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Single‑cell and bulk transcriptomics 
of the liver reveals potential targets 
of NASH with fibrosis
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Fibrosis is characterized by the excessive production of collagen and other extracellular matrix (ECM) 
components and represents a leading cause of morbidity and mortality worldwide. Previous studies 
of nonalcoholic steatohepatitis (NASH) with fibrosis were largely restricted to bulk transcriptome 
profiles. Thus, our understanding of this disease is limited by an incomplete characterization of liver 
cell types in general and hepatic stellate cells (HSCs) in particular, given that activated HSCs are the 
major hepatic fibrogenic cell population. To help fill this gap, we profiled 17,810 non-parenchymal 
cells derived from six healthy human livers. In conjunction with public single-cell data of fibrotic/
cirrhotic human livers, these profiles enable the identification of potential intercellular signaling 
axes (e.g., ITGAV–LAMC1, TNFRSF11B–VWF and NOTCH2–DLL4) and master regulators (e.g., 
RUNX1 and CREB3L1) responsible for the activation of HSCs during fibrogenesis. Bulk RNA-seq 
data of NASH patient livers and rodent models for liver fibrosis of diverse etiologies allowed us to 
evaluate the translatability of candidate therapeutic targets for NASH-related fibrosis. We identified 
61 liver fibrosis-associated genes (e.g., AEBP1, PRRX1 and LARP6) that may serve as a repertoire 
of translatable drug target candidates. Consistent with the above regulon results, gene regulatory 
network analysis allowed the identification of CREB3L1 as a master regulator of many of the 61 genes. 
Together, this study highlights potential cell–cell interactions and master regulators that underlie HSC 
activation and reveals genes that may represent prospective hallmark signatures for liver fibrosis.

There has been a steady rise in the worldwide prevalence of nonalcoholic fatty liver disease (NAFLD)1. NAFLD 
and its advanced form nonalcoholic steatohepatitis (NASH) are the most common etiologies of hepatic fibrosis 
and represent a significant health burden1. As the largest internal organ in the human body, the liver performs 
many diverse functions that are essential for health, mainly carried out by hepatocytes, the parenchymal cells2. 
Liver non-parenchymal cells (NPCs) consisting of endothelial cells (ECs), hepatic stellate cells (HSCs), Kupffer 
cells (KCs), lymphocytes and cholangiocytes support hepatocyte function. Depending on the etiology of liver 
disease, HSCs and, to a lesser extent, portal fibroblasts and mesothelial cells (MCs) have long been closely linked 
to driving the development of hepatic fibrosis3. Under healthy conditions, HSCs maintain plasticity and respond 
to fluctuations in tissue physiology4. However, cytokines and growth factors secreted from adjacent or remote 
cells can trigger the trans-differentiation of quiescent HSCs (qHSCs) into fibrogenic activated HSCs (aHSCs). 
aHSCs produce excessive amounts of collagen and other extracellular matrix (ECM) components that impede 
the exchange of molecules between hepatocytes and the blood5,6.

In view of this, attenuation of fibrosis represents a major therapeutic goal, where antifibrotic agents can either 
inhibit fibrogenesis (ECM synthesis and deposition) or induce fibrolysis (removal of excessive ECM)7. Our 
understanding of the mechanisms underlying NASH with fibrosis has advanced steadily in the past two decades. 
Generally, anti-fibrotic therapies can be divided into agents that elicit anti-fibrotic effects by (1) hepatocyte 
protection, (2) immune modulation, or (3) inhibition of HSC activation and fibrotic scar evolution8. However, 
despite the enormous work and resources that have gone into the study of this disease and the fact that many 
mechanisms of liver fibrosis have been described5,9, there are currently no drugs approved specifically for NASH 
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and liver fibrosis. Initial attempts targeting aHSCs directly through inhibition of tyrosine kinase receptors (e.g., 
PDGFRα/β) or TGF-β receptors were abandoned because of likely adverse reactions due to pleiotropic expres-
sion of these receptors10. To date, very few efforts focusing on inhibiting fibrogenesis have advanced into clinical 
trials. For example, simtuzumab, a humanized IgG4 anti-lysyl oxidase like 2 (LOXL2) monoclonal antibody was 
discontinued after a phase 2 clinical trial in NASH patients with liver fibrosis (clinicaltrials.gov—NCT01672879). 
Multiple factors may have contributed to this failure to clinically translate the overall positive preclinical results11. 
Another approach to promote stellate cell apoptosis through a siRNA targeting heat shock protein 47 (HSP47), 
a collagen 1 chaperone, was tested in phase 1 in patients with moderate to extensive fibrosis (clinicaltrials.gov—
NCT02227459). More studies on collagen inhibitors are expected to start in the next years8. Fibrolysis-inducing 
strategies, including (1) upregulation of expression and/or activity of matrix metalloproteinases (MMPs) or 
(2) downregulation of expression and/or activity of tissue inhibitors of MMPs (TIMPs), also have promise12. 
However, no therapy that accelerates fibrolysis has reached clinical trials.

To achieve a broader understanding of fibrotic processes and deciphering the molecular mechanisms that 
accompany NASH-associated fibrosis, many transcriptomic studies in model organisms and humans have been 
performed13–18. Yet, these studies were largely restricted to sequencing RNA from mixed cell populations, heav-
ily biased towards hepatocytes, which likely vary dependent upon the stage of disease. Therefore, despite the 
successful identification of many fibrosis-related genes and pathways5, these transcriptomic studies could not 
differentiate the common fibrogenic changes experienced across all liver cells from those that may be cell-type 
specific. Thus, cell-type specific gene expression studies of liver cell types from pathologic settings are crucial to 
uncover cellular crosstalk during HSC activation and to provide new therapeutic avenues.

The power and utility of single-cell RNA-sequencing (scRNA-seq) for gene-expression analyses have been 
shown in studies to identify previously unknown cell types and subtypes in normal and diseased liver19,20. To 
date, scRNA-seq has been conducted on whole liver or NPCs from humans21–24 and mice25–30. However, thus far 
only one human study has investigated hepatic injury in the context of cirrhosis22.

