12 cylinders of 2.5 cm diameter and

2.0 cm height. Each cylinder is placed in the frame with a 2.2 cm PMMA build-up in frontand 0.8 cm PMMA
behind. A 2.5 mm diameter hole was drilled through the cylinder axes, and each cylinder was filled with water to
accommodate either OSLDs or biological samples. The pencil beam axis is centered over each cylinder axis,
where an OSLD is placed at the front and back of the cylinder and two OSLDs float in the middle to reflect the
dose variations to the biological samples. This setup was used for irradiations with the three pencil beams

1Gy s (o = 0, = 5.0 mm), 1400 Gy s (o = 0, = 5.0 mm) and 3800 Gy s (o = 0, = 3.5 mm).

2.3.3. Setup C: OSLDs in a 2D grid for narrow pencil beams

For the special case of the narrow 9000 Gy s ' pencil beam (¢, = 2.3 mm, 0, = 1.8 mm), 12 OSLDs were
alignedina3 x 4 grid as exemplified in figure 1(d). The 12 OSLDs were wrapped in opaque tape with a ~1 mm
thickness of the package. Six packages, each with OSLDsina3 x 4 grid, were irradiated with 9000 Gy s ', where
the beam was approximately centered over the middle of each package. The OSLDs were read out individually
postirradiation, and the 12 doses at known positions in each package were used to reconstruct the dose of the
Gaussian beam, as well as the spot size and position of the center: the dose to each OSLD was calculated, given a
certain spread, position, and dose of the beam, by averaging the Gaussian function over each OSLD. The dose,
position, and beam spread which minimizes the sum of the squared differences between the measured and
calculated doses was taken to be the best estimate of the true beam position over the OSLD grid, dose, and beam
spread.

2.4. OSLD readout and calibration in a proton beam
The OSLDs were read out using the Risg reader (TL/OSL-DA-20, DTU Nutech, Denmark) using green light
stimulation (525 nm, ~40 mW cm ™ ?)and a photomultiplier tube (PMT; ET Enterprises PMD9107Q-AP-TTL)
for light detection. A Hoya U-340 filter was used to block the stimulation light from reaching the PMT. An
additional neutral density filter (Edmund Optics UV/VISND OD 2.0) was used to reduce the light intensity. The
OSL was stimulated for 300 s and the total signal was integrated. The background signal was estimated using the
last 10 data points of the OSL curve and subtracted, resulting in the net OSL signal S. The OSLD was
subsequently subject to a reference irradiation of (1000 s) from a *°Sr/°°Y beta source in the Riso reader, which,
after the same readout procedure as above, gave a ‘reference’ signal S The ratio of the signal S from the
experimental irradiation to the reference irradiation Sg in the reader hence is a measure of the energy deposited
in the OSLD during the experiment independent of the OSLD size. Nevertheless, the ratio S/Sx is also affected by
sensitivity changes in the Al,O;:C and, therefore, a proper calibration curve must be determined (Yukihara et al
2005). The reference dose to the OSLDs, delivered by the source in the reader during the 1000 s irradiation, is
irrelevant provided it remains constant for all reference irradiations. The reference dose may be derived from the
calibration curve in section 3.1.1 to be ~47 Gy.

For a calibration in a proton beam, the OSLDs were irradiated in groups of four together with an ionization
chamber (Advanced Markus, PTW Freiburg, Germany) for a range of doses between 3 and 33 Gy at a clinically
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Figure 3. The OSLD response as a function of time. The dashed line denotes the dose delivered to the OSLDs and the solid line the
exponential function fitted to all data points.
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Figure 4. Each curve shows the average of four OSLD readout signals normalized to the entry, where the background signal has been
subtracted. The lower scatter plot shows the ratio of each signal to the signal obtained from the irradiation with the lowest dose rate.

relevant dose rate upto 12 Gy s~ 'ina5.0 x 5.0 cm® field size. The mean S/Sg of the four OSLDs in each
irradiation, plotted as a function of the dose measured with the ionization chamber, enables an interpolation and
conversion of the OSLD signal ratio S/ Sg to a dose provided it was irradiated in the calibration dose range.