In this study, we isolated and profiled NPCs from healthy human livers, and integrated public scRNA-seq 
data derived from fibrotic/cirrhotic human livers. We also generated time-course RNA-seq data for both thio-
acetamide (TAA) and bile duct ligation (BDL)-induced liver fibrosis rat models. Additionally, we reanalyzed 
public transcriptomic data from in vivo and in vitro mouse models of liver fibrosis to determine the key genes 
associated with HSC activation in liver fibrosis of different etiologies.

Results
Single‑cell profiling and unbiased clustering of human liver cells.  To examine the heterogeneity 
and dynamic crosstalk of liver NPCs, we generated scRNA-seq data for human liver using the 10× Genomics 
Chromium platform. Since hepatocytes constitute approximately 60% of the cells in the liver2, to enrich for 
NPCs we adopted a method31 to remove hepatocytes prior to sequencing library preparation (Fig. 1a, “Meth-
ods”).

We isolated and profiled 17,810 cells from six healthy human livers. After removing low-quality cells, a total 
of 15,299 cells (1449–4821 per sample) were retained for further analysis. A median of 1141 genes per cell was 
detected. To identify cells with distinct lineage identities and transcriptional states, we performed unbiased 
clustering on the cells using the Seurat R package32. NPCs were represented by a total of 13 distinct cell lineages 
(Fig. 1b), which correspond to hepatic stellate cells (HSCs; COL1A1+DCN+), liver sinusoidal endothelial cells 
(LSECs 1: zone 1, SPARCL1+CLEC14A+; LSECs 2: zone 2 and 3, STAB1+FCN2+), vascular ECs (VWF+ACKR1+), 
cholangiocytes (SOX9+EPCAM+), T cells (CD3D+TRAC​+), natural killer (NK) cells (NKG7+GNLY+), B cells 
(MS4A1+CD79A+), plasma cells (IGLC2+IGHG1+), dendritic cells (IRF8+LILRA4+), monocyte-derived mac-
rophages (MDMs; CD68+MNDA+), Kupffer cells (CD68+MARCO+) and cycling cells (TOP2A+UBE2C+) 
(Fig. 1c,d). Because hepatocytes were not fully removed during the centrifugation step, there was also a small 
cluster of hepatocytes (APOC2+F2+) (Fig. 1b–d). All 14 cell types contained cells derived from each of the six 
liver donors (Fig. 1e). We also further examined our cell type annotations with SingleR33—a computational 
framework that compares the transcriptomic profile of each single cell to reference datasets to determine cellular 
identity (Supplementary Fig. 1).

Figure 1.   Generation of scRNA-seq data for human liver non-parenchymal cells. (a) Workflow of sample 
preparation, sequencing and bioinformatic analysis. (b) UMAP visualization of single cells profiled in this study. 
Each dot represents a cell that is color-coded by cell type. HSCs, hepatic stellate cells; LSECs, liver sinusoidal 
endothelial cells; Vascular ECs, vascular endothelial cells; MDMs, monocyte-derived macrophages; NK 
cells, natural killer cells. (c) Representative gene expression and distribution of known marker genes for each 
population in UMAP plots. Normalized expression values are shown. (d) Dotplot displaying the top two marker 
genes for each cell type identified. Size of the dot represents proportion of the cell population that expresses 
each gene. Color indicates level of expression. (e) Barplot representing the relative contribution of cells from 
each donor for each cell type. NPC, non-parenchymal cells derived from healthy liver. (f) UMAP visualization 
of single cells profiled in this study together with human liver cells integrated from Ramachandran et al. (2019). 
(g) UMAP visualization of mesenchymal cells. The direction of cell differentiation inferred from estimated RNA 
velocities are plotted as streamlines on the UMAP. (h) UMAP visualization of mesenchymal cells. Cells colored 
by ECM score. (i) Heatmap showing the top 10 differentially expressed genes for each mesenchymal cell type. 
VSMCs, vascular smooth muscle cells; Meso, mesothelial cells.
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To gain insight into the activation of HSCs, we aggregated 157,619 cells from four healthy and importantly 
also three cirrhotic human livers of a public dataset22. A total of 175,429 cells were then analyzed (“Methods”). 
20 populations and 15 distinct cell lineages were subsequently identified (Fig. 1f, Supplementary Fig. 2).

Since in the current study the main focus is mesenchymal cells (also known as ECM-producing cells, includ-
ing HSCs, portal fibroblasts and perivascular cells), we carried out subclustering of these populations and per-
formed RNA velocity analysis (Fig. 1g, “Methods”). This analysis revealed that the robustness of developmental 
trajectories from RGS5-expressing qHSCs to COL1A1-expressing aHSCs was supported. ECM scores, calculated 
based on the expression values of co-expressed ECM-related genes (“Methods”), also demonstrated a clear shift 
towards higher ECM expression in mesenchymal cells from the cirrhotic patient samples, with aHSCs exhibit-
ing the highest ECM expression (Fig. 1h). We then identified the marker genes for each cell type by performing 
differential gene expression analysis (Fig. 1i). Among the most differentially expressed genes for aHSCs there 
were well-known fibrosis markers, e.g., COL1A1, COL1A2, DCN and LUM.

Identification of liver fibrosis‑related intercellular communication.  Cell–cell signaling is critical 
in cell development, tissue homeostasis and disease development34. HSC activation is a process that is coordi-
nated by intercellular signaling effectors that modulate the activity of downstream gene regulatory networks5,6. 
By leveraging the transcriptional profiles of each cell population, we built a comprehensive intercellular network 
of potential ligand-receptor interactions between different cell types using CellPhoneDB35 with curated known 
ligand-receptor pairs from databases35 and literature36 (Fig. 2a). The number of potential interactions between 
aHSCs and other cell types is significantly larger than that between qHSCs and other cell types (paired Student’s 
t-test, P = 9.12e-7; Fig. 2a). We focused specifically on interactions that involve HSCs and used the interaction 
pairs between qHSCs and other cells as references to pinpoint aHSC-specific interactions that may represent 

Figure 2.   Intercellular communications in the sinusoidal signaling niche. (a) Heatmap showing the number 
of potential ligand-receptor pairs between any two liver cell types predicted by CellphoneDB. (b) Dotplot 
displaying putative ligand-receptor interactions between aHSCs and other cell types. Dot size represents 
statistical significance of the indicated interactions. Dot color indicates the average expression level (log2-
transformed) of the receptor from aHSCs and the ligand from another cell type. (c–f) Gene expression of 
ITGAV, LAMC1, TNFRSF11B, and VWF at progressive disease stages. The RNA-seq data were downloaded 
and reanalyzed from Gerhard et al. (2018). Mann–Whitney U tests (two-sided) were performed for statistical 
comparisons. logCPM, log-transformed counts per million.
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potential key mediators involved in the initiation or perpetuation of liver fibrosis. Figure 2b shows selected sig-
nificant (P < 0.05) ligand-receptor pairs that are specific to aHSCs.

The most significant specific interactions were predicted to happen in the sinusoidal signaling niche, where 
HSCs are in close proximity to KCs/MDMs, LSECs and vascular ECs. The transforming growth factor (TGF)-β 
signaling pathway is associated with liver fibrosis and HSC activation37 and was indeed present in our results 
(Fig. 2b). Ligands potentially binding to epidermal growth factor receptor (EGFR) on aHSCs include amphiregu-
lin (AREG) and progranulin (GRN) (Fig. 2b). Robust expression of AREG in MDMs and other immune cells 
raises the possibility of EGFR signaling. Consistently, the EGFR–AREG signaling axis has indeed been implicated 
in HSC fibrogenic activity, and AREG was upregulated in murine and human NASH38. KCs and MDMs may 
also activate HSCs by secreting GRN that modulates EGFR signaling, and GRN was shown to function as a HSC 
survival signal by stimulating EGFR signaling through ephrin receptor A239. Erlotinib could attenuate EGFR 
phosphorylation in HSCs and subsequently reduce the total number of aHSCs40. PDGFC secreted from KCs 
and cholangiocytes could bind to the platelet-derived growth factor receptor α (PDGFRα) of HSCs and then 
trigger the PDGF signaling pathway (Fig. 2b). This is in line with previous studies showing that PDGF signal-
ing pathway exerts persistent activation in response to a variety of stimuli and facilitates HSC activation and 
fibrosis progression41. HSC activation may also be amplified through autocrine signaling (PDGFD–PDGFRα) 
(Fig. 2b). Interestingly, PDGF-C and -D levels increased during the trans-differentiation of qHSCs into aHSCs 
and persisted upon activation perpetuation, suggesting a role of these subunits in the late phase of fibrogenesis42.

Previous studies suggested that integrin-alpha V (ITGAV) may serve as a master driver of fibrosis in multi-
ple mouse organs43. Of the potential alpha subunits, only ITGAV has been shown to be critical for binding and 
activating TGF-β, which plays a critical role in HSC activation44. Laminin subunit gamma 1 (LAMC1) secreted 
from neighboring cells could interact with ITGAV to trigger HSC activation (Fig. 2b), which is in agreement 
with our observation of increased RNA expression for both genes from healthy to fibrotic livers (Fig. 2c,d). TNF 
receptor superfamily member 11B (TNFRSF11B) on the surface of HSCs may be modulated by ligands including 
von Willebrand factor (VWF), thrombospondin 1 (THBS1) and TNFSF10 that are secreted from ECs, epithelial 
cells and KCs/MDMs (Fig. 2b). The TNFRSF11B–VWF signaling axis might serve as a novel interaction that 
could play a role in HSC activation, and VWF deficiency has been demonstrated to attenuate chronic carbon 
tetrachloride (CCl4)-induced liver fibrosis45. This is further bolstered by the gene expression comparisons of both 
genes in healthy and fibrotic human livers (Fig. 2e,f). Furthermore, B- and T-lymphocyte attenuator (BTLA) and 
TNFSF14 secreted by immune cells potentially interact with TNFRSF14, emphasizing the proinflammatory and 
proliferative roles aHSCs may play at the site of injury (Fig. 2b). Consistent with the literature46, we also found 
NOTCH signaling pathway to be involved in fibrogenesis, highlighting two potential interaction pairs between 
NOTCH2 on aHSCs and ligands DLL4 and JAG2 expressed in ECs (Fig. 2b). A recent study showed that DLL4 
knockdown alleviated LSEC capillarization and provided protection against CCl4-induced fibrosis47.

Single‑cell regulatory network inference for liver mesenchymal cells.  Gene regulatory networks 
define and maintain cell-type specific identity, which in turn determines cellular function. For this analysis, 
we specifically focused on the mesenchymal cells (Fig. 1g–i). To identify the master regulators for each cell, we 
applied the SCENIC pipeline48. Briefly, SCENIC predicts the transcription factors (TFs) alongside their candi-
date target genes, which are jointly called regulons. Three major steps are involved, namely, co-expression analy-
sis, target gene motif enrichment analysis, and regulon activity evaluation. To examine whether this approach 
is effective, we included hepatocytes as their core gene regulatory networks have been well-characterized49. The 
analysis yielded cell-type specific regulons along with their respective regulon activity scores (RAS). The RAS 
were then averaged across cells for each cell type. Importantly, the regulon activity dendrogram for the 176 
significant regulons containing in total 11,920 target protein-coding genes in Fig. 3a matches well with the clus-
tering defined using all robustly expressed (18,771) protein-coding genes (Supplementary Fig. 3). It has indeed 
been suggested to use cell type-specific core regulatory complexes (CoRC) to define cell types50. Consistent with 
the literature49, SCENIC successfully identified known hepatocyte-specific regulators, including HNF4A/G and 
FOXA1/2/3, as the top regulons for hepatocytes (Fig. 3a).