3. Results and discussion

3.1. OSLD response

3.1.1. Proton calibration curve

The ratio of the signal S from the OSLD irradiated with protons to the signal from the reference irradiation Sy is
in figure 2 plotted as a function of the irradiation dose measured with the ionization chamber as outlined in
section 2.4. Each data point is the mean value of the S/ S, ratio for four OSLDs irradiated in the same session and
plotted with (k = 1) statistical standard deviation error bars. A function of the form

2D) = a(1 — exp(~bD)) M
Sk
is fitted to the data piecewise, above and below 10 Gy, respectively. Equation (1) fitted to the data above 10 Gy is
plotted in figure 2 with a solid line, whereas the fit to the data below 10 Gy is shown with a dashed line. The fit
parameters are given in the figure legend. The fit enables an interpolation of a measured S/Sg ratio to a dose in
the calibration range. The 5.5 Gy irradiation was repeated to assess the reproducibility, which generally is of the
order of 0.5%.
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given the OSLD and beam size. The average measurable signals shown with dots for each spot size and the vertical dashed lines are
explained in the text.

The parameters in equation (1) are obtained with the LMFIT package (Newville et al 2016) for python3.8.
The reported uncertainty of any dose measured by an OSLD in this work is the combined statistical standard
deviation (k = 1) of each group of OSLDs and the uncertainty derived from the calibration curve. As most of the
OSLD doses are plotted relative to the dose derived from the Faraday cup measurement, another 4% uncertainty
from the Faraday cup measurement (Goma et al 2014, Winterhalter et al 2018) is added to the OSLD dose

measurement. The combined uncertainty for a 10 Gy dose measurement with a single OSLD typically amounts
to 6%.

3.1.2. OSLD fading

The fading of the OSLD signal after the irradiation was examined by irradiating 12 packages with four OSLDs
each. The packages were irradiated with 10.9 Gy 210 MeV protons over four runs, with three packages each, to
minimize any perturbation of the beam. The packages were read out over the course of a few weeks with the
results, after converting the S/Sg signal to a dose, plotted in figure 3. The variation of the data points with time is
approximated with an exponential function, as shown in the figure, which however does not fully account for
the data behavior. The exponential fitis hence regarded as an estimate of the fading of the OSLDs. The OSLDs,
irradiated during the experiments, were readout between 48 and 510 h after the irradiation and subjectto a
fading correction below 1.8%.

3.1.3. Luminescence signal for different dose rates

The OSL signal is plotted as a function of stimulation time in figure 4 for several dose rates. Each curve is the
mean of four OSL readout for the same dose rates, where the background (around 1% relative to the maximum
luminescence for a 10 Gy irradiation) has been subtracted and the curve normalized to the entrance value. The
ratio of each of the curves to the signal obtained with the lowest dose rate (S; = 10 Gy s~ ') is shown below.

The fact that the OSL curves for dose rates between 10 and 1000 Gy s~ " all coincide (figure 4) suggests that no
change in the ionization and trapping processes related to the production of OSL occurs with the dose rate, as
opposed to what has been observed for various ionization densities (Yukihara and McKeever 2006, Sawakuchi
etal2010).

3.1.4. Signal averaging in pencil beams

The effect of averaging a pencil beam over the OSLD is mapped in figure 5 for different beam and OSLD sizes. The
pencil beams for dose rates (1-1000) Gy s~ ' are approximated with a Gaussian function with o, = 0, = 6.2 mm.
The 9000 Gy s ' beam is modeled with 0, = 2.3 mmand 0, = 1.8 mmas outlined in section 2.3.3. The
measureable signal for a given OSLD and beam size is calculated by averaging a two-dimensional Gaussian, with a
given spread and impinging somewhere on the OSLD, over the OSLD surface. The lowest and highest measureable
signals, due to averaging effects for a given OSLD and beam size, occur when the beam hits the corner and the center
of the OSLD, respectively. These two limits outline the hatched area in figure 5. As the signal averaging changes with
the position of the beam center relative to the OSLD, the dotted lines in figure 5 denote the mean value of all signal

6
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Figure 6. Measured OSLD doses using setup A for the 12 locations in two different frame configurations (a) and (b), with the nominal
dose to each vial written next to the data point. The dose deviation of the OSLD is calculated relative to Faraday cup derived dose.

averages for a given OSLD size caused by the different beam spot centers over the OSLD. The average size of the
72 OSLDs used for the six irradiation of the 9000 Gy s~ beam was found to be (1.2 #+ 0.2) mm. The two vertical
dashed lines represent the range corresponding to the two standard deviations around the mean OSLD size.

The signal averaging of the wider (1-1000) Gy s ' beam is overall small for the relevant OSLD sizes, provided
the beam spot center impinges on an OSLD. Nevertheless, as the OSLDs are immersed in the water-filled vials or
cylinders, the beam center could miss the OSLD causing a larger averaging and a smaller evaluated dose.

The signal averaging of the narrow 9000 Gy s~ ' beam defined in section 2.1 may cause the dose to be severely
underestimated given the used OSLD sizes. In particular, the dose may be underestimated more than 10%, if the
9000 Gy s~ ' beam is centered over the corner of a quadratic 1.40 mm OSLD—or much more if the OSLD is
larger or the beam hits in-between OSLDs. Similarly, the dose measured in the 3800 Gy s~ ' beam is to be
underestimated by a few percent.

Nonetheless, the calculations in figure 5 show that 0.75 mm wide OSLDs placed tightly in a grid can be used
to measure the dose of the narrow 9000 Gy s~ ' pencil beam with at most 5% dose underestimation due to the
averaging over the OSLD.

3.2.Dose measurements with OSLDs

3.2.1. Results for setup A: water-filled tubes

Figure 6 shows two examples of the results for frames accommodating vials with OSLDs, as shown in figure 1(b),
where the vials were irradiated with several doses and dose rates. The dose measured with the OSLDs is plotted as
the deviation relative to the dose derived from the Faraday cup measurement and shown above or below each
data point. The irradiations of the remaining four frames are included in supplementary section A (available
online at stacks.iop.org/PMB/66,/085003 /mmedia).

3.2.2. Results for setup B: water-filled cylinders

The results of the OSLDs irradiated in the water-filled cylinders constituting setup B, as outlined in section 2.3.2,
are shown in figure 7. The figure shows the OSLD measured doses relative to the Faraday cup derived doses for
two irradiations with three dose. Whilst the average of the front, center, and back OSLD doses would provide
information about the dose delivered to biological samples placed in the water-filled cylinder, figure 7 shows the
dose of the front OSLD nearest the nozzle as the dose varies through the cylinder. The OSLD dose is shown
relative to the calculated dose to the cylinder front based on the Faraday cup measurement. The irradiation with
23800 Gy s~ ' pencil beam is included in supplementary section B.

3.2.3. Results for setup C: Grid OSLD measurements

Two measurements with the OSLD grid are shown in figure 8, where the edges of the irradiated OSLDs are
delineated with black lines. The vertices of the quadrilateral OSLDs are estimated from a photo and extracted
using a software script. A Gaussian function was fitted to each set of measured doses following the minimization
procedure in section 2.3.3. The best fitting Gaussian is plotted over the outlined OSLDs in figure 8 with dashed
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Figure 7. Measured OSLD doses using setup B for two irradiations (a) and (b) with the nominal dose to each vial written next to the
data point. The dose deviation of the OSLD is calculated relative to Faraday cup derived dose.
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Figure 8. The OSLDs outlined with black, solid lines with the pencil beam aimed at the grid center. The upper number in each OSLD
shows the measured dose in units of Gy, whereas the lower number is the dose in Gy to the OSLD evaluated with the best Gaussian fit.
The interpolated dose at the center of the Gaussian is given below each figure as the dose to the center. (a) Shows the result for
irradiation with anominal 7.6 Gy dose and (b) with 31.7 Gy.

contour lines and a red circle as center with the dose given by the colorbar. The measured dose and the dose
obtained from evaluating the resulting Gaussian function over each OSLD are given as the upper and lower
number, respectively, in each delineated OSLD in units of Gy. The estimated doses from the Gaussian function
fits in figures 8(a) and (b) were 7.0 Gy and 29.5 Gy, respectively, as given in the caption of each subfigure. These
estimations are both about 8% lower than the nominal irradiation doses of 7.6 Gy and 31.7 Gy, respectively,
derived from Faraday cup measurements. Four more OSLD grids were irradiated with the 9000 Gy s~ * pencil
beam and included in supplementary section C.