The success of this approach in identifying critical hepatocyte regulators allowed us to examinate aHSC-
specific regulons with confidence. Notably, we found that regulon RUNX1 was highly active in aHSCs but low 
in qHSCs and other cell types (Fig. 3a,b), suggesting that it is a potential master regulator of HSC activation. 
Indeed, Runx1 was suggested to play important roles in NASH-associated HSC activation in mice17, and increased 
expression of RUNX1 in human liver biopsies correlated with NASH activity score in patients with NASH51. 
Interestingly, Runx1 was also identified as one of the top TFs in lipofibroblasts of fibrotic mouse lungs52.

CREB3L1, also known as OASIS, was identified as another potential master regulator of HSC activation 
(Fig. 3a,b), as its predicted target genes include known liver fibrosis-associated genes such as COL1A1 and 
LOX. This observation is in agreement with a previous finding that CREB3L1-deficient mice exhibited severe 
osteopenia caused by a decrease in the expression of COL1A1 in the bone matrix53. Another study revealed that 
inhibition of regulated intramembrane proteolysis of CREB3L1 could prevent excess deposition of collagen in 
some fibrotic diseases54. By leveraging a recent transcriptomic study on human NASH13, we showed that the 
expression of CREB3L1 increases as the disease progresses from healthy to fibrotic liver (Supplementary Fig. 4). 
Reanalysis of a mouse single-cell dataset25 showed specifically high activity in aHSCs for the Creb3l1 regulon 
(Fig. 3c–e). In line with a recent study55, other aHSC-associated regulators (i.e., IRF1 and NFKB1) were also 
observed in our results.

Furthermore, CREB3L1, HOXC8, TWIST1 and TWIST2 that were identified in this study are also among the 
TFs that were shared in fibroblasts of different organ origins56 (Fig. 3a,b). While the involvement of HOXC8 in 
fibrogenesis still remains unexplored, the role of TWIST1 in various fibrotic diseases has been gradually revealed 
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in recent years57. Activation of TWIST transcription by BRG1, a chromatin remodeling protein, was suggested to 
contribute to liver fibrosis in mice and a TWIST1 inhibitor (harmine) exerted anti-fibrogenic effects58. Addition-
ally, we identified specific regulons for other cell types, for example FOS, JUN and MYC for qHSCs, BACH1, 
GLI3, WT1 and YY1 for MCs (Fig. 3a). Two full lists of regulons and their scaled activity for each cell type can 
be found in Supplementary Tables 1 and 2, for human and mouse, respectively.

Comparison of stellate cells between liver and pancreas.  Pancreatic stellate cells (PSCs) share many 
morphological and functional characteristics with HSCs; they are thus presumed to share a common origin59. 
Despite the established role of stellate cells in fibrogenesis, there is currently still a lack of genomic comparison 
between stellate cells from liver and pancreas. A microarray-based transcriptomic analysis comparing HSCs to 
PSCs revealed that these cells are highly similar60. This analysis, however, appeared to be rather limited. scRNA-
seq enables the comparison between HSCs and PSCs at unprecedented resolution to uncover overlapping and 
distinct gene expression features. To this end, we retrieved and reanalyzed a public human pancreas scRNA-seq 
dataset61, and identified two clusters that correspond to quiescent and activated PSCs (Fig. 4a). We next com-
pared the up- and down-regulated genes in aHSCs and aPSCs (Fig. 4b). Many signature genes were common 

Figure 3.   Cell type-specific gene regulatory networks (regulons) of liver mesenchymal cells. (a) Heatmap of the 
inferred regulons for human liver mesenchymal cells. (b) Regulon activity-based UMAP colored according to 
the regulon activity of CREB3L1, RUNX1, TWIST1 and TWIST2 showing the cell type specificity of regulons. 
(c) UMAP embedding of mouse liver mesenchymal cells from uninjured and fibrotic (up to 6 weeks of CCl4 
treatment) mouse livers retrieved from Dobie et al. (2019). Left, cells colored by cell type/state. Right, cells 
colored by condition/cell origin. (d) Heatmap of the inferred regulons for mouse liver mesenchymal cells. (e) 
Regulon activity-based UMAP colored by the regulon activity of Creb3l1 and Twist1 showing the cell type 
specificity of regulons.
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for stellate cells in both organs, for example RGS5, FABP4 and ADIRF for quiescent stellate cells and AEBP1, 
COL1A1, COL1A2, LUM, TIMP1 and VCAN for activated stellate cells (Fig. 4b).

Another question of interest is whether cells of the same type from different organs may share gene regula-
tory circuitries. To this end, we also performed the SCENIC analysis on all pancreatic cells. Indeed, we found 
that the stellate cells from both organs share certain regulon activities (Fig. 4c). Consistent with the findings for 
aHSCs, the regulon activities of RUNX1, CREB3L1 and TWIST1 were significantly higher in aPSCs in com-
parison to qPSCs (Fig. 4c,d). A full list of regulons and their scaled activity for each cell type can be found in 
Supplementary Table 3.

Evaluating translatability of liver fibrosis‑associated genes.  We next sought to explore our find-
ings with a focus on translatability. The need for effective and safe therapy has spurred the development of 
in vitro and in vivo models to study the relevance of specific genes for the development and progression of NASH 
and to evaluate potential therapeutic agents prior to human studies7,62. By leveraging bulk RNA-seq data of 
NASH patient livers and rodent models for liver fibrosis of diverse etiologies, we were able to evaluate the trans-
latability of candidate therapeutic targets for NASH with fibrosis. An analysis of a human NASH-related RNA-
seq dataset13 confirmed that many of the aHSC-specific genes were indeed upregulated in fibrotic compared to 
healthy livers (Fig. 5a). Consistent with this finding, computational deconvolution of this dataset showed an 
upward trend in the proportion of aHSCs over the course of disease development (Fig. 5b). Next, to evaluate 
the translatability of potential novel therapeutic targets that were identified based on human data, we integrated 
public RNA-seq datasets from mouse models of CCl4-induced fibrosis and in vitro HSC activation17. For the 
in vivo mouse model, qHSCs and aHSCs were sorted separately from healthy and fibrotic livers after 8 weeks of 
CCl4 treatment. For the in vitro mouse model, healthy liver-derived primary qHSCs were cultured and activated 
on plastic for 12 days. Differential gene expression analyses between aHSCs and qHSCs were subsequently car-
ried out (Fig. 5c,d). In total, we identified 61 significantly upregulated and 13 downregulated genes that behave 
similarly in human aHSCs and fibrotic liver tissues, as well as in mouse aHSCs from in vivo and in vitro models 
of liver fibrosis (Fig. 5e, Supplementary Tables 4 and 5).