The underestimated doses reflect the signal averaging arising from measurements with >1mm? sized
OSLDs which, furthermore, are slightly misaligned in the grid: the expected signal averaging for the 9000 Gy s~
beam and >1 mm” OSLD is from figure 5 expected to be of the order (2—10)%. The underestimation due to the
signal averaging, however, was calculated under the assumption of a tightly packed OSLD grid where the beam
center would impinge directly on an OSLD. Both fits in figure 8 could indicate that the beam was centered
between the OSLDs, which consequently would cause a dose underestimation larger than 10%. Hence, the
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underestimated dose evaluations are attributed to the averaging of the narrow pencil beam over the OSLDs
rather than a dose rate dependency of the OSL material itself.

3.2.4. OSLD spot size measurement

The fit of a Gaussian function to the OSLD doses in figure 8 furthermore provides information about the spread
of the spot sizes at 9000 Gy s~ ' for the six delivered spots. The spot sizes obtained from the minimizations in the
horizontal (x) and vertical (y) directions are plotted in figure 9.

The spot spreads measured with the OSLDs are in agreement with radiochromic film derived spot sizes
within the uncertainties. The biggest discrepancy is observed for spot five with a 6% deviation relative to the
mean of the radiochromic film measurements. The mean values of the OSLD derived spot sizes were
oy = (2.6 = 0.1)mmand o, = (1.8 £ 0.1) mm for the 9000 Gy st pencil beam, in agreement with the
radiochromic film measurements, which demonstrates the use of OSLDs to extract the beam spot size even for
small pencil beams.

3.3. OSL dose measurements and dose rate dependency

The OSLD measurements for all doses and dose rates are compiled in figure 10, where the OSLD response is
plotted as the deviation relative to the nominal dose as a function of the dose rate. The results are obtained using
the three different measurement methods outlined in section 2.3, where the measurements for each dose rate
have been averaged.
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The (1 = 76) OSLD doses for (1-1000) Gy s~ ' have an average discrepancy of —0.1%, whereas the average
deviation at 1000 Gy s (n = 22) amounts to +0.4%. The —4.5% OSLD deviation at 3800 Gy s~ is due to the
signal averaging of the narrow pencil beam as demonstrated in section 3.1.4. The dose corrected with the
Gaussian fits to the OSLD grid for the 9000 Gy s~ ' beam deviates with —6.2% (1 = 5), which is to be regarded as
the best correction given the >1 mm?* OSLDs and the misaligned grids.

The methods of using OSLDs in vials, cylinders, and distributing OSLDs in a grid have shown to be feasible
for dosimetry in FLASH relevant proton beams. The use of 0.75 mm wide OSLDs placed tightly, or even
overlapping, would decrease the signal averaging in the 3800 and 9000 Gy s~ ' beams to a level within the
experimental uncertainties.

4. Conclusion

Al,O3:C OSL were investigated in a pencil proton beam for a wide range of dose rates up to 9000 Gy s~ ', which
corresponds to an instantaneous dose rate about 150 kGy s~ * within each pulse. The OSL calibration curve was
established for the range (3-33) Gy. The luminescence fading was found to be less than 1.8% over a 3-week
period. The signal averaging of the pencil beams over the OSLDs was mapped for a range of OSLD sizes and two
pencil beam sizes, mimicking the experimentally used beams, to separate any dose-underestimation due to
signal averaging from a present dose rate effect. The signal averaging of the (1-1000) Gy s~ ' beam was found to
be negligible for a 1 mm? OSLD but to constitute up to 10% in the narrow 9000 Gy s~ ' beam and larger if the
beam center does not impinge on an OSLD. The OSLDs were found to be dose rate independent. The observed
signal averaging in the pencil beams above 1000 Gy s~ ' can be remedied with smaller OSLDs.

The setups A and B with OSLD in vials and cylinders, respectively, to support irradiation of biological
samples, were demonstrated to be on average within 2% of the nominal dose below 1000 Gy s '. A new
technique (Setup C) to measure narrow pencil beams, using OSLDs in a grid, was demonstrated to correct the
signal averaged dose slightly, and to extract the beam spot size with an average < 1% deviation relative to
radiochromic film measurements. Overall, it was demonstrated that Al,O3:C OSL can provide precise dosimetry
to support radiobiological experiments in proton FLASH therapy experiments.
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