Figure 4.   Comparison of expression patterns between hepatic and pancreatic stellate cells. (a) UMAP 
embedding of human pancreatic cells retrieved from Baron et al. (2016). Left, cells colored by cell type. 
Right, cells colored by donor. qPSCs, quiescent PSCs; aPSCs, activated PSCs. (b) Volcano plot of differential 
gene expression analysis between activated and quiescent stellate cells for liver (left) and pancreas (right). 
Significantly upregulated (Sig.Up) and downregulated (Sig.Down) genes in activated stellate cells are shown 
in green and pink, respectively. 16 and 6 genes shared among the top 50 up- or down-regulated genes between 
liver and pancreas are labelled, respectively. (c) Heatmap of the inferred regulons for human pancreatic cells. (d) 
Regulon activity based UMAP colored according to the regulon activity of CREB3L1 and RUNX1 showing the 
cell type specificity of regulons.
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We then focused specifically on the 61 significantly upregulated genes. Functional enrichment analysis 
revealed pathways where the 61 genes were overrepresented, with the top 10 most enriched pathways including 
those related to ECM organization, collagen formation and degradation, and integrin cell surface interactions 
(Fig. 5f). Together, this highlights the central roles of ECM and integrins in the development of liver fibrosis, 
regardless of the etiological origin of the disease. A gene regulatory network was also built for the 61 DEGs to 
better understand potential coregulation by master TFs responsible for the development of fibrosis. Target genes, 
the top three motifs and corresponding TFs (if information available) are shown in Fig. 5g. Consistent with the 
above regulon results, CREB3L1 is again identified as a master regulator of liver fibrosis-related genes.

We next examined individual genes. Many of these genes, including COL1A1, LOX, MMP14, TGFB3, TIMP1 
and VCAN, are known markers for liver fibrosis. Other genes such as AEBP1, PRRX1 and LARP6 have also been 
implicated in liver fibrogenesis and could serve as potential drug targets for NASH with fibrosis. Noteworthily, 
AEBP1 and PRRX1 are the only two TF genes among the 61 genes. The expression of AEBP1 was significantly 
elevated in fibrotic human liver compared to that with lobular inflammation, steatosis, and healthy liver, and 
increased with worsening fibrosis in NASH patients63. AEBP1 is also among the most significantly upregulated 
genes in aPSCs compared with qPSCs (Fig. 4b). Interestingly, Aebp1 was specifically expressed in the Col14a1-
producing subpopulation of myofibroblasts in murine fibrotic lungs52. Using rodent models of liver fibrosis, 
a previous study uncovered a critical role of Prrx1 in PDGF-dependent HSC migration, and an adenoviral-
mediated Prrx1 short hairpin RNA (shRNA) administration reduced thioacetamide (TAA)-and CCl4-induced 
liver fibrosis64. Consistently, PRRX1 was recently identified to be involved in idiopathic pulmonary fibrosis, and 
inhibition of PRRX1 activity was sufficient to alleviate the development of pulmonary fibrosis65. As fibrosis is 
characterized by excessive accumulation of type I collagen, binding of LARP6 to the 5’ stem-loop structure of 
collagen mRNAs is a crucial step for collagen translation66. This makes LARP6 a promising target for liver fibro-
sis, and a recent high throughput screen has yielded a compound (C9) that represents the first LARP6 inhibitor 
with significant antifibrotic activity67.

To further explore those genes that we have shown to be involved in liver fibrosis-associated pathways and 
gene regulatory circuitries, we leveraged a mouse time-course dataset of high fat (HF) diet-induced NASH16. 
Additionally, we generated time-course RNA-seq data for rat models of TAA- and BDL-induced liver fibrosis. 
Consistently, the expression of two well-known liver fibrosis-associated genes (e.g., Col1a1 and Lox) among 
the 61 shared liver fibrosis-related genes and four TF genes of interest (e.g., Runx1, Creb3l1, Aebp1 and Prrx1) 
showed an upward trend as disease worsens across all three rodent models (Fig. 5h–m), further confirming their 
translatability across human, mouse and rat for future drug discovery endeavors.

Discussion
Fibrosis is a common sequela following organ injury, and HSC activation plays a pivotal role in liver fibrogenesis 
of different etiologies. Although activated HSCs represent an attractive target for antifibrotic therapy, the molecu-
lar mechanisms underlying the activation of HSCs remain poorly characterized. In this study, we performed 
scRNA-seq to determine the transcriptional dynamics of non-parenchymal cells of healthy human livers, and a 
subsequent integrative analysis of publicly available scRNA-seq data of fibrotic/cirrhotic livers enabled a deep 
dive into the mesenchyme, and HSCs in particular.

RNA velocity analysis revealed a clear cell state transition from RGS5-expressing HSCs to myofibroblast-like 
aHSCs that express ECM proteins and profibrotic mediators. Our analyses subsequently uncovered underlying 
cell–cell interactions and master regulons that potentially drive the activation of HSCs. Immune cells, epithelial 
cells (i.e., hepatocytes and cholangiocytes) and endothelial cells that dwell within the fibrotic niche communicate 

Figure 5.   Meta-analysis of existing RNA-sequencing data sets for NASH and liver fibrosis. (a) Differential 
gene expression analysis between fibrotic and healthy (as reference) livers. Only the top 10 up- or down-
regulated genes are labelled with gene symbols. Significantly upregulated (Sig.Up) and downregulated (Sig.
Down) genes are shown in green and pink, respectively. (b) Computational deconvolution of bulk RNA-seq 
data of 191 human liver samples (normal, 36; steatosis, 50; inflammation, 52; fibrosis, 53). The RNA-seq data 
were retrieved from Gerhard et al. (2018). Mann–Whitney U tests (two-sided) were performed for statistical 
pairwise comparisons. (c) Differential gene expression analysis between aHSCs and qHSCs (as reference) 
isolated from healthy and fibrotic (CCl4) mouse livers. The RNA-seq data were retrieved from Marcher et al. 
(2019). Significantly upregulated (Sig.Up) and downregulated (Sig.Down) genes are shown in green and pink, 
respectively. Only the top 10 up- or down-regulated genes are labelled with gene symbols. (d) Differential gene 
expression analysis between aHSCs and qHSCs (as reference). Healthy liver-derived qHSCs were activated on 
plastic in vitro. The RNA-seq data were retrieved from Marcher et al. (2019). Significantly upregulated (Sig.Up) 
and downregulated (Sig.Down) genes are shown in green and pink, respectively. Only the top 10 up- or down-
regulated genes are labelled with gene symbols. (e) Venn diagram showing all possible logical relations between 
three sets of up-regulated genes in aHSCs compared with qHSCs, and a set of up-regulated genes in bulk human 
fibrotic livers in comparison to healthy controls. Only the 15,252 protein-coding one-to-one orthologs for 
human, mouse, and rat were considered in this analysis (Supplementary Table 6). (f) Functional enrichment 
analysis for the 61 shared upregulated genes. (g) Regulatory gene network of the top three regulators (motifs) 
and their corresponding target genes among the 61 genes. (h–m) Contextualization of candidate therapeutic 
targets for liver fibrosis with time-course RNA-seq data. (h,i) High-fat (HF) diet-induced NASH mouse model; 
(j,k) Thioacetamide (TAA)-induced liver fibrosis rat model; (l,m) Bile duct ligation (BDL)-induced liver fibrosis 
rat model. Left, PCA of the samples studied. Right, expression levels of the genes of interest. TPM, transcripts 
per million. Adjusted p-values < 0.05 are colored in green.
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via secreting ligands that can potentially bind to specific cell surface receptors of HSCs to trigger the downstream 
signaling pathways that lead to the expression of liver fibrosis-associated genes. We highlighted three barely-
characterized or entirely novel interactions (ITGAV–LAMC1, TNFRSF11B–VWF and NOTCH2–DLL4) that 
could lead to HSC activation or proliferation. For example, apart from our finding of an increased expression 
of both TNFRSF11B and VWF in fibrotic versus healthy livers (Fig. 2e,f), VWF deficiency was also previously 
demonstrated to attenuate chronic CCl4-induced liver fibrosis45. This suggests that inhibition of VWF may be 
a clinically useful anti-fibrotic therapy resulting from a decrease in TNFRSF11B–VWF signaling. Our further 
analysis also revealed regulons that are potentially responsible for HSC activation in both humans and mice, such 
as CREB3L1 and TWIST1. The comparison of hepatic and pancreatic stellate cells points to shared regulatory 
mechanisms across different organs, thereby providing novel avenues for therapeutic target selection: among 
the liver fibrosis-associated regulons CREB3L1 was shared not only between species (i.e., human and mouse) 
but also between human organs (i.e., liver and pancreas).

Animal models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and 
to develop specific antifibrotic therapies towards clinical translation. In order to examine the translatability of 
potential therapeutic targets, we systematically integrated multiple public or in-house human, mouse and rat 
datasets, each pertaining to liver fibrosis of a different etiology. A total of 61 significantly upregulated genes in 
aHSCs were identified specific to liver fibrosis independent of etiology. Our analysis prioritized LARP6, AEBP1 
and PRRX1 because they have been linked to liver fibrogenesis. Pathway enrichment analysis of the 61 genes 
revealed that, despite the diverse causative factors of liver fibrosis, ECM organization and integrin cell surface 
interactions are the canonical and common pathological pathways involved in liver fibrosis. Gene regulatory net-
work analysis of the 61 genes allowed the identification of CREB3L1 as a master regulator for fibrosis-associated 
genes. Overall, this suggests that CREB3L1 might be a promising novel drug target for liver fibrosis, with estab-
lished translatability in key rodent models, and modulation of it is likely to result in effective anti-fibrotic activity. 
TFs have historically been viewed as ‘undruggable’ due to their pleiotropic actions in multiple cell types and 
lack of defined ligandable pockets68. Thanks to recent advances in structural characterization and ligand design 
strategies, TFs have been directly targeted by multiple enticing modalities including, for example, small-molecule 
protein–protein interaction inhibitors and targeted protein degradation68. CREB3L1 belongs to the CREB (cAMP 
response element binding protein) family. Vannam et al.69 recently reported the design and characterization of 
dCBP-1, a potent and selective heterobifunctional degrader of the CREB-binding protein (CBP) that is involved 
in the transcriptional coactivation of multiple TFs including CREB3L1.

Taken together, our findings provide potential targets for the treatment of NASH with fibrosis and helpful 
clues for better understanding the molecular underpinnings of liver fibrosis onset and progression. Our analysis 
also sheds light on the common fibrotic gene signatures across human and rodents, and also between human 
organs, which demonstrate high translatability for further investigation.

Methods
Liver tissue collection and sequencing of liver non‑parenchymal cells.  Physiologically normal 
human liver tissues were collected from the periphery of liver specimens from donors undergoing surgical resec-
tion. In all of these cases, the resections were done in a generous way in order to ascertain removal of all affected 
tissue. Of the six patients whose tissue we used, three underwent surgery for liver metastasis of rectal adenocar-
cinoma, and there was one patient each for hepatocellular adenocarcinoma (inflammatory type), hepatolithiasis, 
and liver hemangioma. All tissue resections were inspected by experts both macroscopically and microscopically 
to identify the “most healthy” parts, i.e., most distal of any potential lesions. Overall, through the combina-
tion of careful histopathological assessment and comparisons to for example data derived from hepatocellular 
carcinoma, we are confident that our “healthy” tissue is as good a proxy for healthy tissue as is realistically and 
ethically achievable. Informed consent of the patients was obtained in accordance with institutional guidelines 
and the local ethics committee in Bern, Switzerland. This study was approved by the regional ethics committee 
in Basel, Switzerland (Ethikkommission Nordwest- und Zentralschweiz; #2015-391 PB_2017-00323).

Liver tissue was stored at 4 °C and processed within 3 h post resection. Liver non-parenchymal cells (NPCs) 
were isolated following a two-step protocol of collagenase/EDTA digestion70. Briefly, hepatocytes were removed 
by centrifuging the whole digestion at 50 g for 5 min (pellet removed—hepatocyte fraction, cleaned on Per-
coll), and the supernatant removed and spun again at 50 g for 5 min to remove the remaining hepatocytes, the 
supernatant was then pelleted at 300 g for 8 min and used as NPC fraction for downstream sequencing library 
preparation. Cell viability of the isolated NPCs was estimated by trypan blue exclusion. Samples of 67–89% 
viable cells from each of the liver samples were subjected to single-cell RNA sequencing using the 10× Genomics 
Chromium Single Cell 3’ Library & Gel Bead Kit v2 following the manufacturer’s instructions. Approximately 
4000 cells were targeted for each sample recovery. Libraries were sequenced on the Illumina HiSeq2500 machine 
using paired-end sequencing runs.

Generation of bulk RNA‑seq data for both BDL and TAA‑induced liver fibrosis rat models.  All 
in  vivo animal studies were reviewed and approved by the Institutional Animal Care and Use Committee 
(IACUC) of Novartis Institutes for BioMedical Research in Shanghai, China (approval #2013-05-01 (BDL 
model); #2016-03-08 (TAA model)). All experiments were performed in accordance with the relevant guidelines 
and regulations and in compliance with the ARRIVE guidelines.

To induce hepatic fibrosis, male Sprague Dawley rats (9–12 weeks of age and 380–420 g of weight upon 
arrival, supplied by Beijing Vital River laboratory animal Co., Ltd.) either underwent surgery of bile duct ligation 
(BDL) or were treated with thioacetamide (TAA). In the BDL model, the bile ducts of Sprague Dawley rats were 
ligated after 12 h of fasting and water deprivation. Rat liver samples were collected from three groups of rats at 
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week 1, 2 and 5 after BDL surgery. Three control groups of rats underwent sham operation, including bile duct 
mobilization, but without BDL. Three biological replicates were used for each group. In the TAA model, rat liver 
samples were collected from five groups of rats at week 1, 2, 4, 8 and 13 after TAA (300 mg/kg) administration 
three times per week while five control groups received the same volume of 0.9% normal saline. Four biological 
replicates were used for each group.

Frozen rat liver tissue (~ 2 mm cube) was lysed and homogenized using Trizol reagent in a Qiagen Tissue-
Lyser II. After phase separation of the homogenate, the upper aqueous phase was subject to total RNA purifica-
tion using Qiagen RNeasy Mini spin column with extensive on-column DNase I digestion. Purified total RNA 
samples were analyzed by Agilent Bioanalyzer RNA 6000 Nano assay and quantified by Qubit RNA assay. For 
construction of sequencing libraries, 1 ug of total RNA (RIN > 8) was subjected to Illumina TruSeq Stranded 
Total RNA Sample Prep kit with Ribo-Zero Gold. Libraries were analyzed by Bioanalyzer High Sensitivity DNA 
assay and quantified by Qubit DNA assay. Sequencing was performed by Illumina NextSeq 500 or HiSeq 1500.

Single‑cell RNA‑seq data analysis.  Library demultiplexing, fastq file generation, read alignment and 
unique molecular identifier (UMI) quantification were performed using the Cell Ranger Single Cell Software 
Suite v3.1.0 (10× Genomics, Inc.) against the 10× Genomics pre-built GRCh38.93 human reference genome. 
Data processing and visualization were performed with the Seurat package v3.1.532 in R v3.6.1 (R Core Team, 
2019). The initial dataset contained 175,429 cells, namely, 17,810 cells that we profiled and 157,619 cells obtained 
from a public dataset22 for 33,538 genes. Since in our study we revolve around all liver non-parenchymal cells 
with a focus on hepatic stellate cells, for the public dataset we only included the seven donors with both leu-
cocytes (CD45+) and other non-parenchymal cells (CD45−) profiled. Outlier cells were excluded from the 
downstream analyses using the isOutlier function from the scater R package. Moving along, we only kept genes 
expressed in at least 10 cells and cells with at least 200 genes expressed. Raw UMI counts were log-normalized 
and then 2000 highly variable genes were identified with the Seurat function FindVariableFeatures. Scaling was 
performed to regress out confounders, i.e., total UMI count, percent of mitochondrial reads and cell cycle score. 
Next, principal component analysis was performed using the variable genes for dimensionality reduction using 
the Seurat function RunPCA. Clusters were identified with the Seurat function FindClusters using the shared 
nearest neighbor modularity optimization based on the first 12 PCs with a clustering resolution set to 0.4. This 
method resulted in 20 initial clusters. Of the parameters we tried, most produced a similar UMAP clustering, but 
12 PCs generated the best separation between different cell types. For each cell type, marker genes were identi-
fied using the Seurat function FindAllMarkers with the Wilcoxon rank-sum test. The FindAllMarkers function 
was also used to identify differentially expressed genes in activated HSCs compared with quiescent HSCs, and 
also in activated PSCs compared with quiescent PSCs. Scaled expression data for marker genes were used to 
create the heatmap.

Automated annotation of cells with SingleR.  We compared our manual annotations of clusters based 
on known cell-type-specific marker genes to that produced through automated classification using SingleR33, 
which leverages reference transcriptomic datasets (Human Primary Cell Atlas, in the case of our study) of pure 
cell types to infer the cell of origin of each of the single cells independently.

ECM score calculation.  The extracellular matrix (ECM) score for each mesenchymal cell was calculated 
based on the normalized expression values of matrisome genes using the method as previously described71.

Intercellular communication analysis with CellPhoneDB.  To infer ligand-receptor interactions pre-
sent within the liver, we applied CellPhoneDB (v2.1.4), which determines cellular crosstalk based on significant 
enrichment of reciprocal expression of ligands and receptors between annotated cell populations35. In brief, we 
derived potential ligand-receptor interactions on the basis of the expression of a receptor by one cell population 
and a ligand by another; as input to this algorithm, we used all cells, and we considered only ligands and recep-
tors expressed in more than 5% of the cells in any given cell population. Cell population-specific interactions 
were identified as follows: (1) randomly permuting the cluster labels of all cells 1,000 times and determining the 
mean of the average receptor expression of a cell population and the average ligand expression of the interacting 
cell population, thus generating a null distribution for each ligand-receptor pair in each pairwise comparison 
between cell populations; (2) calculating the proportion of these means that were ‘as or more extreme’ than the 
actual mean, thus obtaining a P value for the likelihood of cell population specificity for a given ligand-receptor 
pair; (3) prioritizing interactions that displayed specificity to cell populations interacting within the liver.

Gene regulatory network (regulon) analysis.  SCENIC is a computational tool that infers regulons 
by analyzing the co-expression of transcription factors and their putative target genes characterized by enrich-
ment of corresponding transcription factor-binding motifs in their regulatory regions48. Regulatory network 
and regulon activity analysis were conducted on the mouse (mm10) and human (hg38) datasets separately 
using pySCENIC (v0.10.2) with default parameters. Normalized log counts were used as input to identify co-
expression modules by the GRNBoost2 algorithm. Following which, regulons were derived by identifying the 
direct-binding TF target genes while pruning others based on motif enrichment around transcription start site 
(TSS) with cisTarget databases. Using aucell, the regulon activity score (RAS) was measured as the area under 
the recovery curve (AUC). Scaled cell type-averaged RAS > 0.7 was regarded as significant. Overall, we identified 
176, 340 and 532 active regulons for human mesenchymal cells, mouse mesenchymal cells and human pancre-
atic cells, respectively.
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RNA velocity analysis.  RNA velocity analysis was performed as previously described using the velocyto.
py python package for annotating transcripts as spliced or unspliced72, followed by the scVelo pipeline (v0.2.2)73. 
Briefly, transcripts are marked as either spliced or unspliced based on the presence or absence of intronic regions 
in the transcript. For each gene, a simple model of RNA dynamics is then fit to the data. Finally, the RNA velocity 
is estimated for each cell by looking for over- or underrepresentation of spliced to unspliced ratios. RNA velocity 
is visualized on a UMAP plot, with vector fields representing the averaged velocity of nearby cells.

Bulk RNA‑seq data analysis.  The exon quantification pipeline (EQP)74, a tool based on Bowtie 2.0, was 
used to generate count-based gene expression estimates, determined by an alignment of the reads to the human 
genome (GRCh38.p10, Ensembl 90, August 2017). Depending on the context, either CPM (counts per million) 
or TPM (transcripts per million) was calculated to represent gene expression levels. Differential gene expression 
analysis was performed using the DESeq2 R package (v1.22.2)75 in R (v3.6.1) with design =∼ Condition for 
pairwise differential expression analysis, and full_model =∼ Condition+ Timepoint + Condition : Timepoint 
and reduced_model =∼ Condition+ Timepoint for time-course differential expression analysis. P-values for 
each gene were adjusted using the p.adjust() function in R with the Benjamini–Hochberg method. Genes with 
an adjusted P < 0.05 were deemed to be significant.

Deconvolution of publicly available human NASH bulk RNA‑seq data.  Computational decon-
volution of bulk RNA-seq data was performed using MuSiC76 with the following parameters: iter.max = 1000, 
nu = 1e-10, eps = 0.01, and normalize = F.

Orthologous gene sets.  To evaluate the translatability of potential therapeutic targets across species, 
only genes with a one-to-one orthologous relationship across the species investigated (i.e., human, mouse and 
rat) were considered. All possible homolog pairs between human, mouse and rat were first downloaded from 
Ensembl release 93 via BioMart. We then only kept 15,252 genes with a one-to-one correspondence between any 
species pairs (Supplementary Table 6).

Pathway enrichment analysis for differentially expressed genes.  The clusterProfiler77 and 
ReactomePA78 R packages were used to perform Reactome pathway enrichment analysis for the 61 liver fibrosis-
specific genes independent of causative factors. Fisher’s exact test followed by the Benjamini–Hochberg correc-
tion was performed for statistical analysis, and an adjusted P < 0.05 was set as the cutoff criterion.

Data availability
Single-cell RNA-seq data of human liver are available from the ArrayExpress database under Accession Number 
E-MTAB-10553. Bulk RNA-seq data of thioacetamide (TAA)- and bile duct ligation (BDL)-induced liver fibrosis 
rat models can be accessed with ArrayExpress Accession Numbers E-MTAB-10547 and E-MTAB-10546, respec-
tively. Publicly available human liver and human pancreas scRNA-seq datasets were obtained from the GEO 
database [GSE136103 and GSE84133]. Publicly available human NASH bulk RNA-seq data were retrieved from 
the NCBI Bioproject database under Accession PRJNA512027. Publicly available single-cell and bulk RNA-seq 
data of liver fibrosis mouse models were downloaded from the GEO database [GSE137720 and GSE116987].

Code availability
No new algorithms were developed for this manuscript. R scripts enabling the main steps of the analysis are 
available from the authors upon request.
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